WO2020220174A1 - 用于无线充电的功率匹配方法、装置及无线充电装置 - Google Patents

用于无线充电的功率匹配方法、装置及无线充电装置 Download PDF

Info

Publication number
WO2020220174A1
WO2020220174A1 PCT/CN2019/084857 CN2019084857W WO2020220174A1 WO 2020220174 A1 WO2020220174 A1 WO 2020220174A1 CN 2019084857 W CN2019084857 W CN 2019084857W WO 2020220174 A1 WO2020220174 A1 WO 2020220174A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
sensing information
inductance
transmitting coil
information
Prior art date
Application number
PCT/CN2019/084857
Other languages
English (en)
French (fr)
Inventor
万世铭
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP19927051.3A priority Critical patent/EP3955417B1/en
Priority to PCT/CN2019/084857 priority patent/WO2020220174A1/zh
Priority to CN201980093388.5A priority patent/CN113615035A/zh
Publication of WO2020220174A1 publication Critical patent/WO2020220174A1/zh
Priority to US17/498,669 priority patent/US20220029461A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2210/00Indexing scheme relating to details of tunable filters
    • H03H2210/02Variable filter component
    • H03H2210/025Capacitor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2210/00Indexing scheme relating to details of tunable filters
    • H03H2210/02Variable filter component
    • H03H2210/026Inductor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2210/00Indexing scheme relating to details of tunable filters
    • H03H2210/03Type of tuning
    • H03H2210/036Stepwise
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks

Definitions

  • the present disclosure relates to wireless charging technology, and in particular, to a power matching method, device and wireless charging device for wireless charging.
  • wireless charging methods are mainly divided into three methods: magnetic coupling (or electromagnetic induction), magnetic resonance, and radio waves.
  • mainstream wireless charging standards include QI standard, Power Matters Alliance (PMA) standard, and Wireless Power Alliance (Alliance for Wireless Power, A4WP). Both the QI standard and the PMA standard use magnetic coupling for wireless charging.
  • the A4WP standard uses magnetic resonance for wireless charging.
  • the most common electromagnetic induction wireless charging technology mainly adopts the principle of electromagnetic wave induction and related AC induction technology.
  • the AC signal of a certain frequency is converted into an electromagnetic signal through the transmitting coil at the transmitting end and sent out, and then received at the receiving end.
  • the coil converts the electromagnetic signal sent by the transmitter into an alternating current signal for charging.
  • AC power supply S AC and inductance capacitor resonance circuit (L1, C1) are on the primary coil (wireless transmitting end) side, where R S is the battery internal resistance of AC power supply S AC ; load R L and inductance capacitor resonance circuit (L2, C2) ) On the side of the secondary coil (wireless receiving end).
  • the mutual inductance coil is represented by the inductances L1 and L2, and the turns ratio between them is K1:K2. The turns ratio determines the output AC power.
  • the coupling coefficient between the transmitting coil and the receiving coil will be determined by factors such as the distance, location, and dielectric material between the two, and is usually between 0.2 and 0.7. Therefore, in the existing wireless charging scheme, there will be defects such as low charging efficiency and easy heat generation.
  • the present disclosure provides a power matching method and device for wireless charging, and a wireless charging device.
  • a power matching device for wireless charging which is applied to a wireless transmitting end, and includes: a transmitting circuit, including: a transmitting coil; the transmitting coil including: a capacitor component with adjustable capacity and an adjustable inductance The inductance component of the inductance component, in which the capacitance component is connected in series with the inductance component; and the control module, which is electrically connected to the transmitting coil, is used to receive the first sensing information sensed from the transmitting coil; according to the first sensing information, whether the resonance frequency occurs When the resonant frequency changes, control the transmitting coil to adjust the capacitance of the capacitive component and/or adjust the inductance of the inductive component so that the transmitting power of the wireless transmitting end matches the receiving power of the wireless receiving end; among them, the first The sensing information includes: a first sensing voltage value or a first sensing current value.
  • a power matching method for wireless charging is applied to a wireless transmitting end in a wireless charging system.
  • the transmitting coil of the wireless transmitting end includes an adjustable capacity capacitor and an adjustable inductance inductor, so The method includes: receiving the first sensing information sensed from the transmitting coil; detecting whether the resonant frequency has changed according to the first sensing information; and when the resonant frequency has changed, adjusting the capacitance of the transmitting coil of the wireless transmitting end Capacity and/or adjust the inductance of the inductance in the transmitting coil so that the transmitting power of the wireless transmitting end matches the receiving power of the wireless receiving end in the wireless charging system; wherein the first sensing information includes: the first sensing voltage value or The first sensed current value.
  • a wireless charging device including: a power matching device for wireless charging according to any one of the foregoing.
  • the power matching method for wireless charging provided by the embodiments of the present disclosure, according to the voltage value or current value fed back by the wireless receiving end, it is detected whether the resonant frequency has changed; when the resonant frequency changes, adjust the transmission coil in the wireless transmitting end Capacitance capacity and/or inductance, so that the transmitting power of the wireless transmitting end matches the receiving power of the wireless receiving end. This effectively avoids the problems of reduced charging efficiency and heat generation at the wireless receiving end due to changes in the resonance frequency.
  • Fig. 1 is a schematic diagram showing an existing wireless charging system according to an example.
  • Fig. 2 is a flowchart showing a power matching method for wireless charging according to an exemplary embodiment.
  • Fig. 3 is a flowchart showing another power matching method for wireless charging according to an exemplary embodiment.
  • Fig. 4 is a flow chart showing yet another power matching method for wireless charging according to an exemplary embodiment.
  • Fig. 5 is a block diagram showing a power matching device for wireless charging according to an exemplary embodiment.
  • Fig. 6 is a circuit diagram of a transmitting circuit according to an exemplary embodiment.
  • Fig. 7 is a schematic diagram showing an inductance component according to an exemplary embodiment.
  • FIG. 8 is a schematic diagram showing the connection between the control module 404 and the DC/AC converter 60 and the transmitting circuit 402 according to an example.
  • Fig. 9 is a system structure diagram of a wireless charging system according to an exemplary embodiment.
  • Fig. 10 is a system structure diagram of another wireless charging system according to an exemplary embodiment.
  • connection should be understood in a broad sense.
  • they can be electrical connections or communication connections; they can be direct connections or Indirectly connected.
  • the specific meaning of the above-mentioned terms in the present disclosure can be understood according to specific circumstances.
  • plural means at least two, such as two, three, etc., unless otherwise specifically defined.
  • And/or describes the association relationship of the associated objects, indicating that there can be three relationships, such as A and/or B, which can indicate the existence of A alone, B alone, and both A and B.
  • the symbol “/” generally indicates that the associated objects are in an “or” relationship.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • the capacitance and inductance of the existing wireless charging scheme are fixed, in order to ensure the specified resonance frequency (such as 110KHz), the user needs to accurately place the device to be charged on the wireless charging device (charging base). Otherwise, it will cause the resonant frequency to drift. If the transmitter and receiver still use the current frequency in this case, a lot of energy will be wasted and the charging efficiency will decrease; and the energy that cannot be charged will be dissipated in the form of heat It will cause the temperature of the equipment to be charged to rise, and cause safety hazards to the equipment to be charged.
  • the specified resonance frequency such as 110KHz
  • the existing electromagnetic induction wireless charging method has poor resistance to foreign object attacks. For example, if there are foreign objects such as hair strands, coins, etc. between the device to be charged and the wireless charging device, the resonance frequency will also drift. When the resonant frequency drifts too much, most of the power of the wireless charging device will be directly dissipated in the form of heat, causing a safety hazard.
  • Fig. 2 is a flowchart showing a power matching method for wireless charging according to an exemplary embodiment.
  • the method shown in FIG. 2 can be applied to, for example, a wireless transmitting terminal in a wireless charging system, and the transmitting coil of the wireless transmitting terminal includes an adjustable capacity capacitor and/or an adjustable inductance inductor.
  • the power matching method 10 for wireless charging includes:
  • step S102 first sensing information sensed from the wireless transmitting coil is received.
  • the first sensing information may be, for example, feedback information sent by the wireless transmitting end from the receiving coil of the wireless receiving end to the transmitting coil of the wireless transmitting end through electromagnetic coupling, and the feedback information may be, for example, electromagnetic waves received by the wireless receiving end through the receiving coil.
  • the voltage value or current value of the alternating current obtained by signal conversion may also be the voltage value or current value of the direct current converted after rectifying and/or filtering the alternating current by a shaping circuit at the wireless receiving end.
  • the wireless receiving end can also communicate via Bluetooth, WiFi, mobile cellular networks (such as 2G, 3G, 4G or 5G), wireless communications (such as IEEE 802.11, 802.15 (WPANs), 802.16 (WiMAX), 802.20, etc.), based on high At least one of the short-range wireless communication, optical communication (such as infrared communication), ultrasonic communication, ultra-wideband (UMB) communication and other communication methods of a frequency antenna (such as 60GHz) communicates with the wireless transmitter to send the above feedback information To the wireless transmitter.
  • Bluetooth Bluetooth
  • WiFi mobile cellular networks
  • mobile cellular networks such as 2G, 3G, 4G or 5G
  • wireless communications such as IEEE 802.11, 802.15 (WPANs), 802.16 (WiMAX), 802.20, etc.
  • WiMAX WiMAX
  • 802.20 etc.
  • optical communication such as infrared communication
  • UMB ultra-wideband
  • a frequency antenna such as 60GHz
  • the first sensing information may include, for example, the first sensing voltage value or the first sensing current value.
  • the first sensing information may also be, for example, the voltage value or current value of the alternating current of the wireless transmitting terminal sensed from the transmitting coil by the wireless transmitting terminal.
  • step S104 according to the first sensing information, it is detected whether the resonance frequency has changed.
  • the resonance frequency will drift, which is not ideal. The resonance frequency is not consistent.
  • the first sensing information can be compared with a preset feedback information threshold to determine whether the first sensing information is less than the feedback information threshold; when the first sensing information is less than the feedback information threshold, the resonance frequency is determined Has changed.
  • the feedback information threshold is the voltage threshold; when the first sensing information is the first sensing current value, the feedback information threshold is the current threshold.
  • step S106 when the resonance frequency is changed, adjust the capacitance of the capacitor in the transmitting coil of the wireless transmitting end and/or adjust the inductance of the inductance in the transmitting coil, so that the transmitting power of the wireless transmitting end matches the receiving power of the wireless receiving end .
  • the resonant frequency changes, it will cause the wireless transmitting end's transmitting power to be mismatched with the wireless receiving end's receiving power, causing most of the wireless receiving end to radiate in the form of heat, which not only reduces the charging efficiency of the wireless charging system, but also causes The increase in the temperature of the wireless receiving end brings security risks to the equipment.
  • the capacity of the capacitance in the transmitting coil of the wireless transmitting end and/or the inductance of the inductance in the transmitting coil can be adjusted to make the transmitting power of the wireless transmitting end match the receiving power of the wireless receiving end .
  • the charging efficiency of the current wireless charging system can be used to determine whether the transmission power matches the reception power.
  • the charging efficiency can be, for example, the ratio of the received power to the transmitted power. If the current charging efficiency reaches a preset efficiency threshold or reaches a preset efficiency range, it is considered that the transmission power obtained after adjusting the capacitance and/or inductance Match with the received power.
  • the efficiency threshold and the efficiency range can be set according to actual requirements in actual applications, or can also be determined according to the system efficiency specified in the QI wireless charging standard.
  • the power matching method for wireless charging provided by the embodiments of the present disclosure, according to the voltage value or current value fed back by the wireless receiving end, it is detected whether the resonant frequency has changed; when the resonant frequency changes, adjust the transmission coil in the wireless transmitting end Capacitance capacity and/or inductance, so that the transmitting power of the wireless transmitting end matches the receiving power of the wireless receiving end.
  • This method can effectively avoid the problems of reduced charging efficiency and heat generation at the wireless receiving end due to changes in the resonance frequency.
  • Fig. 3 is a flowchart showing another power matching method for wireless charging according to an exemplary embodiment.
  • the method shown in FIG. 3, similarly, can be applied to a wireless transmitting end in a wireless charging system, for example, the transmitting coil of the wireless transmitting end includes an adjustable capacity capacitor and an adjustable inductance inductor.
  • the power matching method 20 for wireless charging includes:
  • step S202 the first sensing information sensed from the transmitting coil is received.
  • the first sensing information may be, for example, feedback information sent by the wireless receiving end from the receiving coil of the wireless receiving end to the transmitting coil of the wireless transmitting end through electromagnetic coupling, and the feedback information may be, for example, electromagnetic signals received by the wireless receiving end through the receiving coil.
  • the voltage value or current value of the alternating current obtained by signal conversion may also be the voltage value or current value of the direct current converted after rectifying and/or filtering the alternating current by a shaping circuit at the wireless receiving end.
  • the wireless receiving end can also communicate via Bluetooth, WiFi, mobile cellular networks (such as 2G, 3G, 4G or 5G), wireless communications (such as IEEE 802.11, 802.15 (WPANs), 802.16 (WiMAX), 802.20, etc.), based on high At least one of the short-range wireless communication, optical communication (such as infrared communication), ultrasonic communication, ultra-wideband (UMB) communication and other communication methods of a frequency antenna (such as 60GHz) communicates with the wireless transmitter to send the above feedback information To the wireless transmitter.
  • Bluetooth Bluetooth
  • WiFi mobile cellular networks
  • mobile cellular networks such as 2G, 3G, 4G or 5G
  • wireless communications such as IEEE 802.11, 802.15 (WPANs), 802.16 (WiMAX), 802.20, etc.
  • WiMAX WiMAX
  • 802.20 etc.
  • optical communication such as infrared communication
  • UMB ultra-wideband
  • a frequency antenna such as 60GHz
  • the first sensing information may include, for example, the first sensing voltage value or the first sensing current value.
  • the first sensing information may also be, for example, the voltage value or current value of the alternating current of the wireless transmitting terminal sensed from the transmitting coil by the wireless transmitting terminal.
  • step S204 it is determined whether the first sensing information is less than a preset feedback information threshold.
  • step S206 If the first sensing information is less than the feedback information threshold, go to step S206; otherwise, go back to step S202 and wait to receive the voltage value or current value fed back by the wireless receiving end in the next cycle.
  • the feedback information threshold is the voltage threshold; when the first sensing information is the first sensing current value, the feedback information threshold is the current threshold.
  • the voltage threshold and current threshold can be set according to actual requirements in practical applications, and the present disclosure is not limited thereto.
  • step S206 the capacity of the capacitor in the transmitting coil and/or the inductance of the inductor in the transmitting coil is increased.
  • a preset adjustment step may be increased each time.
  • the preset capacitance adjustment step size can be increased each time; when the inductance is increased, the preset inductance adjustment step size can be increased each time.
  • the capacitance adjustment step length and the inductance adjustment step length can be set according to actual requirements in practical applications.
  • step S208 the second sensing information sensed from the transmitting coil is received.
  • the second sensing information can be received at the next preset time interval, and it is determined whether the adjustment direction of step S206 is based on the second sensing information. correct.
  • the preset time interval may be, for example, a control period for controlling an LC filter composed of an inductor and a capacitor, or may also be multiple such control periods, and the present disclosure is not limited thereto.
  • the second sensing information may include: a second sensing voltage value or a second sensing current value.
  • step S210 it is determined whether the second sensing information is greater than the first sensing information.
  • step S212 If the second sensing information is not greater than the first sensing information, go to step S212; otherwise, go to step S220.
  • Step S212 Determine whether the second sensing information is greater than the first sensing information, that is, after increasing the capacitance of the transmitter coil and/or increasing the inductance of the inductor in the transmitter coil, whether the voltage value fed back by the wireless receiving terminal increases . If there is no increase, it means that the adjustment direction of the capacitance or the inductance is not correct, so the step S212 is entered.
  • the first sensing information when the second sensing information is the second sensing voltage value, the first sensing information is the first sensing voltage value; when the second sensing information is the second sensing current value, the first sensing information Is the first sensed current value.
  • step S212 the capacity of the capacitor in the transmitting coil and/or the inductance of the inductance in the transmitting coil is reduced.
  • the preset adjustment step can also be reduced each time. For example, when the capacitance is reduced, the preset capacitance adjustment step can be reduced one at a time; when the inductance is reduced, the preset inductance adjustment step can be reduced one at a time.
  • step S214 the third sensing information sensed from the transmitting coil is received.
  • the third sensing information may be received at the next preset time interval, and the adjustment of step S212 may be determined based on the third sensing information Is the direction correct?
  • the preset time interval may be, for example, one or more of the aforementioned control periods.
  • the third sensing information may include: a third sensing voltage value or a third sensing current value.
  • step S216 it is determined whether the third sensing information is greater than the second sensing information.
  • step S218 If the third sensing information is greater than the second sensing information, go to step S218; otherwise, go back to step S206.
  • step S218 Determine whether the third sensing information is greater than the second sensing information, that is, after reducing the capacitance of the transmitter coil and/or reducing the inductance of the inductance in the transmitter coil, whether the voltage value fed back by the wireless receiving terminal has increased . If there is an increase, it indicates that the adjustment direction of the capacitance and/or inductance is correct, and step S218 is entered.
  • the third sensing information when the third sensing information is the third sensing voltage value, the second sensing information is the second sensing voltage value; when the third sensing information is the third sensing current value, the second sensing information Is the second sensing current value.
  • step S2128 it is determined whether the third sensing information reaches the preset optimal sensing information.
  • step S212 If the third sensing information does not reach the optimal sensing information, return to step S212; otherwise, end this adjustment, return to step S202, and wait to receive the voltage value or current value fed back by the wireless receiving terminal in the next cycle.
  • the optimal sensing information when the third sensing information is the third sensing voltage value, the optimal sensing information is the optimal sensing voltage value; when the third sensing information is the third sensing current value, the optimal sensing information Is the optimal sensing current value.
  • step S220 it is determined whether the second sensing information reaches the preset optimal sensing information.
  • step S206 If the second sensing information does not reach the optimal sensing information, return to step S206; otherwise, end this adjustment, return to step S202, and wait to receive the voltage value or current value fed back by the wireless receiving terminal in the next cycle.
  • the optimal sensing information when the second sensing information is the second sensing voltage value, the optimal sensing information is the optimal sensing voltage value; when the second sensing information is the second sensing current value, the optimal sensing information Is the optimal sensing current value.
  • the optimal sensing voltage value or optimal sensing current value can be determined, for example, according to the aforementioned charging efficiency threshold or efficiency range.
  • the charging efficiency is determined by the transmitting power of the wireless transmitting end and the receiving power of the wireless receiving end, so it can be determined by
  • the charging efficiency threshold or efficiency range is preset to determine the optimal sensing voltage value or optimal sensing current value.
  • the efficiency threshold and the efficiency range can be set according to actual requirements in actual applications, or can also be determined according to the system efficiency specified in the QI wireless charging standard.
  • the previous adjustment is further judged by the feedback voltage sent by the wireless transmitting end received in the next cycle Whether the direction is correct, and determine whether the transmit power matches the received power by judging whether the feedback voltage reaches the optimal voltage.
  • this method can effectively avoid the problems of reduced charging efficiency and heat generation at the wireless receiving end due to changes in the resonance frequency.
  • Fig. 4 is a flow chart showing yet another power matching method for wireless charging according to an exemplary embodiment.
  • the method shown in FIG. 4 can also be applied to a wireless transmitting terminal in a wireless charging system.
  • the transmitting coil of the wireless transmitting terminal includes a capacitor with adjustable capacity and an inductor with adjustable inductance.
  • the power matching method 30 for wireless charging includes:
  • step S302 the first sensing information sensed from the transmitting coil is received.
  • the first sensing information may be, for example, feedback information sent by the wireless receiving end from the receiving coil of the wireless receiving end to the transmitting coil of the wireless transmitting end through electromagnetic coupling, and the feedback information may be, for example, electromagnetic signals received by the wireless receiving end through the receiving coil.
  • the voltage value or current value of the alternating current obtained by signal conversion may also be the voltage value or current value of the direct current converted after rectifying and/or filtering the alternating current by a shaping circuit at the wireless receiving end.
  • the wireless receiving end can also communicate via Bluetooth, WiFi, mobile cellular networks (such as 2G, 3G, 4G or 5G), wireless communications (such as IEEE 802.11, 802.15 (WPANs), 802.16 (WiMAX), 802.20, etc.), based on high At least one of the short-range wireless communication, optical communication (such as infrared communication), ultrasonic communication, ultra-wideband (UMB) communication and other communication methods of a frequency antenna (such as 60GHz) communicates with the wireless transmitter to send the above feedback information To the wireless transmitter.
  • Bluetooth Bluetooth
  • WiFi mobile cellular networks
  • mobile cellular networks such as 2G, 3G, 4G or 5G
  • wireless communications such as IEEE 802.11, 802.15 (WPANs), 802.16 (WiMAX), 802.20, etc.
  • WiMAX WiMAX
  • 802.20 etc.
  • optical communication such as infrared communication
  • UMB ultra-wideband
  • a frequency antenna such as 60GHz
  • the first sensing information may include, for example, the first sensing voltage value or the first sensing current value.
  • the first sensing information may also be, for example, the voltage value or current value of the alternating current of the wireless transmitting terminal sensed from the transmitting coil by the wireless transmitting terminal.
  • step S304 it is determined whether the first sensing information is less than a preset feedback information threshold.
  • step S306 If the first sensing information is less than the feedback information threshold, go to step S306; otherwise, go back to step S302 and wait to receive the voltage value or current value fed back by the wireless receiving end in the next cycle.
  • the feedback information threshold is the voltage threshold; when the first sensing information is the first sensing current value, the feedback information threshold is the current threshold.
  • the voltage threshold and current threshold can be set according to actual requirements in practical applications, and the present disclosure is not limited thereto.
  • step S306 the capacity of the capacitor in the transmitting coil is reduced and/or the inductance of the inductor in the transmitting coil is increased.
  • a preset adjustment step may be increased each time. For example, when reducing the capacitance, you can reduce one preset capacitance adjustment step each time; when reducing the inductance, you can reduce one preset inductance adjustment step each time.
  • the capacitance adjustment step length and the inductance adjustment step length can be set according to actual requirements in practical applications.
  • step S308 the second sensing information sensed from the transmitting coil is received.
  • the second sensing information can be received at the next preset time interval, and it is determined whether the adjustment direction of step S306 is based on the second sensing information. correct.
  • the preset time interval may be, for example, a control period for controlling an LC filter composed of an inductor and a capacitor, or may also be multiple such control periods, and the present disclosure is not limited thereto.
  • the second sensing information may include: a second sensing voltage value or a second sensing current value.
  • step S310 it is determined whether the second sensing information is greater than the first sensing information.
  • step S312 If the second sensing information is not greater than the first sensing information, go to step S312; otherwise, go to step S320.
  • step S312 Determine whether the second sensing information is greater than the first sensing information, that is, after reducing the capacitance of the transmitter coil and/or reducing the inductance of the inductance in the transmitter coil, whether the voltage value fed back by the wireless receiving terminal has increased . If there is no increase, it means that the adjustment direction of the capacitance and/or the inductance is incorrect, so step S312 is entered.
  • the first sensing information when the second sensing information is the second sensing voltage value, the first sensing information is the first sensing voltage value; when the second sensing information is the second sensing current value, the first sensing information Is the first sensed current value.
  • step S312 the capacity of the capacitor in the transmitting coil is increased and/or the inductance of the inductor in the transmitting coil is reduced.
