WO2020221241A1 - 由用户设备执行的方法以及用户设备 - Google Patents

由用户设备执行的方法以及用户设备 Download PDF

Info

Publication number
WO2020221241A1
WO2020221241A1 PCT/CN2020/087436 CN2020087436W WO2020221241A1 WO 2020221241 A1 WO2020221241 A1 WO 2020221241A1 CN 2020087436 W CN2020087436 W CN 2020087436W WO 2020221241 A1 WO2020221241 A1 WO 2020221241A1
Authority
WO
WIPO (PCT)
Prior art keywords
pssch
frequency domain
resource allocation
domain resource
pscch
Prior art date
Application number
PCT/CN2020/087436
Other languages
English (en)
French (fr)
Inventor
罗超
刘仁茂
赵毅男
Original Assignee
夏普株式会社
罗超
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 罗超 filed Critical 夏普株式会社
Publication of WO2020221241A1 publication Critical patent/WO2020221241A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present invention relates to the field of wireless communication technology, and in particular to methods executed by user equipment and corresponding user equipment.
  • V2X (Vehicle-to-everything) communication refers to the communication between a vehicle and any entity that may affect the vehicle.
  • Typical V2X communication includes V2I (Vehicle-to-Infrastructure), V2N (Vehicle-to-network, vehicle-to-network), V2V (Vehicle-to-vehicle, vehicle-to-vehicle), V2P (Vehicle-to -Pedestrian, vehicle to pedestrian) etc.
  • the 3GPP LTE standard supports V2V communication (3GPP V2X phase 1) from Rel-14, and V2X communication (3GPP V2X phase 2) from Rel-15.
  • V2V and V2X are based on D2D (Device to Device) technology, and the corresponding interface between UE and UE is called PC5, which is also called "straight line” or "side line” at the physical layer.
  • a sidelink (SL) link is used to distinguish between an uplink (UL) link and a downlink (DL) link.
  • Non-Patent Document 1 As 5G NR (see Non-Patent Document 1, hereinafter referred to as 5G, or NR, or NR Rel-15, or 5G Rel-15) standardization work progresses, and 3GPP has identified more advanced V2X services (eV2X services) requirements , 3GPP V2X phase 3, that is, 5G V2X is on the agenda.
  • eV2X services advanced V2X services
  • 3GPP V2X phase 3 As 5G NR (see Non-Patent Document 1, hereinafter referred to as 5G, or NR, or NR Rel-15, or 5G Rel-15) standardization work progresses, and 3GPP has identified more advanced V2X services (eV2X services) requirements , 3GPP V2X phase 3, that is, 5G V2X is on the agenda.
  • eV2X services advanced V2X services
  • 3GPP V2X phase 3 research project In June 2018, at the 80th plenary meeting of 3GPP
  • 5G V2X work item a new 3GPP 5G V2X work item (see Non-Patent Document 3, hereinafter referred to as 5G V2X work item) was approved.
  • the goals of the 5G V2X work project include:
  • ⁇ SL physical layer process such as HARQ process, CSI acquisition and power control, etc.
  • ⁇ gNB scheduling based on UE reporting auxiliary information ⁇ gNB scheduling based on UE reporting auxiliary information.
  • the physical layer of the SL interface supports broadcast and groupcast in in-coverage, out-of-coverage and partial-coverage scenarios And unicast (unicast) transmission.
  • 5G V2X supports SL synchronization function.
  • Related signals and channels include:
  • ⁇ SL PSS Sidelink Primary Synchronization Signal, direct primary synchronization signal
  • S-PSS S-PSS
  • PSSS Primary Sidelink Synchronization Signal, primary direct synchronization signal
  • ⁇ SL SSS Sidelink Secondary Synchronization Signal
  • S-SSS S-SSS
  • SSSS Secondary Sidelink Synchronization Signal, secondary direct synchronization signal
  • ⁇ PSBCH Physical Sidelink Broadcast Channel, physical direct broadcast channel
  • SL PSS, SL SSS and PSBCH are organized into blocks on the time-frequency resource grid, called SL SSB (Sidelink SS/PBCH block, direct synchronization signal/physical broadcast channel block), or S-SSB .
  • the transmission bandwidth of the SL SSB is within the SL BWP (Sidelink Bandwidth Part) configured for the UE.
  • SL PSS and/or SL SSS can carry SL SSID (Sidelink Synchronization Identity, or Sidelink Synchronization Identifier), or Sidelink Synchronization Signal Identity, or Sidelink Synchronization Signal Identity, or Sidelink Synchronization Signal Identity, or MIBCH (Sidelink Synchronization Identity, which can carry Direct Synchronization Signal Identity).
  • Master Information Block go straight to the main information block).
  • the 5G V2X synchronization source may include GNSS (Global Navigation Satellite System), gNB, eNB, and NR UE.
  • GNSS Global Navigation Satellite System
  • gNB Global Navigation Satellite System
  • eNB eNode B
  • NR UE NR UE.
  • the priority definition of the synchronization source is shown in Table 1. Among them, the UE determines whether to use "GNSS-based synchronization" or "gNB/eNB-based synchronization" through (pre)configuration information.
  • GNSS-based synchronization Synchronization based on gNB/eNB P0 GNSS gNB/eNB P1 All UEs directly synchronized to GNSS All UEs directly synchronized to gNB/eNB P2 All UEs indirectly synchronized to GNSS All UEs indirectly synchronized to gNB/eNB P3 Any other UE GNSS P4 N/A All UEs directly synchronized to GNSS P5 N/A All UEs indirectly synchronized to GNSS P6 N/A Any other UE
  • one SL BWP (Sidelink Bandwidth Part) can be (pre-)configured on a 5G V2X carrier.
  • a coverage scenario there is only one valid (or activated) SL BWP on a 5G V2X carrier.
  • One SL BWP can be (pre-)configured with one or more resource pools (Resource Pool, which refers to a collection of time-frequency resources that can be used for SL transmission and/or reception).
  • Resource Pool refers to a collection of time-frequency resources that can be used for SL transmission and/or reception.
  • 5G V2X resource allocation methods can be classified as follows:
  • ⁇ Mode 1 The base station schedules SL resources for SL transmission.
  • ⁇ Mode 2 The UE determines the SL resources for SL transmission (that is, the base station does not participate in the scheduling of SL resources).
  • ⁇ PSSCH Physical Sidelink Shared Channel, physical direct shared channel
  • ⁇ PSCCH Physical Sidelink Control Channel, physical direct control channel
  • ⁇ PSFCH Physical Sidelink Feedback Channel, physical direct feedback channel
  • the UE schedules the transmission of data carried by the PSSCH through the SCI (Sidelink Control Information) carried by the PSCCH.
  • SCI Servicelink Control Information
  • SCI can include one or more of the following:
  • Layer-1 Source ID (Layer-1 Source ID), or Physical Layer Source ID (Physical Layer Source ID).
  • Layer-1 Destination ID (Layer-1 Destination ID), or Physical Layer Destination ID (Physical Layer Source ID).
  • HARQ Process ID HARQ Process ID
  • HARQ Process Number HARQ Process Number
  • the multiplexing method of PSCCH and its associated PSSCH includes at least a part of PSCCH and part of its associated PSSCH using resources that overlap in the time domain but are non-overlapping in the frequency domain.
  • the other part of the PSCCH and/or the other part of the PSSCH uses resources that do not overlap in the time domain.
  • An example of this multiplexing is shown in Figure 1.
  • the possible problems faced by SL link design include at least:
  • Non-Patent Document 1 RP-181474, Revised WID on New Radio Access Technology
  • Non-Patent Document 2 RP-181429, New SID: Study on 5G V2X
  • Non-Patent Document 3 RP-190766, New WID on 5G V2X with NR sidelink
  • the present invention provides a method executed by a user equipment and a user equipment that can efficiently indicate in the SCI the time domain and/or frequency domain resources allocated to the scheduled PSSCH.
  • a method executed by a user equipment includes: receiving the direct control information SCI carried by the physical direct control channel PSCCH; and determining the physical direct sharing scheduled by the PSCCH according to the SCI Time domain and/or frequency domain resource allocation of channel PSSCH.
  • the SCI indicates any one or more of the following: time domain resource allocation, which is used to indicate the time domain resources allocated for the PSSCH; and frequency domain resource allocation, which is used to indicate the PSSCH The allocated frequency domain resources.
  • the time domain resource allocation includes one or more of the following: the number S of all OFDM symbols allocated for the PSSCH; the number n starting of the starting OFDM symbol of the PSSCH; and the number n starting of the PSSCH The number S 2 of OFDM symbols allocated but not allocated for the PSCCH.
  • the frequency domain resource allocation includes one or more of the following: the number L of PSSCH frequency domain resource allocation units occupied by the PSSCH; and the PSSCH specific frequency domain resource allocation L 2 .
  • the determined time domain and/or frequency domain resource allocation of the PSSCH includes one or more of the following: the number S of OFDM symbols occupied by the PSSCH; Number n starting ; number n ending of the ending OFDM symbol of the PSSCH; set C T of OFDM symbols occupied by the PSSCH; number L of PSSCH frequency domain resource allocation units occupied by the PSSCH; The number m starting of the occupied starting PSSCH frequency domain resource allocation unit; the number m ending of the ending PSSCH frequency domain resource allocation unit occupied by the PSSCH; and the set C F of the PSSCH frequency domain resource allocation unit occupied by the PSSCH .
  • S is determined by any of the following methods:
  • ⁇ S is directly indicated by the time domain resource allocation
  • S 1 is the number of OFDM symbols occupied by the PSCCH.
  • n starting is determined in the following way:
  • ⁇ n starting is directly indicated by the time domain resource allocation
  • n 1 is the number of the starting OFDM symbol of the PSCCH in a time slot.
  • L is determined by any of the following methods:
  • ⁇ L is directly indicated by the frequency domain resource allocation
  • L 1 is the number of PSCCH frequency domain resource allocation units occupied by the PSCCH
  • m 1 is the number of the initial PSCCH frequency domain resource allocation unit occupied by the PSCCH
  • m starting is determined by any of the following methods:
  • m 1 is the number of the initial PSCCH frequency domain resource allocation unit occupied by the PSCCH
  • K PSSCH is the PSSCH frequency domain resource allocation unit
  • K PSCCH is the PSCCH frequency domain resource allocation unit.
  • a user equipment which includes: a processor; and a memory storing instructions, wherein the instructions execute the above-mentioned method when run by the processor.
  • the present invention it is possible to provide a method executed by a user equipment and the user equipment, which can efficiently indicate in the SCI the time domain and/or frequency domain resources allocated to the scheduled PSSCH.
  • FIG. 1 is a diagram showing an example of a multiplexing method of PSCCH and PSSCH in the time domain and the frequency domain.
  • Fig. 2 is a flowchart showing a method executed by a user equipment according to the first embodiment of the present invention.
  • Fig. 3 is a flowchart showing a method executed by a user equipment according to the second embodiment of the present invention.
  • Fig. 4 is a flowchart showing a method executed by a user equipment according to the third embodiment of the present invention.
  • Fig. 5 is a flowchart showing a method executed by a user equipment according to the fourth embodiment of the present invention.
  • Fig. 6 is a block diagram schematically showing a user equipment involved in the present invention.
  • 3GPP 3rd Generation Partnership Project
  • the third generation partnership project the third generation partnership project
  • BWP Bandwidth Part, Bandwidth Part
  • CA Carrier Aggregation, carrier aggregation
  • CCE control-channel element, control channel element
  • CORESET control-resource set, control resource set
  • CP Cyclic Prefix, cyclic prefix
  • CP-OFDM Cyclic Prefix Orthogonal Frequency Division Multiplexing, Cyclic Prefix Orthogonal Frequency Division Multiplexing
  • CRB Common Resource Block, common resource block
  • CRC Cyclic Redundancy Check, cyclic redundancy check
  • DCI Downlink Control Information, downlink control information
  • DFT-s-OFDM Discrete Fourier Transformation Spread Orthogonal Frequency Division Multiplexing, Discrete Fourier Transform Spread Spectrum Orthogonal Frequency Division Multiplexing
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • DM-RS Demodulation reference signal, demodulation reference signal
  • eMBB Enhanced Mobile Broadband, enhanced mobile broadband communications
  • FDRA Frequency Domain Resource Assignment, frequency domain resource allocation
  • IP Internet Protocol, Internet Protocol
  • LCID Logical Channel ID, logical channel identifier
  • LTE-A Long Term Evolution-Advanced, an upgraded version of long-term evolution technology
  • MAC Medium Access Control, medium access control
  • MAC CE MAC Control Element, MAC control element
  • MCG Master Cell Group, primary cell group
  • MIB Master Information Block, master information block
  • mMTC Massive Machine Type Communication, large-scale machine type communication
  • NAS Non-Access-Stratum, non-access layer
  • NUL Normal Uplink, normal uplink
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • PBCH Physical Broadcast Channel, physical broadcast channel
  • PDCCH Physical Downlink Control Channel, physical downlink control channel
  • PDCP Packet Data Convergence Protocol, packet data convergence protocol
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • PSBCH Physical Sidelink Broadcast Channel, physical direct broadcast channel
  • PSCCH Physical Sidelink Control Channel, physical direct control channel
  • PSSCH Physical Sidelink Shared Channel, physical direct shared channel
  • PRB Physical Resource Block, physical resource block
  • PSS Primary Synchronization Signal, the primary synchronization signal
  • PSSS Primary Sidelink Synchronization Signal, main straight line synchronization signal
  • PTAG Primary Timing Advance Group, the main timing advance group
  • PUSCH Physical uplink shared channel, physical uplink shared channel
  • PUCCH Physical uplink control channel, physical uplink control channel
  • RAR Random Access Response, Random Access Response
  • RB Resource Block, resource block
  • REG resource-element group, resource element group
  • RF Radio Frequency, radio frequency
  • RLC Radio Link Control, radio link control protocol
  • Radio-Network Temporary Identifier Radio-Network Temporary Identifier, wireless network temporary identifier
  • RRC Radio Resource Control, radio resource control
  • SCG Secondary Cell Group, secondary cell group
  • SCI Sidelink Control Information, direct control information
  • SCS Subcarrier Spacing, subcarrier spacing
  • SDAP Service Data Adaptation Protocol, service data adaptation protocol
  • SFN System Frame Number, system frame number
  • SIB System Information Block, system information block
  • SL BWP Sidelink Bandwidth Part, straight bandwidth segment
  • SL PSS Sidelink Primary Synchronization Signal, direct main synchronization signal
  • SL SSB Sidelink SS/PBCH block, direct synchronization signal/physical broadcast channel block
  • SL SSS Sidelink Secondary Synchronization Signal, direct-travel secondary synchronization signal
  • SpCell Special Cell, special cell
  • SRS Sounding Reference Signal, sounding reference signal
  • SSB SS/PBCH block, synchronization signal/physical broadcast channel block
  • SSS Secondary Synchronization Signal, secondary synchronization signal
  • SSSS Secondary Sidelink Synchronization Signal, secondary direct synchronization signal
  • Timing Advance Timing Advance
  • TAG Timing Advanced Group, timing advance group
  • TCP Transmission Control Protocol, Transmission Control Protocol
  • TDD Time Division Duplexing, time division duplex
  • TPC Transmit power control, transmission power control
  • UE User Equipment, user equipment
  • V2I Vehicle-to-Infrastructure, vehicle to infrastructure
  • V2N Vehicle-to-network, vehicle-to-network
  • V2P Vehicle-to-Pedestrian, vehicle to pedestrian
  • V2V Vehicle-to-vehicle, vehicle to vehicle
  • V2X Vehicle-to-everything, vehicle to any entity
  • Fig. 2 is a flowchart showing a method executed by a user equipment according to the first embodiment of the present invention.
  • the steps performed by the user equipment UE include: step S201 and step S203.
  • step S201 direct control information (SCI) is received. among them,
  • the SCI can be carried in the PSCCH. among them,
  • the PSCCH can be used to schedule the PSSCH.
  • the SCI carried by the PSCCH can be used to schedule the PSSCH.
  • the PSCCH may occupy S 1 OFDM symbols (for example, S 1 consecutive OFDM symbols). among them,
  • the S refers to one OFDM symbol in the same slot S 1 OFDM symbol.
  • the PSCCH may occupy more than one time slot, where each occupied time slot occupies S 1 OFDM symbols.
  • the PSSCH also occupies the S 1 OFDM symbols, for example, the PSCCH occupies a part of the frequency domain resources on the S 1 OFDM symbols (denoted as ⁇ 1 ), and the PSSCH occupies all Another part of the frequency domain resources on the S 1 OFDM symbols (denoted as ⁇ 2 ), and ⁇ 1 and ⁇ 2 do not overlap.
