WO2021027833A1 - 由用户设备执行的方法以及用户设备 - Google Patents

由用户设备执行的方法以及用户设备 Download PDF

Info

Publication number
WO2021027833A1
WO2021027833A1 PCT/CN2020/108636 CN2020108636W WO2021027833A1 WO 2021027833 A1 WO2021027833 A1 WO 2021027833A1 CN 2020108636 W CN2020108636 W CN 2020108636W WO 2021027833 A1 WO2021027833 A1 WO 2021027833A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
cell
configuration information
scs
optionally
Prior art date
Application number
PCT/CN2020/108636
Other languages
English (en)
French (fr)
Inventor
罗超
刘仁茂
赵毅男
Original Assignee
夏普株式会社
罗超
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 罗超 filed Critical 夏普株式会社
Publication of WO2021027833A1 publication Critical patent/WO2021027833A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present invention relates to a method executed by user equipment and user equipment.
  • Non-Patent Document 1 if the UE is configured to perform SL operations on an SL (sidelink, straight) carrier (denote its carrier center frequency as F SL ), the UE can By measuring the LTE cell that uses the FSL as the UL (uplink) carrier to determine whether it is in an in-coverage or out-of-coverage state.
  • SL sidelink, straight
  • F SL carrier center frequency
  • FIG. 1 is a schematic diagram showing the relationship between the frequency positions of SL, UL, and DL carriers in LTE V2X.
  • Non-Patent Document 1 hereinafter referred to as 5G, or NR
  • 5G V2X based on 5G see Non-Patent Document 4
  • a cell can be additionally configured with a SUL (supplementary uplink, supplementary uplink) carrier (record the carrier center frequency as F SUL ).
  • the UE transmits on either the UL carrier or the SUL carrier, but it will not transmit on both at the same time. If the SUL carrier is configured as an SL carrier, the UE cannot determine the center frequency F DL of the corresponding DL carrier from the center frequency F SL of the SL carrier. See the TDD+SUL part in Figure 2.
  • Fig. 2 is a schematic diagram showing the relationship among the frequency positions of SL, UL, SUL, and DL carriers in 5G V2X.
  • SSB The location of PSS, SSS and PBCH (the three are organized in a block-like manner on time-frequency resources, generally collectively referred to as SSB) and the center frequency of the DL carrier are independent. This means that even if the center frequency of the DL carrier is known (for example, see the FDD or TDD part in Figure 2), the frequency position of the SSB cannot be determined.
  • SL carriers due to the introduction of SUL, other problems have been introduced in the configuration of SL carriers. For example, in a cell that supports SL operation, several SL carriers can be configured, and how to determine whether a given SL carrier is on the UL carrier or the SUL carrier. For another example, how to determine whether the TDD uplink and downlink configuration information of a cell that supports SL operation is applied to an SL carrier.
  • Non-Patent Document 1 RP-152293, New WI proposal: Support for V2V services based on LTE sidelink
  • Non-Patent Document 2 RP-170798, New WID on 3GPP V2X Phase 2
  • Non-Patent Document 3 RP-170855, New WID on New Radio Access Technology
  • Non-Patent Document 4 RP-190766, New WID on 5G V2X with NR sidelink
  • the present invention provides a method executed by a user equipment and a user equipment.
  • a method executed by user equipment which includes:
  • the configuration information related to the direct operation may include the configuration information of the direct carrier and reference downlink configuration information.
  • the straight operation may include at least one of the following operations:
  • a method executed by user equipment which includes:
  • the configuration information related to the direct operation may include configuration information of one direct carrier or include configuration information of two direct carriers.
  • the configuration information related to the straight-through operation may include at least one of the following:
  • the direct carrier associated with the uplink carrier is Configuration information
  • the direct carrier associated with the supplementary uplink carrier is Configuration information.
  • the direct-travel cell is configured with an uplink carrier
  • determine an uplink carrier of the direct-travel cell that is, a carrier with a specific subcarrier interval corresponding to C UL ;
  • the direct-travel cell is configured with a supplementary uplink carrier
  • determine a supplementary uplink carrier of the direct-travel cell that is, a carrier with a specific subcarrier interval corresponding to the C SUL ;
  • part or all of the configuration information related to the straight-travel operation may also be included in the main information block of the straight-travel cell or included in one or more systems of the straight-travel cell Information block.
  • a user equipment including: a processor; and a memory storing instructions, wherein the instructions execute the above-mentioned method when run by the processor.
  • the UE can determine the state of the target cell corresponding to the downlink synchronization information through downlink synchronization and/or measurement, etc., so as to perform other necessary tasks related to the target cell.
  • Cell-related SL operations such as determining the coverage status of the SL link, or determining whether the target cell can be used as a synchronization reference source, or determining whether the target cell can be used for SL communication, and so on.
  • the SL carrier by indicating in the system information whether each configured SL carrier is associated with the UL carrier or the SUL carrier of the corresponding cell, the SL carrier can share part or all of the parameters with the UL carrier or the SUL carrier, thereby enabling simultaneous SL operation and traditional Uu port operation become possible.
  • the SL carrier can share part or all of the parameters with the UL carrier or the SUL carrier, thereby enabling simultaneous SL Operation and traditional Uu port operation become possible.
  • Figure 1 shows the relationship between the frequency positions of SL, UL, and DL carriers in LTE V2X.
  • Figure 2 shows the relationship between the frequency positions of SL, UL, SUL and DL carriers in 5G V2X.
  • Fig. 3 shows a flowchart of a method executed by a user equipment according to the first embodiment of the present invention.
  • Fig. 4 shows a flowchart of a method executed by a user equipment according to the second embodiment of the present invention.
  • Fig. 5 shows a flowchart of a method executed by a user equipment according to the third embodiment of the present invention.
  • Fig. 6 shows a flowchart of a method executed by a user equipment according to the fourth embodiment of the present invention.
  • Fig. 7 shows a flowchart of a method executed by a user equipment according to the fifth embodiment of the present invention.
  • FIG. 8 shows a block diagram of the user equipment UE involved in the present invention.
  • 3GPP 3rd Generation Partnership Project
  • the third generation partnership project the third generation partnership project
  • BWP Bandwidth Part, Bandwidth Part
  • CA Carrier Aggregation, carrier aggregation
  • CCE control-channel element, control channel element
  • CORESET control-resource set, control resource set
  • CP Cyclic Prefix, cyclic prefix
  • CP-OFDM Cyclic Prefix Orthogonal Frequency Division Multiplexing, Cyclic Prefix Orthogonal Frequency Division Multiplexing
  • CRB Common Resource Block, common resource block
  • CRC Cyclic Redundancy Check, cyclic redundancy check
  • CSI Channel-state Information, channel state information
  • DCI Downlink Control Information, downlink control information
  • DFN Direct Frame Number, direct frame number
  • DFT-s-OFDM Discrete Fourier Transformation Spread Orthogonal Frequency Division Multiplexing, Discrete Fourier Transform Spread Spectrum Orthogonal Frequency Division Multiplexing
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • DM-RS Demodulation reference signal, demodulation reference signal
  • eMBB Enhanced Mobile Broadband, enhanced mobile broadband communications
  • eNB E-UTRAN Node B, E-UTRAN Node B
  • E-UTRAN Evolved UMTS Terrestrial Radio Access Network, the evolved UMTS terrestrial radio access network
  • FDD Frequency Division Duplex, Frequency Division Duplex
  • FDRA Frequency Domain Resource Assignment, frequency domain resource allocation
  • GLONASS GLObal NAvigation Satellite System, Global Navigation Satellite System
  • gNB NR Node B, NR Node B
  • GNSS Global Navigation Satellite System, Global Navigation Satellite System
  • GPS Global Positioning System, Global Positioning System
  • ID Identity (or Identifier), identity, identifier
  • IP Internet Protocol, Internet Protocol
  • LCID Logical Channel ID, logical channel identifier
  • LTE Long Term Evolution, long-term evolution
  • LTE-A Long Term Evolution-Advanced, Long Term Evolution-Upgraded Version
  • MAC Medium Access Control, medium access control
  • MAC CE MAC Control Element, MAC control element
  • MCG Master Cell Group, primary cell group
  • MIB Master Information Block, master information block
  • MIB-SL Master Information Block-Sidelink, master information block-go straight
  • MIB-SL-V2X Master Information Block-Sidelink-V2X, master information block-straight-go-V2X
  • MIB-V2X Master Information Block-V2X, Master Information Block-V2X
  • mMTC Massive Machine Type Communication, large-scale machine type communication
  • NAS Non-Access-Stratum, non-access layer
  • NDI New Data Indicator, new data indicator
  • NUL Normal Uplink, normal uplink
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • PBCH Physical Broadcast Channel, physical broadcast channel
  • PDCCH Physical Downlink Control Channel, physical downlink control channel
  • PDCP Packet Data Convergence Protocol, packet data convergence protocol
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • PSBCH Physical Sidelink Broadcast Channel, physical direct broadcast channel
  • PSCCH Physical Sidelink Control Channel, physical direct control channel
  • PSFCH Physical Sidelink Feedback Channel, physical direct feedback channel
  • PSSCH Physical Sidelink Shared Channel, physical direct shared channel
  • PRB Physical Resource Block, physical resource block
  • PSS Primary Synchronization Signal, the primary synchronization signal
  • PSS-SL Primary Synchronization Signal for Sidelink, direct main synchronization signal
  • PSSS Primary Sidelink Synchronization Signal, main straight line synchronization signal
  • PTAG Primary Timing Advance Group, the main timing advance group
  • PUSCH Physical uplink shared channel, physical uplink shared channel
  • PUCCH Physical uplink control channel, physical uplink control channel
  • QoS Quality of Service, quality of service
  • QZSS Quasi-Zenith Satellite System, Quasi-Zenith Satellite System
  • RAR Random Access Response, Random Access Response
  • RB Resource Block, resource block
  • REG resource-element group, resource element group
  • RF Radio Frequency, radio frequency
  • RLC Radio Link Control, radio link control protocol
  • Radio-Network Temporary Identifier Radio-Network Temporary Identifier, wireless network temporary identifier
  • RRC Radio Resource Control, radio resource control
  • RV Redundancy Version, redundant version
  • S-BWP Sidelink Bandwidth Part, straight bandwidth segment
  • S-MIB Sidelink Master Information Block, go straight to the master information block
  • S-PSS Sidelink Primary Synchronization Signal, direct main synchronization signal
  • S-SSB Sidelink SS/PBCH block, direct synchronization signal/physical broadcast channel block
  • S-SSS Sidelink Secondary Synchronization Signal, direct-travel secondary synchronization signal
  • SCG Secondary Cell Group, secondary cell group
  • SCI Sidelink Control Information, direct control information
  • SCS Subcarrier Spacing, subcarrier spacing
  • SDAP Service Data Adaptation Protocol, service data adaptation protocol
  • SFN System Frame Number, system frame number
  • SIB System Information Block, system information block
  • SL BWP Sidelink Bandwidth Part, straight bandwidth segment
  • SL MIB Sidelink Master Information Block
  • SL PSS Sidelink Primary Synchronization Signal, direct main synchronization signal
  • SL SS Sidelink Synchronization Signal, direct synchronization signal
  • SL SSID Sidelink Synchronization Signal Identity (or Sidelink Synchronization Signal Identifier), direct synchronization signal identification
  • SL SSB Sidelink SS/PBCH block, direct synchronization signal/physical broadcast channel block
  • SL SSS Sidelink Secondary Synchronization Signal, direct-travel secondary synchronization signal
  • SLSS Sidelink Synchronization Signal, direct synchronization signal
  • SLSS ID Sidelink Synchronization Signal Identity (or Sidelink Synchronization Signal Identifier), direct synchronization signal identification
  • SLSSID Sidelink Synchronization Signal Identity (or Sidelink Synchronization Signal Identifier), direct synchronization signal identification
  • SpCell Special Cell, special cell
  • SRS Sounding Reference Signal, sounding reference signal
  • SSB SS/PBCH block, synchronization signal/physical broadcast channel block
  • SSB-SL SS/PBCH block for Sidelink, direct synchronization signal/physical broadcast channel block
  • SSS Secondary Synchronization Signal, secondary synchronization signal
  • SSS-SL Secondary Synchronization Signal for Sidelink, direct auxiliary synchronization signal
  • SSSB Sidelink SS/PBCH block, direct synchronization signal/physical broadcast channel block
  • SSSS Secondary Sidelink Synchronization Signal, secondary direct synchronization signal
  • Timing Advance Timing Advance
  • TAG Timing Advance Group, Timing Advance Group
  • Transport Block transport block
  • TCP Transmission Control Protocol, Transmission Control Protocol
  • TDD Time Division Duplex, time division duplex
  • TPC Transmit power control, transmission power control
  • UE User Equipment, user equipment
  • UMTS Universal Mobile Telecommunications System
  • Universal Mobile Telecommunications System Universal Mobile Telecommunications System
  • V2I Vehicle-to-Infrastructure, vehicle to infrastructure
  • V2N Vehicle-to-network, vehicle-to-network
  • V2P Vehicle-to-Pedestrian, vehicle to pedestrian
  • V2V Vehicle-to-vehicle, vehicle to vehicle
  • V2X Vehicle-to-everything, vehicle to any entity
  • VRB Virtual Resource Block, virtual resource block
  • ⁇ SL MIB Sidelink Master Information Block
  • S-MIB S-MIB
  • MIB-SL M-SL
  • SL MIB refers to MIB-SL-V2X.
  • ⁇ SL PSS can also be called S-PSS, or PSS-SL, or PSSS, or other names.
  • ⁇ SL SSS can also be called S-SSS, or SSS-SL, or SSSS, or other names.
  • ⁇ SL SSB can also be called S-SSB, or SSB-SL, or SSSB, or other names.
  • the SL SSB includes part or all of the SL PSS, SL SSS and PSBCH.
  • the bandwidth of the SL SSB is 11 RBs.
  • ⁇ Synchronization reference source can also be called synchronization reference (synchronization reference), or synchronization source (synchronization source).
  • the frequency position of a subcarrier can be represented by a predefined frequency position related to the subcarrier, for example, the position of the center frequency of the subcarrier.
  • ⁇ A UL (or DL, or SUL, or SL) carrier can support one or more SCS, where each SCS corresponds to a "SCS specific carrier".
  • the frequency position of a SCS specific carrier can be represented by a predefined frequency position (denoted as f C ) in the carrier (or on the carrier). For example, if all subcarriers of the carrier are numbered from low to high in frequency, f C may be the lowest numbered subcarrier (or the lowest available subcarrier, or the lowest subcarrier) relative to the carrier. ⁇ Offset. among them,
  • the unit of the offset f C may be the number of subcarriers, or the number of RBs, or the number of RBGs, or the number of subchannels, or other units.
  • all RBs of the carrier can be numbered from low to high in frequency. among them,
  • the number of the lowest numbered RB (or lowest available RB, or lowest RB) of the carrier is 0.
  • the number of the highest numbered RB (or highest available RB, or highest RB) of the carrier is N RB -1.
  • the number of the lowest numbered subcarrier of the carrier is 0.
  • the number of the highest numbered subcarrier (or highest available subcarrier, or highest subcarrier) of the carrier is N SC -1.
  • the value of f C can be one of the following:
  • N RB is the carrier bandwidth of the carrier in the unit of the number of RBs
  • N SC is the number of subcarriers corresponding to the N RB RBs.
  • N SC 12 ⁇ N RB .
  • the carrier bandwidth of the carrier may also be referred to as the transmission bandwidth of the carrier.
  • the frequency position of an SSB can be represented by a predefined frequency position (denoted as f B ) in the SSB (or on the SSB). For example, if all sub-carriers of the SSB are numbered from low to high in frequency, f B may be the lowest numbered sub-carrier relative to the SSB (or the lowest available sub-carrier, or the lowest sub-carrier) ⁇ Offset. among them,
  • the unit of the offset f B may be the number of subcarriers, or the number of RBs, or the number of RBGs, or the number of subchannels, or other units.
  • all RBs of the SSB can be numbered from low to high frequency. among them,
  • the number of the lowest numbered RB (or the lowest available RB, or the lowest RB) of the SSB is 0.
  • the number of the highest numbered RB (or highest available RB, or highest RB) of the SSB is
  • the number of the lowest numbered subcarrier of the SSB is 0.
  • the number of the highest numbered subcarrier (or highest available subcarrier, or highest subcarrier) of the SSB is
  • the value of f B can be one of the following:
  • the bandwidth of the SSB in the unit of the number of RBs, Yes The number of subcarriers corresponding to each RB.
  • the bandwidth of the SSB may also be referred to as the transmission bandwidth of the SSB.
  • Fig. 3 is a flowchart showing a method executed by a user equipment according to the first embodiment of the present invention.
  • the steps performed by the user equipment UE include: step S101 and step S103.
  • step S101 configuration information related to an SL (sidelink, straight travel) operation is acquired. among them,
  • the "configuration information related to SL operation" may include configuration information of one or more SL carriers.
  • the configuration information of each of the one or more SL carriers may include one or more of the following:
  • the frequency band list used for SL (for example, represented by the parameter frequencyBandList-SL). among them,
  • each item in the frequency band list indicates an NR band (for example, by a number of an NR band, for example, by FreqBandIndicatorNR IE).
  • the list contains one or more list items.
  • the "point A for SL" is a reference point defined in the frequency domain for defining and/or configuring and/or locating the frequency position of the SL carrier.
  • the "frequency position of point A used for SL” It can be represented by an absolute frequency position, for example by the parameter absoluteFrequencyPointA-SL. among them,
  • the type of the parameter absoluteFrequencyPointA-SL may be ARFCN-ValueNR.
  • the "frequency position of point A used for SL” It can be represented by a relative frequency position, for example, by an offset from a predefined absolute frequency position to the "point A for SL", where, optionally, the predefined absolute frequency position can be Determined according to the frequency band where the SL carrier is located.
  • each of the one or more SCS-specific SL carriers can include one or more of the following:
  • the "frequency offset of the SL carrier" ⁇ f SL represents the "frequency position of point A for SL” And the SCS specific SL carrier The frequency offset between the frequency positions (for example, represented by the parameter offsetToCarrier-SL). among them,
  • the frequency offset is represented by the number of RBs.
  • the value of the parameter offsetToCarrier-SL may be a value in the set ⁇ 0, 1, ..., 2199 ⁇ .
  • the offset is represented by the number of RBGs.
  • the offset is represented by the number of subcarriers.
