WO2020221156A1 - Srs资源配置方法、bwp的切换处理方法和相关设备 - Google Patents

Srs资源配置方法、bwp的切换处理方法和相关设备 Download PDF

Info

Publication number
WO2020221156A1
WO2020221156A1 PCT/CN2020/086979 CN2020086979W WO2020221156A1 WO 2020221156 A1 WO2020221156 A1 WO 2020221156A1 CN 2020086979 W CN2020086979 W CN 2020086979W WO 2020221156 A1 WO2020221156 A1 WO 2020221156A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
srs resource
terminal
network device
information
Prior art date
Application number
PCT/CN2020/086979
Other languages
English (en)
French (fr)
Inventor
司晔
孙鹏
邬华明
孙晓东
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to KR1020217038973A priority Critical patent/KR102674035B1/ko
Priority to EP20799586.1A priority patent/EP3965500A4/en
Publication of WO2020221156A1 publication Critical patent/WO2020221156A1/zh
Priority to US17/513,196 priority patent/US12081474B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular to an SRS resource configuration method, a bandwidth part (Bandwidth Part, BWP) switching processing method, and related equipment.
  • SRS resource configuration method a bandwidth part (Bandwidth Part, BWP) switching processing method, and related equipment.
  • BWP bandwidth part
  • SRS Sounding Reference Signal
  • SRS can be used for beam management, codebook-based transmission, and non-codebook-based non-codebook transmission.
  • the terminal UE can obtain multiple SRS resource sets through high-level signaling, and the configuration of each SRS resource set includes its usage, periodic characteristics and other configurations.
  • SRS resources can occupy the last 6 symbols, and high-level signaling can configure SRS resources to occupy 1/2/4 symbol transmission, and support the comb structure in the frequency domain. comb-2 and comb-4. According to different SRS resource sending cycles, it supports periodic sending of SRS resources, semi-continuous sending of SRS resources, and aperiodic triggering of SRS resources.
  • high-level signaling configures the SRS resource set and time slot offset corresponding to each SRS resource trigger state. The offset indicates the interval between the terminal (User Equipment, UE) receiving the SRS trigger and the actual transmission Slot-level interval.
  • the frequency domain density of SRS resources is supported as comb-2 and comb-4, so that the transmission power of SRS resources is lower.
  • the embodiments of the present disclosure provide an SRS resource configuration method, a BWP handover processing method, and related equipment, network equipment, and terminals to solve the problem of low transmission power of SRS resources.
  • the embodiments of the present disclosure provide an SRS resource configuration method, which is applied to a network device, and includes:
  • the first configuration information is used to configure a sounding reference signal SRS resource pattern
  • the SRS resources are equally spaced in the frequency domain, and the number of spaced subcarriers is M, and M is greater than 4 The integer.
  • the embodiments of the present disclosure also provide a method for handover processing the bandwidth part of the BWP, which is applied to a first network device, where the first network device is a network device served by the terminal, and the method includes: performing BWP on the terminal During the handover, sending relevant information about the first BWP after the handover to a second network device, where the second network device includes other network devices other than the first network device among the network devices participating in the positioning of the terminal;
  • the first BWP is used by the terminal to send a first object, and the first object includes an uplink positioning reference signal or an uplink positioning resource.
  • the embodiments of the present disclosure also provide an SRS resource configuration method applied to the terminal side, including:
  • the first configuration information is used to configure a sounding reference signal SRS resource pattern, the SRS resources are equally spaced in the frequency domain, and the number of spaced subcarriers is M, M is an integer greater than 4.
  • the embodiments of the present disclosure also provide a handover processing method of the bandwidth part BWP, which is applied to a location server, and the method includes:
  • the terminal When the terminal performs BWP switching, receiving related information about the first BWP sent by the first network device, where the first BWP is the BWP after the terminal is switched, and the first BWP is used by the terminal to send the first object,
  • the first object includes an uplink positioning reference signal or an uplink positioning resource
  • the second network device includes other network devices other than the first network device among the network devices participating in the positioning of the terminal.
  • the embodiments of the present disclosure also provide an SRS resource configuration method, which is applied to the terminal side, and includes:
  • Receive fourth configuration information sent by the network device where the fourth configuration information is used to configure the terminal to send the first object on the first BWP, where the first BWP is the uplink bandwidth part (UpLink Bandwidth Part, UL BWP) dedicated to positioning ), the first object includes an uplink positioning reference signal or an uplink positioning resource.
  • the fourth configuration information is used to configure the terminal to send the first object on the first BWP, where the first BWP is the uplink bandwidth part (UpLink Bandwidth Part, UL BWP) dedicated to positioning ), the first object includes an uplink positioning reference signal or an uplink positioning resource.
  • the fourth configuration information is used to configure the terminal to send the first object on the first BWP
  • the first BWP is the uplink bandwidth part (UpLink Bandwidth Part, UL BWP) dedicated to positioning
  • the first object includes an uplink positioning reference signal or an uplink positioning resource.
  • the embodiments of the present disclosure also provide a network device, including:
  • the first sending module is configured to send first configuration information to the terminal, where the first configuration information is used to configure the pattern of sounding reference signal SRS resources, the SRS resources are equally spaced in the frequency domain, and the number of spaced subcarriers Is M, and M is an integer greater than 4.
  • embodiments of the present disclosure also provide a network device, where the network device is the first network device currently served by the terminal, and includes:
  • the second sending module is configured to send related information about the first BWP after the handover to a second network device when the terminal performs BWP handover.
  • the second network device includes the network devices participating in the terminal positioning except for the A network device other than the first network device; the first BWP is used by the terminal to send a first object, and the first object includes an uplink positioning reference signal or an uplink positioning resource.
  • embodiments of the present disclosure also provide a terminal, including:
  • the first receiving module is configured to receive first configuration information sent by a network device; wherein, the first configuration information is used to configure a pattern of sounding reference signal SRS resources, and the SRS resources are equally spaced in the frequency domain and are spaced apart
  • the number of subcarriers is M, and M is an integer greater than 4.
  • embodiments of the present disclosure also provide a location server, including:
  • the second receiving module is configured to receive related information of the first BWP sent by the first network device when the terminal performs BWP switching, where the first BWP is the BWP after the terminal is switched, and the first BWP is used for all
  • the terminal sends a first object, where the first object includes an uplink positioning reference signal or an uplink positioning resource;
  • the third sending module is configured to send related information about the first BWP to a second network device, and the second network device includes other networks other than the first network device among the network devices participating in the positioning of the terminal equipment.
  • an embodiment of the present disclosure also provides a terminal, including:
  • the third receiving module is configured to receive fourth configuration information sent by the network device, where the fourth configuration information is used to configure the terminal to send the first object on the first BWP, and the first BWP is an uplink bandwidth part dedicated to positioning UL BWP, the first object includes uplink positioning reference signals or uplink positioning resources.
  • an embodiment of the present disclosure also provides a network device, including: a memory, a processor, and a program stored on the memory and running on the processor, the program being executed by the processor.
  • a network device including: a memory, a processor, and a program stored on the memory and running on the processor, the program being executed by the processor.
  • the embodiments of the present disclosure also provide a terminal, including: a memory, a processor, and a program stored on the memory and capable of running on the processor.
  • a terminal including: a memory, a processor, and a program stored on the memory and capable of running on the processor.
  • the program When the program is executed by the processor, Implement the steps in the above-mentioned SRS resource configuration method.
  • embodiments of the present disclosure also provide a location server, including: a memory, a processor, and a program stored on the memory and running on the processor, the program being executed by the processor. The steps in the above-mentioned switching processing method of the bandwidth part BWP are realized.
  • the embodiments of the present disclosure also provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the above-mentioned SRS resource configuration method are implemented, Or, when the computer program is executed by a processor, the steps of the switching processing method of the bandwidth part BWP are realized.
  • the embodiment of the present disclosure by setting the SRS resources to be equally spaced in the frequency domain, and the number of spaced sub-carriers is greater than 4, compared with the SRS resource frequency domain density of comb-2 and comb-4 in the related art, due to the increase of SRS resources in the The frequency domain is equally spaced. Therefore, the embodiment of the present disclosure enhances the transmission power of the SRS resource.
  • FIG. 1 is a structural diagram of a network system applicable to an embodiment of the present disclosure
  • FIG. 3 is one of the diagrams of an example of a pattern of SRS resources in a method for configuring SRS resources provided by an embodiment of the present disclosure
  • FIG. 4 is the second diagram of an example of a pattern of SRS resources in an SRS resource configuration method provided by an embodiment of the present disclosure
  • FIG. 5 is the third diagram of an example diagram of SRS resources in an SRS resource configuration method provided by an embodiment of the present disclosure
  • FIG. 6 is a fourth diagram of an example diagram of SRS resources in a method for configuring SRS resources provided by an embodiment of the present disclosure
  • FIG. 7 is the fifth diagram of an example of a pattern of SRS resources in an SRS resource configuration method provided by an embodiment of the present disclosure.
  • FIG. 8 is a sixth diagram of an example diagram of SRS resources in an SRS resource configuration method provided by an embodiment of the present disclosure.
  • FIG. 9 is a seventh diagram of an example diagram of SRS resources in a method for configuring SRS resources provided by an embodiment of the present disclosure.
  • FIG. 10 is the eighth diagram of a pattern example of SRS resources in a method for configuring SRS resources provided by an embodiment of the present disclosure
  • FIG. 11 is one of the flowcharts of a BWP handover processing method provided by an embodiment of the present disclosure.
  • FIG. 12 is the second flowchart of an SRS resource configuration method provided by an embodiment of the present disclosure.
  • FIG. 13 is the second flowchart of a BWP handover processing method provided by an embodiment of the present disclosure.
  • FIG. 14 is the third flowchart of a method for configuring SRS resources provided by an embodiment of the present disclosure.
  • FIG. 15 is one of the structural diagrams of a network device provided by an embodiment of the present disclosure.
  • FIG. 16 is a second structural diagram of a network device provided by an embodiment of the present disclosure.
  • FIG. 17 is one of the structural diagrams of a terminal provided by an embodiment of the present disclosure.
  • FIG. 18 is one of the structural diagrams of a location server provided by an embodiment of the present disclosure.
  • FIG. 19 is a second structural diagram of a terminal provided by an embodiment of the present disclosure.
  • FIG. 20 is the third structural diagram of a network device provided by an embodiment of the present disclosure.
  • FIG. 21 is a second structural diagram of a location server provided by an embodiment of the present disclosure.
  • FIG. 22 is the third structural diagram of a terminal provided by an embodiment of the present disclosure.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present disclosure should not be construed as being more optional or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the SRS resource configuration method, the BWP handover processing method, the network device, the terminal and the location server, the network device, the terminal and the location server provided by the embodiments of the present disclosure can be applied to a wireless communication system.
  • the wireless communication system may adopt a 5G system, or an evolved long term evolution (evolved Long Term Evolution, eLTE) system, or a subsequent evolved communication system.
  • eLTE evolved Long Term Evolution
  • FIG. 1 is a structural diagram of a network system applicable to an embodiment of the present disclosure. As shown in FIG. 1, it includes a terminal 11 and a network device 12.
  • the terminal 11 may be a user terminal or other terminal-side devices. , Such as: mobile phone, tablet computer (Tablet Personal Computer), laptop computer (Laptop Computer), personal digital assistant (personal digital assistant, PDA), mobile Internet device (Mobile Internet Device, MID) or wearable device (Wearable) Device) and other terminal-side devices.
  • PDA personal digital assistant
  • mobile Internet device Mobile Internet Device, MID
  • wearable device wearable device
  • the above-mentioned network device 12 may be a 5G base station, or a later version base station, or a base station in other communication systems, or called Node B, Evolved Node B, or Transmission Reception Point (TRP), or access point (Access Point, AP), or other words in the field, as long as the same technical effect is achieved, the network device is not limited to specific technical words.
  • the aforementioned network device 12 may be a master node (Master Node, MN) or a secondary node (Secondary Node, SN). It should be noted that, in the embodiments of the present disclosure, only a 5G base station is taken as an example, but the specific type of network equipment is not limited.
  • FIG. 2 is a flowchart of an SRS resource configuration method provided by an embodiment of the present disclosure. The method is applied to a network device, as shown in FIG. 2, and includes the following steps:
  • Step 201 Send first configuration information to a terminal, where the first configuration information is used to configure a sounding reference signal SRS resource pattern, the SRS resources are equally spaced in the frequency domain, and the number of spaced subcarriers is M, M Is an integer greater than 4.
  • the size of M may be set according to actual needs.
  • M may be 6, 8, or 12.
  • the comb structure corresponding to the M subcarriers distributed at equal intervals in the frequency domain is comb-M. That is, when the value of M is 6, 8, or 12, the corresponding comb structure is com-6, com-8 or com-12.
  • the foregoing first configuration information may also include SRS resource bandwidth information, SRS resource power control information, SRS resource time domain configuration information, SRS resource beam configuration information, and SRS resource sequence configuration. Information and other configuration information associated with SRS resource transmission.
  • the embodiment of the present disclosure by setting the SRS resources to be equally spaced in the frequency domain, and the number of spaced sub-carriers is greater than 4, compared with the SRS resource frequency domain density of comb-2 and comb-4 in the related art, due to the increase of SRS resources in the The frequency domain is equally spaced. Therefore, the embodiment of the present disclosure enhances the transmission power of the SRS resource.
  • the pattern of the corresponding SRS resource may be different.
  • M the pattern of the SRS resource consists of two consecutive resource blocks (Resource Block , RB) constitute.
  • the pattern of the SRS resource consists of one RB.
  • the pattern of the SRS resource is composed of 2 consecutive RBs, which can be understood as: when the SRS resource is mapped to the time-frequency resource, the position of the resource element (Resource element, RE) and the SRS resource on the odd RB within 1 slot
  • the odd-numbered RBs of the pattern are the same, and the RE positions on any even-numbered RB are the same as the even-numbered RBs of the SRS resource pattern.
  • two consecutive RBs can form an RB bundle, which is the smallest unit of SRS resources during time-frequency resource mapping.
  • the RE position of the SRS resource within the entire SRS bandwidth is continuously obtained repeatedly in the frequency domain based on this RB group.
  • the above-mentioned first configuration information may also be used to configure the comb offset of the SRS resource in the comb structure frequency domain.
  • the frequency domain offset of the comb structure of the aforementioned SRS resource may be configured by a network device, or may be agreed upon by a protocol.
  • the comboffset is used to indicate the lowest RE position of the last symbol of the SRS resource in the first RB.
  • the comb offset is used to indicate the lowest RE position of the last symbol of the SRS resource in the RB.
  • the position of the foregoing first RB may be set according to actual conditions.
  • the first RB may be any odd-numbered RB or even-numbered RB in the SRS resource.
  • whether the first RB is an odd number or an even number may be agreed upon by a protocol, or may be indicated by a network device, or may be selected by the terminal. When instructed by a network device, it can indicate whether the current lowest RE is on an odd RB or an even RB through 1 bit.
  • the value of the comb offset is a natural number smaller than M.
  • the value of comb offset is a natural number less than 6; when M is 8, the value of comb offset is a natural number less than 8; when M is 12, the value of comb offset is less than 12.
  • comboffset is i
  • i is a natural number less than 8, indicating that the position of the lowest RE in the RB of the last symbol of the SRS resource is the i+1th RE from the bottom.
  • the position of the lowest RE in the RB of the last symbol of the corresponding SRS resource is the last RE, as shown in FIG. 3 and FIG. 4.
  • the SRS resource occupies consecutive N symbols
  • N is 1, 2, 4, 8, or an integer greater than 8;
  • N is 1, 2, 4, 6, 8, 12, or an integer greater than 12.
  • the consecutive N symbols occupied by SRS resources can be the first N symbols, the last N symbols, or N symbols at any position in the slot of 1 time slot.
  • the N symbols of the SRS resource cannot exceed the slot boundary. .
  • the foregoing first configuration information may also be used to configure a cyclic shift (cyclic shift) value of the SRS resource.
  • the cyclic shift value of the SRS resource may be a natural number less than 8; when the comb structure is comb-8, the cyclic shift value of the SRS resource may be less than 6.
  • the cyclic shift value of the SRS resource can be a natural number less than 4.
  • the foregoing first configuration information may also be used to configure a repetition factor (repetition factor) value of the SRS resource.
  • a repetition factor repetition factor
  • the value of the repetition factor is 1, 2, 4, or 6
  • the value of the repetition factor is 1, 2. , 4 or 8
  • the structure of comb is comb-12
  • the value of the repetition factor is 1, 2, 4, 6 or 12.
  • RE shift (RE shift) setting may also be performed, and the RE shift may be indicated by a network device, or may be agreed upon by a protocol.
  • the RE offset when the RE offset is indicated by the network device, the RE offset may be indicated in the first configuration information.
  • the RE offset is used to calculate the frequency domain position of the SRS resource, and when the frequency domain position of the SRS resource calculated according to the RE offset exceeds the preset frequency domain range,
  • the frequency domain position of the SRS resource is: a position obtained by modulating the frequency domain position according to a specific value.
  • the frequency domain position of the SRS resource can be understood as: the position of the SRS resource on the RE of a certain Orthogonal Frequency Division Multiplex (OFDM) symbol.
  • OFDM Orthogonal Frequency Division Multiplex
  • the preset frequency domain range is 1 RB, and the specific value is 12;
  • the preset frequency domain range is 2 RBs, and the specific value is 24.
  • the frequency domain position of the SRS resource is: frequency domain position mod specific value.
  • RE offset refers to the RE level offset (frequency domain offset) of adjacent symbols of the SRS resource.
  • the frequency domain position of the RE of the previous symbol can pass the frequency domain position of the RE of the next adjacent symbol And the configured RE shift calculation.
  • the frequency domain position of the RE can be set to the consecutive 2 RBs by taking the modulus value (mod 24) Within range.
  • RE shift can be a positive or negative shift.
  • the size of RE shift can be 1, 2 or 4.
  • the pattern of the corresponding SRS resource can be shown in FIG. 3.
  • the terminal should assume that the REs of all symbols of the SRS resource have the same position in the frequency domain. For example, when the number of symbols of the SRS resource is 4, and the structure of the comb is comb-8, the pattern of the corresponding SRS resource can be shown in FIG. 4.
  • the role of the above SRS resource can be set according to actual needs.
  • the above SRS resource can be used for positioning.
  • the frequency domain position of the last M+Y symbol of the SRS resource is the same as the frequency domain position of the last Yth symbol, M+Y is less than or equal to N, and Y is a positive integer.
  • the value of the frequency domain position of the last M+Y symbol of the SRS resource is the same as the value of the frequency domain position of the last Yth symbol.
  • the SRS resource may be the repetition of the last X symbols of the SRS.
  • the number of symbols N of the SRS resource can be greater than the comb size X of the SRS.
  • the frequency domain position (RE position) of the last X+Y ⁇ N symbol of the SRS resource may be the same as the frequency domain position (RE position) of the last Yth symbol .
  • the value of the frequency domain position (RE position) of the last X+Y symbol of the SRS resource may be the same as the value of the frequency domain position (RE position) of the last Yth symbol.
  • the comb structure is comb-4, and the number of symbols occupied by SRS resources is 8;
  • the comb structure is comb-4, and the number of symbols occupied by SRS resources is 12;
  • the comb structure is comb-2, and the number of symbols occupied by SRS resources is 6;
  • the comb structure is comb-2, and the number of symbols occupied by SRS resources is 4;
  • the comb structure is comb-8, and the number of symbols occupied by SRS resources is 12;
  • the comb structure is comb-8, and the number of symbols occupied by SRS resources is 14.
  • the method may further include:
  • the above-mentioned first indication information may be carried in the above-mentioned first configuration information for transmission, or may be carried in another piece of configuration information for transmission.
  • the first indication information may be sent before or after the first configuration information is sent, and there is no further limitation here.
  • the bandwidth information of the aforementioned SRS resource may include bandwidth-related information of a wideband SRS (wideband SRS) or a narrowband SRS (narrowband SRS).
  • the first configuration information when the first configuration information satisfies a first preset condition, the first configuration information is also used to instruct the terminal to perform a preset operation; wherein, the first preset condition includes any of the following :
  • the bandwidth information of the SRS resource is 8RB, 16RB or 32RB;
  • the foregoing preset operation may include: not sending the SRS resource;
  • Case 1 If the comb structure of the SRS resource configured by the network device is comb-12, and the bandwidth of the broadband SRS or the narrowband SRS is configured to 4RB, 8RB, 16RB, 20RB, 28RB or 32RB, the terminal does not send the SRS resource. Correspondingly, the network device does not receive SRS resources. Or, if the comb structure of the network device configured SRS resource is comb-12, and the bandwidth of the broadband SRS or narrowband SRS is configured to 4RB, 8RB, 16RB, 20RB, 28RB, or 32RB, the terminal needs to generate the SRS resource sequence ( The low peak to average power ratio sequence (low peak to average power ratio sequence, Low-PAPR sequence or ZC sequence) is truncated and sent.
  • the interception can be understood as the terminal taking a segment from a sequence of a specific length (Low-PAPR sequence or ZC sequence), or the terminal taking a subset of the sequence of the specific length (subset).
  • the network device receives the SRS resource.
  • the terminal behavior can be network device instructions, protocol provisions, or terminal selection.
  • Case 2 If the comb structure of the SRS resource configured by the network device is comb-6, and the bandwidth of the broadband SRS or the narrowband SRS is configured to 8RB, 16RB or 32RB, the UE does not send the SRS. Correspondingly, the network device does not receive SRS. Or, if the comb structure of the SRS resource configured by the network device is comb-6, and the bandwidth of the broadband SRS or narrowband SRS is configured to 8RB, 16RB, or 32RB, the UE needs to generate a sequence (Low-PAPR sequence or ZC sequence) for the SRS. ) Send after interception. Correspondingly, the network device receives the SRS resource.
  • the terminal behavior can be network device instructions, protocol provisions, or terminal selection.
  • the UE does not send the SRS.
  • the network device does not receive SRS.
  • the UE must perform the SRS generation sequence (Low-PAPR sequence or ZC sequence). Send after interception.
  • the network device receives the SRS resource.
  • the terminal behavior can be network device instructions, protocol provisions, or terminal selection.
  • any of the following methods can be used for configuration.
  • the network device may send second configuration information to the terminal, where the second configuration information is used to configure the terminal to send the SRS resource in the UL active BWP of the uplink active bandwidth part. At this time, the terminal can send the SRS resource in the UL active BWP according to the second configuration information.
  • the network device may send third configuration information to the terminal, where the third configuration information is configuration information of the first BWP, and the third configuration information is used to configure the terminal in the