  • the PSSCH in addition to the S 1 OFDM symbols, the PSSCH also occupies zero or one or more other OFDM symbols determined in other ways.
  • the PSSCH may occupy more than one time slot, wherein each occupied time slot occupies the S 1 OFDM symbols.
  • the PSSCH also occupies zero or one or more other OFDM symbols determined in other ways in each occupied time slot.
  • the value set of S 1 can be any one of the following:
  • the value set of S 1 may be related to the configuration of cyclic prefix (Cyclic Prefix, CP), for example, in a normal CP (such as the SL carrier or SL BWP or resource pool where the PSCCH and/or the PSSCH is located)
  • CP Cyclic Prefix
  • a normal CP such as the SL carrier or SL BWP or resource pool where the PSCCH and/or the PSSCH is located
  • an extended CP for example, the SL carrier or SL BWP or resource pool where the PSCCH and/or the PSSCH is located is configured as an extended CP.
  • the starting (or first) OFDM symbol number of the PSCCH can be recorded as n 1 .
  • n 1 may be the number of the start OFDM symbol of the PSCCH in one slot.
  • n 1 the value set of n 1 can be any of the following:
  • the value set of n 1 may be related to the cyclic prefix (Cyclic Prefix, CP) configuration, for example, in a normal CP (such as the SL carrier or SL BWP or resource pool where the PSCCH and/or the PSSCH is located)
  • a normal CP such as the SL carrier or SL BWP or resource pool where the PSCCH and/or the PSSCH is located
  • an extended CP for example, the SL carrier or SL BWP or resource pool where the PSCCH and/or the PSSCH is located is configured as an extended CP.
  • the PSCCH may occupy L 1 PSCCH frequency domain resource allocation units.
  • the PSCCH frequency domain resource allocation unit may be a PSCCH subchannel (subchannel), a resource block (resource block, RB), or a resource block group (resource block group, RBG), or The subcarrier can also be other units.
  • the resource block may be a virtual resource block (virtual resource block, VRB), a physical resource block (physical resource block, PRB), or a common resource block (common resource block, CRB), or Resource blocks defined in other ways.
  • the size of the PSCCH frequency domain resource allocation unit may be expressed by the number of resource blocks, denoted as K PSCCH .
  • the PSCCH frequency domain resource allocation unit numbered 0 is called a reference PSCCH frequency domain resource allocation unit.
  • the starting resource block of the reference PSCCH frequency domain resource allocation unit (denoted as ) Can be the starting resource block of the SL carrier or SL BWP or the resource pool where the PSCCH and/or the PSSCH is located, and can also be a predefined or pre-configured or configured value.
  • the number of the initial PSCCH frequency domain resource allocation unit occupied by the PSCCH may be recorded as m 1 .
  • the SCI can indicate any one or more of the following:
  • the time domain resource allocation is used to indicate the time domain resources allocated for the PSSCH.
  • the time domain resource allocation can be indicated by a field in the SCI, or by a part of the bits in a field in the SCI, or by a field in the SCI. A part of the value is used for indication, and it can also be indicated through multiple fields in the SCI.
  • the time domain resource allocation may include: the number of all OFDM symbols allocated for the PSSCH (denoted as S). among them,
  • the PSCCH also occupies zero or one or more of the S OFDM symbols.
  • the time domain resource allocation may include: the number of the starting OFDM symbol of the PSSCH (denoted as n starting ). among them,
  • the n starting may be the number of the OFDM symbol relative to the first OFDM symbol (ie, OFDM symbol 0) of the time slot where the PSCCH is located.
  • n starting 1 indicates the second OFDM symbol of the time slot where the PSCCH is located.
  • the n starting may be the number of the OFDM symbol relative to the starting OFDM symbol (ie n 1 ) of the PSCCH.
  • n starting 1 indicates the next OFDM symbol of n 1 .
  • the time domain resource allocation may include: the number of OFDM symbols allocated for the PSSCH but not allocated for the PSCCH (denoted as S 2 ). among them,
  • the S 2 OFDM symbols may also be called PSSCH-only (or PSSCH specific, PSSCH specific) OFDM symbols.
  • the S 2 OFDM symbols may also be referred to as OFDM symbols occupied by the PSSCH and that do not overlap with the PSCCH.
  • the PSSCH occupies the same frequency domain resources on each of the S 2 OFDM symbols (denoted as ⁇ 3 ), and the PSCCH does not occupy the S 2 OFDM symbols Of any frequency domain resources.
  • ⁇ 3 ⁇ 1 + ⁇ 2 .
  • the OFDM symbols S 2 S refers to a slot in the same two OFDM symbols.
  • the PSSCH also occupies zero or one or more other OFDM symbols determined in other ways.
  • the PSSCH may occupy more than one time slot, wherein each occupied time slot occupies S 2 OFDM symbols.
  • the PSSCH also occupies zero or one or more other OFDM symbols determined in other ways in each occupied time slot.
  • the value set of S 2 can be any one of the following:
  • the value set of S 2 may be related to the configuration of cyclic prefix (Cyclic Prefix, CP), for example, in a normal CP (such as the SL carrier or SL BWP or resource pool where the PSCCH and/or PSSCH is located)
  • CP Cyclic Prefix
  • a normal CP such as the SL carrier or SL BWP or resource pool where the PSCCH and/or PSSCH is located
  • an extended CP such as the SL carrier or SL BWP or resource pool where the PSCCH and/or the PSSCH is located is configured as an extended CP.
  • the frequency domain resource allocation is used to indicate the frequency domain resources allocated for the PSSCH.
  • the frequency domain resource allocation unit may be referred to as a "PSSCH frequency domain resource allocation unit”.
  • the PSSCH frequency domain resource allocation unit can be a PSSCH subchannel, a resource block, a resource block group, a subcarrier, or other units, where the resource block can be It is a virtual resource block, it can also be a physical resource block, it can also be a common resource block, or it can be a resource block defined in other ways.
  • the frequency domain resources allocated for the PSSCH may be a set of one or more PSSCH subchannels (or resource blocks, or resource block groups, or subcarriers), where each PSSCH subchannel (or resource block, or The frequency positions of resource block groups or sub-carriers are different, and their numbers are also different.
  • the size of the PSSCH frequency domain resource allocation unit may be expressed by the number of resource blocks, denoted as K PSSCH .
  • K PSSCH is the size of the PSSCH subchannel.
  • the PSSCH frequency domain resource allocation unit numbered 0 is called the reference PSSCH frequency domain resource allocation unit.
  • the starting resource block of the reference PSSCH frequency domain resource allocation unit (denoted as ) Can be the starting resource block of the SL carrier or SL BWP or the resource pool where the PSCCH and/or the PSSCH is located, and can also be a predefined or pre-configured or configured value.
  • D 0.
  • the PSSCH frequency domain resource allocation unit may be the same as the PSCCH frequency domain resource allocation unit (for example, the PSSCH frequency domain resource allocation unit is a PSSCH subchannel, and the PSCCH frequency domain resource allocation unit is a PSCCH subchannel. Channel, and the definitions of PSSCH subchannel and PSCCH subchannel are the same), it can also be different from the PSCCH frequency domain resource allocation unit (for example, the PSSCH frequency domain resource allocation unit is PSSCH subchannel, and the size of PSSCH subchannel is equal to 4
  • the PSCCH frequency domain resource allocation unit is a PSCCH subchannel, and the size of the PSCCH subchannel is equal to 2 resource blocks.
  • the PSSCH frequency domain resource allocation unit is a PSSCH subchannel, and the PSSCH subchannel The size of is equal to 4 resource blocks; in addition, the PSCCH frequency domain resource allocation unit is a resource block).
  • the frequency domain resource allocation may be indicated by a field in the SCI, or may be indicated by a part of bits in a field in the SCI, or may be indicated by a field in the SCI. A part of the value is used for indication, and it can also be indicated through multiple fields in the SCI.
  • the frequency domain resource allocation may include any one or more of the following (any combination of "and” or “or” if applicable):
  • L 2 ⁇ PSSCH specific (PSSCH specific) frequency domain resource allocation (denoted as L 2 ).
  • L 2 can be equal to any of the following:
  • ⁇ L is the number of PSSCH frequency domain resource allocation units occupied by the PSSCH (or the size of the set of PSSCH frequency domain resource allocation units occupied by the PSSCH).
  • ⁇ L′ 2 is the number of PSSCH frequency domain resource allocation units that do not overlap with the frequency domain resources occupied by the PSCCH in the set of PSSCH frequency domain resource allocation units occupied by the PSSCH.
  • the set of resource blocks corresponding to 1 is ⁇ 3,4,5 ⁇
  • the set of resource blocks corresponding to PSSCH subchannel 2 is ⁇ 6,7,8 ⁇
  • the set of resource blocks corresponding to PSSCH subchannel 3 is ⁇ 9,10 , 11 ⁇
  • the set of resource blocks corresponding to the frequency domain resources occupied by the PSCCH is ⁇ 4, 5, 6, 7 ⁇ .
  • "does not overlap with the frequency domain resources occupied by the PSCCH” may also mean that any PSSCH subchannel, or PSCCH subchannel, or subcarrier, or resource block group in the frequency domain does not overlap.
  • the PSSCH frequency domain resource allocation unit and the PSCCH frequency domain resource allocation unit are the same (for example, PSSCH subchannel and PSCCH subchannel respectively, and the definitions of PSSCH subchannel and PSCCH subchannel are the same, which is referred to as "subchannels"), the L′ 2 may also be expressed as "the number of subchannels allocated for the PSSCH but not allocated for the PSCCH".
  • step S203 according to the SCI, one or more of the following is determined:
  • the S OFDM symbols refer to S OFDM symbols in the same slot.
  • the PSSCH may occupy more than one time slot, wherein each occupied time slot occupies S OFDM symbols.
  • n starting The number of the starting OFDM symbol of the PSSCH (denoted as n starting ). For example, the number of the starting OFDM symbol of the PSSCH in one slot.
  • n ending The ending (or last, last) OFDM symbol number of the PSSCH (denoted as n ending ). For example, the number of the ending OFDM symbol of the PSSCH in one slot.
  • S is determined by any of the following methods:
  • ⁇ S is directly indicated by the time domain resource allocation.
  • n starting is determined by any of the following methods:
  • ⁇ n starting is directly indicated by the time domain resource allocation.
  • n starting n 1 .
  • n starting n 1 +S 1 .
  • n ending is determined by any one of the following methods:
  • C T is determined by any of the following methods:
  • ⁇ C T ⁇ n starting , n starting +1,..., n starting +(S 1 +S 2 )-1 ⁇ .
  • ⁇ C T ⁇ n starting , n starting +1,..., n starting + S 1 -1 ⁇ .
  • ⁇ C T ⁇ n starting , n starting +1,..., n starting + S 2 -1 ⁇ .
  • ⁇ C T ⁇ n ending -(S 1 +S 2 )+1, n ending -(S 1 +S 2 )+2,...,n ending ⁇ .
  • ⁇ C T ⁇ n ending -S 1 +1, n ending -S 1 +2,..., n ending ⁇ .
  • ⁇ C T ⁇ n ending -S 2 +1, n ending -S 2 +2,..., n ending ⁇ .
  • L is determined by any of the following methods:
  • ⁇ L is directly indicated by the frequency domain resource allocation.
  • m starting is determined by any of the following methods:
  • C F is determined by any of the following methods:
  • ⁇ C F ⁇ m starting , m starting +1,..., m starting +L 1 -1 ⁇ .
  • the time domain resource allocation and the frequency domain resource allocation may be jointly indicated in the same SCI field.
  • whether or not the time domain resource allocation is indicated in the SCI can be configured in a semi-static manner.
  • it is configured in pre-configuration information, or configured through RRC signaling (for example, in MIB or SIB), or configured through PC5 RRC signaling (for example, in MIB-SL). among them,
  • the set of OFDM symbols occupied by the PSSCH (for example, the set of OFDM symbols occupied by the PSSCH in one slot) is equal to the The set of OFDM symbols occupied by the PSCCH (for example, the OFDM symbols occupied by the PSCCH in one slot).
  • the set of OFDM symbols occupied by the PSSCH (for example, the set of OFDM symbols occupied by the PSSCH in one slot) is equal to The set of OFDM symbols remaining after excluding all OFDM symbols not used for the PSSCH in the time slot from all OFDM symbols in the time slot where the PSCCH is located.
  • all the OFDM symbols not used for the PSSCH may include one or more of the following:
  • the first embodiment of the present invention uses the multiplexing mode of PSCCH and PSSCH in the time domain and/or frequency domain to indicate the time domain and/or frequency domain of the PSSCH scheduled by the SCI carried in the PSCCH with less overhead. Resources, compared with traditional methods, improve the performance of PSCCH.
  • Fig. 3 is a flowchart showing a method executed by a user equipment according to the second embodiment of the present invention.
  • the steps performed by the user equipment UE include: step S301 and step S303.
  • step S301 configuration information related to the time domain resources of the SL carrier is acquired.
  • the configuration information related to the time domain resources of the SL carrier may include one or more of the following:
  • the unit of the size (or width or length, denoted as B SL ) of the SL time slot bitmap may be bits.
  • the value or value set of the size of the SL time slot bitmap may be related to the subcarrier interval and/or CP length configured by the SL carrier.
  • different subcarrier intervals and/or CP lengths correspond to different values or value sets of the size of the SL time slot bitmap.
  • the value of the SL start OFDM symbol is the number of the OFDM symbol in a slot.
  • the value or value set of the SL start OFDM symbol may be related to the subcarrier interval and/or CP length configured on the SL carrier.
  • different subcarrier intervals and/or CP lengths correspond to different values or value sets of SL starting OFDM symbols.
  • the value of the SL ending OFDM symbol is the number of the OFDM symbol in one slot.
  • a value is either configured or pre-configured or indicated as a value taken from any subset of the set S3.
  • the value or value set of the SL ending OFDM symbol may be related to the subcarrier interval and/or CP length configured on the SL carrier.
  • different subcarrier intervals and/or CP lengths correspond to different values or value sets of SL ending OFDM symbols.
  • T SL time domain resource period
  • the unit of the SL time domain resource period may be one or more symbols.
  • the unit of the SL time domain resource period may be one or more time slots.
  • the unit of the SL time domain resource period may be one or more subframes.
  • the unit of the SL time domain resource period may be one or more frames.
  • the unit of the SL time domain resource period may be one or more milliseconds.
  • the SL time-domain resource period may be related to the period (denoted as T S-SSB ) of the S-SSB (or SL SSB).
  • T S-SSB the period of the S-SSB (or SL SSB).
  • T SL k 1 ⁇ T S-SSB , where k 1 is an integer, or 1/k 1 is an integer.
  • the non-integer value is only applicable when the unit of the SL time domain resource period is milliseconds.
  • the value set of the SL time domain resource period may be related to the subcarrier interval and/or CP length configured by the SL carrier.
  • different subcarrier intervals and/or CP lengths correspond to different values or value sets of SL time domain resource periods.
  • any item of the configuration information related to the time domain resources of the SL carrier (for example, the SL time slot bitmap, and the SL start OFDM symbol, and the SL time domain
  • the resource period such as k 1 and k 2 , can all come from the UE (for example, predefined information or pre-configuration information or default configuration information of the UE), or from a base station (for example, gNB Or eNB), or from other UEs (for example, MIB-SL sent by other UEs).
  • any item of the configuration information related to the time domain resources of the SL carrier for example, the SL time slot bitmap, and the SL start OFDM symbol, and the SL time domain
  • the resource period such as k 1 and k 2
  • RRC messages or PC5 RRC messages for example, MIB, or SIB, or MIB-SL, or pre-configuration information, or default Configuration information, such as other RRC messages and other PC5RRC messages, can also be included in MAC CE, can also be included in downlink control information (DCI), or can be included in direct control information (SCI).
  • DCI downlink control information
  • SCI direct control information
  • step S303 the time domain resources of the SL carrier are determined.