  • the offset is represented by the number of subchannels.
  • the offset is expressed in Hz.
  • the offset is expressed in kHz.
  • the offset is expressed in MHz.
  • the offset is expressed in GHz.
  • ⁇ SCS of the SL carrier (for example, represented by the parameter subcarrierSpacing-SL).
  • the carrier bandwidth of the SL carrier (for example, expressed by the parameter carrierBandwidth-SL). among them,
  • the carrier bandwidth is represented by the number of RBs.
  • the value of the parameter carrierBandwidth-SL may be a value in the set ⁇ 1, 2, ..., 275 ⁇ .
  • the carrier bandwidth is expressed by the number of RBGs.
  • the carrier bandwidth is expressed by the number of subcarriers.
  • the carrier bandwidth is expressed by the number of sub-channels.
  • the carrier bandwidth expressed in Hz, kHz, MHz, or GHz, etc. is determined by the parameter carrierBandwidth-SL and the parameter subcarrierSpacing-SL.
  • the "reference DL” corresponds to a DL carrier of a reference cell; optionally, the “reference DL configuration information” may include one or more of the following:
  • the "point A for reference DL" is a reference point defined in the frequency domain for defining and/or configuring and/or positioning other frequency positions related to the reference DL.
  • the "frequency position of point A used to refer to DL" can be represented by an absolute frequency position, for example by the parameter absoluteFrequencyPointA-DL. among them,
  • the type of the parameter absoluteFrequencyPointA-DL may be ARFCN-ValueNR.
  • the "frequency position of point A used to refer to DL" It can be represented by a relative frequency position, for example, by an offset from a predefined absolute frequency position to the "point A for reference DL", where, optionally, the predefined absolute frequency position It can be determined according to the frequency band where the "point A for reference DL" is located.
  • the "reference SSB frequency position" It can be represented by an absolute frequency position, for example by the parameter absoluteFrequencySSB-DL. among them,
  • the type of the parameter absoluteFrequencySSB-DL may be ARFCN-ValueNR.
  • the unit of the parameter absoluteFrequencySSB-DL may be Hz, or kHz, or MHz, or GHz, or other units.
  • the "reference SSB frequency position" It can be represented by a relative frequency position, for example by the parameter offsetToSSB-DL. among them,
  • the parameter offsetToSSB-DL may indicate a predefined or pre-configured or configured frequency position and the "frequency position of the reference SSB" For example, the offset between the frequency position of the "point A for reference DL" and the reference SSB. among them,
  • the offset is represented by the number of RBs.
  • the value of the parameter offsetToSSB-DL may be a value in the set ⁇ 0, 1, ..., 2199 ⁇ .
  • the offset is represented by the number of RBGs.
  • the offset is represented by the number of subcarriers.
  • the offset is represented by the number of sub-channels.
  • the offset is expressed in Hz.
  • the offset is expressed in kHz.
  • the offset is expressed in MHz.
  • the offset is expressed in GHz.
  • the parameter offsetToSSB-DL can also be replaced with two parameters: offsetToSSB-RB-DL and offsetToSSB-SC-DL, where offsetToSSB-RB-DL represents the "point A for reference DL" and The frequency offset between the lowest numbered subcarrier of a reference RB, offsetToSSB-SC-DL represents the offset between the lowest numbered subcarrier of the reference RB and the frequency position of the reference SSB.
  • Refer to the SCS of the SSB (for example, expressed by the parameter ssbSubcarrierSpacing-DL).
  • Refer to the period of the SSB (for example, expressed by the parameter ssb-periodicity-DL).
  • the value of the period may be a value in the set ⁇ 5, 10, 20, 40, 80, 160 ⁇ .
  • the unit of the period may be milliseconds.
  • the unit of the period may be seconds.
  • the "reference SSB” may be the CD-SSB (Cell Defining SSB) of the reference cell, or may not be the CD-SSB of the reference cell.
  • part or all of the "configuration information related to SL operation" may be included in the RRC message or PC5 RRC message.
  • the RRC message or PC5 RRC message may be included in the RRC message or PC5 RRC message.
  • part or all of the "configuration information related to SL operation" may be included in MAC CE.
  • step S103 one or more SL operations are performed.
  • the high-level protocol of the UE configures which frequency or frequencies the UE performs reception or transmission on; optionally, the UE is configured according to the configured One or more frequencies respectively determine the corresponding SL carrier.
  • the SL operation may include one or more of the following:
  • Receive SL control information for example, through the PSCCH channel, or PSFCH channel
  • data information for example, through the PSSCH channel
  • Determine whether the reference cell meets one or more cell selection/reselection criteria through downlink synchronization and/or measurement, and/or other operations.
  • ⁇ Determine the status of the SL link determine whether the SL link is in an in-coverage state or an out-of-coverage state. Specifically, for example, if the reference cell satisfies one or more cell selection/reselection criteria, the SL link is determined to be in a covered state, otherwise, the SL link is determined to be in a non-covered state; for another example, if If the reference cell satisfies one or more cell selection/reselection criteria, and if one or more physical signals indicating support for 5G SL in the cell are detected, it is determined that the SL link is in a covered state, Otherwise, it is determined that the SL link is in an uncovered state; for another example, if the reference cell satisfies one or more cell selection/reselection criteria, and one or more SIBs related to the SL operation in the cell can be obtained, It is determined that the SL link is in a covered state, otherwise the SL link is determined to be in a non
  • ⁇ Determine a cell used as a synchronization reference source For example, if the reference cell is the PCell of the UE, select the PCell as the synchronization reference source; for another example, if the reference cell is an SCell of the UE, select the SCell as the synchronization reference source; For another example, if the SL link is in the uncovered state and the UE is in the RRC_CONNECTED state, then the PCell of the UE is selected as the synchronization reference source; for another example, if the SL link is in the uncovered state and the UE is in RRC_IDLE Status, the serving cell of the UE is selected as the synchronization reference source.
  • ⁇ Determine a cell for SL communication (such as SL transmission and/or SL reception).
  • the PCell is selected as the cell used for SL communication; for another example, if the reference cell is an SCell of the UE, the SCell is selected as the use
  • the PCell of the UE is selected as the cell for SL communication; another example, if the SL link is in the uncovered state, Coverage state, and the UE is in the RRC_IDLE state, then the serving cell of the UE is selected as the cell for SL communication.
  • SL can be replaced with V2X SL, or SL V2X.
  • the RB may be a PRB (if applicable).
  • the RB may be a CRB (where applicable).
  • the RB may be a VRB (where applicable).
  • the offset between X and Y can sometimes be referred to as the distance from Y to X, or the distance from X to Y, or The offset between Y and X.
  • the "point A for SL” and the “point A for reference DL” may correspond to the same absolute frequency position (referred to as "point A").
  • the "configuration information related to SL operation" if the "configuration information related to SL operation" is included in MIB or SIB, then one or more of the “configuration information related to SL operation" corresponds to The parameters of each SL carrier (for example, the frequency position, the carrier bandwidth, and the SCS) cannot be determined according to the UL carrier or SUL carrier configuration information of the cell broadcasting the MIB or SIB.
  • the "configuration information related to SL operations” at this time may be referred to as "inter-frequency SL configuration information” or “neighboring-frequency SL configuration information”.
  • an SCS-specific carrier for example, an SCS-specific SL carrier, or an SCS-specific UL carrier, or an SCS-specific carrier
  • the SUL carrier such as the SCS specific DL carrier
  • the SCS can be 15kHz, or 30kHz, or 60kHz.
  • an SCS-specific carrier for example, an SCS-specific SL carrier, or an SCS-specific UL carrier, or an SCS-specific carrier
  • the SUL carrier such as the SCS specific DL carrier
  • the SCS can be 60kHz or 120kHz.
  • the UL/DL carrier of the cell may sometimes be called a non-SUL carrier.
  • the downlink synchronization information is indicated in the SL carrier configuration, so that the UE can determine the status of the target cell corresponding to the downlink synchronization information through downlink synchronization and/or measurement, etc., so as to perform other necessary, SL operations related to the target cell, such as determining the coverage status of the SL link, determining whether the target cell can be used as a synchronization reference source, or determining whether the target cell can be used for SL communication, and so on.
  • Fig. 4 is a flowchart showing a method executed by a user equipment according to the second embodiment of the present invention.
  • the steps performed by the user equipment UE include: step S201 and step S203.
  • step S201 configuration information related to the SL operation in the cell is acquired. among them,
  • part or all of the "configuration information related to SL operation" may be included in the MIB of the cell.
  • part or all of the "configuration information related to SL operation" may be included in one SIB of the cell, or may be included in multiple different SIBs of the cell.
  • the "configuration information related to SL operations" may include configuration information of one SL carrier or two SL carriers. among them,
  • the configuration information of each of the one or two SL carriers may include one or more of the following:
  • the "carrier associated with the SL carrier” can be the UL carrier of the cell, or the SUL carrier of the cell (if applicable).
  • the configuration information of the SL carrier C SL includes the "information of the carrier associated with the SL carrier".
  • the "carrier associated with the SL carrier” is the UL carrier of the cell.
  • the "information of the carrier associated with the SL carrier” may include one or more of the following:
  • the "UL/SUL indication" may be used to indicate whether the "carrier associated with the SL carrier" is a UL carrier or a SUL carrier. among them,
  • the "information of the carrier associated with the SL carrier" includes the "UL/SUL indication”.
  • the index of the SCS specific carrier (denoted as C XL ).
  • the "carrier associated with the SL carrier” is a UL carrier
  • the "SCS-specific carrier index” is the SCS-specific UL carrier list of the cell (for example, through the SIB1 of the cell
  • the index of the carrier list configured by scs-SpecificCarrierList in the frequencyInfoUL in the uplinkConfigCommon in the servingCellConfigCommon.
  • an index value of 0 indicates that C XL is the first carrier in the SCS-specific UL carrier list.
  • the "carrier associated with the SL carrier” is a SUL carrier
  • the "SCS-specific carrier index” is the SCS-specific SUL carrier list of the cell (for example, through the SIB1 of the cell).
  • the index of the carrier list configured by the scs-SpecificCarrierList in the frequencyInfoUL in the supplementaryUplink in the servingCellConfigCommon, for example, an index value of 0 indicates that C XL is the first carrier in the SCS-specific SUL carrier list.
  • the SCS of the carrier associated with the SL carrier is the SCS of the carrier associated with the SL carrier.
  • the "SCS of the SL carrier" may not be explicitly indicated, but determined by the SCS of an SL BWP configured on the SL carrier C SL .
  • SL carrier such as synchronization configuration information, or SLBWP configuration information, or configuration information of one or more receiving and/or transmission resource pools on each SL BWP, etc.
  • step S203 one or more parameters of one or two SL carriers corresponding to the "configuration information related to SL operation" are determined.
  • each SL carrier C SL one or more of the following is performed:
  • Determine whether the carrier associated with the SL carrier C SL is a UL carrier or a SUL carrier.
  • the carrier associated with the SL carrier C SL is a UL carrier or a SUL carrier according to the "UL/SUL indication".
  • the carrier associated with the SL carrier C SL is a UL carrier or a SUL carrier according to the "UL/SUL indication".
  • the carrier associated with the SL carrier C SL is a UL carrier.
  • the carrier associated with the SL carrier C SL is a UL carrier.
  • the C XL is the SCS-specific UL carrier list of the cell corresponding to the "SCS-specific carrier index" (for example, by One carrier in the carrier list configured by scs-SpecificCarrierList in the frequencyInfoUL in the servingCellConfigCommon in the servingCellConfigCommon in the SIB1 of the cell. For example, if the value of the index is 0, the C XL is the first carrier in the UL carrier list specific to the SCS.
  • the C XL is the SCS specific UL carrier list of the cell (for example, through the uplinkConfigCommon in the servingCellConfigCommon in the SIB1 of the cell
  • the carrier whose SCS (configured by the parameter subcarrierSpacing) in the carrier list configured by scs-SpecificCarrierList in the frequencyInfoUL is equal to the "SCS of the SL carrier". For example, if the "SCS of the SL carrier" is 15 kHz, then the C XL is the 15 kHz carrier in the SCS specific UL carrier list.
  • the C XL is the SCS specific UL carrier list of the cell (for example, through the uplinkConfigCommon in the servingCellConfigCommon in the SIB1 of the cell
  • the SCS (configured by the parameter subcarrierSpacing) in the carrier list configured by scs-SpecificCarrierList in frequencyInfoUL is equal to the carrier of the "SCS of the carrier associated with the SL carrier". For example, if the "SCS of the carrier associated with the SL carrier" is 15 kHz, then the C XL is the 15 kHz carrier in the SCS specific UL carrier list.
  • the C XL is the SCS-specific SUL carrier list of the cell corresponding to the "SCS-specific carrier index" (for example, by One carrier in the carrier list configured by scs-SpecificCarrierList in the frequencyInfoUL in the supplementaryUplink in the servingCellConfigCommon in the SIB1 of the cell. For example, if the value of the index is 0, the C XL is the first carrier in the SUL carrier list specific to the SCS.
  • the C XL is a SUL carrier
  • the C XL is the SCS-specific SUL carrier list of the cell (for example, through scs- in the frequencyInfoUL in the supplementaryUplink in the servingCellConfigCommon in the SIB1 of the cell).
  • the carrier whose SCS (configured by the parameter subcarrierSpacing) in the carrier list configured by SpecificCarrierList is equal to the "SCS of the SL carrier". For example, if the "SCS of the SL carrier" is 15 kHz, then the C XL is the 15 kHz carrier in the SUL carrier list specific to the SCS.
  • the C XL is the SCS specific SUL carrier list of the cell (for example, through the supplementaryUplink in the servingCellConfigCommon in the SIB1 of the cell).
  • the SCS (configured by the parameter subcarrierSpacing) in the carrier list configured by scs-SpecificCarrierList in frequencyInfoUL is equal to the carrier of the "SCS of the carrier associated with the SL carrier". For example, if the "SCS of the carrier associated with the SL carrier" is 15 kHz, then the C XL is a carrier with an SCS of 15 kHz in the SCS specific SUL carrier list.
  • the frequency position of the SL carrier C SL is equal to the frequency position of the C XL .
  • the frequency position of the SL carrier C SL is equal to the "frequency position of the SL carrier".
  • the SCS of the SL carrier C SL is equal to the SCS of the C XL .
  • the SCS of the C SL is equal to the "SCS of the SL carrier".
  • the carrier bandwidth of the C SL is equal to the carrier bandwidth of the C XL .
  • the carrier bandwidth of the C SL is equal to the "carrier bandwidth of the SL carrier".
  • SL can be replaced with V2X SL, or SL V2X.
  • the cell may be a serving cell of the UE, or may not be a serving cell of the UE.
  • the MIB or the SIB may additionally include configuration information of one or more other SL carriers.
  • the parameters of the "one or more other SL carriers" (for example, frequency position, carrier bandwidth, or SCS) cannot be determined according to the configuration information of the UL carrier or SUL carrier of the cell.
  • the “configuration information of one or more other SL carriers” may be referred to as “inter-frequency (inter-frequency) SL configuration information” or “neighboring-frequency (neighboring-frequency) SL configuration information”.
  • an SCS-specific carrier for example, an SCS-specific SL carrier, or an SCS-specific UL carrier, or an SCS-specific carrier
  • the SUL carrier such as the SCS specific DL carrier
  • the SCS can be 15kHz, or 30kHz, or 60kHz.
  • an SCS-specific carrier for example, an SCS-specific SL carrier, or an SCS-specific UL carrier, or an SCS-specific carrier
  • the SUL carrier such as the SCS specific DL carrier
  • the SCS can be 60kHz or 120kHz.
  • the second embodiment of the present invention indicates in the system information whether each configured SL carrier is associated with the UL carrier or the SUL carrier of the corresponding cell, so that the SL carrier can share part or all of the parameters with the UL carrier or the SUL carrier, thereby enabling Simultaneous SL operation and traditional Uu port operation becomes possible.
  • Fig. 5 is a flowchart showing a method executed by a user equipment according to the third embodiment of the present invention.
  • the steps performed by the user equipment UE include: step S301 and step S303.
  • step S301 the configuration information related to the SL operation in the cell is acquired. among them,
  • part or all of the "configuration information related to SL operation" may be included in the MIB of the cell.
  • part or all of the "configuration information related to SL operation" may be included in one SIB of the cell, or may be included in multiple different SIBs of the cell.
  • the "configuration information related to SL operations” may include one or more of the following (where applicable):
  • the UL carrier may be an SCS-specific UL carrier (denoted as C UL ) of the cell.
  • the "configuration information of the SL carrier associated with the UL carrier” may include one or more of the following:
  • the "SCS-specific UL carrier index" is the SCS-specific UL carrier list of the cell (for example, the carrier list configured by the scs-SpecificCarrierList in the frequencyInfoUL in the servingCellConfigCommon in the servingCellConfigCommon in the SIB1 of the cell ), for example, an index value of 0 indicates that the C UL corresponds to the first carrier in the SCS-specific UL carrier list.
  • the "SCS of the SL carrier" may not be indicated explicitly, but by the SL carrier
  • the SCS of a SL BWP configured on the above is determined.
  • ⁇ Other configuration information of the SL carrier such as synchronization configuration information, or SL BWP configuration information, or configuration information of one or more receiving and/or transmission resource pools on each SL BWP, etc.
  • the SUL carrier may be an SCS-specific SUL carrier (denoted as C SUL ) of the cell.
  • the "configuration information related to SL operation” includes the “configuration information of the SL carrier associated with the SUL carrier”.
  • the "configuration information of the SL carrier associated with the SUL carrier” may include one or more of the following:
