WO2020220169A1 - 一种云台控制方法、设备、可移动平台及存储介质 - Google Patents

一种云台控制方法、设备、可移动平台及存储介质 Download PDF

Info

Publication number
WO2020220169A1
WO2020220169A1 PCT/CN2019/084847 CN2019084847W WO2020220169A1 WO 2020220169 A1 WO2020220169 A1 WO 2020220169A1 CN 2019084847 W CN2019084847 W CN 2019084847W WO 2020220169 A1 WO2020220169 A1 WO 2020220169A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
pan
tilt
base
relative
Prior art date
Application number
PCT/CN2019/084847
Other languages
English (en)
French (fr)
Inventor
刘帅
谢振生
刘力源
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/084847 priority Critical patent/WO2020220169A1/zh
Priority to CN201980007901.4A priority patent/CN111656299A/zh
Publication of WO2020220169A1 publication Critical patent/WO2020220169A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • G05D3/20Control of position or direction using feedback using a digital comparing device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw

Definitions

  • the present invention relates to the field of control technology, and in particular to a pan-tilt control method, equipment, movable platform and storage medium.
  • the embodiments of the present invention provide a pan-tilt control method, equipment, movable platform and storage medium, which can simplify the processing flow of controlling the rotation of the pan-tilt.
  • the first aspect of the embodiments of the present invention provides a pan-tilt control method, which is applied to a movable platform, the movable platform includes a base and a pan-tilt, the pan-tilt is rotatably disposed on the base, wherein ,
  • the method includes:
  • the target angle of the pan/tilt rotation is determined, wherein the specified angle is the relative angle of the pan/tilt input by the user.
  • the angle of the base
  • the pan/tilt is controlled to rotate to the target angle, so that the pan/tilt reaches the specified angle relative to the base.
  • a second aspect of the embodiments of the present invention provides a pan-tilt control device, which includes:
  • the determining unit is configured to determine the target angle of the pan/tilt rotation based on the specified angle input by the user, the current angle of the pan/tilt head, and the current angle of the base, wherein the specified angle is input by the user The angle of the pan/tilt with respect to the base;
  • An acquiring unit for acquiring the relative angle of the pan-tilt with respect to the base at the previous moment
  • the determining unit is further configured to determine the rotational speed of the pan/tilt relative to the base at the previous moment according to the relative angle;
  • the determining unit is further configured to determine the angle difference between the current angle of the pan/tilt head and the specified angle according to the rotational speed of the pan/tilt head relative to the base at the previous moment;
  • An adjustment unit configured to adjust the rotation speed of the pan/tilt relative to the base at the current moment in real time according to the angle difference
  • the control unit is configured to control the rotation of the pan/tilt to the target angle according to the rotation speed of the pan/tilt relative to the base at the current moment, so that the pan/tilt reaches the specified angle relative to the base .
  • a third aspect of the embodiments of the present invention provides a pan/tilt control device, the pan/tilt control device is built in a movable platform, the movable platform includes a base and a pan/tilt, and the pan/tilt is rotatably arranged on On the base, it is characterized in that the pan-tilt control device includes a processor;
  • the processor is used to execute the vehicle-demand code, and when the program code is executed, it is used to perform the following operations:
  • the target angle of the pan/tilt rotation is determined, wherein the specified angle is the relative angle of the pan/tilt input by the user.
  • the angle of the base
  • the pan/tilt is controlled to rotate to the target angle, so that the pan/tilt reaches the specified angle relative to the base.
  • a fourth aspect of the embodiments of the present invention provides a movable platform, including:
  • a head rotatably connected with the base
  • pan/tilt control device as described in the third aspect, the pan/tilt control device is used to control the relative rotation of the pan/tilt and the base.
  • the movable platform may determine the target angle for controlling the rotation of the pan/tilt based on the specified angle input by the user, the current angle of the pan/tilt and the current angle of the base. It is used to indicate the angular position to which the pan/tilt is expected to rotate, so that the movable platform can determine the angle to control the rotation of the pan/tilt without referring to the operating state of the movable platform, which simplifies the control steps of the pan/tilt.
  • the movable platform can obtain the relative angle of the pan/tilt with respect to the base at the previous moment, and determine the rotational speed of the pan/tilt relative to the base at the previous moment based on the relative angle;
  • the rotation speed of the pan/tilt at the previous moment relative to the base determines the angle difference between the current angle of the pan/tilt and the specified angle; based on the angle difference between the current angle and the specified angle, Real-time adjustment of the rotation speed of the pan/tilt based on the base, so that the pan/tilt reaches the specified angle, thereby realizing the control of the rotation of the pan/tilt without referring to the movement state of the movable platform , Optimize the calculation rules when controlling the rotation of the PTZ, which can effectively improve the calculation efficiency of the processor.
  • Figure 1 is a schematic structural diagram of a movable platform provided by an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for controlling a pan/tilt head provided by an embodiment of the present invention
  • FIG. 3 is a flowchart of a method for controlling a PTZ according to another embodiment of the present invention.
  • 4a is a schematic diagram of the position of a joint angle provided by an embodiment of the present invention.
  • 4b is a schematic diagram of the position of a joint angle according to another embodiment of the present invention.
  • 4c is a schematic diagram of the position of a joint angle provided by another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a pan-tilt control device provided by an embodiment of the present invention.
  • Fig. 6 is a schematic structural diagram of a pan/tilt control device provided by an embodiment of the present invention.
  • the method for controlling a pan/tilt head proposed in an embodiment of the present invention can be applied to a movable platform as shown in FIG. 1.
  • the movable platform includes a base 10 and a pan/tilt 11, and the pan/tilt 11 is rotatably arranged on On the base 10, the joint between the pan-tilt 11 and the base 10 is rotatable.
  • the control of the pan-tilt rotation can be realized without considering the operating state of the movable platform (including the static state and the motion state), and the pan-tilt rotation can be ensured to the user input Specify the angle.
  • the proposed PTZ control method is applicable to movable platforms in different operating states, that is to say, the movable platforms can use the unified platform mentioned in the embodiments of the present invention in different operating states.
  • the PTZ control method of the invention controls the rotation of the PTZ, that is to say, the PTZ control method proposed in the embodiment of the present invention can be used to control the rotation of the PTZ without referring to the operating state of the movable platform.