  • the SL time slot of the SL carrier is determined according to the SL time slot bitmap.
  • the SL time slot bitmap is periodically applied to a time slot set of the SL carrier. among them,
  • the period may be equal to the SL time domain resource period (T SL ).
  • the set of the start time of each period (in the unit of the SL time domain resource period) can be ⁇ 0, T SL , 2T SL ,..., ⁇ , or it can be The set or a subset of the start point of the slot where the S-SSB (or S-SSB candidate) is located.
  • the set of OFDM symbols used for the SL may be ⁇ n starting , n starting +1, ..., n ending ⁇ .
  • one or more OFDM symbols in the SL slot may be used for SL.
  • the used SL may be used for SL transmission, or for SL reception, or for AGC on SL, or for GP on SL, or for Other uses related to SL.
  • the understanding of the time domain resources of the corresponding SL carrier is consistent between different UEs, ensuring that Synchronization in time between the different UEs during SL transmission and SL reception.
  • Fig. 4 is a flowchart showing a method executed by a user equipment according to the third embodiment of the present invention.
  • the steps performed by the user equipment UE include: step S401, step S403, and step S405.
  • step S401 the PSCCH and the PSSCH scheduled by the direct control information (SCI) carried by the PSCCH are received.
  • SCI direct control information
  • the broadcast type (cast-type, or communication-type) is determined.
  • the propagation type may be a propagation type of any one or more of the PSCCH, the SCI, the PSSCH, and the transport block carried by the PSSCH.
  • the propagation type is defined only for one or more of the PSCCH, the SCI, the PSSCH, and the transport block carried by the PSSCH.
  • the PSCCH, the SCI, the PSSCH, and the transport block carried by the PSSCH (where applicable, for example, when a propagation type is defined) correspond to the same propagation type.
  • the method for determining the propagation type can be any of the following:
  • Determine the propagation type according to the frequency domain and/or time domain resources occupied by the PSCCH and/or the PSSCH. For example, if the resource pool to which the PSCCH and/or the PSSCH belongs is configured to be used for broadcast transmission only, the propagation type is broadcast.
  • Determine the propagation type according to the geographical area (zone) where the UE is located.
  • the propagation type is determined according to the area identification (ID) of the geographic area where the UE is located.
  • ID area identification
  • the indication of the propagation type may be an explicit indication (for example, direct indication through one or more fields in the SCI), or an implicit indication (for example, from one or more fields in the SCI). Derived from).
  • the physical layer indicates (or reports) the propagation type to a higher layer (for example, the MAC sublayer).
  • the physical layer reports the transmission type of the received transport block to the MAC sublayer, so that when HARQ feedback is configured, the receiving UE can clearly distinguish unicast transmission and multicast transmission, and avoid In this way, the received transport block used for unicast and the transport block used for multicast are HARQ combined, thereby ensuring the performance of HARQ combining.
  • Fig. 5 is a flowchart showing a method executed by a user equipment according to the fourth embodiment of the present invention.
  • the steps performed by the user equipment UE include: step S501 and step S503.
  • step S501 direct travel control information (SCI) is received. among them,
  • the SCI can be carried in the PSCCH
  • the PSCCH can be used to schedule the PSSCH
  • the PSSCH can carry one transport block. among them,
  • the transmission block can be transmitted once or multiple times. Record the number of transmissions of the transmission block as N.
  • the N may also be referred to as the maximum number of transmissions of the transmission block, or the maximum possible number of transmissions of the transmission block.
  • the actual number of transmissions of the transmission block may be less than the N.
  • the number of N transmissions of the transmission block may start from 0, for example, the first transmission is called “transmission 0", the second transmission is called “transmission 1", and so on.
  • the set of numbers of N transmissions of the transmission block is ⁇ 0, 1,..., N-1 ⁇ .
  • the transmitted number can be ⁇ 0, 1, 2, 3 ⁇ , or ⁇ 0, 1 ⁇ , or ⁇ 0, 2 ⁇ , etc.
  • each transmission of the transport block corresponds to a unique PSCCH, SCI and PSSCH respectively.
  • the transmission number of the transport block carried by the PSSCH scheduled by the SCI and carried by the PSCCH be i
  • the PSCCH, the SCI, and the PSSCH can be denoted as PSCCH i , SCI i and PSSCH respectively i , where i ⁇ 0,1,2,...,N-1 ⁇ .
  • the transmission with the number 0 of the transmission block is called initial transmission, and other subsequent transmissions (if any) are called retransmissions.
  • the transmission numbered 1 of the transmission block may also be called the first retransmission of the transmission block
  • the transmission numbered 2 of the transmission block may also be called the second retransmission of the transmission block. Biography, etc.
  • the SCI i can indicate any one or more of the following:
  • the time domain and/or frequency domain resources of the PSSCH i+1 are indicated in the SCI i .
  • the time domain and/or frequency domain resources of the PSSCH i+1 are indicated in the SCI i only when the i is an even number.
  • the time domain and/or the PSSCH i+1 indicated in the SCI i is a predefined, pre-configured or configured special value (for example, a null value, or an illegal value).
  • the value of all bits of the field used to indicate the time domain and/or frequency domain resources of the PSSCH i+1 in the SCI i are all 0 or all 1.
  • the value of the field used to indicate the time domain and/or frequency domain resources of the PSSCH i+1 in the SCI i corresponds to any special (for example, empty, or illegal).
  • the status of domain and/or frequency domain resource allocation corresponds to any special (for example, empty, or illegal).
  • the time domain and/or frequency domain resources of the last transmitted PSSCH (ie PSSCH i-1 ) of the transport block are carried.
  • the time domain and/or frequency domain resources of the PSSCH i-1 are indicated in the SCI i only when the i is an odd number.
  • the time domain and/or frequency domain resources of the PSSCH i-1 are indicated in the SCI i only when the i is an even number and i ⁇ 0 (or i>0).
  • the time domain and/or frequency domain of the PSSCH i-1 indicated in the SCI i is a pre-defined, pre-configured, or configured special value (for example, a null value, or an illegal value).
  • the value of all bits of the field used to indicate the time domain and/or frequency domain resource of the PSSCH i-1 in the SCI i are all 0 or all 1.
  • the value of the field used to indicate the time domain and/or frequency domain resources of the PSSCH i-1 in the SCI i corresponds to any special (for example, empty, or illegal).
  • the status of domain and/or frequency domain resource allocation corresponds to any special (for example, empty, or illegal).
  • ⁇ Reverse transmission number (denoted as j 1 ).
  • j 1 Ni-1.
  • transmission numbers 0, 1, ..., N-1 correspond to reverse transmission numbers N-1, N-2, ..., 0, respectively.
  • j 1 can also be used to indicate the remaining number of transmissions.
  • the transmissions with the numbers of the transmission block 2n and 2n+1 respectively constitute the transmission pair with the number n of the transmission block, which consists of For example, transmission numbers 0, 1, 2, 3,..., N-2, N-1 correspond to the reverse transmission pair numbers respectively among them,
  • N is always an even number at this time.
  • the transmissions with the numbers of the transmission block i-1 and i respectively constitute the first transmission block Transmission pairs.
  • the transmissions with the numbers of the transmission block i and i+1 respectively constitute the first transmission block Transmission pairs.
  • the transmission numbered 0 of the transmission block is a "transmission pair" numbered 0 of the transmission block.
  • the value of the transmission block identifier is the same in the SCI (ie, SCI 0 , SCI 1 , ..., SCI N-1 ) corresponding to all N transmissions of the transmission block.
  • redundancy version (redundancy version, RV, denoted as r 0 ).
  • RV redundancy version
  • r 0 the redundancy version of the transmission numbered 0 for the transmission block.
  • the "time domain and/or frequency domain resources of PSSCH i+1 " and the "time domain and/or frequency domain resources of PSSCH i-1 " may be indicated in the same SCI field.
  • the SCI field indicates the time domain and/or frequency domain resources of the PSSCH i+1 ; when the i is an odd number, the SCI field indicates the PSSCH i-1 Time domain and/or frequency domain resources.
  • the "time domain PSSCH i and / or frequency domain resource”, the "PSSCH i + 1 of the time domain and / or frequency domain resource”, the “PSSCH i-1 and time domain /Or frequency domain resource”, the "reverse transmission number”, the “remaining number of transmissions”, the “reverse transmission pair number”, the “number of remaining transmission pairs”, and the " Any one of the "transport block identifier” can be indicated by a field in the SCI, or by a part of bits in a field in the SCI, or by a part of a field in the SCI. The value is used for indication, and it can also be indicated through multiple fields in the SCI.
  • step S503 information related to the transport block carried by the PSSCH is determined according to the SCI. For example, information related to HARQ feedback is determined. For example, determine one or more of the following:
  • the PSSCH i is the last transmission of the transport block.
  • the PSSCH i is the last transmission of the transmission block.
  • the time domain and/or frequency domain resources of the PSSCH i+1 indicated in the SCI i are predefined, pre-configured or configured special values (such as null values, or illegal values), then The PSSCH i is the last transmission of the transport block.
  • the time domain and/or frequency domain resources of the PSSCH i-1 indicated in the SCI i are predefined, pre-configured or configured with special values (such as null values, or illegal values), then The PSSCH i is the last transmission of the transport block.
  • the PSSCH i is the first transmission in the corresponding transmission pair.
  • the PSSCH i is the second transmission in the corresponding transmission pair.
  • the PSSCH i is the first transmission in the corresponding transmission pair.
  • the PSSCH i is the second transmission in the corresponding transmission pair.
  • the transport block corresponding to the PSSCH i is determined by the transmission block identifier.
  • the redundancy version corresponding to the PSSCH i is
  • the redundancy version corresponding to the PSSCH i is
  • the redundancy version corresponding to the PSSCH i is
  • the redundancy version corresponding to the PSSCH i is
  • the redundancy version corresponding to the PSSCH i is
  • the redundancy version corresponding to the PSSCH i is
  • the redundancy version corresponding to the PSSCH i is 2.
  • the redundancy version corresponding to the PSSCH i is 3.
  • the redundancy version corresponding to the PSSCH i is 1.
  • ⁇ r 0 A t , t ⁇ ⁇ 0, 1, 2, 3 ⁇ .
  • the transmission information corresponding to different transmission numbers of a transport block is indicated in a chain in the SCI, so that the receiving UE can correctly distinguish which received PSSCH carries different transmissions of the same transport block, and /Or the redundancy version corresponding to the different transmissions is correctly derived, which ensures the performance of HARQ combining.
  • FIG. 6 is used to describe a user equipment that can execute the method executed by the user equipment described in detail above in the present invention as a modified example.
  • Fig. 6 is a block diagram showing a user equipment UE related to the present invention.
  • the user equipment UE60 includes a processor 601 and a memory 602.
  • the processor 601 may include, for example, a microprocessor, a microcontroller, an embedded processor, and the like.
  • the memory 602 may include, for example, volatile memory (such as random access memory RAM), hard disk drive (HDD), non-volatile memory (such as flash memory), or other memories.
  • the memory 602 stores program instructions. When the instruction is executed by the processor 601, it can execute the above method executed by the user equipment described in detail in the present invention.
  • the method and related equipment of the present invention have been described above in conjunction with preferred embodiments. Those skilled in the art can understand that the methods shown above are only exemplary, and the various embodiments described above can be combined with each other without conflict.
  • the method of the present invention is not limited to the steps and sequence shown above.
  • the network nodes and user equipment shown above may include more modules, for example, may also include modules that can be developed or developed in the future and can be used for base stations, MMEs, or UEs, and so on.
  • the various identifiers shown above are only exemplary rather than restrictive, and the present invention is not limited to specific information elements as examples of these identifiers. Those skilled in the art can make many changes and modifications based on the teaching of the illustrated embodiment.
  • the foregoing embodiments of the present invention can be implemented by software, hardware, or a combination of both software and hardware.
  • the various components inside the base station and user equipment in the above embodiment can be implemented by a variety of devices, including but not limited to: analog circuit devices, digital circuit devices, digital signal processing (DSP) circuits, programmable processing Device, application specific integrated circuit (ASIC), field programmable gate array (FPGA), programmable logic device (CPLD), etc.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD programmable logic device
  • base station may refer to a mobile communication data and control switching center with larger transmission power and wider coverage area, including functions such as resource allocation and scheduling, data reception and transmission.
  • User equipment may refer to a user's mobile terminal, for example, including mobile phones, notebooks, and other terminal devices that can communicate with base stations or micro base stations wirelessly.
  • the embodiments of the present invention disclosed herein can be implemented on a computer program product.
  • the computer program product is a product that has a computer-readable medium on which computer program logic is encoded, and when executed on a computing device, the computer program logic provides related operations to implement The above technical scheme of the present invention.
  • the computer program logic When executed on at least one processor of the computing system, the computer program logic causes the processor to perform the operations (methods) described in the embodiments of the present invention.
  • This arrangement of the present invention is typically provided as software, code and/or other data structures arranged or encoded on a computer-readable medium such as an optical medium (such as CD-ROM), a floppy disk or a hard disk, or as one or more Firmware or microcode on a ROM or RAM or PROM chip, or downloadable software images, shared databases, etc. in one or more modules.
  • Software or firmware or such a configuration may be installed on a computing device, so that one or more processors in the computing device execute the technical solutions described in the embodiments of the present invention.
  • each functional module or each feature of the base station device and the terminal device used in each of the foregoing embodiments may be implemented or executed by a circuit, and the circuit is usually one or more integrated circuits.
  • Circuits designed to perform the functions described in this specification can include general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC) or general-purpose integrated circuits, field programmable gate arrays (FPGA), or other Programming logic devices, discrete gates or transistor logic, or discrete hardware components, or any combination of the above devices.
  • the general-purpose processor may be a microprocessor, or the processor may be an existing processor, controller, microcontroller, or state machine.
  • the general-purpose processor or each circuit described above may be configured by a digital circuit, or may be configured by a logic circuit.
  • the present invention can also use integrated circuits obtained by using this advanced technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提出了一种由用户设备执行的方法,包括:接收物理直行控制信道PSCCH携带的直行控制信息SCI;以及根据所述SCI,确定所述PSCCH所调度的物理直行共享信道PSSCH的时域和/或频域资源分配。