  • the preset adjustment step can also be reduced each time. For example, when the capacitance is increased, the preset capacitance adjustment step size can be increased one at a time; when the inductance is increased, the preset inductance adjustment step size can be increased one at a time.
  • step S314 the third sensing information sensed from the transmitting coil is received.
  • the third sensing information may be received at the next preset time interval, and the adjustment of step S312 may be determined according to the third sensing information Is the direction correct?
  • the preset time interval may be, for example, one or more of the aforementioned control periods.
  • the third sensing information may include: a third sensing voltage value or a third sensing current value.
  • step S316 it is determined whether the third sensing information is greater than the second sensing information.
  • step S318 If the third sensing information is greater than the second sensing information, go to step S318; otherwise, go back to step S306.
  • step S318 Determine whether the third sensing information is greater than the second sensing information, that is, after increasing the capacitance of the transmitting coil and/or increasing the inductance of the inductance of the transmitting coil, whether the voltage value fed back by the wireless receiving terminal has increased . If there is an increase, it indicates that the adjustment direction of the capacitance and/or inductance is correct, and step S318 is entered.
  • the third sensing information when the third sensing information is the third sensing voltage value, the second sensing information is the second sensing voltage value; when the third sensing information is the third sensing current value, the second sensing information Is the second sensing current value.
  • step S318 it is determined whether the third sensing information reaches the preset optimal sensing information.
  • step S312 If the third sensing information does not reach the optimal sensing information, return to step S312; otherwise, end this adjustment, return to step S302, and wait to receive the voltage value or current value fed back by the wireless receiving terminal in the next cycle.
  • the optimal sensing information when the third sensing information is the third sensing voltage value, the optimal sensing information is the optimal sensing voltage value; when the third sensing information is the third sensing current value, the optimal sensing information Is the optimal sensing current value.
  • step S320 it is determined whether the second sensing information reaches the preset optimal sensing information.
  • step S306 If the second sensing information does not reach the optimal sensing information, return to step S306; otherwise, end this adjustment, return to step S302, and wait to receive the voltage value or current value fed back by the wireless receiving terminal in the next cycle.
  • the optimal sensing information when the second sensing information is the second sensing voltage value, the optimal sensing information is the optimal sensing voltage value; when the second sensing information is the second sensing current value, the optimal sensing information Is the optimal sensing current value.
  • the optimal sensing voltage value or optimal sensing current value can be determined, for example, according to the aforementioned charging efficiency threshold or efficiency range.
  • the charging efficiency is determined by the transmitting power of the wireless transmitting end and the receiving power of the wireless receiving end, so it can be determined by
  • the charging efficiency threshold or efficiency range is preset to determine the optimal sensing voltage value or optimal sensing current value.
  • the efficiency threshold and the efficiency range can be set according to actual requirements in actual applications, or can also be determined according to the system efficiency specified in the QI wireless charging standard.
  • the feedback voltage sent by the wireless transmitting terminal received in the next cycle is further judged before Whether the direction of the secondary adjustment is correct, and whether the transmitting power matches the receiving power is determined by judging whether the feedback voltage reaches the optimal voltage.
  • this method can effectively avoid the problems of reduced charging efficiency and heat generation at the wireless receiving end due to changes in the resonance frequency.
  • Fig. 5 is a block diagram showing a power matching device for wireless charging according to an exemplary embodiment.
  • the power matching device 40 for wireless charging as shown in FIG. 5 can be applied to the wireless transmitting end of the wireless charging system.
  • the power matching device 40 for wireless charging includes: a transmitting circuit 402 and a control module 404.
  • the transmitting circuit 402 includes: a transmitting coil 4022.
  • the transmitting coil 4022 includes: a capacitance component Cp with an adjustable capacity and an inductance component Lp with an adjustable inductance, wherein the capacitance component Cp and the inductance component Lp are connected in series.
  • the control module 404 may be implemented by, for example, a Micro Control Unit (MCU).
  • the control module 404 is electrically connected to the transmitting circuit 402 for receiving the first sensing information sensed from the transmitting coil; according to the first sensing information, detecting whether the resonant frequency has changed; and when the resonant frequency has changed,
  • the transmitting coil 4022 is controlled to adjust the capacity of the capacitance component Cp and/or adjust the inductance of the inductance component Lp, so that the transmitting power of the wireless transmitting end matches the receiving power of the wireless receiving end.
  • the first sensing information includes: a first sensing voltage value or a first sensing current value.
  • the control module 404 is used to determine whether the first sensing information is less than a preset feedback information threshold; and when the first sensing information is less than the feedback information threshold, determining that the resonance frequency has changed. Wherein, when the first sensing information is the first sensing voltage value, the feedback information threshold is the voltage threshold; when the first sensing information is the first sensing current value, the feedback information threshold is the current threshold.
  • control module 404 is used to control the transmitting coil 4022 to increase the capacitance of the capacitor component Cp and/or increase the inductance of the inductance component Lp when the resonance frequency changes.
  • control module 404 is also used to control the transmitting coil 4022 to increase the capacitance of the capacitor component Cp and/or increase the inductance of the inductance component Lp, for example, in the next preset time interval, the receiving from the transmitting coil
  • the second sensed information sensed; determine whether the second sensed information is greater than the first sensed information; and when the second sensed information is not greater than the first sensed information, control the transmitting coil 4022 to reduce the capacity of the capacitor component Cp And/or reduce the inductance of the inductance component Lp.
  • the second sensing information includes: a second sensing voltage value or a second sensing current value; when the second sensing information is the second sensing voltage value, the first sensing information is the first sensing voltage value ; When the second sensing information is the second sensing current value, the first sensing information is the first sensing current value.
  • control module 404 is further configured to determine whether the second sensing information reaches the preset optimal sensing information when the second sensing information is greater than the first sensing information; and when the second sensing information When the optimal sensing information is not reached, the transmitting coil 4022 is controlled to continue to increase the capacity of the capacitive component Cp and/or continue to increase the inductance of the inductive component Lp.
  • the optimal sensing information is the optimal sensing voltage value; when the second sensing information is the second sensing current value, the optimal sensing information Is the optimal sensing current value.
  • control module 404 is further configured to control the transmitting coil 4022 to reduce the capacitance of the capacitor component Cp and/or reduce the inductance of the inductance component Lp, for example, at the next preset time interval, the receiving slave
  • the third sensing information sensed by the transmitting coil determining whether the third sensing information is greater than the second sensing information; and when the third sensing information is not greater than the second sensing information, controlling the transmitting coil 4022 to increase the capacitance component Cp And/or increase the inductance of the inductance component Lp.
  • the third sensing information includes: a third sensing voltage value or a third sensing current value; when the third sensing information is the third sensing voltage value, the second sensing information is the second sensing voltage value ; When the third sensing information is the third sensing current value, the second sensing information is the second sensing current value.
  • control module 404 is further configured to determine whether the third sensing information reaches the preset optimal sensing information when the third sensing information is greater than the second sensing information; and when the third sensing information When the optimal sensing information is not reached, the transmitting coil 4022 is controlled to continue to reduce the capacity of the capacitive component Cp and/or continue to reduce the inductance of the inductive component Lp.
  • the optimal sensing information is the optimal sensing voltage value; when the third sensing information is the third sensing current value, the optimal sensing information Is the optimal sensing current value.
  • control module 404 is used to control the transmitting coil 4022 to reduce the capacity of the capacitive component Cp and/or reduce the inductance of the inductive component Lp when the resonance frequency changes.
  • control module 404 is further configured to control the transmitting coil 4022 to reduce the capacitance of the capacitive component Cp and/or reduce the inductance of the inductance component Lp, for example, in the next preset time interval, the receiving from the transmitting coil Sensed second sensing information; determining whether the second sensing information is greater than the first sensing information; and when the second sensing information is not greater than the first sensing information, controlling the transmitting coil 4022 to increase the capacity of the capacitor component Cp And/or increase the inductance of the inductance component Lp.
  • the second sensing information includes: a second sensing voltage value or a second sensing current value; when the second sensing information is the second sensing voltage value, the first sensing information is the first sensing voltage value ; When the second sensing information is the second sensing current value, the first sensing information is the first sensing current value.
  • control module 404 is further configured to determine whether the second sensing information reaches the preset optimal sensing information when the second sensing information is greater than the first sensing information; and when the second sensing information When the optimal sensing information is not reached, the transmitting coil 4022 is controlled to continue to reduce the capacity of the capacitive component Cp and/or continue to reduce the inductance of the inductive component Lp.
  • the optimal sensing information is the optimal sensing voltage value; when the second sensing information is the second sensing current value, the optimal sensing information Is the optimal sensing current value.
  • control module 404 is further configured to control the transmitting coil 4022 to increase the capacitance of the capacitor component Cp and/or increase the inductance of the inductance component Lp, for example, at the next preset time interval, the receiving slave
  • the third sensing information sensed by the transmitting coil determining whether the third sensing information is greater than the second sensing information; and when the third sensing information is not greater than the second sensing information, controlling the transmitting coil 4022 to reduce the capacitance component Cp And/or reduce the inductance of the inductance component Lp.
  • the third sensing information includes: a third sensing voltage value or a third sensing current value; when the third sensing information is the third sensing voltage value, the second sensing information is the second sensing voltage value ; When the third sensing information is the third sensing current value, the second sensing information is the second sensing current value.
  • control module 404 is further configured to determine whether the third sensing information reaches the preset optimal sensing information when the third sensing information is greater than the second sensing information; and when the third sensing information When the optimal sensing information is not reached, the transmitting coil 4022 is controlled to continue to increase the capacity of the capacitive component Cp and/or continue to increase the inductance of the inductive component Lp.
  • the optimal sensing information is the optimal sensing voltage value; when the third sensing information is the third sensing current value, the optimal sensing information Is the optimal sensing current value.
  • the transmitting circuit 402 can be packaged in a chip, for example.
  • Fig. 6 is a circuit diagram of a transmitting circuit according to an exemplary embodiment.
  • the capacitive component Cp in the transmitting circuit 402 includes a first capacitor Cp1 and a second capacitor Cp2 in series with the inductance component Lp, at least one first capacitor branch Cb1 connected in parallel with the first capacitor Cp1, and At least one second capacitor branch Cb2 is connected in parallel with two capacitors Cp2, and when there are multiple first capacitor branches Cb1, each first capacitor branch Cb1 is connected in parallel with each other, and when there are multiple second capacitor branches Cb2, each first capacitor branch Cb2 The two capacitor branches Cb2 are connected in parallel.
  • the control module 404 can adjust the capacity of the capacitor component Cp by controlling the switches S11 to S1n and/or the switches S21 to S2n.
  • the capacitors C11 to C1n may all be capacitors of equal capacity, for example. Initially, all switches S11 to S1n are in the off state. Each time a switch S11 ⁇ S1n is turned on, the capacity of the capacitor component Cp can be increased by the aforementioned capacitance adjustment step; on the contrary, each time a switch S11 ⁇ S1n is turned off, the capacity of the capacitor component Cp can be reduced by one of the aforementioned capacitors. Adjust the step length.
  • the capacitors C21 to C2n may all be capacitors of equal capacity. Initially, all switches S21 to S2n are in the off state. Every time a switch S21 ⁇ S2n is turned on, the capacity of the capacitor component Cp can be increased by one above-mentioned capacitance adjustment step; on the contrary, every time a switch S21 ⁇ S2n is turned off, the capacity of the capacitor component Cp can be reduced by one above-mentioned capacitor Adjust the step length.
  • the capacitors C11 to C1n may also be capacitors of different capacities.
  • the capacity of the capacitor C11 is c
  • the capacity of the capacitor C12 is 2*c
  • the capacity of the capacitor C13 is 3*c, and so on.
  • all switches S11 to S1n are in the off state.
  • the switch S11 corresponding to the capacitor C11 is turned on
  • the capacity of the capacitor component Cp can be increased by one capacitance adjustment step (for example, the capacity c);
  • the switch S11 corresponding to the capacitor C11 is turned off and the switch S12 corresponding to the capacitor C12 is turned on
  • the capacity of the capacitor component Cp can continue to increase by one capacitor adjustment step; when the capacity of the capacitor component Cp is reduced, the reverse operation can be performed.
  • the capacitors C21 to C2n can also be capacitors of different capacities.
  • the capacity of the capacitor C21 is c
  • the capacity of the capacitor C22 is 2*c
  • the capacity of the capacitor C23 is 3*c, and so on.
  • the capacitors C11 to C1n in the first capacitor branch Cb1 and the capacitors C21 to C2n in the second capacitor branch Cb2 can be independently controlled, or can also be controlled jointly, that is, the capacitors C11 to C1n are simultaneously controlled.
  • the capacitors C21-C2n which are arranged symmetrically with the capacitors C11-C1n, wherein, for example, the capacitor C11 and the capacitor C21 are arranged symmetrically, the capacitors C12 and C22 are arranged symmetrically, and so on.
  • the first capacitor Cp1 and/or the second capacitor Cp2 can also be connected in series with a switch respectively to form a first capacitor branch Cb1 and/or a second capacitor branch Cb2, thereby adjusting the capacitor
  • the first capacitor Cp1 and/or the second capacitor Cp2 can also be controlled by controlling each switch.
  • the capacitor component Cp may also include only the first capacitor Cp1 and at least one first capacitor branch Cb1, or only include the second capacitor Cp2 and at least one second capacitor branch Cb2.
  • the first capacitor Cp1 or the second capacitor Cp2 can also be connected in series with a switch, respectively, to form a first capacitor branch or a second capacitor branch.
  • the capacitor components Cp can be all packaged inside the chip, for example.
  • each first capacitor branch Cb1 and the second capacitor branch Cb2 in FIG. 6 are equal, the present disclosure is not limited thereto, and the number of the first capacitor branch Cb1 is also It may be different from the number of the second capacitor branch Cb2.
  • each first capacitor branch Cb1 is connected in parallel with the first capacitor Cp1 in FIG. 6
  • each second capacitor branch Cb2 is connected in parallel with the second capacitor Cp2.
  • the capacitors C11-C1n in the first capacitor branch Cb1 may be connected in parallel with the corresponding switches S11-S1n
  • the capacitors C21-C2n in the second capacitor branch Cb2 may be connected in parallel with the corresponding switches S21-S2n.
  • the inductance component Lp in the transmitting circuit 402 includes: a first inductance Lp1, a second inductance Lp2, and at least one inductance branch Lb connected in series with the capacitance component Cp.
  • the control module 404 can adjust the inductance of the inductance component Lp by controlling the switch S.
  • the inductances L1 to Lm may be all inductances having the same inductance, for example. Initially, all the switches S1 to Sm are in an on state. Each time a switch S1 ⁇ Sm is turned off, the inductance of the inductance component Lp can be increased by one above-mentioned inductance adjustment step; on the contrary, every time a switch S1 ⁇ Sm is turned on, the inductance of the inductance component Lp can be reduced by one Inductance adjustment step size.
  • the inductors L1 to Lm may also be inductors with different inductances.
  • the inductance of the inductor L1 is 1
  • the inductance of the inductor L2 is 2*l
  • the inductance of the inductor L3 is 3*l
  • all the switches S1 to Sm are in an on state.
  • the inductance of the inductor component Lp can be increased by an inductance adjustment step (such as the inductance l); when the switch S1 corresponding to the inductor L1 is turned on and the switch S2 corresponding to the inductor L2 is turned off At this time, the inductance of the inductance component Lp continues to increase by the aforementioned inductance adjustment step.
  • the reverse operation can be performed.
  • first inductor Lp1 and/or the second inductor Lp2 may also be connected in parallel with a switch to form one or two inductor branches Lb, so that when the inductance of the inductor component Lp is adjusted, The first inductor Lp1 and/or the second inductor Lp2 are controlled by controlling each switch.
  • Each inductor in the inductance component Lp is arranged outside the chip to be coupled with the receiving coil of the wireless receiving end.
  • each inductance branch Lb is connected in series with the first inductance Lp1 and the second inductance Lp2 in FIG. 6.
  • each inductance branch is connected in parallel with the first inductance Lp1 and the second inductance Lp2 respectively.
  • the inductances L1 to Lm in each inductance branch are connected in series with the corresponding switches S1 to Sm.
  • the layout of the transmitting coil is shown in Figure 7.
  • the coil ports P1 and P2 are located on the left side of the figure, and the adjustable coil ports P3 to P7 are located on the right side. (Ports P1 to P7 correspond to the ports P1 to P7 in Figure 6). It is controlled by the control module 404 to determine the length of the coil connected to the chip, that is, to adjust the inductance of the inductance component Lp. Among them, most of the coils are always connected to the circuit, and the adjustable coils account for only about 10%, for example.
  • ports Port1 and Port2 in the chip shown in FIG. 6 are respectively electrically connected to the DC/AC converter 60 in FIG. 5, and the ports SCLK and SDATA are used to receive control signals from the control module 404 to control the switches.
  • FIG. 8 is a schematic diagram showing the connection between the control module 404 and the DC/AC converter 60 and the transmitting circuit 402 according to an example.
  • the DC/AC converter 60 may be, for example, a full-bridge inverter composed of MOS transistors.
  • the control module 404 generates a pulse signal to control the DC/AC converter 60 to be turned on or off at the same time to turn the DC power source on or off.
  • the direct current provided by 50 is converted into alternating current of the required frequency.
  • control module 404 detects whether the current load is capacitance or inductance, determines whether it is necessary to increase or decrease the capacitance of the capacitance component Cp and/or the inductance of the inductance component Lp, and provide a control signal to the transmitting circuit 402, as described above for the capacitance component Cp And the inductive component Lp for adjustment.
  • the transmitting circuit 402 provides the above feedback voltage value or feedback current value received from the transmitting coil to the control module 404.
  • Fig. 9 is a system structure diagram of a wireless charging system according to an exemplary embodiment.
  • the wireless charging system 1 includes: a power supply device 11, a wireless charging device 12 and a device 13 to be charged.
  • the power supply device 11 may be, for example, a power adapter, a power bank (Power Bank), etc.;
  • the wireless charging device 12 may be, for example, a wireless charging base; and
  • the device to be charged 13 may be, for example, a terminal device.
  • the output current is transmitted to the wireless charging device 12.
  • the wireless charging device 12 includes a wireless transmitting circuit 121 and a first control module 122.
  • the wireless transmitting circuit 121 is used to convert the electrical energy output by the power supply device 11 into electromagnetic signals (or electromagnetic waves) for transmission, so as to perform wireless charging for the device 13 to be charged.
  • the wireless transmission circuit 121 may include: a wireless transmission drive circuit and a transmission coil.
  • the wireless transmission drive circuit is used to convert the direct current output by the power supply device 11 into high-frequency alternating current, and convert the high-frequency alternating current into an electromagnetic signal through a transmitting coil and transmit it out.
  • the first control module 122 may be implemented by, for example, a micro control unit (MCU).
  • the first control module 122 may be used to perform wireless communication with the device to be charged 13 during the wireless charging process of the device to be charged 13 by the wireless charging device 12.
  • the first control module 122 may perform wireless communication with the second control module 135 in the device 13 to be charged.
  • the wireless charging device 12 includes the aforementioned power matching device 40 for wireless charging as shown in FIG. 5.
  • the control module 404 in the power matching device 40 may be the first control module 122, that is, the first control module 122 may perform all operations that the control module 404 can perform.
  • the wireless transmitting circuit 121 includes the transmitting circuit 402 in the power matching device 40, that is, the wireless transmitting circuit 121 has a transmitting coil with adjustable capacitance and inductance, and can adjust the capacitance and inductance according to the control of the first control module 122 Therefore, when the wireless charging device 12 performs wireless charging for the device 13 to be charged, the transmission power of the wireless charging device 12 matches the receiving power of the device 13 to be charged.
  • the wireless charging device 12 may further include a charging interface 123.
  • the wireless transmitting circuit 121 can also be used to receive the electrical energy output by the power supply device 11 through the charging interface 123 and generate an electromagnetic signal according to the electrical energy output by the power supply device 11.
  • the charging interface 123 may be, for example, a USB 2.0 interface, a Micro USB interface, or a USB TYPE-C interface. In some embodiments, the charging interface 123 may also be a lightning interface, or any other type of parallel port or serial port that can be used for charging.
  • the wireless charging device 12 can communicate with the power supply device 11, for example, it can communicate through the charging interface 123, without setting an additional communication interface or other wireless communication module, which can simplify the implementation of the wireless charging device 12.
  • the charging interface 123 is a USB interface
  • the wireless charging device 12 (or the wireless transmitting circuit 121) and the power supply device 13 can communicate based on the data lines (such as D+ and/or D- lines) in the USB interface.
  • the charging interface 123 is a USB interface (such as a USB TYPE-C interface) that supports a power delivery (PD) communication protocol, and the wireless charging device 12 (or wireless transmission circuit 121) and the power supply device 11 may be based on the PD communication protocol To communicate.
  • PD power delivery
  • the wireless charging device 12 may also be communicatively connected with the power supply device 11 through other communication methods other than the charging interface 123.
  • the wireless charging device 12 may communicate with the power supply device 11 in a wireless manner, such as Near Field Communication (NFC).
  • NFC Near Field Communication
  • the device to be charged 13 may be, for example, a terminal or a communication terminal.
  • the terminal or communication terminal includes but is not limited to being set to be connected via a wired line, such as via a public switched telephone network (PSTN) or a digital subscriber line (digital subscriber line). line, DSL), digital cable, direct cable connection, and/or another data connection/network and/or via, for example, cellular network, wireless local area network (WLAN), such as handheld digital video broadcasting (digital video broadcasting) Broadcasting handheld, DVB-H) network of digital television network, satellite network, amplitude modulation-frequency modulation (AM-FM) broadcast transmitter, and/or the wireless interface of another communication terminal to receive/send communication signals Device.
  • PSTN public switched telephone network
  • DSL digital subscriber line
  • DSL digital cable, direct cable connection, and/or another data connection/network and/or via, for example, cellular network, wireless local area network (WLAN), such as handheld digital video broadcasting (digital video broadcasting) Broad
  • a communication terminal set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” and/or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; personal communication system (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, and the Internet/ Personal digital assistant (PDA) with intranet access, web browser, memo pad, calendar, and/or global positioning system (GPS) receiver; and conventional laptop and/or palmtop Receiver or other electronic device including a radio telephone transceiver.
