WO2020221007A1 - 空调器底盘及空调器 - Google Patents

空调器底盘及空调器 Download PDF

Info

Publication number
WO2020221007A1
WO2020221007A1 PCT/CN2020/084836 CN2020084836W WO2020221007A1 WO 2020221007 A1 WO2020221007 A1 WO 2020221007A1 CN 2020084836 W CN2020084836 W CN 2020084836W WO 2020221007 A1 WO2020221007 A1 WO 2020221007A1
Authority
WO
WIPO (PCT)
Prior art keywords
water storage
water
storage area
windshield
air conditioner
Prior art date
Application number
PCT/CN2020/084836
Other languages
English (en)
French (fr)
Inventor
钱国华
冷晓刚
陈明侠
耿德国
Original Assignee
宁波奥克斯电气股份有限公司
奥克斯空调股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波奥克斯电气股份有限公司, 奥克斯空调股份有限公司 filed Critical 宁波奥克斯电气股份有限公司
Publication of WO2020221007A1 publication Critical patent/WO2020221007A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers

Definitions

  • the embodiment of the present disclosure relates to an air conditioner chassis and an air conditioner.
  • Known air conditioners include chassis and heat exchangers.
  • the heat exchanger is installed on the chassis, and the heat exchanger is installed on the chassis with a main water collection tank and a side water collection tank.
  • the air conditioner exchanges heat during operation.
  • the condenser will produce a large amount of condensed water, and these condensed water will fall into the main sump and the side sump of the chassis, and the side sump is provided with a water outlet, and the condensate flows from the side sump's water outlet to the main sump.
  • the air in the heat exchanger easily enters the side water collection tank from the water passing port of the side water collection tank, causing part of the air intake of the heat exchanger to be lost, which affects the heat exchange efficiency of the heat exchanger.
  • the problem solved by the embodiments of the present disclosure is that in the known air conditioner, the air in the heat exchanger is easily lost from the water passage of the side water collection tank of the chassis, which affects the heat exchange efficiency of the heat exchanger.
  • the embodiments of the present disclosure provide an air conditioner chassis for installing a heat exchanger.
  • the chassis is provided with a water storage area, and the water storage area is located on a side of the heat exchanger in an assembled state.
  • the side of the water storage area close to the heat exchanger is provided with a water gap and a wind-shielding structure, and the wind-shielding structure is suitable for obstructing the air from the direction of the heat exchanger in the assembled state.
  • the water gap enters the water storage area.
  • the arrangement of the windshield structure on the one hand strengthens the structural strength of the water storage area, and can provide support for the heat exchanger in the assembled state; on the other hand, it can also prevent the air in the heat exchanger from entering through the water gap
  • the water storage area plays a role of preventing air leakage and improves the working efficiency of the heat exchanger.
  • the windshield structure includes a first windshield rib and a second windshield rib, and the first windshield rib and the second windshield rib are on the plane where the water gap is located.
  • the projection covers the water gap.
  • the windshield structure further includes a third windshield rib, and the first windshield rib and the second windshield rib are both connected to the third windshield rib and are located at On both sides of the third windshield rib; one end of the third windshield rib extends to the water gap and divides the water gap into two parts.
  • the third windshield rib divides the water gap into two, so that the airflow flowing from the water gap into the water storage area is split at the water gap, reducing the flow rate of the airflow.
  • Bernoulli the pressure will increase, and the resistance will be greater when the airflow flows to the water storage area, which further reduces the air leakage of the heat exchanger.
  • the fishbone structure of the windshield structure can ensure the chassis during injection molding.
  • the water storage area is not easy to shrink, which improves the manufacturing quality of the chassis.
  • the first windshield ribs, the second windshield ribs, and the third windshield ribs are distributed in a herringbone style.
  • the water storage area has a first side wall in a length direction thereof, the first side wall has a V-shaped structure, and the opening of the V-shaped structure faces the water storage area and is away from the heat exchanger
  • the water gap is provided at the top of the V-shaped structure, and is suitable for guiding condensed water to flow along the first side wall to the water gap.
  • the condensed water that drips into the water storage area can flow along the first side wall to the water gap, so that the first side wall has a diversion function, prevents the condensed water from stagnating in the water storage area, thereby improving the drainage effect of the chassis .
  • the V-shaped structure of the first side wall has a first side and a second side at the front end and the rear end of the water gap respectively, and the first side is inclined with respect to the front-to-rear direction
  • the angle ⁇ 1 is between 5° and 10°
  • the inclination angle ⁇ 2 of the second side edge with respect to the front and back direction is between 5° and 10°.
  • the water storage area has better comprehensive performance in terms of water storage capacity and diversion effect, which can ensure that the water storage area not only has sufficient water storage area without affecting other structures of the chassis, but also prevents occurrence
  • the water leakage of the air conditioner also ensures that the first side wall has a diversion function and a good drainage effect.
  • first wind deflector and the second wind deflector are arranged obliquely, and the free ends of the first wind deflector and the second wind deflector are close to the first wind deflector.
  • the side wall is suitable for guiding the condensed water to flow to the first side wall.
  • the condensed water can be prevented from being blocked by the first wind deflector and the second wind deflector on the side away from the water gap, so that the condensate dripping into the water storage area will follow the first wind deflector and the first wind deflector.
  • the second windshield ribs flow to the first side wall, and then flow to the water gap along the first side wall, the diversion effect is better, and the drainage effect of the water storage area is improved.
  • the inclination angle ⁇ 3 of the first wind deflector relative to the front and rear direction is between 15°-30°, and/or, the inclination of the second wind deflector relative to the front and rear direction
  • the angle ⁇ 4 is between 15°-30°.
  • the first wind deflector and/or the second wind deflector have a certain diversion function, and it is also ensured that the condensed water can smoothly pass from the first wind deflector and/or the first wind deflector. Or, the water passing area formed between the free end of the second windshield rib and the first side wall flows to the water passing gap, and the drainage effect is better.
  • one end of the third windshield rib extends to the water gap, and the other end of the third windshield rib extends to the side of the water storage area away from the heat exchanger , And divide the water storage area into a first water storage tank and a second water storage tank, the bottom surface of the first water storage tank and the bottom surface of the second water storage tank are far from the third windshield rib
  • the side higher than the side connected with the third wind deflector is suitable for guiding the condensed water to flow to the third wind deflector.
  • the speed of the condensed water flowing to the third windshield rib in the first water storage tank and the second water storage tank is increased, so that the condensed water can be discharged from the water storage area faster, and the condensed water is discharged more cleanly, preventing The condensed water stays in the first water storage tank and the second water storage tank to form accumulated water, which further improves the drainage efficiency and drainage effect of the water storage area.
  • the included angle ⁇ 5 between the bottom surface of the first water storage tank and the horizontal plane is between 2°-5°, and/or the included angle ⁇ 6 between the bottom surface of the second water storage tank and the horizontal plane Between 2°-5°.
  • the side of the bottom surface of the first water storage tank and the bottom surface of the second water storage tank far away from the water gap is higher than the side where the water gap is located, and is suitable for guiding the flow of condensed water to all the water gaps. Described the water gap.
  • the flow speed of the condensed water in the first water storage tank and the second water storage tank is increased, so that the condensed water can be discharged from the water storage area more quickly, and the condensed water is discharged more cleanly, preventing the condensed water in the first storage tank.
  • the water tank and the second water storage tank are stagnated to form accumulated water and corrode the chassis, which not only further improves the drainage efficiency and drainage effect of the water storage area, but also improves the quality of the chassis and prolongs the service life of the chassis.
  • the line of intersection formed by the intersection of the bottom surface of the first water storage tank and the plane perpendicular to the front-to-rear direction has an inclination angle of 2°-5° with respect to the left-right direction
  • the line of intersection formed by the intersection of the bottom surface of the second water storage tank and the plane perpendicular to the front and rear direction has an inclination angle of 2°-5° with respect to the left and right direction.
  • the water storage area has a second side wall in its length direction, and a reinforcing structure is provided on the second side wall.