  • the "SCS-specific SUL carrier index" is the SCS-specific SUL carrier list of the cell (for example, a carrier list configured by scs-SpecificCarrierList in the frequencyInfoUL in the supplementaryUplink in the servingCellConfigCommon in the SIB1 of the cell). ), for example, an index value of 0 indicates that the C SUL corresponds to the first carrier in the SCS-specific SUL carrier list.
  • the "SCS of the SL carrier" may not be indicated explicitly, but by the SL carrier
  • the SCS of a SL BWP configured on the above is determined.
  • ⁇ Other configuration information of the SL carrier such as synchronization configuration information, or SL BWP configuration information, or configuration information of one or more receiving and/or transmission resource pools on each SL BWP, etc.
  • step S303 one or more parameters of one or two SL carriers of the cell are determined.
  • the C UL is the SCS-specific UL carrier list of the cell corresponding to the "SCS-specific UL carrier index" (for example, through the scs in the frequencyInfo UL in the servingCellConfigCommon in the servingCellConfigCommon in the SIB1 of the cell).
  • the C UL is the SCS-specific UL carrier list of the cell (for example, the carrier list configured by the scs-SoecificCarrierList in the frequencyInfoUL in the servingCellConfigCommon in the servingCellConfigCommon in the SIB1 of the cell) in the SCS (for example, by The parameter subcarrierSpacing configuration) is equal to the carrier of the "SL carrier SCS". For example, if the "SCS of the SL carrier" is 15 kHz, then the C UL is the 15 kHz carrier in the SCS specific UL carrier list.
  • the C UL is the SCS-specific UL carrier list of the cell (for example, the carrier list configured by the scs-SoecificCarrierList in the frequencyInfoUL in the servingCellConfigCommon in the servingCellConfigCommon in the SIB1 of the cell) in the SCS (for example, by The parameter subcarrierSpacing configuration) is equal to the carrier of the "SCS of UL carrier". For example, if the "SCS of the UL carrier" is 15 kHz, then the C UL is the 15 kHz carrier in the SCS specific UL carrier list.
  • the frequency position of is equal to the frequency position of the C UL .
  • the frequency position of is equal to the "frequency position of the SL carrier".
  • the SCS of is equal to the SCS of the C UL .
  • the SCS of is equal to the "SCS of the SL carrier".
  • the carrier bandwidth of is equal to the carrier bandwidth of the C UL .
  • the carrier bandwidth of is equal to the "carrier bandwidth of the SL carrier".
  • the C SUL is the SCS-specific SUL carrier list of the cell corresponding to the "SCS-specific UL carrier index" (for example, through the scs in the frequencyInfoUL in the supplementaryUplink in the servingCellConfigCommon in the SIB1 of the cell).
  • the C SUL is the SCS-specific SUL carrier list of the cell (for example, the carrier list configured by the scs-SpecificCarrierList in the frequencyInfoUL in the supplementaryUplink in the servingCellConfigCommon in the SIB1 of the cell) in the SCS (for example, by The parameter subcarrierSpacing configuration) is equal to the carrier of the "SL carrier SCS". For example, if the "SCS of the SL carrier" is 15 kHz, then the C SUL is a 15 kHz carrier in the SCS specific SUL carrier list.
  • the C SUL is the SCS-specific SUL carrier list of the cell (for example, the carrier list configured by the scs-SpecificCarrierList in the frequencyInfoUL in the supplementaryUplink in the servingCellConfigCommon in the SIB1 of the cell) in the SCS (for example, by The parameter subcarrierSpacing configuration) is equal to the carrier of the "SCS of the SUL carrier". For example, if the "SCS of the SUL carrier" is 15 kHz, then the C SUL is the 15 kHz carrier in the SCS specific SUL carrier list.
  • the frequency position of is equal to the frequency position of the C SUL .
  • the frequency position of is equal to the "frequency position of the SL carrier".
  • the SCS of is equal to the SCS of the C SUL .
  • the SCS of is equal to the "SCS of the SL carrier".
  • the carrier bandwidth of is equal to the carrier bandwidth of the C SUL .
  • the carrier bandwidth of is equal to the "carrier bandwidth of the SL carrier".
  • SL can be replaced with V2X SL, or SL V2X.
  • the cell may be a serving cell (serving cell) of the UE, or may not be a serving cell of the UE.
  • the MIB or the SIB may additionally include configuration information of one or more other SL carriers.
  • the parameters of the "one or more other SL carriers" (for example, frequency position, carrier bandwidth, or SCS) cannot be determined according to the configuration information of the UL carrier or SUL carrier of the cell.
  • the “configuration information of one or more other SL carriers” may be referred to as “inter-frequency (inter-frequency) SL configuration information” or “neighboring-frequency (neighboring-frequency) SL configuration information”.
  • an SCS-specific carrier for example, an SCS-specific SL carrier, or an SCS-specific UL carrier, or an SCS-specific carrier
  • the SUL carrier such as the SCS specific DL carrier
  • the SCS can be 15kHz, or 30kHz, or 60kHz.
  • an SCS-specific carrier for example, an SCS-specific SL carrier, or an SCS-specific UL carrier, or an SCS-specific carrier
  • the SUL carrier such as the SCS specific DL carrier
  • the SCS can be 60kHz or 120kHz.
  • the UL carrier and/or the SL carrier associated with the SUL carrier of the corresponding cell are indicated in the system information, so that the SL carrier can share part or all of the parameters with the UL carrier or the SUL carrier, thereby enabling simultaneous It is possible to perform SL operations and traditional Uu port operations.
  • Fig. 6 is a flowchart showing a method executed by a user equipment according to the fourth embodiment of the present invention.
  • the steps performed by the user equipment UE include: step S401 and step S403.
  • step S401 the content of the SL MIB is set. among them,
  • the "SL MIB content" corresponds to one SL carrier. among them,
  • the SL carrier is associated with one UL carrier or one SUL carrier of a cell (for example, using the method described in the second embodiment of the present invention, and also using the method described in the third embodiment of the present invention. , Or associating with other methods).
  • the "SL MIB content" contains configuration information related to TDD.
  • the "configuration information related to TDD” may indicate time domain configuration information of the SL carrier.
  • the “configuration information related to TDD” it is possible to determine any given symbol or symbol set on the SL carrier (for example, all symbols in a slot, or all symbols in a subframe, Another example is all the symbols in a frame, and another example is the attributes of all symbols in a custom symbol set.
  • all the symbols in the symbol or the symbol set are uplink (UL) symbols, or downlink (DL) symbols, or straight line (SL) symbols, or flexible symbols.
  • the "configuration information related to TDD" may also be configuration information related to the slot format (or subframe format, or frame format).
  • a special value of the "configuration information related to TDD" (denoted as noneTDD. For example, all bits are the value corresponding to 0) indicates one or more of the following (when applicable In this case, press “and” or “or” in any combination):
  • the SL carrier is a carrier on the FDD frequency band.
  • the SL carrier is a carrier in an FDD cell.
  • the SL carrier is a UL carrier.
  • the SL carrier is a SUL carrier.
  • the SL carrier is a carrier dedicated to SL (such as V2X SL) operations.
  • the SL carrier is a carrier on a frequency band dedicated to SL (for example, V2X SL).
  • All symbols on the SL carrier are SL symbols.
  • the symbols on the SL carrier include SL symbols and UL symbols.
  • the symbols on the SL carrier include SL symbols and flexible symbols.
  • the symbols on the SL carrier include SL symbols, UL symbols and flexible symbols.
  • the status of the SL link corresponding to the SL carrier is "covered".
  • the state of the SL link may be determined according to the method described in Embodiment 1 of the present invention, or may also be determined according to other methods.
  • the system information (for example, SIB1) of the cell does not include the tdd-UL-DL-ConfigurationCommon parameter.
  • the system information (for example, SIB1) of the PCell of the UE does not include the tdd-UL-DL-ConfigurationCommon parameter.
  • the SL carrier is associated with one SUL carrier of the cell.
  • one or more parameters of the SL carrier for example, frequency position, such as SCS, and carrier bandwidth
  • SCS frequency position
  • carrier bandwidth carrier bandwidth
  • the "SL MIB content" also contains other configuration information, such as SL link status, the bandwidth of the SL carrier, and the configuration information of the SL BWP on the SL carrier, and Reserved bits, etc.
  • step S403 the SL MIB is transmitted on the SL carrier.
  • SL may be replaced with V2X SL, or SL V2X.
  • the cell may be a serving cell (serving cell) of the UE, or may not be a serving cell of the UE.
  • the fourth embodiment of the present invention sets the content of the SL MIB according to the association between the SL carrier and the UL or SUL carrier in the corresponding cell, so that the TDD uplink and downlink configuration information of the cell is written into the SL MIB only when necessary , To ensure that the UE receiving the SL MIB will not misinterpret the content of the SL MIB.
  • Fig. 7 is a flowchart showing a method executed by a user equipment according to the fifth embodiment of the present invention.
  • the steps performed by the user equipment UE include: step S501 and step S503.
  • step S501 the time domain information of the SL SSB is acquired. among them,
  • part or all of the "SL SSB time domain information" may be included in the PSBCH payload included in the SL SSB, or included in the SL MIB carried by the PSBCH, or The transmission parameter (for example, DMRS sequence) of the PSBCH is indicated.
  • the "SL SSB time domain information" includes one or more of the following:
  • n SLSSB The number of SL SSB in the DFN (Direct Frame Number) period (denoted as n SLSSB ).
  • n SLSSB The number of SL SSB in the DFN (Direct Frame Number) period (denoted as n SLSSB ).
  • the minimum value of the "SL SSB number in the DFN cycle" n SLSSB is equal to zero; optionally, the maximum value of the "SL SSB number in the DFN cycle” n SLSSB is equal to the DFN cycle The total number of SL SSB minus one.
  • the "number of SL SSB in the DFN cycle" n SLSSB may take a value in the set ⁇ 0, 1, ..., N SLSSB -1 ⁇ .
  • the "SL SSB number in the DFN cycle" n SLSSB can be set A value in.
  • the "SL SSB number in the DFN cycle” n SLSSB can be set A value in.
  • the "SL SSB number in the DFN cycle" n SLSSB can be set A value in.
  • n SLSSB, DFN The number of SL SSB cycle in DFN cycle (denoted as n SLSSB, DFN ).
  • n SLSSB, DFN The number of SL SSB cycle in DFN cycle.
  • the "number of the SL SSB period in the DFN period" n SLSSB, and the minimum value of DFN is equal to zero; optionally, the "number of the SL SSB period in the DFN period" n SLSSB, the DFN period
  • the maximum value is equal to the total number of SL SSB cycles in the DFN cycle minus one.
  • the "SL SSB cycle number in the DFN cycle" n SLSSB, DFN can be set A value in.
  • the "number of SL SSB period in DFN period" n SLSSB, DFN can be set A value in.
  • the "number of SL SSB period in DFN period" n SLSSB, DFN can be set A value in.
  • SLSSB number in the SL SSB cycle (denoted as n SLSSB, i ).
  • the minimum value of i is equal to zero; optionally, the "SL SSB number in the SL SSB cycle" n SLSSB, i
  • the maximum value is equal to the total number of SL SSBs in the SL SSB period (denoted as N SLSSB, i ) minus one, where, optionally, the "total number of SL SSBs in the SL SSB period" N SLSSB, i can take a predefined Value (e.g. 1, or 2, or 3, or 4, or 5, or 6, or 7, or 8, or or or or It can also take a pre-configured value, or it can take a value configured through an RRC message or a PC5 RRC message.
  • a predefined Value e.g. 1, or 2, or 3, or 4, or 5, or 6, or 7, or 8, or or or It can also take a pre-configured
  • N SLSSB is the total number of SL SSBs in the DFN period
  • T DFN is the DFN period
  • T SLSSB is the SL SSB period.
  • any one of the "DFN period" T DFN , the "SL SSB period” T SLSSB, and the “total number of SL SSBs in the DFN period” N SLSSB may take a predefined value, It can also take a pre-configured value, or it can take a value configured through an RRC message or a PC5 RRC message.
  • the "DFN period" T DFN is equal to 10240 milliseconds (or 1024 frames).
  • the "SL SSB period” T SLSSB is equal to 160 milliseconds (or 16 frames).
  • the “total number of SL SSBs in the DFN period” N SLSSB is equal to 64.
  • step S503 the time domain position of the SL SSB is determined.
  • the number of the DFN where the SL SSB is located is equal to (n SLSSB + C 1 ) ⁇ T SLSSB + C 2 .
  • any one of C 1 and C 2 can take a predefined value, can also take a pre-configured value, or can take a value configured through an RRC message or a PC5 RRC message.
  • C 1 0.
  • C 2 0.
  • the number of the DFN where the SL SSB is located is equal to (n SLSSB, DFN + C 3 ) ⁇ T SLSSB + F(n SLSSB, i ) + C 4 . among them,
  • ⁇ F( ⁇ ) can be a pre-configured mapping relationship, or a mapping relationship configured through an RRC message or a PC5 RRC message; for example, the "SL SSB period" T SLSSB is equal to 160 milliseconds (or 16 frames) ,
  • the "SL SSB number in the SL SSB cycle" n SLSSB, i has a value set of ⁇ 0, 1, 2, 3 ⁇ , the "SL SSB total number in the SL SSB cycle" N SLSSB, i is equal to 4.
  • the "number of the SL SSB period in the DFN period" n SLSSB, DFN and the "number of the SL SSB in the SL SSB period" n SLSSB, i may not be included in the "SL SSB period" In the domain information", it is indicated by the "SL SSB number in the DFN cycle" n SLSSB .
  • n SLSSB, DFN n SLSSB /N SLSSB, i .
  • n SLSSB, i n SLSSB mod N SLSSB, i .
  • n SLSSB n SLSSB, DFN ⁇ N SLSSB, i + n SLSSB, i .
  • DFN can be replaced with SFN.
  • the direct frame may be replaced with a system frame.
  • the SL SSB may also be referred to as a candidate (candidate) SL SSB or an SL SSB candidate.
  • a candidate (candidate) SL SSB or an SL SSB candidate there may or may not be SL SSB transmission.
  • SL SSB transmission on the time domain and/or frequency domain resources corresponding to a candidate SL SSB, there may be one or more SL SSBs transmitted by the UE.
  • the fifth embodiment of the present invention uses the law that SSB appears in the DFN period to indicate the corresponding SSB information in the DFN period in the SL MIB and/or PSBCH payload and/or PSBCH transmission parameters, so that the UE can
  • the DFN is derived from the information of the SSB in the DFN period, instead of directly indicating complete DFN information in the SL MIB (for example, a value of 0 to 1023, 10 bits are required), which improves the efficiency of time domain information indication.
  • FIG. 8 is used to describe a user equipment that can execute the method executed by the user equipment described in detail above in the present invention as a modified example.
  • Fig. 8 is a block diagram showing a user equipment UE related to the present invention.
  • the user equipment UE60 includes a processor 601 and a memory 602.
  • the processor 601 may include, for example, a microprocessor, a microcontroller, an embedded processor, and the like.
  • the memory 602 may include, for example, volatile memory (such as random access memory RAM), hard disk drive (HDD), non-volatile memory (such as flash memory), or other memories.
  • the memory 602 stores program instructions. When the instruction is executed by the processor 601, it can execute the above method executed by the user equipment described in detail in the present invention.
  • the method and related equipment of the present invention have been described above in conjunction with preferred embodiments. Those skilled in the art can understand that the methods shown above are only exemplary, and the various embodiments described above can be combined with each other without conflict.
  • the method of the present invention is not limited to the steps and sequence shown above.
  • the network nodes and user equipment shown above may include more modules, for example, may also include modules that can be developed or developed in the future and can be used for base stations, MMEs, or UEs, and so on.
  • the various identifiers shown above are only exemplary rather than restrictive, and the present invention is not limited to specific information elements as examples of these identifiers. Those skilled in the art can make many changes and modifications based on the teaching of the illustrated embodiment.
  • the foregoing embodiments of the present invention can be implemented by software, hardware, or a combination of both software and hardware.
  • the various components inside the base station and user equipment in the above embodiment can be implemented by a variety of devices, including but not limited to: analog circuit devices, digital circuit devices, digital signal processing (DSP) circuits, programmable processing Device, application specific integrated circuit (ASIC), field programmable gate array (FPGA), programmable logic device (CPLD), etc.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD programmable logic device
  • base station may refer to a mobile communication data and control switching center with a certain transmission power and a certain coverage area, including functions such as resource allocation and scheduling, data reception and transmission.
  • User equipment may refer to a user's mobile terminal, for example, including mobile phones, notebooks, and other terminal devices that can communicate with base stations or micro base stations wirelessly.
  • the embodiments of the present invention disclosed herein can be implemented on a computer program product.
  • the computer program product is a product that has a computer-readable medium on which computer program logic is encoded, and when executed on a computing device, the computer program logic provides related operations to implement The above technical scheme of the present invention.
  • the computer program logic When executed on at least one processor of the computing system, the computer program logic causes the processor to perform the operations (methods) described in the embodiments of the present invention.
  • This arrangement of the present invention is typically provided as software, code and/or other data structures arranged or encoded on a computer-readable medium such as an optical medium (such as CD-ROM), a floppy disk or a hard disk, or as one or more Firmware or microcode on a ROM or RAM or PROM chip, or downloadable software images, shared databases, etc. in one or more modules.
  • Software or firmware or such a configuration may be installed on a computing device, so that one or more processors in the computing device execute the technical solutions described in the embodiments of the present invention.
  • each functional module or each feature of the base station equipment and terminal equipment used in each of the above embodiments can be implemented or executed by a circuit, which is usually one or more integrated circuits.
  • Circuits designed to perform the functions described in this specification may include general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC) or general-purpose integrated circuits, field programmable gate arrays (FPGA), or other Programming logic devices, discrete gates or transistor logic, or discrete hardware components, or any combination of the above devices.
  • the general purpose processor may be a microprocessor, or the processor may be an existing processor, controller, microcontroller, or state machine.
  • the general-purpose processor or each circuit described above may be configured by a digital circuit, or may be configured by a logic circuit.
  • the present invention can also use integrated circuits obtained by using this advanced technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种由用户设备执行的方法,其中包括:获取与直行操作有关的配置信息的步骤;以及根据所述直行操作有关的配置信息来执行一项或多项直行操作。通过在SL载波配置中指示下行同步信息,使得UE可以通过下行同步和/或测量等,确定所述下行同步信息对应的目标小区的状态,从而执行其他必要的、与所述目标小区相关的SL操作。