  • the SRS resource is sent on the first BWP, and the first BWP is an uplink bandwidth part UL BWP dedicated for positioning.
  • the terminal may send the SRS resource on the first BWP according to the third configuration information.
  • the foregoing first configuration information has nothing to do with the UL BWP configuration of the uplink bandwidth part of the terminal. That is to say, UL BWP configuration information may not include SRS resource configuration information.
  • the SRS resource configuration information may not include UL BWP configuration information.
  • SRS resources can be based on cell configuration.
  • Embodiment 3 since the first configuration information has nothing to do with UL and BWP configuration, when the SRS resource is used for positioning, the sending of the SRS resource will not be restricted by the BWP, and the bandwidth of the SRS sending will not restrict the positioning accuracy.
  • the behavior that the first configuration information has nothing to do with the UL BWP configuration of the uplink bandwidth portion of the terminal may be agreed upon by a protocol, configured by a network device or selected by the terminal.
  • the above method may also include:
  • the above-mentioned second instruction information may be carried in the above-mentioned first configuration information for transmission, or may be carried in another piece of configuration information for transmission.
  • the second indication information may be sent before or after the first configuration information is sent, which is not further limited here.
  • the first configuration information has nothing to do with the UL BWP configuration and includes: bandwidth information of the SRS resource and baseband parameter numerology has nothing to do with the UL BWP configuration.
  • the maximum bandwidth of SRS resources is related to UE capabilities.
  • the foregoing method may further include:
  • the frequency domain range of the SRS resource is determined according to the maximum uplink transmission bandwidth.
  • the frequency domain range of the SRS resource may be sent to the terminal.
  • the frequency domain range of the SRS resource may be sent in the above-mentioned first configuration information. It can be sent through other configuration information.
  • the handover of UL BWP has nothing to do with the terminal sending the SRS resource. That is to say, when the SRS resource has nothing to do with the UL BWP, the behavior of the UL BWP handover will not affect the terminal sending the SRS resource.
  • the terminal may stop sending the SRS when the UL BWP is switched.
  • the frequency domain range of the SRS resource may be located within the UL BWP configuration, or may be located outside the UL BWP configuration. It should be understood that the terminal can be configured with a maximum of 4 UL BWPs.
  • the frequency domain range of the SRS resource within the UL BWP configuration means that the frequency domain range of the SRS resource does not exceed the frequency domain range occupied by multiple UL BWPs configured for the terminal.
  • the uplink resources used for positioning may not be limited to SRS, but may also be other uplink positioning reference signals or uplink positioning resources.
  • the transmission of SRS resources has nothing to do with UL BWP configuration.
  • the behavior of the terminal may also be that the uplink positioning reference signal or uplink positioning resource used for positioning has nothing to do with the UL BWP configuration.
  • the behavior of the terminal can include:
  • Receive target configuration information sent by a network device where the target configuration information is used to configure a first object, the first object includes an uplink positioning reference signal or an uplink positioning resource used for positioning, and the target configuration information has nothing to do with UL BWP configuration.
  • the first configuration information that is not related to the UL BWP configuration includes: bandwidth information of the SRS resource and baseband parameter numerology are not related to the UL BWP configuration.
  • target configuration information that has nothing to do with UL BWP configuration may be protocol agreement, network device configuration, or terminal selection.
  • the frequency domain range of the first object is located within the UL BWP configuration, or the frequency domain range of the first object is located outside the UL BWP configuration.
  • a method for handover processing a bandwidth part of BWP is also provided, which is applied to a first network device.
  • the device is a network device serving as a terminal, and the method includes:
  • Step 1101 When the terminal performs the BWP handover, send relevant information about the first BWP after the handover to a second network device, where the second network device includes the network devices participating in the terminal positioning except for the first network device
  • the first BWP is used for the terminal to send a first object, and the first object includes an uplink positioning reference signal or an uplink positioning resource.
  • the above-mentioned terminal performing BWP switching specifically refers to the terminal performing UL BWP switching
  • the above-mentioned first network device may be a base station (gNodeB, gNB) or cell currently serving the terminal, that is, serving gNB or serving cell.
  • the above-mentioned first object is a sounding reference signal SRS resource
  • the SRS resource comb structure design may specifically adopt the comb-2 or comb-4 design in the related technology, or the design provided by the embodiments of the present disclosure.
  • the design of comb-6, comb-8 or comb-12 specifically, the design of comb-6, comb-8 or comb-12 can refer to the above-mentioned embodiment, which will not be repeated here.
  • the related information of the first BWP may be directly sent to the second network device.
  • the sending related information of the first BWP after the handover to the second target network device includes:
  • the related information of the first BWP may be sent to the second network device indirectly.
  • the sending related information of the first BWP after the handover to the second target network device includes:
  • the first network device when the terminal performs UL BWP handover, the first network device sends related information of the first BWP after the handover to the second network device. In this way, it can be ensured that each second network device used for positioning can obtain relevant information of the first BWP after the terminal is switched. Therefore, the embodiments of the present disclosure can ensure that each network device participating in the positioning can correctly receive the first object sent by the terminal on the first BWP after the handover, thereby improving the reliability of the positioning.
  • the above-mentioned related information of the first BWP includes time domain configuration information of the first BWP, and the first BWP configuration or identification information of the first BWP.
  • the first BWP configuration information may include configuration information of the first object.
  • the first network device may send all UL BWP configuration information associated with the terminal to the location server, so that the location server can forward all UL BWP configuration information to the second network device.
  • the location server may send all UL BWP configuration information associated with the terminal to the second network device.
  • the method before the sending related information of the first BWP after the handover to the second network device, the method further includes:
  • the network device may instruct the terminal to switch the BWP.
  • the foregoing first BWP may be the UL BWP that the network device re-instructs to activate.
  • the terminal After the terminal switches from the current UL active BWP to the first BWP, the terminal will send the first object on the first BWP.
  • the method before the sending related information of the first BWP after the handover to the target network device, the method further includes:
  • the third configuration information is the configuration information of the first BWP
  • the third configuration information is used to configure the terminal to send the first BWP on the first BWP.
  • the first BWP is the UL BWP dedicated to the uplink bandwidth part of the positioning.
  • the configuration information of the first BWP includes identification information of the first BWP, baseband parameter numerology information of the first BWP, bandwidth information of the first BWP, and frequency of the first BWP. At least one of domain location information and configuration information of the first object.
  • the second preset condition includes: the first BWP is included in the BWP currently activated by the terminal, and the baseband parameters of the first BWP are the same as the baseband parameters of the BWP currently activated by the terminal.
  • the foregoing third instruction information may be carried in the foregoing third configuration information for transmission, or may be carried in another piece of configuration information for transmission.
  • the third instruction information may be sent before or after the third configuration information is sent, which is not further limited here.
  • the above-mentioned first object is a sounding reference signal SRS resource
  • the SRS resource comb structure design may specifically adopt the comb-2 or comb-4 design in related technologies, or it may adopt The design of comb-6, comb-8, or comb-12 provided in the embodiments of the present disclosure.
  • the design of comb-6, comb-8 or comb-12 can refer to the above-mentioned embodiments, which will not be repeated here.
  • an embodiment of the present disclosure also provides a method for configuring SRS resources, applied to the terminal side, including:
  • Step 1201 Receive first configuration information sent by a network device; wherein the first configuration information is used to configure a pattern of sounding reference signal SRS resources, the SRS resources are equally spaced in the frequency domain, and the number of spaced subcarriers Is M, and M is an integer greater than 4.
  • the comb structure corresponding to the M sub-carriers distributed at equal intervals in the frequency domain is comb-M, and the M is 6, 8, or 12.
  • the pattern of the SRS resource is composed of two consecutive resource blocks RB.
  • the first configuration information is also used to configure a comb-like structure frequency domain offset of the SRS resource comb offset, and the comb offset is used to indicate that the last symbol of the SRS resource is the lowest in the first RB The RE location.
  • the first RB is any odd RB or even RB in the SRS resource.
  • the pattern of the SRS resource consists of one RB.
  • the first configuration information is further used to configure the comb offset of the SRS resource, and the comb offset is used to indicate the lowest RE position of the last symbol of the SRS resource in the RB.
  • the value of the comb offset is a natural number smaller than M.
  • the SRS resource occupies consecutive N symbols
  • N is 1, 2, 4, 8, or an integer greater than 8;
  • N is 1, 2, 4, 6, 8, 12, or an integer greater than 12.
  • the consecutive N symbols occupied by the SRS resource are the first N symbols, the last N symbols, or N symbols in any middle position in a slot.
  • the first configuration information is also used to configure the cyclic shift value and repetition factor of the SRS resource.
  • the value of the cyclic shift value is a natural number less than 8, and the value of the repetition factor is 1, 2, 4, or 6;
  • the value of the cyclic shift value is a natural number less than 6, and the value of the repetition factor is 1, 2, 4, or 8;
  • the value of the cyclic shift value is a natural number less than 4, and the value of the repetition factor is 1, 2, 4, 6, or 12.
  • the first configuration information is also used to configure the RE offset of adjacent symbols of the SRS resource.
  • the value of the RE offset is 1, 2 or 3;
  • the value range of the RE offset is 1, 2 or 4;
  • the value range of the RE offset is 1, 2, 3, 4, or 6.
  • the RE offset is used to calculate the frequency domain position of the SRS resource, and when the frequency domain position of the SRS resource calculated according to the RE offset exceeds a preset frequency domain range, the The frequency domain position of the SRS resource is: a position obtained by modulating the frequency domain position according to a specific value.
  • the preset frequency domain range is 1 RB, and the specific value is 12;
  • the preset frequency domain range is 2 RBs, and the specific value is 24.
  • the SRS resource is used for positioning.
  • the frequency domain position of the last M+Y symbol of the SRS resource is the same as the frequency domain position of the last Y symbol, and M+Y is less than Or equal to N, and Y is a positive integer.
  • the value of the frequency domain position of the last M+Y symbol of the SRS resource is the same as the value of the frequency domain position of the last Yth symbol.
  • the method further includes:
  • the terminal when the first configuration information meets a first preset condition, the terminal performs a preset operation
  • the terminal When the first configuration information does not meet a first preset condition, the terminal sends the SRS resource;
  • the first preset condition includes any one of the following:
  • the bandwidth information of the SRS resource is 8RB, 16RB or 32RB;
  • the preset operation includes:
  • the first configuration information has nothing to do with UL BWP configuration of the uplink bandwidth part.
  • the first configuration information has nothing to do with UL BWP configuration, which is agreed by the protocol or indicated by the network device.
  • the handover of the UL BWP has nothing to do with the terminal sending the SRS resource.
  • the first configuration information has nothing to do with UL BWP configuration and includes: bandwidth information and baseband parameter numerology of the SRS resource have nothing to do with UL BWP configuration.
  • the method further includes:
  • the capability information of the terminal is sent to the network device, where the capability information includes the maximum uplink transmission bandwidth that the terminal can support, and the maximum uplink transmission bandwidth is used for the network device to determine the frequency domain range of the SRS resource.
  • this embodiment is used as an implementation manner of the terminal corresponding to the embodiment shown in FIG. 3, and for specific implementation manners, please refer to the relevant description of the embodiment shown in FIG. 3, and achieve the same beneficial effects. In order to avoid repetition Description, not repeat them here.
  • an embodiment of the present disclosure also provides a handover processing method of a bandwidth part BWP, which is applied to a location server, and the method includes:
  • Step 1301 When the terminal performs BWP switching, receive related information about the first BWP sent by the first network device, where the first BWP is the BWP after the terminal is switched, and the first BWP is used by the terminal to send the first BWP.
  • An object, the first object includes an uplink positioning reference signal or an uplink positioning resource;
  • the second network device includes other network devices other than the first network device among the network devices participating in the positioning of the terminal.
  • the related information of the first BWP includes time domain configuration information of the first BWP, and the first BWP configuration or identification information of the first BWP.
  • the first object is a sounding reference signal SRS resource.
  • this embodiment is used as an implementation manner of the location server corresponding to the embodiment shown in FIG. 11.
  • specific implementation manners please refer to the related description of the embodiment shown in FIG. 11, and achieve the same beneficial effects. In order to avoid Repeat the description, so I won’t repeat it here.
  • a method for configuring SRS resources is provided, which is applied to the terminal side, including:
  • Step 1401 Receive fourth configuration information sent by a network device, where the fourth configuration information is used to configure the terminal to send a first object on a first BWP, where the first BWP is an uplink bandwidth part UL BWP dedicated to positioning, so The first object includes an uplink positioning reference signal or an uplink positioning resource.
  • the terminal is configured with the first BWP dedicated for positioning, so that the bandwidth of the pre-configured UL BWP does not need to be restricted when the SRS resource is sent. Therefore, the embodiment of the present disclosure can improve the positioning accuracy.
  • the method further includes:
  • the terminal performs BWP handover
  • the terminal does not perform BWP switching
  • the second preset condition includes: the first BWP is included in the BWP currently activated by the terminal, and the baseband parameters of the first BWP are the same as the baseband parameters of the BWP currently activated by the terminal.
  • the method before the terminal performs BWP handover, the method further includes:
  • the first object is a sounding reference signal SRS resource.
  • the comb structure of the SRS resource that the network device can configure is comb-8, which means that the SRS resource is equally spaced in the frequency domain, and the interval is 8 subcarriers.
  • the Comb-8 structure can be equivalent to a density of 3/2RE/PRB, that is, 2 RBs are equally spaced with 3 REs.
  • the UE should assume that the pattern of the SRS resource is composed of SRS resources of 2 consecutive RBs.
  • the UE behavior can be a network indication and the protocol is fixed.
  • the comboffset of the aforementioned SRS resource may be an integer less than 8, which represents the lowest RE position of the last symbol of the SRS resource in an odd-numbered RB or an even-numbered RB.
  • the comb offset of the SRS resource indicates the position of the lowest RE in a certain RB of the last symbol, and the network device additionally uses 1 bit to indicate whether the current lowest RE is on an odd RB or an even RB.
  • the consecutive N symbols occupied by the foregoing SRS resources may be the last N symbols in a slot, the first N symbols, or any consecutive N symbols in the slot.
  • N can be equal to 8, 4, 2, 1, or an integer of N>8.
  • the network device can also configure the cyclic shift value and repetition factor of the SRS resource.
  • the cyclic shift value is an integer less than 6, and the repetition factor value is 1, 2, 4, or 8. .
  • the network device may also configure the RE offset of adjacent symbols of the SRS resource.
  • RE offset refers to the RE level offset (frequency domain offset) of adjacent symbols of the SRS resource.
  • the frequency domain position of the RE of the previous symbol can pass the frequency domain position of the RE of the next adjacent symbol And the configured RE shift calculation.
  • the frequency domain position of the RE can be set to the consecutive 2 RBs by taking the modulus value (mod 24) Within range.
  • the RE offset can be a positive or negative offset.
  • the size of RE shift can be 1, 2 or 4.
  • the SRS resource of the comb-8 structure described above can also be used as other functions.
  • the consecutive one or more symbols occupied by SRS resources can be the last one or more symbols in a slot, and the first One or more symbols, or any consecutive one or more symbols in the middle of a slot.
  • the SRS resource may be the repetition of the last X symbols of the SRS.
  • the number of symbols N of the SRS resource can be greater than the comb size X of the SRS.
  • the frequency domain position (RE position) of the last X+Y ⁇ N symbol of the SRS resource may be the same as the frequency domain position (RE position) of the last Yth symbol .
  • the value of the frequency domain position (RE position) of the last X+Y symbol of the SRS resource may be the same as the value of the frequency domain position (RE position) of the last Yth symbol. Specifically, you can refer to the SRS resource patterns shown in Figures 5 to 10.
  • the terminal does not send SRS resources.
  • the network device does not receive SRS resources.
  • the terminal needs to generate the SRS resource sequence ( Low-PAPR sequence or ZC sequence) is intercepted and sent.
  • the network device receives the SRS resource.
  • the terminal behavior can be network device instructions, protocol provisions, or terminal selection.
  • the UE does not send the SRS.
  • the network device does not receive SRS.
  • the UE needs to generate a sequence (Low-PAPR sequence or ZC sequence) for the SRS.
  • Send after interception the network device receives the SRS resource.
  • the terminal behavior can be network device instructions, protocol provisions, or terminal selection.
  • the UE does not send the SRS.
  • the network device does not receive SRS.
  • the UE needs to generate a sequence (Low-PAPR sequence or ZC sequence) for the SRS.
  • Send after interception the network device receives the SRS resource.
  • the terminal behavior can be network device instructions, protocol provisions, or terminal selection.
  • Solution 2 When performing uplink positioning, the configuration methods related to SRS resource bandwidth include the following three methods:
  • Method 1 When SRS resources are used for positioning, the SRS resources are configured by the serving gNB (or cell) to be sent in the UL active BWP.
  • the SRS configuration information sent by the serving gNB (or cell) to the location server may include UL BWP information associated with the SRS, where the UL BWP information may be active UL BWP configuration information and/or all UL BWPs information configured to the UE.
  • the location server can then notify or configure the UL BWP information associated with the SRS to other gNBs (or cells) participating in positioning.
  • the serving gNB instructs the location server's new UL BWP configuration or new UL BWP ID information, as well as the new BWP time domain configuration information, and then the location server notifies these information to other gNBs participating in positioning.
  • the serving gNB directly indicates the new UL BWP configuration or new UL BWP ID information, and the time domain configuration information of the new BWP to other gNBs participating in the positioning directly through the Xn interface.
  • the uplink resources used for positioning may not be limited to SRS, and may also be other uplink positioning reference signals or uplink positioning resources.
  • Method 2 During uplink positioning, the network equipment configures a special UL BWP for positioning for the UE, which can be called ‘UL positioning BWP’. According to the configuration information, the UE sends SRS resources for positioning in the'UL positioning BWP'.
  • UL positioning BWP a special UL BWP for positioning for the UE
  • the maximum bandwidth of the ‘UL positioning BWP’ is related to the capabilities of the UE.
  • the network equipment can obtain the maximum bandwidth of the ‘UL positioning BWP’ according to the capability information reported by the UE, and configure the frequency domain range of the ‘UL positioning BWP’.
  • the'UL positioning BWP' can be configured outside the active UL BWP.
  • the frequency domain range of'UL positioning BWP' may be within the UL BWP configuration or outside the UL BWP configuration.
  • the UE can be configured with a maximum of 4 BWPs. In the UL BWP configuration, it means that the frequency domain range of the'UL positioning BWP' does not exceed the frequency domain range occupied by these 4 BWPs together.
  • the configuration information of the'UL positioning BWP' may include BWP ID, numerology information, bandwidth information, frequency domain location, configuration information associated with SRS resources, and the like.
  • the network equipment needs to report the configuration information of the'UL positioning BWP' to the location server, and the location server needs to notify/configure the information associated with the'UL positioning BWP' to other gNBs (or cells) participating in positioning.
  • the configuration information of the'UL positioning BWP' may include BWP ID, numerology information, bandwidth information, frequency domain location, SRS-related configuration information, etc.
  • the network device needs to report the configuration information of the ‘UL positioning BWP’ to the location server, and the location server needs to notify/configure the information associated with the ‘UL positioning BWP’ to other gNBs (or cells) participating in positioning.
  • the network equipment configures SRS resources for uplink positioning
  • the UE if the'UL positioning BWP' is allocated in the current UL BWP and the numerology is the same as the current BWP, the UE does not need to switch to the'UL positioning BWP'; otherwise, the network equipment Instruct the UE to switch to the'UL positioning BWP'.
  • the uplink positioning ends or terminates, if the current BWP is ‘UL positioning BWP’, the network equipment instructs the UE to switch to the new ‘UL positioning BWP’; otherwise, the UE does not need to switch BWP.
  • the network device needs to report the BWP handover information to the location server, and then the location server will notify or configure it to other gNBs (or cells) participating in positioning.
  • the uplink resources used for positioning may not be limited to SRS, and may also be other uplink positioning reference signals or uplink positioning resources.
  • Method 3 During uplink positioning, the UE assumes that the SRS configuration information configured for the UE for positioning has nothing to do with the UL BWP(s) configured for the UE, and the UE behavior may be a network indication or protocol regulation. Furthermore, the bandwidth and numerology of SRS resources may not be restricted by BWP. Further, the maximum bandwidth of the SRS resource is related to the UE capability, and the network device can configure the frequency domain range of the SRS resource according to the maximum uplink transmission bandwidth that the terminal can support in the capability information reported by the UE. Further, the frequency domain range of the SRS resource may be within the UL BWP configuration or outside the UL BWP configuration. According to the network device configuration, the UE sends the SRS resource for positioning.
  • the UE can always send the SRS resource. Or, when the UL BWP is handed over, the UE stops sending the SRS resource.
  • the uplink resources used for positioning may not be limited to SRS resources, and may also be other uplink positioning reference signals or uplink positioning resources.
  • FIG. 15 is a structural diagram of a network device provided by an embodiment of the present disclosure. As shown in FIG. 15, the network device 1500 includes:
  • the first sending module 1501 is configured to send first configuration information to a terminal, where the first configuration information is used to configure a pattern of sounding reference signal SRS resources, and the SRS resources are equally spaced in the frequency domain, and the number of subcarriers is separated.
  • the number is M, and M is an integer greater than 4.
  • the comb structure corresponding to the M sub-carriers distributed at equal intervals in the frequency domain is comb-M, and the M is 6, 8, or 12.
  • the pattern of the SRS resource is composed of two consecutive resource blocks RB.
  • the first configuration information is also used to configure a comb-like structure frequency domain offset of the SRS resource comb offset, and the comb offset is used to indicate that the last symbol of the SRS resource is the lowest in the first RB The RE location.
  • the first RB is any odd RB or even RB in the SRS resource.
  • the pattern of the SRS resource consists of one RB.
  • the first configuration information is also used to configure the comb offset of the SRS resource, and the comb offset is used to indicate the lowest RE position of the last symbol of the SRS resource in the RB.
  • the value of the comb offset is a natural number smaller than M.
  • the SRS resource occupies consecutive N symbols