  • the structural strength of the second side wall on the water storage area can be enhanced, thereby increasing the strength of the chassis, so that it is not easy for the water storage area of the chassis to receive vibration or impact during transportation or when the air conditioner is working. Deformation occurs, thereby improving the quality of use of the chassis.
  • an embodiment of the present disclosure further provides an air conditioner, including any one of the above-mentioned air conditioner chassis.
  • the air conditioner has the same advantages as the aforementioned air conditioner chassis over the known technology, and will not be repeated here.
  • FIG. 1 is a schematic structural diagram of a chassis in an embodiment of the disclosure
  • Figure 2 is a partial enlarged view of A in Figure 1;
  • Figure 3 is a schematic cross-sectional structure diagram of the heat exchanger and the chassis in the installed state of the embodiment of the disclosure
  • Figure 4 is a top view of the heat exchanger and the chassis in Figure 3 in an installed state
  • FIG. 5 is a top view of the chassis in an embodiment of the disclosure.
  • FIG. 6 is a schematic diagram of the structure of the chassis at the water storage area in the embodiment of the disclosure.
  • Figure 7 is a partial enlarged view of B in Figure 6;
  • FIG. 8 is a schematic diagram of a cross-sectional structure of a water storage area in an embodiment of the disclosure.
  • FIG. 9 is a front view of the chassis in an embodiment of the disclosure.
  • Figure 10 is a partial enlarged view of C in Figure 9;
  • FIG. 11 is a schematic structural diagram of the bottom surface of the water storage area inclined from the left to the right in the embodiment of the disclosure.
  • 10-heat exchanger 11-bracket, 100-main catchment area, 200-water storage area, 210-wind shield structure, 211-first windshield rib, 212-second windshield rib, 213-th Three windshield ribs, 220-first side wall, 221- water gap, 2211-first gap, 2212-second gap, 222-first side, 223-second side, 230-second side Wall, 231-reinforced structure, 240-first water storage tank, 250-second water storage tank.
  • a main water collection tank and a side water collection tank are provided at the installation position of the heat exchanger on the chassis, and the side water collection tank is not provided with a structure for blocking the air in the heat exchanger from entering the side water collection tank.
  • the water tank is equivalent to the main water collection area 100 in the present disclosure
  • the side water collection tank is equivalent to the water storage area 200 in the present disclosure.
  • a windshield structure 210 is provided in the water storage area 200 on the basis of the known technology, and the structure of the water storage area 200 is improved.
  • this embodiment provides an air conditioner chassis for installing the heat exchanger 10, the chassis is provided with a water storage area 200, the water storage area 200 is located in the assembled state of the heat exchanger 10 One side, and the side of the water storage area 200 close to the heat exchanger 10, is provided with a water gap 221 and a windshield structure 210.
  • the windshield structure 210 is adapted to block the air from the direction of the heat exchanger 10 from passing the water in the assembled state.
  • the gap 221 enters the water storage area 200.
  • the main water collection area 100 and the water storage area 200 are provided on the chassis.
  • the main water collection area 100 and the water storage area 200 are connected at the water gap 221, and the windshield structure 210 is arranged in the water storage area 200 near the water gap 221 .
  • the heat exchanger 10 is assembled on the chassis, the main water collection area 100 is located below the heat exchanger 10, the water storage area 200 is located on the left side of the heat exchanger 10, and the windshield structure 210 is on the left side of the heat exchanger 10
  • the bracket 11 abuts, so that the wind shielding structure 210 can provide supporting force to the heat exchanger 10.
  • the heat exchanger 10 will generate a large amount of condensed water.
  • the bracket 11 drips into the water storage area 200.
  • This small part of the condensed water is collected in the water storage area 200 and flows into the main water collection area 100 from the water gap 221, and then gathers to the water pumping on the chassis
  • the water pumping motor installed in the water pumping area strikes and atomizes, so that the condensed water evaporates.
  • the air blown into the heat exchanger 10 circulates inside the heat exchanger 10 for heat exchange, and the air circulating in the heat exchanger 10 will also be in the main water collection area 100.
  • the air flowing in the main water collection area 100 will flow into the water storage area 200 from the water gap 221.
  • 100 is located on the right side of the water storage area 200 and also located below the heat exchanger 10, so the air flowing from the main water collection area 100 into the water storage area 200 is equivalent to the air coming from the direction of the heat exchanger 10.
  • the windshield structure 210 the air in the heat exchanger 10 enters the water storage area 200 from the water gap 221 without any hindrance, resulting in air leakage in the area of the heat exchanger 10, affecting the heat exchange of the heat exchanger 10. Thermal efficiency.
  • a windshield structure 210 is provided in the water storage area 200, so that the air from the direction of the heat exchanger 10, that is, the air flowing from the main water collection area 100 to the water gap 221, is obstructed by the windshield structure 210. Can not flow into the water storage area 200 smoothly, and most of them will flow back into the main water collection area 100.
  • the arrangement of the windshield structure 210 on the one hand strengthens the structural strength of the water storage area 200, and can provide support for the heat exchanger 10 in the assembled state; on the other hand, it can also prevent the air in the heat exchanger 10 from passing through.
  • the water gap 221 enters the water storage area 200 so as to prevent air leakage and improve the working efficiency of the heat exchanger 10.
  • the windshield structure 210 includes a first windshield rib 211 and a second windshield rib 212, the first windshield rib 211 and the second windshield rib 212
  • the projection on the plane where the water gap 221 is located covers the water gap 221.
  • the windshield structure 210 includes two windshields, a first windshield 211 and a second windshield 212, and the height of the first windshield 211 and the second windshield 212 is higher than The height of the water gap 221.
  • the first wind deflector 211 and the second wind deflector 212 may be connected to each other at the end, that is, the rear end of the first wind deflector 211 is connected to the front end of the second wind deflector 212; or at the end Staggered each other, that is, when the first wind deflector 211 and the second wind deflector 212 are connected to each other, the rear end of the first wind deflector 211 and the front end of the second wind deflector 212 overlap.
  • the water passing gap 221 has two sides in the front-to-rear direction. For ease of understanding, they are called the front side and the back side respectively.
  • the front side and the back side of the water passing gap 221 can form a plane, which is It is the plane where the water gap 221 is located. That is, the projection of the first wind deflector 211 on the plane where the water gap 221 is located is the first projection, and the projection of the second wind deflector 212 on the plane where the water gap 221 is located is the second projection.
  • the projection and the second projection can intersect, or they can be connected at the edge of the projection.
  • the projection of the first wind deflector 211 and the second wind deflector 212 on the plane where the water gap 221 is located is the sum of the area of the first projection and the second projection, and the area of the first projection and the second projection And the area larger than the water gap 221 can completely cover the water gap 221.
  • the first projection and the second projection intersect, the first projection area is added to the second projection area, and then the area of the intersecting part of the first projection and the second projection is subtracted.
  • the resulting projection The area is the sum of the area of the first projection and the second projection.
  • the windshield structure 210 further includes a third windshield rib 213, and the first windshield rib 211 and the second windshield rib 212 are both connected to the third windshield rib 213, They are respectively located on both sides of the third windshield rib 213; one end of the third windshield rib 213 extends to the water gap 221 and divides the water gap 221 into two parts.
  • the third windshield rib 213 is arranged in the water storage area 200 along the left and right direction, and the right end of the third windshield rib 213 is located at the water gap 221, which divides the water gap 221 into two gaps, namely the first gap 2211 and the second gap 2212.
  • the first windshield rib 211 and the second windshield rib 212 are respectively located on the front and rear sides of the third windshield 213.
  • the front end of the first windshield rib 211 is a free end and does not form a connection relationship with other components.
  • the rear end of the first windshield rib 211 is connected with the third windshield rib 213; the front end of the second windshield rib 212 It is connected with the third windshield rib 213, and the rear end of the second windshield rib 212 is a free end, which does not form a connection relationship with other components.
  • the third windshield 213 divides the water gap 221 into two, so that the airflow flowing from the water gap 221 into the water storage area 200 is divided at the water gap 221, which reduces the flow rate of the airflow.
  • the pressure will increase when the flow rate of the airflow decreases, and the greater the resistance when the airflow flows to the water storage area 200, which further reduces the air leakage of the heat exchanger 10.