  • the simplification of the calculation rules when the mobile platform controls the rotation of the pan/tilt can improve the processing capacity of the processor and can improve the control efficiency of the pan/tilt.
  • FIG. 2 is a schematic flowchart of a method for controlling a pan/tilt head according to an embodiment of the present invention. As shown in FIG. 2, the method includes:
  • S201 Determine a target angle of rotation of the pan/tilt based on the specified angle input by the user, the current angle of the pan/tilt and the current angle of the base.
  • the specified angle is the angle relative to the base to which the user expects the pan/tilt to rotate
  • the current angle of the pan/tilt is the angle currently measured when the pan/tilt is turned on
  • the The current angle of the base is the angle currently measured by the base, wherein the angle currently measured by the pan/tilt and the angle currently measured by the base are both angles measured in the same coordinate system.
  • the speed of the movable platform when the movement state of the movable platform changes, the speed of the movable platform correspondingly changes, in order to ensure that the pan/tilt can rotate to all positions when the movable platform is in a moving state or in a stationary state.
  • the speed of the movable platform is continuously variable, so as to periodically calculate the speed of the pan/tilt relative to the base to realize the adjustment of the rotation speed of the pan/tilt, so that the cloud
  • the stage rotates the target angle and reaches the specified angle input by the user.
  • S202 Obtain a relative angle of the pan/tilt head relative to the base at the previous moment, and determine the rotational speed of the pan/tilt head relative to the base at the previous moment according to the relative angle.
  • the last moment refers to the moment before the current moment of the pan/tilt, that is, the moment before the current angle of the pan/tilt is acquired, when controlling the rotation of the pan/tilt, it is also necessary to determine Control the actual rotation speed of the pan/tilt head, wherein the actual rotation speed of the pan/tilt head relative to the base can be determined by determining the rotation speed of the pan/tilt head relative to the base.
  • the rotation speed can be determined based on the rotation speed of the pan/tilt relative to the base at the previous moment.
  • the movable platform can determine the rotation speed of the control platform relative to the base based on the rotation speed of the platform relative to the base at the previous moment, so as to further determine the actual rotation speed of the control platform.
  • step S203 may be performed to determine the rotational speed of the pan/tilt head relative to the base at the current moment.
  • S203 Determine the angle difference between the current angle of the pan/tilt and the specified angle according to the rotational speed of the pan/tilt relative to the base at the previous moment, and adjust the current angle of the pan/tilt in real time according to the angle difference.
  • the current time relative to the speed of the base.
  • the movable platform may determine the angle of rotation of the pan/tilt at the previous moment, so as to determine the The angle difference between the current angle of the gimbal and the specified angle.
  • the movable platform can continuously calculate the remaining angle of the pan/tilt to reach the target angle according to the angle difference between the current angle of the pan/tilt and the specified angle.
  • the base rotates at a relative speed at a moment, and may rotate to an angular position exceeding the target angle in a certain period of time in the future, or may not rotate to the angle indicated by the target angle in a certain period of time in the future.
  • the angular position therefore, the movable platform needs to adjust the current rotational speed of the pan/tilt relative to the base in real time according to the current angular difference of the pan/tilt to ensure that the pan/tilt moves to the specified angle.
  • the movable platform can determine the angle that the pan/tilt has rotated relative to the base at the previous moment according to the relative rotational speed of the pan/tilt at the previous moment, and further Ground, the current angle of the pan/tilt may be updated based on the angle that the pan/tilt has rotated, and the to-be-turned angle of the pan/tilt may be determined based on the updated current angle of the pan/tilt, that is, the pan/tilt The angle difference between the current angle at the current time and the specified angle, so as to determine the current rotation speed of the pan/tilt head relative to the base based on the angle to be rotated, and then step S204 is executed.
  • S204 Control the pan/tilt to rotate the target angle according to the rotation speed of the pan/tilt relative to the base at the current moment, so that the pan/tilt reaches the specified angle relative to the base.
  • the movable platform when the movable platform controls the pan-tilt to rotate the target angle according to the relative rotational speed of the current moment, the movable platform may be based on the rotational speed of the pan-tilt relative to the base at the current moment, The actual rotation speed of the pan/tilt at the current moment is determined, so as to control the rotation of the pan/tilt at the actual rotation speed to reach (or reach) the specified angle.
  • the change in the speed of the movable platform may be represented based on the current angle change of the base. Therefore, when the movable platform controls the rotation of the pan/tilt, it may refer to the current angle of the base to determine that it needs to be controlled. The angle of the pan-tilt rotation is no longer referred to the movement state of the movable platform.
  • the angle at which the movable platform controls the pan-tilt to rotate can be determined Further, the movable platform can determine the rotational speed of the pan/tilt relative to the base at the current moment according to the rotational speed relative to the base at the previous moment, so that it may be based on the relative rotational speed of the pan/tilt relative to the base at the current moment.
  • the rotation speed of the PTZ is controlled to reach the designated angle reached by the PTZ, and the control of the rotation of the PTZ is completed.
  • the movable platform may determine the target angle for controlling the rotation of the pan/tilt based on the specified angle input by the user, the current angle of the pan/tilt and the current angle of the base. It is used to indicate the angular position to which the pan/tilt is expected to rotate, so that the movable platform can determine the angle to control the rotation of the pan/tilt without referring to the operating state of the movable platform, which simplifies the control steps of the pan/tilt.
  • the movable platform can obtain the relative angle of the pan/tilt with respect to the base at the previous moment, and determine the rotational speed of the pan/tilt relative to the base at the previous moment based on the relative angle, so that Determine the angle difference between the current angle of the pan/tilt head and the specified angle according to the rotational speed of the pan/tilt head relative to the base at the previous moment, based on the angle between the current angle and the specified angle Poor, the PTZ can be adjusted in real time based on the rotation speed of the base, so that the PTZ can reach the specified angle, which realizes the rotation of the PTZ without referring to the movement state of the movable platform. Control, optimize the calculation rules when controlling the rotation of the pan-tilt, which can effectively improve the calculation efficiency of the processor.
  • FIG. 3 is a schematic flow chart of a pan-tilt control method proposed in this application. As shown in FIG. 3, the method may include:
  • S301 Determine a target angle of rotation of the pan/tilt based on a designated angle input by a user, a current angle of the pan/tilt and a current angle of the base.
  • the angle difference between the current angle of the pan/tilt and the current angle of the base may be calculated first, Further, it is possible to determine the current joint angle of the pan/tilt head.