  • N is 1, 2, 4, 8, or an integer greater than 8;
  • N is 1, 2, 4, 6, 8, 12, or an integer greater than 12.
  • the consecutive N symbols occupied by the SRS resource are the first N symbols, the last N symbols, or N symbols in any middle position in a slot.
  • the first configuration information is also used to configure the cyclic shift value and repetition factor of the SRS resource.
  • the value of the cyclic shift value is a natural number less than 8, and the value of the repetition factor is 1, 2, 4, or 6;
  • the value of the cyclic shift value is a natural number less than 6, and the value of the repetition factor is 1, 2, 4, or 8;
  • the value of the cyclic shift value is a natural number less than 4, and the value of the repetition factor is 1, 2, 4, 6, or 12.
  • the first configuration information is also used to configure the RE offset of adjacent symbols of the SRS resource.
  • the value of the RE offset is 1, 2 or 3;
  • the value range of the RE offset is 1, 2 or 4;
  • the value range of the RE offset is 1, 2, 3, 4, or 6.
  • the RE offset is used to calculate the frequency domain position of the SRS resource, and when the frequency domain position of the SRS resource calculated according to the RE offset exceeds a preset frequency domain range, the The frequency domain position of the SRS resource is: a position obtained by modulating the frequency domain position according to a specific value.
  • the preset frequency domain range is 1 RB, and the specific value is 12;
  • the preset frequency domain range is 2 RBs, and the specific value is 24.
  • the SRS resource is used for positioning.
  • the frequency domain position of the last M+Y symbol of the SRS resource is the same as the frequency domain position of the last Y symbol, and M+Y is less than Or equal to N, and Y is a positive integer.
  • the value of the frequency domain position of the last M+Y symbol of the SRS resource is the same as the value of the frequency domain position of the last Yth symbol.
  • the first sending module 1501 further includes:
  • the first configuration information when the first configuration information meets a first preset condition, the first configuration information is further used to instruct the terminal pair to perform a preset operation;
  • the first preset condition includes any one of the following:
  • the bandwidth information of the SRS resource is 8RB, 16RB or 32RB;
  • the preset operation includes:
  • the first configuration information has nothing to do with the UL BWP configuration of the uplink bandwidth part of the terminal.
  • the first sending module 1501 is further configured to send second indication information to the terminal, where the second indication information is used to indicate that the first configuration information is not related to the UL BWP configuration.
  • the first configuration information that is not related to the UL BWP configuration includes: bandwidth information of the SRS resource and baseband parameter numerology are not related to the UL BWP configuration.
  • the network device 1500 further includes:
  • a fourth receiving module configured to receive capability information sent by the terminal, where the capability information includes the maximum uplink transmission bandwidth that the terminal can support;
  • the determining module is configured to determine the frequency domain range of the SRS resource according to the maximum uplink transmission bandwidth.
  • the network device provided by the embodiment of the present disclosure can implement each process implemented by the network device in the method embodiment of FIG. 3, and to avoid repetition, details are not described herein again.
  • FIG. 16 is a structural diagram of a network device provided by an embodiment of the present disclosure.
  • the network device is the first network device currently served by the terminal.
  • the network device 1600 includes:
  • the second sending module 1601 is configured to send relevant information of the first BWP after the handover to a second network device when the terminal performs BWP handover, and the second network device includes the network equipment participating in the terminal positioning.
  • the second sending module 1601 is specifically configured to: directly send related information of the first BWP to the second network device through an Xn interface;
  • the related information of the first BWP includes time domain configuration information of the first BWP, and the first BWP configuration or identification information of the first BWP.
  • the second sending module 1601 is further configured to send second configuration information to the terminal, where the second configuration information is used to configure the terminal to send the second configuration information in the UL active BWP of the uplink active bandwidth part.
  • the second configuration information is used to configure the terminal to send the second configuration information in the UL active BWP of the uplink active bandwidth part.
  • the second sending module 1601 is further configured to send third configuration information to the terminal, where the third configuration information is configuration information of the first BWP, and the third configuration information is used for configuration
  • the terminal sends the first object on the first BWP, where the first BWP is an uplink bandwidth part UL BWP dedicated to positioning.
  • the second sending module 1601 is further configured to send third instruction information to the terminal when the second preset condition is not met, and the third instruction information is used to instruct the terminal to perform BWP switching;
  • the second preset condition includes: the first BWP is included in the BWP currently activated by the terminal, and the baseband parameters of the first BWP are the same as the baseband parameters of the BWP currently activated by the terminal.
  • the configuration information of the first BWP includes identification information of the first BWP, baseband parameter numerology information of the first BWP, bandwidth information of the first BWP, and frequency domain location information of the first BWP And at least one item of the configuration information of the first object.
  • the first object is a sounding reference signal SRS resource.
  • the network device provided by the embodiment of the present disclosure can implement each process implemented by the network device in the method embodiment of FIG. 11, and in order to avoid repetition, details are not described herein again.
  • FIG. 17 is a structural diagram of a terminal provided by an embodiment of the present disclosure.
  • a terminal 1700 includes:
  • the first receiving module 1701 is configured to receive first configuration information sent by a network device; wherein the first configuration information is used to configure a pattern of sounding reference signal SRS resources, and the SRS resources are equally spaced in the frequency domain, and The number of subcarriers in is M, and M is an integer greater than 4;
  • the comb structure corresponding to the M sub-carriers distributed at equal intervals in the frequency domain is comb-M, and the M is 6, 8, or 12.
  • the pattern of the SRS resource is composed of two consecutive resource blocks RB.
  • the first configuration information is also used to configure a comb-like structure frequency domain offset of the SRS resource comb offset, and the comb offset is used to indicate that the last symbol of the SRS resource is the lowest in the first RB The RE location.
  • the first RB is any odd RB or even RB in the SRS resource.
  • the pattern of the SRS resource consists of one RB.
  • the first configuration information is further used to configure the comb offset of the SRS resource, and the comb offset is used to indicate the lowest RE position of the last symbol of the SRS resource in the RB.
  • the value of the comb offset is a natural number smaller than M.
  • the SRS resource occupies consecutive N symbols
  • N is 1, 2, 4, 8, or an integer greater than 8;
  • N is 1, 2, 4, 6, 8, 12, or an integer greater than 12.
  • the consecutive N symbols occupied by the SRS resource are the first N symbols, the last N symbols, or N symbols in any middle position in a slot.
  • the first configuration information is also used to configure the cyclic shift value and the repetition factor of the SRS resource.
  • the value of the cyclic shift value is a natural number less than 8, and the value of the repetition factor is 1, 2, 4, or 6;
  • the value of the cyclic shift value is a natural number less than 6, and the value of the repetition factor is 1, 2, 4, or 8;
  • the value of the cyclic shift value is a natural number less than 4, and the value of the repetition factor is 1, 2, 4, 6, or 12.
  • the first configuration information is also used to configure the RE offset of adjacent symbols of the SRS resource.
  • the value of the RE offset is 1, 2 or 3;
  • the value range of the RE offset is 1, 2 or 4;
  • the value range of the RE offset is 1, 2, 3, 4, or 6.
  • the RE offset is used to calculate the frequency domain position of the SRS resource, and when the frequency domain position of the SRS resource calculated according to the RE offset exceeds a preset frequency domain range, the The frequency domain position of the SRS resource is: a position obtained by modulating the frequency domain position according to a specific value.
  • the preset frequency domain range is 1 RB, and the specific value is 12;
  • the preset frequency domain range is 2 RBs, and the specific value is 24.
  • the SRS resource is used for positioning.
  • the frequency domain position of the last M+Y symbol of the SRS resource is the same as the frequency domain position of the last Y symbol, and M+Y is less than Or equal to N, and Y is a positive integer.
  • the value of the frequency domain position of the last M+Y symbol of the SRS resource is the same as the value of the frequency domain position of the last Yth symbol.
  • the first receiving module 1701 is further configured to:
  • the terminal when the first configuration information meets a first preset condition, the terminal performs a preset operation
  • the terminal When the first configuration information does not meet a first preset condition, the terminal sends the SRS resource;
  • the first preset condition includes any one of the following:
  • the bandwidth information of the SRS resource is 8RB, 16RB or 32RB;
  • the preset operation includes:
  • the first configuration information has nothing to do with UL BWP configuration of the uplink bandwidth part.
  • the first configuration information has nothing to do with UL BWP configuration, which is agreed by the protocol or indicated by the network device.
  • the handover of the UL BWP has nothing to do with the terminal sending the SRS resource.
  • the first configuration information has nothing to do with UL BWP configuration and includes: bandwidth information and baseband parameter numerology of the SRS resource have nothing to do with UL BWP configuration.
  • the terminal 1700 further includes:
  • the fourth sending module is configured to send capability information of the terminal to the network device, where the capability information includes the maximum uplink transmission bandwidth that the terminal can support, and the maximum uplink transmission bandwidth is used for the network device to determine the SRS resource The frequency domain range.
  • the terminal provided in the embodiment of the present disclosure can implement each process implemented by the terminal in the method embodiment of FIG. 12, and to avoid repetition, details are not described herein again.
  • FIG. 18 is a structural diagram of a location server provided by an embodiment of the present disclosure. As shown in FIG. 18, the location server 1800 includes:
  • the second receiving module 1801 is configured to receive related information about the first BWP sent by the first network device when the terminal performs BWP switching, where the first BWP is the BWP after the terminal is switched, and the first BWP is used for Sending a first object by the terminal, where the first object includes an uplink positioning reference signal or an uplink positioning resource;
  • the third sending module 1802 is configured to send related information about the first BWP to a second network device, where the second network device includes other network devices participating in the terminal positioning except the first network device Network equipment.
  • the related information of the first BWP includes time domain configuration information of the first BWP, and the first BWP configuration or identification information of the first BWP.
  • the first object is a sounding reference signal SRS resource.
  • the terminal provided in the embodiment of the present disclosure can implement each process implemented by the location server in the method embodiment of FIG. 13, and to avoid repetition, details are not described herein again.
  • FIG. 19 is a structural diagram of a terminal provided by an embodiment of the present disclosure.
  • the terminal 1900 includes:
  • the third receiving module 1901 is configured to receive fourth configuration information sent by a network device, where the fourth configuration information is used to configure the terminal to send a first object on a first BWP, where the first BWP is an uplink bandwidth dedicated to positioning For part of the UL BWP, the first object includes an uplink positioning reference signal or an uplink positioning resource.
  • the terminal performs BWP handover
  • the terminal does not perform BWP switching
  • the second preset condition includes: the first BWP is included in the BWP currently activated by the terminal, and the baseband parameters of the first BWP are the same as the baseband parameters of the BWP currently activated by the terminal.
  • the third receiving module 1901 is further configured to: receive third indication information sent by the network device, where the third indication information is used to instruct the terminal to perform BWP switching .
  • the first object is a sounding reference signal SRS resource.
  • the terminal provided in the embodiment of the present disclosure can implement each process implemented by the terminal in the method embodiment of FIG. 14. To avoid repetition, details are not described herein again.
  • FIG. 20 is a structural diagram of another network device provided by an embodiment of the present disclosure.
  • the network device 2000 includes: a processor 2001, a transceiver 2002, a memory 2003, and a bus interface, where:
  • the transceiver 2002 is configured to send first configuration information to the terminal, where the first configuration information is used to configure a pattern of sounding reference signal SRS resources, the SRS resources are equally spaced in the frequency domain, and the number of spaced subcarriers is M, M is an integer greater than 4.
  • the transceiver 2002 is configured to send relevant information of the first BWP after the handover to a second network device when the terminal performs BWP handover, and the second network device includes the network devices participating in the terminal positioning except for the A network device other than the first network device; the first BWP is used by the terminal to send a first object, and the first object includes an uplink positioning reference signal or an uplink positioning resource.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 2001 and various circuits of the memory represented by the memory 2003 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 2002 may be a plurality of elements, that is, include a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the user interface 2004 may also be an interface capable of externally connecting internally required equipment, and the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, etc.
  • the processor 2001 is responsible for managing the bus architecture and general processing, and the memory 2003 can store data used by the processor 2001 when performing operations.
  • an embodiment of the present disclosure further provides a network device, including a processor 2001, a memory 2003, a computer program stored in the memory 2003 and capable of running on the processor 2001, and the computer program is executed by the processor 2001
  • a network device including a processor 2001, a memory 2003, a computer program stored in the memory 2003 and capable of running on the processor 2001, and the computer program is executed by the processor 2001
  • FIG. 21 is a structural diagram of another location server provided by an embodiment of the present disclosure.
  • the location server 2100 includes a processor 2101, a transceiver 2102, a memory 2103, and a bus interface, where:
  • the transceiver 2102 is configured to receive related information about the first BWP sent by the first network device when the terminal performs BWP switching, where the first BWP is the BWP after the terminal is switched, and the first BWP is used for the
  • the terminal sends a first object, where the first object includes an uplink positioning reference signal or an uplink positioning resource; sends related information about the first BWP to a second network device, and the second network device includes the network participating in the positioning of the terminal Other network devices in the device except the first network device.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 2101 and various circuits of the memory represented by the memory 2103 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 2102 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the user interface 2104 may also be an interface capable of externally connecting internally required equipment, and the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 2101 is responsible for managing the bus architecture and general processing, and the memory 2103 can store data used by the processor 2101 when performing operations.
  • an embodiment of the present disclosure also provides a location server, including a processor 2101, a memory 2103, a computer program stored on the memory 2103 and running on the processor 2101, and the computer program is executed by the processor 2101
  • a location server including a processor 2101, a memory 2103, a computer program stored on the memory 2103 and running on the processor 2101, and the computer program is executed by the processor 2101
  • FIG. 22 is a schematic diagram of the hardware structure of a terminal that implements various embodiments of the present disclosure.
  • the terminal 2200 includes, but is not limited to: a radio frequency unit 2201, a network module 2202, an audio output unit 2203, an input unit 2204, a sensor 2205, a display unit 2206, a user input unit 2207, an interface unit 2208, a memory 2209, a processor 2210, and a power supply 2211 and other parts.
  • a radio frequency unit 2201 includes, but is not limited to: a radio frequency unit 2201, a network module 2202, an audio output unit 2203, an input unit 2204, a sensor 2205, a display unit 2206, a user input unit 2207, an interface unit 2208, a memory 2209, a processor 2210, and a power supply 2211 and other parts.
  • terminal structure shown in FIG. 22 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange different components.
  • terminals include, but are not limited to, mobile phones, tablet computers, notebook computers, palmtop computers
  • the radio frequency unit 2201 is configured to receive first configuration information sent by a network device; wherein the first configuration information is used to configure a pattern of sounding reference signal SRS resources, and the SRS resources are equally spaced in the frequency domain, and the spaced sub
  • the number of carriers is M, and M is an integer greater than 4.
  • the radio frequency unit 2201 is configured to receive fourth configuration information sent by a network device, where the fourth configuration information is used to configure the terminal to send a first object on a first BWP, where the first BWP is an uplink bandwidth dedicated to positioning For part of the UL BWP, the first object includes an uplink positioning reference signal or an uplink positioning resource.
  • the radio frequency unit 2201 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, the downlink data from the base station is received and processed by the processor 2210; in addition, Uplink data is sent to the base station.
  • the radio frequency unit 2201 includes but is not limited to an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 2201 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 2202, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 2203 may convert the audio data received by the radio frequency unit 2201 or the network module 2202 or stored in the memory 2209 into audio signals and output them as sounds. Moreover, the audio output unit 2203 may also provide audio output related to a specific function performed by the terminal 2200 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 2203 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 2204 is used to receive audio or video signals.
  • the input unit 2204 may include a graphics processing unit (GPU) 22041 and a microphone 22042.
  • the graphics processor 22041 is configured to respond to still pictures or video images obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame can be displayed on the display unit 2206.
  • the image frame processed by the graphics processor 22041 may be stored in the memory 2209 (or other storage medium) or sent via the radio frequency unit 2201 or the network module 2202.
  • the microphone 22042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 2201 for output in the case of a telephone call mode.
  • the terminal 2200 also includes at least one sensor 2205, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 22061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 22061 and/or when the terminal 2200 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal posture (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc.; sensor 2205 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, infrared Sensors, etc., will not be repeated here.
  • the display unit 2206 is used to display information input by the user or information provided to the user.
  • the display unit 2206 may include a display panel 22061, and the display panel 22061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 2207 can be used to receive input digital or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 2207 includes a touch panel 22071 and other input devices 22072.
  • the touch panel 22071 also called a touch screen, can collect the user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 22071 or near the touch panel 22071. operating).
  • the touch panel 22071 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it
  • the processor 2210 receives and executes the command sent by the processor 2210.
  • the touch panel 22071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 2207 may also include other input devices 22072.
  • other input devices 22072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 22071 can cover the display panel 22061.
  • the touch panel 22071 detects a touch operation on or near it, it transmits it to the processor 2210 to determine the type of the touch event, and then the processor 2210 determines the type of the touch event according to the touch.
  • the type of event provides corresponding visual output on the display panel 22061.
  • the touch panel 22071 and the display panel 22061 are used as two independent components to realize the input and output functions of the terminal, but in some embodiments, the touch panel 22071 and the display panel 22061 may be integrated. Realize the input and output functions of the terminal, which are not limited here.
  • the interface unit 2208 is an interface for connecting an external device and the terminal 2200.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (input/output, I/O) port, video I/O port, headphone port, etc.
  • the interface unit 2208 can be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 2200 or can be used to communicate between the terminal 2200 and the external device. Transfer data between.
  • the memory 2209 can be used to store software programs and various data.
  • the memory 2209 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 2209 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 2210 is the control center of the terminal. It uses various interfaces and lines to connect various parts of the entire terminal, and executes by running or executing software programs and/or modules stored in the memory 2209, and calling data stored in the memory 2209. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 2210 may include one or more processing units; optionally, the processor 2210 may integrate an application processor and a modem processor.
  • the application processor mainly processes the operating system, user interface, and application programs, etc.
  • the adjustment processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 2210.
  • the terminal 2200 may also include a power source 2211 (such as a battery) for supplying power to various components.
  • a power source 2211 such as a battery
  • the power source 2211 may be logically connected to the processor 2210 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system And other functions.
  • terminal 2200 includes some functional modules not shown, which will not be repeated here.
  • the embodiment of the present disclosure further provides a terminal, including a processor 2210, a memory 2209, a computer program stored on the memory 2209 and capable of running on the processor 2210, when the computer program is executed by the processor 2210
  • a terminal including a processor 2210, a memory 2209, a computer program stored on the memory 2209 and capable of running on the processor 2210, when the computer program is executed by the processor 2210
  • the embodiments of the present disclosure also provide a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the SRS resource configuration method and BWP on the network device side provided by the embodiments of the present disclosure are implemented.
  • Each process of the handover processing method embodiment, or the computer program is executed by the processor to implement each process of the SRS resource configuration method embodiment on the terminal side provided by the embodiment of the present disclosure, or the computer program is executed by the processor.
  • the various processes of the embodiments of the BWP handover processing method on the location server side provided in the disclosed embodiments are disclosed, and the same technical effects can be achieved. To avoid repetition, details are not repeated here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the technical solution of the present disclosure essentially or the part that contributes to the related technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk). ) Includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a base station, etc.) execute the method described in each embodiment of the present disclosure.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the computer software product is stored in a storage medium and includes several instructions to make a A computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the steps of the methods described in the various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • the program can be stored in a computer readable storage medium. When executed, it may include the procedures of the above-mentioned method embodiments.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.
  • modules, units, and sub-units can be implemented in one or more Application Specific Integrated Circuits (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSP Device, DSPD) ), Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, used to implement Described functions in other electronic units or combinations thereof.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processor
  • DSP Device Digital Signal Processing Device
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present disclosure can be implemented by modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种SRS资源配置方法、BWP的切换处理方法和相关设备,该SRS资源配置方法包括:向终端发送第一配置信息,所述第一配置信息用于配置探测参考信号SRS资源的图样,所述SRS资源在频域等间隔分布,且间隔的子载波的数量为M,M为大于4的整数。