  • the first windshield ribs 211, the second windshield ribs 212, and the third windshield ribs 213 are distributed in a fishbone pattern.
  • the windshield structure 210 is a fishbone structure, in which the third windshield 213 constitutes the main structure of the fishbone, and the first windshield 211 and the second windshield 212 constitute the main structure of the fishbone. Side support structures on both sides of the structure.
  • the fishbone structure of the windshield structure 210 can ensure that the water storage area 200 does not easily shrink when the chassis is injection molded, thereby improving the manufacturing quality of the chassis.
  • the areas of the first gap 2211 and the second gap 2212 are equal.
  • the end of the third windshield rib 213 is located in the middle of the water gap 221, and the water gap 221 is equally divided into two.
  • the pressure at the first gap 2211 and the second gap 2212 are the same, and the obstructive effect on the airflow is also equivalent, avoiding two One of the gaps obstructs the airflow much less than the other gap, causing most of the airflow blowing to the water gap 221 to flow into the water storage area 200 from the gap with the smaller obstruction to further reduce the heat exchanger 10 air leaks.
  • the water storage area 200 has a first side wall 220 in its length direction.
  • the first side wall 220 has a V-shaped structure, and the opening of the V-shaped structure faces the water storage area 200 away from the heat exchanger.
  • the water gap 221 is provided at the top of the V-shaped structure, and is suitable for guiding the condensed water to flow to the water gap 221 along the first side wall 220.
  • the size of the water storage area 200 in the front-rear direction is larger than its size in other directions, so the length direction of the water storage area 200 is the front-rear direction, and the first side wall 220 is arranged on the water storage area 200 in the front-rear direction and passes The water gap 221 is opened on the first side wall 220.
  • the first side wall 220 has a V-shaped structure, and the water passing gap 221 is opened at the top of the V-shaped structure.
  • the first side wall 220 It is arranged close to the heat exchanger 10, so the first side wall 220 is located on the left side of the heat exchanger 10, that is to say, the V-shaped structure is located on the left side of the heat exchanger 10 and close to the heat exchanger 10, and drips to the storage.
  • the condensed water in the water area 200 flows from the water storage area 200 to the main water collection area 100, so the opening of the V-shaped structure of the first side wall 220 faces the left and the top end faces the right.
  • the condensed water dripping into the water storage area 200 can flow along the first side wall 220 to the water gap 221, so that the first side wall 220 has a diversion function, preventing the condensed water from stagnating in the water storage area 200, thereby improving The drainage effect of the chassis is improved.
  • the water storage area 200 has a second side wall 230 in its length direction, and a reinforcing structure 231 is provided on the second side wall 230.
  • the second side wall 230 is disposed on the water storage area 200 along the front and back direction.
  • the water storage area 200 has a rectangular groove structure as a whole, with side walls in the front, rear, left and right directions.
  • the first side wall 220 and the second side wall 230 respectively constitute the water storage area 200.
  • the two side walls in the left-right direction, namely the first side wall 220 and the second side wall 230 are also the left side wall and the right side wall of the water storage area 200, respectively.
  • the reinforcing structure 231 is provided on the second side wall 230 of the water storage area 200.
  • the water storage area 200 is provided at the left end of the chassis, and the left side wall of the water storage area 200 is a part of the left side wall of the chassis.
  • the reinforcement structure 231 is also equivalent to being provided on the left side wall of the chassis.
  • the structural strength at the second side wall 230 on the water storage area 200 can be enhanced, thereby increasing the strength of the chassis, so that during transportation or when the air conditioner is working, the water storage area 200 of the chassis is subject to vibration or impact. It is not easy to deform, thereby improving the quality of use of the chassis.
  • the reinforcing structure 231 may be a plate-shaped structure, a block-shaped structure, or a strip-shaped structure and other structures, which are not limited in detail in this embodiment.
  • a plurality of reinforcing structures 231 are provided and are distributed on the second side wall 230 at equal intervals.
  • the plurality of reinforcing structures 231 are distributed on the second side wall 230 along the length direction of the second side wall 230, and the distance between two adjacent reinforcing structures 231 is equal.
  • the V-shaped structure of the first side wall 220 has a first side 222 and a second side 223 at the front and rear ends of the water gap 221, and the first side 222 is opposite to
  • the inclination angle ⁇ 1 in the front-rear direction is between 5° and 10°
  • the inclination angle ⁇ 2 of the second side 223 with respect to the front-rear direction is between 5° and 10°.
  • the first side wall 220 is divided into two sections by the water gap 221, and the first side wall 220 is arranged perpendicular to the left and right directions, so the first side wall 220 is embodied in FIG. 5 as two line segments, the two line segments Two sides of the V shape are formed respectively, wherein the line segment at the front end of the water gap 221 constitutes the first side 222 of the V shape, and the line segment at the rear end of the water gap 221 constitutes the second side 223 of the V shape.
  • the inclination angle ⁇ 1 of the first side 222 relative to the front-rear direction is the angle between the first side 222 and the front-rear direction
  • the inclination angle ⁇ 2 of the second side 223 relative to the front-rear direction is the second side.
  • the angle between 223 and the front and back direction When the inclination angle of the first side 222 and/or the second side 223 with respect to the front-to-rear direction is too large, it means that the inclination angle of the first side wall 220 divided into two sections by the water gap 221 is also large.
  • the structure of the chassis itself is restricted. When the inclination angle of the first side wall 220 is too large, it will affect other structures on the chassis, or reduce the area of the water storage area 200 and reduce the water storage capacity of the water storage area 200, resulting in When the condensate increases, the condensate overflows the chassis, causing the air conditioner to leak.
  • ⁇ 1 and/or ⁇ 2 are set between 5°-10°.
  • the water storage area 200 has better comprehensive performance in terms of water storage capacity and diversion effect, which can ensure the water storage area Without affecting other structures of the chassis, the 200 not only has a sufficient water storage area to prevent water leakage from the air conditioner, but also ensures that the first side wall 220 has a diversion function and a good drainage effect.
  • the first wind deflector 211 and the second wind deflector 212 are arranged obliquely, and the free ends of the first wind deflector 211 and the second wind deflector 212 It is close to the first side wall 220 and is suitable for guiding the condensed water to flow to the first side wall 220.
  • the free ends of the first wind deflector 211 and the second wind deflector 212 are respectively inclined toward the first side wall 220 located at the front and rear ends of the water gap 221, that is, the water gap 221 is divided into Both sections of the first sidewall 220 extend to intersect the third windshield rib 213, and then from the front to the back, the first windshield rib 211 and the extended second windshield rib 213 at the front end
  • the minimum distance between one side wall 220 gradually increases; the minimum distance between the second windshield rib 212 and the extended first side wall 220 located at the rear end of the third windshield rib 213 gradually decreases.
  • the first windshield rib 211 is inclined to the rear right
  • the second windshield rib 212 is inclined to the front right.
  • the condensed water is blocked by the first wind deflector 211 and the second wind deflector 212 on the side away from the water gap 221, so that the condensate dripping into the water storage area 200 follows the first wind deflector
  • the ribs 211 and the second windshield ribs 212 flow to the first side wall 220, and then flow to the water gap 221 along the first side wall 220, so that the diversion effect is better and the drainage effect of the water storage area 200 is improved.
  • the inclination angle ⁇ 3 of the first wind deflector 211 relative to the front and rear direction is between 15°-30°, and/or the second wind deflector 212 is relative to the front and rear
  • the inclination angle ⁇ 4 in the direction is between 15°-30°.
  • the inclination angle ⁇ 3 of the first windshield ribs 211 with respect to the front and rear direction is the first windshield rib.
  • the angle between the side of the plate 211 in the left-right direction and the front-rear direction; the inclination angle ⁇ 4 of the second windshield rib 212 relative to the front-rear direction is the side surface of the second windshield rib 212 in the left-right direction and the front-rear direction.
  • the first windshield rib 211 and/or the second windshield rib 212 are arranged perpendicular to the horizontal plane, where the horizontal plane also refers to a plane perpendicular to the up and down direction.
  • the angle between the left side of the first windshield rib 211 and/or the second windshield rib 212 and the front-rear direction is taken as an example for illustration.
  • the left side of the first windshield rib 211 and/or the second windshield rib 212 is shown as a line segment in the figure.