  • the current joint angle is the angle that the pan/tilt head has rotated.
  • the current angle between the current angle of the pan/tilt head and the current angle of the base can be determined.
  • the target of the pan/tilt head relative to the base may be determined based on the angle range to which the current joint angle belongs, the angle difference, and the specified angle input by the user angle.
  • the set_A is the angle relative to the base, and its value may be -45 degrees or 30 degrees, for example.
  • the symbol carried in the value of set_A is used to indicate the offset of the pan/tilt head relative to the base. In one embodiment, when the symbol carried is "-", it means that it is offset to the left relative to the base.
  • the movable platform also needs to determine the current joint angle yaw of the pan/tilt, and the current joint angle is the angle that the pan/tilt has turned, so that it can be determined based on the angle range to which the current joint angle yaw belongs
  • the target angle of the pan/tilt rotation is real_run_yaw. In one embodiment, if the angle range to which the current joint angle belongs belongs to the first preset angle range, the target of the pan/tilt rotation is calculated according to the specified angle input by the user and the angle difference according to the first calculation rule angle.
  • the first preset angle range is a range in which the current joint angle is greater than a first preset angle; correspondingly, the first operation rule is to set the specified angle input by the user, the angle difference, and the first A rule for calculation at a preset angle.
  • the current joint angle yaw>180 degrees as shown at point A in Figure 4a, if you continue to rotate, the pan/tilt may rotate to the limit (270 degrees) and cause the pan/tilt to hit the line. Therefore, The determined angle difference delta_yaw_handle_target between the current angle of the pan/tilt head and the current angle of the base needs to be restricted to avoid line collision.
  • the angle difference delta_yaw_handle_target between the current angle of the pan/tilt head and the current angle of the base may be limited to a range of -180 to 180 degrees.
  • the code "dgs_math_angle_limit_pi(&delta_yaw_handle_target)" may be called to limit the angle difference delta_yaw_handle_target between the current angle and the current angle of the base within the range of -180 to 180 degrees.
  • the specified angle set_A input by the user and the angle difference delta_yaw_handle_target can be calculated according to the first operation rule set_A+delta_yaw_handle_target-2*pi to calculate the amount of rotation of the pan/tilt.
  • the target angle real_run_yaw.
  • the second preset angle range is a range where the current joint angle is smaller than the second preset angle; correspondingly, the second operation rule is to combine the specified angle input by the user, the angle difference, and the Regarding the calculation rule for the second preset angle, the second preset angle may be -pi (-180 degrees), for example.
  • the angle range it belongs to belongs to the second preset angle range, and the second preset angle range is yaw ⁇ -pi (that is, -180 degrees), If the current joint angle continues to rotate, it will also cause the pan/tilt to rotate to the limit (-270 degrees), which will cause a line collision, so it is between the current angle of the pan/tilt and the current angle of the base
  • the target angle real_run_yaw at which the pan/tilt needs to be rotated can be determined based on the second operation rule: set_A+delta_yaw_handle_target+2*pi.
  • the third preset angle range is a range where the current joint angle is greater than or equal to the second preset angle and less than or equal to the first preset angle; the third operation rule is to set the user The input specified angle and the rules for calculating the angle difference.
  • the angle range it belongs to belongs to the third preset angle range, and the third preset The angle range is -pi ⁇ yaw ⁇ pi, so it can be calculated according to the third algorithm, based on the angle difference delta_yaw_handle_target between the current angle and the current angle of the base and the specified angle set_A to calculate the rotation of the pan/tilt The target angle, where the third operation rule is set_A+delta_yaw_handle_target.
  • S302 Obtain a relative angle of the pan/tilt head relative to the base at the previous moment, and determine the rotational speed of the pan/tilt head relative to the base at the previous moment according to the relative angle.
  • the movable platform may first obtain the relative angle of the pan/tilt to the base at the previous moment, wherein the movable platform obtains the relative angle of the pan/tilt to the base at the previous moment At this time, the current angle of the pan/tilt at the previous moment may be used as the first angle, and the current angle of the pan/tilt at the previous moment may be used as the second angle. Further, the movable After determining the first angle and the second angle, the platform can calculate the angle difference between the first angle and the second angle, and calculate the difference between the first angle and the second angle. The angle difference of is taken as the relative angle of the PTZ with respect to the base at the previous moment.
  • the actual rotational speed of the pan/tilt relative to the base at the previous moment can be determined according to the relative angle, so that The actual rotational speed of the platform at the previous moment determines the rotational speed of the pan/tilt relative to the base at the previous moment.
  • the movable platform when the movable platform determines the rotational speed of the pan/tilt relative to the base at the previous moment according to the actual rotational speed of the pan/tilt at the previous moment, it may first determine the rotational speed of the pan/tilt relative to the base at the previous moment.
  • the current angle of the PTZ and the current angle of the base determine the following speed of the PTZ relative to the base; based on the actual rotation speed of the PTZ at the previous moment, and the PTZ relative to the base follow the speed to determine the relative speed of the pan/tilt relative to the base at the previous moment.
  • the movable platform may execute cmd_rad_earth to determine the current command attitude of the pan/tilt head to determine the current angle target_yaw_pi of the pan/tilt head, and at the same time, execute the measurement attitude command euler_handle_rad_yaw to determine the base.
  • S303 Determine the angle at which the pan/tilt moves relative to the base at the previous moment according to the rotational speed of the pan/tilt relative to the base at the previous moment.
  • S304 Determine the angle difference between the current angle of the pan/tilt and the designated angle according to the designated angle and the angle at which the pan/tilt moved relative to the base at the previous moment.
  • step S303-step S305 it is a specific refinement of the above step S203.
  • the movable platform may determine the rotational speed of the pan/tilt relative to the base at the previous moment based on the pan/tilt The rotation speed relative to the base at the previous moment determines the angle of the pan/tilt relative to the base at the previous moment.
  • S306 Control the rotation of the pan/tilt to the target angle according to the rotational speed of the pan/tilt relative to the base at the current moment, so that the pan/tilt reaches the specified angle relative to the base.
  • the movable platform when the movable platform controls the pan-tilt to rotate to the target angle according to the rotational speed relative to the base at the current moment, it may first base on the rotational speed relative to the base at the current moment and follow Speed, determine the actual rotation speed of the pan/tilt, and control the rotation of the pan/tilt according to the actual rotation speed to reach the specified angle.