Description

由用户设备执行的方法以及用户设备 技术领域
本发明涉及一种由用户设备执行的方法以及用户设备。
背景技术
在LTE V2X(参见非专利文献1和非专利文献2)中,若UE配置为在一个SL(sidelink,直行)载波(记其载波中心频率为F SL)上执行SL操作,则所述UE可以通过测量使用了F SL作为UL(uplink,上行)载波的LTE小区以确定自己处于有覆盖(in-coverage)还是无覆盖(out-of-coverage)状态。
为测量所述LTE小区,UE需要知道该小区的DL(downlink,下行)载波的中心频率(记为F DL)。对TDD小区,F DL=F SL;对FDD小区,F DL=F SL+S,其中S是收发间隔(TX-RX separation)。见图1。LTE小区中与小区搜索/同步有关的信号/信道(即PSS、SSS和PBCH)的频率位置可以根据F DL直接确定;在检测/读取了PSS、SSS和PBCH后,UE可以进一步确定需要测量的参考信号的时频位置。图1是表示在LTE V2X中SL、UL和DL载波的频率位置之间的关系的示意图。
在5G NR(参见非专利文献1,下面简称5G,或者NR)中,以及基于5G构建的5G V2X(参见非专利文献4)中,和LTE不同的是:
●一个小区除了可以配置一个DL载波和一个UL载波外,还可以额外配置一个SUL(supplementary uplink,补充上行)载波(记其载波中心频率为F SUL)。UE或者在UL载波上传输,或者在SUL载波上传输,但不会同时在两者上传输。若SUL载波被配置为SL载波,则UE从SL载波的中心频率F SL无法确定相应的DL载波的中心频率F DL。见图2中TDD+SUL部分。图2是表示在5G V2X中SL、UL、SUL和DL载波的频率位置之间的关系的示意图。
●PSS、SSS和PBCH(这三者在时频资源上以块状的方式组织在一起,一般合称SSB)的位置和DL载波的中心频率是独立的。这意味着即使知道了DL载波的中心频率(例如,见图2中FDD或者TDD部分),也无法确定SSB的频率位置。
另外,由于SUL的引入,使得在SL载波的配置上还引入了其他问题。例如,在一个支持SL操作的小区中,可以配置几个SL载波,以及如何确定一个给定的SL载波是在UL载波上还是SUL载波上。又如,如何确定一个支持SL操作的小区的TDD上下行配置信息是否应用到一个SL载波上。
在先技术文献
非专利文献
非专利文献1:RP-152293,New WI proposal:Support for V2V services based on LTE sidelink
非专利文献2:RP-170798,New WID on 3GPP V2X Phase 2
非专利文献3:RP-170855,New WID on New Radio Access Technology
非专利文献4:RP-190766,New WID on 5G V2X with NR sidelink
发明内容
为了解决上述问题中的至少一部分,本发明提供了一种由用户设备执行的方法以及用户设备。
根据本发明,提出了一种由用户设备执行的方法,其中包括:
获取与直行操作有关的配置信息的步骤;以及
根据所述直行操作有关的配置信息来执行一项或多项直行操作。
在上述用户设备执行的方法中,所述与直行操作有关的配置信息可以包含直行载波的配置信息、参考下行的配置信息。
在上述用户设备执行的方法中,所述直行操作可以包括以下操作中的至少一项:
确定所述参考下行的配置信息所对应的参考小区;
确定所述参考小区的下行同步信息和/或与小区测量有关的信息;
确定一个用作同步参考源的小区;
确定一个用于直行通信的小区。
另外,根据本发明,还提出了一种用户设备执行的方法,其中包括:
获取直行小区的与直行操作有关的配置信息的步骤;以及
确定所述直行小区的一个或两个直行载波的一个或多个参数。
在上述用户设备执行的方法中,所述与直行操作有关的配置信息可以包含一个直行载波的配置信息或包含两个直行载波的配置信息。
在上述用户设备执行的方法中,对每个所述直行载波即C SL,可以执行以下操作中的至少一项:
确定直行载波C SL所关联的载波是一个上行载波还是一个补充上行载波;
确定所述C SL所关联的子载波间隔特定的载波C XL
确定所述C SL的一个或多个参数。
在上述用户设备执行的方法中,所述与直行操作有关的配置信息可以包含以下的至少一项:
上行载波所关联的直行载波即
Figure PCTCN2020108636-appb-000001
的配置信息;
补充上行载波所关联的直行载波即
Figure PCTCN2020108636-appb-000002
的配置信息。
在上述用户设备执行的方法中,其中也可以执行以下操作中的至少一项:
在所述直行小区配置了上行载波的情况下,确定所述直行小区的一个上行载波即C UL所对应的子载波间隔特定的载波;
确定所述
Figure PCTCN2020108636-appb-000003
的一个或多个参数;
在所述直行小区配置了补充上行载波的情况下,确定所述直行小区的一个补充上行载波即C SUL所对应的子载波间隔特定的载波;
确定所述
Figure PCTCN2020108636-appb-000004
的一个或多个参数。
在上述用户设备执行的方法中,所述与直行操作有关的配置信息的部分或全部,也可以包含在所述直行小区的主信息块中、或者包含在所述直行小区的一个或多个系统信息块中。
此外,根据本发明,提出了一种用户设备,包括:处理器;以及存储器,存储有指令,其中,所述指令在由所述处理器运行时执行上述的方法。
根据本发明,通过在SL载波配置中指示下行同步信息,使得UE可以通过下行同步和/或测量等,确定所述下行同步信息对应的目标小区的状态,从而执行其他必要的、与所述目标小区相关的SL操作,例如确定SL链路的覆盖状态,又如确定所述目标小区是否可以作为同步参考源,又如确定所述目标小区是否可以用于SL通信等等。
另外,根据本发明,通过在系统信息中指示每个配置的SL载波是关联到相应小区的UL载波还是SUL载波,使得SL载波可以和UL载波或者SUL载波共享部分或者全部参数,进而使得同时进行SL操作和传统的Uu口的操作成为可能。
此外,根据本发明,通过在系统信息中指示相应小区的UL载波和/或SUL载波所分别关联的SL载波,使得SL载波可以和UL载波或者SUL载波共享部分或者全部参数,进而使得同时进行SL操作和传统的Uu口的操作成为可能。
附图说明
通过下文结合附图的详细描述,本发明的上述和其它特征将会变得更加明显,其中:
图1示出了在LTE V2X中SL、UL和DL载波的频率位置之间的关系。
图2示出了在5G V2X中SL、UL、SUL和DL载波的频率位置之间的关系。
图3示出了根据本发明的实施例一的由用户设备执行的方法的流程图。
图4示出了根据本发明的实施例二的由用户设备执行的方法的流程图。
图5示出了根据本发明的实施例三的由用户设备执行的方法的流程图。
图6示出了根据本发明的实施例四的由用户设备执行的方法的流程图。
图7示出了根据本发明的实施例五的由用户设备执行的方法的流程 图。
图8示出了本发明所涉及的用户设备UE的框图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细阐述。应当注意,本发明不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本发明没有直接关联的公知技术的详细描述,以防止对本发明的理解造成混淆。
下文以5G移动通信系统及其后续的演进版本作为示例应用环境,具体描述了根据本发明的多个实施方式。然而,需要指出的是,本发明不限于以下实施方式,而是可适用于更多其它的无线通信系统,例如5G之后的通信系统以及5G之前的4G移动通信系统等。
下面描述本发明涉及的部分术语,如未特别说明,本发明涉及的术语采用此处定义。本发明给出的术语在LTE、LTE-Advanced、LTE-Advanced Pro、NR以及之后的通信系统中可能采用不同的命名方式,但本发明中采用统一的术语,在应用到具体的系统中时,可以替换为相应系统中采用的术语。
3GPP:3rd Generation Partnership Project,第三代合作伙伴计划
AS:Access Stratum,接入层
BWP:Bandwidth Part,带宽片段
CA:Carrier Aggregation,载波聚合
CCE:control-channel element,控制信道元素
CORESET:control-resource set,控制资源集
CP:Cyclic Prefix,循环前缀
CP-OFDM:Cyclic Prefix Orthogonal Frequency Division Multiplexing,循环前缀正交频分复用
CRB:Common Resource Block,公共资源块
CRC:Cyclic Redundancy Check,循环冗余校验
CSI:Channel-state Information,信道状态信息
CSS:Common Search Space,公共搜索空间
DC:Dual Connectivity,双连接
DCI:Downlink Control Information,下行控制信息
DFN:Direct Frame Number,直接帧号
DFT-s-OFDM:Discrete Fourier Transformation Spread Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩频正交频分复用
DL:Downlink,下行
DL-SCH:Downlink Shared Channel,下行共享信道
DM-RS:Demodulation reference signal,解调参考信号
eMBB:Enhanced Mobile Broadband,增强的移动宽带通信
eNB:E-UTRAN Node B,E-UTRAN节点B
E-UTRAN:Evolved UMTS Terrestrial Radio Access Network,演进的UMTS陆地无线接入网
FDD:Frequency Division Duplex,频分双工
FDRA:Frequency Domain Resource Assignment,频域资源分配
FR1:Frequency Range 1,频率范围1
FR2:Frequency Range 1,频率范围2
GLONASS:GLObal NAvigation Satellite System,全球导航卫星系统
gNB:NR Node B,NR节点B
GNSS:Global Navigation Satellite System,全球导航卫星系统
GPS:Global Positioning System,全球定位系统
HARQ:Hybrid Automatic Repeat Request,混合自动重复请求
ID:Identity(或者Identifier),身份,标识符
IE:Information Element,信息元素
IP:Internet Protocol,网际协议
LCID:Logical Channel ID,逻辑信道标识符
LTE:Long Term Evolution,长期演进
LTE-A:Long Term Evolution-Advanced,长期演进-升级版
MAC:Medium Access Control,介质访问控制
MAC CE:MAC Control Element,MAC控制元素
MCG:Master Cell Group,主小区组
MIB:Master Information Block,主信息块
MIB-SL:Master Information Block-Sidelink,主信息块-直行
MIB-SL-V2X:Master Information Block-Sidelink-V2X,主信息块-直行-V2X
MIB-V2X:Master Information Block-V2X,主信息块-V2X
mMTC:massive Machine Type Communication,大规模机器类通信
NAS:Non-Access-Stratum,非接入层
NDI:New Data Indicator,新数据指示符
NR:New Radio,新无线电
NUL:Normal Uplink,正常上行
OFDM:Orthogonal Frequency Division Multiplexing,正交频分复用
PBCH:Physical Broadcast Channel,物理广播信道
PDCCH:Physical Downlink Control Channel,物理下行控制信道
PDCP:Packet Data Convergence Protocol,分组数据汇聚协议
PDSCH:Physical Downlink Shared Channel,物理下行共享信道
PSBCH:Physical Sidelink Broadcast Channel,物理直行广播信道
PSCCH:Physical Sidelink Control Channel,物理直行控制信道
PSFCH:Physical Sidelink Feedback Channel,物理直行反馈信道
PSSCH:Physical Sidelink Shared Channel,物理直行共享信道
PRB:Physical Resource Block,物理资源块
PSS:Primary Synchronization Signal,主同步信号
PSS-SL:Primary Synchronization Signal for Sidelink,直行主同步信号
PSSS:Primary Sidelink Synchronization Signal,主直行同步信号
PTAG:Primary Timing Advance Group,主定时提前组
PUSCH:Physical uplink shared channel,物理上行共享信道
PUCCH:Physical uplink control channel,物理上行控制信道
QCL:Quasi co-location,准共置
QoS:Quality of Service,服务质量
QZSS:Quasi-Zenith Satellite System,准天顶卫星系统
RAR:Random Access Response,随机接入响应
RB:Resource Block,资源块
RE:Resource Element,资源元素
REG:resource-element group,资源元素组
RF:Radio Frequency,射频
RLC:Radio Link Control,无线链路控制协议
RNTI:Radio-Network Temporary Identifier,无线网络临时标识符
RRC:Radio Resource Control,无线资源控制
RV:Redundancy Version,冗余版本
S-BWP:Sidelink Bandwidth Part,直行带宽片段
S-MIB:Sidelink Master Information Block,直行主信息块
S-PSS:Sidelink Primary Synchronizaion Signal,直行主同步信号
S-SSB:Sidelink SS/PBCH block,直行同步信号/物理广播信道块
S-SSS:Sidelink Secondary Synchronization Signal,直行辅同步信号
SCG:Secondary Cell Group,次小区组
SCI:Sidelink Control Information,直行控制信息
SCS:Subcarrier Spacing,子载波间隔
SDAP:Service Data Adaptation Protocol,业务数据适配协议
SFN:System Frame Number,系统帧号
SIB:System Information Block,系统信息块
SL:Sidelink,直行
SL BWP:Sidelink Bandwidth Part,直行带宽片段
SL MIB:Sidelink Master Information Block,直行主信息块
SL PSS:Sidelink Primary Synchronization Signal,直行主同步信号
SL SS:Sidelink Synchronisation Signal,直行同步信号
SL SSID:Sidelink Synchronization Signal Identity(或者Sidelink Synchronization Signal Identifier),直行同步信号标识
SL SSB:Sidelink SS/PBCH block,直行同步信号/物理广播信道块
SL SSS:Sidelink Secondary Synchronizaion Signal,直行辅同步信号
SLSS:Sidelink Synchronisation Signal,直行同步信号
SLSS ID:Sidelink Synchronization Signal Identity(或者Sidelink  Synchronization Signal Identifier),直行同步信号标识
SLSSID:Sidelink Synchronization Signal Identity(或者Sidelink Synchronization Signal Identifier),直行同步信号标识
SpCell:Special Cell,特殊小区
SRS:Sounding Reference Signal,探测参考信号
SSB:SS/PBCH block,同步信号/物理广播信道块
SSB-SL:SS/PBCH block for Sidelink,直行同步信号/物理广播信道块
SSS:Secondary Synchronization Signal,辅同步信号
SSS-SL:Secondary Synchronization Signal for Sidelink,直行辅同步信号
SSSB:Sidelink SS/PBCH block,直行同步信号/物理广播信道块
SSSS:Secondary Sidelink Synchronizaion Signal,辅直行同步信号
STAG:Secondary Timing Advance Group,辅定时提前组
SUL:Supplementary Uplink,补充上行
TA:Timing Advance,定时提前
TAG:Timing Advance Group,定时提前组
TB:Transport Block,传输块
TCP:Transmission Control Protocol,传输控制协议
TDD:Time Division Duplex,时分双工