  • a water passing area is formed between the free ends of the first windshield rib 211 and the second windshield rib 212 and the first side wall 220. Take the inclination angle of the first windshield rib 211 relative to the front-rear direction as an example for description.
  • the minimum distance between the free end of the first wind deflector 211 and the first side wall 220 is smaller, so that the first The water-passing area formed between the free end of the windshield 211 and the first side wall 220 is smaller, which extends the drainage time of the water storage area 200 and reduces the drainage effect of the water storage area 200; when the first windshield If the inclination angle of the rib 211 with respect to the front-to-rear direction is too small, the first windshield rib 211 almost loses the water guiding effect, and the guiding effect is poor.
  • ⁇ 3 and/or ⁇ 4 are set between 15°-30°. Within this angle range, it is ensured that the first wind deflector 211 and/or the second wind deflector 212 has a certain diversion function, and it is also ensured that the condensed water can smoothly flow from the first wind deflector 211 and /Or the water passing area formed between the free end of the second windshield rib 212 and the first side wall 220 flows to the water passing gap 221, and the drainage effect is better.
  • one end of the third wind deflector 213 extends to the water gap 221, and the other end of the third wind deflector 213 extends to the water storage area 200 away from the heat exchanger 10, and divide the water storage area 200 into a first water storage tank 240 and a second water storage tank 250.
  • the bottom surface of the first water storage tank 240 and the bottom surface of the second water storage tank 250 are far away from the third windshield rib 213
  • One side is higher than the side connected to the third windshield rib 213 and is suitable for guiding the condensed water to flow to the third windshield rib 213.
  • the third wind deflector 213 is arranged in the left and right directions in the water storage area 200. Since the second side wall 230 is the side of the water storage area 200 away from the heat exchanger 10, the third wind deflector 213 is separated from the water gap. 221 extends to the second side wall 230, and divides the water storage area 200 into two water storage tanks, namely the first water storage tank 240 and the second water storage tank 250.
  • the first water storage tank 240 is located on the third windshield rib 213
  • the second water storage tank 250 is located at the rear end of the third windshield rib 213.
  • the side of the bottom surface of the first water storage tank 240 away from the third windshield rib 213 is higher than the side connected to the third windshield rib 213, and the bottom surface of the second water storage tank 250 is far away from the third windshield rib
  • the side of the 213 is higher than the side connected to the third windshield 213, that is, the entire bottom surface of the water storage area 200 sinks at the third windshield 213, so that the bottom surface of the water storage area 200
  • the cross section is V-shaped, and the top of the V-shaped is the lowest point when water flows. Taking the bottom surface of the first water storage tank 240 as an example, with reference to the coordinate system in the figure, the front end of the bottom surface of the first water storage tank 240 is higher than the rear end.
  • the condensed water dripping onto the first water storage tank 240 and the second water storage tank 250 flows to the third windshield rib 213 under the diversion action of the bottom surface of the first water storage tank 240 and the bottom surface of the second water storage tank 250, respectively. Then, it flows along the third windshield rib 213 to the water gap 221 and discharges the water storage area 200.
  • the speed of the condensed water flowing to the third wind deflector 213 in the first water storage tank 240 and the second water storage tank 250 is increased, so that the condensed water can be discharged from the water storage area 200 more quickly, and the condensed water is also discharged. It is cleaner and prevents condensed water from stagnating in the first water storage tank 240 and the second water storage tank 250 to form accumulated water, which further improves the drainage efficiency and drainage effect of the water storage area 200.
  • the included angle ⁇ 5 between the bottom surface of the first water storage tank 240 and the horizontal plane is between 2°-5°, and/or, between the bottom surface of the second water storage tank 250 and the horizontal plane
  • the included angle ⁇ 6 is between 2°-5°.
  • the angle ⁇ 5 between the bottom surface of the first water storage tank 240 and the horizontal plane and the angle ⁇ 6 between the bottom surface of the second water storage tank 250 and the horizontal surface respectively reflect the bottom surface of the first water storage tank 240 and the bottom surface of the second water storage tank 250 The degree of inclination toward the third windshield rib 213.
  • the chassis When the air conditioner is moved, the chassis will easily scratch or interfere with the obstacles on the bottom surface, which will affect the movement and handling of the air conditioner; when ⁇ 5 If the setting is too small, the bottom surface of the first water storage tank 240 and the bottom surface of the second water storage tank 250 are almost parallel to the ground, the condensed water flows slowly in the water storage area 200, and the diversion effect is poor.
  • ⁇ 5 and/or ⁇ 6 are set between 2° and 5°. In this way, within this angle range, not only can the bottom surface of the first water storage tank 240 and the bottom surface of the second water storage tank 250 have good flow diversion As a result, it can also be ensured that there is a sufficient height between the bottom surface of the water storage area 200 and the ground, so that the air conditioner can move and transport smoothly.
  • the side of the bottom surface of the first water storage tank 240 and the bottom surface of the second water storage tank 250 away from the water gap 221 is higher than the side where the water gap 221 is located. Guide the condensed water to flow to the water gap 221.
  • the left side of the bottom surface of the first water storage tank 240 is higher It is arranged on the right side, or, the front and rear ends of the bottom surface of the first water storage tank 240 are at the same height, and the left side of the bottom surface of the first water storage tank 240 is higher than the right side.
  • the condensed water dripping onto the first water storage tank 240 and the second water storage tank 250 flows to the third windshield rib 213 under the diversion action of the bottom surface of the first water storage tank 240 and the bottom surface of the second water storage tank 250, respectively. Then, it flows along the third windshield rib 213 to the water gap 221 and discharges the water storage area 200.
  • the flow speed of the condensed water in the first water storage tank 240 and the second water storage tank 250 is increased, so that the condensed water can be discharged from the water storage area 200 more quickly, and the condensed water is discharged more cleanly, preventing the condensed water from being
  • the first water storage tank 240 and the second water storage tank 250 are stagnated to form accumulated water and corrode the chassis, which not only further improves the drainage efficiency and drainage effect of the water storage area 200, but also improves the quality of the chassis and prolongs the service life of the chassis.
  • the line of intersection formed by the bottom surface of the first water storage tank 240 and a plane perpendicular to the front-to-rear direction has an inclination angle of 2°-5° relative to the left-right direction.
  • the line of intersection formed by the intersection of the bottom surface of the second water storage tank 250 and the plane perpendicular to the front-to-rear direction has an inclination angle of 2°-5° with respect to the left-right direction.
  • the intersection formed by the bottom surface of the first water storage tank 240 and a plane perpendicular to the front-to-rear direction is embodied as a diagonal line in FIG. 11, and the dashed line in FIG. 11 refers to
  • the left and right direction is also the projection of a horizontal plane perpendicular to the front and rear direction.
  • the angle of inclination relative to the left and right direction is the oblique line segment and the dashed line The angle formed between ⁇ 7.
  • the line of intersection formed by the intersection of the planes has an inclination angle of 2°-5° relative to the left and right directions. In this way, not only can the bottom surface of the first water storage tank 240 and the second water storage tank 250 be ensured within this angle range
  • the bottom surface has a better diversion effect, and can also ensure that there is a sufficient height between the bottom surface of the water storage area 200 and the ground, so that the air conditioner can move and carry smoothly.
  • This embodiment also provides an air conditioner to solve the problem that in the known air conditioner, the air in the heat exchanger is easily lost from the water passing port of the side water collection tank of the chassis, which affects the heat exchange efficiency of the heat exchanger.
  • the air conditioner includes the air conditioner chassis described in any one of the above.
  • a water gap 221 and a wind shielding structure 210 are provided on the water storage area 200 of the chassis, and the wind shielding structure 210 is located on the left side of the heat exchanger 10 in an assembled state.
  • the structural strength of the water storage area 200 is strengthened, which can provide support for the heat exchanger 10 in the assembled state; on the other hand, it can also prevent the air in the heat exchanger 10 from entering the storage area through the water gap 221.
  • the water area 200 thus plays a role of preventing air leakage and improves the working efficiency of the heat exchanger 10.