Description

SRS资源配置方法、BWP的切换处理方法和相关设备
相关申请的交叉引用
本申请主张在2019年4月30日在中国提交的中国专利申请号No.201910364205.0的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种SRS资源配置方法、带宽部分(Bandwidth Part,BWP)的切换处理方法和相关设备。
背景技术
在第五代(5th Generation,5G)移动通信,根据探测参考信号(Sounding Reference Signal,SRS)的功能不同,SRS可用于波束管理(Beam management)、基于码本Codebook的传输、基于非码本non-Codebook的传输和天线切换(Antenna Switching)发送。终端UE可通过高层信令获取多个SRS资源集合,每个SRS资源集合配置中包含其用途、周期特性等配置。
5G移动通信系统中,在1个时隙内,SRS资源可占用最后6个符号,高层信令可配置SRS资源占用1/2/4个符号传输,并支持频域上的梳状comb结构为comb-2和comb-4。根据SRS资源发送周期的不同,支持周期性发送SRS资源、半持续发送SRS资源和非周期触发SRS资源。非周期SRS资源时,高层信令配置每个SRS资源触发状态对应的SRS资源集合和时隙偏移量,该偏移量指示了终端(User Equipment,UE)接收到SRS触发至实际发送之间时隙级的间隔。
由于相关技术中,支持SRS资源频域密度为comb-2和comb-4,使得SRS资源的发送功率较低。
发明内容
本公开实施例提供一种SRS资源配置方法、BWP的切换处理方法和相关设备、网络设备和终端,以解决SRS资源的发送功率较低的问题。
第一方面,本公开实施例提供一种SRS资源配置方法,应用于网络设备,包括:
向终端发送第一配置信息,所述第一配置信息用于配置探测参考信号SRS资源的图样,所述SRS资源在频域等间隔分布,且间隔的子载波的数量为M,M为大于4的整数。
第二方面,本公开实施例还提供一种带宽部分BWP的切换处理方法,应用于第一网络设备,所述第一网络设备为终端当服务的网络设备,所述方法包括:在终端进行BWP切换时,将切换后的第一BWP的相关信息发送至第二网络设备,所述第二网络设备包括参与所述终端定位的网络设备中除所述第一网络设备之外的其他网络设备;所述第一BWP用于所述终端发送第一对象,所述第一对象包括上行定位参考信号或上行定位资源。
第三方面,本公开实施例还提供一种SRS资源配置方法,应用于终端侧,包括:
接收网络设备发送的第一配置信息;其中,所述第一配置信息用于配置探测参考信号SRS资源的图样,所述SRS资源在频域等间隔分布,且间隔的子载波的数量为M,M为大于4的整数。
第四方面,本公开实施例还提供一种带宽部分BWP的切换处理方法,应用于位置服务器,所述方法包括:
在终端进行BWP切换时,接收第一网络设备发送的第一BWP的相关信息,所述第一BWP为所述终端切换后的BWP,所述第一BWP用于所述终端发送第一对象,所述第一对象包括上行定位参考信号或上行定位资源;
向第二网络设备发送所述第一BWP的相关信息,所述第二网络设备包括参与所述终端定位的网络设备中除所述第一网络设备之外的其他网络设备。
第五方面,本公开实施例还提供一种SRS资源配置方法,应用于终端侧,包括:
接收网络设备发送的第四配置信息,所述第四配置信息用于配置终端在第一BWP上发送第一对象,所述第一BWP为专用于定位的上行带宽部分(UpLink Bandwidth Part,UL BWP),所述第一对象包括上行定位参考信号或上行定位资源。
第六方面,本公开实施例还提供一种网络设备,包括:
第一发送模块,用于向终端发送第一配置信息,所述第一配置信息用于配置探测参考信号SRS资源的图样,所述SRS资源在频域等间隔分布,且间隔的子载波的数量为M,M为大于4的整数。
第七方面,本公开实施例还提供一种网络设备,所述网络设备为终端当前服务的第一网络设备,包括:
第二发送模块,用于在终端进行BWP切换时,将切换后的第一BWP的相关信息发送至第二网络设备,所述第二网络设备包括参与所述终端定位的网络设备中除所述第一网络设备之外的其他网络设备;所述第一BWP用于所述终端发送第一对象,所述第一对象包括上行定位参考信号或上行定位资源。
第八方面,本公开实施例还提供一种终端,包括:
第一接收模块,用于接收网络设备发送的第一配置信息;其中,所述第一配置信息用于配置探测参考信号SRS资源的图样,所述SRS资源在频域等间隔分布,且间隔的子载波的数量为M,M为大于4的整数。
第九方面,本公开实施例还提供一种位置服务器,包括:
第二接收模块,用于在终端进行BWP切换时,接收第一网络设备发送的第一BWP的相关信息,所述第一BWP为所述终端切换后的BWP,所述第一BWP用于所述终端发送第一对象,所述第一对象包括上行定位参考信号或上行定位资源;
第三发送模块,用于向第二网络设备发送所述第一BWP的相关信息,所述第二网络设备包括参与所述终端定位的网络设备中除所述第一网络设备之外的其他网络设备。
第十方面,本公开实施例还提供一种终端,包括:
第三接收模块,用于接收网络设备发送的第四配置信息,所述第四配置信息用于配置终端在第一BWP上发送第一对象,所述第一BWP为专用于定位的上行带宽部分UL BWP,所述第一对象包括上行定位参考信号或上行定位资源。
第十一方面,本公开实施例还提供一种网络设备,包括:存储器、处理器 及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现上述SRS资源配置方法中的步骤,或者所述程序被所述处理器执行时实现上述带宽部分BWP的切换处理方法中的步骤。
第十二方面,本公开实施例还提供一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现上述SRS资源配置方法中的步骤。
第十三方面,本公开实施例还提供一种位置服务器,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现上述带宽部分BWP的切换处理方法中的步骤。
第十四方面,本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述SRS资源配置方法的步骤,或者所述计算机程序被处理器执行时实现上述带宽部分BWP的切换处理方法的步骤。
本公开实施例通过设置SRS资源在频域等间隔分布,且间隔的子载波的数量大于4,相对于相关技术中SRS资源频域密度为comb-2和comb-4,由于增加了SRS资源在频域等间隔,因此,本公开实施例增强了SRS资源的发送功率。
附图说明
图1是本公开实施例可应用的一种网络系统的结构图;
图2是本公开实施例提供的一种SRS资源配置方法的流程图之一;
图3是本公开实施例提供的一种SRS资源配置方法中SRS资源的图样示例图之一;
图4是本公开实施例提供的一种SRS资源配置方法中SRS资源的图样示例图之二;
图5是本公开实施例提供的一种SRS资源配置方法中SRS资源的图样示例图之三;
图6是本公开实施例提供的一种SRS资源配置方法中SRS资源的图样示例图之四;
图7是本公开实施例提供的一种SRS资源配置方法中SRS资源的图样示例图之五;
图8是本公开实施例提供的一种SRS资源配置方法中SRS资源的图样示例图之六;
图9是本公开实施例提供的一种SRS资源配置方法中SRS资源的图样示例图之七;
图10是本公开实施例提供的一种SRS资源配置方法中SRS资源的图样示例图之八;
图11是本公开实施例提供的一种BWP的切换处理方法的流程图之一;
图12是本公开实施例提供的一种SRS资源配置方法的流程图之二;
图13是本公开实施例提供的一种BWP的切换处理方法的流程图之二;
图14是本公开实施例提供的一种SRS资源配置方法的流程图之三;
图15是本公开实施例提供的一种网络设备的结构图之一;
图16是本公开实施例提供的一种网络设备的结构图之二;
图17是本公开实施例提供的一种终端的结构图之一;
图18是本公开实施例提供的一种位置服务器的结构图之一;
图19是本公开实施例提供的一种终端的结构图之二;
图20是本公开实施例提供的一种网络设备的结构图之三;
图21是本公开实施例提供的一种位置服务器的结构图之二;
图22是本公开实施例提供的一种终端的结构图之三。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清 楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更可选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面结合附图介绍本公开的实施例。本公开实施例提供的一种SRS资源配置方法、BWP的切换处理方法、网络设备、终端及位置服务器、网络设备、终端和位置服务器可以应用于无线通信系统中。该无线通信系统可以为采用5G系统,或者演进型长期演进(Evolved Long Term Evolution,eLTE)系统,或者后续演进通信系统。
请参见图1,图1是本公开实施例可应用的一种网络系统的结构图,如图1所示,包括终端11和网络设备12,其中,终端11可以是用户终端或者其他终端侧设备,例如:手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端侧设备,需要说明的是,在本公开实施例中并不限定终端11的具体类型。上述网络设备12可以是5G基站,或者以后版本的基站,或者其他通信系统中的基站,或者称之为节点B,演进节点B,或者传输接收点(Transmission Reception Point,TRP),或者接入点(Access Point,AP),或者所述领域中其他词汇,只要达到相同的技术效果,所述网络设备不限于特定技术词汇。另外,上述网络设备12可以是主节点(Master Node,MN),或者辅节点(Secondary Node,SN)。需要说明的是,在本公开实施例中仅以5G基站为例,但是并不限定网络设备的具体类型。
请参见图2,图2是本公开实施例提供的一种SRS资源配置方法的流程图,该方法应用于网络设备,如图2所示,包括以下步骤:
步骤201,向终端发送第一配置信息,所述第一配置信息用于配置探测参考信号SRS资源的图样,所述SRS资源在频域等间隔分布,且间隔的子载波 的数量为M,M为大于4的整数。
本公开实施例中,上述M的大小可以根据实际需要进行设置,例如在一可选实施例中,M可以为6、8或12。具体的,所述频域等间隔分布M个子载波对应的梳状comb结构为comb-M。即当M的取值为6、8或12时,对应的comb结构为com-6、com-8或com-12。
应理解,上述第一配置信息还可以包含除了SRS资源图样信息外,还可以包括SRS资源的带宽信息、SRS资源功率控制信息、SRS资源时域配置信息、SRS资源波束配置信息和SRS资源序列配置信息等与SRS资源发送关联的配置信息。
本公开实施例通过设置SRS资源在频域等间隔分布,且间隔的子载波的数量大于4,相对于相关技术中SRS资源频域密度为comb-2和comb-4,由于增加了SRS资源在频域等间隔,因此,本公开实施例增强了SRS资源的发送功率。
需要说明的是,M的值不同,对应的SRS资源的图样可以不同,例如在可选一实施例中,当M为8时,所述SRS资源的图样由两个连续的资源块(Resource Block,RB)构成。在另一可选实施例中,当M为6或12时,所述SRS资源的图样由一个RB构成。
其中,SRS资源的图样由2个连续的RB构成可以理解为:所述SRS资源在进行时频资源映射时,在1个slot内奇数RB上资源单元(Resource element,RE)位置与SRS资源的图样的奇数RB相同,任意偶数RB上的RE位置与SRS资源图样的偶数RB相同。换句话说,2个连续的RB可以组成一个RB组(RB bundle),是SRS资源在进行时频资源映射时的最小单元。SRS资源在整个SRS带宽范围内的RE位置以这个RB组为基准不断在频域进行重复获得。
在本公开实施例中,上述第一配置信息还可以用于配置所述SRS资源的梳状结构频域偏移comb offset。进一步的,在一可选实施例中,上述SRS资源的梳状结构频域偏移comb offset,可以由网络设备配置,也可以由协议约定。
当M为8时,所述comb offset用于指示所述SRS资源最后1个符号在 第一RB中最低的RE位置。
当M为6或12时,所述comb offset用于指示所述SRS资源最后1个符号在RB中最低的RE位置。
上述第一RB的位置可以根据实际情况进行设置,具体的,第一RB可以为SRS资源中任意奇数RB或偶数RB。在本公开实施例中,第一RB为奇数还是偶数可以由协议约定、也可以由网络设备进行指示,还可以由终端选择。当由网络设备指示时,可以通过1bit指示当前最低的RE是在奇数RB还是在偶数RB上。
在本公开实施例中,所述comb offset的取值为小于M的自然数。例如,当M为6时,comb offset的取值为小于6的自然数;当M为8时,comb offset的取值为小于8的自然数;当M为12时,comb offset的取值为小于12的自然数。具体的,以M=8为例进行说明,当comb offset为i时,i为小于8的自然数,表示所述SRS资源的最后一个符号在RB中最低RE的位置为倒数第i+1个RE。当comb offset为0时,对应的所述SRS资源的最后一个符号在RB中最低RE的位置为最后1个RE,具体如图3和图4所示。
进一步的,在本公开实施例中,所述SRS资源占用连续的N个符号;
其中,当M=6时,N的取值为1、2、4、6或者大于6的整数;
当M=8时,N的取值为1、2、4、8或者大于8的整数;
当M=12时,N的取值为1、2、4、6、8、12或者大于12的整数。
具体的,SRS资源占用的连续的N个符号可以为1个时隙slot内的前N个符号、后N个符号,或中间任意位置的N个符号,SRS资源的N个符号不能超过slot边界。
进一步的,上述第一配置信息还可以用于配置所述SRS资源的循环移位(cyclic shift)值。具体的,当comb的结构为comb-6时,该SRS资源的循环移位值可以为小于8的自然数;当comb的结构为comb-8时,该SRS资源的循环移位值可以为小于6的自然数;当comb的结构为comb-12时,该SRS资源的循环移位值可以为小于4的自然数。
进一步的,上述第一配置信息还可以用于配置所述SRS资源的重复因子(repetition factor)值。具体的,当comb的结构为comb-6时,所述重复因子 的取值为1、2、4或6;当comb的结构为comb-8时,所述重复因子的取值为1、2、4或8;当comb的结构为comb-12时,所述重复因子的取值为1、2、4、6或12。
应理解,在本公开实施例中还可以进行RE偏移(RE shift)设置,该RE偏移可以由网络设备指示,也可以由协议约定。例如在一可选实施例中,该RE偏移由网络设备指示时,可以在第一配置信息指示RE偏移。
本公开实施例中,所述RE偏移用于计算所述SRS资源的频域位置,在根据所述RE偏移计算得到所述SRS资源的频域位置超出预设频域范围的情况下,所述SRS资源的频域位置为:按照特定值对所述频域位置取模后的位置。
所述SRS资源的频域位置可以理解为:SRS资源在某个正交频分复用(Orthogonal Frequency Division Multiplex,OFDM)符号的上RE的位置。
其中,当M=6或12时,所述预设频域范围为1个RB,所述特定值为12;
当M=8时,所述预设频域范围为2个RB,所述特定值为24。
具体的,SRS资源的频域位置为:频域位置mod特定值。以comb的结构为comb-8为例进行如下说明:
RE偏移是指SRS资源相邻的符号的RE级的偏移量(频域偏移量),前1个符号的RE的频域位置可以通过后1个相邻的符号的RE频域位置和配置的RE shift计算获得。当奇数或偶数RB上的某个符号的RE根据RE shift计算要超出连续的2个RB的范围时,可通过取模值(mod 24)使得RE的频域位置落在该连续的2个RB范围内。RE shift可以是正向或负向的偏移。对于comb-8,RE shift的大小可以是1、2或4。例如,当RE shift为1,SRS资源的符号数为8,且comb的结构为comb-8时,对应的SRS资源的图样可以参见图3所示。
进一步的,当RE shift没有被配置时,终端应假设SRS资源所有符号的RE在频域中的位置相同。例如,当SRS资源的符号数为4,且comb的结构为comb-8时,对应的SRS资源的图样可以参见图4所示。
应当说明的是,上述SRS资源的作用可以根据实际需要进行设置,例如, 在本实施例中,上述SRS资源可以用于定位。
在一可选实施例中,当SRS资源占用的符号的数量N大于所述M时,所述SRS资源的最后第M+Y符号的频域位置与最后第Y个符号的频域位置相同,M+Y小于或等于N,且Y为正整数。
进一步的,所述SRS资源的最后第M+Y符号的频域位置的值与最后第Y个符号的频域位置的值相同。
本公开实施例中,SRS资源的可以是最后X个符号的SRS的重复。当SRS资源用作定位时,不论SRS资源的comb结构被配置为多少,SRS资源的符号数N可以大于SRS的comb size X。当SRS资源符号数量N大于SRS的comb size X时,该SRS资源的最后第X+Y≤N符号的频域位置(RE位置)可以与最后第Y个符号的频域位置(RE位置)相同。SRS资源的最后第X+Y符号的频域位置(RE位置)的值可以与最后第Y个符号的频域位置(RE位置)的值也相同。具体的,可以参照图5至10所示的SRS资源图样:
在图5中,comb结构为comb-4,SRS资源占用的符号数为8;
在图6中,comb结构为comb-4,SRS资源占用的符号数为12;
在图7中,comb结构为comb-2,SRS资源占用的符号数为6;
在图8中,comb结构为comb-2,SRS资源占用的符号数为4;
在图9中,comb结构为comb-8,SRS资源占用的符号数为12;
在图10中,comb结构为comb-8,SRS资源占用的符号数为14。
进一步的,基于上述实施例,本公开实施例中,所述方法还可以包括:
向终端发送第一指示信息,所述第一指示信息用于指示所述SRS资源的带宽信息。
本公开实施例中,上述第一指示信息可以携带在上述第一配置信息中进行发送,也可以携带在另一条配置信息进行发送。当通过另一条配置信息进行发送时,该第一指示信息可以在第一配置信息发送前或者发送后进行发送,在此不做进一步的限定。
其中,上述SRS资源的带宽信息可以包含宽带SRS(wideband SRS)或窄带SRS(narrowband SRS)的带宽相关信息。
需要说明的是,可以针对部分场景可以定义终端的部分特定行为。例如, 在所述第一配置信息满足第一预设条件时,所述第一配置信息还用于指示所述终端对执行预设操作;其中,所述第一预设条件包括以下任一项:
所述M=6,所述SRS资源的带宽信息为8RB、16RB或32RB;
所述M=12,所述SRS资源的带宽信息为4RB、8RB、16RB、20RB、28RB或32RB。
其中,上述预设操作可以包括:不发送所述SRS资源;
或者对所述SRS资源的生成序列进行截取(truncate)后发送。
应理解,终端的上述部分特定行为还可以由通过协议约定或者终端选择。以下针对comb结构的不同情况进行详细说明:
情况1:若网络设备配置SRS资源的comb结构为comb-12时,且宽带SRS或窄带SRS的带宽被配置为4RB、8RB、16RB、20RB、28RB或32RB时,终端不发送SRS资源。相应的,网络设备不接收SRS资源。或者,若网络设备配置SRS资源的comb结构为comb-12时,且宽带SRS或窄带SRS的带宽被配置为4RB、8RB、16RB、20RB、28RB或32RB时,终端要对SRS资源的生成序列(低峰均功率比序列(low peak to average power ratio sequence,Low-PAPR sequence)或ZC序列)进行截取(truncate)后发送。该截取可以理解为终端从一个特定长度的序列(Low-PAPR sequence或ZC序列)中取一段,或者终端取该特定长度的序列的一个子集(subset)。
相应的,网络设备对SRS资源进行接收。该终端行为可以是网络设备指示,协议规定或终端选择。
情况2:若网络设备配置SRS资源的comb结构为comb-6时,且宽带SRS或窄带SRS的带宽被配置为8RB、16RB或32RB时,UE不发送SRS。相应的,网络设备不接收SRS。或者,若网络设备配置SRS资源的comb结构为comb-6时,且宽带SRS或窄带SRS的带宽被配置为8RB、16RB或32RB时,UE要对SRS的生成序列(Low-PAPR sequence或ZC序列)进行截取后发送。相应的,网络设备对SRS资源进行接收。该终端行为可以是网络设备指示,协议规定或终端选择。
应理解在其他实施例中,若网络设备配置SRS资源的comb结构为comb-3时,且宽带SRS或窄带SRS的带宽被配置为16RB或32RB时,UE不发送 SRS。相应的,网络设备不接收SRS。或者,若网络设备配置SRS资源的comb结构为comb-3时,且宽带SRS或窄带SRS的带宽被配置为16RB或32RB时,UE要对SRS的生成序列(Low-PAPR sequence或ZC序列)进行截取后发送。相应的,网络设备对SRS资源进行接收。该终端行为可以是网络设备指示,协议规定或终端选择。
进一步的,在进行SRS资源带宽相关的配置时,可以采用以下任一种方法进行配置。
在实施方式1中:网络设备可以向所述终端发送第二配置信息,所述第二配置信息用于配置所述终端在上行激活带宽部分UL active BWP内发送所述SRS资源。此时,终端可以根据第二配置信息,可以在UL active BWP内发送SRS资源。
在实施方式2中:网络设备可以向所述终端发送第三配置信息,所述第三配置信息为所述第一BWP的配置信息,所述第三配置信息用于配置所述终端在所述第一BWP上发送所述SRS资源,所述第一BWP为专用于定位的上行带宽部分UL BWP。此时,终端可以根据第三配置信息在第一BWP上发送SRS资源。
在实施方式3中,上述第一配置信息与所述终端的上行带宽部分UL BWP配置无关。也就是说,UL BWP配置信息可以不包含SRS资源的配置信息。SRS资源配置信息也可以不包含UL BWP的配置信息。SRS资源可以基于小区配置。
本实施方式3中,由于第一配置信息与UL BWP配置无关,从而在SRS资源用于定位时不会由于BWP限制SRS资源的发送,避免由于SRS发送的带宽限制定位的精度。
具体的,针对上述实施方式3,所述第一配置信息与所述终端的上行带宽部分UL BWP配置无关的行为可以由协议约定、网络设备配置或者终端选择。当采用网络设备配置时,上述方法还可以包括:
向所述终端发送第二指示信息,所述第二指示信息用于指示所述第一配置信息与所述UL BWP配置无关。
上述第二指示信息可以携带在上述第一配置信息中进行发送,也可以携 带在另一条配置信息进行发送。当通过另一条配置信息进行发送时,该第二指示信息可以在第一配置信息发送前或者发送后进行发送,在此不做进一步的限定。
应理解,所述第一配置信息与所述UL BWP配置无关包括:所述SRS资源的带宽信息和基带参数numerology与所述UL BWP配置无关。
进一步地,SRS资源的最大带宽与UE能力有关。具体的,在本实施例中,上述方法还可以包括:
接收所述终端发送的能力信息,所述能力信息包括UE可支持的最大上行发送带宽;
根据所述最大上行发送带宽确定所述SRS资源的频域范围。