  • the terminal can also include, but is not limited to, electronic book readers, smart wearable devices, mobile power sources (such as power banks, travel chargers), electronic cigarettes, wireless mice, wireless keyboards, wireless headphones, Bluetooth speakers, etc. Rechargeable electronic equipment.
  • the device to be charged 13 includes: a wireless receiving circuit 131, a battery 133, a first charging channel 134, a second control module 135 and a detection circuit 136.
  • the wireless receiving circuit 131 is used to receive the electromagnetic signal emitted by the wireless transmitting circuit 121 and convert the electromagnetic signal into the direct current output by the wireless receiving circuit 131.
  • the wireless receiving circuit 131 may include a receiving coil and a shaping circuit such as a rectifying circuit and/or a filter circuit connected to the receiving coil.
  • the wireless receiving circuit 131 converts the electromagnetic signal emitted by the wireless transmitting circuit 121 into alternating current through a receiving coil, and rectifies and/or filters the alternating current through a shaping circuit, thereby converting the alternating current into stable direct current to charge the battery 133.
  • the embodiment of the present disclosure does not specifically limit the specific form of the shaping circuit and the output voltage and output current form of the wireless receiving circuit 131 obtained after the shaping circuit is shaped.
  • the device to be charged 13 may further include: a first voltage conversion circuit 132.
  • the first voltage conversion circuit 132 is disposed on the first charging channel 134 (for example, a wire), and is disposed between the wireless receiving circuit 131 and the battery 133.
  • the first voltage conversion can be performed first
  • the circuit 132 performs conversion to obtain the expected charging voltage and/or charging current of the battery 133.
  • the output voltage and output current of the wireless receiving circuit 131 are input into the first voltage conversion circuit 132 through the first charging channel 134; after the first voltage conversion circuit 132 converts the input voltage, the output voltage and current pass through the A charging channel 134 is loaded on both ends of the battery 133 to meet the expected charging voltage and/or charging current requirements of the battery 133.
  • the battery 133 may include a single cell or multiple cells. When the battery 133 includes multiple cells, the multiple cells may be connected in series. As a result, the charging voltage that the battery 133 can withstand is the sum of the charging voltages that the multiple cells can withstand, which can increase the charging speed and reduce charging heat.
  • the voltage of the internal single cell is generally between 3.0V and 4.35V.
  • the battery 133 of the device to be charged 13 includes two battery cells connected in series, the total voltage of the two battery cells connected in series is 6.0V-8.7V. Therefore, compared with a single cell, when multiple cells are connected in series, the output voltage of the wireless receiving circuit 131 can be increased. Compared with a single-cell battery, it achieves the same charging speed.
  • the charging current required by a multi-cell battery is about 1/N of the charging current required by a single-cell battery (N is the series connection in the device 13 to be charged). The number of batteries).
  • adopting the solution of multiple battery cells can reduce the size of the charging current, thereby reducing the heat generated by the device 13 to be charged during the charging process.
  • the use of a multi-cell series solution can increase the charging voltage and thus increase the charging speed when the charging current remains the same.
  • the second control module 135 may be implemented by, for example, an independent MCU, or may also be implemented by an application processor (AP) inside the device 13 to be charged.
  • the second control module 135 is used to communicate with the first control module 122 in the wireless charging device 12, and will detect the voltage value and/or current value on the first charging channel 134 (that is, the feedback voltage value and/or the aforementioned feedback voltage value). Or feedback current value), the remaining power of the battery 133 or the preset full time and other information are fed back to the wireless charging device 12.
  • error information and transmission termination information can be fed back to the first control module 122; in addition, the feedback information can also include The device to be charged 13 determines the voltage and/or current adjustment command based on the detected voltage value and/or current value on the first charging channel 134, remaining power, or preset full time.
  • the detection circuit 136 is used to detect the voltage value and/or current value on the first charging channel 134.
  • the voltage value and/or current value on the first charging channel 134 may refer to the voltage between the first voltage conversion circuit 132 and the battery 133.
  • Value and/or current value that is, the output voltage and/or output current of the first voltage conversion circuit 132, the output voltage and/or output current are directly loaded to the battery 133 to charge the battery 133; or, the first charging channel 134
  • the above voltage value and/or current value may also refer to the voltage value and/or current value between the wireless receiving circuit 131 and the first voltage conversion circuit 132, that is, the output voltage value and/or current value of the wireless receiving circuit 131.
  • the detection circuit 136 may include a voltage detection circuit and a current detection circuit.
  • the voltage detection circuit is used to sample the voltage on the first charging channel 134 and transmit the sampled voltage value to the second control module 135.
  • the voltage detection circuit may, for example, sample the voltage on the first charging channel 134 in a series voltage division manner.
  • the current detection circuit is used to sample the current on the first charging channel 134 and transmit the sampled current value to the second control module 135.
  • the current detection circuit may, for example, sample the current on the first charging channel 134 through a current-sense resistor and a galvanometer.
  • the first control module 122 After the first control module 122 receives the information fed back from the device to be charged 13 through the second control module 135, it can be adjusted according to the voltage value and/or current value on the first charging channel 134, or according to the aforementioned voltage and/or current adjustment
  • the instruction is to adjust the transmitting power of the wireless transmitting circuit 121 so that the voltage and/or current of the direct current output by the first charging channel 134 matches the charging voltage and/or current required by the battery 133.
  • the above “matching the charging voltage and/or current required by the battery 133” includes: the voltage and/or current of the direct current output by the first charging channel 134 is the same as the expected charging voltage and/or current of the battery 133 It is equal or floats within a preset range (for example, the voltage value fluctuates between 100 mV and 200 mV).
  • the first control module 122 receives the information fed back from the device to be charged 13 through the second control module 135, it can be based on the voltage value and/or current value on the first charging channel 134, or based on the above-mentioned voltage and/or current Adjust the transmission power of the wireless transmission circuit 121 so that the voltage and/or current of the direct current output by the first charging channel 134 meets the requirements of the battery 133 in the trickle charging phase, constant current charging phase, and constant voltage charging phase. Charging demand for at least one charging stage.
  • the second control module 135 may also send battery status information to the first control module 122.
  • the battery status information includes: the current power and/or current voltage of the battery 133 in the device 13 to be charged.
  • the first control module 122 After the first control module 122 receives the battery status information, it can first determine the current charging stage of the battery 133 according to the battery status information, and then determine the target output voltage value and/or matching the current charging stage of the battery 133 Or target charging current; then, the first control module 122 may combine the output voltage and/or output current of the first charging channel 134 sent by the second control module 135 with the determined target output of the current charging stage of the battery 133 The voltage value and/or the target charging current are compared to determine whether the output voltage and/or output current of the first charging channel 134 matches the determined charging stage of the battery 133 currently. If it does not match, the transmission power of the wireless transmission circuit 121 is adjusted until the output voltage and/or output current of the first charging channel 134 fed back match the current charging stage of the battery 133
  • the second control module 135 can directly feed back the detected output voltage and/or output current of the first charging channel 134 to the first control module 121, and can also feed back according to the detected output voltage and/or output current of the first charging channel 134.
  • the adjustment instruction may be an instruction to increase or decrease the transmission power of the wireless transmission circuit 121, for example.
  • the wireless charging device 12 may also set multiple transmission power levels for the wireless transmission circuit 121, and the first control module 121 adjusts the transmission power of the wireless transmission circuit 121 by one level each time the adjustment instruction is received. , Until the feedback output voltage and/or output current of the first charging channel 134 match the current charging stage of the battery 133.
  • the present disclosure does not limit the communication mode and communication sequence between the wireless charging device 12 and the device to be charged 13 (or the first control module 122 and the second control module 135).
  • the wireless communication between the wireless charging device 12 and the device to be charged 13 may be one-way wireless communication.
  • the device to be charged 13 is the initiator of communication, and the wireless charging device 12 is the receiver of the communication as an example.
  • the device to be charged 13 can pass the detection circuit 136 Implement detection of the charging current of the battery 133 (that is, the output current of the first charging channel 134).
  • the device to be charged 13 sends feedback information or adjustment information to the wireless charging device 12 , Instruct the wireless charging device 12 to adjust the transmitting power of the wireless transmitting circuit 121.
  • the wireless communication between the wireless charging device 12 and the device to be charged 13 may be two-way wireless communication.
  • Two-way wireless communication generally requires the receiver to send response information to the initiator after receiving the communication request initiated by the initiator.
  • the two-way communication base value can make the communication process more secure.
  • either of the wireless charging device 12 and the device to be charged 13 can act as the master device to initiate a two-way communication session, and the other party can act as a slave device to initiate a communication with the master device.
  • the first response or the first response, and further the master device will make a targeted second response after receiving the first response or the first response, thereby completing a communication negotiation process between the master and the slave device.
  • the targeted second response made by the master device after receiving the first response or the first reply includes: the master device does not receive the first response or the first reply from the slave device to the communication session within the preset time , The master device will also make a targeted second response to the first response or first reply of the slave device.
  • the slave device side makes the first response or the first reply to the communication session initiated by the master device side, there is no need for the master device side to make a targeted second response to the first response or the first reply from the slave device side. That is, a communication negotiation process is completed between the task master and the slave device.
  • the second control module 135 in the device to be charged 13 can couple the feedback information to the receiving coil of the wireless receiving circuit 131 and send it to the first device of the wireless charging device 12.
  • Control module 122 can couple the feedback information to the receiving coil of the wireless receiving circuit 131 and send it to the first device of the wireless charging device 12.
  • the device 13 to be charged can also communicate via Bluetooth, WiFi, mobile cellular network (such as 2G, 3G, 4G or 5G), wireless communication (such as IEEE 802.11, 802.15 (WPANs), 802.16 (WiMAX), 802.20, etc.), based on At least one of high-frequency antenna (such as 60GHz) short-range wireless communication, optical communication (such as infrared communication), ultrasonic communication, ultra-wideband (UMB) communication and other communication methods communicates with the wireless charging device 12 to communicate the above feedback The information is sent to the wireless charging device 12.
  • mobile cellular network such as 2G, 3G, 4G or 5G
  • wireless communication such as IEEE 802.11, 802.15 (WPANs), 802.16 (WiMAX), 802.20, etc.
  • high-frequency antenna such as 60GHz
  • optical communication such as infrared communication
  • ultrasonic communication ultrasonic communication
  • ultra-wideband (UMB) communication and other communication methods communicates with the wireless charging device 12 to communicate the above feedback
  • the device to be charged 13 and the wireless charging device 12 also include corresponding communication modules, such as a Bluetooth communication module, a WiFi communication module, a 2G/3G/4G/5G mobile communication module, High frequency antenna, optical communication module. At least one of an ultrasonic communication module, an ultra-wideband communication module, and the like.
  • a Bluetooth communication module such as Bluetooth, a Wi-Fi module, a Wi-Fi module, a Wi-Fi module, or a wireless cellular communication module, and the like.
  • the feedback information is coupled to the receiving coil of the wireless receiving circuit 131 for communication through signal modulation, which can improve the reliability of communication and avoid the use of signal coupling communication bands.
  • the incoming voltage ripple affects the voltage processing process of the first voltage conversion circuit 132 of the device 13 to be charged.
  • the ripple when the wireless receiving coil is output, if the ripple is not effectively processed, it may cause wireless charging safety problems, and there are certain safety risks.
  • Communication through the above-mentioned wireless communication method can eliminate voltage ripple, thereby eliminating the need for a circuit for processing voltage ripple, reducing the complexity of the charging circuit of the device 13 to be charged, improving charging efficiency, and saving circuit installation space. lower the cost.
  • the power supply device 11 may be a power supply device with a fixed output power, or a power supply device with an adjustable output power.
  • the power supply device with adjustable output power can be provided with a voltage feedback loop and a current feedback loop, so that its output voltage and/or output current can be adjusted according to actual needs.
  • the wireless charging device 12 can continuously adjust the transmitting power of the wireless transmitting circuit 121 during the charging process, so that the output voltage and/or output current of the first charging channel 134 match the current charging stage of the battery 133.
  • the first control module 122 can adjust the amount of power drawn by the wireless transmitting circuit 121 from the maximum output power provided by the power supply device 11, thereby adjusting the transmitting power of the wireless transmitting circuit 121.
  • the control right to adjust the transmission power of the wireless transmission circuit 121 is allocated to the first control module 122, and the first control module 122 can adjust the output power extracted from the maximum output power after receiving the feedback information of the device 13 to be charged.
  • the power amount is used to adjust the transmitting power of the wireless transmitting circuit 121, which has the advantages of fast adjustment speed and high efficiency.
  • a power adjustment circuit may be provided inside the first control module 122, inside the wireless transmission circuit 121, or between the first control module 122 and the wireless transmission circuit 121.
  • the power adjustment circuit may include, for example, a pulse width modulation (Pulse Width Modulation, PWM) controller and a switch unit.
  • PWM Pulse Width Modulation
  • the first control module 122 may adjust the transmission power of the wireless transmitting circuit 121 by adjusting the duty cycle of the control signal sent by the PWM controller, and/or by controlling the switching frequency of the switching unit.
  • the first control module 122 may adjust the output voltage and/or output current of the power supply device 11 by communicating with the power supply device 11 to adjust the transmission power of the wireless transmitting circuit 121. That is to say, the control right for adjusting the transmission power of the wireless transmission circuit 121 is allocated to the power supply device 11, and the power supply device 11 adjusts the transmission power of the wireless transmission circuit 121 by changing the output voltage and/or output current.
  • the advantage of this adjustment method is that as much power is required by the wireless charging device 12, the power supply device 11 provides as much power, and there is no waste of power.
  • the communication between the wireless charging device 12 (or the first control module 122) and the power supply device 11 may be one-way communication, or It may be two-way communication, which is not specifically limited in the present disclosure.
  • Fig. 10 is a system structure diagram of another wireless charging system according to an exemplary embodiment.
  • the wireless charging device 22 in the wireless charging system 2 further includes a second voltage conversion circuit 224.
  • the second voltage conversion circuit 224 is provided between the charging interface 123 and the wireless transmitting circuit 121, and can be used to receive the output voltage and output current of the power supply device 11, and the wireless transmitting circuit 121 is used to convert the voltage based on the second voltage conversion circuit 224. And current to generate electromagnetic signals (or electromagnetic waves).
  • Adjusting the transmission power of the wireless transmission circuit 121 by the first control module 122 may include: the first control module 122 adjusts the voltage and/or current converted by the second voltage conversion circuit 224 to adjust the transmission power of the wireless transmission circuit 121 .
  • the first control module can adjust the output voltage and/or output current of the second voltage conversion circuit 224, thereby adjusting the transmission power of the wireless transmission circuit 121.
  • the versatility of the wireless charging device 22 is improved to be applicable to the existing ordinary power supply device 11.
  • the second voltage conversion circuit 224 may include, for example, a PWM controller and a switching unit.
  • the first control module may adjust the second voltage conversion by adjusting the duty cycle of the control signal sent by the PWM controller and/or by controlling the switching frequency of the switching unit.
  • the output voltage and/or output current of the circuit 224 are thereby adjusted to adjust the transmission power of the wireless transmission circuit 121.
  • the second voltage conversion circuit 224 may receive the output voltage and output current of the power supply device 11 through the charging interface 123.
  • the wireless charging device 22 is connected to the common power supply device through the charging interface 123, and during wireless charging, the first control module 122 can control the second voltage conversion circuit 224 Start working, and adjust the output voltage and/or output current of the second voltage conversion circuit 224 according to the feedback information of the device 13 to be charged, so that the transmission power of the wireless transmission circuit 121 meets the current charging requirement of the battery 133.
  • This adjustment method also allocates the control right to adjust the transmission power of the wireless transmission circuit 121 to the first control module 122.
  • the first control module 122 can immediately control the transmission power of the wireless transmission circuit 121 after receiving the feedback information of the device 13 to be charged.
  • the adjustment has the advantages of fast adjustment speed and high efficiency.
  • the output current of the power supply device 11 may be constant direct current, pulsating direct current or alternating current, which is not specifically limited in the present disclosure.
  • the wireless charging device 12 or 22 can also function as an adapter. It is integrated inside, so that it can directly convert the externally input AC power (such as mains) into the above-mentioned electromagnetic signal (or electromagnetic wave).
  • the function of the adapter may be integrated in the wireless transmission circuit 121 of the wireless charging device 12 or 22, for example, a rectifier circuit, a primary filter circuit, and/or a transformer may be integrated in the wireless transmission circuit 121.
  • the wireless transmitting circuit 121 can be used to receive externally input AC power (such as 220V AC power, or city power), and generate electromagnetic signals (or electromagnetic waves) based on the AC power.
  • the wireless charging device 12 or 22 integrates a function similar to an adapter, so that the wireless charging device 12 or 22 does not need to obtain power from an external power supply device, which improves the integration of the wireless charging device 12 or 22 and reduces the realization of wireless The number of devices required for the charging process.
  • the above-mentioned power supply device 11 includes: a fast charge type power supply device and a normal type power supply device.
  • the maximum output power provided by the fast charging type power supply device is greater than or equal to the preset value.
  • the maximum output power provided by the common type power supply device is less than the preset value.
  • the fast charging type power supply device and the ordinary type power supply device are only classified by the maximum output power, and other characteristics of the power supply device are not distinguished.
  • the quick charge type and the normal type can be equivalent to the first type and the second type, respectively.
  • a power supply device with a maximum output power greater than or equal to 20W may be classified as a fast charging type power supply device, and a power supply device with a maximum output power less than 20W may be classified as a normal type power supply device.
  • the wireless charging device 12 or 22 can support the first wireless charging mode and the second wireless charging mode, and the wireless charging device 12 or 22 can charge faster than the wireless charging device 12 or the wireless charging device 12 in the first wireless charging mode. 22 The charging speed of the device 13 to be charged in the second wireless charging mode. In other words, compared to the wireless charging device 12 or 22 working in the second wireless charging mode, the wireless charging device 12 or 22 working in the first wireless charging mode is fully charged with the same capacity of the equipment to be charged 13 The battery time is shorter.
  • the first wireless charging mode may be a fast wireless charging mode.
  • the fast wireless charging mode may refer to a wireless charging mode in which the wireless charging device 12 or 22 has a large transmission power (usually greater than or equal to 15W).
  • the second wireless charging mode may be a normal wireless charging mode, which may refer to a wireless charging method in which the wireless charging device 12 or 22 has a small transmission power (usually less than 15W, and the commonly used transmission power is 5W or 10W), for example It can be a traditional wireless charging mode based on QI standard, PMA standard or A4WP standard.
  • the first control module 122 and the second control module 135 perform two-way communication to control the transmission power of the wireless transmission circuit 121 in the first wireless charging mode.
  • the first control module 122 and the second control module 135 may perform two-way communication to control the transmission power of the wireless transmitting circuit 121 in the first wireless charging mode.
  • the process may include: the first control module 122 and The second control module 135 performs two-way communication to negotiate a wireless charging mode between the wireless charging device 12 or 22 and the device 13 to be charged.
  • the first control module 122 conducts handshake communication with the second control module 135. If the handshake communication is successful, the wireless charging device 12 or 22 is controlled to use the first wireless charging mode to charge the device 13 to be charged, and the handshake communication fails. In the case of controlling the wireless charging device 12 or 22 to use the second wireless charging mode to charge the device 13 to be charged.
  • Handshake communication can refer to the identification of the identities of the two communicating parties.
  • the successful handshake communication may indicate that the wireless charging device 12 or 22 and the device to be charged 13 both support a wireless charging method with adjustable transmission power.
  • the failure of the handshake communication may indicate that at least one of the wireless charging device 12 or 22 and the device to be charged 13 does not support a wireless charging method with adjustable transmission power.
  • the wireless charging device 12 or 22 does not blindly use the first wireless charging mode for fast wireless charging of the device 13 to be charged, but performs two-way communication with the device 13 to be charged to negotiate whether the wireless charging device 12 or 22 can be used.
  • the first wireless charging mode performs fast wireless charging on the device 13 to be charged, which can improve the safety of the charging process.
  • the first control module 122 and the second control module 135 perform two-way communication to negotiate the wireless charging mode between the wireless charging device 12 or 22 and the device 13 to be charged, for example, including: The second control module 135 sends a first instruction, and the first instruction is used to inquire whether the device to be charged 13 turns on the first wireless charging mode; the first control module 122 receives a reply instruction to the first instruction sent by the second control module 135, The reply instruction is used to indicate whether the device to be charged 13 agrees to turn on the first wireless charging mode; when the device to be charged 13 agrees to turn on the first wireless charging mode, the first control module controls the wireless charging device 12 or 22 to use the first wireless charging The mode is charging the device 13 to be charged.
  • the first control module 122 can also select or switch the wireless charging mode according to some other factors. For example, the first control module 122 can also control the wireless charging device 12 according to the temperature of the battery 133. Or 22 use the first wireless charging mode or the second wireless charging mode to charge the battery 133. For example, when the temperature is lower than a preset low temperature threshold (such as 5°C or 10°C), the first control module 122 may control the wireless charging device 12 or 22 to use the second wireless charging mode for normal charging, and when the temperature is greater than or equal to When the low temperature threshold is low, the first control module 122 may control the wireless charging device 12 or 22 to use the first wireless charging mode for fast charging. Further, when the temperature is higher than the high temperature threshold (for example, 50° C.), the first control module 122 may control the wireless charging device 12 or 22 to stop charging.
  • a preset low temperature threshold such as 5°C or 10°C
  • the first control module 122 may control the wireless charging device 12 or 22 to use the second wireless charging mode for normal charging, and when