Abstract

一种空调器底盘及空调器,该空调器底盘用于安装换热器(10),且空调器底盘上设有储水区(200),储水区(200)在装配状态下位于换热器(10)的一侧,且储水区(200)靠近换热器(10)的一侧设有过水缺口(221)和挡风结构(210),挡风结构(210)适于在装配状态下阻挡来自换热器(10)方向的空气从过水缺口(221)处进入储水区(200)。空调器底盘通过在储水区(200)内设置挡风结构(210),一方面加强了储水区(200)的结构强度,可以在装配状态下给换热器(10)提供支撑力,另一方面,还可以阻挡换热器(10)内的空气从过水缺口处进入储水区(200),从而起到防漏风的作用,提高了换热器(10)的工作效率。

Description

空调器底盘及空调器
本申请要求于2019年4月30日提交的中国专利申请第201910360469.9号的优先权,该中国专利申请的全文通过引用的方式结合于此以作为本申请的一部分。
技术领域
本公开实施例涉及一种空调器底盘及空调器。
背景技术
随着人们生活水平的不断提高,空调器已经得到了非常广泛的应用。
已知空调器包括底盘和换热器等部件,换热器安装在底盘上,且底盘上换热器的安装位置处设有主集水槽和侧集水槽,空调器在工作过程中,换热器会产生大量的冷凝水,这些冷凝水滴落在底盘的主集水槽和侧集水槽内,且侧集水槽上设有过水口,冷凝水从侧集水槽的过水口流至主集水槽。而已知的空调器中,换热器内的空气容易从侧集水槽的过水口处进入侧集水槽,造成换热器的部分进风流失,影响换热器的换热效率。
由此可见,研发一种能有效解决上述问题的空调器底盘是目前急需解决的技术问题。
发明内容
本公开实施例解决的问题是已知的空调器中,换热器内的空气容易从底盘的侧集水槽的过水口处流失,影响换热器的换热效率。
为解决上述问题,本公开实施例提供一种空调器底盘,用于安装换热器,所述底盘上设有储水区,所述储水区在装配状态下位于所述换热器的一侧,且所述储水区靠近所述换热器的一侧设有过水缺口和挡风结构,所述挡风结构适于在装配状态下阻碍来自所述换热器方向的空气从所述过水缺口处进入所述储水区。
这样,挡风结构的设置一方面加强了储水区的结构强度,可以在装配状 态下给换热器提供支撑力;另一方面,还可以阻碍换热器内的空气从过水缺口处进入储水区,从而起到防漏风的作用,提高了换热器的工作效率。
可选的,所述挡风结构包括第一挡风筋板和第二挡风筋板,所述第一挡风筋板和所述第二挡风筋板在所述过水缺口所在平面上的投影覆盖所述过水缺口。
这样,换热器内的空气由过水缺口吹入储水区时,能够全部吹到挡风结构上,并在第一挡风筋板和第二挡风筋板的阻挡下大部分倒流回主集水区内,从而减少换热器的漏风。
可选的,所述挡风结构还包括第三挡风筋板,所述第一挡风筋板和所述第二挡风筋板均与所述第三挡风筋板连接,并分别位于所述第三挡风筋板的两侧;所述第三挡风筋板的一端延伸到所述过水缺口处,并将所述过水缺口分隔为两个部分。
这样,第三挡风筋板将过水缺口一分为二,使得由过水缺口流进储水区的气流在过水缺口处实现分流,降低了气流的流速,而根据伯努利原理,气流的流速减小时压力就会增大,气流向储水区流动时阻力就越大,进一步减少了换热器的漏风;同时,挡风结构的鱼骨式结构,可以保证底盘在注塑成型时,储水区处不容易产生缩水,提高了底盘的制造质量。
可选的,所述第一挡风筋板、所述第二挡风筋板和所述第三挡风筋板呈鱼骨式分布。
这样,可以保证底盘在注塑成型时,储水区处不容易产生缩水,提高了底盘的制造质量。
可选的,所述储水区在其长度方向上具有第一侧壁,所述第一侧壁呈V形结构,所述V形结构的开口朝向所述储水区远离所述换热器的一侧,所述过水缺口设于所述V形结构的顶端,适于引导冷凝水沿所述第一侧壁流向所述过水缺口。
这样,滴落到储水区的冷凝水可以沿第一侧壁向过水缺口处流动,使得第一侧壁具有导流作用,防止冷凝水在储水区滞留,从而提高了底盘的排水效果。
可选的,所述第一侧壁的V形结构在所述过水缺口的前端和后端分别具有第一侧边和第二侧边,所述第一侧边相对于前后方向上的倾斜角度α1介 于5°-10°之间,和/或,所述第二侧边相对于前后方向上的倾斜角度α2介于5°-10°之间。
在这个角度范围内,储水区的储水能力、导流效果等方面的综合性能较佳,能够保证储水区在不影响底盘其他结构的情况下,不仅具有足够的储水面积,防止出现空调器漏水的现象,还保证了第一侧壁具有导流作用,排水效果佳。
可选的,所述第一挡风筋板和所述第二挡风筋板倾斜设置,且所述第一挡风筋板和所述第二挡风筋板的自由端靠近所述第一侧壁,适于引导冷凝水流向所述第一侧壁。
这样,可以避免冷凝水被第一挡风筋板和第二挡风筋板阻挡在远离过水缺口一侧,使得滴落到储水区内的冷凝水沿着第一挡风筋板和第二挡风筋板流向第一侧壁,继而沿着第一侧壁流向过水缺口处,导流效果更好,提高了储水区的排水效果。
可选的,所述第一挡风筋板相对于前后方向上的倾斜角度α3介于15°-30°之间,和/或,所述第二挡风筋板相对于前后方向上的倾斜角度α4介于15°-30°之间。
这样,在这个角度范围内,既保证了第一挡风筋板和/或第二挡风筋板具有一定的导流作用,又保证了冷凝水能够顺畅地从第一挡风筋板和/或第二挡风筋板的自由端与第一侧壁之间形成的过水区域处流动到过水缺口,排水效果更好。
可选的,所述第三挡风筋板的一端延伸到所述过水缺口处,所述第三挡风筋板的另一端延伸至所述储水区远离所述换热器的一侧,并将所述储水区分隔为第一储水槽和第二储水槽,所述第一储水槽的底面和所述第二储水槽的底面上远离所述第三挡风筋板的一侧高于与所述第三挡风筋板连接的一侧,适于引导冷凝水流向所述第三挡风筋板。
这样,增大了冷凝水在第一储水槽和第二储水槽内向第三挡风筋板流动的速度,使得冷凝水能够更快地排出储水区,而且冷凝水也排出得更加干净,防止冷凝水在第一储水槽和第二储水槽内滞留,形成积水,进一步提高了储水区的排水效率和排水效果。
可选的,所述第一储水槽的底面与水平面之间的夹角α5介于2°-5°之 间,和/或,所述第二储水槽的底面与水平面之间的夹角α6介于2°-5°之间。
这样,在这个角度范围内,不仅可以保证第一储水槽的底面和第二储水槽的底面具有较好的导流效果,还可以保障储水区的底面与地面之间具有足够的高度,使得空调器能够顺畅移动和搬运。
可选的,所述第一储水槽的底面和所述第二储水槽的底面上远离所述过水缺口的一侧高于所述过水缺口所在的一侧,适于引导冷凝水流向所述过水缺口。
这样,增大了冷凝水在第一储水槽和第二储水槽内的流动速度,使得冷凝水能够更快地排出储水区,而且冷凝水也排出得更加干净,防止冷凝水在第一储水槽和第二储水槽内滞留,形成积水,腐蚀底盘,不仅进一步提高了储水区的排水效率和排水效果,还提高了底盘的质量,延长底盘的使用寿命。
可选的,所述第一储水槽的底面与垂直于前后方向的平面相交所形成的交线,相对于左右方向上的倾斜角度介于2°-5°之间,和/或,所述第二储水槽的底面与垂直于前后方向的平面相交所形成的交线,相对于左右方向上的倾斜角度介于2°-5°之间。
在这个角度范围内,不仅可以保证第一储水槽的底面和第二储水槽的底面具有较好的导流效果,还可以保障储水区的底面与地面之间具有足够的高度,使得空调器能够顺畅移动和搬运。
可选的,所述储水区在其长度方向上具有第二侧壁,所述第二侧壁上设有加强结构。
这样,可以增强储水区上第二侧壁处的结构强度,从而提高了底盘的强度,使得在运输过程中或者空调器工作中,底盘的储水区受到振动冲击或是撞击时也不容易发生形变,进而提高了底盘的使用质量。
可选的,所述加强结构设置有多个,并在所述第二侧壁上等间距分布。
这样,通过进一步增强第二侧壁的结构强度,来提高底盘左侧壁的强度和质量,延长底盘的使用寿命。
为解决上述问题,本公开实施例还提供一种空调器,包括上述任一所述的空调器底盘。
所述空调器与上述空调器底盘相对于已知技术所具有的优势相同,在此 不再赘述。
附图说明
图1为本公开实施例中底盘的结构示意图;
图2为图1中A处局部放大图;
图3为本公开实施例中换热器与底盘在安装状态下的截面结构示意图;
图4为图3中换热器与底盘在安装状态下的俯视图;
图5为本公开实施例中底盘的俯视图;
图6为本公开实施例中底盘在储水区处的结构示意图;
图7为图6中B处局部放大图;
图8为本公开实施例中储水区的截面结构示意图;
图9为本公开实施例中底盘的前视图;
图10为图9中C处局部放大图;
图11为本公开实施例中储水区的底面由左侧朝右侧倾斜时的结构示意图。
附图标记说明:
10-换热器,11-支架,100-主集水区,200-储水区,210-挡风结构,211-第一挡风筋板,212-第二挡风筋板,213-第三挡风筋板,220-第一侧壁,221-过水缺口,2211-第一缺口,2212-第二缺口,222-第一侧边,223-第二侧边,230-第二侧壁,231-加强结构,240-第一储水槽,250-第二储水槽。
具体实施方式
为使本公开的上述目的、特征和优点能够更为明显易懂,下面结合附图对本公开的具体实施例做详细的说明。
在本公开的描述中,需要说明的是,术语“上”、“下”、“左”、“右”、“高”、“低”等指示的方向或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
已知技术中,底盘上换热器的安装位置处设有主集水槽和侧集水槽,侧集水槽内没有设置用于阻挡换热器内的空气进入侧集水槽的结构,其中,主 集水槽相当于本公开中的主集水区100,侧集水槽相当于本公开中的储水区200。本公开在已知技术的基础上在储水区200内设置挡风结构210,并对储水区200的结构进行改进。
结合图1至图4所示,本实施例提供一种空调器底盘,用于安装换热器10,底盘上设有储水区200,储水区200在装配状态下位于换热器10的一侧,且储水区200靠近换热器10的一侧设有过水缺口221和挡风结构210,挡风结构210适于在装配状态下阻碍来自换热器10方向的空气从过水缺口221处进入储水区200。