Description

由用户设备执行的方法以及用户设备 技术领域
本发明涉及无线通信技术领域,具体涉及由用户设备执行的方法以及相应的用户设备。
背景技术
V2X(Vehicle-to-everything)通信是指车辆(vehicle)和任何可能影响车辆的实体之间的通信。典型的V2X通信包括V2I(Vehicle-to-Infrastructure,车辆到基础设施)、V2N(Vehicle-to-network,车辆到网络)、V2V(Vehicle-to-vehicle,车辆到车辆)、V2P(Vehicle-to-Pedestrian,车辆到行人)等。
3GPP的LTE标准中从Rel-14开始支持V2V通信(3GPP V2X phase 1),从Rel-15开始支持V2X通信(3GPP V2X phase 2)。在3GPP标准规范中,V2V和V2X都基于D2D(Device to Device,设备到设备)技术,相应的UE和UE间的接口称为PC5,在物理层也称为“直行”或者说“侧行”(sidelink,简称SL)链路,用于区别上行(uplink,简称UL)链路和下行(downlink,简称DL)链路。
随着5G NR(参见非专利文献1,下面简称5G,或者NR,或者NR Rel-15,或者5G Rel-15)标准化工作的进行,以及3GPP识别出更多高级的V2X业务(eV2X业务)需求,3GPP V2X phase 3,即5G V2X开始提上日程。2018年6月,在3GPP RAN#80次全会上,一个关于3GPP 5G V2X的新的研究项目(参见非专利文献2,下面简称5G V2X研究项目,或者V2X Phase 3研究项目)获得批准。2019年3月,在3GPP RAN#83次全会上,一个关于3GPP 5G V2X的新的工作项目(参见非专利文献3,下面简称5G V2X工作项目)获得批准。5G V2X工作项目的目标包括:
●SL信号、信道、带宽片段(BWP)和资源池(resource pool)的设计。
●资源分配机制的设计。
●SL同步机制的设计。
●LTE和NR的SL操作的共存。
●SL物理层过程,如HARQ过程、CSI获取和功控等。
●拥塞控制。
●层2/层3协议和信令。
●通过NR Uu接口控制LTE SL。
●基于UE报告辅助信息的gNB调度。
●QoS管理。
在5G V2X中,SL接口的物理层支持在有覆盖(in-coverage)、无覆盖(out-of-coverage)和部分覆盖(partial-coverage)场景下进行广播(broadcast)、组播(groupcast)和单播(unicast)传输。
5G V2X支持SL同步功能。相关的信号和信道包括:
●SL PSS(Sidelink Primary Synchronization Signal,直行主同步信号),又称为S-PSS,或者PSSS(Primary Sidelink Synchronization Signal,主直行同步信号)。
●SL SSS(Sidelink Secondary Synchronization Signal,直行辅同步信号),又称为S-SSS,或者SSSS(Secondary Sidelink Synchronization Signal,辅直行同步信号)。
●PSBCH(Physical Sidelink Broadcast Channel,物理直行广播信道)。
在5G V2X中,SL PSS、SL SSS和PSBCH在时频资源格上组织成块状的形式,称为SL SSB(Sidelink SS/PBCH block,直行同步信号/物理广播信道块),或者S-SSB。SL SSB的传输带宽在给UE所配置的SL BWP(Sidelink Bandwidth Part,直行带宽片段)内。SL PSS和/或SL SSS可以携带SL SSID(Sidelink Synchronization Identity,或者Sidelink Synchronization Identifier,直行同步标识,或者Sidelink Synchronization Signal Identity,或者Sidelink Synchronization Signal Identifier,直行同步信号标识),PSBCH可以携带SL MIB(Sidelink Master Information Block,直行主信息块)。
5G V2X的同步源(synchronization source,有时候又称为同步参考, synchronization reference)可以包括GNSS(Global navigation satellite system,全球导航卫星系统)、gNB、eNB和NR UE。同步源的优先级定义如表1所示。其中,UE通过(预)配置信息确定是使用“基于GNSS的同步”还是使用“基于gNB/eNB的同步”。
表1 5G V2X同步源优先级
优先级 基于GNSS的同步 基于gNB/eNB的同步
P0 GNSS gNB/eNB
P1 所有直接同步到GNSS的UE 所有直接同步到gNB/eNB的UE
P2 所有间接同步到GNSS的UE 所有间接同步到gNB/eNB的UE
P3 任何其他UE GNSS
P4 N/A 所有直接同步到GNSS的UE
P5 N/A 所有间接同步到GNSS的UE
P6 N/A 任何其他UE
在无覆盖场景下,以及在RRC_IDLE状态下,一个5G V2X载波上可以(预)配置一个SL BWP(Sidelink Bandwidth Part)。在有覆盖场景下,一个5G V2X载波上只有一个有效的(或者说激活的)SL BWP。一个SL BWP上可以(预)配置一个或多个资源池(Resource Pool,指可以用于SL传输和/或接收的时频资源集合)。
5G V2X的资源分配方式可以分类如下:
●模式1:基站调度用于SL传输的SL资源。
●模式2:UE确定用于SL传输的SL资源(即基站不参与SL资源的调度)。
在5G V2X中所涉及的其他信道至少包括:
●PSSCH(Physical Sidelink Shared Channel,物理直行共享信道)。
●PSCCH(Physical Sidelink Control Channel,物理直行控制信道)。
●PSFCH(Physical Sidelink Feedback Channel,物理直行反馈信道)。
在5G V2X中,UE通过PSCCH所携带的SCI(Sidelink Control Information,直行控制信息)调度PSSCH所携带的数据的传输。取决于所调度的是单播或者组播或者广播传输,以及是否需要HARQ反馈等因素,SCI中可以包含下面中的一项或多项:
●层1源标识符(Layer-1 Source ID),或者说物理层源标识符(Physical Layer Source ID)。
●层1目标标识符(Layer-1 Destination ID),或者说物理层目标 标识符(Physical Layer Source ID)。
●HARQ进程标识(HARQ Process ID),或者说HARQ进程号(HARQ Process Number)。
●新数据标识(New Data Indicator,NDI)。
●冗余版本(Redundancy Version,RV)。
在5G V2X中,PSCCH与其所关联的PSSCH的复用方式至少包括:PSCCH的一部分与其所关联的PSSCH的一部分使用在时域重叠(overlapping)但在频域不重叠(non-overlapping)的资源,而所述PSCCH的另一部分和/或所述PSSCH的另一部分使用在时域不重叠的资源。这种复用方式的一个例子见图1。
在5G V2X中,SL链路的设计可能面临的问题至少包括:
●如何高效地在SCI中指示给其所调度的PSSCH分配的时域和/或频域资源。
●如何高效地配置SL载波和/或BWP的时域资源,特别是在5G V2X UE和其他UE(例如支持5G Rel-15的UE)共享同一个载波资源的时候。
现有技术文献
非专利文献
非专利文献1:RP-181474,Revised WID on New Radio Access Technology
非专利文献2:RP-181429,New SID:Study on 5G V2X
非专利文献3:RP-190766,New WID on 5G V2X with NR sidelink
发明内容
为了解决上述问题中的至少一部分,本发明提供了一种由用户设备执行的方法以及用户设备,能够高效地在SCI中指示给其所调度的PSSCH分配的时域和/或频域资源。
根据本发明,提出了一种由用户设备执行的方法,其特征在于,包括: 接收物理直行控制信道PSCCH携带的直行控制信息SCI;以及根据所述SCI,确定所述PSCCH所调度的物理直行共享信道PSSCH的时域和/或频域资源分配。
优选地,所述SCI指示下面的任意一项或多项:时域资源分配,其用于指示为所述PSSCH所分配的时域资源;以及频域资源分配,其用于指示为所述PSSCH所分配的频域资源。
优选地,所述时域资源分配包括下面的一项或多项:为所述PSSCH分配的所有OFDM符号的个数S;所述PSSCH的起始OFDM符号的编号n starting;以及为所述PSSCH分配但未为所述PSCCH分配的OFDM符号的个数S 2
优选地,所述频域资源分配包括下面的一项或多项:所述PSSCH所占用的PSSCH频域资源分配单位的个数L;PSSCH特定的频域资源分配L 2
优选地,所确定的所述PSSCH的时域和/或频域资源分配包括下面的一项或多项:所述PSSCH所占用的OFDM符号的个数S;所述PSSCH的起始OFDM符号的编号n starting;所述PSSCH的结束OFDM符号的编号n ending;所述PSSCH所占用的OFDM符号的集合C T;所述PSSCH所占用的PSSCH频域资源分配单位的个数L;所述PSSCH所占用的起始PSSCH频域资源分配单位的编号m starting;所述PSSCH所占用的结束PSSCH频域资源分配单位的编号m ending;以及所述PSSCH所占用的PSSCH频域资源分配单位的集合C F
优选地,S由下面的任意一种方式确定:
●S由所述时域资源分配直接指示;
●S=S 1+S 2
●S=S 1
●S=S 2
其中,S 1是所述PSCCH所占用的OFDM符号的个数。
优选地,n starting由下面的方式确定:
●n starting由所述时域资源分配直接指示;
●n starting=n 1
●n starting=n 1+S 1
其中,n 1是所述PSCCH的起始OFDM符号在一个时隙内的编号。
优选地,L由下面的任意一种方式确定:
●L由所述频域资源分配直接指示;
Figure PCTCN2020087436-appb-000001
Figure PCTCN2020087436-appb-000002
Figure PCTCN2020087436-appb-000003
Figure PCTCN2020087436-appb-000004
●L=L 1
其中,L 1是所述PSCCH所占用的PSCCH频域资源分配单位的个数,
m 1是所述PSCCH所占用的起始PSCCH频域资源分配单位的编号,
R 2=L′ 2mod 2,或者R 2=(L-L′ 2)mod 2,其中L′ 2是所述PSSCH所占用的PSSCH频域资源分配单位的集合中,和所述PSCCH所占用的频域资源不重叠的PSSCH频域资源分配单位的个数,K PSSCH是所述PSSCH频域资源分配单位,K PSCCH是所述PSCCH频域资源分配单位。
优选地,m starting由下面的任意一种方式确定:
●m starting=m 1
Figure PCTCN2020087436-appb-000005
Figure PCTCN2020087436-appb-000006
Figure PCTCN2020087436-appb-000007
Figure PCTCN2020087436-appb-000008
其中,m 1是所述PSCCH所占用的起始PSCCH频域资源分配单位的编号,
K PSSCH是所述PSSCH频域资源分配单位,
K PSCCH是所述PSCCH频域资源分配单位。
另外,根据本发明,提出了一种用户设备,包括:处理器;以及存储器,存储有指令,其中,所述指令在由所述处理器运行时执行上述的方法。
发明效果
根据本发明,能够提供一种由用户设备执行的方法以及用户设备,能够高效地在SCI中指示给其所调度的PSSCH分配的时域和/或频域资源。
附图说明
通过下文结合附图的详细描述,本发明的上述和其它特征将会变得更加明显,其中:
图1是示出了PSCCH和PSSCH在时域和频域上的复用方式的例子的图。
图2是示出了根据本发明的实施例一的由用户设备执行的方法的流程图。
图3是示出了根据本发明的实施例二的由用户设备执行的方法的流程图。
图4是示出了根据本发明的实施例三的由用户设备执行的方法的流程图。
图5是示出了根据本发明的实施例四的由用户设备执行的方法的流程图。
图6是示意性示出本发明所涉及的用户设备的框图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细阐述。应当注意,本发明不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本发明没有直接关联的公知技术的详细描述,以防止对本发明的理解造成混淆。
下文以5G移动通信系统及其后续的演进版本作为示例应用环境,具 体描述了根据本发明的多个实施方式。然而,需要指出的是,本发明不限于以下实施方式,而是可适用于更多其它的无线通信系统,例如5G之后的通信系统以及5G之前的4G移动通信系统等。
下面描述本发明涉及的部分术语,如未特别说明,本发明涉及的术语采用此处定义。本发明给出的术语在LTE、LTE-Advanced、LTE-Advanced Pro、NR以及之后的通信系统中可能采用不同的命名方式,但本发明中采用统一的术语,在应用到具体的系统中时,可以替换为相应系统中采用的术语。
3GPP:3rd Generation Partnership Project,第三代合作伙伴计划
AS:Access Stratum,接入层
BWP:Bandwidth Part,带宽片段
CA:Carrier Aggregation,载波聚合
CCE:control-channel element,控制信道元素
CORESET:control-resource set,控制资源集
CP:Cyclic Prefix,循环前缀
CP-OFDM:Cyclic Prefix Orthogonal Frequency Division Multiplexing,循环前缀正交频分复用
CRB:Common Resource Block,公共资源块
CRC:Cyclic Redundancy Check,循环冗余校验
CSS:Common Search Space,公共搜索空间
DC:Dual Connectivity,双连接
DCI:Downlink Control Information,下行控制信息
DFT-s-OFDM:Discrete Fourier Transformation Spread Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩频正交频分复用
DL:Downlink,下行
DL-SCH:Downlink Shared Channel,下行共享信道
DM-RS:Demodulation reference signal,解调参考信号
eMBB:Enhanced Mobile Broadband,增强的移动宽带通信
FDRA:Frequency Domain Resource Assignment,频域资源分配
FR1:Frequency Range 1,频率范围1
FR2:Frequency Range 1,频率范围2
HARQ:Hybrid Automatic Repeat Request,混合自动重复请求
IE:Information Element,信息元素
IP:Internet Protocol,网际协议
LCID:Logical Channel ID,逻辑信道标识符
LTE-A:Long Term Evolution-Advanced,长期演进技术升级版
MAC:Medium Access Control,介质访问控制
MAC CE:MAC Control Element,MAC控制元素
MCG:Master Cell Group,主小区组
MIB:Master Information Block,主信息块
mMTC:massive Machine Type Communication,大规模机器类通信
NAS:Non-Access-Stratum,非接入层
NR:New Radio,新无线电
NUL:Normal Uplink,正常上行
OFDM:Orthogonal Frequency Division Multiplexing,正交频分复用
PBCH:Physical Broadcast Channel,物理广播信道
PDCCH:Physical Downlink Control Channel,物理下行控制信道
PDCP:Packet Data Convergence Protocol,分组数据汇聚协议
PDSCH:Physical Downlink Shared Channel,物理下行共享信道
PSBCH:Physical Sidelink Broadcast Channel,物理直行广播信道
PSCCH:Physical Sidelink Control Channel,物理直行控制信道
PSSCH:Physical Sidelink Shared Channel,物理直行共享信道
PRB:Physical Resource Block,物理资源块
PSS:Primary Synchronization Signal,主同步信号