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本公开公开一种用于无线充电的功率匹配方法、装置及无线充电装置。该方法包括:接收从无线发射端的发射线圈感测的第一感测信息;根据第一感测信息,检测谐振频率是否发生了改变;以及当谐振频率发生了改变时,调整无线发射端的发射线圈中电容的容量和/或调整发射线圈中电感的电感量,以使无线发射端的发射功率与无线接收端的接收功率相匹配;其中,第一感测信息包括:第一感测电压值或第一感测电流值。该方法可以有效避免由于谐振频率发生改变而导致的充电效率降低及无线接收端发热的问题。 (图2)

Description

用于无线充电的功率匹配方法、装置及无线充电装置 技术领域
本公开涉及无线充电技术,具体而言,涉及一种用于无线充电的功率匹配方法、装置及无线充电装置。
背景技术
按照无线充电原理不同,无线充电方式主要分为磁耦合(或电磁感应)、磁共振以及无线电波三种方式。目前,主流的无线充电标准包括QI标准、电源事务联盟(Power Matters Alliance,PMA)标准、无线电源联盟(Alliance for Wireless Power,A4WP)。QI标准和PMA标准均采用磁耦合方式进行无线充电。A4WP标准采用磁共振方式进行无线充电。
其中,最为常见的电磁感应式无线充电技术主要采用了电磁波感应原理及相关的交流感应技术,在发射端通过发射线圈将一定频率的交流电信号转换成电磁信号发射出去,并在接收端通过接收线圈将发射端发送的电磁信号转换为交流电信号来进行充电。
电磁感应式无线充电技术的基本原理如图1所示。交流电源S AC和电感电容谐振电路(L1,C1)在初级线圈(无线发射端)一侧,其中R S为交流电源S AC的电池内阻;负载R L和电感电容谐振电路(L2,C2)在次级线圈(无线接收端)一侧。互感线圈由电感L1和L2表示,它们之间的匝数比为K1:K2,匝数比决定了输出交流电的大小。
在采用电磁感应式无线充电技术的QI标准中,规定了线圈的谐振频率F在110KHz左右。由此可以得到在发射端和接收端电感量与电容容量的关系为:1/sqrt(L1*C1)=1/sqrt(L2*C2)=F。
然而,由于电路中寄生电感电容以及负载的影响以及充电位置的不同,使得实际谐振频率与理想谐振频率之间有轻微的变化。此外,发射线圈与接收线圈之间的耦合系数会由两者之间的距离、位置、介质材料等因素决定,通常在0.2到0.7之间。因此在现有的无线充电方案中,会存在充电效率低、容易发热等缺陷。
在所述背景技术部分公开的上述信息仅用于加强对本公开的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
有鉴于此,本公开提供一种用于无线充电的功率匹配方法、装置及无线充电装置。
本公开的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本公开的实践而习得。
根据本公开的一方面,提供一种用于无线充电的功率匹配装置,应用于无线发射端,包括:发射电路,包括:发射线圈;发射线圈包括:容量可调的电容组件及电感量可调的电感组件,其中电容组件与电感组件串联;以及控制模块,与发射线圈电性连接,用于接收从发送线圈感测的第一感测信息;根据第一感测信息,检测谐振频率是否发生了改变;及当谐振频率发生了改变时,控制发射线圈调整电容组件的容量和/或调整电感组件的电感量,以使无线发射端的发射功率与无线接收端的接收功率相匹配;其中,第一感测信息包括:第一感测电压值或第一感测电流值。
根据本公开的另一方面,一种用于无线充电的功率匹配方法,应用于无线充电系统中的无线发射端,无线发射端的发射线圈包括可调容量的电容及可调电感量的电感,所述方法包括:接收从发射线圈感测的第一感测信息;根据第一感测信息,检测谐振频率是否发生了改变;以及当谐振频率发生了改变时,调整无线发射端的发射线圈中电容的容量和/或调整发射线圈中电感的电感量,以使无线发射端的发射功率与无线充电系统中的无线接收端的接收功率相匹配;其中,第一感测信息包括:第一感测电压值或第一感测电流值。
根据本公开的再一方面,提供一种无线充电装置,包括:根据上述任意一种用于无线充电的功率匹配装置。
根据本公开实施方式提供的用于无线充电的功率匹配方法,根据无线接收端反馈的电压值或电流值,检测谐振频率是否发生改变;当谐振频率发生改变时,调整无线发射端发射线圈中的电容容量和/或电感量,以使无线发射端的发射功率与无线接收端的接收功率相匹配。有效避免了由于谐振频率发生改变而导致的充电效率降低及无线接收端发热的问题。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。
附图说明
通过参照附图详细描述其示例实施例,本公开的上述和其它目标、特征及优点将变得更加显而易见。
图1是根据一示例示出的现有无线充电系统的示意图。
图2是根据一示例性实施方式示出的一种用于无线充电的功率匹配方法的流程图。
图3是根据一示例性实施方式示出的另一种用于无线充电的功率匹配方法的流程图。
图4是根据一示例性实施方式示出的再一种用于无线充电的功率匹配方法的流程图。
图5是根据一示例性实施方式示出的一种用于无线充电的功率匹配装置的框图。
图6是根据一示例性实施例示出的发射电路的电路示意图。
图7是根据一示例性实施例示出的电感组件的示意图。
图8是根据一示例示出的控制模块404与DC/AC转换器60及发射电路402的连接示意图。
图9是根据一示例性实施方式示出的一种无线充电系统的系统结构图。
图10是根据一示例性实施方式示出的另一种无线充电系统的系统结构图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。
此外,所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本公开的实施方式的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而省略所述特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下, 不详细示出或描述公知结构、方法、装置、实现或者操作以避免喧宾夺主而使得本公开的各方面变得模糊。
在本公开中,除非另有明确的规定和限定,术语“相连”、“连接”等术语应做广义理解,例如,可以是电连接,也可以是通信连接;可以是直接相连,也可以是间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
此外,在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示单独存在A、单独存在B及同时存在A和B三种情况。符号“/”一般表示前后关联对象是一种“或”的关系。术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
由于现有无线充电方案中的电容容量和电感量都是固定的,为了保证规定的谐振频率(如110KHz),需要用户精确地将待充电设备放置在无线充电装置(充电底座)上。否则,会导致谐振频率的漂移,如果在这种情况下发射端和接收端仍然使用当前频率,则会造成大量能量的浪费,使得充电效率下降;而未能充电的能量会通过热量的形式发散出来,造成待充电设备温度的升高,使待充电设备产生安全隐患。
此外,现有的电磁感应式无线充电方式对异物攻击的抵抗能力较差。例如,如果待充电设备与无线充电装置之间有诸如头发丝、硬币等异物时,同样会造成谐振频率的漂移。当谐振频率漂移过多时,无线充电装置大部分功率将直接以热量形式发散出去,造成安全隐患问题。
图2是根据一示例性实施方式示出的一种用于无线充电的功率匹配方法的流程图。如图2所示的方法,例如可以应用于无线充电系统中的无线发射端,该无线发射端的发射线圈包括可调容量的电容和/或可调电感量的电感。
参考图2,用于无线充电的功率匹配方法10包括:
在步骤S102中,接收从无线发射线圈感测的的第一感测信息。
该第一感测信息例如可以为无线发射端通过电磁耦合方式由无线接收端的接收线圈发送至无线发射端的发射线圈的反馈信息,该反馈信息例如可以为无线接收端通过接收线圈将接收到的电磁信号转换得到的交流电的电压值或电流值,或者也可以是通过无线接收端的整形电路对该交流电进行整流和/或滤波等操作后转换得到的直流电的电压值或电流值。
或者,无线接收端还可以通过蓝牙、WiFi、移动蜂窝网络通信(如2G、3G、4G或5G)、无线通信(如lEEE 802.11、802.15(WPANs)、802.16(WiMAX)、802.20等)、基于高频天线(如60GHz)的近距离无线通信、光通信(如红外线通信)、超声波通信、超宽带(UMB)通信等通信方式中的至少一种与无线发射端进行通信,以将上述反馈信息发送给无线发射端。本公开不以此为限。
其中,第一感测信息例如可以包括:第一感测电压值或第一感测电流值。
此外,第一感测信息例如还可以为无线发射端从发射线圈上感测到的无线发射端交流电的电压值或电流值。
在步骤S104中,根据第一感测信息,检测谐振频率是否发生了改变。
如前述,由于电路中寄生电感电容以及负载的影响以及充电位置的不同,使得实际谐振频率与理想谐振频率之间有轻微的变化。此外,如果无线发射端的发射线圈与无线接收端的接收线圈没有精确地对准,或者,如果无线发射端与无线接收端之间有 诸如头发丝、硬币等异物,都会造成谐振频率的漂移,与理想谐振频率不一致。
通过检测第一感测电压值或第一感测电流值的大小可以反映出无线接收端的负载是否发生改变,因此可以根据第一感测电压值或第一感测电流值,来检测谐振频率是否发生了改变。例如,可以将第一感测信息与预设的反馈信息阈值进行比较,确定该第一感测信息是否小于该反馈信息阈值;当该第一感测信息小于该反馈信息阈值时,确定谐振频率发生了改变。其中,当第一感测信息为第一感测电压值时,反馈信息阈值为电压阈值;当第一感测信息为第一感测电流值时,反馈信息阈值为电流阈值。该电压阈值及电流阈值在实际应用中可以根据实际需求而设定,本公开不以此为限。
在步骤S106中,当谐振频率发生了改变时,调整无线发射端的发射线圈中电容的容量和/或调整发射线圈中电感的电感量,以使无线发射端的发射功率与无线接收端的接收功率相匹配。
当谐振频率发生了改变时,会导致无线发射端的发射功率与无线接收端的接收功率不匹配,造成无线接收端大部分功率以热量形式发散出去,不仅降低了无线充电系统的充电效率,还会造成无线接收端温度的升高,给设备带来了安全隐患。
当检测到谐振频率发了改变时,可以对无线发射端的发射线圈中电容的容量和/或对发射线圈中电感的电感量进行调整,以使无线发射端的发射功率与无线接收端的接收功率相匹配。
例如,可以通过当前无线充电系统的充电效率来确定发射功率与接收功率是否相匹配。充电效率例如可以为接收功率与发射功率的比值,如果当前充电效率达到了预设的效率阈值或者达到了预设的效率范围,则认为经过对电容容量和/或电感量调整后得到的发射功率与接收功率相匹配。该效率阈值、效率范围在实际应用时可以根据实际需求而设定,或者也可以根据QI无线充电标准中规定的系统效率确定。
根据本公开实施方式提供的用于无线充电的功率匹配方法,根据无线接收端反馈的电压值或电流值,检测谐振频率是否发生改变;当谐振频率发生改变时,调整无线发射端发射线圈中的电容容量和/或电感量,以使无线发射端的发射功率与无线接收端的接收功率相匹配。该方法可以有效避免由于谐振频率发生改变而导致的充电效率降低及无线接收端发热的问题。
应清楚地理解,本公开描述了如何形成和使用特定示例,但本公开的原理不限于这些示例的任何细节。相反,基于本公开公开的内容的教导,这些原理能够应用于许多其它实施方式。
图3是根据一示例性实施方式示出的另一种用于无线充电的功率匹配方法的流程图。如图3所示的方法,同样地,例如可以应用于无线充电系统中的无线发射端,该无线发射端的发射线圈包括可调容量的电容及可调电感量的电感。
参考图3,用于无线充电的功率匹配方法20包括:
在步骤S202中,接收从发射线圈感测的第一感测信息。
该第一感测信息例如可以为无线接收端通过电磁耦合方式由无线接收端的接收线圈发送至无线发射端的发射线圈的反馈信息,该反馈信息例如可以为无线接收端通过接收线圈将接收到的电磁信号转换得到的交流电的电压值或电流值,或者也可以是通过无线接收端的整形电路对该交流电进行整流和/或滤波等操作后转换得到的直流电的电压值或电流值。
或者,无线接收端还可以通过蓝牙、WiFi、移动蜂窝网络通信(如2G、3G、4G或5G)、无线通信(如lEEE 802.11、802.15(WPANs)、802.16(WiMAX)、802.20等)、基于高频天线(如60GHz)的近距离无线通信、光通信(如红外线通信)、超声波通信、超宽带(UMB)通信等通信方式中的至少一种与无线发射端进行通信,以将上述 反馈信息发送给无线发射端。本公开不以此为限。
其中,第一感测信息例如可以包括:第一感测电压值或第一感测电流值。
此外,第一感测信息例如还可以为无线发射端从发射线圈上感测到的无线发射端交流电的电压值或电流值。
在步骤S204中,确定第一感测信息是否小于预设的反馈信息阈值。
如果第一感测信息小于反馈信息阈值,则进入步骤S206;否则,返回步骤S202,等待接收下一周期由无线接收端反馈的电压值或电流值。
通过确定第一感测信息是否小于预设的反馈信息阈值,可以检测谐振频率是否发生改变。
其中,当第一感测信息为第一感测电压值时,反馈信息阈值为电压阈值;当第一感测信息为第一感测电流值时,反馈信息阈值为电流阈值。该电压阈值及电流阈值在实际应用中可以根据实际需求而设定,本公开不以此为限。
在步骤S206中,增大发射线圈中电容的容量和/或增大发射线圈中电感的电感量。
在增大发射线圈中电容的容量和/或增大发射线圈中电感的电感量时,例如可以每次增加一个预设的调节步长(step)。如增大电容容量时,可以每次增大一个预设的电容调节步长;增大电感量时,可以每次增大一个预设的电感调节步长。电容调节步长与电感调节步长在实际应用中可以根据实际需求而设定。
在步骤S208中,接收从发射线圈感测的第二感测信息。
增大发射线圈中电容的容量和/或增大发射线圈中电感的电感量后,例如可以在下一个预设时间间隔接收第二感测信息,根据第二感测信息判断步骤S206的调整方向是否正确。该预设时间间隔例如可以为对由电感和电容组成的LC滤波器进行控制的控制周期,或者也可以为多个该控制周期,本公开不以此为限。
其中,第二感测信息可以包括:第二感测电压值或第二感测电流值。
在步骤S210中,确定第二感测信息是否大于第一感测信息。
如果第二感测信息不大于第一感测信息,进入步骤S212;否则,进入步骤S220。
判断第二感测信息是否大于第一感测信息,也即判断在增大发射线圈中电容的容量和/或增大发射线圈中电感的电感量后,无线接收端反馈的电压值是否增加了。如果没有增加,则说明对电容或电感的调整方向不正确,因此进入步骤S212中。
其中,当第二感测信息为第二感测电压值时,第一感测信息为第一感测电压值;当第二感测信息为第二感测电流值时,第一感测信息为第一感测电流值。
在步骤S212中,减小发射线圈中电容的容量和/或减小发射线圈中电感的电感量。
在减小发射线圈中电容的容量和/或减小发射线圈中电感的电感量时,同样可以每次减少该预设的调节步长(step)。如减小电容容量时,可以每次减小一个该预设的电容调节步长;减小电感量时,可以每次减小一个该预设的电感调节步长。
在步骤S214中,接收从发射线圈感测的第三感测信息。
减小发射线圈中电容的容量和/或减小发射线圈中电感的电感量后,例如可以在再下一个预设时间间隔接收第三感测信息,根据第三感测信息判断步骤S212的调整方向是否正确。如上述,该预设时间间隔例如可以为一个或多个上述的控制周期。
其中,第三感测信息可以包括:第三感测电压值或第三感测电流值。
在步骤S216中,确定第三感测信息是否大于第二感测信息。
如果第三感测信息大于第二感测信息,进入步骤S218;否则,返回步骤S206。
判断第三感测信息是否大于第二感测信息,也即判断在减小发射线圈中电容的容量和/或减小发射线圈中电感的电感量后,无线接收端反馈的电压值是否增加了。如果有增加,说明对电容和/或电感的调整方向正确,进入步骤S218。
其中,当第三感测信息为第三感测电压值时,第二感测信息为第二感测电压值; 当第三感测信息为第三感测电流值时,第二感测信息为第二感测电流值。
在步骤S218中,确定第三感测信息是否达到预设的最优感测信息。
如果第三感测信息没有达到最优感测信息,返回步骤S212;否则,结束本次调整,返回步骤S202,等待接收下一周期由无线接收端反馈的电压值或电流值。
其中,当第三感测信息为第三感测电压值时,最优感测信息为最优感测电压值;当第三感测信息为第三感测电流值时,最优感测信息为最优感测电流值。
在步骤S220中,确定第二感测信息是否达到预设的最优感测信息。
如果第二感测信息没有达到最优感测信息,返回步骤S206;否则,结束本次调整,返回步骤S202,等待接收下一周期由无线接收端反馈的电压值或电流值。
其中,当第二感测信息为第二感测电压值时,最优感测信息为最优感测电压值;当第二感测信息为第二感测电流值时,最优感测信息为最优感测电流值。
该最优感测电压值或最优感测电流值例如可以根据前述的充电效率阈值或效率范围来确定,如前述,充电效率由无线发射端的发射功率与无线接收端的接收功率确定,因此可以通过预设充电效率阈值或效率范围来确定该最优感测电压值或最优感测电流值。该效率阈值、效率范围在实际应用时可以根据实际需求而设定,或者也可以根据QI无线充电标准中规定的系统效率确定。
根据本公开实施方式提供的用于无线充电的功率匹配方法,在对发射线圈中的电容容量或电感量调整后,进一步通过对下一个周期接收到的无线发射端发送的反馈电压判断前次调整的方向是否正确,并通过判断反馈电压是否达到最优电压来确定发射功率与接收功率是否相匹配。同样地,该方法可以有效避免由于谐振频率发生改变而导致的充电效率降低及无线接收端发热的问题。
图4是根据一示例性实施方式示出的再一种用于无线充电的功率匹配方法的流程图。如图4所示的方法,同样地,例如可以应用于无线充电系统中的无线发射端,该无线发射端的发射线圈包括可调容量的电容及可调电感量的电感。
参考图4,用于无线充电的功率匹配方法30包括:
在步骤S302中,接收从发射线圈感测的第一感测信息。
该第一感测信息例如可以为无线接收端通过电磁耦合方式由无线接收端的接收线圈发送至无线发射端的发射线圈的反馈信息,该反馈信息例如可以为无线接收端通过接收线圈将接收到的电磁信号转换得到的交流电的电压值或电流值,或者也可以是通过无线接收端的整形电路对该交流电进行整流和/或滤波等操作后转换得到的直流电的电压值或电流值。
或者,无线接收端还可以通过蓝牙、WiFi、移动蜂窝网络通信(如2G、3G、4G或5G)、无线通信(如lEEE 802.11、802.15(WPANs)、802.16(WiMAX)、802.20等)、基于高频天线(如60GHz)的近距离无线通信、光通信(如红外线通信)、超声波通信、超宽带(UMB)通信等通信方式中的至少一种与无线发射端进行通信,以将上述反馈信息发送给无线发射端。本公开不以此为限。
其中,第一感测信息例如可以包括:第一感测电压值或第一感测电流值。
此外,第一感测信息例如还可以为无线发射端从发射线圈上感测到的无线发射端交流电的电压值或电流值。
在步骤S304中,确定第一感测信息是否小于预设的反馈信息阈值。
如果第一感测信息小于反馈信息阈值,则进入步骤S306;否则,返回步骤S302,等待接收下一周期由无线接收端反馈的电压值或电流值。
通过确定第一感测信息是否小于预设的反馈信息阈值,可以检测谐振频率是否发生改变。
其中,当第一感测信息为第一感测电压值时,反馈信息阈值为电压阈值;当第一感测信息为第一感测电流值时,反馈信息阈值为电流阈值。该电压阈值及电流阈值在实际应用中可以根据实际需求而设定,本公开不以此为限。
在步骤S306中,减小发射线圈中电容的容量和/或增大发射线圈中电感的电感量。
在减小发射线圈中电容的容量和/或减小发射线圈中电感的电感量时,例如可以每次增加一个预设的调节步长(step)。如减小电容容量时,可以每次减小一个预设的电容调节步长;减小电感量时,可以每次减小一个预设的电感调节步长。电容调节步长与电感调节步长在实际应用中可以根据实际需求而设定。
在步骤S308中,接收从发射线圈感测的第二感测信息。
减小发射线圈中电容的容量和/或减小发射线圈中电感的电感量后,例如可以在下一个预设时间间隔接收第二感测信息,根据第二感测信息判断步骤S306的调整方向是否正确。该预设时间间隔例如可以为对由电感和电容组成的LC滤波器进行控制的控制周期,或者也可以为多个该控制周期,本公开不以此为限。
其中,第二感测信息可以包括:第二感测电压值或第二感测电流值。
在步骤S310中,确定第二感测信息是否大于第一感测信息。
如果第二感测信息不大于第一感测信息,进入步骤S312;否则,进入步骤S320。
判断第二感测信息是否大于第一感测信息,也即判断在减小发射线圈中电容的容量和/或减小发射线圈中电感的电感量后,无线接收端反馈的电压值是否增加了。如果没有增加,则说明对电容和/或电感的调整方向不正确,因此进入步骤S312中。