TPC:Transmit power control,传输功率控制
UE:User Equipment,用户设备
UL:Uplink,上行
UMTS:Universal Mobile Telecommunications System,通用移动通信系统
URLLC:Ultra-Reliable and Low Latency Communication,超可靠低延迟通信
USS:UE-specific Search Space,UE特定搜索空间
V2I:Vehicle-to-Infrastructure,车辆到基础设施
V2N:Vehicle-to-network,车辆到网络
V2P:Vehicle-to-Pedestrian,车辆到行人
V2V:Vehicle-to-vehicle,车辆到车辆
V2X:Vehicle-to-everything,车辆到任何实体
VRB:Virtual Resource Block,虚拟资源块
如未特别说明,在本发明所有实施例和实施方式中:
●SL MIB(Sidelink Master Information Block,直行主信息块)又可以称为S-MIB,或者MIB-SL,或者其他名称。可选地,在用于V2X业务时,SL MIB指的是MIB-SL-V2X。
●SL PSS也可以称为S-PSS,或者PSS-SL,或者PSSS,或者其他名称。
●SL SSS也可以称为S-SSS,或者SSS-SL,或者SSSS,或者其他名称。
●SL SSB也可以称为S-SSB,或者SSB-SL,或者SSSB,或者其他名称。可选地,所述SL SSB包含SL PSS,SL SSS和PSBCH中的部分或全部。可选地,所述SL SSB的带宽是11个RB。
●同步参考源(synchronization reference source)又可以称为同步参考(synchronization reference),或者同步源(synchronization source)。
●一个子载波的频率位置可以用与所述子载波有关的一个预定义的频率位置表示,例如所述子载波的中心频率的位置。
●一个UL(或DL,或SUL,或SL)载波可以支持一个或多个SCS,其中每个SCS对应一个“SCS特定(SCS specific)的载波”。
●一个SCS特定的载波的频率位置可以用所述载波内(或者说所述载波上)的一个预定义的频率位置(记为f C)表示。例如,若对所述载波的所有子载波按照频率从低到高进行编号,则f C可以是相对于所述载波的最低编号的子载波(或者说最低可用子载波,或者说最低子载波)的偏移。其中,
◆可选地,所述偏移f C的单位可以是子载波个数,或者是RB个数,或者是RBG个数,或者是子信道个数,或者是其他 单位。
◆可选地,可以对所述载波的所有RB按照频率从低到高进行编号。其中,
○可选地,所述载波的最低编号的RB(或者说最低可用RB,或者说最低RB)的编号为0。
○可选地,所述载波的最高编号的RB(或者说最高可用RB,或者说最高RB)的编号为N RB-1。
◆可选地,所述载波的最低编号的子载波的编号为0。
◆可选地,所述载波的最高编号的子载波(或者说最高可用子载波,或者说最高子载波)的编号为N SC-1。
◆可选地,若所述偏移f C的单位是子载波个数,则f C的取值可以是下面中的一项:
○f C=0。
○f C=N SC-1。
Figure PCTCN2020108636-appb-000005
Figure PCTCN2020108636-appb-000006
○若N RBmod 2=0,则
Figure PCTCN2020108636-appb-000007
若N RBmod 2=1,则
Figure PCTCN2020108636-appb-000008
Figure PCTCN2020108636-appb-000009
Figure PCTCN2020108636-appb-000010
其中,N RB是以RB个数为单位的所述载波的载波带宽,N SC是N RB个RB所对应的子载波个数。可选地,N SC=12·N RB。可选地,所述载波的载波带宽也可以称为所述载波的传输带宽。
●一个SSB的频率位置可以用所述SSB内(或者说所述SSB上)的一个预定义的频率位置(记为f B)表示。例如,若对所述SSB的所有子载波按照频率从低到高进行编号,则f B可以是相对于所述SSB的最低编号的子载波(或者说最低可用子载波,或者说最低子载波)的偏移。其中,
◆可选地,所述偏移f B的单位可以是子载波个数,或者是RB个数,或者是RBG个数,或者是子信道个数,或者是其他 单位。
◆可选地,可以对所述SSB的所有RB按照频率从低到高进行编号。其中,
○可选地,所述SSB的最低编号的RB(或者说最低可用RB,或者说最低RB)的编号为0。
○可选地,所述SSB的最高编号的RB(或者说最高可用RB,或者说最高RB)的编号为
Figure PCTCN2020108636-appb-000011
◆可选地,所述SSB的最低编号的子载波的编号为0。
◆可选地,所述SSB的最高编号的子载波(或者说最高可用子载波,或者说最高子载波)的编号为
Figure PCTCN2020108636-appb-000012
◆可选地,若所述偏移f B的单位是子载波个数,则f B的取值可以是下面中的一项:
○f B=0。
Figure PCTCN2020108636-appb-000013
Figure PCTCN2020108636-appb-000014
Figure PCTCN2020108636-appb-000015
○若
Figure PCTCN2020108636-appb-000016
Figure PCTCN2020108636-appb-000017
Figure PCTCN2020108636-appb-000018
Figure PCTCN2020108636-appb-000019
Figure PCTCN2020108636-appb-000020
Figure PCTCN2020108636-appb-000021
其中,
Figure PCTCN2020108636-appb-000022
是以RB个数为单位的所述SSB的带宽,
Figure PCTCN2020108636-appb-000023
Figure PCTCN2020108636-appb-000024
个RB所对应的子载波个数。可选地,
Figure PCTCN2020108636-appb-000025
可选地,
Figure PCTCN2020108636-appb-000026
可选地,所述SSB的带宽也可以称为所述SSB的传输带宽。
[实施例一]
下面结合图3来说明本发明的实施例一的由用户设备执行的方法。
图3是示出了根据本发明的实施例一的由用户设备执行的方法的流程图。
如图3所示,在本发明的实施例一中,用户设备UE执行的步骤包括:步骤S101和步骤S103。
具体地,在步骤S101,获取与SL(sidelink,直行)操作有关的配置信息。其中,
●可选地,所述“与SL操作有关的配置信息”可以包含一个或多个SL载波的配置信息。其中,可选地,所述一个或多个SL载波中的每一个的配置信息可以包含下面中的一项或多项:
◆用于SL的频带(frequency band)列表(例如用参数frequencyBandList-SL表示)。其中,
○可选地,所述频带列表中的每一项都指示一个NR频带(例如,通过一个NR频带的编号,例如通过FreqBandIndicatorNR IE)。
○可选地,所述列表中包含一个或多个列表项。
◆用于SL的A点(Point A)的频率位置(记为
Figure PCTCN2020108636-appb-000027
)。其中,
○可选地,所述“用于SL的A点”是在频域上定义的用于定义和/或配置和/或定位所述SL载波的频率位置的一个参考点。
○可选地,所述“用于SL的A点的频率位置”
Figure PCTCN2020108636-appb-000028
可以用一个绝对频率位置表示,例如用参数absoluteFrequencyPointA-SL表示。其中,
◇可选地,所述参数absoluteFrequencyPointA-SL的类型可以是ARFCN-ValueNR。
○可选地,所述“用于SL的A点的频率位置”
Figure PCTCN2020108636-appb-000029
可以用一个相对频率位置表示,例如用一个预定义的绝对频率位置到所述“用于SL的A点”之间的偏移表示,其中,可选地,所述预定义的绝对频率位置可以根据所述SL载波所在的频带确定。
◆一个或多个SCS特定的SL载波的配置信息。其中,所述 一个或多个SCS特定的SL载波中的每一个(记为
Figure PCTCN2020108636-appb-000030
)的配置信息可以包含下面中的一项或多项:
○SL载波的频率偏移(记为Δf SL)。其中,
◇可选地,所述“SL载波的频率偏移”Δf SL表示所述“用于SL的A点的频率位置”
Figure PCTCN2020108636-appb-000031
和所述SCS特定的SL载波
Figure PCTCN2020108636-appb-000032
的频率位置之间的频率偏移(例如用参数offsetToCarrier-SL表示)。其中,
Figure PCTCN2020108636-appb-000033
可选地,所述频率偏移以RB个数表示。此时,可选地,所述参数offsetToCarrier-SL的取值可以是集合{0,1,...,2199}中的一个值。
Figure PCTCN2020108636-appb-000034
可选地,所述偏移以RBG个数表示。
Figure PCTCN2020108636-appb-000035
可选地,所述偏移以子载波个数表示。
Figure PCTCN2020108636-appb-000036
可选地,所述偏移以子信道(subchannel)个数表示。
Figure PCTCN2020108636-appb-000037
可选地,所述偏移以Hz表示。
Figure PCTCN2020108636-appb-000038
可选地,所述偏移以kHz表示。
Figure PCTCN2020108636-appb-000039
可选地,所述偏移以MHz表示。
Figure PCTCN2020108636-appb-000040
可选地,所述偏移以GHz表示。
○SL载波的SCS(例如用参数subcarrierSpacing-SL表示)。
○SL载波的载波带宽(例如用参数carrierBandwidth-SL表示)。其中,
◇可选地,所述载波带宽以RB个数表示。此时,可选地,所述参数carrierBandwidth-SL的取值可以是集合{1,2,...,275}中的一个值。
◇可选地,所述载波带宽以RBG个数表示。
◇可选地,所述载波带宽以子载波个数表示。
◇可选地,所述载波带宽以子信道个数表示。
◇可选地,以Hz、kHz、MHz或者GHz等为单位表示的所述载波带宽由所述参数carrierBandwidth-SL和所述参数 subcarrierSpacing-SL确定。
◆参考DL的配置信息。其中,可选地,所述“参考DL”对应一个参考小区的DL载波;可选地,所述“参考DL的配置信息”可以包含下面中的一项或多项:
○用于参考DL的A点的频率位置(记为
Figure PCTCN2020108636-appb-000041
)。其中,
◇可选地,所述“用于参考DL的A点”是在频域上定义的用于定义和/或配置和/或定位与参考DL有关的其他频率位置的一个参考点。
◇可选地,所述“用于参考DL的A点的频率位置”
Figure PCTCN2020108636-appb-000042
可以用一个绝对频率位置表示,例如用参数absoluteFrequencyPointA-DL表示。其中,
Figure PCTCN2020108636-appb-000043
可选地,所述参数absoluteFrequencyPointA-DL的类型可以是ARFCN-ValueNR。
◇可选地,所述“用于参考DL的A点的频率位置”
Figure PCTCN2020108636-appb-000044
可以用一个相对频率位置表示,例如用一个预定义的绝对频率位置到所述“用于参考DL的A点”之间的偏移表示,其中,可选地,所述预定义的绝对频率位置可以根据所述“用于参考DL的A点”所在的频带确定。
○参考SSB的频率位置(记为
Figure PCTCN2020108636-appb-000045
)。其中,
◇可选地,所述“参考SSB的频率位置”
Figure PCTCN2020108636-appb-000046
可以用一个绝对频率位置表示,例如用参数absoluteFrequencySSB-DL表示。其中,
Figure PCTCN2020108636-appb-000047
可选地,所述参数absoluteFrequencySSB-DL的类型可以是ARFCN-ValueNR。
Figure PCTCN2020108636-appb-000048
可选地,所述参数absoluteFrequencySSB-DL的单位可以是Hz,或者是kHz,或者是MHz,或者是GHz,或者其他单位。
◇可选地,所述“参考SSB的频率位置”
Figure PCTCN2020108636-appb-000049
可以 用一个相对频率位置表示,例如用参数offsetToSSB-DL表示。其中,
Figure PCTCN2020108636-appb-000050
可选地,所述参数offsetToSSB-DL可以表示一个预定义或预配置或配置的频率位置和所述“参考SSB的频率位置”
Figure PCTCN2020108636-appb-000051
之间的偏移,例如所述“用于参考DL的A点”和所述参考SSB的频率位置之间的偏移。其中,
>可选地,所述偏移以RB个数表示。此时,可选地,所述参数offsetToSSB-DL的取值可以是集合{0,1,...,2199}中的一个值。
>可选地,所述偏移以RBG个数表示。
>可选地,所述偏移以子载波个数表示。
>可选地,所述偏移以子信道个数表示。
>可选地,所述偏移以Hz表示。
>可选地,所述偏移以kHz表示。
>可选地,所述偏移以MHz表示。
>可选地,所述偏移以GHz表示。
>可选地,所述参数offsetToSSB-DL也可以替换为两个参数:offsetToSSB-RB-DL和offsetToSSB-SC-DL,其中offsetToSSB-RB-DL表示所述“用于参考DL的A点”和一个参考RB的最低编号的子载波之间的频率偏移,offsetToSSB-SC-DL表示所述参考RB的最低编号的子载波和所述参考SSB的频率位置之间的偏移。
○参考SSB的SCS(例如用参数ssbSubcarrierSpacing-DL表示)。
○参考SSB的周期(例如用参数ssb-periodicity-DL表示)。
其中,
◇可选地,所述周期的取值可以是集合{5,10,20,40,80,160}中的一个值。
◇可选地,所述周期的单位可以是毫秒。
◇可选地,所述周期的单位可以是秒。
其中,所述“参考SSB”可以是所述参考小区的CD-SSB(Cell Defining SSB,小区定义SSB),也可以不是所述参考小区的CD-SSB。
●可选地,所述“与SL操作有关的配置信息”的部分或全部可以包含在RRC消息或者PC5 RRC消息中。例如包含在MIB中,又如包含在SIB中,又如包含在SL MIB中,又如包含在PSBCH有效载荷(PSBCH payload)中,又如包含在SL-PreconfigurationIE中,又如包含在SL-V2X-Preconfiguration IE中。
●可选地,所述“与SL操作有关的配置信息”的部分或全部可以包含在MAC CE中。
此外,在步骤S103,执行一项或多项SL操作。
其中,
●可选地,在所述“与SL操作有关的配置信息”对应的一个或多个SL载波中的部分或全部上执行所述SL操作。其中,可选地,所述UE的高层协议(例如,RRC层之上的一个高层协议)配置所述UE在哪个或哪些频率上进行接收或传输;可选地,所述UE根据所配置的一个或多个频率分别确定相应的SL载波。
●可选地,对每一个需要执行所述SL操作的SL载波(记为
Figure PCTCN2020108636-appb-000052
),所述SL操作可以包括下面中的一项或多项:
◆接收(receive)SL控制信息(例如通过PSCCH信道,或者PSFCH信道)和/或数据信息(例如通过PSSCH信道)。
◆传输(transmit)SL控制信息(例如通过PSCCH信道,或者PSFCH信道)和/或数据信息(例如通过PSSCH信道)。
◆确定所述参考小区的DL同步信息和/或与小区测量有关的 信息。
◆通过下行同步和/或测量,和/或其他操作,确定所述参考小区是否满足一个或多个小区选择/重选准则。
◆确定SL链路的状态,例如确定SL链路是处于有覆盖(in-coverage)状态还是无覆盖(out-of-coverage)状态。具体地,例如,若所述参考小区满足一个或多个小区选择/重选准则,则确定所述SL链路为有覆盖状态,否则确定所述SL链路为无覆盖状态;又如,若所述参考小区满足一个或多个小区选择/重选准则,且检测到所述小区中的一个或多个用于指示支持5G SL的物理信号,则确定所述SL链路为有覆盖状态,否则确定所述SL链路为无覆盖状态;又如,若所述参考小区满足一个或多个小区选择/重选准则,且可以获取所述小区中与SL操作有关的一个或多个SIB,则确定所述SL链路为有覆盖状态,否则确定所述SL链路为无覆盖状态;又如,若所述参考小区满足一个或多个小区选择/重选准则,且检测到所述小区中的一个或多个用于指示支持5G SL的物理信号,且可以获取所述小区中与SL操作有关的一个或多个SIB,则确定所述SL链路为有覆盖状态,否则确定所述SL链路为无覆盖状态。
◆确定一个用作同步参考源的小区。例如,若所述参考小区是所述UE的PCell,则选择所述PCell作为同步参考源;又如,若所述参考小区是所述UE的一个SCell,则选择所述SCell作为同步参考源;又如,若SL链路处于无覆盖状态,且所述UE处于RRC_CONNECTED状态,则选择所述UE的PCell作为同步参考源;又如,若SL链路处于无覆盖状态,且所述UE处于RRC_IDLE状态,则选择所述UE的服务小区(serving cell)作为同步参考源。
◆确定一个用于SL通信(例如SL传输和/或SL接收)的小区。例如,若所述参考小区是所述UE的PCell,则选择所述PCell作为用于SL通信的小区;又如,若所述参考小区 是所述UE的一个SCell,则选择所述SCell作为用于SL通信的小区;又如,若SL链路处于无覆盖状态,且所述UE处于RRC_CONNECTED状态,则选择所述UE的PCell作为用于SL通信的小区;又如,若SL链路处于无覆盖状态,且所述UE处于RRC_IDLE状态,则选择所述UE的服务小区作为用于SL通信的小区。