PSSS:Primary Sidelink Synchronization Signal,主直行同步信号
PTAG:Primary Timing Advance Group,主定时提前组
PUSCH:Physical uplink shared channel,物理上行共享信道
PUCCH:Physical uplink control channel,物理上行控制信道
QCL:Quasi co-location,准共置
RAR:Random Access Response,随机接入响应
RB:Resource Block,资源块
RE:Resource Element,资源元素
REG:resource-element group,资源元素组
RF:Radio Frequency,射频
RLC:Radio Link Control,无线链路控制协议
RNTI:Radio-Network Temporary Identifier,无线网络临时标识符
RRC:Radio Resource Control,无线资源控制
SCG:Secondary Cell Group,次小区组
SCI:Sidelink Control Information,直行控制信息
SCS:Subcarrier Spacing,子载波间隔
SDAP:Service Data Adaptation Protocol,业务数据适配协议
SFN:System Frame Number,系统帧号
SIB:System Information Block,系统信息块
SL:Sidelink,直行
SL BWP:Sidelink Bandwidth Part,直行带宽片段
SL PSS:Sidelink Primary Synchronization Signal,直行主同步信号
SL SSB:Sidelink SS/PBCH block,直行同步信号/物理广播信道块
SL SSS:Sidelink Secondary Synchronization Signal,直行辅同步信号
SpCell:Special Cell,特殊小区
SRS:Sounding Reference Signal,探测参考信号
SSB:SS/PBCH block,同步信号/物理广播信道块
SSS:Secondary Synchronization Signal,辅同步信号
SSSS:Secondary Sidelink Synchronization Signal,辅直行同步信号
STAG:Secondary Timing Advance Group,辅定时提前组
SUL:Supplementary Uplink,补充上行
TA:Timing Advance,定时提前
TAG:Timing Advanced Group,定时提前组
TCP:Transmission Control Protocol,传输控制协议
TDD:Time Division Duplexing,时分双工
TPC:Transmit power control,传输功率控制
UE:User Equipment,用户设备
UL:Uplink,上行
URLLC:Ultra-Reliable and Low Latency Communication,超可靠低延迟通信
USS:UE-specific Search Space,UE特定搜索空间
V2I:Vehicle-to-Infrastructure,车辆到基础设施
V2N:Vehicle-to-network,车辆到网络
V2P:Vehicle-to-Pedestrian,车辆到行人
V2V:Vehicle-to-vehicle,车辆到车辆
V2X:Vehicle-to-everything,车辆到任何实体
[实施例一]
下面结合图2来说明本发明的实施例一的由用户设备执行的方法。
图2是示出了根据本发明的实施例一的由用户设备执行的方法的流程图。
如图2所示,在本发明的实施例一中,用户设备UE执行的步骤包括:步骤S201和步骤S203。
具体地,在步骤S201,接收直行控制信息(SCI)。其中,
●可选地,所述SCI可以携带在PSCCH中。其中,
◆可选地,所述PSCCH可以用于调度PSSCH,换句话说,也可以说成,所述PSCCH所携带的SCI可以用于调度PSSCH。
◆可选地,所述PSCCH可以占用S 1个OFDM符号(例如S 1个连续的OFDM符号)。其中,
○可选地,所述S 1个OFDM符号是指同一个时隙内的S 1个OFDM符号。
○可选地,所述PSCCH可以占用多于一个时隙,其中每个所占用的时隙内占用S 1个OFDM符号。
○可选地,所述PSSCH也占用所述S 1个OFDM符号,例如,所述PSCCH占用所述S 1个OFDM符号上的一部 分频域资源(记为Δ 1),而所述PSSCH占用所述S 1个OFDM符号上的另一部分频域资源(记为Δ 2),且Δ 1和Δ 2不重叠。
◇可选地,除所述S 1个OFDM符号外,所述PSSCH还占用零个或一个或多个按其他方式确定的其他OFDM符号。
◇可选地,所述PSSCH可以占用多于一个时隙,其中每个所占用的时隙内都占用所述S 1个OFDM符号。可选地,所述PSSCH在每个所占用的时隙内还占用零个或一个或多个按其他方式确定的其他OFDM符号。
○可选地,所述S 1的取值集合可以是下面中的任意一项:
◇{1,2}
◇{1,2,3}
◇{1,2,3,4}
◇{1,2,3,4,5}
◇{1,2,3,4,5,6}
◇{1,2,3,4,5,6,7}
◇{1,2,3,4,5,6,7,8}
◇{1,2,3,4,5,6,7,8,9}
◇{1,2,3,4,5,6,7,8,9,10}
◇{1,2,3,4,5,6,7,8,9,10,11}
◇{1,2,3,4,5,6,7,8,9,10,11,12}
◇{1,2,3,4,5,6,7,8,9,10,11,12,13}
◇{1,2,3,4,5,6,7,8,9,10,11,12,13,14}
◇{2,3,4,5,6,7,8,9,10,11,12,13,14}
◇{2,3,4,5,6,7,8,9,10,11,12,13}
◇{2,3,4,5,6,7,8,9,10,11,12}
◇{3,4,5,6,7,8,9,10,11,12,13,14}
◇{3,4,5,6,7,8,9,10,11,12,13}
◇{3,4,5,6,7,8,9,10,11,12}
◇{4,5,6,7,8,9,10,11,12,13,14}
◇{4,5,6,7,8,9,10,11,12,13}
◇{4,5,6,7,8,9,10,11,12}
○可选地,S 1的取值集合可以与循环前缀(Cyclic Prefix,CP)的配置有关,例如在正常CP(如所述PSCCH和/或所述PSSCH所在的SL载波或SL BWP或资源池配置为正常CP)时取一个集合,在扩展CP(如所述PSCCH和/或所述PSSCH所在的SL载波或SL BWP或资源池配置为扩展CP)时取另一个集合。
◆可选地,所述PSCCH的起始(starting,或者说first,第一个)OFDM符号的编号可以记为n 1
○可选地,n 1可以是所述PSCCH的起始OFDM符号在一个时隙内的编号。
○可选地,n 1的取值集合可以是下面中的任意一项:
◇{0,1}
◇{0,1,2}
◇{0,1,2,3}
◇{0,1,2,3,4}
◇{0,1,2,3,4,5}
◇{0,1,2,3,4,5,6}
◇{0,1,2,3,4,5,6,7}
◇{0,1,2,3,4,5,6,7,8}
◇{0,1,2,3,4,5,6,7,8,9}
◇{0,1,2,3,4,5,6,7,8,9,10}
◇{0,1,2,3,4,5,6,7,8,9,10,11}
◇{0,1,2,3,4,5,6,7,8,9,10,11,12}
◇{0,1,2,3,4,5,6,7,8,9,10,11,12,13}
○可选地,n 1的取值集合可以与循环前缀(Cyclic Prefix,CP)的配置有关,例如在正常CP(如所述PSCCH和/ 或所述PSSCH所在的SL载波或SL BWP或资源池配置为正常CP)时取一个集合,在扩展CP(如所述PSCCH和/或所述PSSCH所在的SL载波或SL BWP或资源池配置为扩展CP)时取另一个集合。
◆可选地,所述PSCCH可以占用L 1个PSCCH频域资源分配单位。可选地,所述PSCCH频域资源分配单位可以是PSCCH子信道(subchannel),也可以是资源块(resource block,RB),也可以是资源块组(resource block group,RBG),也可以是子载波(subcarrier),也可以是其他单位。其中,所述资源块可以是虚拟资源块(virtual resource block,VRB),也可以是物理资源块(physical resource block,PRB),也可以是公共资源块(common resource block,CRB),也可以是按其他方式定义的资源块。可选地,所述PSCCH频域资源分配单位的大小可以用资源块个数表示,记为K PSCCH。例如,若所述PSCCH频域资源分配单位为PSCCH子信道,则K PSCCH是PSCCH子信道的大小。例如,若K PSCCH等于2个资源块,且L 1=2,则所述PSCCH占用4个资源块。
○可选地,编号为0的PSCCH频域资源分配单位称为参考PSCCH频域资源分配单位。可选地,所述参考PSCCH频域资源分配单位的起始资源块(记为
Figure PCTCN2020087436-appb-000009
)可以是所述PSCCH和/或所述PSSCH所在的SL载波或SL BWP或资源池的起始资源块,也可以是预定义或预配置或配置的值。
◆可选地,所述PSCCH所占用的起始PSCCH频域资源分配单位的编号可以记为m 1
●可选地,所述SCI中可以指示下面中的任意一项或多项:
◆时域资源分配(time domain resource assignment)。其中,
○可选地,所述时域资源分配用于指示为所述PSSCH所分配的时域资源。
○可选地,所述时域资源分配可以通过所述SCI中的一 个字段进行指示,也可以通过所述SCI中的一个字段的一部分比特进行指示,也可以通过所述SCI中的一个字段的一部分取值进行指示,也可以通过所述SCI中的多个字段进行指示。
○可选地,所述时域资源分配可以包括:为所述PSSCH分配的所有OFDM符号的个数(记为S)。其中,
◇可选地,所述PSCCH也占用所述S个OFDM符号中的零个或一个或多个。
○可选地,所述时域资源分配可以包括:所述PSSCH的起始OFDM符号的编号(记为n starting)。其中,
◇可选地,所述n starting可以是相对于所述PSCCH所在时隙的第一个OFDM符号(即OFDM符号0)的OFDM符号的编号。例如,n starting=1表示所述PSCCH所在时隙的第二个OFDM符号。
◇可选地,所述n starting可以是相对于所述PSCCH的起始OFDM符号(即n 1)的OFDM符号的编号。例如n starting=1表示n 1的下一个OFDM符号。
○可选地,所述时域资源分配可以包括:为所述PSSCH分配但未为所述PSCCH分配的OFDM符号的个数(记为S 2)。其中,
◇可选地,所述S 2个OFDM符号也可以称为PSSCH-only(或PSSCH特定,PSSCH specific)的OFDM符号。
◇可选地,所述S 2个OFDM符号也可以称为所述PSSCH所占用的和所述PSCCH不重叠的OFDM符号。
◇可选地,所述PSSCH占用所述S 2个OFDM符号中的每一个OFDM符号上的同样的频域资源(记为Δ 3),而所述PSCCH不占用所述S 2个OFDM 符号上的任何频域资源。
Figure PCTCN2020087436-appb-000010
可选地,Δ 3=Δ 12
◇可选地,所述S 2个OFDM符号是指同一个时隙内的S 2个OFDM符号。
◇可选地,所述PSSCH还占用零个或一个或多个按其他方式确定的其他OFDM符号。
◇可选地,所述PSSCH可以占用多于一个时隙,其中每个所占用的时隙内占用S 2个OFDM符号。可选地,所述PSSCH在每个所占用的时隙内还占用零个或一个或多个按其他方式确定的其他OFDM符号。
◇可选地,所述S 2的取值集合可以是下面中的任意一项:
Figure PCTCN2020087436-appb-000011
{0,1,2,3,4,5,6,7,8,9,10,11,12,13}
Figure PCTCN2020087436-appb-000012
{0,1,2,3,4,5,6,7,8,9,10,11,12}
Figure PCTCN2020087436-appb-000013
{0,1,2,3,4,5,6,7,8,9,10,11}
Figure PCTCN2020087436-appb-000014
{0,1,2,3,4,5,6,7,8,9,10}
Figure PCTCN2020087436-appb-000015
{0,1,2,3,4,5,6,7,8,9}
Figure PCTCN2020087436-appb-000016
{0,1,2,3,4,5,6,7,8}
Figure PCTCN2020087436-appb-000017
{0,1,2,3,4,5,6,7}
Figure PCTCN2020087436-appb-000018
{0,1,2,3,4,5,6}
Figure PCTCN2020087436-appb-000019
{0,1,2,3,4,5}
Figure PCTCN2020087436-appb-000020
{0,1,2,3,4}
Figure PCTCN2020087436-appb-000021
{0,1,2,3}
Figure PCTCN2020087436-appb-000022
{0,1,2}
Figure PCTCN2020087436-appb-000023
{0,1}
◇可选地,S 2的取值集合可以与循环前缀(Cyclic Prefix,CP)的配置有关,例如在正常CP(如所述PSCCH和/或所述PSSCH所在的SL载波或SL BWP或资源池配置为正常CP)时取一个集合, 在扩展CP(如所述PSCCH和/或所述PSSCH所在的SL载波或SL BWP或资源池配置为扩展CP)时取另一个集合。
◆频域资源分配(frequency domain resource assignment)。其中,
○可选地,所述频域资源分配用于指示为所述PSSCH所分配的频域资源。所述频域资源分配的单位可以称为“PSSCH频域资源分配单位”。
◇可选地,所述PSSCH频域资源分配单位可以是PSSCH子信道,也可以是资源块,也可以是资源块组,也可以是子载波,也可以是其他单位,其中所述资源块可以是虚拟资源块,也可以是物理资源块,也可以是公共资源块,也可以是按其他方式定义的资源块。例如,为所述PSSCH所分配的频域资源可以是一个或多个PSSCH子信道(或者资源块,或者资源块组,或者子载波)的集合,其中每个PSSCH子信道(或者资源块,或者资源块组,或者子载波)的频率位置都不一样,编号也不一样。可选地,所述PSSCH频域资源分配单位的大小可以用资源块个数表示,记为K PSSCH。例如,若所述PSSCH频域资源分配单位为PSSCH子信道,则K PSSCH是PSSCH子信道的大小。例如,若K PSSCH等于3个资源块,且L 1=3,则所述PSSCH占用9个资源块。
◇可选地,编号为0的PSSCH频域资源分配单位称为参考PSSCH频域资源分配单位。可选地,所述参考PSSCH频域资源分配单位的起始资源块(记为
Figure PCTCN2020087436-appb-000024
)可以是所述PSCCH和/或所述PSSCH所在的SL载波或SL BWP或资源池的起始资源块,也可以是预定义或预配置或配置的值。 可选地,
Figure PCTCN2020087436-appb-000025
是K PSCCH和K PSSCH的公倍数。可选地,D=0。
◇可选地,所述PSSCH频域资源分配单位可以和所述PSCCH频域资源分配单位相同(例如所述PSSCH频域资源分配单位是PSSCH子信道,所述PSCCH频域资源分配单位是PSCCH子信道,且PSSCH子信道和PSCCH子信道的定义相同),也可以和所述PSCCH频域资源分配单位不同(例如所述PSSCH频域资源分配单位是PSSCH子信道,且PSSCH子信道的大小等于4个资源块;另外所述PSCCH频域资源分配单位是PSCCH子信道,且PSCCH子信道的大小等于2个资源块。又如,所述PSSCH频域资源分配单位是PSSCH子信道,且PSSCH子信道的大小等于4个资源块;另外所述PSCCH频域资源分配单位是资源块)。
○可选地,所述频域资源分配可以通过所述SCI中的一个字段进行指示,也可以通过所述SCI中的一个字段的一部分比特进行指示,也可以通过所述SCI中的一个字段的一部分取值进行指示,也可以通过所述SCI中的多个字段进行指示。
○可选地,所述频域资源分配可以包括下面中的任意一项或多项(在适用的情况下按“与”或者“或”的方式任意组合):
◇L。
◇PSSCH特定(PSSCH specific)的频域资源分配(记为L 2)。例如,L 2可以等于下面中的任意一项:
Figure PCTCN2020087436-appb-000026
L′ 2
Figure PCTCN2020087436-appb-000027
Figure PCTCN2020087436-appb-000028
Figure PCTCN2020087436-appb-000029
L′ 2/2。
Figure PCTCN2020087436-appb-000030
L-L′ 2
Figure PCTCN2020087436-appb-000031
Figure PCTCN2020087436-appb-000032
Figure PCTCN2020087436-appb-000033
(L-L′ 2)/2。
其中,
◇L是所述PSSCH所占用的PSSCH频域资源分配单位的个数(或者说所述PSSCH所占用的PSSCH频域资源分配单位的集合的大小)。