其中,当第二感测信息为第二感测电压值时,第一感测信息为第一感测电压值;当第二感测信息为第二感测电流值时,第一感测信息为第一感测电流值。
在步骤S312中,增大发射线圈中电容的容量和/或减小发射线圈中电感的电感量。
在增大发射线圈中电容的容量和/或增大发射线圈中电感的电感量时,同样可以每次减少该预设的调节步长(step)。如增大电容容量时,可以每次增大一个该预设的电容调节步长;增大电感量时,可以每次增大一个该预设的电感调节步长。
在步骤S314中,接收从发射线圈感测的第三感测信息。
增大发射线圈中电容的容量和/或增大发射线圈中电感的电感量后,例如可以在再下一个预设时间间隔接收第三感测信息,根据第三感测信息判断步骤S312的调整方向是否正确。如上述,该预设时间间隔例如可以为一个或多个上述的控制周期。
其中,第三感测信息可以包括:第三感测电压值或第三感测电流值。
在步骤S316中,确定第三感测信息是否大于第二感测信息。
如果第三感测信息大于第二感测信息,进入步骤S318;否则,返回步骤S306。
判断第三感测信息是否大于第二感测信息,也即判断在增大发射线圈中电容的容量和/或增大发射线圈中电感的电感量后,无线接收端反馈的电压值是否增加了。如果有增加,说明对电容和/或电感的调整方向正确,进入步骤S318。
其中,当第三感测信息为第三感测电压值时,第二感测信息为第二感测电压值;当第三感测信息为第三感测电流值时,第二感测信息为第二感测电流值。
在步骤S318中,确定第三感测信息是否达到预设的最优感测信息。
如果第三感测信息没有达到最优感测信息,返回步骤S312;否则,结束本次调整,返回步骤S302,等待接收下一周期由无线接收端反馈的电压值或电流值。
其中,当第三感测信息为第三感测电压值时,最优感测信息为最优感测电压值;当第三感测信息为第三感测电流值时,最优感测信息为最优感测电流值。
在步骤S320中,确定第二感测信息是否达到预设的最优感测信息。
如果第二感测信息没有达到最优感测信息,返回步骤S306;否则,结束本次调整,返回步骤S302,等待接收下一周期由无线接收端反馈的电压值或电流值。
其中,当第二感测信息为第二感测电压值时,最优感测信息为最优感测电压值;当第二感测信息为第二感测电流值时,最优感测信息为最优感测电流值。
该最优感测电压值或最优感测电流值例如可以根据前述的充电效率阈值或效率范围来确定,如前述,充电效率由无线发射端的发射功率与无线接收端的接收功率确定,因此可以通过预设充电效率阈值或效率范围来确定该最优感测电压值或最优感测电流值。该效率阈值、效率范围在实际应用时可以根据实际需求而设定,或者也可以根据QI无线充电标准中规定的系统效率确定。
根据本公开实施方式提供的用于无线充电的功率匹配方法,在对发射线圈中的电容容量和/或电感量调整后,进一步通过对下一个周期接收到的无线发射端发送的反馈电压判断前次调整的方向是否正确,并通过判断反馈电压是否达到最优电压来确定发射功率与接收功率是否相匹配。同样地,该方法可以有效避免由于谐振频率发生改变而导致的充电效率降低及无线接收端发热的问题。
需要注意的是,上述附图仅是根据本公开示例性实施方式的方法所包括的处理的示意性说明,而不是限制目的。易于理解,上述附图所示的处理并不表明或限制这些处理的时间顺序。另外,也易于理解,这些处理可以是例如在多个模块中同步或异步执行的。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
图5是根据一示例性实施方式示出的一种用于无线充电的功率匹配装置的框图。如图5所示的用于无线充电的功率匹配装置40可应用于无线充电系统的无线发射端中。
参考图5,用于无线充电的功率匹配装置40包括:发射电路402及控制模块404。
其中发射电路402包括:发射线圈4022。发射线圈4022包括:容量可调的电容组件Cp及电感量可调的电感组件Lp,其中电容组件Cp与电感组件Lp串联。
控制模块404例如可以通过微控制单元(Micro Control Unit,MCU)实现。控制模块404与发射电路402电性连接,用于接收从发射线圈感测的第一感测信息;根据第一感测信息,检测谐振频率是否发生了改变;及当谐振频率发生了改变时,控制发射线圈4022调整电容组件Cp的容量和/或调整电感组件Lp的电感量,以使无线发射端的发射功率与无线接收端的接收功率相匹配。其中,第一感测信息包括:第一感测电压值或第一感测电流值。
在一些实施例中,控制模块404用于确定第一感测信息是否小于预设的反馈信息阈值;及当第一感测信息小于反馈信息阈值时,确定谐振频率发生了改变。其中,当第一感测信息为第一感测电压值时,反馈信息阈值为电压阈值;当第一感测信息为第一感测电流值时,反馈信息阈值为电流阈值。
在一些实施例中,控制模块404用于当谐振频率发生了改变时,控制发射线圈4022增大电容组件Cp的容量和/或增大电感组件Lp的电感量。
在一些实施例中,控制模块404还用于在控制发射线圈4022增大电容组件Cp的容量和/或增大电感组件Lp的电感量之后,例如可以在下一个预设时间间隔,接收从发射线圈感测的第二感测信息;确定第二感测信息是否大于第一感测信息;及当第二感测信息不大于第一感测信息时,控制发射线圈4022减小电容组件Cp的容量和/或减小电感组件Lp电感量。其中,第二感测信息包括:第二感测电压值或第二感测电流值;当第二感测信息为第二感测电压值时,第一感测信息为第一感测电压值;当第二感测信息为第二感测电流值时,第一感测信息为第一感测电流值。
在一些实施例中,控制模块404还用于当第二感测信息大于第一感测信息时,确定第二感测信息是否达到预设的最优感测信息;及当第二感测信息没有达到最优感测 信息时,控制发射线圈4022继续增大电容组件Cp的容量和/或继续增大电感组件Lp的电感量。其中,当第二感测信息为第二感测电压值时,最优感测信息为最优感测电压值;当第二感测信息为第二感测电流值时,最优感测信息为最优感测电流值。
在一些实施例中,控制模块404还用于在控制发射线圈4022减小电容组件Cp的容量和/或减小电感组件Lp的电感量之后,例如可以在再下一个预设时间间隔,接收从发射线圈感测的第三感测信息;确定第三感测信息是否大于第二感测信息;及当第三感测信息不大于第二感测信息时,控制发射线圈4022增大电容组件Cp的容量和/或增大电感组件Lp的电感量。其中,第三感测信息包括:第三感测电压值或第三感测电流值;当第三感测信息为第三感测电压值时,第二感测信息为第二感测电压值;当第三感测信息为第三感测电流值时,第二感测信息为第二感测电流值。
在一些实施例中,控制模块404还用于当第三感测信息大于第二感测信息时,确定第三感测信息是否达到预设的最优感测信息;及当第三感测信息没有达到最优感测信息时,控制发射线圈4022继续减小电容组件Cp的容量和/或继续减小电感组件Lp的电感量。其中,当第三感测信息为第三感测电压值时,最优感测信息为最优感测电压值;当第三感测信息为第三感测电流值时,最优感测信息为最优感测电流值。
在一些实施例中,控制模块404用于当谐振频率发生了改变时,控制发射线圈4022减小电容组件Cp的容量和/或减小电感组件Lp的电感量。
在一些实施例中,控制模块404还用于在控制发射线圈4022减小电容组件Cp的容量和/或减小电感组件Lp的电感量之后,例如可以在下一个预设时间间隔,接收从发射线圈感测的第二感测信息;确定第二感测信息是否大于第一感测信息;及当第二感测信息不大于第一感测信息时,控制发射线圈4022增大电容组件Cp的容量和/或增大电感组件Lp的电感量。其中,第二感测信息包括:第二感测电压值或第二感测电流值;当第二感测信息为第二感测电压值时,第一感测信息为第一感测电压值;当第二感测信息为第二感测电流值时,第一感测信息为第一感测电流值。
在一些实施例中,控制模块404还用于当第二感测信息大于第一感测信息时,确定第二感测信息是否达到预设的最优感测信息;及当第二感测信息没有达到最优感测信息时,控制发射线圈4022继续减小电容组件Cp的容量和/或继续减小电感组件Lp的电感量。其中,当第二感测信息为第二感测电压值时,最优感测信息为最优感测电压值;当第二感测信息为第二感测电流值时,最优感测信息为最优感测电流值。
在一些实施例中,控制模块404还用于在控制发射线圈4022增大电容组件Cp的容量和/或增大电感组件Lp的电感量之后,例如可以在再下一个预设时间间隔,接收从发射线圈感测的第三感测信息;确定第三感测信息是否大于第二感测信息;及当第三感测信息不大于第二感测信息时,控制发射线圈4022减小电容组件Cp的容量和/或减小电感组件Lp的电感量。其中,第三感测信息包括:第三感测电压值或第三感测电流值;当第三感测信息为第三感测电压值时,第二感测信息为第二感测电压值;当第三感测信息为第三感测电流值时,第二感测信息为第二感测电流值。
在一些实施例中,控制模块404还用于当第三感测信息大于第二感测信息时,确定第三感测信息是否达到预设的最优感测信息;及当第三感测信息没有达到最优感测信息时,控制发射线圈4022继续增大电容组件Cp的容量和/或继续增大电感组件Lp的电感量。其中,当第三感测信息为第三感测电压值时,最优感测信息为最优感测电压值;当第三感测信息为第三感测电流值时,最优感测信息为最优感测电流值。
发射电路402例如可以封装于一芯片中。图6是根据一示例性实施例示出的发射电路的电路示意图。
如图6所示,发射电路402中的电容组件Cp包括:与电感组件Lp串联的第一电容Cp1及第二电容Cp2、与第一电容Cp1并联的至少一条第一电容支路Cb1及与第二 电容Cp2并联的至少一条第二电容支路Cb2,并且当有多条第一电容支路Cb1时各第一电容支路Cb1相互并联,且当有多条第二电容支路Cb2时各第二电容支路Cb2相互并联。其中,每条第一电容支路Cb1包括电容C1x(x=1~n)及分别与各电容C1x(x=1~n)串联的开关S1x(x=1~n);每条第二电容支路Cb2包括电容C2x(x=1~n)及分别与各电容C2x(x=1~n)串联的开关S2x(x=1~n)。其中,n为大于或等于1的整数。需要说明的是,图6中以n=4为例,但本公开不以此为限。
控制模块404通过控制开关S11~S1n和/或开关S21~S2n可以调节电容组件Cp的容量大小。
各电容C11~C1n例如可以均为容量相等的电容。初始时,所有的开关S11~S1n均为关断状态。每导通一个开关S11~S1n,电容组件Cp的容量可以增大一个上述的电容调节步长;相反地,每关断一个开关S11~S1n,则电容组件Cp的容量可以减小一个上述的电容调节步长。
同样地,各电容C21~C2n也可以均为容量相等的电容。初始时,所有的开关S21~S2n均为关断状态。每导通一个开关S21~S2n,电容组件Cp的容量可以增大一个上述的电容调节步长;相反地,每关断一个开关S21~S2n,则电容组件Cp的容量可以减小一个上述的电容调节步长。
或者,各电容C11~C1n也可以为不同容量的电容,例如电容C11的容量为c,电容C12的容量2*c,电容C13的容量为3*c,以此类推。初始时,所有的开关S11~S1n均为关断状态。当导通电容C11对应的开关S11时,电容组件Cp的容量可以增大一个电容调节步长(如为容量c);当关断电容C11对应的开关S11且导通电容C12对应的开关S12时,电容组件Cp的容量可以继续增大一个电容调节步长;减小电容组件Cp的容量时则可以相反操作。
同样地,各电容C21~C2n也可以为不同容量的电容,例如电容C21的容量为c,电容C22的容量2*c,电容C23的容量为3*c,以此类推。初始时,所有的开关S21~S2n均为关断状态。当导通电容C21对应的开关S21时,电容组件Cp的容量可以增大一个电容调节步长(如为容量c);当关断电容C21对应的开关S21且导通电容C22对应的开关S22时,电容组件Cp的容量可以继续增大一个电容调节步长;减小电容组件Cp的容量时则可以相反操作。
此外,第一电容支路Cb1中的各电容C11~C1n与第二电容支路Cb2中的各电容C21~C2n可以分别独立地控制,或者也可以联合进行控制,也即同时控制电容C11~C1n及与电容C11~C1n对称设置的电容C21~C2n,其中例如电容C11与电容C21对称设置,电容C12与C22对称设置,以此类推。本领域技术人员应该可以理解的是,在联合进行控制时,每控制一次对称的电容C11~C1n和电容C21~C2n时,可以使电容组件Cp的容量增大或减小一个上述的电容调节步长。
此外,在一些实施例中,第一电容Cp1和/或第二电容Cp2也可以分别与一开关串联,形成一条第一电容支路Cb1和/或一条第二电容支路Cb2,从而在调节电容组件Cp的电容容量时,也可以通过对各开关的控制来对第一电容Cp1和/或第二电容Cp2进行控制。
此外,在一些实施例中,电容组件Cp还可以仅包含第一电容Cp1及至少一条第一电容支路Cb1,或者仅包含第二电容Cp2及至少一条第二电容支路Cb2。此外,如上述,第一电容Cp1或第二电容Cp2也可以分别与一开关串联,形成一条第一电容支路或一条第二电容支路。
电容组件Cp例如可以全部封装于芯片的内部。
本领域技术人员应该可以理解的是,虽然在图6中第一电容支路Cb1与第二电容支路Cb2的数量相等,但本公开不以此为限,第一电容支路Cb1的数量也可以与第二 电容支路Cb2的数量不相等。此外,虽然在图6中各第一电容支路Cb1分别与第一电容Cp1并联,各第二电容支路Cb2分别与第二电容Cp2并联。但也可以设计为各第一电容支路Cb1分别与第一电容Cp1串联,各第二电容支路Cb2分别与第二电容Cp2串联。此时,第一电容支路Cb1中的电容C11~C1n可以与相应的开关S11~S1n并联,第二电容支路Cb2中的电容C21~C2n可以与相应的开关S21~S2n并联。
如图6所示,发射电路402中的电感组件Lp包括:与电容组件Cp串联的第一电感Lp1、第二电感Lp2及至少一条电感支路Lb。其中,每条电感支路Lb包括电感Ly(y=1~m)及与其并联的开关Sy(y=1~m),m为大于或等于1的整数。需要说明的是,图6中以m=4为例,但本公开不以此为限。
控制模块404通过控制开关S可以调节电感组件Lp的电感量大小。
各电感L1~Lm例如可以均为电感量相等的电感。初始时,所有的开关S1~Sm均为导通状态。每关断一个开关S1~Sm,电感组件Lp的电感量可以增大一个上述的电感调节步长;相反地,每导通一个开关S1~Sm,电感组件Lp的电感量可以减小一个上述的电感调节步长。
或者,各电感L1~Lm也可以为不同电感量的电感。例如,电感L1的电感量为l,电感L2的电感量为2*l,电感L3的电感量为3*l,以此类推。初始时,所有的开关S1~Sm均为导通状态。当关断电感L1对应的开关S1时,电感组件Lp的电感量可以增大一个电感调节步长(如电感量l);当导通电感L1对应的开关S1且关断电感L2对应的开关S2时,电感组件Lp的电感量继续增大一个上述的电感调节步长。减小电感组件Lp的电感量时,则可以相反操作。
此外,在一些实施例中,第一电感Lp1和/或第二电感Lp2也可以分别与一开关并联,形成一条或两条电感支路Lb,从而在调节电感组件Lp的电感量时,也可以通过对各开关的控制来对第一电感Lp1和/或第二电感Lp2进行控制。
电感组件Lp中的各电感设置于芯片的外部,以与无线接收端的接收线圈耦合。
本领域技术人员应该可以理解的是,虽然在图6中各电感支路Lb与第一电感Lp1及第二电感Lp2串联。但也可以设计为各电感支路分别与第一电感Lp1、第二电感Lp2并联。此时,各电感支路中的电感L1~Lm和与其对应的开关S1~Sm串联。
在实际应用中,发射线圈及接收线圈与周围的平面、迹线和电路物理隔离是非常重要的。这是因为这些线圈产生或接收了显著的磁场,并且该场可以耦合到其他金属结构。因此必须屏蔽这些金属结构。发射线圈的布局如图7所示,线圈端口P1和P2位于图的左侧,可调节线圈端口P3至P7位于右侧,(端口P1~P7与图6中的端口P1~P7对应),其由控制模块404控制以确定线圈连接到芯片的长度,也即调节电感组件Lp的电感量。其中,大部分线圈始终连接到电路中,可调节线圈例如仅占10%左右。
此外,图6所示芯片中的端口Port1与Port2分别与图5中的DC/AC转换器60电性连接,端口SCLK及端口SDATA用于接收控制模块404的控制信号,以控制各开关。
图8是根据一示例示出的控制模块404与DC/AC转换器60及发射电路402的连接示意图。如图8所示,DC/AC转换器60例如可以为由MOS晶体管组成的全桥逆变器,控制模块404产生脉冲信号以控制DC/AC转换器60同时接通或断开以将直流电源50提供的直流电转换为所需频率的交流电。此外,控制模块404检测当前负载为电容还是电感,确定是否需要增加或减少电容组件Cp的容量和/或电感组件Lp的电感量,并向发射电路402提供控制信号,如上述方式对电容组件Cp及电感组件Lp进行调节。
此外,当无线发射端与无线接收端通过线圈耦合方式进行通信时,发射电路402将从发射线圈中接收的上述反馈电压值或反馈电流值提供给控制模块404。
需要注意的是,上述附图中所示的框图是功能实体,不一定必须与物理或逻辑上 独立的实体相对应。可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
图9是根据一示例性实施方式示出的一种无线充电系统的系统结构图。
参考图9,无线充电系统1包括:电源提供装置11、无线充电装置12以及待充电设备13。其中,电源提供装置11例如可以是电源适配器、移动电源(Power Bank)等设备;无线充电装置12例如可以是无线充电底座;待充电设备13例如可以是终端设备。
电源提供装置11与无线充电装置12连接后,将其输出的电流传输至无线充电装置12。
无线充电装置12包括:无线发射电路121及第一控制模块122。
其中,无线发射电路121用于将电源提供装置11输出的电能转换成电磁信号(或电磁波)进行发射,以为待充电设备13进行无线充电。例如,无线发射电路121可以包括:无线发射驱动电路和发射线圈。无线发射驱动电路用于将电源提供装置11输出的直流电转换成高频的交流电,并通过发射线圈将该高频交流电转换成电磁信号发射出去。
第一控制模块122例如可以通过微控制单元(Micro Control Unit,MCU)实现。第一控制模块122可用于在无线充电装置12对待充电设备13进行无线充电的过程中与待充电设备13进行无线通信。具体地,第一控制模块122可以与待充电设备13中的第二控制模块135进行无线通信。
此外,无线充电装置12包括上述如图5中所示的用于无线充电的功率匹配装置40。其中,功率匹配装置40中控制模块404可以为第一控制模块122,也即第一控制模块122可以执行控制模块404能够执行的全部操作。无线发射电路121包括功率匹配装置40中的发射电路402,也即无线发射电路121具有电容容量和电感量可调的发射线圈,并可以根据第一控制模块122的控制来调节电容容量和电感量,从而在无线充电装置12为待充电设备13进行无线充电时,使得无线充电装置12的发射功率与待充电设备13的接收功率相匹配。
此外,无线充电装置12还可以包括:充电接口123。无线发射电路121还可用于通过充电接口123接收电源提供装置11输出的电能,并根据电源提供装置11输出的电能,生成电磁信号。
充电接口123例如可以为USB 2.0接口、Micro USB接口或USB TYPE-C接口。在一些实施例中,充电接口123还可以为lightning接口,或者其他任意类型的能够用于充电的并口或串口。
无线充电装置12可以与电源提供装置11之间进行通信,例如可以通过充电接口123进行通信,而无需设置额外的通信接口或其他无线通信模块,这样可以简化无线充电装置12的实现。如充电接口123为USB接口,无线充电装置12(或无线发射电路121)与电源提供装置13可以基于该USB接口中的数据线(如D+和/或D-线)进行通信。又如充电接口123为支持功率传输(Power Delivery,PD)通信协议的USB接口(如USB TYPE-C接口),无线充电装置12(或无线发射电路121)与电源提供装置11可以基于PD通信协议进行通信。
此外,无线充电装置12还可以通过除充电接口123之外的其他通信方式与电源提供装置11通信连接。例如,无线充电装置12可以以无线的方式与电源提供装置11进行通信,如近场通讯(Near Field Communication,NFC)。