可选地,在本发明的实施例一中,SL可以替换为V2X SL,或者SL V2X。
可选地,在本发明的实施例一中,RB可以是PRB(在适用的情况下)。
可选地,在本发明的实施例一中,RB可以是CRB(在适用的情况下)。
可选地,在本发明的实施例一中,RB可以是VRB(在适用的情况下)。
可选地,在本发明的实施例一中,对于任意两个频率位置X和Y,X和Y之间的偏移有时又可以称为Y到X的距离,或者X到Y的距离,或者Y和X之间的偏移。
可选地,在本发明的实施例一中,所述“用于SL的A点”和所述“用于参考DL的A点”可以对应同一个绝对频率位置(简称“A点”)。
可选地,在本发明的实施例一中,若所述“与SL操作有关的配置信息”包含在MIB中或者SIB中,则所述“与SL操作有关的配置信息”对应的一个或多个SL载波的参数(例如频率位置,又如载波带宽,又如SCS)不能根据广播所述MIB或者SIB的小区的UL载波或SUL载波的配置信息确定。可选地,此时所述“与SL操作有关的配置信息”可以称为“频率间(inter-frequency)SL配置信息”,或者“邻频(neighboring-frequency)SL配置信息”。
可选地,在本发明的实施例一中,对于FR1(frequency range 1,频率范围1),一个SCS特定的载波(例如SCS特定的SL载波,又如SCS特定的UL载波,又如SCS特定的SUL载波,又如SCS特定的DL载波)的SCS可以是15kHz,或者30kHz,或者60kHz。
可选地,在本发明的实施例一中,对于FR2(frequency range 2,频率范围2),一个SCS特定的载波(例如SCS特定的SL载波,又如SCS 特定的UL载波,又如SCS特定的SUL载波,又如SCS特定的DL载波)的SCS可以是60kHz,或者120kHz。
可选地,在本发明的实施例一中,若一个TDD小区配置了SUL载波,则所述小区的UL/DL载波有时候也可以称为non-SUL载波。
这样,本发明的实施例一通过在SL载波配置中指示下行同步信息,使得UE可以通过下行同步和/或测量等,确定所述下行同步信息对应的目标小区的状态,从而执行其他必要的、与所述目标小区相关的SL操作,例如确定SL链路的覆盖状态,又如确定所述目标小区是否可以作为同步参考源,又如确定所述目标小区是否可以用于SL通信,等等。
[实施例二]
下面结合图4来说明本发明的实施例二的由用户设备执行的方法。
图4是示出了根据本发明的实施例二的由用户设备执行的方法的流程图。
如图4所示,在本发明的实施例二中,用户设备UE执行的步骤包括:步骤S201和步骤S203。
具体地,在步骤S201,获取小区中与SL操作有关的配置信息。其中,
●可选地,所述“与SL操作有关的配置信息”的部分或全部可以包含在所述小区的MIB中。
●可选地,所述“与SL操作有关的配置信息”的部分或全部可以包含在所述小区的一个SIB中,或者分别包含在所述小区的多个不同的SIB中。
●可选地,所述“与SL操作有关的配置信息”可以包含一个SL载波的配置信息,也可以包含两个SL载波的配置信息。其中,
◆可选地,所述一个或两个SL载波中的每一个(记为C SL)的配置信息可以包含下面中的一项或多项:
○SL载波所关联的载波的信息。其中,
◇可选地,所述“SL载波所关联的载波”可以是所 述小区的UL载波,也可以是所述小区的SUL载波(在适用的情况下)。
◇可选地,只有当所述小区配置了SUL载波时,所述SL载波C SL的配置信息才包含所述“SL载波所关联的载波的信息”。
◇可选地,若所述“SL载波所关联的载波的信息”不存在,则所述“SL载波所关联的载波”是所述小区的UL载波。
◇可选地,所述“SL载波所关联的载波的信息”可以包含下面中的一项或多项:
Figure PCTCN2020108636-appb-000053
UL/SUL指示。例如,所述“UL/SUL指示”可以用于指示所述“SL载波所关联的载波”是一个UL载波还是一个SUL载波。其中,
>可选地,只有当所述小区配置了SUL载波时,所述“SL载波所关联的载波的信息”才包含所述“UL/SUL指示”。
Figure PCTCN2020108636-appb-000054
SCS特定的载波(记为C XL)的索引。例如,若所述“SL载波所关联的载波”是一个UL载波,则所述“SCS特定的载波的索引”是所述小区的SCS特定的UL载波列表(例如通过所述小区的SIB1中的servingCellConfigCommon中的uplinkConfigCommon中的frequencyInfoUL中的scs-SpecificCarrierList配置的载波列表)的索引,例如索引值为0表示C XL是所述SCS特定的UL载波列表中的第一个载波。又如,若所述“SL载波所关联的载波”是一个SUL载波,则所述“SCS特定的载波的索引”是所述小区的SCS特定的SUL载波列表(例如通过所述小区的SIB1中的 servingCellConfigCommon中的supplementaryUplink中的frequencyInfoUL中的scs-SpecificCarrierList配置的载波列表)的索引,例如索引值为0表示C XL是所述SCS特定的SUL载波列表中的第一个载波。
Figure PCTCN2020108636-appb-000055
SL载波所关联的载波的SCS。
○SL载波的SCS。其中,
◇可选地,所述“SL载波的SCS”可以不显式指示,而是由所述SL载波C SL上配置的一个SL BWP的SCS确定。
○SL载波的载波带宽。
○SL载波的频率位置。
○SL载波的其他配置信息,例如同步配置信息,又如SLBWP配置信息,又如每个SL BWP上的一个或多个接收和/或传输资源池的配置信息,等等。
此外,在步骤S203,确定所述“与SL操作有关的配置信息”对应的一个或两个SL载波的一个或多个参数。
例如,对每个所述SL载波C SL,执行下面中的一项或多项:
●确定所述SL载波C SL所关联的载波是一个UL载波还是一个SUL载波。
例如,根据所述“UL/SUL指示”确定所述SL载波C SL所关联的载波是一个UL载波还是一个SUL载波。
又如,若所述小区配置了SUL载波,则根据所述“UL/SUL指示”确定所述SL载波C SL所关联的载波是一个UL载波还是一个SUL载波。
又如,若所述小区未配置SUL载波,则所述SL载波C SL所关联的载波是一个UL载波。
又如,若所述“SL载波所关联的载波的信息”不包含所述“UL/SUL指示”,则所述SL载波C SL所关联的载波是一个UL载波。
●确定所述SL载波C SL所关联的SCS特定的载波C XL
例如,若所述SL载波C SL所关联的载波是一个UL载波,则所述C XL是所述“SCS特定的载波的索引”对应的所述小区的SCS特定的UL载波列表(例如通过所述小区的SIB1中的servingCellConfigCommon中的uplinkConfigCommon中的frequencyInfoUL中的scs-SpecificCarrierList配置的载波列表)中的一个载波。例如,若所述索引的取值为0,则所述C XL是所述SCS特定的UL载波列表中的第一个载波。
又如,若所述SL载波C SL所关联的载波是一个UL载波,则所述C XL是所述小区的SCS特定的UL载波列表(例如通过所述小区的SIB1中的servingCellConfigCommon中的uplinkConfigCommon中的frequencyInfoUL中的scs-SpecificCarrierList配置的载波列表)中SCS(例如通过参数subcarrierSpacing配置)等于所述“SL载波的SCS”的载波。例如若所述“SL载波的SCS”为15kHz,则所述C XL是所述SCS特定的UL载波列表中SCS为15kHz的载波。
又如,若所述SL载波C SL所关联的载波是一个UL载波,则所述C XL是所述小区的SCS特定的UL载波列表(例如通过所述小区的SIB1中的servingCellConfigCommon中的uplinkConfigCommon中的frequencyInfoUL中的scs-SpecificCarrierList配置的载波列表)中SCS(例如通过参数subcarrierSpacing配置)等于所述“SL载波所关联的载波的SCS”的载波。例如若所述“SL载波所关联的载波的SCS”为15kHz,则所述C XL是所述SCS特定的UL载波列表中SCS为15kHz的载波。
又如,若所述SL载波C SL所关联的载波是一个SUL载波,则所述C XL是所述“SCS特定的载波的索引”对应的所述小区的SCS特定的SUL载波列表(例如通过所述小区的SIB1中的servingCellConfigCommon中的supplementaryUplink中的frequencyInfoUL中的scs-SpecificCarrierList配置的载波列表)中的一个载波。例如,若所述索引的取值为0,则所述C XL是所述 SCS特定的SUL载波列表中的第一个载波。
又如,若所述C XL是一个SUL载波,则所述C XL是所述小区的SCS特定的SUL载波列表(例如通过所述小区的SIB1中的servingCellConfigCommon中的supplementaryUplink中的frequencyInfoUL中的scs-SpecificCarrierList配置的载波列表)中SCS(例如通过参数subcarrierSpacing配置)等于所述“SL载波的SCS”的载波。例如若所述“SL载波的SCS”为15kHz,则所述C XL是所述SCS特定的SUL载波列表中SCS为15kHz的载波。
又如,若所述SL载波C SL所关联的载波是一个SUL载波,则所述C XL是所述小区的SCS特定的SUL载波列表(例如通过所述小区的SIB1中的servingCellConfigCommon中的supplementaryUplink中的frequencyInfoUL中的scs-SpecificCarrierList配置的载波列表)中SCS(例如通过参数subcarrierSpacing配置)等于所述“SL载波所关联的载波的SCS”的载波。例如若所述“SL载波所关联的载波的SCS”为15kHz,则所述C XL是所述SCS特定的SUL载波列表中SCS为15kHz的载波。
●确定所述SL载波C SL的一个或多个参数。
例如,所述SL载波C SL的频率位置等于所述C XL的频率位置。
又如,所述SL载波C SL的频率位置等于所述“SL载波的频率位置”。
又如,所述SL载波C SL的SCS等于所述C XL的SCS。
又如,所述C SL的SCS等于所述“SL载波的SCS”。
又如,所述C SL的载波带宽等于所述C XL的载波带宽。
又如,所述C SL的载波带宽等于所述“SL载波的载波带宽”。
可选地,在本发明的实施例二中,SL可以替换为V2X SL,或者SL V2X。
可选地,在本发明的实施例二中,所述小区可以是所述UE的服务小 区(serving cell),也可以不是所述UE的服务小区。
可选地,在本发明的实施例二中,所述MIB或者所述SIB中可以额外地包含一个或多个其他SL载波的配置信息。其中,可选地,所述“一个或多个其他SL载波”的参数(例如频率位置,又如载波带宽,又如SCS)不能根据所述小区的UL载波或SUL载波的配置信息确定。可选地,所述“一个或多个其他SL载波的配置信息”可以称为“频率间(inter-frequency)SL配置信息”,或者“邻频(neighboring-frequency)SL配置信息”。
可选地,在本发明的实施例二中,对于FR1(frequency range 1,频率范围1),一个SCS特定的载波(例如SCS特定的SL载波,又如SCS特定的UL载波,又如SCS特定的SUL载波,又如SCS特定的DL载波)的SCS可以是15kHz,或者30kHz,或者60kHz。
可选地,在本发明的实施例二中,对于FR2(frequency range 2,频率范围2),一个SCS特定的载波(例如SCS特定的SL载波,又如SCS特定的UL载波,又如SCS特定的SUL载波,又如SCS特定的DL载波)的SCS可以是60kHz,或者120kHz。
这样,本发明的实施例二通过在系统信息中指示每个配置的SL载波是关联到相应小区的UL载波还是SUL载波,使得SL载波可以和UL载波或者SUL载波共享部分或者全部参数,进而使得同时进行SL操作和传统的Uu口的操作成为可能。
[实施例三]
下面结合图5来说明本发明的实施例三的由用户设备执行的方法。
图5是示出了根据本发明的实施例三的由用户设备执行的方法的流程图。
如图5所示,在本发明的实施例三中,用户设备UE执行的步骤包括:步骤S301和步骤S303。
具体地,在步骤S301,获取小区中与SL操作有关的配置信息。其中,
●可选地,所述“与SL操作有关的配置信息”的部分或全部可以包含在所述小区的MIB中。
●可选地,所述“与SL操作有关的配置信息”的部分或全部可以包含在所述小区的一个SIB中,或者分别包含在所述小区的多个不同的SIB中。
●可选地,所述“与SL操作有关的配置信息”可以包含下面中的一项或多项(在适用的情况下):
◆UL载波所关联的SL载波(记为
Figure PCTCN2020108636-appb-000056
)的配置信息。其中,
○可选地,所述UL载波可以是所述小区的一个SCS特定的UL载波(记为C UL)。
○可选地,所述“UL载波所关联的SL载波的配置信息”可以包含下面中的一项或多项:
◇SCS特定的UL载波的索引。例如,所述“SCS特定的UL载波的索引”是所述小区的SCS特定的UL载波列表(例如通过所述小区的SIB1中的servingCellConfigCommon中的uplinkConfigCommon中的frequencyInfoUL中的scs-SpecificCarrierList配置的载波列表)的索引,例如索引值为0表示C UL对应所述SCS特定的UL载波列表中的第一个载波。
◇SCS特定的UL载波的SCS。
◇SL载波的SCS。其中,
Figure PCTCN2020108636-appb-000057
可选地,所述“SL载波的SCS”可以不显式指示,而是由所述SL载波
Figure PCTCN2020108636-appb-000058
上配置的一个SL BWP的SCS确定。
◇SL载波的载波带宽。
◇SL载波的频率位置。
◇SL载波的其他配置信息,例如同步配置信息,又如SL BWP配置信息,又如每个SL BWP上的一个或多个接收和/或传输资源池的配置信息,等等。
◆SUL载波所关联的SL载波(记为
Figure PCTCN2020108636-appb-000059
)的配置信息。其中,
○可选地,所述SUL载波可以是所述小区的一个SCS特定的SUL载波(记为C SUL)。
○可选地,只有当所述小区配置了SUL载波时,所述“与SL操作有关的配置信息”才包含所述“SUL载波所关联的SL载波的配置信息”。
○可选地,所述“SUL载波所关联的SL载波的配置信息”可以包含下面中的一项或多项:
◇SCS特定的SUL载波的索引。例如,所述“SCS特定的SUL载波的索引”是所述小区的SCS特定的SUL载波列表(例如通过所述小区的SIB1中的servingCellConfigCommon中的supplementaryUplink中的frequencyInfoUL中的scs-SpecificCarrierList配置的载波列表)的索引,例如索引值为0表示C SUL对应所述SCS特定的SUL载波列表中的第一个载波。
◇SCS特定的SUL载波的SCS。
◇SL载波的SCS。其中,
Figure PCTCN2020108636-appb-000060
可选地,所述“SL载波的SCS”可以不显式指示,而是由所述SL载波
Figure PCTCN2020108636-appb-000061
上配置的一个SL BWP的SCS确定。
◇SL载波的载波带宽。
◇SL载波的频率位置。
◇SL载波的其他配置信息,例如同步配置信息,又如SL BWP配置信息,又如每个SL BWP上的一个或多个接收和/或传输资源池的配置信息,等等。
此外,在步骤S303,确定所述小区的一个或两个SL载波的一个或多个参数。
例如,执行下面中的一项或多项:
●确定所述C UL
例如,所述C UL是所述“SCS特定的UL载波的索引”对应的所述小区的SCS特定的UL载波列表(例如通过所述小区的SIB1中的servingCellConfigCommon中的uplinkConfigCommon中的frequencyInfoUL中的scs-SpecificCarrierList配置的载波列表)中的一个载波。例如,若所述索引的取值为0,则所述C UL是所述SCS特定的UL载波列表中的第一个载波。
又如,所述C UL是所述小区的SCS特定的UL载波列表(例如通过所述小区的SIB1中的servingCellConfigCommon中的uplinkConfigCommon中的frequencyInfoUL中的scs-SoecificCarrierList配置的载波列表)中SCS(例如通过参数subcarrierSpacing配置)等于所述“SL载波的SCS”的载波。例如若所述“SL载波的SCS”为15kHz,则所述C UL是所述SCS特定的UL载波列表中SCS为15kHz的载波。
又如,所述C UL是所述小区的SCS特定的UL载波列表(例如通过所述小区的SIB1中的servingCellConfigCommon中的uplinkConfigCommon中的frequencyInfoUL中的scs-SoecificCarrierList配置的载波列表)中SCS(例如通过参数subcarrierSpacing配置)等于所述“UL载波的SCS”的载波。例如若所述“UL载波的SCS”为15kHz,则所述C UL是所述SCS特定的UL载波列表中SCS为15kHz的载波。
●确定所述
Figure PCTCN2020108636-appb-000062
的一个或多个参数。
例如,所述
Figure PCTCN2020108636-appb-000063
的频率位置等于所述C UL的频率位置。
例如,所述
Figure PCTCN2020108636-appb-000064
的频率位置等于所述“SL载波的频率位置”。
又如,所述
Figure PCTCN2020108636-appb-000065
的SCS等于所述C UL的SCS。
又如,所述
Figure PCTCN2020108636-appb-000066
的SCS等于所述“SL载波的SCS”。
又如,所述
Figure PCTCN2020108636-appb-000067
的载波带宽等于所述C UL的载波带宽。
又如,所述
Figure PCTCN2020108636-appb-000068
的载波带宽等于所述“SL载波的载波带宽”。
●确定所述C SUL(在适用的情况下,例如在所述小区配置了SUL载波的情况下)。