◇L′ 2是所述PSSCH所占用的PSSCH频域资源分配单位的集合中,和所述PSCCH所占用的频域资源不重叠的PSSCH频域资源分配单位的个数。
Figure PCTCN2020087436-appb-000034
可选地,“和所述PSCCH所占用的频域资源不重叠”可以指在频域上的任意资源块上都不重叠。例如,在图1所示的例子中,所述PSSCH所占用的PSSCH频域资源分配单位(假设该单位称为PSSCH子信道)的集合为X={1,2,3},其中PSSCH子信道1对应的资源块的集合为{3,4,5},PSSCH子信道2对应的资源块的集合为{6,7,8},PSSCH子信道3对应的资源块的集合为{9,10,11};所述PSCCH所占用的频域资源对应的资源块的集合为{4,5,6,7}。所以,在所述集合X中,和所述PSCCH所占用的资源块不重叠的PSSCH子信道只有一个(即PSSCH子信道3),故L′ 2=1。可选地,“和所述PSCCH所占用的频域资源不重叠”也可以指在频域上的任意PSSCH子信道、或者PSCCH子信道、或者子载波、或 者资源块组上都不重叠。
Figure PCTCN2020087436-appb-000035
可选地,在所述PSSCH频域资源分配单位和所述PSCCH频域资源分配单位相同(例如分别是PSSCH子信道和PSCCH子信道,且PSSCH子信道和PSCCH子信道的定义相同,简称为“子信道”)的情况下,所述L′ 2也可以表示为“为所述PSSCH分配但未为所述PSCCH分配的子信道的个数”。
Figure PCTCN2020087436-appb-000036
可选地,若
Figure PCTCN2020087436-appb-000037
或者
Figure PCTCN2020087436-appb-000038
L 2=L′ 2/2,则所述频域资源分配还可以包括R 2=L′ 2mod 2。
Figure PCTCN2020087436-appb-000039
可选地,若
Figure PCTCN2020087436-appb-000040
或者
Figure PCTCN2020087436-appb-000041
L 2=(L-L′ 2)/2,则所述频域资源分配还可以包括R 2=(L-L′ 2)mod 2。
此外,在步骤S203,根据所述SCI,确定下面中的一项或多项:
●所述PSSCH所占用的OFDM符号的个数(记为S)。
◆可选地,所述S个OFDM符号是指同一个时隙内的S个OFDM符号。
◆可选地,所述PSSCH可以占用多于一个时隙,其中每个所占用的时隙内占用S个OFDM符号。
●所述PSSCH的起始OFDM符号的编号(记为n starting)。例如,所述PSSCH的起始OFDM符号在一个时隙内的编号。
●所述PSSCH的结束(ending,或者说last,最后一个)OFDM符号的编号(记为n ending)。例如,所述PSSCH的结束OFDM符号在一个时隙内的编号。
●所述PSSCH所占用的OFDM符号的集合(记为C T)。
●所述PSSCH所占用的PSSCH频域资源分配单位的个数(记为L)。
●所述PSSCH所占用的起始PSSCH频域资源分配单位的编号(记为m starting)。
●所述PSSCH所占用的结束PSSCH频域资源分配单位的编号(记为m ending)。
●所述PSSCH所占用的PSSCH频域资源分配单位的集合(记为C F)。
例如,可选地,S由下面中的任意一种方式确定:
●S由所述时域资源分配直接指示。
●S=S 1+S 2
●S=S 1
●S=S 2
●S的值取决于频域资源分配的情况。例如,若L=L 1,则S=S 2
否则S=S 1+S 2。又如,若L 2=0,则S=S 2,否则S=S 1+S 2。又如,可选地,n starting由下面中的任意一种方式确定:
●n starting由所述时域资源分配直接指示。
●n starting=n 1
●n starting=n 1+S 1
●n starting的值取决于频域资源分配的情况。例如,若L=L 1,则n starting=n 1+S 1,否则n starting=n 1。又如,若L 2=0,则n starting=n 1+S 1,否则n starting=n 1
又如,可选地,n ending由下面中的任意一种方式确定:
●n ending=n 1+S 1+S 2-1。
●n ending=n 1+S 1-1。
●n ending=n 1+S 2-1。
又如,可选地,C T由下面中的任意一种方式确定:
●C T={n starting,n starting+1,...,n starting+(S 1+S 2)-1}。
●C T={n starting,n starting+1,...,n starting+S 1-1}。
●C T={n starting,n starting+1,...,n starting+S 2-1}。
●C T的值取决于频域资源分配的情况。例如,若L=L 1,则C T={n starting,n starting+1,...,n starting+S 2-1},否则C T={n starting,n starting+1,...,n starting+(S 1+S 2)-1}。又如,
若L 2=0,则C T={n starting,n starting+1,...,n starting+S 2-1},否则C T={n starting,n starting+1,...,n starting+(S 1+S 2)-1}。
●C T={n ending-(S 1+S 2)+1,n ending-(S 1+S 2)+2,...,n ending}。
●C T={n ending-S 1+1,n ending-S 1+2,...,n ending}。
●C T={n ending-S 2+1,n ending-S 2+2,...,n ending}。
又如,可选地,L由下面中的任意一种方式确定:
●L由所述频域资源分配直接指示。
Figure PCTCN2020087436-appb-000042
Figure PCTCN2020087436-appb-000043
Figure PCTCN2020087436-appb-000044
Figure PCTCN2020087436-appb-000045
●L=L 1
●L=L 1+L 2
又如,可选地,m starting由下面中的任意一种方式确定:
●m starting=m 1
Figure PCTCN2020087436-appb-000046
Figure PCTCN2020087436-appb-000047
Figure PCTCN2020087436-appb-000048
Figure PCTCN2020087436-appb-000049
Figure PCTCN2020087436-appb-000050
Figure PCTCN2020087436-appb-000051
Figure PCTCN2020087436-appb-000052
Figure PCTCN2020087436-appb-000053
Figure PCTCN2020087436-appb-000054
Figure PCTCN2020087436-appb-000055
●m starting=m 1+D。
Figure PCTCN2020087436-appb-000056
Figure PCTCN2020087436-appb-000057
Figure PCTCN2020087436-appb-000058
Figure PCTCN2020087436-appb-000059
Figure PCTCN2020087436-appb-000060
Figure PCTCN2020087436-appb-000061
Figure PCTCN2020087436-appb-000062
Figure PCTCN2020087436-appb-000063
Figure PCTCN2020087436-appb-000064
Figure PCTCN2020087436-appb-000065
●m starting=m 1-D。
Figure PCTCN2020087436-appb-000066
Figure PCTCN2020087436-appb-000067
Figure PCTCN2020087436-appb-000068
Figure PCTCN2020087436-appb-000069
Figure PCTCN2020087436-appb-000070
Figure PCTCN2020087436-appb-000071
Figure PCTCN2020087436-appb-000072
Figure PCTCN2020087436-appb-000073
Figure PCTCN2020087436-appb-000074
Figure PCTCN2020087436-appb-000075
又如,可选地,C F由下面中的任意一种方式确定:
Figure PCTCN2020087436-appb-000076
Figure PCTCN2020087436-appb-000077
Figure PCTCN2020087436-appb-000078
Figure PCTCN2020087436-appb-000079
●C F={m starting,m starting+1,...,m starting+L 1-1}。
可选地,在本发明的实施例一中,所述时域资源分配和所述频域资源分配可以在同一个SCI字段中联合指示。
可选地,在本发明的实施例一中,所述SCI中是否指示所述时域资源分配可以通过半静态的方式进行配置。例如在预配置信息中配置,或者通过RRC信令(例如在MIB中,或者在SIB中)配置,或者通过PC5RRC信令(例如在MIB-SL中)配置。其中,
●可选地,若所述SCI中不指示所述时域资源分配,则所述PSSCH的起始OFDM符号的编号等于所述PSCCH的起始OFDM符号的编号(即n starting=n 1)。
●可选地,若所述SCI中不指示所述时域资源分配,则所述PSSCH所占用的OFDM符号(例如,所述PSSCH在一个时隙内所占用的OFDM符号)的集合等于所述PSCCH所占用的OFDM符号(例如,所述PSCCH在一个时隙内所占用的OFDM符号)的集合。
●可选地,若所述SCI中不指示所述时域资源分配,则所述PSSCH所占用的OFDM符号(例如,所述PSSCH在一个时隙内所占用的OFDM符号)的集合等于在所述PSCCH所在时隙内所有OFDM符号中排除掉该时隙内所有不用于所述PSSCH的OFDM符号后所剩下的OFDM符号的集合。其中,所述所有不用于所述PSSCH的OFDM符号可以包括下面中的一项或多项:
◆用于AGC(Automatic Gain Control,自动增益控制)的OFDM符号。
◆用于GP(Guard Period,保护间隔)的OFDM符号。
◆不属于所述PSCCH和PSSCH所对应的资源池的OFDM符号。
可选地,在本发明的实施例一中,
Figure PCTCN2020087436-appb-000080
又可以写成(m 1·K PSCCH)/K PSSCH
这样,本发明的实施例一通过利用PSCCH和PSSCH在时域和/或频域的复用模式,用较少的开销指示了PSCCH中携带的SCI所调度的PSSCH的时域和/或频域资源,相对于传统的方式提升了PSCCH的性能。
[实施例二]
下面结合图3来说明本发明的实施例二的由用户设备执行的方法。
图3是示出了根据本发明的实施例二的由用户设备执行的方法的流程图。
如图3所示,在本发明的实施例二中,用户设备UE执行的步骤包括:步骤S301和步骤S303。
具体地,在步骤S301,获取与SL载波的时域资源有关的配置信息。
其中,
●可选地,所述与SL载波的时域资源有关的配置信息可以包括下面中的一项或多项:
◆SL时隙位图。其中,
○可选地,所述SL时隙位图的大小(或者说宽度,或者说长度,记为B SL)的单位可以是比特。
○可选地,所述SL时隙位图的大小可以预定义为集合S1={1,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64}中的任意一个值,或者配置或预配置或指示为从所述集合S1的任意一个子集中取值。
○可选地,所述SL时隙位图的大小的取值或取值集合可以与所述SL载波所配置的子载波间隔和/或CP长度有关。例如,不同子载波间隔和/或CP长度对应不同的SL时隙位图的大小的取值或取值集合。
◆SL起始(starting)OFDM符号(记为n starting)。其中,
○可选地,所述SL起始OFDM符号的值是一个时隙内的OFDM符号的编号。
○可选地,所述SL起始OFDM符号可以预定义为集合S2={0,1,2,3,4,5,6,7,8,9,10,11,12,13}中的任意一个值,或者配置或预配置或指示为从所述集合S2的任意一个子集中取值。
○可选地,所述SL起始OFDM符号的取值或取值集合可以与所述SL载波所配置的子载波间隔和/或CP长度有关。例如,不同子载波间隔和/或CP长度对应不同的SL起始OFDM符号的取值或取值集合。
◆SL结束(ending)OFDM符号(记为n ending)。其中,
○可选地,所述SL结束OFDM符号的值是一个时隙内的OFDM符号的编号。
○可选地,所述SL结束OFDM符号可以预定义为集合S3={0,1,2,3,4,5,6,7,8,9,10,11,12,13}中的任意一个值,或者配置或预配置或指示为从所述集合S3的任意一个子集中取值。
○可选地,所述SL结束OFDM符号的取值或取值集合可以与所述SL载波所配置的子载波间隔和/或CP长度有关。例如,不同子载波间隔和/或CP长度对应不同的SL结束OFDM符号的取值或取值集合。
◆SL时域资源周期(记为T SL)。其中,
○可选地,所述SL时域资源周期的单位可以是一个或多个符号。
○可选地,所述SL时域资源周期的单位可以是一个或多个时隙。
○可选地,所述SL时域资源周期的单位可以是一个或多个子帧。
○可选地,所述SL时域资源周期的单位可以是一个或多个帧。
○可选地,所述SL时域资源周期的单位可以是一个或多个毫秒。
○可选地,所述SL时域资源周期可以与S-SSB(或者称为SL SSB)的周期(记为T S-SSB)有关。例如,T SL=k 1·T S-SSB,其中k 1是个整数,或者1/k 1是个整数。
○可选地,所述SL时域资源周期可以与所述SL时隙位图的大小有关。例如,T SL=k 2·B SL,其中k 2是个整数。
○可选地,所述SL时域资源周期可以预定义为集合S4={0.25,0.5,0.625,1,1.25,2,2.5,3,4,5,6,7,8,9,10,12,14,15,16,18,20,22,24,25,26,28,30,32,34,35, 36,38,40,42,44,45,46,48,50,52,54,55,56,58,60,62,64,65,70,75,80,85,90,100}中的任意一个值,或者配置或预配置或指示为从所述集合S4的任意一个子集中取值。
◇可选地,所述集合S1中,非整数的值只在所述SL时域资源周期的单位是毫秒时适用。
◇可选地,所述SL时域资源周期的取值集合可以和所述SL载波所配置的子载波间隔和/或CP长度有关。例如,不同子载波间隔和/或CP长度对应不同的SL时域资源周期的取值或取值集合。
●可选地,所述与SL载波的时域资源有关的配置信息中的任意一项(例如所述SL时隙位图,又如所述SL起始OFDM符号,又如所述SL时域资源周期,又如所述k 1,又如所述k 2)都可以来自所述UE(例如所述UE的预定义信息或者预配置信息或者缺省配置信息),也可以来自基站(例如gNB或者eNB),也可以来自其他UE(例如其他UE发送的MIB-SL)。
●可选地,所述与SL载波的时域资源有关的配置信息中的任意一项(例如所述SL时隙位图,又如所述SL起始OFDM符号,又如所述SL时域资源周期,又如所述k 1,又如所述k 2)都可以包含在RRC消息或者PC5RRC消息(例如MIB,又如SIB,又如MIB-SL,又如预配置信息,又如缺省配置信息,又如其他RRC消息,又如其他PC5RRC消息)中,也可以包含在MAC CE中,也可以包含在下行控制信息(DCI)中,也可以包含在直行控制信息(SCI)中。
此外,在步骤S303,确定所述SL载波的时域资源。
例如,根据所述SL时隙位图确定所述SL载波的SL时隙。例如,将所述SL时隙位图周期性地应用到所述SL载波的一个时隙集合上。其中,
●可选地,所述周期可以等于所述SL时域资源周期(T SL)。
●可选地,每个所述周期的起始时间(以所述SL时域资源周期的单位为单位)的集合可以是{0,T SL,2T SL,...,},也可以是S-SSB (或者S-SSB候选)所在的时隙的起点的集合或其一个子集。
又如,确定在所述SL载波的所有SL时隙中,用于SL的OFDM符号的集合可以是{n starting,n starting+1,...,n ending}。
可选地,在本发明的实施例二中,所述SL时隙中的一个或多个OFDM符号可以用于SL。
可选地,在本发明的实施例二中,所述用于SL可以是用于SL传输,或者用于SL接收,或者用于SL上的AGC,或者用于SL上的GP,或者用于其他与SL有关的用途。
这样,本发明的实施例二通过在MIB-SL等消息中指示SL时隙位图以及SL起始OFDM符号等信息,使得不同UE之间关于相应SL载波的时域资源的理解一致,确保了所述不同UE之间在SL传输和SL接收时在时间上的同步。
[实施例三]
下面结合图4来说明本发明的实施例三的由用户设备执行的方法。
图4是示出了根据本发明的实施例三的由用户设备执行的方法的流程图。
如图4所示,在本发明的实施例三中,用户设备UE执行的步骤包括:步骤S401、步骤S403和步骤S405。