待充电设备13例如可以是终端或通信终端,该终端或通信终端包括但不限于被设 置成经由有线线路连接,如经由公共交换电话网络(public switched telephone network,PSTN)、数字用户线路(digital subscriber line,DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络和/或经由例如,针对蜂窝网络、无线局域网(wireless local area network,WLAN)、诸如手持数字视频广播(digital video broadcasting handheld,DVB-H)网络的数字电视网络、卫星网络、调幅-调频(amplitude modulation-frequency modulation,AM-FM)广播发送器,以及/或另一通信终端的无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的通信终端可以被称为“无线通信终端”、“无线终端”以及/或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(personal communication system,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(global positioning system,GPS)接收器的个人数字助理(Personal Digital Assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。此外,该终端还可以包括但不限于诸如电子书阅读器、智能穿戴设备、移动电源(如充电宝、旅充)、电子烟、无线鼠标、无线键盘、无线耳机、蓝牙音箱等具有充电功能的可充电电子设备。
待充电设备13包括:无线接收电路131、电池133、第一充电通道134、第二控制模块135及检测电路136。
其中,无线接收电路131用于接收无线发射电路121发射的电磁信号,并将该电磁信号转换成无线接收电路131输出的直流电。例如,无线接收电路131可以包括:接收线圈及与该接收线圈相连的整流电路和/或滤波电路等整形电路。无线接收电路131通过接收线圈将无线发射电路121发射的电磁信号转换成交流电,通过整形电路对该交流电进行整流和/或滤波等操作,从而将该交流电转换成稳定的直流电,以为电池133充电。
需要说明的是,本公开实施例对整形电路的具体形式以及整形电路整形之后得到的无线接收电路131的输出电压和输出电流的形式不做具体限定。
此外,在一些实施例中,待充电设备13还可以包括:第一电压转换电路132。第一电压转换电路132设置在第一充电通道134(例如为导线)上,且设置于无线接收电路131与电池133之间。当无线接收电路131的输出电压不能满足电池133所预期的充电电压的要求,和/或无线接收电路131的输出电流不能满足电池133所预期的充电电流的要求时,可以先通过第一电压转换电路132进行变换,以得到电池133所预期的充电电压和/或充电电流。例如,将无线接收电路131的输出电压和输出电流通过第一充电通道134输入至第一电压转换电路132内;第一电压转换电路132对输入的电压进行转换后,输出的电压与电流通过第一充电通道134加载在电池133的两端,以满足电池133所预期的充电电压和/或充电电流的要求。
电池133可包括单电芯或多电芯。电池133包括多电芯时,该多个电芯之间可为串联关系。由此,电池133可承受的充电电压为多个电芯可承受的充电电压之和,可提高充电速度,减少充电发热。
例如,以待充电设备13为手机为例,当待充电设备13的电池133包括单电芯时,内部的单节电芯的电压一般在3.0V~4.35V之间。而当待充电设备13的电池133包括两节串联的电芯时,串联的两节电芯的总电压为6.0V-8.7V。由此,相比于单电芯,采用多节电芯串联时,无线接收电路131的输出电压可以提高。与单节电芯相比,达到同等的充电速度,多节电芯所需的充电电流约为单节电芯所需的充电电流的1/N(N为待充电设备13内的相互串联的电芯的数目)。换句话说,在保证同等充电速度(充电功率相同)的前提下,采用多节电芯的方案,可以降低充电电流的大小,从而减少待充电设备13在充电过程的发热量。另一方面,与单电芯方案相比,在充电电流保持 相同的情况下,采用多电芯串联方案,可提高充电电压,从而提高充电速度。
第二控制模块135例如可以通过独立的MCU实现,或者还可以通过待充电设备13内部的应用处理器(Application Processor,AP)实现。第二控制模块135用于与无线充电装置12中的第一控制模块122进行通信,将检测到的第一充电通道134上的电压值和/或电流值(即如上述的反馈电压值和/或反馈电流值)、电池133的剩余电量或预设充满时间等信息反馈给无线充电装置12,此外还可以向第一控制模块122反馈误差信息和终止传输信息等;此外,反馈信息还可以包括待充电设备13根据检测到的第一充电通道134上的电压值和/或电流值、剩余电量或预设充满时间等信息确定的电压和/或电流的调整指令。
检测电路136用于检测第一充电通道134上的电压值和/或电流值。在一些实施例中,当待充电设备13中设置有第一电压转换电路132时,第一充电通道134上的电压值和/或电流值可以指第一电压转换电路132与电池133之间电压值和/或电流值,即第一电压转换电路132的输出电压和/或输出电流,该输出电压和/或输出电流直接加载到电池133,以为电池133进行充电;或者,第一充电通道134上的电压值和/或电流值也可以指无线接收电路131与第一电压转换电路132之间的电压值和/或电流值,即无线接收电路131的输出电压值和/或电流值。
在一些实施例中,检测电路136可以包括:电压检测电路和电流检测电路。
电压检测电路用于对上述第一充电通道134上的电压进行采样,并将采样后的电压值传输至第二控制模块135。电压检测电路例如可以通过串联分压的方式对第一充电通道134上的电压进行采样。
电流检测电路用于对上述第一充电通道134上的电流进行采样,并将采样后的电流值传输至第二控制模块135。电流检测电路例如可以通过检流电阻和检流计对第一充电通道134上的电流进行采样。
第一控制模块122接收到待充电设备13通过第二控制模块135反馈的信息后,可根据第一充电通道134上的电压值和/或电流值,或者根据上述的电压和/或电流的调整指令,调整无线发射电路121的发射功率,使得第一充电通道134输出的直流电的电压和/或电流与电池133所需的充电电压和/或电流相匹配。
应理解的是,上述“与电池133所需的充电电压和/或电流相匹配”包括:第一充电通道134输出的直流电的电压和/或电流与电池133所预期的充电电压和/或电流相等或在预设范围内浮动(例如,电压值上下浮动100毫伏~200毫伏)。
或者,第一控制模块122接收到待充电设备13通过第二控制模块135反馈的信息后,可根据第一充电通道134上的电压值和/或电流值,或者根据上述的电压和/或电流的调整指令,调整无线发射电路121的发射功率,使得第一充电通道134输出的直流电的电压和/或电流满足电池133在上述的涓流充电阶段、恒流充电阶段及恒压充电阶段中的至少一个充电阶段的充电需求。
此外,如上所述,第二控制模块135还可以向第一控制模块122发送电池状态信息。其中,电池状态信息包括:待充电设备13中的电池133的当前电量和/或当前电压。第一控制模块122接收到该电池状态信息后,首先可以根据该电池状态信息确定电池133当前所处的充电阶段,进而确定与电池133当前所处的充电阶段相匹配的目标输出电压值和/或目标充电电流;然后,第一控制模块122可以将第二控制模块135发送来的第一充电通道134的输出电压和/或输出电流与判断的、电池133当前所处的充电阶段的目标输出电压值和/或目标充电电流相比较,以确定第一充电通道134的输出电压和/或输出电流与判断的电池133当前所处的充电阶段是否匹配。如果不匹配,则调整无线发射电路121的发射功率,直到反馈的第一充电通道134的输出电压和/或输出电流与电池133当前所处的充电阶段相匹配。
此外,如上所述,第二控制模块135可以向第一控制模块121直接反馈检测到的第一充电通道134的输出电压和/或输出电流,也可以反馈根据检测到的第一充电通道134的输出电压和/或输出电流确定的调整指令。该调整指令例如可以为增大或减小无线发射电路121的发射功率的指令。或者,无线充电装置12还可以为无线发射电路121设置发射功率的多个档位,则第一控制模块121每接收到一次该调整指令,就将无线发射电路121的发射功率的调整一个档位,直到反馈的第一充电通道134的输出电压和/或输出电流与电池133当前所处的充电阶段相匹配。
本公开对无线充电装置12与待充电设备13(或第一控制模块122与第二控制模块135)之间的通信方式和通信顺序不做限定。
在一些实施例中,无线充电装置12与待充电设备13(或第一控制模块122与第二控制模块135)之间的无线通信可以为单向的无线通信。以在电池133的无线充电过程中,待充电设备13为通信的发起方,无线充电装置12为通信的接收方为例,例如,在电池的恒流充电阶段,待充电设备13可以通过检测电路136实施检测电池133的充电电流(即第一充电通道134的输出电流),当电池133的充电电流与当前的充电阶段不匹配时,待充电设备13向无线充电装置12发送反馈信息或调整信息,指示无线充电装置12调整无线发射电路121的发射功率。
在一些实施例中,无线充电装置12与待充电设备13(或第一控制模块122与第二控制模块135)之间的无线通信可以为双向的无线通信。双向的无线通信一般要求接收方在接收到发起方发起的通信请求之后,向发起方发送响应信息,双向通信基值能够使得通信过程更安全。在双向的无线通信过程中,无线充电装置12与待充电设备13中的任何一方均可作为主设备方发起双向通信会话,相应地另外一方可以作为从设备方对主设备方发起的通信做出第一响应或第一回复,进一步地主设备方在接收到第一响应或第一回复后作出针对性的第二响应,从而完成主、从设备之间的一次通信协商过程。
作为主设备方在接收到第一响应或第一回复后作出针对性的第二响应包括:主设备方在预设的时间内没有接收到从设备方针对通信会话的第一响应或第一回复,主设备方也会对所述从设备的第一响应或第一回复做出针对性的第二响应。
此外,在从设备方对主设备方发起的通信会话作出第一响应或第一回复后,也可以无需主设备方对从设备方的第一响应或第一回复作出针对性的第二响应,即可任务主、从设备方之间完成了一次通信协商过程。
在上述无线充电装置12与待充电设备13的通信过程中,待充电设备13中的第二控制模块135可将上述反馈信息耦合到无线接收电路131的接收线圈发送至无线充电装置12的第一控制模块122。
或者,待充电设备13还可以通过蓝牙、WiFi、移动蜂窝网络通信(如2G、3G、4G或5G)、无线通信(如lEEE 802.11、802.15(WPANs)、802.16(WiMAX)、802.20等)、基于高频天线(如60GHz)的近距离无线通信、光通信(如红外线通信)、超声波通信、超宽带(UMB)通信等通信方式中的至少一种与无线充电装置12进行通信,以将上述反馈信息发送给无线充电装置12。可以理解的是,通过上述的通信方式进行通信时,待充电设备13及无线充电装置12还包括相应的通信模块,如蓝牙通信模块、WiFi通信模块、2G/3G/4G/5G移动通信模块、高频天线、光通信模块。超声波通信模块、超宽带通信模块等中的至少一个。应理解,上述的无线通信可采用的标准包括以往的和现有的标准,在不背离本公开范围的前提下,还包括采用这些标准的未来版本和未来标准。通过上述的无线通信方式进行通信,可提高通信的可靠性,由此提高充电安全性。相比于相关技术(例如,Qi标准)中通过信号调制的方式将反馈信息耦合到无线接收电路131的接收线圈进行通信的方式,可提高通信的可靠性,且可 避免采用信号耦合方式通信带来的电压纹波,影响待充电设备13的第一电压转换电路132的电压处理过程。此外,对于无线接收线圈输出时的电压纹波,如果不对纹波进行有效处理则可能导致无线充电安全问题,存在一定的安全隐患。通过上述的无线通信方式进行通信,则可消除电压纹波,从而可省去用于处理电压纹波的电路,降低待充电设备13的充电电路的复杂性,提高充电效率,节省电路设置空间,降低成本。
电源提供装置11可以是输出功率固定不变的电源提供装置,也可以是输出功率可调的电源提供装置。输出功率可调的电源提供装置内部可以设置电压反馈环和电流反馈环,从而能够根据实际需求对其输出电压和/或输出电流进行调节。
如上所述,无线充电装置12可以在充电过程中不断调整无线发射电路121的发射功率,以使得第一充电通道134的输出电压和/或输出电流与电池133当前所处的充电阶段相匹配。
在一些实施例中,第一控制模块122可以调整无线发射电路121从电源提供装置11提供的最大输出功率中抽取的功率量,从而调整无线发射电路121的发射功率。也就是说,无线发射电路121的发射功率调整的控制权分配给了第一控制模块122,第一控制模块122能够在接收到待充电设备13的反馈信息之后通过调整从最大输出功率中抽取的功率量来对无线发射电路121的发射功率进行调整,具有调节速度快、效率高的优点。
例如,可以在第一控制模块122内部、无线发射电路121的内部或第一控制模块122与无线发射电路121之间设置功率调整电路。该功率调整电路例如可以包括脉冲宽度调制(Pulse Width Modulation,PWM)控制器和开关单元。第一控制模块122可以通过调整PWM控制器发出的控制信号的占空比,和/或通过控制开关单元的开关频率调整无线发射电路121的发射功率。
或者,在另一些实施例中,第一控制模块122可以通过与电源提供装置11进行通信,来调整电源提供装置11的输出电压和/或输出电流,从而调整无线发射电路121的发射功率。也就是说,将无线发射电路121的发射功率调整的控制权分配给电源提供装置11,由电源提供装置11通过改变输出电压和/或输出电流的方式对无线发射电路121的发射功率进行调整。这种调整方式的优点在于无线充电装置12需要多少功率,电源提供装置11就提供多少功率,不存在功率的浪费。
应理解的是,与无线充电装置12与待充电设备13之间的通信方式类似,无线充电装置12(或第一控制模块122)与电源提供装置11之间的通信可以为单向通信,也可以为双向通信,本公开对此不做具体限定。
图10是根据一示例性实施方式示出的另一种无线充电系统的系统结构图。
参见图10,与图9所示的无线充电系统1不同之处在于,无线充电系统2中的无线充电装置22还包括:第二电压转换电路224。第二电压转换电路224设置于充电接口123与无线发射电路121之间,可用于接收电源提供装置11的输出电压和输出电流,无线发射电路121用于基于第二电压转换电路224转换后的电压和电流生成电磁信号(或电磁波)。
第一控制模块122对无线发射电路121的发射功率进行调整可以包括:第一控制模块122调整第二电压转换电路224转换后的电压和/或电流,以对无线发射电路121的发射功率进行调整。
当电源提供装置11为输出功率固定不变的电源提供设备时,第一控制模块可以调整第二电压转换电路224的输出电压和/或输出电流,从而调整无线发射电路121的发射功率,这样可以提高无线充电装置22的通用性,以适用于现有普通的电源提供装置11。第二电压转换电路224例如可以包括PWM控制器和开关单元,第一控制模块可以通过调整PWM控制器发出的控制信号的占空比,和/或通过控制开关单元的开关频 率调整第二电压转换电路224的输出电压和/或输出电流,从而调整无线发射电路121的发射功率。
可选地,在一些实施例中,第二电压转换电路224可通过充电接口123接收电源提供装置11的输出电压和输出电流。例如,当电源提供装置11为普通的电源提供装置时,无线充电装置22通过充电接口123与普通的电源提供装置连接,在进行无线充电时,第一控制模块122可以控制第二电压转换电路224开始工作,并根据待充电设备13的反馈信息对第二电压转换电路224的输出电压和/或输出电流进行调节,以使无线发射电路121的发射功率满足当前电池133的充电要求。该调整方式也是将无线发射电路121的发射功率调整的控制权分配给第一控制模块122,第一控制模块122能够在接收到待充电设备13的反馈信息之后立刻对无线发射电路121的发射功率进行调整,具有调节速度快、效率高的优点。
还应理解,电源提供装置11的输出电流可以为恒定直流电、脉动直流电或交流电,本公开对此不做具体限定。
上文是以无线充电装置12或22与电源提供装置11连接,从电源提供装置11获取电能为例进行说明的,但本公开不限于此,无线充电装置12或22也可以将类似适配器的功能集成在其内部,从而能够直接将外部输入的交流电(如市电)转换成上述电磁信号(或电磁波)。举例说明,可以将适配器的功能集成在无线充电装置12或22的无线发射电路121中,例如,可以在无线发射电路121中集成整流电路、初级滤波电路和/或变压器等。这样一来,无线发射电路121可用于接收外部输入的交流电(如220V的交流电,或称市电),根据该交流电生成电磁信号(或电磁波)。在无线充电装置12或22内部集成类似适配器的功能,可以使得该无线充电装置12或22无需从外部的电源提供设备获取功率,提高了无线充电装置12或22的集成度,并减少了实现无线充电过程所需的器件的数量。
此外,上述的电源提供装置11包括:快充类型电源提供装置和普通类型电源提供装置。其中快充类型电源提供装置提供的最大输出功率大于或等于预设值。普通类型电源提供装置提供的最大输出功率小于该预设值。应理解,在本申请实施方式中,快充类型电源提供装置和普通类型电源提供装置仅是通过最大输出功率进行分类,对电源提供装置的其他特性并不作区分。也就是说,快充类型与普通类型可以分别等同于第一类型和第二类型。例如,可以将最大输出功率大于或等于20W的电源提供装置分类为快充类型电源提供装置,而将最大输出功率小于20W的电源提供装置分类为普通类型电源提供装置。
相应地,无线充电装置12或22可以支持第一无线充电模式和第二无线充电模式,无线充电装置12或22在第一无线充电模式下对待充电设备13的充电速度快于无线充电装置12或22在第二无线充电模式下对待充电设备13的充电速度。换句话说,相较于工作在第二无线充电模式下的无线充电装置12或22来说,工作在第一无线充电模式下的无线充电装置12或22充满相同容量的待充电设备13中的电池的耗时更短。
第一无线充电模式可为快速无线充电模式。该快速无线充电模式可以指无线充电装置12或22的发射功率较大(通常大于或等于15W)的无线充电模式。
第二无线充电模式可为普通无线充电模式,该普通无线充电模式可以指无线充电装置12或22的发射功率较小(通常小于15W,常用的发射功率为5W或10W)的无线充电方式,例如可以是传统的基于QI标准、PMA标准或A4WP标准的无线充电模式。
在普通无线充电模式下想要完全充满一较大容量电池(如3000毫安时容量的电池),通常需要花费数个小时的时间;而在快速无线充电模式下,由于充电速度更快,完全充满相同容量电池所需要的充电时间能够明显缩短。
在一些实施例中,第一控制模块122与第二控制模块135进行双向通信,以控制在第一无线充电模式下的无线发射电路121的发射功率。
在一些实施例中,第一控制模块122与第二控制模块135可以进行双向通信,以控制在第一无线充电模式下的无线发射电路121的发射功率的过程可包括:第一控制模块122与第二控制模块135进行双向通信,以协商无线充电装置12或22与待充电设备13之间的无线充电模式。
例如,第一控制模块122与第二控制模块135进行握手通信,在握手通信成功的情况下,控制无线充电装置12或22使用第一无线充电模式为待充电设备13进行充电,在握手通信失败的情况下,控制无线充电装置12或22使用第二无线充电模式为待充电设备13进行充电。
握手通信可以指通信双方对彼此身份的识别。握手通信成功可以表示无线充电装置12或22和待充电设备13均支持发射功率可调的无线充电方式。握手通信失败可以表示无线充电装置12或22和待充电设备13中的至少一方不支持发射功率可调的无线充电方式。
在本公开中,无线充电装置12或22并非盲目地采用第一无线充电模式对待充电设备13进行快速无线充电,而是与待充电设备13进行双向通信,协商无线充电装置12或22是否可以采用第一无线充电模式对待充电设备13进行快速无线充电,这样能够提升充电过程的安全性。
在一些实施例中,第一控制模块122与第二控制模块135进行双向通信,以协商无线充电装置12或22与待充电设备13之间的无线充电模式例如可以包括:第一控制模块122向第二控制模块135发送第一指令,第一指令用于询问待充电设备13是否开启第一无线充电模式;第一控制模块122接收第二控制模块135发送的针对该第一指令的回复指令,回复指令用于指示待充电设备13是否同意开启第一无线充电模式;在待充电设备13同意开启第一无线充电模式的情况下,第一控制模块控制无线充电装置12或22使用第一无线充电模式为待充电设备13充电。
除了基于通信协商的方式确定无线充电模式之外,第一控制模块122还可以根据一些其他因素选取或切换无线充电模式,如第一控制模块122还可根据电池133的温度,控制无线充电装置12或22使用第一无线充电模式或第二无线充电模式为电池133充电。例如,当温度低于预设的低温阙值(如5℃或10℃)时,第一控制模块122可以控制无线充电装置12或22使用第二无线充电模式进行普通充电,当温度大于或等于低温阙值时,第一控制模块122可以控制无线充电装置12或22使用第一无线充电模式进行快速充电。进一步地,当温度高于高温阙值(如50℃)时,第一控制模块122可以控制无线充电装置12或22停止充电。
以上具体地示出和描述了本公开的示例性实施方式。应可理解的是,本公开不限于这里描述的详细结构、设置方式或实现方法;相反,本公开意图涵盖包含在所附权利要求的精神和范围内的各种修改和等效设置。