例如,所述C SUL是所述“SCS特定的UL载波的索引”对应的所 述小区的SCS特定的SUL载波列表(例如通过所述小区的SIB1中的servingCellConfigCommon中的supplementaryUplink中的frequencyInfoUL中的scs-SpecificCarrierList配置的载波列表)中的一个载波。例如,若所述索引的取值为0,则所述C SUL是所述SCS特定的SUL载波列表中的第一个载波。
又如,所述C SUL是所述小区的SCS特定的SUL载波列表(例如通过所述小区的SIB1中的servingCellConfigCommon中的supplementaryUplink中的frequencyInfoUL中的scs-SpecificCarrierList配置的载波列表)中SCS(例如通过参数subcarrierSpacing配置)等于所述“SL载波的SCS”的载波。例如若所述“SL载波的SCS”为15kHz,则所述C SUL是所述SCS特定的SUL载波列表中SCS为15kHz的载波。
又如,所述C SUL是所述小区的SCS特定的SUL载波列表(例如通过所述小区的SIB1中的servingCellConfigCommon中的supplementaryUplink中的frequencyInfoUL中的scs-SpecificCarrierList配置的载波列表)中SCS(例如通过参数subcarrierSpacing配置)等于所述“SUL载波的SCS”的载波。例如若所述“SUL载波的SCS”为15kHz,则所述C SUL是所述SCS特定的SUL载波列表中SCS为15kHz的载波。
●确定所述
Figure PCTCN2020108636-appb-000069
的一个或多个参数(在适用的情况下,例如在所述小区配置了SUL载波的情况下)。
例如,所述
Figure PCTCN2020108636-appb-000070
的频率位置等于所述C SUL的频率位置。
例如,所述
Figure PCTCN2020108636-appb-000071
的频率位置等于所述“SL载波的频率位置”。
又如,所述
Figure PCTCN2020108636-appb-000072
的SCS等于所述C SUL的SCS。
又如,所述
Figure PCTCN2020108636-appb-000073
的SCS等于所述“SL载波的SCS”。
又如,所述
Figure PCTCN2020108636-appb-000074
的载波带宽等于所述C SUL的载波带宽。
又如,所述
Figure PCTCN2020108636-appb-000075
的载波带宽等于所述“SL载波的载波带宽”。
可选地,在本发明的实施例三中,SL可以替换为V2X SL,或者SL V2X。
可选地,在本发明的实施例三中,所述小区可以是所述UE的服务小区(serving cell),也可以不是所述UE的服务小区。
可选地,在本发明的实施例三中,所述MIB或者所述SIB中可以额外地包含一个或多个其他SL载波的配置信息。其中,可选地,所述“一个或多个其他SL载波”的参数(例如频率位置,又如载波带宽,又如SCS)不能根据所述小区的UL载波或SUL载波的配置信息确定。可选地,所述“一个或多个其他SL载波的配置信息”可以称为“频率间(inter-frequency)SL配置信息”,或者“邻频(neighboring-frequency)SL配置信息”。
可选地,在本发明的实施例三中,对于FR1(frequency range 1,频率范围1),一个SCS特定的载波(例如SCS特定的SL载波,又如SCS特定的UL载波,又如SCS特定的SUL载波,又如SCS特定的DL载波)的SCS可以是15kHz,或者30kHz,或者60kHz。
可选地,在本发明的实施例三中,对于FR2(frequency range 2,频率范围2),一个SCS特定的载波(例如SCS特定的SL载波,又如SCS特定的UL载波,又如SCS特定的SUL载波,又如SCS特定的DL载波)的SCS可以是60kHz,或者120kHz。
这样,本发明的实施例三通过在系统信息中指示相应小区的UL载波和/或SUL载波所分别关联的SL载波,使得SL载波可以和UL载波或者SUL载波共享部分或者全部参数,进而使得同时进行SL操作和传统的Uu口的操作成为可能。
[实施例四]
下面结合图6来说明本发明的实施例四的由用户设备执行的方法。
图6是示出了根据本发明的实施例四的由用户设备执行的方法的流程图。
如图6所示,在本发明的实施例四中,用户设备UE执行的步骤包括:步骤S401和步骤S403。
具体地,在步骤S401,设置SL MIB的内容。其中,
●可选地,所述“SL MIB的内容”对应一个SL载波。其中,
◆可选地,所述SL载波和一个小区的一个UL载波或一个SUL载波关联(例如用本发明的实施例二所述的方法关联,又如用本发明的实施例三所述的方法关联,又如用其他方法关联)。
●可选地,所述“SL MIB的内容”包含与TDD有关的配置信息。
其中,
◆可选地,所述“与TDD有关的配置信息”可以指示所述SL载波的时域配置信息。例如,根据所述“与TDD有关的配置信息”,可以确定所述SL载波上任意一个给定的符号或符号集合(例如一个时隙中所有的符号,又如一个子帧中所有的符号,又如一个帧中所有的符号,又如一个自定义的符号集合)中所有符号的属性。例如,所述符号或符号集合中所有的符号都是上行(UL)符号,或者下行(DL)符号,或者直行(SL)符号,或者灵活符号。
◆可选地,所述“与TDD有关的配置信息”也可以是与时隙格式(或者子帧格式,或者帧格式)有关的配置信息。
◆可选地,所述“与TDD有关的配置信息”的一个特殊取值(记为noneTDD。例如,所有比特均为0所对应的值)指示下面中的一项或多项(在适用的情况下按“与”或者“或”任意组合):
○所述SL载波是一个FDD频带上的载波。
○所述SL载波是一个FDD小区中的载波。
○所述SL载波是一个UL载波。
○所述SL载波是一个SUL载波。
○所述SL载波是一个专门用于SL(例如V2X SL)操作的载波。
○所述SL载波是一个专门用于SL(例如V2X SL)的频带上的载波。
○所述SL载波上没有DL符号。
○所述SL载波上的所有符号都是SL符号。
○所述SL载波上的符号包括SL符号和UL符号。
○所述SL载波上的符号包括SL符号和灵活符号。
○所述SL载波上的符号包括SL符号、UL符号和灵活符号。
◆可选地,若下面中的一项或多项成立,则将所述“与TDD有关的配置信息”的值设置为noneTDD:
○所述SL载波对应的SL链路的状态是“有覆盖”。其中,可选地,所述SL链路的状态可以根据本发明的实施例一所述的方法确定,也可以根据其他方法确定。
○所述小区的系统信息(例如SIB1)中不包含tdd-UL-DL-ConfigurationCommon参数。
○所述UE的PCell的系统信息(例如SIB1)中不包含tdd-UL-DL-ConfigurationCommon参数。
○所述SL载波和所述小区的一个SUL载波关联。例如,所述SL载波的一个或多个参数(例如频率位置,又如SCS,又如载波带宽)和所述小区的一个SUL载波相同。
●可选地,所述“SL MIB的内容”还包含其他配置信息,例如SL链路状态,又如所述SL载波的带宽,又如所述SL载波上的SL BWP的配置信息,又如保留比特,等等。
此外,在步骤S403,在所述SL载波上传输所述SL MIB。
可选地,在本发明的实施例四中,SL可以替换为V2X SL,或者SL V2X。
可选地,在本发明的实施例四中,所述小区可以是所述UE的服务小区(serving cell),也可以不是所述UE的服务小区。
这样,本发明的实施例四根据SL载波和相应的小区中UL或者SUL 载波的关联设置SL MIB的内容,使得所述小区的TDD上下行配置信息只在必要的时候才写入到SL MIB中,确保了接收SL MIB的UE不会错误地解读SL MIB的内容。
[实施例五]
下面结合图7来说明本发明的实施例五的由用户设备执行的方法。
图7是示出了根据本发明的实施例五的由用户设备执行的方法的流程图。
如图7所示,在本发明的实施例五中,用户设备UE执行的步骤包括:步骤S501和步骤S503。
具体地,在步骤S501,获取SL SSB的时域信息。其中,
●可选地,所述“SL SSB的时域信息”的部分或全部可以包含在所述SL SSB所包含的PSBCH的有效载荷中,或者包含在所述PSBCH所携带的SL MIB中,或者由所述PSBCH的传输参数(例如DMRS序列)指示。
●可选地,所述“SL SSB的时域信息”包含下面中的一项或多项:
◆SL SSB在DFN(Direct Frame Number,直接帧号)周期内的编号(记为n SLSSB)。其中,可选地,所述“SL SSB在DFN周期内的编号”n SLSSB的最小值等于零;可选地,所述“SL SSB在DFN周期内的编号”n SLSSB的最大值等于DFN周期内的SL SSB的总数减一。
例如,所述“SL SSB在DFN周期内的编号”n SLSSB可以取集合{0,1,...,N SLSSB-1}中的一个值。又如,所述“SL SSB在DFN周期内的编号”n SLSSB可以取集合
Figure PCTCN2020108636-appb-000076
Figure PCTCN2020108636-appb-000077
中的一个值。又如,所述“SL SSB在DFN周期内的编号”n SLSSB可以取集合
Figure PCTCN2020108636-appb-000078
中的一个值。又如,所述“SL SSB在DFN周期内的编号”n SLSSB可以取集合
Figure PCTCN2020108636-appb-000079
中的一个值。
◆SL SSB周期在DFN周期内的编号(记为n SLSSB,DFN)。其中,可选地,所述“SL SSB周期在DFN周期内的编号”n SLSSB,DFN的最小值等于零;可选地,所述“SL SSB周期在DFN周期内的编号”n SLSSB,DFN的最大值等于DFN周期内的SL SSB周期的总数减一。
例如,所述“SL SSB周期在DFN周期内的编号”n SLSSB,DFN可以取集合
Figure PCTCN2020108636-appb-000080
中的一个值。又如,所述“SL SSB周期在DFN周期内的编号”n SLSSB,DFN可以取集合
Figure PCTCN2020108636-appb-000081
中的一个值。又如,所述“SL SSB周期在DFN周期内的编号”n SLSSB,DFN可以取集合
Figure PCTCN2020108636-appb-000082
中的一个值。
◆SL SSB在SL SSB周期内的编号(记为n SLSSB,i)。其中,可选地,所述“SL SSB在SL SSB周期内的编号”n SLSSB,i的最小值等于零;可选地,所述“SL SSB在SL SSB周期内的编号”n SLSSB,i的最大值等于SL SSB周期内的SL SSB总数(记为N SLSSB,i)减一,其中,可选地,所述“SL SSB周期内的SL SSB总数”N SLSSB,i可以取一个预定义的值(例如1,或者2,或者3,或者4,或者5,或者6,或者7,或者8,或者
Figure PCTCN2020108636-appb-000083
或者
Figure PCTCN2020108636-appb-000084
或者
Figure PCTCN2020108636-appb-000085
也可以取一个预配置的值,也可以取一个通过RRC消息或者PC5 RRC消息配置的值。
其中,N SLSSB是在DFN周期内的SL SSB的总数,T DFN是DFN周期,T SLSSB是SL SSB周期。可选地,所述“DFN周期”T DFN、所 述“SL SSB周期”T SLSSB以及所述“在DFN周期内的SL SSB的总数”N SLSSB中的任意一个可以取一个预定义的值,也可以取一个预配置的值,也可以取一个通过RRC消息或者PC5 RRC消息配置的值。例如,所述“DFN周期”T DFN等于10240毫秒(或者说1024帧)。又如,所述“SL SSB周期”T SLSSB等于160毫秒(或者说16帧)。又如,所述“在DFN周期内的SL SSB的总数”N SLSSB等于64。
此外,在步骤S503,确定所述SL SSB的时域位置。
例如,所述SL SSB所在的DFN的编号等于(n SLSSB+C 1)·T SLSSB+C 2。其中,C 1和C 2中的任意一个可以取一个预定义的值,也可以取一个预配置的值,也可以取一个通过RRC消息或者PC5 RRC消息配置的值。例如,C 1=0。又如,C 2=0。
又如,所述SL SSB所在的DFN的编号等于(n SLSSB,DFN+C 3)·T SLSSB+F(n SLSSB,i)+C 4。其中,
●C 3和C 4中的任意一个可以取一个预定义的值,也可以取一个预配置的值,也可以取一个通过RRC消息或者PC5 RRC消息配置的值。例如,C 3=0。又如,C 4=0。
●F(·)可以是一个预配置的映射关系,也可以是一个通过RRC消息或者PC5 RRC消息配置的映射关系;例如,所述“SL SSB周期”T SLSSB等于160毫秒(或者说16帧),所述“SL SSB在SL SSB周期内的编号”n SLSSB,i的取值集合为{0,1,2,3},所述“SL SSB周期内的SL SSB总数”N SLSSB,i等于4,所述F(·)配置为F(0)=28,F(1)=56,F(2)=84,F(3)=112。
可选地,所述“SL SSB周期在DFN周期内的编号”n SLSSB,DFN和所述“SL SSB在SL SSB周期内的编号”n SLSSB,i可以不包含在所述“SL SSB的时域信息”中,而由所述“SL SSB在DFN周期内的编号”n SLSSB指示。例如,n SLSSB,DFN=n SLSSB/N SLSSB,i。又如,n SLSSB,i=n SLSSB mod N SLSSB,i
可选地,所述“SL SSB在DFN周期内的编号”n SLSSB可以不包含在所述“SL SSB的时域信息”中,而由所述“SL SSB周期在DFN周期内的编号”n SLSSB,DFN和所述“SL SSB在SL SSB周期内的编号”n SLSSB,i指 示。例如,n SLSSB=n SLSSB,DFN·N SLSSB,i+n SLSSB,i
可选地,在本发明的实施例五中,DFN可以替换为SFN。
可选地,在本发明的实施例五中,直接帧可以替换为系统帧。
可选地,在本发明的实施例五中,所述SL SSB也可以称为候选(candidate)SL SSB,或者SL SSB候选。可选地,在一个候选SL SSB所对应的时域和/或频域资源上,可能存在SL SSB传输,也可能不存在SL SSB传输。可选地,在本发明的实施例五中,在一个候选SL SSB所对应的时域和/或频域资源上,可能存在一个或多个UE传输的SL SSB。
这样,本发明的实施例五通过利用SSB在DFN周期内出现的规律,在SL MIB和/或PSBCH有效载荷和/或PSBCH的传输参数中指示相应的SSB在DFN周期内的信息,使得UE可以从所述SSB在DFN周期内的信息中推导出DFN,而不需要直接在SL MIB中指示完整的DFN信息(例如取值0到1023,需要10比特),提高了时域信息指示的效率。
[变形例]
下面,利用图8来说明作为一种变形例的可执行本发明上面所详细描述的用户设备执行的方法的用户设备。
图8是表示本发明所涉及的用户设备UE的框图。
如图8所示,该用户设备UE60包括处理器601和存储器602。处理器601例如可以包括微处理器、微控制器、嵌入式处理器等。存储器602例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器602上存储有程序指令。该指令在由处理器601运行时,可以执行本发明详细描述的由用户设备执行的上述方法。
上文已经结合优选实施例对本发明的方法和涉及的设备进行了描述。 本领域技术人员可以理解,上面示出的方法仅是示例性的,而且以上说明的各实施例在不发生矛盾的情况下能够相互组合。本发明的方法并不局限于上面示出的步骤和顺序。上面示出的网络节点和用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、MME、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本发明并不局限于作为这些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
应该理解,本发明的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组件可以通过多种器件来实现,这些器件包括但不限于:模拟电路器件、数字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
在本申请中,“基站”可以指具有一定发射功率和一定覆盖面积的移动通信数据和控制交换中心,包括资源分配调度、数据接收发送等功能。“用户设备”可以指用户移动终端,例如包括移动电话、笔记本等可以与基站或者微基站进行无线通信的终端设备。
此外,这里所公开的本发明的实施例可以在计算机程序产品上实现。更具体地,该计算机程序产品是如下的一种产品:具有计算机可读介质,计算机可读介质上编码有计算机程序逻辑,当在计算设备上执行时,该计算机程序逻辑提供相关的操作以实现本发明的上述技术方案。当在计算系统的至少一个处理器上执行时,计算机程序逻辑使得处理器执行本发明实施例所述的操作(方法)。本发明的这种设置典型地提供为设置或编码在例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本发明实施例所描述的技术方案。
此外,上述每个实施例中所使用的基站设备和终端设备的每个功能模块或各个特征可以由电路实现或执行,所述电路通常为一个或多个集成电 路。设计用于执行本说明书中所描述的各个功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)或通用集成电路、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、或分立的硬件组件、或以上器件的任意组合。通用处理器可以是微处理器,或者所述处理器可以是现有的处理器、控制器、微控制器或状态机。上述通用处理器或每个电路可以由数字电路配置,或者可以由逻辑电路配置。此外,当由于半导体技术的进步,出现了能够替代目前的集成电路的先进技术时,本发明也可以使用利用该先进技术得到的集成电路。
尽管以上已经结合本发明的优选实施例示出了本发明,但是本领域的技术人员将会理解,在不脱离本发明的精神和范围的情况下,可以对本发明进行各种修改、替换和改变。因此,本发明不应由上述实施例来限定,而应由所附权利要求及其等价物来限定。