本公开实施例中,在确定SRS资源的频域范围后,可以将SRS资源的频域范围发送给终端,具体的,所述SRS资源的频域范围可以在上述第一配置信息中发送,也可以通过其他配置信息进行发送。
进一步的,UL BWP的切换与所述终端发送所述SRS资源无关。也就是说,当SRS资源与UL BWP无关时,UL BWP切换的行为不会影响终端发送SRS资源。
或者,即使SRS资源的配置与UL BWP配置无关,UL BWP切换时,终端也可以停止发送SRS。
进一步的,所述SRS资源的频域范围可以位于所述UL BWP配置内,也可以位于所述UL BWP配置外。应理解,终端可以被配置最多4个UL BWP,SRS资源的频域范围在UL BWP配置内是指SRS资源的频域范围不超过终端被配置的多个UL BWP一起占用的频域范围。
应当说明的是,用于定位的上行资源可不限于SRS,还可以是其他上行定位参考信号或上行定位资源,本公开实施例中,SRS资源的发送与UL BWP配置无关,在其他实施例中,终端的行为还可以为用于定位的上行定位参考信号或上行定位资源与UL BWP配置无关。
例如,终端的行为可以包括:
接收网络设备发送的目标配置信息,所述目标配置信息用于配置第一对象,所述第一对象包括用于定位的上行定位参考信号或上行定位资源,目标 配置信息与UL BWP配置无关。
进一步的,所述第一配置信息与所述UL BWP配置无关包括:所述SRS资源的带宽信息和基带参数numerology与所述UL BWP配置无关。
进一步的,目标配置信息与UL BWP配置无关可以是协议约定、网络设备配置或终端选择。
进一步的,所述第一对象的频域范围位于所述UL BWP配置内,或者所述第一对象的频域范围位于所述UL BWP配置外。
相关技术中,上行定位时,需要多个目标对象接收UE发送的SRS资源。当UE切换BWP时,依靠相关技术,邻小区完全不会获得BWP切换的信息,从而无法正确接收BWP切换后的SRS资源。上述目标对象为TRP、小区cell或基站(Base Station,BS)。参照图11,为了保证参与定位的邻小区可以获得BWP的切换信息,在本公开实施例中,还提供了一种带宽部分BWP的切换处理方法,应用于第一网络设备,所述第一网络设备为终端当服务的网络设备,所述方法包括:
步骤1101,在终端进行BWP切换时,将切换后的第一BWP的相关信息发送至第二网络设备,所述第二网络设备包括参与所述终端定位的网络设备中除所述第一网络设备之外的其他网络设备;所述第一BWP用于所述终端发送第一对象,所述第一对象包括上行定位参考信号或上行定位资源。
在本公开实施例中,上述终端进行BWP切换具体指终端进行UL BWP切换,上述第一网络设备可以是当前为终端提供服务的基站(gNodeB,gNB)或者cell,即serving gNB或者serving cell。在一可选实施例中,上述第一对象为探测参考信号SRS资源,该SRS资源comb结构设计具体可以采用相关技术中的comb-2或comb-4的设计,也可以采用本公开实施例提供的comb-6、comb-8或comb-12的设计,具体的,comb-6、comb-8或comb-12的设计可以参照上述实施例,在此不再赘述。
应理解,在向第二网络设备发送第一BWP的相关信息时,在一可选实施例中,可以直接向第二网络设备发送第一BWP的相关信息。具体的,所述将切换后的第一BWP的相关信息发送至第二目标网络设备包括:
通过Xn接口直接向所述第二网络设备发送所述第一BWP的相关信息;
在一可选实施例中,可以间接向第二网络设备发送第一BWP的相关信息。具体的,所述将切换后的第一BWP的相关信息发送至第二目标网络设备包括:
向位置服务器发送所述第一BWP的相关信息,以供位置服务器向所述第二网络设备转发所述第一BWP的相关信息。
本公开实施例通过在终端进行UL BWP切换时,由第一网络设备将切换后的第一BWP的相关信息发送至第二网络设备。这样可以保证每一用于定位的第二网络设备可以获得终端切换后的第一BWP的相关信息。因此本公开实施例,可以保证参与定位的各网络设备可以正确的接收终端在切换后的第一BWP上发送的第一对象,从而提高了定位的可靠性。
进一步的,上述第一BWP的相关信息包括所述第一BWP的时域配置信息,以及所述第一BWP配置或所述第一BWP的标识信息。
进一步的,所述第一BWP配置信息中可以包含第一对象的配置信息。
进一步的,上行定位时,第一网络设备可以将与终端关联的全部UL BWP配置信息发送给位置服务器,以供位置服务器向所述第二网络设备转发全部UL BWP配置信息。所述位置服务器,可以将与终端关联的全部UL BWP配置信息发送给第二网络设备。在终端进行UL BWP切换时,上述第一BWP相关信息可以只包含第一BWP时域配置信息及第一BWP的标识信息即可。第二网络设备,仅需获得第一BWP的标识信息,即可从储存的与终端关联的全部UL BWP配置中选出第一BWP的配置信息,用于接收BWP切换后的第一BWP上发送的第一对象。
在一可选实施例中,所述将切换后的第一BWP的相关信息发送至第二网络设备之前,所述方法还包括:
向所述终端发送第二配置信息,所述第二配置信息用于配置所述终端在上行激活带宽部分UL active BWP内发送所述第一对象。
本实施例中,可以由网络设备指示终端进行BWP的切换。此时,上述第一BWP可以为网络设备重新指示激活的UL BWP。在终端从当前UL active BWP切换到第一BWP后,终端将会在第一BWP上发送第一对象。
在另一可选实施例中,所述将切换后的第一BWP的相关信息发送至目 标网络设备之前,所述方法还包括:
向所述终端发送第三配置信息,所述第三配置信息为所述第一BWP的配置信息,所述第三配置信息用于配置所述终端在所述第一BWP上发送所述第一对象,所述第一BWP为专用于定位的上行带宽部分UL BWP。
在本公开实施例中,所述第一BWP的配置信息包括所述第一BWP的标识信息、所述第一BWP的基带参数numerology信息、所述第一BWP的带宽信息、第一BWP的频域位置信息和所述第一对象的配置信息中的至少一项。
进一步的,在不满足第二预设条件的情况下,向所述终端发送第三指示信息,所述第三指示信息用于指示所述终端进行BWP切换;
其中,所述第二预设条件包括:所述第一BWP包含于所述终端当前激活的BWP,且所述第一BWP的基带参数与所述终端当前激活的BWP的基带参数相同。
本公开实施例中,上述第三指示信息可以携带在上述第三配置信息中进行发送,也可以携带在另一条配置信息进行发送。当通过另一条配置信息进行发送时,该第三指示信息可以在第三配置信息发送前或者发送后进行发送,在此不做进一步的限定。
需要说明的是,在一可选实施例中,上述第一对象为探测参考信号SRS资源,该SRS资源comb结构设计具体可以采用相关技术中的comb-2或comb-4的设计,也可以采用本公开实施例提供的comb-6、comb-8或comb-12的设计,具体的,comb-6、comb-8或comb-12的设计可以参照上述实施例,在此不再赘述。
参照图12,本公开实施例还提供了一种SRS资源配置方法,应用于终端侧,包括:
步骤1201,接收网络设备发送的第一配置信息;其中,所述第一配置信息用于配置探测参考信号SRS资源的图样,所述SRS资源在频域等间隔分布,且间隔的子载波的数量为M,M为大于4的整数。
可选的,所述频域等间隔分布M个子载波对应的梳状comb结构为comb-M,所述M为6、8或12。
可选的,当M为8时,所述SRS资源的图样由两个连续的资源块RB构 成。
可选的,所述第一配置信息还用于配置所述SRS资源的梳状结构频域偏移comb offset,所述comb offset用于指示所述SRS资源最后1个符号在第一RB中最低的RE位置。
可选的,所述第一RB为SRS资源中任意奇数RB或偶数RB。
可选的,当M为6或12时,所述SRS资源的图样由一个RB构成。
可选的,所述第一配置信息还用于配置所述SRS资源的comb offset,所述comb offset用于指示所述SRS资源最后1个符号在RB中最低的RE位置。
可选的,所述comb offset的取值为小于M的自然数。
可选的,所述SRS资源占用连续的N个符号;
其中,当M=6时,N的取值为1、2、4、6或者大于6的整数;
当M=8时,N的取值为1、2、4、8或者大于8的整数;
当M=12时,N的取值为1、2、4、6、8、12或者大于12的整数。
可选的,所述SRS资源占用连续的N个符号为1个时隙slot内的前N个符号、后N个符号,或中间任意位置的N个符号。
可选的,所述第一配置信息还用于配置所述SRS资源的循环移位值和重复因子。
可选的,当M=6时,所述循环移位值的取值为小于8的自然数,所述重复因子的取值为1、2、4或6;
当M=8时,所述循环移位值的取值为小于6的自然数,所述重复因子的取值为1、2、4或8;
当M=12时,所述循环移位值的取值为小于4的自然数,所述重复因子的取值为1、2、4、6或12。
可选的,所述第一配置信息还用于配置SRS资源相邻符号的RE偏移。
可选的,当M=6时,所述RE偏移的取值为1、2或3;
当M=8时,所述RE偏移的取值范围为1、2或4;
当M=12时,所述RE偏移的取值范围为1、2、3、4或6。
可选的,所述RE偏移用于计算所述SRS资源的频域位置,在根据所述 RE偏移计算得到所述SRS资源的频域位置超出预设频域范围的情况下,所述SRS资源的频域位置为:按照特定值对所述频域位置取模后的位置。
可选的,当M=6或12时,所述预设频域范围为1个RB,所述特定值为12;
当M=8时,所述预设频域范围为2个RB,所述特定值为24。
可选的,所述SRS资源用于定位。
可选的,当SRS资源占用的符号的数量N大于所述M时,所述SRS资源的最后第M+Y符号的频域位置与最后第Y个符号的频域位置相同,M+Y小于或等于N,且Y为正整数。
可选的,所述SRS资源的最后第M+Y符号的频域位置的值与最后第Y个符号的频域位置的值相同。
可选的,所述方法还包括:
接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述SRS资源的带宽信息。
可选的,在所述第一配置信息满足第一预设条件时,所述终端执行预设操作;
在所述第一配置信息不满足第一预设条件时,所述终端发送所述SRS资源;
其中,所述第一预设条件包括以下任一项:
所述M=6,所述SRS资源的带宽信息为8RB、16RB或32RB;
所述M=12,所述SRS资源的带宽信息为4RB、8RB、16RB、20RB、28RB或32RB。
可选的,所述预设操作包括:
不发送所述SRS资源;
或者对所述SRS资源的生成序列进行截取后发送。
可选的,所述第一配置信息与上行带宽部分UL BWP配置无关。
可选的,所述第一配置信息与UL BWP配置无关由协议约定或者网络设备指示。
可选的,所述UL BWP的切换与所述终端发送所述SRS资源无关。
可选的,所述第一配置信息与UL BWP配置无关包括:所述SRS资源的带宽信息和基带参数numerology与所述UL BWP配置无关。
可选的,所述方法还包括:
向所述网络设备发送终端的能力信息,所述能力信息包括终端可支持的最大上行发送带宽,所述最大上行发送带宽用于供所述网络设备确定所述SRS资源的频域范围。
需要说明的是,本实施例作为图3所示的实施例对应的终端的实施方式,其具体的实施方式可以参见图3所示的实施例相关说明,以及达到相同的有益效果,为了避免重复说明,此处不再赘述。
进一步的,参照图13,本公开实施例还提供了一种带宽部分BWP的切换处理方法,应用于位置服务器,所述方法包括:
步骤1301,在终端进行BWP切换时,接收第一网络设备发送的第一BWP的相关信息,所述第一BWP为所述终端切换后的BWP,所述第一BWP用于所述终端发送第一对象,所述第一对象包括上行定位参考信号或上行定位资源;
向第二网络设备发送所述第一BWP的相关信息,所述第二网络设备包括参与所述终端定位的网络设备中除所述第一网络设备之外的其他网络设备。
可选的,所述第一BWP的相关信息包括所述第一BWP的时域配置信息,以及所述第一BWP配置或所述第一BWP的标识信息。
可选的,所述第一对象为探测参考信号SRS资源。
需要说明的是,本实施例作为图11所示的实施例对应的位置服务器的实施方式,其具体的实施方式可以参见图11所示的实施例相关说明,以及达到相同的有益效果,为了避免重复说明,此处不再赘述。
相关技术中,上行定位时,SRS资源被配置终端预先配置的UL BWP内发送,因此限制了SRS资源的发送带宽,限制了定位的精度。因此,在上行定位时,SRS与BWP的关系还需进一步研究。本公开实施例,为了提高定位的精度,参照图14,提供了一种SRS资源配置方法,应用于终端侧,包括:
步骤1401,接收网络设备发送的第四配置信息,所述第四配置信息用于配置终端在第一BWP上发送第一对象,所述第一BWP为专用于定位的上行 带宽部分UL BWP,所述第一对象包括上行定位参考信号或上行定位资源。
本公开实施例由于为终端配置了专用于定位的第一BWP,从而在进行SRS资源发送时,无需受到预先配置的UL BWP的带宽限制,因此,本公开实施例可以提高定位的精度。
可选的,所述接收网络设备发送的第四配置信息之后,所述方法还包括:
在不满足第二预设条件的情况下,所述终端进行BWP切换;
在满足第二预设条件的情况下,所述终端不进行BWP切换;
其中,所述第二预设条件包括:所述第一BWP包含于所述终端当前激活的BWP,且所述第一BWP的基带参数与所述终端当前激活的BWP的基带参数相同。
可选的,所述终端进行BWP切换之前,所述方法还包括:
接收所述网络设备发送的第三指示信息,所述第三指示信息用于指示所述终端进行BWP切换。
可选的,所述第一对象为探测参考信号SRS资源。
为例更好的理解本公开的具体实现过程,以下对本公开的具体实现方案进行详细说明:
实现方案1:
当SRS资源被配置用于定位时,网络设备可配置SRS资源的comb结构为comb-8,表示SRS资源在频域等间隔分布,间隔为8个子载波。Comb-8结构可以等效为密度3/2RE/PRB,即2个RB中等间隔分布着3个RE。当SRS资源被配置为comb-8结构时,UE应假设SRS资源的图样由连续2个RB的SRS资源构成,该UE行为可以是网络指示,协议固定。
上述SRS资源的comb offset可以为小于8的整数,表示SRS资源最后1个符号在奇数RB或偶数RB中最低的RE位置。或者,SRS资源的comb offset表示最后一个符号在某RB中最低RE的位置,网络设备另外用1bit指示当前最低的RE是在奇数RB还是在偶数RB上。
上述SRS资源占用的连续N个符号可以是1个slot内最后的N个符号,最开始的N个符号,或者是slot内任意的连续的N个符号。N可以等于8、4、2、1或者N>8的整数。
当SRS资源为comb-8结构时,网络设备还可以配置SRS资源的循环移位值和和重复因子,循环移位值为小于6的整数,重复因子的取值为1、2、4或8。
当SRS资源为comb-8结构时,网络设备还可以配置SRS资源相邻符号的RE偏移。RE偏移是指SRS资源相邻的符号的RE级的偏移量(频域偏移量),前1个符号的RE的频域位置可以通过后1个相邻的符号的RE频域位置和配置的RE shift计算获得。当奇数或偶数RB上的某个符号的RE根据RE shift计算要超出连续的2个RB的范围时,可通过取模值(mod 24)使得RE的频域位置落在该连续的2个RB范围内。RE偏移可以是正向或负向的偏移。进一步地,对于comb-8,RE shift的大小可以是1、2或4。当RE shift没有被配置时,UE应假设该SRS资源所有符号的RE在频域中的位置相同。
进一步地,当SRS资源不用作定位时,也可以使用上述描述的中的comb-8结构的SRS资源作为其他功能。
进一步地,当SRS资源用作定位时,不论SRS comb结构被配置为多少,SRS资源的占用的连续1个或多个符号可以是1个slot内最后的1个或多个符号,最开始的1个或多个符号,或者是1个slot内中间任意的连续的1个或多个符号。
本公开实施例中,SRS资源的可以是最后X个符号的SRS的重复。当SRS资源用作定位时,不论SRS资源的comb结构被配置为多少,SRS资源的符号数N可以大于SRS的comb size X。当SRS资源符号数量N大于SRS的comb size X时,该SRS资源的最后第X+Y≤N符号的频域位置(RE位置)可以与最后第Y个符号的频域位置(RE位置)相同。SRS资源的最后第X+Y符号的频域位置(RE位置)的值可以与最后第Y个符号的频域位置(RE位置)的值也相同。具体的,可以参照图5至10所示的SRS资源图样.
进一步地,不论SRS资源有没有用作定位,若网络设备配置SRS资源的comb结构为comb-12时,且宽带SRS或窄带SRS的带宽被配置为4RB、8RB、16RB、20RB、28RB或32RB时,终端不发送SRS资源。相应的,网络设备不接收SRS资源。或者,若网络设备配置SRS资源的comb结构为comb-12时,且宽带SRS或窄带SRS的带宽被配置为4RB、8RB、16RB、 20RB、28RB或32RB时,终端要对SRS资源的生成序列(Low-PAPR sequence或ZC序列)进行截取后发送。相应的,网络设备对SRS资源进行接收。该终端行为可以是网络设备指示,协议规定或终端选择。
若网络设备配置SRS资源的comb结构为comb-6时,且宽带SRS或窄带SRS的带宽被配置为8RB、16RB或32RB时,UE不发送SRS。相应的,网络设备不接收SRS。或者,若网络设备配置SRS资源的comb结构为comb-6时,且宽带SRS或窄带SRS的带宽被配置为8RB、16RB或32RB时,UE要对SRS的生成序列(Low-PAPR sequence或ZC序列)进行截取后发送。相应的,网络设备对SRS资源进行接收。该终端行为可以是网络设备指示,协议规定或终端选择。
若网络设备配置SRS资源的comb结构为comb-6时,且宽带SRS或窄带SRS的带宽被配置为8RB、16RB或32RB时,UE不发送SRS。相应的,网络设备不接收SRS。或者,若网络设备配置SRS资源的comb结构为comb-6时,且宽带SRS或窄带SRS的带宽被配置为8RB、16RB或32RB时,UE要对SRS的生成序列(Low-PAPR sequence或ZC序列)进行截取后发送。相应的,网络设备对SRS资源进行接收。该终端行为可以是网络设备指示,协议规定或终端选择。
方案二,在进行上行定位是,与SRS资源带宽相关的配置方法包括以下三种方法:
方法1:SRS资源用作定位时,SRS资源被serving gNB(或cell)配置在UL active BWP内发送。serving gNB(或cell)向位置服务器发送的SRS配置信息中可包含SRS关联的UL BWP信息,其中,UL BWP信息可以是active UL BWP配置信息和/或所有配置给UE的UL BWPs信息。之后位置服务器可以把SRS关联的UL BWP信息通知或配置给其他参与定位的gNBs(或cells)。
当UL BWP切换时,serving gNB指示位置服务器新的UL BWP配置或新的UL BWP ID信息,以及新的BWP的时域配置信息,之后位置服务器将这些信息通知给参与定位的其他gNBs。或者,serving gNB直接通过Xn接口直接向参与定位的其他gNBs指示新的UL BWP配置或新的UL BWP ID信 息,以及新的BWP的时域配置信息。
进一步地,所述用于定位的上行资源可不限于SRS,还可以是其他上行定位参考信号或上行定位资源。
方法2:上行定位时,网络网络设备为UE配置专门的用于定位的UL BWP,可以被称为‘UL positioning BWP’。根据配置信息,UE在‘UL positioning BWP’内发送用于定位的SRS资源。
进一步地,‘UL positioning BWP’的最大带宽与UE的能力有关,网络设备可以根据UE上报的能力信息获得‘UL positioning BWP’的最大带宽,配置该‘UL positioning BWP’的频域范围。进一步地,‘UL positioning BWP’可以被配置在active UL BWP的外部。进一步地,‘UL positioning BWP’的频域范围可以在UL BWP配置内或UL BWP配置外。具体的,UE可以被配置最多4个BWP,在UL BWP配置内是指‘UL positioning BWP’的频域范围不超过这4个BWP一起占用的频域范围。
进一步地,‘UL positioning BWP’的配置信息中可以包含BWP ID、numerology信息、带宽信息、频域位置、SRS资源关联的配置信息等。网络设备需要把‘UL positioning BWP’的配置信息上报给位置服务器,位置服务器要把这些‘UL positioning BWP’关联的信息通知/配置给其他参与定位的gNBs(或cells)。
进一步地,‘UL positioning BWP’的配置信息中可以包含BWP ID、numerology信息、带宽信息、频域位置、SRS关联的配置信息等。网络设备需把‘UL positioning BWP’的配置信息上报给位置服务器,位置服务器要把这些‘UL positioning BWP’关联的信息通知/配置给其他参与定位的gNBs(或cells)。
进一步地,当网络设备配置SRS资源用于上行定位时,如果‘UL positioning BWP’被分配在当前UL BWP内且numerology与当前BWP相同,则UE无需切换到‘UL positioning BWP’;否则,网络设备指示UE切换到‘UL positioning BWP’上。当上行定位结束或终止时,如果当前BWP为‘UL positioning BWP’,网络设备指示UE切换到新的‘UL BWP’上;否则UE无需切换BWP。当BWP切换发生时,网络设备需将BWP切换信息上报给位置 服务器,之后位置服务器通知或配置给其他参与定位的gNBs(或cells)。
进一步的,所述用于定位的上行资源可不限于SRS,还可以是其他其他上行定位参考信号或上行定位资源。
方法三:上行定位时,UE假设配置给UE的用于定位的SRS配置信息与配置给UE的UL BWP(s)无关,该UE行为可以是网络指示或协议规定。进一步地,SRS资源的带宽与numerology可以不受BWP的限制。进一步地,SRS资源的最大带宽与UE能力有关,网络设备可以根据UE上报的能力信息中终端可支持的最大上行发送带宽,配置该SRS资源的频域范围。进一步地,该SRS资源的频域范围可以在UL BWP配置内或UL BWP配置外。根据网络设备配置,UE发送该用于定位的SRS资源。
进一步地,当UL BWP切换时,UE可以一直发送该SRS资源。或者,当UL BWP切换时,UE停止发送该SRS资源。
进一步地,所述用于定位的上行资源可不限于SRS资源,还可以是其他其他上行定位参考信号或上行定位资源。
请参见图15,图15是本公开实施例提供的一种网络设备的结构图,如图15所示,网络设备1500包括:
第一发送模块1501,用于向终端发送第一配置信息,所述第一配置信息用于配置探测参考信号SRS资源的图样,所述SRS资源在频域等间隔分布,且间隔的子载波的数量为M,M为大于4的整数。
可选的,所述频域等间隔分布M个子载波对应的梳状comb结构为comb-M,所述M为6、8或12。
可选的,当M为8时,所述SRS资源的图样由两个连续的资源块RB构成。
可选的,所述第一配置信息还用于配置所述SRS资源的梳状结构频域偏移comb offset,所述comb offset用于指示所述SRS资源最后1个符号在第一RB中最低的RE位置。
可选的,所述第一RB为SRS资源中任意奇数RB或偶数RB。
可选的,当M为6或12时,所述SRS资源的图样由一个RB构成。
可选的,所述第一配置信息还用于配置所述SRS资源的comb offset,所 述comb offset用于指示所述SRS资源最后1个符号在RB中最低的RE位置。