底盘上设有主集水区100和储水区200,主集水区100和储水区200在过水缺口221处连通,挡风结构210设置在储水区200内靠近过水缺口221处。当换热器10装配到底盘上时,主集水区100位于换热器10的下方,储水区200位于换热器10的左侧,且挡风结构210与换热器10左侧的支架11抵靠,使得挡风结构210能够给换热器10提供支撑力。空调器在工作时,换热器10会产生大量的冷凝水,这些冷凝水大部分沿换热器10滴落到主集水区100内,还有一小部分会沿换热器10左侧的支架11滴落到储水区200内,这一小部分的冷凝水被收集在储水区200内,并从过水缺口221处流进主集水区100,继而汇聚到底盘上的打水区,被安装在打水区内的打水电机击打雾化,从而让冷凝水蒸发掉。已知技术中,吹入换热器10内的空气在换热器10的内部循环流动,以进行热交换,而在换热器10中进行内循环的空气也会在主集水区100内流动,但由于主集水区100与储水区200在过水缺口221处连通,因此在主集水区100流动的空气会从过水缺口221流进储水区200,由于主集水区100位于储水区200的右侧,同时还位于换热器10的下方,故从主集水区100流进储水区200的空气相当于是来自换热器10方向的空气。在没有设置挡风结构210的情况下,换热器10内的空气毫无阻碍的从过水缺口221进入到储水区200,导致换热器10区域出现漏风,影响换热器10的换热效率。而本实施例中在储水区200内设置挡风结构210,使得来自换热器10方向的空气,即由主集水区100流向过水缺口221的空气在挡风结构210的阻碍下,不能顺利流入储水区200,大部分会倒流回主集水区100内。
这样,挡风结构210的设置一方面加强了储水区200的结构强度,可以在装配状态下给换热器10提供支撑力;另一方面,还可以阻碍换热器10内 的空气从过水缺口221处进入储水区200,从而起到防漏风的作用,提高了换热器10的工作效率。
可选的,结合图1和图2所示,挡风结构210包括第一挡风筋板211和第二挡风筋板212,第一挡风筋板211和第二挡风筋板212在过水缺口221所在平面上的投影覆盖过水缺口221。
挡风结构210包括两个挡风板,分别是第一挡风筋板211和第二挡风筋板212,且第一挡风筋板211和第二挡风筋板212的高度高于过水缺口221的高度。第一挡风筋板211与第二挡风筋板212可以在端部相互连接,即第一挡风筋板211的后端与第二挡风筋板212的前端相连;也可以在端部相互交错,即当第一挡风筋板211与第二挡风筋板212相互连接时,第一挡风筋板211的后端与第二挡风筋板212的前端存在重叠,当第一挡风筋板211与第二挡风筋板212不相连时,第一挡风筋板211的后端与第二挡风筋板212的前端在前后方向上相互错位。过水缺口221在前后方向上具有两个侧边,为了便于理解,分别称作前侧边和后侧边,且过水缺口221的前侧边和后侧边能够构成一个平面,该平面即为过水缺口221所在平面。也就是说,第一挡风筋板211在过水缺口221所在平面上的投影为第一投影,第二挡风筋板212在过水缺口221所在平面上的投影为第二投影,第一投影和第二投影可以相交,也可以在投影的边缘处相连。第一挡风筋板211和第二挡风筋板212在过水缺口221所在平面上的投影即为第一投影与第二投影的面积之和,且第一投影与第二投影的面积之和大于过水缺口221的面积,能将过水缺口221完全覆盖。其中,需要说明的是,在第一投影和第二投影相交时,第一投影面积加上第二投影面积后,再减去第一投影和第二投影相交部分的面积,最后所得到的投影面积即为第一投影与第二投影的面积之和。
这样,换热器10内的空气由过水缺口221吹入储水区200时,能够全部吹到挡风结构210上,并在第一挡风筋板211和第二挡风筋板212的阻挡下大部分倒流回主集水区100内,从而减少换热器10的漏风。
可选的,结合图7所示,挡风结构210还包括第三挡风筋板213,第一挡风筋板211和第二挡风筋板212均与第三挡风筋板213连接,并分别位于第三挡风筋板213的两侧;第三挡风筋板213的一端延伸到过水缺口221处,并将过水缺口221分隔为两个部分。
第三挡风筋板213沿左右方向设置在储水区200内,且第三挡风筋板213的右端位于过水缺口221处,将过水缺口221分隔为两个缺口,即第一缺口2211和第二缺口2212。第一挡风筋板211和第二挡风筋板212分别位于第三挡风筋板213的前侧和后侧。第一挡风筋板211的前端为自由端,不与其他构件形成连接关系,第一挡风筋板211的后端与第三挡风筋板213相连;第二挡风筋板212的前端与第三挡风筋板213相连,第二挡风筋板212的后端为自由端,不与其他构件形成连接关系。
这样,第三挡风筋板213将过水缺口221一分为二,使得由过水缺口221流进储水区200的气流在过水缺口221处实现分流,降低了气流的流速,而根据伯努利原理,气流的流速减小时压力就会增大,气流向储水区200流动时阻力就越大,进一步减少了换热器10的漏风。
可选的,第一挡风筋板211、第二挡风筋板212和第三挡风筋板213呈鱼骨式分布。
也就是说挡风结构210呈鱼骨式结构,其中,第三挡风筋板213构成与鱼骨的主干结构,第一挡风筋板211、第二挡风筋板212构成鱼骨的主干结构两侧的旁支结构。
挡风结构210的鱼骨式结构,可以保证底盘在注塑成型时,储水区200处不容易产生缩水,提高了底盘的制造质量。
可选的,第一缺口2211和第二缺口2212的面积相等。
也就是说,第三挡风筋板213的端部位于过水缺口221的中间位置,将过水缺口221等分成两个。
这样,由过水缺口221流进储水区200的气流在过水缺口221处分流后,第一缺口2211和第二缺口2212处的压力相同,对气流的阻碍效果也相当,避免出现两个缺口中有一个对气流的阻碍远小于另一个缺口处对气流的阻碍,造成吹向过水缺口221的气流大部分从阻碍小的那个缺口处流进储水区200,以进一步减少换热器10的漏风。
可选的,结合图5所示,储水区200在其长度方向上具有第一侧壁220,第一侧壁220呈V形结构,V形结构的开口朝向储水区200远离换热器10的一侧,过水缺口221设于V形结构的顶端,适于引导冷凝水沿第一侧壁220流向过水缺口221。
储水区200在前后方向上的尺寸大于其在其他方向上的尺寸,故储水区200的长度方向即为前后方向,第一侧壁220在储水区200上沿前后方向设置,且过水缺口221开设在第一侧壁220上。第一侧壁220呈V形结构,而过水缺口221则开设在V形结构的顶端,由于换热器10和主集水区100位于储水区200的右侧,而第一侧壁220是靠近换热器10设置的,所以第一侧壁220位于换热器10的左侧,也就是说V形结构位于换热器10的左侧并靠近换热器10,且滴落到储水区200内的冷凝水是由储水区200流向主集水区100,故第一侧壁220的V形结构的开口朝左、顶端朝右。
这样,滴落到储水区200的冷凝水可以沿第一侧壁220向过水缺口221处流动,使得第一侧壁220具有导流作用,防止冷凝水在储水区200滞留,从而提高了底盘的排水效果。
可选的,结合图5所示,储水区200在其长度方向上具有第二侧壁230,第二侧壁230上设有加强结构231。
也就是说,第二侧壁230在储水区200上沿前后方向设置。储水区200整体呈类似于矩形的凹槽结构,在前、后、左、右四个方向上均具有侧壁,而第一侧壁220和第二侧壁230分别构成储水区200位于左右方向上的两个侧壁,即第一侧壁220和第二侧壁230也分别是储水区200的左侧壁和右侧壁。加强结构231设置在储水区200的第二侧壁230上,本实施例中,储水区200设置在底盘的左端,储水区200的左侧壁为底盘的左侧壁的一部分,所以,加强结构231也相当于设置在底盘的左侧壁上。
这样,可以增强储水区200上第二侧壁230处的结构强度,从而提高了底盘的强度,使得在运输过程中或者空调器工作中,底盘的储水区200受到振动冲击或是撞击时也不容易发生形变,进而提高了底盘的使用质量。
可选的,加强结构231可以是板状结构,也可以是块状结构,还可以是条状结构等其他结构,本实施例中不作详细限定。
可选的,加强结构231设置有多个,并在第二侧壁230上等间距分布。
多个加强结构231在第二侧壁230上沿第二侧壁230的长度方向分布,且相邻两个加强结构231之间的距离相等。
这样,通过进一步增强第二侧壁230的结构强度,来提高底盘左侧壁的强度和质量,延长底盘的使用寿命。
可选的,结合图6所示,第一侧壁220的V形结构在过水缺口221的前端和后端分别具有第一侧边222和第二侧边223,第一侧边222相对于前后方向上的倾斜角度α1介于5°-10°之间,和/或,第二侧边223相对于前后方向上的倾斜角度α2介于5°-10°之间。
第一侧壁220被过水缺口221分割为两段,而第一侧壁220是垂直于左右方向设置的,故第一侧壁220体现在图5中即为两条线段,这两条线段分别构成V形的两个侧边,其中,位于过水缺口221前端的线段构成V形的第一侧边222,位于过水缺口221后端的线段构成V形的第二侧边223。第一侧边222相对于前后方向上的倾斜角度α1即为第一侧边222与前后方向之间的夹角,第二侧边223相对于前后方向上的倾斜角度α2即为第二侧边223与前后方向之间的夹角。当第一侧边222和/或第二侧边223相对于前后方向上的倾斜角度太大时,说明被过水缺口221分割为两段的第一侧壁220的倾斜角度也较大,由于底盘自身的结构限制,第一侧壁220的倾斜角度过大时,会对底盘上其他结构造成影响,或者是减小储水区200的面积,降低储水区200的储水量,导致产生的冷凝水增多时出现冷凝水溢出底盘,造成空调器漏水的现象。