  • the movable platform controls the rotation of the PTZ, since the current angle corresponding to the base of the movable platform is always changing, the movable platform can repeat step S302-step S306 to make the cloud The stage finally reaches the specified angle input by the user, completing the control of the pan-tilt rotation without referring to the operating state of the movable platform.
  • the movable platform may determine the target angle of the PTZ rotation based on the specified angle input by the user, the current angle of the PTZ and the current angle of the base, and may obtain the cloud The relative angle of the platform relative to the base at the previous moment, so that the rotational speed of the platform relative to the base at the previous moment can be determined according to the relative angle. Furthermore, the movable platform can be determined according to the relative angle of the platform. The rotation speed of the base at a time is determined to determine the angle at which the pan/tilt moves relative to the base at the previous time, so as to determine the difference between the current angle of the pan/tilt and the specified angle after referring to the specified angle.
  • the rotation speed of the pan/tilt relative to the base can be adjusted in real time based on the angular difference, so that the rotation speed of the pan/tilt relative to the base can be controlled at the current moment.
  • the pan/tilt rotates to the target angle so that the pan/tilt reaches a specified angle relative to the base, which realizes the control of the rotation of the pan/tilt without referring to the motion state of the movable platform, and optimizes the control
  • the calculation rules when the pan/tilt is rotating can effectively improve the calculation efficiency of the processor.
  • the embodiment of the present invention provides a pan/tilt control device, which is used to execute the unit of any one of the foregoing methods.
  • FIG. 5 it is a cloud platform provided by an embodiment of the present invention.
  • the platform control device of this embodiment can be set in a movable platform such as an autonomous vehicle.
  • the platform control device includes: a determination unit 501, an acquisition unit 502, an adjustment unit 503 and Control unit 504.
  • the determining unit 501 is configured to determine the target angle of the pan/tilt rotation based on the designated angle input by the user, the current angle of the pan/tilt and the current angle of the base, where the designated angle is the user input The angle of the pan/tilt with respect to the base;
  • the acquiring unit 502 is configured to acquire the relative angle of the pan/tilt with respect to the base at the previous moment;
  • the determining unit 501 is further configured to determine the rotational speed of the pan/tilt relative to the base at the previous moment according to the relative angle;
  • the determining unit 501 is further configured to determine the angle difference between the current angle of the pan/tilt head and the specified angle according to the rotational speed of the pan/tilt head relative to the base at the previous moment;
  • the adjusting unit 503 is configured to adjust the rotational speed of the pan/tilt head relative to the base at the current moment in real time according to the angle difference;
  • the control unit 504 is configured to control the rotation of the pan/tilt to the target angle according to the rotation speed of the pan/tilt relative to the base at the current moment, so that the pan/tilt reaches the designated angle relative to the base. angle.
  • the determining unit 501 determines the target angle of the pan/tilt rotation based on the specified angle input by the user, the current angle of the pan/tilt and the current angle of the base, it is specifically configured to:
  • the determining unit 501 is specifically configured to determine the target angle of the pan/tilt rotation based on the angle range to which the current joint angle belongs, the angle difference, and the specified angle input by the user:
  • the target angle of the pan-tilt rotation is calculated according to the specified angle input by the user and the angle difference according to the third operation rule.
  • the first preset angle range is a range in which the current joint angle is greater than the first preset angle; the first operation rule is based on the specified angle input by the user, the angle difference, and the The rule for the calculation of the first preset angle.
  • the second preset angle range is a range where the current joint angle is smaller than the second preset angle; the second operation rule is based on the specified angle input by the user, the angle difference, and the The rule for calculating the second preset angle.
  • the third preset angle range is a range where the current joint angle is greater than or equal to a second preset angle, and is less than or equal to a first preset angle; the third operation rule is The rule of calculation based on the specified angle input by the user and the angle difference.
  • the determining unit 501 obtains the relative angle of the pan/tilt with respect to the base at the previous moment, and determines the rotational speed of the pan/tilt relative to the base at the previous moment according to the relative angle.
  • the rotational speed of the pan/tilt relative to the base at the previous moment is determined.
  • the acquiring unit 502 when the acquiring unit 502 acquires the relative angle of the pan-tilt with respect to the base at the previous moment, it is specifically configured to:
  • the angle difference between the first angle and the second angle is taken as the relative angle of the pan/tilt head to the base at the previous moment.
  • the determining unit 501 is specifically configured to determine the rotational speed of the pan/tilt relative to the base at the previous time according to the actual rotational speed of the pan/tilt at the previous time:
  • the relative rotational speed of the pan/tilt relative to the base at the previous moment is determined.
  • the determining unit 501 determines the angle difference between the current angle of the pan/tilt and the specified angle according to the rotational speed of the pan/tilt at the previous moment relative to the base, specifically in:
  • the angle difference between the current angle of the pan/tilt and the designated angle is determined according to the specified angle and the angle of the pan/tilt head relative to the base at the previous moment.
  • the current angle of the pan/tilt is the angle measured by the pan/tilt at the current moment; the current angle of the base is the measured angle of the base at the current moment.
  • the pan/tilt control device provided in this embodiment can execute the pan/tilt control method as shown in FIG. 2 and FIG. 3 provided in the foregoing embodiment, and the execution method and beneficial effects are similar, and details are not repeated here.
  • FIG. 6 is a pan/tilt control device provided by an embodiment of the present invention
  • the PTZ control device 600 includes a processor 601.
  • the processor 601 may be a central processing unit (CPU).
  • the processor 601 may be a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (generic array logic, GAL) or any combination thereof.
  • the pan/tilt control device 600 may further include a memory 602 and a visual sensor 603.
  • the memory 602 is used to store program codes, so that the processor 601 can obtain the program from the memory 602. Code;
  • the vision sensor 603 includes a sensing element, the sensing element can be used to obtain the angle of rotation of the base of the pan/tilt.
  • the processor 601 calls the program code in the memory 602, and when the program code is executed, the processor 601 performs the following operations:
  • the target angle of the pan/tilt rotation is determined, wherein the specified angle is the relative angle of the pan/tilt input by the user.
  • the angle of the base
  • the pan/tilt is controlled to rotate to the target angle, so that the pan/tilt reaches the specified angle relative to the base.