可选的,所述comb offset的取值为小于M的自然数。
可选的,所述SRS资源占用连续的N个符号;
其中,当M=6时,N的取值为1、2、4、6或者大于6的整数;
当M=8时,N的取值为1、2、4、8或者大于8的整数;
当M=12时,N的取值为1、2、4、6、8、12或者大于12的整数。
可选的,所述SRS资源占用连续的N个符号为1个时隙slot内的前N个符号、后N个符号,或中间任意位置的N个符号。
可选的,所述第一配置信息还用于配置所述SRS资源的循环移位值和重复因子。
可选的,当M=6时,所述循环移位值的取值为小于8的自然数,所述重复因子的取值为1、2、4或6;
当M=8时,所述循环移位值的取值为小于6的自然数,所述重复因子的取值为1、2、4或8;
当M=12时,所述循环移位值的取值为小于4的自然数,所述重复因子的取值为1、2、4、6或12。
可选的,所述第一配置信息还用于配置SRS资源相邻符号的RE偏移。
可选的,当M=6时,所述RE偏移的取值为1、2或3;
当M=8时,所述RE偏移的取值范围为1、2或4;
当M=12时,所述RE偏移的取值范围为1、2、3、4或6。
可选的,所述RE偏移用于计算所述SRS资源的频域位置,在根据所述RE偏移计算得到所述SRS资源的频域位置超出预设频域范围的情况下,所述SRS资源的频域位置为:按照特定值对所述频域位置取模后的位置。
可选的,当M=6或12时,所述预设频域范围为1个RB,所述特定值为12;
当M=8时,所述预设频域范围为2个RB,所述特定值为24。
可选的,所述SRS资源用于定位。
可选的,当SRS资源占用的符号的数量N大于所述M时,所述SRS资 源的最后第M+Y符号的频域位置与最后第Y个符号的频域位置相同,M+Y小于或等于N,且Y为正整数。
可选的,所述SRS资源的最后第M+Y符号的频域位置的值与最后第Y个符号的频域位置的值相同。
可选的,所述第一发送模块1501还包括:
向终端发送第一指示信息,所述第一指示信息用于指示所述SRS资源的带宽信息。
可选的,在所述第一配置信息满足第一预设条件时,所述第一配置信息还用于指示所述终端对执行预设操作;
其中,所述第一预设条件包括以下任一项:
所述M=6,所述SRS资源的带宽信息为8RB、16RB或32RB;
所述M=12,所述SRS资源的带宽信息为4RB、8RB、16RB、20RB、28RB或32RB。
可选的,所述预设操作包括:
不发送所述SRS资源;
或者对所述SRS资源的生成序列进行截取后发送。
可选的,所述第一配置信息与所述终端的上行带宽部分UL BWP配置无关。
可选的,所述第一发送模块1501还用于:向所述终端发送第二指示信息,所述第二指示信息用于指示所述第一配置信息与所述UL BWP配置无关。
可选的,所述第一配置信息与所述UL BWP配置无关包括:所述SRS资源的带宽信息和基带参数numerology与所述UL BWP配置无关。
可选的,所述网络设备1500还包括:
第四接收模块,用于接收所述终端发送的能力信息,所述能力信息包括终端可支持的最大上行发送带宽;
确定模块,用于根据所述最大上行发送带宽确定所述SRS资源的频域范围。
本公开实施例提供的网络设备能够实现图3的方法实施例中网络设备实现的各个过程,为避免重复,这里不再赘述。
请参见图16,图16是本公开实施例提供的一种网络设备的结构图,所述网络设备为终端当前服务的第一网络设备,如图16所示,网络设备1600包括:
第二发送模块1601,用于在终端进行BWP切换时,将切换后的第一BWP的相关信息发送至第二网络设备,所述第二网络设备包括参与所述终端定位的网络设备中除所述第一网络设备之外的其他网络设备;所述第一BWP用于所述终端发送第一对象,所述第一对象包括上行定位参考信号或上行定位资源。
可选的,所述第二发送模块1601具体用于:通过Xn接口直接向所述第二网络设备发送所述第一BWP的相关信息;
或者,向位置服务器发送所述第一BWP的相关信息,以供位置服务器向所述第二网络设备转发所述第一BWP的相关信息。
可选的,所述第一BWP的相关信息包括所述第一BWP的时域配置信息,以及所述第一BWP配置或所述第一BWP的标识信息。
可选的,所述第二发送模块1601还用于:向所述终端发送第二配置信息,所述第二配置信息用于配置所述终端在上行激活带宽部分UL active BWP内发送所述第一对象。
可选的,所述第二发送模块1601还用于:向所述终端发送第三配置信息,所述第三配置信息为所述第一BWP的配置信息,所述第三配置信息用于配置所述终端在所述第一BWP上发送所述第一对象,所述第一BWP为专用于定位的上行带宽部分UL BWP。
可选的,所述第二发送模块1601还用于:在不满足第二预设条件的情况下,向所述终端发送第三指示信息,所述第三指示信息用于指示所述终端进行BWP切换;
其中,所述第二预设条件包括:所述第一BWP包含于所述终端当前激活的BWP,且所述第一BWP的基带参数与所述终端当前激活的BWP的基带参数相同。
可选的,所述第一BWP的配置信息包括所述第一BWP的标识信息、所述第一BWP的基带参数numerology信息、所述第一BWP的带宽信息、第一 BWP的频域位置信息和所述第一对象的配置信息中的至少一项。
可选的,所述第一对象为探测参考信号SRS资源。
本公开实施例提供的网络设备能够实现图11的方法实施例中网络设备实现的各个过程,为避免重复,这里不再赘述。
请参见图17,图17是本公开实施例提供的一种终端的结构图,如图17所示,终端1700包括:
第一接收模块1701,用于接收网络设备发送的第一配置信息;其中,所述第一配置信息用于配置探测参考信号SRS资源的图样,所述SRS资源在频域等间隔分布,且间隔的子载波的数量为M,M为大于4的整数;
可选的,所述频域等间隔分布M个子载波对应的梳状comb结构为comb-M,所述M为6、8或12。
可选的,当M为8时,所述SRS资源的图样由两个连续的资源块RB构成。
可选的,所述第一配置信息还用于配置所述SRS资源的梳状结构频域偏移comb offset,所述comb offset用于指示所述SRS资源最后1个符号在第一RB中最低的RE位置。
可选的,所述第一RB为SRS资源中任意奇数RB或偶数RB。
可选的,当M为6或12时,所述SRS资源的图样由一个RB构成。
可选的,所述第一配置信息还用于配置所述SRS资源的comb offset,所述comb offset用于指示所述SRS资源最后1个符号在RB中最低的RE位置。
可选的,所述comb offset的取值为小于M的自然数。
可选的,所述SRS资源占用连续的N个符号;
其中,当M=6时,N的取值为1、2、4、6或者大于6的整数;
当M=8时,N的取值为1、2、4、8或者大于8的整数;
当M=12时,N的取值为1、2、4、6、8、12或者大于12的整数。
可选的,所述SRS资源占用连续的N个符号为1个时隙slot内的前N个符号、后N个符号,或中间任意位置的N个符号。
可选的,所述第一配置信息还用于配置所述SRS资源的循环移位值和重 复因子。
可选的,当M=6时,所述循环移位值的取值为小于8的自然数,所述重复因子的取值为1、2、4或6;
当M=8时,所述循环移位值的取值为小于6的自然数,所述重复因子的取值为1、2、4或8;
当M=12时,所述循环移位值的取值为小于4的自然数,所述重复因子的取值为1、2、4、6或12。
可选的,所述第一配置信息还用于配置SRS资源相邻符号的RE偏移。
可选的,当M=6时,所述RE偏移的取值为1、2或3;
当M=8时,所述RE偏移的取值范围为1、2或4;
当M=12时,所述RE偏移的取值范围为1、2、3、4或6。
可选的,所述RE偏移用于计算所述SRS资源的频域位置,在根据所述RE偏移计算得到所述SRS资源的频域位置超出预设频域范围的情况下,所述SRS资源的频域位置为:按照特定值对所述频域位置取模后的位置。
可选的,当M=6或12时,所述预设频域范围为1个RB,所述特定值为12;
当M=8时,所述预设频域范围为2个RB,所述特定值为24。
可选的,所述SRS资源用于定位。
可选的,当SRS资源占用的符号的数量N大于所述M时,所述SRS资源的最后第M+Y符号的频域位置与最后第Y个符号的频域位置相同,M+Y小于或等于N,且Y为正整数。
可选的,所述SRS资源的最后第M+Y符号的频域位置的值与最后第Y个符号的频域位置的值相同。
可选的,所述第一接收模块1701还用于:
接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述SRS资源的带宽信息。
可选的,在所述第一配置信息满足第一预设条件时,所述终端执行预设操作;
在所述第一配置信息不满足第一预设条件时,所述终端发送所述SRS资 源;
其中,所述第一预设条件包括以下任一项:
所述M=6,所述SRS资源的带宽信息为8RB、16RB或32RB;
所述M=12,所述SRS资源的带宽信息为4RB、8RB、16RB、20RB、28RB或32RB。
可选的,所述预设操作包括:
不发送所述SRS资源;
或者对所述SRS资源的生成序列进行截取后发送。
可选的,所述第一配置信息与上行带宽部分UL BWP配置无关。
可选的,所述第一配置信息与UL BWP配置无关由协议约定或者网络设备指示。
可选的,UL BWP的切换与所述终端发送所述SRS资源无关。
可选的,所述第一配置信息与UL BWP配置无关包括:所述SRS资源的带宽信息和基带参数numerology与所述UL BWP配置无关。
可选的,所述终端1700还包括:
第四发送模块,用于向所述网络设备发送终端的能力信息,所述能力信息包括终端可支持的最大上行发送带宽,所述最大上行发送带宽用于供所述网络设备确定所述SRS资源的频域范围。
本公开实施例提供的终端能够实现图12的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述。
请参见图18,图18是本公开实施例提供的一种位置服务器的结构图,如图18所示,位置服务器1800包括:
第二接收模块1801,用于在终端进行BWP切换时,接收第一网络设备发送的第一BWP的相关信息,所述第一BWP为所述终端切换后的BWP,所述第一BWP用于所述终端发送第一对象,所述第一对象包括上行定位参考信号或上行定位资源;
第三发送模块1802,用于向第二网络设备发送所述第一BWP的相关信息,所述第二网络设备包括参与所述终端定位的网络设备中除所述第一网络设备之外的其他网络设备。
可选的,所述第一BWP的相关信息包括所述第一BWP的时域配置信息,以及所述第一BWP配置或所述第一BWP的标识信息。
可选的,所述第一对象为探测参考信号SRS资源。
本公开实施例提供的终端能够实现图13的方法实施例中位置服务器实现的各个过程,为避免重复,这里不再赘述。
请参见图19,图19是本公开实施例提供的一种终端的结构图,如图19所示,终端1900包括:
第三接收模块1901,用于接收网络设备发送的第四配置信息,所述第四配置信息用于配置终端在第一BWP上发送第一对象,所述第一BWP为专用于定位的上行带宽部分UL BWP,所述第一对象包括上行定位参考信号或上行定位资源。
可选的,在不满足第二预设条件的情况下,所述终端进行BWP切换;
在满足第二预设条件的情况下,所述终端不进行BWP切换;
其中,所述第二预设条件包括:所述第一BWP包含于所述终端当前激活的BWP,且所述第一BWP的基带参数与所述终端当前激活的BWP的基带参数相同。
可选的,所述终端进行BWP切换之前,所述第三接收模块1901还用于:接收所述网络设备发送的第三指示信息,所述第三指示信息用于指示所述终端进行BWP切换。
可选的,所述第一对象为探测参考信号SRS资源。
本公开实施例提供的终端能够实现图14的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述。
参见图20,图20是本公开实施例提供的另一种网络设备的结构图,如图20所示,该网络设备2000包括:处理器2001、收发机2002、存储器2003和总线接口,其中:
收发机2002,用于向终端发送第一配置信息,所述第一配置信息用于配置探测参考信号SRS资源的图样,所述SRS资源在频域等间隔分布,且间隔的子载波的数量为M,M为大于4的整数。
或者收发机2002,用于在终端进行BWP切换时,将切换后的第一BWP 的相关信息发送至第二网络设备,所述第二网络设备包括参与所述终端定位的网络设备中除所述第一网络设备之外的其他网络设备;所述第一BWP用于所述终端发送第一对象,所述第一对象包括上行定位参考信号或上行定位资源。
在图20中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器2001代表的一个或多个处理器和存储器2003代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机2002可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口2004还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器2001负责管理总线架构和通常的处理,存储器2003可以存储处理器2001在执行操作时所使用的数据。
可选的,本公开实施例还提供一种网络设备,包括处理器2001,存储器2003,存储在存储器2003上并可在所述处理器2001上运行的计算机程序,该计算机程序被处理器2001执行时实现上述SRS资源配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
参见图21,图21是本公开实施例提供的另一种位置服务器的结构图,如图21所示,该位置服务器2100包括:处理器2101、收发机2102、存储器2103和总线接口,其中:
收发机2102,用于在终端进行BWP切换时,接收第一网络设备发送的第一BWP的相关信息,所述第一BWP为所述终端切换后的BWP,所述第一BWP用于所述终端发送第一对象,所述第一对象包括上行定位参考信号或上行定位资源;向第二网络设备发送所述第一BWP的相关信息,所述第二网络设备包括参与所述终端定位的网络设备中除所述第一网络设备之外的其他网络设备。
在图21中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器2101代表的一个或多个处理器和存储器2103代表的存储器的各种电路链 接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机2102可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口2104还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器2101负责管理总线架构和通常的处理,存储器2103可以存储处理器2101在执行操作时所使用的数据。
可选的,本公开实施例还提供一种位置服务器,包括处理器2101,存储器2103,存储在存储器2103上并可在所述处理器2101上运行的计算机程序,该计算机程序被处理器2101执行时实现上述BWP的切换处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图22为实现本公开各个实施例的一种终端的硬件结构示意图,
该终端2200包括但不限于:射频单元2201、网络模块2202、音频输出单元2203、输入单元2204、传感器2205、显示单元2206、用户输入单元2207、接口单元2208、存储器2209、处理器2210、以及电源2211等部件。本领域技术人员可以理解,图22中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
射频单元2201,用于接收网络设备发送的第一配置信息;其中,所述第一配置信息用于配置探测参考信号SRS资源的图样,所述SRS资源在频域等间隔分布,且间隔的子载波的数量为M,M为大于4的整数。
或者,射频单元2201,用于接收网络设备发送的第四配置信息,所述第四配置信息用于配置终端在第一BWP上发送第一对象,所述第一BWP为专用于定位的上行带宽部分UL BWP,所述第一对象包括上行定位参考信号或上行定位资源。
应理解的是,本公开实施例中,射频单元2201可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器 2210处理;另外,将上行的数据发送给基站。通常,射频单元2201包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元2201还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块2202为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元2203可以将射频单元2201或网络模块2202接收的或者在存储器2209中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元2203还可以提供与终端2200执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元2203包括扬声器、蜂鸣器以及受话器等。
输入单元2204用于接收音频或视频信号。输入单元2204可以包括图形处理器(Graphics Processing Unit,GPU)22041和麦克风22042,图形处理器22041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元2206上。经图形处理器22041处理后的图像帧可以存储在存储器2209(或其它存储介质)中或者经由射频单元2201或网络模块2202进行发送。麦克风22042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元2201发送到移动通信基站的格式输出。
终端2200还包括至少一种传感器2205,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板22061的亮度,接近传感器可在终端2200移动到耳边时,关闭显示面板22061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器2205还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元2206用于显示由用户输入的信息或提供给用户的信息。显示单 元2206可包括显示面板22061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板22061。
用户输入单元2207可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元2207包括触控面板22071以及其他输入设备22072。触控面板22071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板22071上或在触控面板22071附近的操作)。触控面板22071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器2210,接收处理器2210发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板22071。除了触控面板22071,用户输入单元2207还可以包括其他输入设备22072。具体地,其他输入设备22072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板22071可覆盖在显示面板22061上,当触控面板22071检测到在其上或附近的触摸操作后,传送给处理器2210以确定触摸事件的类型,随后处理器2210根据触摸事件的类型在显示面板22061上提供相应的视觉输出。虽然在图22中,触控面板22071与显示面板22061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板22071与显示面板22061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元2208为外部装置与终端2200连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(input/output,I/O)端口、视频I/O端口、耳机端口等等。接口单元2208可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端2200内的一个或多个元件或者可以用于在终端2200和外 部装置之间传输数据。
存储器2209可用于存储软件程序以及各种数据。存储器2209可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器2209可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器2210是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器2209内的软件程序和/或模块,以及调用存储在存储器2209内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器2210可包括一个或多个处理单元;可选的,处理器2210可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器2210中。
终端2200还可以包括给各个部件供电的电源2211(比如电池),可选的,电源2211可以通过电源管理系统与处理器2210逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端2200包括一些未示出的功能模块,在此不再赘述。
可选的,本公开实施例还提供一种终端,包括处理器2210,存储器2209,存储在存储器2209上并可在所述处理器2210上运行的计算机程序,该计算机程序被处理器2210执行时实现上述SRS资源配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现本公开实施例提供的网络设备侧的SRS资源配置方法和BWP的切换处理方法实施例的各个过程,或者该计算机程序被处理器执行时实现本公开实施例提供的终端侧的SRS资源配置方法实施例的各个过程,或者该计算机程序被处理器执行时实现本公开实施例提供的位置服务器侧的BWP的切换处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机 可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者基站等)执行本公开各个实施例所述的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接, 可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储器(Read-Only Memory,ROM)或随机存取存储器(Random Access Memory,RAM)等。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函 数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (78)