本实施例将α1和/或α2设置在5°-10°之间,在这个角度范围内,储水区200的储水能力、导流效果等方面的综合性能较佳,能够保证储水区200在不影响底盘其他结构的情况下,不仅具有足够的储水面积,防止出现空调器漏水的现象,还保证了第一侧壁220具有导流作用,排水效果佳。
可选的,结合图6和图7所示,第一挡风筋板211和第二挡风筋板212倾斜设置,且第一挡风筋板211和第二挡风筋板212的自由端靠近第一侧壁220,适于引导冷凝水流向第一侧壁220。
也就是说,第一挡风筋板211和第二挡风筋板212的自由端分别朝向位于过水缺口221前端和后端的第一侧壁220倾斜,即,将被过水缺口221分割为两段的第一侧壁220均延伸至与第三挡风筋板213相交,则由前至后方向,第一挡风筋板211与延伸后并位于第三挡风筋板213前端的第一侧壁220之间的最小距离逐渐增大;第二挡风筋板212与延伸后并位于第三挡风筋板213后端的第一侧壁220之间的最小距离逐渐减小。结合图中坐标系来说,第一挡风筋板211向右后方倾斜设置,第二挡风筋板212向右前方倾斜设置。
这样,可以避免冷凝水被第一挡风筋板211和第二挡风筋板212阻挡在远离过水缺口221一侧,使得滴落到储水区200内的冷凝水沿着第一挡风筋板211和第二挡风筋板212流向第一侧壁220,继而沿着第一侧壁220流向过水缺口221处,导流效果更好,提高了储水区200的排水效果。
可选的,结合图7所示,第一挡风筋板211相对于前后方向上的倾斜角度α3介于15°-30°之间,和/或,第二挡风筋板212相对于前后方向上的倾斜角度α4介于15°-30°之间。
由于第一挡风筋板211和/或第二挡风筋板212为厚薄均匀的板状结构,故第一挡风筋板211相对于前后方向上的倾斜角度α3即为第一挡风筋板211位于左右方向上的侧面与前后方向之间的夹角;第二挡风筋板212相对于前后方向上的倾斜角度α4即为第二挡风筋板212位于左右方向上的侧面与前后方向之间的夹角。而第一挡风筋板211和/或第二挡风筋板212是垂直于水平面设置,其中,水平面也指的是垂直于上下方向的平面。如图7所示,本实施例中以第一挡风筋板211和/或第二挡风筋板212的左侧面与前后方向之间的夹角举例说明。第一挡风筋板211和/或第二挡风筋板212的左侧面体现在图中即为一条线段。第一挡风筋板211和第二挡风筋板212的自由端与第一侧壁220之间均形成一过水区域。以第一挡风筋板211相对于前后方向上的倾斜角度为例进行说明。当第一挡风筋板211相对于前后方向上的倾斜角度设置得过大时,第一挡风筋板211的自由端与第一侧壁220之间的最小距离就越小,使得第一挡风筋板211的自由端与第一侧壁220之间形成的过水区域就越小,延长了储水区200的排水时间,降低了储水区200的排水效果;当第一挡风筋板211相对于前后方向上的倾斜角度设置得过小时,第一挡风筋板211几乎丧失了导水作用,导流效果较差。
本实施例将α3和/或α4设置在15°-30°之间。在这个角度范围内,既保证了第一挡风筋板211和/或第二挡风筋板212具有一定的导流作用,又保证了冷凝水能够顺畅地从第一挡风筋板211和/或第二挡风筋板212的自由端与第一侧壁220之间形成的过水区域处流动到过水缺口221,排水效果更好。
可选的,结合图5和图8所示,第三挡风筋板213的一端延伸到过水缺口221处,第三挡风筋板213的另一端延伸至储水区200远离换热器10的一侧,并将储水区200分隔为第一储水槽240和第二储水槽250,第一储水槽 240的底面和第二储水槽250的底面上远离第三挡风筋板213的一侧高于与第三挡风筋板213连接的一侧,适于引导冷凝水流向第三挡风筋板213。
第三挡风筋板213在储水区200内沿左右方向设置,由于第二侧壁230为储水区200远离换热器10的一侧,故第三挡风筋板213由过水缺口221处延伸至第二侧壁230上,将储水区200分隔成两个储水槽,分别为第一储水槽240和第二储水槽250,第一储水槽240位于第三挡风筋板213的前端,第二储水槽250位于第三挡风筋板213的后端。且第一储水槽240的底面上远离第三挡风筋板213的一侧高于与第三挡风筋板213连接的一侧,第二储水槽250的底面上远离第三挡风筋板213的一侧高于与第三挡风筋板213连接的一侧,也就是说,储水区200的整个底面在第三挡风筋板213处下沉,使得储水区200的底面的横截面呈V型,V型的顶端为水流动时的最低点。以第一储水槽240的底面为例,结合图中坐标系来说,第一储水槽240的底面的前端高于后端。滴落到第一储水槽240和第二储水槽250上的冷凝水分别在第一储水槽240的底面和第二储水槽250的底面的导流作用下向第三挡风筋板213流动,然后沿着第三挡风筋板213流至过水缺口221,排出储水区200。
这样,增大了冷凝水在第一储水槽240和第二储水槽250内向第三挡风筋板213流动的速度,使得冷凝水能够更快地排出储水区200,而且冷凝水也排出得更加干净,防止冷凝水在第一储水槽240和第二储水槽250内滞留,形成积水,进一步提高了储水区200的排水效率和排水效果。
可选的,结合图8所示,第一储水槽240的底面与水平面之间的夹角α5介于2°-5°之间,和/或,第二储水槽250的底面与水平面之间的夹角α6介于2°-5°之间。
第一储水槽240的底面与水平面之间的夹角α5和第二储水槽250的底面与水平面之间的夹角α6分别体现的是第一储水槽240的底面和第二储水槽250的底面朝向第三挡风筋板213的倾斜程度。以第一储水槽240的底面与水平面之间的夹角α5为例,当α5设置得太大时,储水区200的底面在第三挡风筋板213处就下沉得越深,使得底盘上位于储水区200处的底面距离地面之间的距离就越小,在移动空调器时,底盘容易与底面上的障碍物发生刮蹭或干涉,影响空调器的移动和搬运;当α5设置得太小时,第一储水槽 240的底面和第二储水槽250的底面近乎与地面平行,冷凝水在储水区200内流动缓慢,导流效果差。
本实施将α5和/或α6设置在2°-5°之间,这样,在这个角度范围内,不仅可以保证第一储水槽240的底面和第二储水槽250的底面具有较好的导流效果,还可以保障储水区200的底面与地面之间具有足够的高度,使得空调器能够顺畅移动和搬运。
可选的,结合图9至图11所示,第一储水槽240的底面和第二储水槽250的底面上远离过水缺口221的一侧高于过水缺口221所在的一侧,适于引导冷凝水流向过水缺口221。
也就是说,储水区200的整个底面在第三挡风筋板213处下沉后,还在过水缺口221所在的一侧再一次下沉,或者是储水区200的整个底面在第三挡风筋板213处没有形成下沉,而仅在过水缺口221所在的一侧形成下沉。以第一储水槽240的底面为例,结合图中坐标系来说,在第一储水槽240的底面的前端高于后端设置的基础上,将第一储水槽240的底面的左侧高于右侧设置,或者,第一储水槽240的底面的前端和后端位于同一高度,而第一储水槽240的底面的左侧高于右侧。滴落到第一储水槽240和第二储水槽250上的冷凝水分别在第一储水槽240的底面和第二储水槽250的底面的导流作用下向第三挡风筋板213流动,然后沿着第三挡风筋板213流至过水缺口221,排出储水区200。
这样,增大了冷凝水在第一储水槽240和第二储水槽250内的流动速度,使得冷凝水能够更快地排出储水区200,而且冷凝水也排出得更加干净,防止冷凝水在第一储水槽240和第二储水槽250内滞留,形成积水,腐蚀底盘,不仅进一步提高了储水区200的排水效率和排水效果,还提高了底盘的质量,延长底盘的使用寿命。
可选的,结合图9至图11所示,第一储水槽240的底面与垂直于前后方向的平面相交所形成的交线,相对于左右方向上的倾斜角度介于2°-5°之间,和/或,第二储水槽250的底面与垂直于前后方向的平面相交所形成的交线,相对于左右方向上的倾斜角度介于2°-5°之间。
以第一储水槽240的底面为例,第一储水槽240的底面与垂直于前后方向的平面相交所形成的交线体现在图11中为一条斜线段,图11中的虚线指 代的是左右方向,也是水平面在垂直于前后方向上的投影,第一储水槽240的底面与垂直于前后方向的平面相交所形成的交线,相对于左右方向上的倾斜角度即为该斜线段与虚线之间所形成的夹角α7。当α7设置得过大时,储水区200的底面在过水缺口221所在的一侧就下沉得越深,使得底盘上位于储水区200处的底面距离地面之间的距离就越小,在移动空调器时,底盘容易与底面上的障碍物发生刮蹭或干涉,影响空调器的移动和搬运;当α7设置得太小时,第一储水槽240的底面和第二储水槽250的底面近乎与地面平行,冷凝水在储水区200内流动缓慢,导流效果差。
本实施将第一储水槽240的底面与垂直于前后方向的平面相交所形成的交线,相对于左右方向上的倾斜角度,和/或,第二储水槽250的底面与垂直于前后方向的平面相交所形成的交线,相对于左右方向上的倾斜角度设置在2°-5°之间,这样,在这个角度范围内,不仅可以保证第一储水槽240的底面和第二储水槽250的底面具有较好的导流效果,还可以保障储水区200的底面与地面之间具有足够的高度,使得空调器能够顺畅移动和搬运。
本实施例还提供一种空调器,以解决已知的空调器中,换热器内的空气容易从底盘的侧集水槽的过水口处流失,影响换热器的换热效率的问题,该空调器包括上述任一项所述的空调器底盘。
本实施例中的空调器通过在底盘的储水区200上设置过水缺口221和挡风结构210,并让挡风结构210在装配状态下位于换热器10的左侧。这样,一方面加强了储水区200的结构强度,可以在装配状态下给换热器10提供支撑力;另一方面,还可以阻碍换热器10内的空气从过水缺口221处进入储水区200,从而起到防漏风的作用,提高了换热器10的工作效率。
虽然本公开披露如上,但本公开并非限定于此。任何本领域技术人员,在不脱离本公开的精神和范围内,均可作各种更动与修改,因此本公开的保护范围应当以权利要求所限定的范围为准。