  • the processor 601 determines the target angle of the pan/tilt rotation based on the specified angle input by the user, the current angle of the pan/tilt and the current angle of the base, it is configured to:
  • the processor 601 is configured to determine the target angle of the pan/tilt rotation based on the angle range to which the current joint angle belongs, the angle difference, and the specified angle input by the user:
  • the target angle of the pan-tilt rotation is calculated according to the specified angle input by the user and the angle difference according to the third operation rule.
  • the first preset angle range is a range in which the current joint angle is greater than the first preset angle; the first operation rule is based on the specified angle input by the user, the angle difference, and the The rule for the calculation of the first preset angle.
  • the second preset angle range is a range where the current joint angle is smaller than the second preset angle; the second operation rule is based on the specified angle input by the user, the angle difference, and the The rule for calculating the second preset angle.
  • the third preset angle range is a range where the current joint angle is greater than or equal to a second preset angle, and is less than or equal to a first preset angle; the third operation rule is The rule of calculation based on the specified angle input by the user and the angle difference.
  • the processor 601 obtains the relative angle of the pan/tilt with respect to the base at the previous moment, and determines the rotational speed of the pan/tilt relative to the base at the previous moment according to the relative angle.
  • the rotational speed of the pan/tilt relative to the base at the previous moment is determined.
  • the processor 601 is configured to: when acquiring the relative angle of the pan-tilt with respect to the base at the previous moment:
  • the angle difference between the first angle and the second angle is taken as the relative angle of the pan/tilt head to the base at the previous moment.
  • the processor 601 is configured to determine the rotational speed of the pan/tilt relative to the base at the previous time according to the actual rotational speed of the pan/tilt at the previous time, to:
  • the relative rotational speed of the pan/tilt relative to the base at the previous moment is determined.
  • the processor 601 is configured to determine the angle difference between the current angle of the pan/tilt and the specified angle according to the rotational speed of the pan/tilt at the previous moment relative to the base. :
  • the angle difference between the current angle of the pan/tilt and the designated angle is determined according to the specified angle and the angle of the pan/tilt head relative to the base at the previous moment.
  • the current angle of the pan/tilt is the angle measured by the pan/tilt at the current moment; the current angle of the base is the measured angle of the base at the current moment.
  • the pan-tilt control device provided in this embodiment can execute the pan-tilt control method as shown in FIG. 2 and FIG. 3 provided in the foregoing embodiment, and the execution method and beneficial effects are similar, and will not be repeated here.