具体地,在步骤S401,接收PSCCH,以及所述PSCCH所携带的直行控制信息(SCI)所调度的PSSCH。
此外,在步骤S403,确定传播类型(cast-type,或者说通信类型,communication-type)。其中,所述传播类型可以是所述PSCCH、所述SCI、所述PSSCH、以及所述PSSCH所携带的传输块中的任意一个或多个的传播类型。
例如,确定所述传播类型是单播还是组播。又如,确定所述传播类型是单播还是广播。又如,确定所述传播类型是组播还是广播。又如,确定所述传播类型是单播、组播还是广播。
可选地,只针对所述PSCCH、所述SCI、所述PSSCH、以及所述PSSCH所携带的传输块中的一个或多个定义传播类型。
可选地,所述PSCCH、所述SCI、所述PSSCH、以及所述PSSCH所携带的传输块(在适用的情况下,例如在定义了传播类型的情况下)对应同样的传播类型。
可选地,确定所述传播类型的方式可以是下面中的任意一种:
●根据所述PSCCH和/或所述PSSCH所占用的频域和/或时域资源确定所述传播类型。例如,若所述PSCCH和/或所述PSSCH所属的资源池配置为仅用于广播传输,则所述传播类型是广播。
●根据所述PSCCH所使用的DMRS序列确定所述传播类型。
●根据所述PSSCH所使用的DMRS序列确定所述传播类型。
●根据所述UE所在的地理区域(zone)确定所述传播类型。例如根据所述UE所在的地理区域的区域标识(ID)确定所述传播类型。
●根据所述SCI中的传播类型指示确定所述传播类型。其中,所述传播类型指示可以是显式的指示(例如通过所述SCI中的一个或多个字段直接指示),也可以是隐式的指示(例如从所述SCI中的一个或多个字段中推导出来)。
●根据所述SCI的格式确定所述传播类型。
●根据其他方式确定所述传播类型。
此外,在步骤S405,由物理层向高层(例如MAC子层)指示(或者报告)所述传播类型。
这样,本发明的实施例三通过由物理层向MAC子层报告所接收的传输块的传播类型,使得在配置了HARQ反馈的情况下,接收UE可以明确区分单播传输和组播传输,避免了将接收到的用于单播的传输块和用于组播的传输块进行HARQ合并,保证了HARQ合并的性能。
[实施例四]
下面结合图5来说明本发明的实施例四的由用户设备执行的方法。
图5是示出了根据本发明的实施例四的由用户设备执行的方法的流程图。
如图5所示,在本发明的实施例四中,用户设备UE执行的步骤包括:步骤S501和步骤S503。
具体地,在步骤S501,接收直行控制信息(SCI)。其中,
●可选地,所述SCI可以携带在PSCCH中,所述PSCCH可以用于调度PSSCH,所述PSSCH中可以携带一个传输块。其中,
◆可选地,所述传输块可以传输一次或多次。记所述传输块的传输次数为N。
○可选地,所述N也可以称为所述传输块的最大传输次数,或者所述传输块的最大可能传输次数。可选地,所述传输块的实际传输次数可以小于所述N。
○可选地,所述N的取值集合可以是集合S1={1,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92,96,100,104,108,112,116,120,124,128,132,136,140,144,148,152,156,160,164,168,172,176,180,184,188,192,196,200,204,208,212,216,220,224,228,232,236,240,244,248,252,256}或者所述集合S1的任意一个子集。
○可选地,所述传输块的N次传输的编号可以从0开始,例如将第1次传输称为“传输0”,第二次传输称为“传输1”,等等。相应地,所述传输块的N次传输的编号的集合是{0,1,...,N-1}。
○可选地,所述传输块的实际传输的编号的集合可以是{0,1,...,N-1}的一个子集,例如,若N=4,则所述传输块的实际传输的编号可以是{0,1,2,3},或者{0,1},或者{0,2},等等。
◆可选地,所述传输块的每一次传输都分别对应唯一的PSCCH、SCI和PSSCH。记所述PSCCH携带的所述SCI所调度的所述PSSCH携带的所述传输块的传输编号为i,则所述PSCCH、所述SCI和所述PSSCH可以分别记为PSCCH i、SCI i和PSSCH i,其中i∈{0,1,2,...,N-1}。
◆可选地,有时候所述传输块的编号为0的传输称为初传(initial transmission),后续的其他传输(如果有的话)称为重传(retransmission)。例如,所述传输块的编号为1的传输又可以称为所述传输块的第1次重传,所述传输块的编号为2的传输又可以称为所述传输块的第2次重传,等等。
●可选地,所述SCI i中可以指示下面中的任意一项或多项:
◆所述PSSCH i的时域和/或频域资源。
◆携带所述传输块的下一次传输的PSSCH(即PSSCH i+1)的时域和/或频域资源。
○可选地,只有当所述i是奇数时才在所述SCI i中指示所述PSSCH i+1的时域和/或频域资源。
○可选地,只有当所述i是偶数时才在所述SCI i中指示所述PSSCH i+1的时域和/或频域资源。
○可选地,对于一部分预定义、预配置或配置的所述i的取值集合(例如{0,1,2,...,N-1}中的奇数组成的子集,又如{0,1,2,...,N-1}中的偶数组成的子集,又如{N-1}),所述SCI i中指示的所述PSSCH i+1的时域和/或频域资源为预定义、预配置或配置的特殊值(例如空值,又如非法值)。例如,此时所述SCI i中用于指示所述PSSCH i+1的时域和/或频域资源的字段的所有比特的取值都为0,或者都为1。又如,此时所述SCI i中用于指示所述PSSCH i+1的时域和/或频域资源的字段的取值对应任意一种特殊的(例如空的,又如非法的)时域和/或频域资源分配的状态。
◆携带所述传输块的上一次传输的PSSCH(即PSSCH i-1)的时域和/或频域资源。
○可选地,只有当所述i是奇数时才在所述SCI i中指示所述PSSCH i-1的时域和/或频域资源。
○可选地,只有当所述i是偶数且i≠0(或者i>0)时 才在所述SCI i中指示所述PSSCH i-1的时域和/或频域资源。
○可选地,对于一部分预定义、预配置或配置的i的取值集合(例如{0,1,2,...,N-1}中的奇数组成的子集,又如{0,1,2,...,N-1}中的偶数组成的子集,又如{N-1}),所述SCI i中指示的所述PSSCH i-1的时域和/或频域资源为预定义、预配置或配置的特殊值(例如空值,又如非法值)。例如,此时所述SCI i中用于指示所述PSSCH i-1的时域和/或频域资源的字段的所有比特的取值都为0,或者都为1。又如,此时所述SCI i中用于指示所述PSSCH i-1的时域和/或频域资源的字段的取值对应任意一种特殊的(例如空的,又如非法的)时域和/或频域资源分配的状态。
◆反向传输编号(记为j 1)。例如,j 1=N-i-1。例如,传输编号0,1,……,N-1分别对应反向传输编号N-1,N-2,……,0。
○可选地,j 1也可以用于指示剩余的传输次数,例如,在所述PSSCH i传输结束后,所述传输块还需要(或者还可能,或者最多还需要,或者最多还可能)传输的次数。例如,若N=4,则在所述传输块的编号为0、1、2和3的传输所分别对应的SCI(即SCI 0、SCI 1、SCI 2和SCI 3)中,所指示的剩余的传输次数的值分别等于3、2、1、0。又如,若N=1,则在所述传输块的编号为0的传输(也是唯一的一次传输)所对应的SCI(即SCI 0)中,所指示的剩余的传输次数的值等于0。
◆反向传输对(transmission pair)编号(记为j 2)。例如,
Figure PCTCN2020087436-appb-000081
又如,
Figure PCTCN2020087436-appb-000082
(即通过反向传输编号指示反向传输对编号)。其中,
○可选地,若N>1,则所述传输块的编号分别为2n和 2n+1的传输组成所述传输块的编号为n的传输对,其由
Figure PCTCN2020087436-appb-000083
例如,传输编号0,1,2,3,……,N-2,N-1分别对应反向传输对编号
Figure PCTCN2020087436-appb-000084
Figure PCTCN2020087436-appb-000085
其中,
◇可选地,此时N总是偶数。
◇可选地,若所述i是奇数,则所述传输块的编号分别为i-1和i的传输组成所述传输块的第
Figure PCTCN2020087436-appb-000086
个传输对。
◇可选地,若所述i是偶数,则所述传输块的编号分别为i和i+1的传输组成所述传输块的第
Figure PCTCN2020087436-appb-000087
个传输对。
○可选地,若N=1,则所述传输块的编号为0的传输是所述传输块的编号为0的“传输对”。可选地,此时也可以认为不存在任何传输对。
○可选地,j 2也可以用于指示剩余的传输对的个数,例如,在所述传输块的编号为
Figure PCTCN2020087436-appb-000088
(若所述i是奇数)或
Figure PCTCN2020087436-appb-000089
(若所述i是偶数)的传输对传输结束后,所述传输块还需要(或者还可能,或者最多还需要,或者最多还可能)传输的传输对的个数。例如,若N=4,则在所述传输块的编号为0、1、2和3的传输所分别对应的SCI(即SCI 0、SCI 1、SCI 2和SCI 3)中,所指示的剩余的传输对的个数的值分别等于1、1、0、0。又如,若N=1,则 在所述传输块的编号为0的传输(也是唯一的一次传输)所对应的SCI(即SCI 0)中,所指示的剩余的传输对的个数的值等于0。
◆传输块标识符。其中,所述传输块标识符的取值在所述传输块的所有N次传输所分别对应的SCI(即SCI 0、SCI 1、......、SCI N-1)中相同。
◆初始冗余版本(redundancy version,RV,记为r 0)。例如,用于所述传输块的编号为0的传输的冗余版本。
其中,
◆可选地,所述“PSSCH i+1的时域和/或频域资源”和所述“PSSCH i-1的时域和/或频域资源”可以在同一个SCI字段中指示。例如,当所述i为偶数时,所述SCI字段指示所述PSSCH i+1的时域和/或频域资源;当所述i为奇数时,所述SCI字段指示所述PSSCH i-1的时域和/或频域资源。
◆可选地,所述“PSSCH i的时域和/或频域资源”、所述“PSSCH i+1的时域和/或频域资源”、所述“PSSCH i-1的时域和/或频域资源”、所述“反向传输编号”、所述“剩余的传输次数”、所述“反向传输对编号”、所述“剩余的传输对的个数”以及所述“传输块标识符”中的任意一个都可以通过所述SCI中的一个字段进行指示,也可以通过所述SCI中的一个字段的一部分比特进行指示,也可以通过所述SCI中的一个字段的一部分取值进行指示,也可以通过所述SCI中的多个字段进行指示。
此外,在步骤S503,根据所述SCI,确定与PSSCH携带的传输块有关的信息。例如,确定与HARQ反馈有关的信息。例如,确定下面中的一项或多项:
●所述PSSCH i是否对应所述传输块的最后一次传输。
◆例如,若所述剩余的传输次数为0,则所述PSSCH i是所述传输块的最后一次传输。
◆又如,若所述反向传输编号为0,则所述PSSCH i是所述传输块的最后一次传输。
◆又如,若所述SCI i中指示的所述PSSCH i+1的时域和/或频域资源为预定义、预配置或配置的特殊值(例如空值,又如非法值),则所述PSSCH i是所述传输块的最后一次传输。
◆又如,若所述SCI i中指示的所述PSSCH i-1的时域和/或频域资源为预定义、预配置或配置的特殊值(例如空值,又如非法值),则所述PSSCH i是所述传输块的最后一次传输。
◆又如,上述例子的任意组合。
●所述PSSCH i在相应的传输对中的位置。
◆例如,若所述剩余的传输次数为偶数,则所述PSSCH i是相应的传输对中的第一次传输。
◆又如,若所述剩余的传输次数为奇数,则所述PSSCH i是相应的传输对中的第二次传输。
◆又如,若所述剩余的传输次数为奇数,则所述PSSCH i是相应的传输对中的第一次传输。
◆又如,若所述剩余的传输次数为偶数,则所述PSSCH i是相应的传输对中的第二次传输。
●所述PSSCH i的时域和/或频域资源。
●所述PSSCH i+1的时域和/或频域资源。
●所述PSSCH i-1的时域和/或频域资源。
●所述PSSCH i所对应的传输块。例如,通过所述传输块标识符确定所述PSSCH i所对应的传输块。
●所述PSSCH i、所述PSSCH i+1和所述PSSCH i-1中的一个或多个所分别对应的冗余版本。
◆例如,所述PSSCH i对应的冗余版本是
Figure PCTCN2020087436-appb-000090
◆又如,所述PSSCH i对应的冗余版本是
Figure PCTCN2020087436-appb-000091
◆又如,所述PSSCH i对应的冗余版本是
Figure PCTCN2020087436-appb-000092
◆又如,所述PSSCH i对应的冗余版本是
Figure PCTCN2020087436-appb-000093
◆又如,所述PSSCH i对应的冗余版本是
Figure PCTCN2020087436-appb-000094
◆又如,所述PSSCH i对应的冗余版本是
Figure PCTCN2020087436-appb-000095
◆又如,若所述PSSCH i是相应的传输对中的第一次传输,则所述PSSCH i对应的冗余版本是0。
◆又如,若所述PSSCH i是相应的传输对中的第二次传输,则所述PSSCH i对应的冗余版本是2。
◆例如,若所述PSSCH i是相应的传输对中的第一次传输,则所述PSSCH i对应的冗余版本是3。
◆又如,若所述PSSCH i是相应的传输对中的第二次传输,则所述PSSCH i对应的冗余版本是1。
其中,
○A 0=0,A 1=2,A 2=3,A 3=1。
○r 0=A t,t∈{0,1,2,3}。
这样,本发明的实施例四通过在SCI中链式指示一个传输块的不同传输编号所对应的传输的信息,使得接收UE可以正确地辨别哪些接收的PSSCH携带同一个传输块的不同传输,和/或正确地推导出所述不同传输所对应的冗余版本,保证了HARQ合并的性能。
[变形例]
下面,利用图6来说明作为一种变形例的可执行本发明上面所详细描述的用户设备执行的方法的用户设备。
图6是表示本发明所涉及的用户设备UE的框图。
如图6所示,该用户设备UE60包括处理器601和存储器602。处理器601例如可以包括微处理器、微控制器、嵌入式处理器等。存储器602例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器602上存储有程序指令。该指令在由处理器601运行时,可以执行本发明详细描述的由用户设备执行的上述方法。
上文已经结合优选实施例对本发明的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的,而且以上说明的各实施例在不发生矛盾的情况下能够相互组合。本发明的方法并不局限于上面示出的步骤和顺序。上面示出的网络节点和用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、MME、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本发明并不局限于作为这些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
应该理解,本发明的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组件可以通过多种器件来实现,这些器件包括但不限于:模拟电路器件、数字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
在本申请中,“基站”可以指具有较大发射功率和较广覆盖面积的移动通信数据和控制交换中心,包括资源分配调度、数据接收发送等功能。“用户设备”可以指用户移动终端,例如包括移动电话、笔记本等可以与基站或者微基站进行无线通信的终端设备。
此外,这里所公开的本发明的实施例可以在计算机程序产品上实现。更具体地,该计算机程序产品是如下的一种产品:具有计算机可读介质,计算机可读介质上编码有计算机程序逻辑,当在计算设备上执行时,该计算机程序逻辑提供相关的操作以实现本发明的上述技术方案。当在计算系统的至少一个处理器上执行时,计算机程序逻辑使得处理器执行本发明实施例所述的操作(方法)。本发明的这种设置典型地提供为设置或编码在例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本发明实施例所描述的技术方案。
此外,上述每个实施例中所使用的基站设备和终端设备的每个功能模块或各个特征可以由电路实现或执行,所述电路通常为一个或多个集成电路。设计用于执行本说明书中所描述的各个功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)或通用集成电路、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、或分立的硬件组件、或以上器件的任意组合。通用处理器可以是微处理器,或者所述处理器可以是现有的处理器、控制器、微控制器或状态机。上述通用处理器或每个电路可以由数字电路配置,或者可以由逻辑电路配置。此外,当由于半导体技术的进步,出现了能够替代目前的集成电路的先进技术时,本发明也可以使用利用该先进技术得到的集成电路。
尽管以上已经结合本发明的优选实施例示出了本发明,但是本领域的技术人员将会理解,在不脱离本发明的精神和范围的情况下,可以对本发明进行各种修改、替换和改变。因此,本发明不应由上述实施例来限定,而应由所附权利要求及其等价物来限定。