Claims (15)

  1. 一种空调器底盘,用于安装换热器(10),其中,所述空调器底盘上设有储水区(200),所述储水区(200)在装配状态下位于所述换热器(10)的一侧,且所述储水区(200)靠近所述换热器(10)的一侧设有过水缺口(221)和挡风结构(210),所述挡风结构(210)适于在装配状态下阻碍来自所述换热器(10)方向的空气从所述过水缺口(221)处进入所述储水区(200)。
  2. 根据权利要求1所述的空调器底盘,其中,所述挡风结构(210)包括第一挡风筋板(211)和第二挡风筋板(212),所述第一挡风筋板(211)和所述第二挡风筋板(212)在所述过水缺口(221)所在平面上的投影覆盖所述过水缺口(221)。
  3. 根据权利要求2所述的空调器底盘,其中,所述挡风结构(210)还包括第三挡风筋板(213),所述第一挡风筋板(211)和所述第二挡风筋板(212)均与所述第三挡风筋板(213)连接,并分别位于所述第三挡风筋板(213)的两侧;所述第三挡风筋板(213)的一端延伸到所述过水缺口(221)处,并将所述过水缺口(221)分隔为两个部分。
  4. 根据权利要求3所述的空调器底盘,其中,所述第一挡风筋板(211)、所述第二挡风筋板(212)和所述第三挡风筋板(213)呈鱼骨式分布。
  5. 根据权利要求3所述的空调器底盘,其中,所述储水区(200)在其长度方向上具有第一侧壁(220),所述第一侧壁(220)呈V形结构,所述V形结构的开口朝向所述储水区(200)远离所述换热器(10)的一侧,所述过水缺口(221)设于所述V形结构的顶端,适于引导冷凝水沿所述第一侧壁(220)流向所述过水缺口(221)。
  6. 根据权利要求5所述的空调器底盘,其中,所述第一侧壁(220)的V形结构在所述过水缺口(221)的前端和后端分别具有第一侧边(222)和第二侧边(223),所述第一侧边(222)相对于前后方向上的倾斜角度α1介于5°-10°之间,和/或,所述第二侧边(223)相对于前后方向上的倾斜角度α2介于5°-10°之间。
  7. 根据权利要求4-6中任一所述的空调器底盘,其中,所述第一挡风筋板(211)和所述第二挡风筋板(212)倾斜设置,且所述第一挡风筋板(211) 和所述第二挡风筋板(212)的自由端靠近所述第一侧壁(220),适于引导冷凝水流向所述第一侧壁(220)。
  8. 根据权利要求7所述的空调器底盘,其中,所述第一挡风筋板(211)相对于前后方向上的倾斜角度α3介于15°-30°之间,和/或,所述第二挡风筋板(212)相对于前后方向上的倾斜角度α4介于15°-30°之间。
  9. 根据权利要求3-6中任一所述的空调器底盘,其中,所述第三挡风筋板(213)将所述储水区(200)分隔为第一储水槽(240)和第二储水槽(250),所述第一储水槽(240)的底面和所述第二储水槽(250)的底面上远离所述第三挡风筋板(213)的一侧高于与所述第三挡风筋板(213)连接的一侧,适于引导冷凝水流向所述第三挡风筋板(213)。
  10. 根据权利要求9所述的空调器底盘,其中,所述第一储水槽(240)的底面与水平面之间的夹角α5介于2°-5°之间,和/或,所述第二储水槽(250)的底面与水平面之间的夹角α6介于2°-5°之间。
  11. 根据权利要求9所述的空调器底盘,其中,所述第一储水槽(240)的底面和所述第二储水槽(250)的底面上远离所述过水缺口(221)的一侧高于所述过水缺口(221)所在的一侧,适于引导冷凝水流向所述过水缺口(221)。
  12. 根据权利要求11所述的空调器底盘,其中,所述第一储水槽(240)的底面与垂直于前后方向的平面相交所形成的交线,相对于左右方向上的倾斜角度介于2°-5°之间,和/或,所述第二储水槽(250)的底面与垂直于前后方向的平面相交所形成的交线,相对于左右方向上的倾斜角度介于2°-5°之间。
  13. 根据权利要求4-6中任一所述的空调器底盘,其中,所述储水区(200)在其长度方向上具有第二侧壁(230),所述第二侧壁(230)上设有加强结构(231)。
  14. 根据权利要求13所述的空调器底盘,其中,所述加强结构(231)设置有多个,并在所述第二侧壁(230)上等间距分布。
  15. 一种空调器,包括权利要求1-14任一所述的空调器底盘。
PCT/CN2020/084836 2019-04-30 2020-04-15 空调器底盘及空调器 WO2020221007A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910360469.9A CN109974276A (zh) 2019-04-30 2019-04-30 一种空调器底盘及空调器
CN201910360469.9 2019-04-30

Publications (1)

Publication Number Publication Date
WO2020221007A1 true WO2020221007A1 (zh) 2020-11-05

Family

ID=67087312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084836 WO2020221007A1 (zh) 2019-04-30 2020-04-15 空调器底盘及空调器

Country Status (2)

Country Link
CN (1) CN109974276A (zh)
WO (1) WO2020221007A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109974276A (zh) * 2019-04-30 2019-07-05 宁波奥克斯电气股份有限公司 一种空调器底盘及空调器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0814596A (ja) * 1994-06-30 1996-01-19 Toshiba Ave Corp 空気調和機の室内ユニット
JPH10259928A (ja) * 1997-03-19 1998-09-29 Fujitsu General Ltd 空気調和機
CN105928378A (zh) * 2016-06-22 2016-09-07 国网山西省电力公司电力科学研究院 带有防横风导流装置的直接空冷机组空冷单元
CN105953391A (zh) * 2016-06-25 2016-09-21 宁波奥克斯空调有限公司 一种空调器室内挂机
CN205748024U (zh) * 2016-06-22 2016-11-30 国网山西省电力公司电力科学研究院 带有防横风导流装置的直接空冷机组空冷单元
CN106352528A (zh) * 2016-10-08 2017-01-25 珠海格力电器股份有限公司 接水盘组件和空调
CN107965894A (zh) * 2017-12-11 2018-04-27 珠海格力电器股份有限公司 一种空调器室内机防漏风结构及空调器
CN109974276A (zh) * 2019-04-30 2019-07-05 宁波奥克斯电气股份有限公司 一种空调器底盘及空调器
CN210070183U (zh) * 2019-04-30 2020-02-14 宁波奥克斯电气股份有限公司 一种空调器底盘及空调器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102401453B (zh) * 2010-09-16 2016-01-20 乐金电子(天津)电器有限公司 一体式空调器
WO2017152478A1 (zh) * 2016-03-08 2017-09-14 广东美的制冷设备有限公司 一种接水结构、打水装置及空调
CN108870551B (zh) * 2018-04-28 2021-02-12 奥克斯空调股份有限公司 一种移动空调器
CN208205243U (zh) * 2018-05-21 2018-12-07 广东美的制冷设备有限公司 移动空调器
CN108775699A (zh) * 2018-07-16 2018-11-09 广东美的制冷设备有限公司 空调器的接水盘、空调器室内机及空调器
CN208620670U (zh) * 2018-08-10 2019-03-19 奥克斯空调股份有限公司 一种蒸发器左支架和底座的安装结构及空调器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0814596A (ja) * 1994-06-30 1996-01-19 Toshiba Ave Corp 空気調和機の室内ユニット
JPH10259928A (ja) * 1997-03-19 1998-09-29 Fujitsu General Ltd 空気調和機
CN105928378A (zh) * 2016-06-22 2016-09-07 国网山西省电力公司电力科学研究院 带有防横风导流装置的直接空冷机组空冷单元
CN205748024U (zh) * 2016-06-22 2016-11-30 国网山西省电力公司电力科学研究院 带有防横风导流装置的直接空冷机组空冷单元
CN105953391A (zh) * 2016-06-25 2016-09-21 宁波奥克斯空调有限公司 一种空调器室内挂机
CN106352528A (zh) * 2016-10-08 2017-01-25 珠海格力电器股份有限公司 接水盘组件和空调
CN107965894A (zh) * 2017-12-11 2018-04-27 珠海格力电器股份有限公司 一种空调器室内机防漏风结构及空调器
CN109974276A (zh) * 2019-04-30 2019-07-05 宁波奥克斯电气股份有限公司 一种空调器底盘及空调器
CN210070183U (zh) * 2019-04-30 2020-02-14 宁波奥克斯电气股份有限公司 一种空调器底盘及空调器

Also Published As

Publication number Publication date
CN109974276A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
US6439300B1 (en) Evaporator with enhanced condensate drainage
US8267209B2 (en) Vehicle front structure
EP2119995B1 (en) Heat exchanger
JP5950810B2 (ja) 空気調和機の室内機
WO2020221007A1 (zh) 空调器底盘及空调器
WO2014091803A1 (ja) 空気調和機の室内機
CN211345777U (zh) 底盘壳体、窗式空调器
KR101499193B1 (ko) 열 교환 장치
CN111023545A (zh) 底盘壳体、窗式空调器
CN208968024U (zh) 一种防堵风管机接水盘
CN210070183U (zh) 一种空调器底盘及空调器
JP2012086726A (ja) 車両用冷却ダクト及び車両前部構造
JP2009138950A (ja) 空気調和機の室外機
CN206989323U (zh) 一种水盘和使用该水盘的风机盘管机组
KR100542719B1 (ko) 냉각탑용 에어가이드
KR100730295B1 (ko) 냉각탑
CN210154050U (zh) 一种底盘储水结构及空调器
CN209819848U (zh) 一种空调器底盘结构及空调器
KR101340172B1 (ko) 냉각탑
KR102155355B1 (ko) 냉각탑용 루버시스템
CN108814514B (zh) 用于洗碗机的排风装置和洗碗机
KR20200002043U (ko) 비산(飛散) 방지 조립체가 부착된 냉각탑
CN106051923B (zh) 壁挂式空调室内机和空调器
TWM566256U (zh) Anti-desktop blinds
US20230287827A1 (en) Fluid flow management in vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20798564

Country of ref document: EP

Kind code of ref document: A1