  • the embodiment of the present invention also provides a computer program product containing instructions, which when run on a computer, causes the computer to execute the relevant steps of the pan/tilt control method described in the above method embodiment.
  • the program can be stored in a computer readable storage medium. During execution, it may include the procedures of the above-mentioned method embodiments.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Studio Devices (AREA)
  • Accessories Of Cameras (AREA)

Abstract

一种云台控制方法、设备、可移动平台及存储介质,该方法包括:基于用户输入的指定角度、所述云台的当前角度和所述基座的当前角度,确定所述云台转动的目标角度(S201);获取所述云台在上一时刻相对基座的相对角度,并根据所述相对角度确定所述云台在上一时刻相对所述基座的转速(S202);根据所述云台在上一时刻相对所述基座的转速,确定所述云台当前角度与所述指定角度之间的角度差,并根据所述角度差实时调整所述云台在当前时刻相对所述基座的转速(S203);根据所述云台在当前时刻相对所述基座的转速,控制所述云台转动到所述目标角度,以使所述云台到达相对所述基座的所述指定角度(S204),可提升可移动平台控制云台转动时的处理效率。

Description

一种云台控制方法、设备、可移动平台及存储介质 技术领域
本发明涉及控制技术领域,尤其涉及一种云台控制方法、设备、可移动平台及存储介质。
背景技术
随着当前无人驾驶技术的兴起和发展,为了保证无人驾驶技术在可移动平台,如在无人车中的安全应用,需要根据采集到的多方位环境图像,并基于该多方位环境图像对无人车进行有效控制,从而保证无人车的安全行驶。
为了采集到多方位的环境图像,就需要控制安置有摄像头的云台进行转动,而当前控制云台转动的方法,需要参考无人车的运行状态,并在无人车的不同运行状态下采用对云台的不同控制策略,可见,当前控制云台转动的处理流程较为繁琐。
发明内容
本发明实施例提供一种云台控制方法、设备、可移动平台及存储介质,可简化控制云台转动的处理流程。
本发明实施例第一方面提供了一种云台控制方法,应用于可移动平台,所述可移动平台包括基座和云台,所述云台可转动地设置于所述基座上,其中,该方法包括:
基于用户输入的指定角度、所述云台的当前角度和所述基座的当前角度,确定所述云台转动的目标角度,其中,所述指定角度是所述用户输入的所述云台相对于所述基座的角度;
获取所述云台在上一时刻相对基座的相对角度,并根据所述相对角度确定所述云台在上一时刻相对所述基座的转速;
根据所述云台在上一时刻相对所述基座的转速,确定所述云台当前角度与所述指定角度之间的角度差,并根据所述角度差实时调整所述云台在当前时刻相对所述基座的转速;
根据所述云台在当前时刻相对所述基座的转速,控制所述云台转动到所述目标角度,以使所述云台到达相对所述基座的所述指定角度。
本发明实施例第二方面提供了一种云台控制装置,该装置包括:
确定单元,用于基于用户输入的指定角度、所述云台的当前角度和所述基座的当前角度,确定所述云台转动的目标角度,其中,所述指定角度是所述用户输入的所述云台相对于所述基座的角度;
获取单元,用于获取所述云台在上一时刻相对基座的相对角度;
所述确定单元,还用于根据所述相对角度确定所述云台在上一时刻相对所述基座的转速;
所述确定单元,还用于根据所述云台在上一时刻相对所述基座的转速,确定所述云台当前角度与所述指定角度之间的角度差;
调整单元,用于根据所述角度差实时调整所述云台在当前时刻相对所述基座的转速;
控制单元,用于根据所述云台在当前时刻相对所述基座的转速,控制所述云台转动到所述目标角度,以使所述云台到达相对所述基座的所述指定角度。
本发明实施例第三方面提供了一种云台控制设备,所述云台控制设备内置于可移动平台中,所述可移动平台包括基座和云台,所述云台可转动地设置于所述基座上,其特征在于,所述云台控制设备包括处理器;
所述处理器用于执行车需代码,当程序代码被执行时,用于执行以下操作:
基于用户输入的指定角度、所述云台的当前角度和所述基座的当前角度,确定所述云台转动的目标角度,其中,所述指定角度是所述用户输入的所述云台相对于所述基座的角度;
获取所述云台在上一时刻相对基座的相对角度,并根据所述相对角度确定所述云台在上一时刻相对所述基座的转速;
根据所述云台在上一时刻相对所述基座的转速,确定所述云台当前角度与所述指定角度之间的角度差,并根据所述角度差实时调整所述云台在当前时刻相对所述基座的转速;
根据所述云台在当前时刻相对所述基座的转速,控制所述云台转动到所述目标角度,以使所述云台到达相对所述基座的所述指定角度。
本发明实施例第四方面提供了一种可移动平台,包括:
基座;
与所述基座可转动连接的云台;
动力系统,用于为所述可移动平台提供动力;
感测元件,用于获取所述云台和基座的转动角度;
以及如第三方面中所述的云台控制设备,所述云台控制设备用于控制所述云台可所述基座的相对转动。
在本发明实施例中,可移动平台可基于用户输入的指定角度、所述云台的当前角度以及所述基座的当前角度,确定控制所述云台进行转动的目标角度,所述目标角度用于指示期望所述云台转动到的角度位置,使得可移动平台可在不参考该可移动平台的运行状态的前提下,确定控制云台转动的角度,简化了对云台的控制步骤。进一步地,所述可移动平台可获取所述云台在上一时刻相对基座的相对角度,并基于所述相对角度确定所述云台在上一时刻相对所述基座的转速;根据所述云台在上一时刻相对所述基座的转速,确定所述云台的当前角度与所述指定角度之间的角度差;基于所述当前角度与所述指定角度之间的角度差,对所述云台基于所述基座的转速进行实时调整,使所述云台达到所述指定角度,从而,实现了在不参考可移动平台的运动状态的情形下,对云台转动的控制,优化了控制云台转动时的计算规则,可有效提高处理器的计算效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种可移动平台的结构示意图;
图2为本发明实施例提供的一种云台控制方法的流程图;
图3为本发明另一实施例提供的一种云台控制方法的流程图;
图4a为本发明实施例提供的一种关节角的位置示意图;
图4b为本发明另一实施例提供的一种关节角的位置示意图;
图4c为本发明又一实施例提供的一种关节角的位置示意图;
图5为本发明实施例提供的一种云台控制装置的结构示意图;
图6为本发明实施例提供的一种云台控制设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提出的一种云台控制方法,可应用于如图1所示的可移动平台,所述可移动平台包括基座10和云台11,所述云台11可转动地设置在基座10上,所述云台11和所述基座10的连接处可转动。基于本申请提出的云台控制方法,可在不考虑可移动平台运行状态(包括静止状态和运动状态)的情况下,实现对云台转动的控制,并保证所述云台转动到用户输入的指定角度。
在本发明实施例中,提出的云台控制方法适用于处于不同运行状态下的可移动平台,也就是说,可移动平台在不同的运行状态下,均可采用本发明实施例提及的统一的云台控制方法控制云台的转动,也就是说,采用本发明实施例提出的云台控制方法可在看控制云台转动时,不参考可移动平台的运行状态,实现了对所述可移动平台控制云台转动时计算规则的简化,可提升处理器的处理能力,并可提高对所述云台的控制效率。