Claims (10)

  1. 一种由用户设备执行的方法,其特征在于,包括:
    获取与直行操作有关的配置信息的步骤;以及
    根据所述直行操作有关的配置信息来执行一项或多项直行操作。
  2. 根据权利要求1所述的用户设备执行的方法,其特征在于,
    所述与直行操作有关的配置信息包含直行载波的配置信息、参考下行的配置信息。
  3. 根据权利要求1所述的用户设备执行的方法,其特征在于,
    所述直行操作包括以下操作中的至少一项:
    确定所述参考下行的配置信息所对应的参考小区;
    确定所述参考小区的下行同步信息和/或与小区测量有关的信息;
    确定一个用作同步参考源的小区;
    确定一个用于直行通信的小区。
  4. 一种用户设备执行的方法,其特征在于,包括:
    获取直行小区的与直行操作有关的配置信息的步骤;以及
    确定所述直行小区的一个或两个直行载波的一个或多个参数。
  5. 根据权利要求4所述的用户设备执行的方法,其特征在于,
    所述与直行操作有关的配置信息包含一个直行载波的配置信息或包含两个直行载波的配置信息。
  6. 根据权利要求5所述的用户设备执行的方法,其特征在于,
    对每个所述直行载波即C SL,执行以下操作中的至少一项:
    确定直行载波C SL所关联的载波是一个上行载波还是一个补充上行载波;
    确定所述C SL所关联的子载波间隔特定的载波C XL
    确定所述C SL的一个或多个参数。
  7. 根据权利要求4所述的用户设备执行的方法,其特征在于,
    所述与直行操作有关的配置信息包含以下的至少一项:
    上行载波所关联的直行载波即
    Figure PCTCN2020108636-appb-100001
    的配置信息;
    补充上行载波所关联的直行载波即
    Figure PCTCN2020108636-appb-100002
    的配置信息。
  8. 根据权利要求7所述的用户设备执行的方法,其特征在于,
    执行以下操作中的至少一项:
    在所述直行小区配置了上行载波的情况下,确定所述直行小区的一个上行载波即C UL所对应的子载波间隔特定的载波;
    确定所述
    Figure PCTCN2020108636-appb-100003
    的一个或多个参数;
    在所述直行小区配置了补充上行载波的情况下,确定所述直行小区的一个补充上行载波即C SUL所对应的子载波间隔特定的载波;
    确定所述
    Figure PCTCN2020108636-appb-100004
    的一个或多个参数。
  9. 根据权利要求1~8中任一项所述的用户设备执行的方法,其特征在于,
    所述与直行操作有关的配置信息的部分或全部,包含在所述直行小区的主信息块中、或者包含在所述直行小区的一个或多个系统信息块中。
  10. 一种用户设备,其特征在于,包括:
    处理器;以及
    存储器,存储有指令,其中,所述指令在由所述处理器运行时执行所述权利要求1~9中任一项所述的方法。
PCT/CN2020/108636 2019-08-12 2020-08-12 由用户设备执行的方法以及用户设备 WO2021027833A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910742113.1A CN112398602A (zh) 2019-08-12 2019-08-12 由用户设备执行的方法以及用户设备
CN201910742113.1 2019-08-12

Publications (1)

Publication Number Publication Date
WO2021027833A1 true WO2021027833A1 (zh) 2021-02-18

Family

ID=74570517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108636 WO2021027833A1 (zh) 2019-08-12 2020-08-12 由用户设备执行的方法以及用户设备

Country Status (2)

Country Link
CN (1) CN112398602A (zh)
WO (1) WO2021027833A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013068788A1 (en) * 2011-11-10 2013-05-16 Nokia Corporation Methods and apparatuses for facilitating use of carrier aggregation for device-to-device communications
CN108141847A (zh) * 2015-08-07 2018-06-08 夏普株式会社 为无线侧链路直传通信分配资源
CN109451586A (zh) * 2018-05-11 2019-03-08 华为技术有限公司 通信方法和通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013068788A1 (en) * 2011-11-10 2013-05-16 Nokia Corporation Methods and apparatuses for facilitating use of carrier aggregation for device-to-device communications
CN108141847A (zh) * 2015-08-07 2018-06-08 夏普株式会社 为无线侧链路直传通信分配资源
CN109451586A (zh) * 2018-05-11 2019-03-08 华为技术有限公司 通信方法和通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Considerations on Physical Layer aspects of NR V2X", 3GPP DRAFT; R1-1905711_CONSIDERATIONS ON PHYSICAL LAYER ASPECTS OF NR V2X, vol. RAN WG1, 15 April 2019 (2019-04-15), Xian, China, pages 1 - 10, XP051707769 *

Also Published As

Publication number Publication date
CN112398602A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
WO2021008587A1 (zh) 由用户设备执行的方法以及用户设备
WO2020221241A1 (zh) 由用户设备执行的方法以及用户设备
WO2020135417A1 (zh) 由用户设备执行的方法以及用户设备
WO2020125679A1 (zh) 由用户设备执行的方法以及用户设备
WO2021197204A1 (zh) 由用户设备执行的方法以及用户设备
WO2020169067A1 (zh) 由用户设备执行的方法以及用户设备
WO2021160033A1 (zh) 由用户设备执行的方法以及用户设备
WO2020135320A1 (zh) 由用户设备执行的方法以及用户设备
US20230037535A1 (en) Method performed by user equipment, and user equipment
WO2020259568A1 (zh) 由用户设备执行的方法以及用户设备
WO2020192695A1 (zh) 由用户设备执行的方法
WO2022127732A1 (zh) 由用户设备执行的方法以及用户设备
WO2015024265A1 (zh) Tdd系统中信息传输方法、信息确定方法、装置及系统
WO2022068685A1 (zh) 由用户设备执行的方法以及用户设备
WO2021228136A1 (zh) 由用户设备执行的方法以及用户设备
WO2021160032A1 (zh) 由用户设备执行的方法以及用户设备
WO2022028274A1 (zh) 由用户设备执行的方法以及用户设备
WO2022028328A1 (zh) 由用户设备执行的方法以及用户设备
WO2021027833A1 (zh) 由用户设备执行的方法以及用户设备
WO2021197210A1 (zh) 由用户设备执行的方法以及用户设备
WO2021238757A1 (zh) 由用户设备执行的方法以及用户设备
JP2018186315A (ja) 端末装置、基地局装置、通信方法および集積回路
WO2021063337A1 (zh) 由用户设备执行的方法以及用户设备
WO2021088486A1 (zh) 由用户设备执行的方法以及用户设备
WO2022152160A1 (zh) 由用户设备执行的方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20852124

Country of ref document: EP

Kind code of ref document: A1