  1. 一种探测参考信号SRS资源配置方法,应用于网络设备,包括:
    向终端发送第一配置信息,所述第一配置信息用于配置探测参考信号SRS资源的图样,所述SRS资源在频域等间隔分布,且间隔的子载波的数量为M,M为大于4的整数。
  2. 根据权利要求1所述的方法,其中,所述频域等间隔分布M个子载波对应的梳状comb结构为comb-M,所述M为6、8或12。
  3. 根据权利要求2所述的方法,其中,当M为8时,所述SRS资源的图样由两个连续的资源块RB构成。
  4. 根据权利要求3所述的方法,其中,所述第一配置信息还用于配置所述SRS资源的梳状结构频域偏移comb offset,所述comb offset用于指示所述SRS资源最后1个符号在第一RB中最低的资源单元RE位置。
  5. 根据权利要求4所述的方法,其中,所述第一RB为SRS资源中任意奇数RB或偶数RB。
  6. 根据权利要求3所述的方法,其中,当M为6或12时,所述SRS资源的图样由一个RB构成。
  7. 根据权利要求6所述的方法,其中,所述第一配置信息还用于配置所述SRS资源的comb offset,所述comb offset用于指示所述SRS资源最后1个符号在RB中最低的RE位置。
  8. 根据权利要求4或7所述的方法,其中,所述comb offset的取值为小于M的自然数。
  9. 根据权利要求1所述的方法,其中,所述SRS资源占用连续的N个符号;
    其中,当M=6时,N的取值为1、2、4、6或者大于6的整数;
    当M=8时,N的取值为1、2、4、8或者大于8的整数;
    当M=12时,N的取值为1、2、4、6、8、12或者大于12的整数。
  10. 根据权利要求1所述的方法,其中,所述SRS资源占用连续的N个符号为1个时隙slot内的前N个符号、后N个符号,或中间任意位置的N个 符号。
  11. 根据权利要求1所述的方法,其中,所述第一配置信息还用于配置所述SRS资源的循环移位值;
    当M=6时,所述循环移位值的取值为小于8的自然数;
    当M=8时,所述循环移位值的取值为小于6的自然数;
    当M=12时,所述循环移位值的取值为小于4的自然数。
  12. 根据权利要求1所述的方法,其中,所述第一配置信息还用于配置所述SRS资源的重复因子;
    当M=6时,所述重复因子的取值为1、2、4或6;
    当M=8时,所述重复因子的取值为1、2、4或8;
    当M=12时,所述重复因子的取值为1、2、4、6或12。
  13. 根据权利要求1所述的方法,其中,所述第一配置信息还用于配置SRS资源相邻符号的RE偏移。
  14. 根据权利要求13所述的方法,其中,
    当M=6时,所述RE偏移的取值为1、2或3;
    当M=8时,所述RE偏移的取值范围为1、2或4;
    当M=12时,所述RE偏移的取值范围为1、2、3、4或6。
  15. 根据权利要求14所述的方法,其中,所述RE偏移用于计算所述SRS资源的频域位置,在根据所述RE偏移计算得到所述SRS资源的频域位置超出预设频域范围的情况下,所述SRS资源的频域位置为:按照特定值对所述频域位置取模后的位置。
  16. 根据权利要求15所述的方法,其中,
    当M=6或12时,所述预设频域范围为1个RB,所述特定值为12;
    当M=8时,所述预设频域范围为2个RB,所述特定值为24。
  17. 根据权利要求1所述的方法,其中,所述SRS资源用于定位。
  18. 根据权利要求1所述的方法,其中,当SRS资源占用的符号的数量N大于所述M时,所述SRS资源的最后第M+Y符号的频域位置与最后第Y个符号的频域位置相同,M+Y小于或等于N,且Y为正整数。
  19. 根据权利要求18所述的方法,其中,所述SRS资源的最后第M+Y 符号的频域位置的值与最后第Y个符号的频域位置的值相同。
  20. 根据权利要求1所述的方法,还包括:
    向终端发送第一指示信息,所述第一指示信息用于指示所述SRS资源的带宽信息。
  21. 根据权利要求1所述的方法,其中,在所述第一配置信息满足第一预设条件时,所述第一配置信息还用于指示所述终端对执行预设操作;
    其中,所述第一预设条件包括以下任一项:
    所述M=6,所述SRS资源的带宽信息为8RB、16RB或32RB;
    所述M=12,所述SRS资源的带宽信息为4RB、8RB、16RB、20RB、28RB或32RB。
  22. 根据权利要求21所述的方法,其中,所述预设操作包括:
    不发送所述SRS资源;
    或者对所述SRS资源的生成序列进行截取后发送。
  23. 根据权利要求1所述的方法,其中,所述第一配置信息与所述终端的上行带宽部分UL BWP配置无关。
  24. 根据权利要求23所述的方法,还包括:
    向所述终端发送第二指示信息,所述第二指示信息用于指示所述第一配置信息与所述UL BWP配置无关。
  25. 根据权利要求24所述的方法,其中,所述第一配置信息与所述UL BWP配置无关包括:所述SRS资源的带宽信息和基带参数numerology与所述UL BWP配置无关。
  26. 根据权利要求24所述的方法,其中,所述向所述终端发送第二指示信息之前,所述方法还包括:
    接收所述终端发送的能力信息,所述能力信息包括终端可支持的最大上行发送带宽;
    根据所述最大上行发送带宽确定所述SRS资源的频域范围。
  27. 根据权利要求1所述的方法,其中,所述SRS资源用于定位。
  28. 一种带宽部分BWP的切换处理方法,应用于第一网络设备,所述第一网络设备为终端当服务的网络设备,所述方法包括:
    在终端进行BWP切换时,将切换后的第一BWP的相关信息发送至第二网络设备,所述第二网络设备包括参与所述终端定位的网络设备中除所述第一网络设备之外的其他网络设备;所述第一BWP用于所述终端发送第一对象,所述第一对象包括上行定位参考信号或上行定位资源。
  29. 根据权利要求28所述的方法,其中,所述将切换后的第一BWP的相关信息发送至第二目标网络设备包括:
    通过Xn接口直接向所述第二网络设备发送所述第一BWP的相关信息;
    或者,向位置服务器发送所述第一BWP的相关信息,以供位置服务器向所述第二网络设备转发所述第一BWP的相关信息。
  30. 根据权利要求28所述的方法,其中,所述第一BWP的相关信息包括所述第一BWP的时域配置信息,以及所述第一BWP配置或所述第一BWP的标识信息。
  31. 根据权利要求28所述的方法,其中,所述将切换后的第一BWP的相关信息发送至第二网络设备之前,所述方法还包括:
    向所述终端发送第二配置信息,所述第二配置信息用于配置所述终端在上行激活带宽部分UL active BWP内发送所述第一对象。
  32. 根据权利要求28所述的方法,其中,所述将切换后的第一BWP的相关信息发送至目标网络设备之前,所述方法还包括:
    向所述终端发送第三配置信息,所述第三配置信息为所述第一BWP的配置信息,所述第三配置信息用于配置所述终端在所述第一BWP上发送所述第一对象,所述第一BWP为专用于定位的上行带宽部分UL BWP。
  33. 根据权利要求32所述的方法,还包括:
    在不满足第二预设条件的情况下,向所述终端发送第三指示信息,所述第三指示信息用于指示所述终端进行BWP切换;
    其中,所述第二预设条件包括:所述第一BWP包含于所述终端当前激活的BWP,且所述第一BWP的基带参数与所述终端当前激活的BWP的基带参数相同。
  34. 根据权利要求32所述的方法,其中,所述第一BWP的配置信息包括所述第一BWP的标识信息、所述第一BWP的基带参数numerology信息、 所述第一BWP的带宽信息、第一BWP的频域位置信息和所述第一对象的配置信息中的至少一项。
  35. 根据权利要求28至34中任一项所述的方法,其中,所述第一对象为探测参考信号SRS资源。
  36. 一种探测参考信号SRS资源配置方法,应用于终端侧,包括:
    接收网络设备发送的第一配置信息;其中,所述第一配置信息用于配置SRS资源的图样,所述SRS资源在频域等间隔分布,且间隔的子载波的数量为M,M为大于4的整数。
  37. 根据权利要求36所述的方法,其中,所述频域等间隔分布M个子载波对应的梳状comb结构为comb-M,所述M为6、8或12。
  38. 根据权利要求37所述的方法,其中,当M为8时,所述SRS资源的图样由两个连续的资源块RB构成。
  39. 根据权利要求38所述的方法,其中,所述第一配置信息还用于配置所述SRS资源的梳状结构频域偏移comb offset,所述comb offset用于指示所述SRS资源最后1个符号在第一RB中最低的资源单元RE位置。
  40. 根据权利要求39所述的方法,其中,所述第一RB为SRS资源中任意奇数RB或偶数RB。
  41. 根据权利要求37所述的方法,其中,当M为6或12时,所述SRS资源的图样由一个RB构成。
  42. 根据权利要求41所述的方法,其中,所述第一配置信息还用于配置所述SRS资源的comb offset,所述comb offset用于指示所述SRS资源最后1个符号在RB中最低的RE位置。
  43. 根据权利要求39或42所述的方法,其中,所述comb offset的取值为小于M的自然数。
  44. 根据权利要求36所述的方法,其中,所述SRS资源占用连续的N个符号;
    其中,当M=6时,N的取值为1、2、4、6或者大于6的整数;
    当M=8时,N的取值为1、2、4、8或者大于8的整数;
    当M=12时,N的取值为1、2、4、6、8、12或者大于12的整数。
  45. 根据权利要求36所述的方法,其中,所述SRS资源占用连续的N个符号为1个时隙slot内的前N个符号、后N个符号,或中间任意位置的N个符号。
  46. 根据权利要求28所述的方法,其中,所述第一配置信息还用于配置所述SRS资源的循环移位值;
    当M=6时,所述循环移位值的取值为小于8的自然数;
    当M=8时,所述循环移位值的取值为小于6的自然数;
    当M=12时,所述循环移位值的取值为小于4的自然数。
  47. 根据权利要求28所述的方法,其中,所述第一配置信息还用于配置所述SRS资源的重复因子;
    当M=6时,所述重复因子的取值为1、2、4或6;
    当M=8时,所述重复因子的取值为1、2、4或8;
    当M=12时,所述重复因子的取值为1、2、4、6或12。
  48. 根据权利要求36所述的方法,其中,所述第一配置信息还用于配置SRS资源相邻符号的RE偏移。
  49. 根据权利要求48所述的方法,其中,
    当M=6时,所述RE偏移的取值为1、2或3;
    当M=8时,所述RE偏移的取值范围为1、2或4;
    当M=12时,所述RE偏移的取值范围为1、2、3、4或6。
  50. 根据权利要求49所述的方法,其中,所述RE偏移用于计算所述SRS资源的频域位置,在根据所述RE偏移计算得到所述SRS资源的频域位置超出预设频域范围的情况下,所述SRS资源的频域位置为:按照特定值对所述频域位置取模后的位置。
  51. 根据权利要求50所述的方法,其中,
    当M=6或12时,所述预设频域范围为1个RB,所述特定值为12;
    当M=8时,所述预设频域范围为2个RB,所述特定值为24。
  52. 根据权利要求36所述的方法,其中,所述SRS资源用于定位。
  53. 根据权利要求36所述的方法,其中,当SRS资源占用的符号的数量N大于所述M时,所述SRS资源的最后第M+Y符号的频域位置与最后第Y 个符号的频域位置相同,M+Y小于或等于N,且Y为正整数。
  54. 根据权利要求53所述的方法,其中,所述SRS资源的最后第M+Y符号的频域位置的值与最后第Y个符号的频域位置的值相同。
  55. 根据权利要求37所述的方法,还包括:
    接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述SRS资源的带宽信息。
  56. 根据权利要求36所述的方法,其中,
    在所述第一配置信息满足第一预设条件时,所述终端执行预设操作;
    在所述第一配置信息不满足第一预设条件时,所述终端发送所述SRS资源;
    其中,所述第一预设条件包括以下任一项:
    所述M=6,所述SRS资源的带宽信息为8RB、16RB或32RB;
    所述M=12,所述SRS资源的带宽信息为4RB、8RB、16RB、20RB、28RB或32RB。
  57. 根据权利要求56所述的方法,其中,所述预设操作包括:
    不发送所述SRS资源;
    或者对所述SRS资源的生成序列进行截取后发送。
  58. 根据权利要求36所述的方法,其中,所述第一配置信息与上行带宽部分UL BWP配置无关。
  59. 根据权利要求58所述方法,其中,所述第一配置信息与UL BWP配置无关由协议约定或者网络设备指示。
  60. 根据权利要求58所述方法,其中,所述UL BWP的切换与所述终端发送所述SRS资源无关。
  61. 根据权利要求58所述的方法,其中,所述第一配置信息与UL BWP配置无关包括:所述SRS资源的带宽信息和基带参数numerology与所述UL BWP配置无关。
  62. 根据权利要求58所述的方法,还包括:
    向所述网络设备发送终端的能力信息,所述能力信息包括终端可支持的最大上行发送带宽,所述最大上行发送带宽用于供所述网络设备确定所述 SRS资源的频域范围。
  63. 一种带宽部分BWP的切换处理方法,应用于位置服务器,包括:
    在终端进行BWP切换时,接收第一网络设备发送的第一BWP的相关信息,所述第一BWP为所述终端切换后的BWP,所述第一BWP用于所述终端发送第一对象,所述第一对象包括上行定位参考信号或上行定位资源;
    向第二网络设备发送所述第一BWP的相关信息,所述第二网络设备包括参与所述终端定位的网络设备中除所述第一网络设备之外的其他网络设备。
  64. 根据权利要求63所述的方法,其中,所述第一BWP的相关信息包括所述第一BWP的时域配置信息,以及所述第一BWP配置或所述第一BWP的标识信息。
  65. 根据权利要求63或64所述的方法,其中,所述第一对象为探测参考信号SRS资源。
  66. 一种探测参考信号SRS资源配置方法,应用于终端侧,包括:
    接收网络设备发送的第四配置信息,所述第四配置信息用于配置终端在第一带宽部分BWP上发送第一对象,所述第一BWP为专用于定位的上行带宽部分UL BWP,所述第一对象包括上行定位参考信号或上行定位资源。
  67. 根据权利要求66所述的方法,其中,所述接收网络设备发送的第四配置信息之后,所述方法还包括:
    在不满足第二预设条件的情况下,所述终端进行BWP切换;
    在满足第二预设条件的情况下,所述终端不进行BWP切换;
    其中,所述第二预设条件包括:所述第一BWP包含于所述终端当前激活的BWP,且所述第一BWP的基带参数与所述终端当前激活的BWP的基带参数相同。
  68. 根据权利要求67所述的方法,其中,所述终端进行BWP切换之前,所述方法还包括:
    接收所述网络设备发送的第三指示信息,所述第三指示信息用于指示所述终端进行BWP切换。
  69. 根据权利要求66至68中任一项所述的方法,其中,所述第一对象为SRS资源。
  70. 一种网络设备,包括:
    第一发送模块,用于向终端发送第一配置信息,所述第一配置信息用于配置探测参考信号SRS资源的图样,所述SRS资源在频域等间隔分布,且间隔的子载波的数量为M,M为大于4的整数。
  71. 一种网络设备,所述网络设备为终端当前服务的第一网络设备,包括:
    第二发送模块,用于在终端进行带宽部分BWP切换时,将切换后的第一BWP的相关信息发送至第二网络设备,所述第二网络设备包括参与所述终端定位的网络设备中除所述第一网络设备之外的其他网络设备;所述第一BWP用于所述终端发送第一对象,所述第一对象包括上行定位参考信号或上行定位资源。
  72. 一种终端,包括:
    第一接收模块,用于接收网络设备发送的第一配置信息;其中,所述第一配置信息用于配置探测参考信号SRS资源的图样,所述SRS资源在频域等间隔分布,且间隔的子载波的数量为M,M为大于4的整数。
  73. 一种位置服务器,包括:
    第二接收模块,用于在终端进行带宽部分BWP切换时,接收第一网络设备发送的第一BWP的相关信息,所述第一BWP为所述终端切换后的BWP,所述第一BWP用于所述终端发送第一对象,所述第一对象包括上行定位参考信号或上行定位资源;
    第三发送模块,用于向第二网络设备发送所述第一BWP的相关信息,所述第二网络设备包括参与所述终端定位的网络设备中除所述第一网络设备之外的其他网络设备。
  74. 一种终端,包括:
    第三接收模块,用于接收网络设备发送的第四配置信息,所述第四配置信息用于配置终端在第一带宽部分BWP上发送第一对象,所述第一BWP为专用于定位的上行带宽部分UL BWP,所述第一对象包括上行定位参考信号或上行定位资源。
  75. 一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在 所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至27中任一项所述的探测参考信号SRS资源配置方法中的步骤,或者所述程序被所述处理器执行时实现权利要求28至35中任一项所述的带宽部分BWP的切换处理方法中的步骤。
  76. 一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求36至62以及权利要求66至69中任一项所述的探测参考信号SRS资源配置方法中的步骤。
  77. 一种位置服务器,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求63至65中任一项所述的带宽部分BWP的切换处理方法中的步骤。
  78. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至27、权利要求36至62以及权利要求66至69中任一项所述的探测参考信号SRS资源配置方法的步骤,或者所述计算机程序被处理器执行时实现如权利要求28至35以及权利要求63至65中任一项所述的带宽部分BWP的切换处理方法的步骤。
PCT/CN2020/086979 2019-04-30 2020-04-26 Srs资源配置方法、bwp的切换处理方法和相关设备 WO2020221156A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217038973A KR102674035B1 (ko) 2019-04-30 2020-04-26 Srs 자원 구성 방법, bwp 전환 처리 방법 및 관련 장비
EP20799586.1A EP3965500A4 (en) 2019-04-30 2020-04-26 SDS RESOURCE CONFIGURATION METHOD, INTERCELLULAR TRANSFER PROCESSING METHOD FOR BWP AND RELATED DEVICE
US17/513,196 US12081474B2 (en) 2019-04-30 2021-10-28 SRS resource configuration method, BWP switching processing method, and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910364205.0A CN111278130B (zh) 2019-04-30 2019-04-30 Srs资源配置方法、bwp的切换处理方法和相关设备
CN201910364205.0 2019-04-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/513,196 Continuation US12081474B2 (en) 2019-04-30 2021-10-28 SRS resource configuration method, BWP switching processing method, and related device