请参见图2,是本发明实施例提出的一种云台控制方法的示意流程图,如图2所示,该方法包括:
S201,基于用户输入的指定角度、所述云台的当前角度和所述基座的当前角度,确定所述云台转动的目标角度。
在一个实施例中,所述指定角度是所述用户期望所述云台转动到的相对于基座的角度,所述云台的当前角度是所述云台开机时当前测量的角度,所述基座的当前角度是所述基座当前测量的角度,其中,所述云台当前测量的角度和所述基座当前测量的角度,均是在同一坐标系下进行测量得到的角度。
在一个实施例中,当可移动平台的运动状态发生变化时,所述可移动平台的速度对应发生变化,为了保证云台在可移动平台处于移动状态或者处于静止状态时,均能转动到所述指定角度,可假设所述可移动平台的速度是持续多变 的,从而周期性地计算所述云台相对所述基座的速度,以实现对所述云台转速的调整,从而使云台转动所述目标角度,并达到所述用户输入的指定角度。
S202,获取所述云台在上一时刻相对基座的相对角度,并根据所述相对角度确定所述云台在上一时刻相对所述基座的转速。
在一个实施例中,所述上一时刻是指所述云台当前时刻的前一个时刻,也就是在获取所述云台的当前角度的前一时刻,在控制云台转动时,还需要确定控制所述云台转动的实际转速,其中,可通过确定所述云台相对基座的转速确定所述云台云台的实际转速,进一步地,在确定所述云台相对所述基座的转速时,可基于所述云台在上一时刻相对所述基座的转速进行确定。也就是说,可移动平台可基于云台在上一时刻相对基座的转速确定控制云台相对基座的转速,从而进一步确定出控制所述云台的实际转速。
在一个实施例中,可移动平台在基于所述云台在上一时刻相对所述基座的转速时,可基于所述云台在上一时刻相对基座的相对角度确定。具体地,所述可移动平台可根据所述云台相对所述基座的上一时刻的相对角度,确定所述云台在上一时刻转到所述相对角度时的实际转速,并可确定出所述云台相对所述基座的跟随速度,从而可基于所述云台的实际转速和所述跟随速度,确定所述云台在上一时刻相对所述基座的相对转速。具体地,所述云台相对所述基座的相对转速=云台的实际转速-跟随速度。
在确定所述云台在上一时刻相对所述基座的相对转速后,可执行步骤S203,以确定出所述云台在当前时刻相对所述基座的转速。
S203,根据所述云台在上一时刻相对所述基座的转速,确定所述云台当前角度与所述指定角度之间的角度差,并根据所述角度差实时调整所述云台在当前时刻相对所述基座的转速。
在一个实施例中,可移动平台在确定所述云台在上一时刻相对所述基座的转速后,可基于确定所述云台在上一时刻转过的角度,从而可确定出所述云台当前角度与指定角度之间的角度差。
在一个实施例中,可移动平台可根据所述云台当前角度和所述指定角度之间的角度差,不断计算所述云台到达所述目标角度的剩余角度,如果按照所述云台相对所述基座上一时刻的相对转速进行转动,可能在未来一定的时间内转动到超过所述目标角度的角度位置,或者也可能在未来一定的时间内不能转动 到所述目标角度所指示的角度位置,因此,可移动平台需要根据所述云台当前的角度差对所述云台相对所述基座的当前时刻的转速进行实时调整,以保证所述云台运动到所述指定角度。
在一个实施例中,可移动平台可根据所述云台在上一时刻相对所述基座的相对转速,确定所述云台在上一时刻相对所述基座的已转过的角度,进一步地,可基于所述云台已转过的角度,更新所述云台的当前角度,并基于所述云台更新后的当前角度确定所述云台的待转动角度,也就是所述云台在当前时刻的当前角度与所述指定角度之间的角度差,从而基于所述待转的角度确定所述云台相对所述基座的当前时刻的转速,转而执行步骤S204。
S204,根据所述云台在当前时刻相对所述基座的转速,控制所述云台转动所述目标角度,以使所述云台到达相对所述基座的所述指定角度。
在一个实施例中,可移动平台在根据所述当前时刻的相对转速控制所述云台转动所述目标角度时,可移动平台可基于所述云台相对所述基座的当前时刻的转速,确定所述云台在当前时刻的实际转速,从而以所述实际转速控制所述云台进行转动,以到达(或达到)所述指定角度。
在一个实施例中,可基于所述基座的当前角度变化表示可移动平台的速度的变化,因此,可移动平台在控制云台转动时,可参考所述基座的当前角度,确定需要控制云台转动的角度,而不再参考所述可移动平台的运动状态,所以,无论所述可移动平台处于运动状态或静止状态,均可确定出所述可移动平台控制云台进行转动的角度,进一步地,可移动平台可根据在上一时刻相对基座的转速,确定所述云台在当前时刻相对所述基座的转速,从而可基于所述云台在当前时刻相对所述基座的转速,控制云台进行转动,以达到指定所述云台到达的指定角度,完成对云台转动的控制。
在本发明实施例中,可移动平台可基于用户输入的指定角度、所述云台的当前角度以及所述基座的当前角度,确定控制所述云台进行转动的目标角度,所述目标角度用于指示期望所述云台转动到的角度位置,使得可移动平台可在不参考该可移动平台的运行状态的前提下,确定控制云台转动的角度,简化了对云台的控制步骤。进一步地,所述可移动平台可获取所述云台在上一时刻相对基座的相对角度,并基于所述相对角度确定所述云台在上一时刻相对所述基座的转速,从而可根据所述云台在上一时刻相对所述基座的转速,确定所述云 台的当前角度与所述指定角度之间的角度差,基于所述当前角度与所述指定角度之间的角度差,可对所述云台基于所述基座的转速进行实时调整,使所述云台达到所述指定角度,实现了在不参考可移动平台的运动状态的情形下,对云台转动的控制,优化了控制云台转动时的计算规则,可有效提高处理器的计算效率。
请参见图3,是本申请提出的一种云台控制方法的示意流程图,如图3所示,该方法可包括:
S301,基于用户输入的指定角度、所述云台的当前角度和所述基座的当前角度,确定所述云台转动的目标角度。
在一个实施例中,在可移动平台确定所述云台相对于所述基座的目标角度时,可先计算所述云台的当前角度和所述基座的当前角度之间的角度差,进一步地,可确定所述云台的当前关节角,所述当前关节角为所述云台已转过的角度,在确定所述云台的当前角度和所述基座的当前角度之间的角度差,以及所述云台的当前关节角后,可基于所述当前关节角所属的角度范围、所述角度差和用户输入的指定角度,确定所述云台相对于所述基座的目标角度。
在一个实施例中,若所述用户输入的期望云台转动到的角度为set_A,所述set_A是相对所述基座的角度,其取值例如可以是-45度,或者30度,其中,set_A的取值中携带的符号用于表示所述云台相对所述基座的偏移,在一个实施例中,可在携带的符号为“-”时,表示相对所述基座向左偏移,也就是说,当set_A=-45度时,表示所述云台相对所述基座向左偏移45度;或者在没有携带符号以及携带的符号为“+”时,表示相对所述基座向右偏移,也就是说,当set_A=30度时,表示所述云台相对所述基座向友偏移30度。其中,也可在没有携带符号或者携带的符号为“+”时,表示相对所述基座向左偏移,在携带的符号为“-”时,表示相对所述基座向右偏移。
进一步地,如果所述云台的当前角度为target_yaw_pi,所述基座的当前角度为euler_handle_rad_yaw,则计算所述云台的当前角度和所述基座的当前角度之间的角度差为:delta_yaw_handle_target=euler_handle_rad_yaw-target_yaw_pi。举例来说,如果云台的当前角度t arget_yaw_pi=0度,基座的当前角度euler_handle_rad_yaw=-45度,则所述云台的当前角度和所述基座的 当前角度之间的角度差delta_yaw_handle_target=0-(-45)=45度。
进一步地,可移动平台还需要确定所述云台的当前关节角yaw,所述当前关节角为所述云台已转过的角度,从而可基于所述当前关节角yaw所属的角度范围,确定所述云台转动的目标角度real_run_yaw。在一个实施例中,若所述当前关节角所属的角度范围属于第一预设角度范围,则根据用户输入的指定角度和所述角度差按照第一运算规则,计算所述云台转动的目标角度。其中,所述第一预设角度范围为所述当前关节角大于第一预设角度的范围;对应的,所述第一运算规则是将用户输入的指定角度、所述角度差以及所述第一预设角度进行运算的规则。