Claims (10)

  1. 一种由用户设备执行的方法,其特征在于,包括:
    接收物理直行控制信道PSCCH携带的直行控制信息SCI;以及
    根据所述SCI,确定所述PSCCH所调度的物理直行共享信道PSSCH的时域和/或频域资源分配。
  2. 根据权利要求1所述的方法,其特征在于,
    所述SCI指示下面的任意一项或多项:
    时域资源分配,其用于指示为所述PSSCH所分配的时域资源;以及
    频域资源分配,其用于指示为所述PSSCH所分配的频域资源。
  3. 根据权利要求2所述的方法,其特征在于,
    所述时域资源分配包括下面的一项或多项:
    为所述PSSCH分配的所有OFDM符号的个数S;
    所述PSSCH的起始OFDM符号的编号n starting;以及
    为所述PSSCH分配但未为所述PSCCH分配的OFDM符号的个数S 2
  4. 根据权利要求3所述的方法,其特征在于,
    所述频域资源分配包括下面的一项或多项:
    所述PSSCH所占用的PSSCH频域资源分配单位的个数L;以及
    PSSCH特定的频域资源分配L 2
  5. 根据权利要求4所述的方法,其特征在于,
    所确定的所述PSSCH的时域和/或频域资源分配包括下面的一项或多项:
    所述PSSCH所占用的OFDM符号的个数S;
    所述PSSCH的起始OFDM符号的编号n starting
    所述PSSCH的结束OFDM符号的编号n ending
    所述PSSCH所占用的OFDM符号的集合C T
    所述PSSCH所占用的PSSCH频域资源分配单位的个数L;
    所述PSSCH所占用的起始PSSCH频域资源分配单位的编号m starting
    所述PSSCH所占用的结束PSSCH频域资源分配单位的编号m ending;以及
    所述PSSCH所占用的PSSCH频域资源分配单位的集合C F
  6. 根据权利要求5所述的方法,其特征在于,
    S由下面的任意一种方式确定:
    ·S由所述时域资源分配直接指示;
    ·S=S 1+S 2
    ·S=S 1
    ·S=S 2
    其中,S 1是所述PSCCH所占用的OFDM符号的个数。
  7. 根据权利要求5所述的方法,其特征在于,
    n starting由下面的方式确定:
    ·n starting由所述时域资源分配直接指示;
    ·n starting=n 1
    ·n starting=n 1+S 1
    其中,n 1是所述PSCCH的起始OFDM符号在一个时隙内的编号。
  8. 根据权利要求5所述的方法,其特征在于,
    L由下面的任意一种方式确定:
    ·L由所述频域资源分配直接指示;
    ·
    Figure PCTCN2020087436-appb-100001
    ·
    Figure PCTCN2020087436-appb-100002
    ·
    Figure PCTCN2020087436-appb-100003
    ·
    Figure PCTCN2020087436-appb-100004
    ·L=L 1
    其中,m 1是所述PSCCH所占用的起始PSCCH频域资源分配单位的编号,
    R 2=L′ 2mod 2,或者R 2=(L-L′ 2)mod 2,其中L′ 2是所述PSSCH所占用的PSSCH频域资源分配单位的集合中,和所述PSCCH所占用的频域资源不重叠的PSSCH频域资源分配单位的个数, L 1是所述PSCCH所占用的PSCCH频域资源分配单位的个数,K PSSCH是所述PSSCH频域资源分配单位,K PSCCH是所述PSCCH频域资源分配单位。
  9. 根据权利要求5所述的方法,其特征在于,
    m starting由下面的任意一种方式确定:
    ·m starting=m 1
    ·
    Figure PCTCN2020087436-appb-100005
    ·
    Figure PCTCN2020087436-appb-100006
    ·
    Figure PCTCN2020087436-appb-100007
    ·
    Figure PCTCN2020087436-appb-100008
    其中,m 1是所述PSCCH所占用的起始PSCCH频域资源分配单位的编号,
    K PSSCH是所述PSSCH频域资源分配单位,
    K PSCCH是所述PSCCH频域资源分配单位。
  10. 一种用户设备,包括:
    处理器;以及
    存储器,存储有指令,
    其中,所述指令在由所述处理器运行时执行根据权利要求1-9中的任一项所述的方法。
PCT/CN2020/087436 2019-04-30 2020-04-28 由用户设备执行的方法以及用户设备 WO2020221241A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910366545.7 2019-04-30
CN201910366545.7A CN111867092A (zh) 2019-04-30 2019-04-30 由用户设备执行的方法以及用户设备

Publications (1)

Publication Number Publication Date
WO2020221241A1 true WO2020221241A1 (zh) 2020-11-05

Family

ID=72966086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087436 WO2020221241A1 (zh) 2019-04-30 2020-04-28 由用户设备执行的方法以及用户设备

Country Status (2)

Country Link
CN (1) CN111867092A (zh)
WO (1) WO2020221241A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023207974A1 (zh) * 2022-04-28 2023-11-02 夏普株式会社 由用户设备执行的方法以及用户设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020231201A1 (ko) 2019-05-14 2020-11-19 엘지전자 주식회사 Nr v2x에서 복수의 자원을 스케줄링하는 방법 및 장치
CN114697922A (zh) * 2020-12-31 2022-07-01 夏普株式会社 由用户设备执行的方法以及用户设备
CN116321441A (zh) * 2021-12-20 2023-06-23 维沃移动通信有限公司 旁链路传输方法、装置及终端
WO2024020851A1 (en) * 2022-07-27 2024-02-01 Lenovo (Beijing) Limited Method and apparatus for time domain resource allocation indication for psschs scheduled by a single sci
CN117856987A (zh) * 2022-09-28 2024-04-09 夏普株式会社 由用户设备执行的方法以及用户设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3331301A1 (en) * 2015-08-13 2018-06-06 NTT DoCoMo, Inc. User device and signal transmission method
WO2018135905A1 (en) * 2017-01-20 2018-07-26 Samsung Electronics Co., Ltd. A method and device for vehicle to everything (v2x) communications and a transmitting and receiving method and equipment in v2x communication
CN109565798A (zh) * 2016-09-29 2019-04-02 松下电器(美国)知识产权公司 无线通信方法、装置和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3331301A1 (en) * 2015-08-13 2018-06-06 NTT DoCoMo, Inc. User device and signal transmission method
CN109565798A (zh) * 2016-09-29 2019-04-02 松下电器(美国)知识产权公司 无线通信方法、装置和系统
WO2018135905A1 (en) * 2017-01-20 2018-07-26 Samsung Electronics Co., Ltd. A method and device for vehicle to everything (v2x) communications and a transmitting and receiving method and equipment in v2x communication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI; HISILICON: "Sidelink physical layer structure for NR V2X", 3GPP DRAFT; R1-1903943, 12 April 2019 (2019-04-12), Xi’an, China, pages 1 - 17, XP051707058 *
INTEL CORPORATION: "Sensing based collision avoidance schemes for V2V communication", 3GPP DRAFT; R1-160432, 19 February 2016 (2016-02-19), St Julian’s, Malta, pages 1 - 8, XP051064191 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023207974A1 (zh) * 2022-04-28 2023-11-02 夏普株式会社 由用户设备执行的方法以及用户设备

Also Published As

Publication number Publication date
CN111867092A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
WO2020221241A1 (zh) 由用户设备执行的方法以及用户设备
WO2021008587A1 (zh) 由用户设备执行的方法以及用户设备
WO2020164452A1 (zh) 由用户设备执行的方法以及用户设备
WO2020135417A1 (zh) 由用户设备执行的方法以及用户设备
WO2020125679A1 (zh) 由用户设备执行的方法以及用户设备
WO2020253770A1 (zh) 由用户设备执行的方法以及用户设备
WO2021197204A1 (zh) 由用户设备执行的方法以及用户设备
WO2020169067A1 (zh) 由用户设备执行的方法以及用户设备
WO2021057960A1 (zh) 由用户设备执行的方法以及用户设备
WO2020135320A1 (zh) 由用户设备执行的方法以及用户设备
WO2021139750A1 (zh) 由用户设备执行的方法以及用户设备
WO2022068685A1 (zh) 由用户设备执行的方法以及用户设备
WO2021160033A1 (zh) 由用户设备执行的方法以及用户设备
WO2021136373A1 (zh) 由用户设备执行的方法以及用户设备
WO2020192695A1 (zh) 由用户设备执行的方法
WO2020259568A1 (zh) 由用户设备执行的方法以及用户设备
WO2021228136A1 (zh) 由用户设备执行的方法以及用户设备
WO2021160032A1 (zh) 由用户设备执行的方法以及用户设备
WO2022028328A1 (zh) 由用户设备执行的方法以及用户设备
WO2022028274A1 (zh) 由用户设备执行的方法以及用户设备
US20230156745A1 (en) Method performed by user equipment, and user equipment
WO2020248729A1 (zh) 由用户设备执行的方法以及用户设备
WO2021197210A1 (zh) 由用户设备执行的方法以及用户设备
WO2021027833A1 (zh) 由用户设备执行的方法以及用户设备
WO2021238757A1 (zh) 由用户设备执行的方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20798708

Country of ref document: EP

Kind code of ref document: A1