Publications (1)

Publication Number Publication Date
WO2020221156A1 true WO2020221156A1 (zh) 2020-11-05

Family

ID=71001560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086979 WO2020221156A1 (zh) 2019-04-30 2020-04-26 Srs资源配置方法、bwp的切换处理方法和相关设备

Country Status (5)

Country Link
US (1) US12081474B2 (zh)
EP (1) EP3965500A4 (zh)
KR (1) KR102674035B1 (zh)
CN (1) CN111278130B (zh)
WO (1) WO2020221156A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021062795A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 一种通信方法及装置
US11552735B2 (en) * 2020-06-29 2023-01-10 Qualcomm Incorporated Puncturing unit for sounding reference signal (SRS) comb patterns with cyclic shifting
CN113132899B (zh) * 2020-07-31 2022-10-11 华为技术有限公司 通信方法、装置及系统
CN114270964B (zh) 2020-07-31 2023-11-17 华为技术有限公司 通信方法、装置及系统
CN114531962B (zh) * 2020-09-22 2024-09-03 北京小米移动软件有限公司 定位方法、装置、用户设备、网络设备、及定位管理设备
CN117121416A (zh) * 2021-04-01 2023-11-24 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
CN115226208A (zh) * 2021-04-15 2022-10-21 华为技术有限公司 一种信号处理方法及通信装置
US12081495B2 (en) 2021-08-05 2024-09-03 Apple Inc. SRS signaling in 5G new radio wireless communications
WO2023050056A1 (zh) * 2021-09-28 2023-04-06 北京小米移动软件有限公司 资源配置方法、装置、设备及存储介质
KR20230153231A (ko) * 2022-04-28 2023-11-06 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
CN117528779A (zh) * 2022-07-25 2024-02-06 维沃移动通信有限公司 信息配置方法、装置、终端、网络侧设备及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107911203A (zh) * 2017-08-11 2018-04-13 华为技术有限公司 发送和接收参考信号的方法、网络设备、终端设备和系统
CN108111279A (zh) * 2017-08-21 2018-06-01 中兴通讯股份有限公司 参考信号传输、参数发送方法及装置、终端、基站
WO2018137246A1 (zh) * 2017-01-26 2018-08-02 华为技术有限公司 终端设备定位方法以及网络设备
CN109561489A (zh) * 2017-09-26 2019-04-02 华为技术有限公司 一种带宽部分配置方法、装置及设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102362441B (zh) * 2009-03-22 2016-12-21 Lg电子株式会社 使用多个天线的信道探测方法以及用于其的装置
CN103220101B (zh) * 2012-01-19 2018-02-16 中兴通讯股份有限公司 频谱梳信令的通知、探测参考信号的发送方法与装置
CN107294686A (zh) * 2016-04-01 2017-10-24 中兴通讯股份有限公司 探测参考信号发送、接收方法、装置、ue及基站
CN109150450B (zh) * 2017-06-16 2021-04-20 华为技术有限公司 一种信号传输的方法、设备和系统
US11611468B2 (en) * 2017-09-28 2023-03-21 Comcast Cable Communications, Llc Beam management with DRX configuration
CN113660188A (zh) * 2017-11-17 2021-11-16 华为技术有限公司 发送探测参考信号srs的方法和装置
US11283651B2 (en) * 2019-02-08 2022-03-22 Qualcomm Incorporated Sounding reference signal (SRS) resource and resource set configurations for positioning
US11777764B2 (en) * 2019-03-28 2023-10-03 Qualcomm Incorporated Sounding reference signal waveform design for wireless communications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018137246A1 (zh) * 2017-01-26 2018-08-02 华为技术有限公司 终端设备定位方法以及网络设备
CN107911203A (zh) * 2017-08-11 2018-04-13 华为技术有限公司 发送和接收参考信号的方法、网络设备、终端设备和系统
CN108111279A (zh) * 2017-08-21 2018-06-01 中兴通讯股份有限公司 参考信号传输、参数发送方法及装置、终端、基站
CN109561489A (zh) * 2017-09-26 2019-04-02 华为技术有限公司 一种带宽部分配置方法、装置及设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3965500A4 *
VIVO: "Discussion on SRS Design and Related Aspects", 3GPP DRAFT; R1-1715625, 11 September 2017 (2017-09-11), Nagoya, Japan, pages 1 - 4, XP051329102 *

Also Published As

Publication number Publication date
EP3965500A1 (en) 2022-03-09
US12081474B2 (en) 2024-09-03
CN111278130B (zh) 2022-11-01
KR102674035B1 (ko) 2024-06-10
CN111278130A (zh) 2020-06-12
KR20210154852A (ko) 2021-12-21
EP3965500A4 (en) 2022-06-22
US20220052813A1 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
WO2020221156A1 (zh) Srs资源配置方法、bwp的切换处理方法和相关设备
CN110474724B (zh) 一种tci状态指示方法、终端及网络侧设备
JP7297058B2 (ja) データ伝送方法及び通信機器
WO2021027513A1 (zh) 确定天线端口映射方法和终端
CN110324859B (zh) 副链路的传输资源选择方法、配置方法、终端和网络设备
CN111277387B (zh) 指示信息的传输方法及通信设备
CN111130728B (zh) 一种传输方法、终端及网络侧设备
US11671220B2 (en) Sounding reference signal transmission and configuration methods, user equipment, and network side device
US20210168834A1 (en) Determining method, terminal, and network device
WO2020182124A1 (zh) 传输方法、网络设备和终端
US12022374B2 (en) Transmission path selection method, information configuration method, terminal, and network device
JP2022528235A (ja) マッピング方法、端末機器及びネットワーク側機器
WO2021155786A1 (zh) Qcl的确定方法、终端及网络侧设备
CN111278061B (zh) 数据处理方法、信息配置方法、终端及网络设备
JP2023515836A (ja) リソース決定方法、リソース指示方法及び通信機器
JP2023120358A (ja) 情報処理方法及び端末
US20220174701A1 (en) Information processing method, device, and computer-readable storage medium
EP4090112A1 (en) Pdcch configuration method and terminal
CN110035500B (zh) 通信方法及相关设备
EP3860023A1 (en) Information indication method, indication receiving method, terminal, and network-side device
JP7545533B2 (ja) データ伝送方法、端末、ネットワーク機器、及びコンピュータ可読記憶媒体
RU2789451C1 (ru) Способ передачи информации индикации и устройство связи
WO2021098628A1 (zh) 上行传输方法、配置方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20799586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217038973

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020799586

Country of ref document: EP

Effective date: 20211130