Claims (27)

  1. 一种用于无线充电的功率匹配装置,应用于无线发射端,其特征在于,包括:
    发射线圈;所述发射线圈包括:容量可调的电容组件和/或电感量可调的电感组件;以及
    控制模块,与所述发射线圈电性连接,用于接收从所述发送线圈感测的第一感测信息;根据所述第一感测信息,检测谐振频率是否发生了改变;及当所述谐振频率发生了改变时,调整所述电容组件的容量和/或调整所述电感组件的电感量,以使所述无线发射端的发射功率与所述无线接收端的接收功率相匹配;其中,所述第一感测信息包括:第一感测电压值或第一感测电流值。
  2. 根据权利要求1所述的装置,其特征在于,所述电感组件包括:相互串联的至少一条电感支路;其中,每条电感支路包括电感及与其并联的开关。
  3. 根据权利要求1所述的装置,其特征在于,所述电容组件包括:至少一条第一电容支路和/或至少一条第二电容支路;其中,当所述电容组件包括所述至少一条第一电容支路和所述至少一条第二电容支路时,所述至少一条第一电容支路与所述至少一条第二电容支路串联;各所述第一电容支路相互并联,各所述第二电容支路相互并联;每条第一电容支路与每条第二电容支路分别包括电容及与其串联的开关。
  4. 根据权利要求1所述的装置,其特征在于,所述控制模块用于确定所述第一感测信息是否小于预设的反馈信息阈值;及当所述第一感测信息小于所述反馈信息阈值时,确定所述谐振频率发生了改变;其中,当所述第一感测信息为所述第一感测电压值时,所述反馈信息阈值为电压阈值;当所述第一感测信息为所述第一感测电流值时,所述反馈信息阈值为电流阈值。
  5. 根据权利要求1-4任一项所述的装置,其特征在于,所述控制模块用于当所述谐振频率发生了改变时,控制所述发射线圈增大所述电容组件的容量和/或增大所述电感组件的电感量。
  6. 根据权利要求5所述的装置,其特征在于,所述控制模块还用于在控制所述发射线圈增大所述电容组件的容量和/或增大所述电感组件的电感量之后,接收从所述发送线圈感测的第二感测信息;确定所述第二感测信息是否大于所述第一感测信息;及当所述第二感测信息不大于所述第一感测信息时,控制所述发射线圈减小所述电容组件的容量和/或减小所述电感组件的电感量;其中,所述第二感测信息包括:第二感测电压值或第二感测电流值;当所述第二感测信息为所述第二感测电压值时,所述第一感测信息为所述第一感测电压值;当所述第二感测信息为所述第二感测电流值时,所述第一感测信息为所述第一感测电流值。
  7. 根据权利要求6所述的装置,其特征在于,所述控制模块还用于当所述第二感测信息大于所述第一感测信息时,确定所述第二感测信息是否达到预设的最优感测信息;及当所述第二感测信息没有达到所述最优感测信息时,控制所述发射线圈继续增大所述电容组件的容量和/或继续增大所述电感组件的电感量;其中,当所述第二感测信息为所述第二感测电压值时,所述最优感测信息为最优感测电压值;当所述第二感测信息为所述第二感测电流值时,所述最优感测信息为最优感测电流值。
  8. 根据权利要求7所述的装置,其特征在于,所述控制模块还用于在控制所述发射线圈减小所述电容组件的容量和/或减小所述电感组件的电感量之后,接收从所述发送线圈感测的第三感测信息;确定所述第三感测信息是否大于所述第二感测信息;及当所述第三感测信息不大于所述第二感测信息时,控制所述发射线圈增大所述电容组件的容量和/或增大所述电感组件的电感量;其中,所述第三感测信息包括:第三 感测电压值或第三感测电流值;当所述第三感测信息为所述第三感测电压值时,所述第二感测信息为所述第二感测电压值;当所述第三感测信息为所述第三感测电流值时,所述第二感测信息为所述第二感测电流值。
  9. 根据权利要求8所述的装置,其特征在于,所述控制模块还用于当所述第三感测信息大于所述第二感测信息时,确定所述第三感测信息是否达到预设的最优感测信息;及当所述第三感测信息没有达到所述最优感测信息时,控制所述发射线圈继续减小所述电容组件的容量和/或继续减小所述电感组件的电感量;其中,当所述第三感测信息为所述第三感测电压值时,所述最优感测信息为最优感测电压值;当所述第三感测信息为所述第三感测电流值时,所述最优感测信息为最优感测电流值。
  10. 根据权利要求1-4任一项所述的装置,其特征在于,所述控制模块用于当所述谐振频率发生了改变时,控制所述发射线圈减小所述电容组件的容量和/或减小所述电感组件的电感量。
  11. 根据权利要求10所述的装置,其特征在于,所述控制模块还用于在控制所述发射线圈减小所述电容组件的容量和/或减小所述电感组件的电感量之后,接收从所述发送线圈感测的第二感测信息;确定所述第二感测信息是否大于所述第一感测信息;及当所述第二感测信息不大于所述第一感测信息时,控制所述发射线圈增大所述电容组件的容量和/或增大所述电感组件的电感量;其中,所述第二感测信息包括:第二感测电压值或第二感测电流值;当所述第二感测信息为所述第二感测电压值时,所述第一感测信息为所述第一感测电压值;当所述第二感测信息为所述第二感测电流值时,所述第一感测信息为所述第一感测电流值。
  12. 根据权利要求11所述的装置,其特征在于,所述控制模块还用于当所述第二感测信息大于所述第一感测信息时,确定所述第二感测信息是否达到预设的最优感测信息;及当所述第二感测信息没有达到所述最优感测信息时,控制所述发射线圈继续减小所述电容组件的容量和/或继续减小所述电感组件的电感量;其中,当所述第二感测信息为所述第二感测电压值时,所述最优感测信息为最优感测电压值;当所述第二感测信息为所述第二感测电流值时,所述最优感测信息为最优感测电流值。
  13. 根据权利要求12所述的装置,其特征在于,所述控制模块还用于在控制所述发射线圈增大所述电容组件的容量和/或增大所述电感组件的电感量之后,接收从所述发送线圈感测的第三感测信息;确定所述第三感测信息是否大于所述第二感测信息;及当所述第三感测信息不大于所述第二感测信息时,控制所述发射线圈减小所述电容组件的容量和/或减小所述电感组件的电感量;其中,所述第三感测信息包括:第三感测电压值或第三感测电流值;当所述第三感测信息为所述第三感测电压值时,所述第二感测信息为所述第二感测电压值;当所述第三感测信息为所述第三感测电流值时,所述第二感测信息为所述第二感测电流值。
  14. 根据权利要求13所述的装置,其特征在于,所述控制模块还用于当所述第三感测信息大于所述第二感测信息时,确定所述第三感测信息是否达到预设的最优感测信息;及当所述第三感测信息没有达到所述最优感测信息时,控制所述发射线圈继续增大所述电容组件的容量和/或继续增大所述电感组件的电感量;其中,当所述第三感测信息为所述第三感测电压值时,所述最优感测信息为最优感测电压值;当所述第三感测信息为所述第三感测电流值时,所述最优感测信息为最优感测电流值。
  15. 一种用于无线充电的功率匹配方法,应用于无线充电系统中的无线发射端,其特征在于,所述无线发射端的发射线圈包括可调容量的电容和/或可调电感量的电感,所述方法包括:
    接收从所述发射线圈感测的第一感测信息;
    根据所述第一感测信息,检测谐振频率是否发生了改变;以及
    当所述谐振频率发生了改变时,调整所述无线发射端的所述发射线圈中所述电容的容量和/或调整所述发射线圈中所述电感的电感量,以使所述无线发射端的发射功率与所述无线充电系统中的无线接收端的接收功率相匹配;
    其中,所述第一感测信息包括:第一感测电压值和/或第一感测电流值。
  16. 根据权利要求15所述的方法,其特征在于,根据所述第一感测信息,检测谐振频率是否发生了改变包括:
    确定所述第一感测信息是否小于预设的反馈信息阈值;以及
    当所述第一感测信息小于所述反馈信息阈值时,确定所述谐振频率发生了改变;
    其中,当所述第一感测信息为所述第一感测电压值时,所述反馈信息阈值为电压阈值;当所述第一感测信息为所述第一感测电流值时,所述反馈信息阈值为电流阈值。
  17. 根据权利要求15或16所述的方法,其特征在于,调整无线发射端的发射线圈中电容的容量和/或调整所述发射线圈中电感的电感量包括:增大所述发射线圈中电容的容量和/或增大所述发射线圈中电感的电感量。
  18. 根据权利要求17所述的方法,其特征在于,调整无线发射端的发射线圈中电容的容量和/或调整所述发射线圈中电感的电感量还包括:在增大所述发射线圈中电容的容量和/或增大所述发射线圈中电感的电感量之后,
    接收从所述发送线圈感测的第二感测信息;
    确定所述第二感测信息是否大于所述第一感测信息;以及
    当所述第二感测信息不大于所述第一感测信息时,减小所述发射线圈中电容的容量和/或减小所述发射线圈中电感的电感量;
    其中,所述第二感测信息包括:第二感测电压值或第二感测电流值;当所述第二感测信息为所述第二感测电压值时,所述第一感测信息为所述第一感测电压值;当所述第二感测信息为所述第二感测电流值时,所述第一感测信息为所述第一感测电流值。
  19. 根据权利要求18所述的方法,其特征在于,调整无线发射端的发射线圈中电容的容量和/或调整所述发射线圈中电感的电感量还包括:
    当所述第二感测信息大于所述第一感测信息时,确定所述第二感测信息是否达到预设的最优感测信息;以及
    当所述第二感测信息没有达到所述最优感测信息时,继续增大所述发射线圈中电容的容量和/或继续增大所述发射线圈中电感的电感量;
    其中,当所述第二感测信息为所述第二感测电压值时,所述最优感测信息为最优感测电压值;当所述第二感测信息为所述第二感测电流值时,所述最优感测信息为最优感测电流值。
  20. 根据权利要求19所述的方法,其特征在于,调整无线发射端的发射线圈中电容的容量和/或调整所述发射线圈中电感的电感量还包括:在减小所述发射线圈中电容的容量和/或减小所述发射线圈中电感的电感量之后,
    接收从所述发送线圈感测的第三感测信息;
    确定所述第三感测信息是否大于所述第二感测信息;以及
    当所述第三感测信息不大于所述第二感测信息时,增大所述发射线圈中电容的容量和/或增大所述发射线圈中电感的电感量;
    其中,所述第三感测信息包括:第三感测电压值或第三感测电流值;当所述第三感测信息为所述第三感测电压值时,所述第二感测信息为所述第二感测电压值;当所述第三感测信息为所述第三感测电流值时,所述第二感测信息为所述第二感测电流值。
  21. 根据权利要求20所述的方法,其特征在于,调整无线发射端的发射线圈中电容的容量和/或调整所述发射线圈中电感的电感量还包括:
    当所述第三感测信息大于所述第二感测信息时,确定所述第三感测信息是否达到 预设的最优感测信息;以及
    当所述第三感测信息没有达到所述最优感测信息时,继续减小所述发射线圈中电容的容量和/或继续减小所述发射线圈中电感的电感量;
    其中,当所述第三感测信息为所述第三感测电压值时,所述最优感测信息为最优感测电压值;当所述第三感测信息为所述第三感测电流值时,所述最优感测信息为最优感测电流值。
  22. 根据权利要求15或16所述的方法,其特征在于,调整无线发射端的发射线圈中电容的容量和/或调整所述发射线圈中电感的电感量包括:减小所述发射线圈中电容的容量和/或减小所述发射线圈中电感的电感量。
  23. 根据权利要求22所述的方法,其特征在于,调整无线发射端的发射线圈中电容的容量和/或调整所述发射线圈中电感的电感量还包括:在减小所述发射线圈中电容的容量和/或减小所述发射线圈中电感的电感量之后,
    接收从所述发送线圈感测的第二感测信息;
    确定所述第二感测信息是否大于所述第一感测信息;以及
    当所述第二感测信息不大于所述第一感测信息时,增大所述发射线圈中电容的容量和/或增大所述发射线圈中电感的电感量;
    其中,所述第二感测信息包括:第二感测电压值或第二感测电流值;当所述第二感测信息为所述第二感测电压值时,所述第一感测信息为所述第一感测电压值;当所述第二感测信息为所述第二感测电流值时,所述第一感测信息为所述第一感测电流值。
  24. 根据权利要求23所述的方法,其特征在于,调整无线发射端的发射线圈中电容的容量和/或调整所述发射线圈中电感的电感量还包括:
    当所述第二感测信息大于所述第一感测信息时,确定所述第二感测信息是否达到预设的最优感测信息;以及
    当所述第二感测信息没有达到所述最优感测信息时,继续减小所述发射线圈中电容的容量和/或继续减小所述发射线圈中电感的电感量;
    其中,当所述第二感测信息为所述第二感测电压值时,所述最优感测信息为最优感测电压值;当所述第二感测信息为所述第二感测电流值时,所述最优感测信息为最优感测电流值。
  25. 根据权利要求23所述的方法,其特征在于,调整无线发射端的发射线圈中电容的容量和/或调整所述发射线圈中电感的电感量还包括:在增大所述发射线圈中电容的容量和/或增大所述发射线圈中电感的电感量之后,
    接收从所述发送线圈感测的第三感测信息;
    确定所述第三感测信息是否大于所述第二感测信息;以及
    当所述第三感测信息不大于所述第二感测信息时,减小所述发射线圈中电容的容量和/或减小所述发射线圈中电感的电感量;
    其中,所述第三感测信息包括:第三感测电压值或第三感测电流值;当所述第三感测信息为所述第三感测电压值时,所述第二感测信息为所述第二感测电压值;当所述第三感测信息为所述第三感测电流值时,所述第二感测信息为所述第二感测电流值。
  26. 根据权利要求25所述的方法,其特征在于,调整无线发射端的发射线圈中电容的容量和/或调整所述发射线圈中电感的电感量还包括:
    当所述第三感测信息大于所述第二感测信息时,确定所述第三感测信息是否达到预设的最优感测信息;以及
    当所述第三感测信息没有达到所述最优感测信息时,继续增大所述发射线圈中电容的容量和/或继续增大所述发射线圈中电感的电感量;
    其中,当所述第三感测信息为所述第三感测电压值时,所述最优感测信息为最优 感测电压值;当所述第三感测信息为所述第三感测电流值时,所述最优感测信息为最优感测电流值。
  27. 一种无线充电装置,其特征在于,包括:根据权利要求1-14任一项所述的用于无线充电的功率匹配装置。
PCT/CN2019/084857 2019-04-28 2019-04-28 用于无线充电的功率匹配方法、装置及无线充电装置 WO2020220174A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19927051.3A EP3955417B1 (en) 2019-04-28 2019-04-28 Power matching method and apparatus for wireless charging, and wireless charging apparatus
PCT/CN2019/084857 WO2020220174A1 (zh) 2019-04-28 2019-04-28 用于无线充电的功率匹配方法、装置及无线充电装置
CN201980093388.5A CN113615035A (zh) 2019-04-28 2019-04-28 用于无线充电的功率匹配方法、装置及无线充电装置
US17/498,669 US20220029461A1 (en) 2019-04-28 2021-10-11 Power Matching Method and Apparatus for Wireless Charging, and Wireless Charging Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/084857 WO2020220174A1 (zh) 2019-04-28 2019-04-28 用于无线充电的功率匹配方法、装置及无线充电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/498,669 Continuation US20220029461A1 (en) 2019-04-28 2021-10-11 Power Matching Method and Apparatus for Wireless Charging, and Wireless Charging Apparatus

Publications (1)

Publication Number Publication Date
WO2020220174A1 true WO2020220174A1 (zh) 2020-11-05

Family

ID=73029298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084857 WO2020220174A1 (zh) 2019-04-28 2019-04-28 用于无线充电的功率匹配方法、装置及无线充电装置

Country Status (4)

Country Link
US (1) US20220029461A1 (zh)
EP (1) EP3955417B1 (zh)
CN (1) CN113615035A (zh)
WO (1) WO2020220174A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0795271A (ja) * 1993-09-24 1995-04-07 Matsushita Electric Ind Co Ltd コードレス電話機
CN103595262A (zh) * 2013-11-04 2014-02-19 江苏科意达机械有限公司 一种无线充电系统频率调节电路
CN103944277A (zh) * 2014-02-27 2014-07-23 广东美的生活电器制造有限公司 无线能量的传输系统和提高无线能量传输效率的方法
CN105229896A (zh) * 2013-06-07 2016-01-06 高通股份有限公司 用于双线圈装置的主电力供应调谐网络及其操作方法
CN105914903A (zh) * 2016-06-28 2016-08-31 中惠创智无线供电技术有限公司 一种用于控制输出电压的电路及方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103457362B (zh) * 2012-06-04 2016-02-03 比亚迪股份有限公司 无线充电的发送装置、无线充电系统及无线充电控制方法
EP3032698B1 (en) * 2013-07-31 2018-10-24 Panasonic Corporation Wireless power-transfer system and power-transmission device
CN104158269B (zh) * 2014-08-11 2016-03-16 长城信息产业股份有限公司 一种无线充电发射器、接收器、充电装置及无线充电方法
CN104638774B (zh) * 2014-08-13 2017-01-25 武汉泰可电气股份有限公司 磁耦合谐振式无线电能传输系统和方法
CN104218640B (zh) * 2014-08-29 2016-09-28 中国科学院电工研究所 具有多负载频率适应性的无线充电系统
JP6304158B2 (ja) * 2015-07-21 2018-04-04 トヨタ自動車株式会社 非接触送電装置及び電力伝送システム
KR102487756B1 (ko) * 2016-02-25 2023-01-12 주식회사 위츠 무선 전력 송신 장치 및 무선 전력 송신 방법
WO2017160875A1 (en) * 2016-03-15 2017-09-21 Nuvolta Technologies, Inc. Wireless power transfer control apparatus and method
CN107104516B (zh) * 2017-05-03 2020-05-08 南京农业大学 一种汽车无线充电最大功率跟踪与矫正系统
CN108282030A (zh) * 2018-01-29 2018-07-13 重庆理工大学 一种自适应无线充电方法及装置
CN109245257B (zh) * 2018-10-31 2024-04-19 智核奇点科技(深圳)有限公司 一种无线充电系统及充电功率调节方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0795271A (ja) * 1993-09-24 1995-04-07 Matsushita Electric Ind Co Ltd コードレス電話機
CN105229896A (zh) * 2013-06-07 2016-01-06 高通股份有限公司 用于双线圈装置的主电力供应调谐网络及其操作方法
CN103595262A (zh) * 2013-11-04 2014-02-19 江苏科意达机械有限公司 一种无线充电系统频率调节电路
CN103944277A (zh) * 2014-02-27 2014-07-23 广东美的生活电器制造有限公司 无线能量的传输系统和提高无线能量传输效率的方法
CN105914903A (zh) * 2016-06-28 2016-08-31 中惠创智无线供电技术有限公司 一种用于控制输出电压的电路及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3955417A4 *

Also Published As

Publication number Publication date
EP3955417B1 (en) 2024-05-08
CN113615035A (zh) 2021-11-05
US20220029461A1 (en) 2022-01-27
EP3955417A4 (en) 2022-04-27
EP3955417A1 (en) 2022-02-16

Similar Documents

Publication Publication Date Title
RU2727724C1 (ru) Устройство и способ беспроводной зарядки, и устройство, подлежащее зарядке
KR102411250B1 (ko) 충전대상 기기, 무선 충전 방법 및 시스템
US11616400B2 (en) Electronic device
US20220271571A1 (en) To-be-charged device, wireless charging device, and wireless charging method
KR20160087870A (ko) 무선 전력 송수신 방법 및 장치
WO2020191550A1 (zh) 充放电控制方法及待充电设备
WO2020147126A1 (zh) 无线充电方法、待充电设备及无线充电系统
WO2020191583A1 (zh) 电池充电方法、装置、设备及可读存储介质
WO2021077933A1 (zh) 充电控制方法、充电控制设备和电子设备
WO2021248953A1 (zh) 一种无线充电的接收端、方法及电子设备
US11894694B2 (en) Wireless charging device and to-be-charged device
US20220239155A1 (en) Device to-be-charged and wireless charging method
WO2021244086A1 (zh) 一种电子设备及其控制方法
CN115173584B (zh) 一种电力接收装置、电力发送装置及电力传输方法
WO2020124591A1 (zh) 电源提供装置、无线充电装置、系统及无线充电方法
KR20210030131A (ko) 멀티 레벨 전력 호환용 무선 전력 수신 장치
WO2020206700A1 (zh) 待充电设备及充放电控制方法
WO2020220174A1 (zh) 用于无线充电的功率匹配方法、装置及无线充电装置
WO2021012951A1 (zh) 无线充电装置、方法及系统
CN114498779A (zh) 无线充电发射电路及无线充电底座、无线充电系统
CN114498780A (zh) 无线充电发射电路及无线充电底座、无线充电系统
WO2021057419A1 (zh) 电子设备及无线充电方法
CN209982156U (zh) 一种新型手机无线充电器
US12034329B2 (en) Device to be charged, and charging and discharging control method
CN113169584B (zh) 无线充电方法、待充电设备及无线充电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019927051

Country of ref document: EP

Effective date: 20211111