在一个实施例中,当所述第一预设角度为pi(180度)时,所述第一预设角度范围例如可以是yaw>pi,对应的,所述第一运算规则是real_run_yaw=set_A+delta_yaw_handle_target-2*pi。在所述当前关节角yaw>180度时,如图4a的A点所示,如果继续转动,则可能导致所述云台转动到限位(270度),而导致云台撞线,因此,需要对确定的所述云台的当前角度和所述基座的当前角度之间的角度差delta_yaw_handle_target进行限制,以免引起撞线。在一个实施例中,可将云台的当前角度和所述基座的当前角度之间的角度差delta_yaw_handle_target限制在-180~180度的范围内。在一个实施例中,可调用代码“dgs_math_angle_limit_pi(&delta_yaw_handle_target)”将所述当前角度和所述基座的当前角度之间的角度差delta_yaw_handle_target限制在-180~180度的范围内。
具体地,在所述当前关节角yaw>180度时,可根据用户输入的指定角度set_A和所述角度差delta_yaw_handle_target按照第一运算规则set_A+delta_yaw_handle_target-2*pi,计算所述云台需要转动的目标角度real_run_yaw。
在一个实施例中,第二预设角度范围为所述当前关节角小于第二预设角度的范围;对应的,所述第二运算规则是将用户输入的指定角度、所述角度差以及所述第二预设角度进行运算的规则,所述第二预设角度例如可以是-pi(-180度)。如果所述当前关节角yaw如图4b中的B点所示,其所属的角度范围属于第二预设角度范围,所述第二预设角度范围为yaw<-pi(即-180度),如果所述当前关节角继续转动,也会导致所述云台转动到限位(-270度),而引起 撞线,所以在所述云台的当前角度和所述基座的当前角度之间的角度差在第二预设角度范围时,可基于第二运算规则:set_A+delta_yaw_handle_target+2*pi确定所述云台需要转动的目标角度real_run_yaw。
在一个实施例中,第三预设角度范围为所述当前关节角大于或等于第二预设角度的范围,且小于或等于第一预设角度的范围;所述第三运算规则是将用户输入的指定角度以及所述角度差进行运算的规则,如果所述当前关节角yaw如图4c中的C点所示,其所属的角度范围属于第三预设角度范围,所述第三预设角度范围为-pi≤yaw≤pi,所以,可按照第三运算规则计算,基于所述当前角度和所述基座的当前角度之间的角度差delta_yaw_handle_target和所述指定角度set_A计算云台转动的目标角度,其中,第三运算规则为set_A+delta_yaw_handle_target。
举例来说,如果set_A=30度,云台的当前角度为target_yaw_pi=0度,基座的当前角度为euler_handle_rad_yaw=-45度,则所述云台的当前角度和所述基座的当前角度之间的角度差delta_yaw_handle_target=0-(-45)=45度,假设确定的所述云台的当前关节角为250度,由于所述云台的当前关节角250度>180度,则在确定所述云台转动的目标角度时,可按照第二运算规则计算所述云台需要转动的目标角度,即所述云台需要转动的目标角度为real_run_yaw=set_A+delta_yaw_handle_target+2*pi=30度+45度-360度=-285度,也就是说,在后续确定控制云台转动的速度后,控制所述云台向基于当前角度的-285度的角度进行转动。
S302,获取所述云台在上一时刻相对基座的相对角度,并根据所述相对角度确定所述云台在上一时刻相对所述基座的转速。
在一个实施例中,可移动平台可先获取所述云台在上一时刻相对基座的相对角度,其中,所述可移动平台在获取所述云台在上一时刻相对基座的相对角度时,可先将所述云台在上一时刻的当前角度作为第一角度,并将所述云台在上一时刻的前一时刻的当前角度作为第二角度,进一步地,所述可移动平台在确定所述第一角度和所述第二角度后,可计算所述第一角度和所述第二角度之间的角度差,并将所述第一角度和所述第二角度之间的角度差作为所述云台在上一时刻相对基座的相对角度。
在确定所述云台在上一时刻相对所述基座的相对角度后,可根据所述相对 角度确定所述云台在上一时刻相对所述基座的实际转速,从而可根据所述云台在上一时刻的实际转速,确定所述云台在上一时刻相对所述基座的转速。
在一个实施例中,所述可移动平台在根据所述云台在上一时刻的实际转速,确定所述云台在上一时刻相对所述基座的转速时,可先根据所述云台的当前角度和所述基座的当前角度,确定所述云台相对所述基座的跟随速度;基于所述云台在上一时刻的实际转速,以及所述云台相对所述基座的跟随速度,确定所述云台在上一时刻相对所述基座的相对转速。
在一个实施例中,可移动平台可执行用于确定所述云台当前的命令姿态cmd_rad_earth,以确定所述云台的当前角度target_yaw_pi,同时,可执行用于确定基座的测量姿态命令euler_handle_rad_yaw,以确定所述基座的当前角度euler_handle_rad_yaw,可计算得到所述云台的当前角度和所述基座的当前角度之间的角度差delta_yaw_handle_target=euler_handle_rad_yaw-target_yaw_pi,从而可基于所述当前角度和所述基座的当前角度之间的角度差delta_yaw_handle_target计算得到所述云台相对所述基座的跟随速度follow_spd_rps_yaw=k*delta_yaw_handle_target。
在计算所述云台在上一时刻的实际转速时,可调用计算代码:
“spd=target_atti->tar_atti_cmd.cmd_rad_earth[EULER_Y]–
custom_ctrl->custom_cmd_offset_angle_rad_earth[EULER_Y]”进行运算,得到所述云台在上一时刻的实际转速,从而可基于得到的实际转速计算得到所述云台相对所述基座的转速:spd_no_follow=spd-follow_spd_rps_yaw。
S303,根据所述云台在上一时刻相对基座的转速,确定所述云台在上一时刻相对所述基座运行的角度。
S304,根据所述指定角度和所述云台在上一时刻相对基座运行的角度,确定所述云台当前角度与所述指定角度之间的角度差。
S305,根据所述角度差实时调整所述云台在当前时刻相对所述基座的转速。
在步骤S303-步骤S305中,是对上述步骤S203的具体细化,具体地,可移动平台可在确定所述云台在上一时刻相对所述基座的转速后,基于所述云台在上一时刻相对基座的转速,确定所述云台在上一时刻相对所述基座运行的角度。在一个实施例中,可移动平台可对所述云台在上一时刻相对所述基座运行的角度进行积分:delta_yaw+=spd_no_follow,以得到所述云台在上一时刻相 对所述基座运行的角度。
在确定所述云台在上一时刻相对所述基座运行的角度后,可进一步得基于所述用户输入的指定角度set_A,确定所述云台当前角度与所述指定角度之间的角度差:angle_err_rad_yaw=real_run_yaw-delta_yaw,也就是说,计算得到的角度差是所述云台转动到所述用户输入的指定角度处,还差的角度大小,从而可移动平台可根据所述角度差对所述云台在当前时刻的转速进行实时调整:speed_rad_per_sec_earth=angle_err_rad_yaw*k1,并转而执行步骤S306。
S306,根据所述云台在当前时刻相对所述基座的转速,控制所述云台转动到所述目标角度,以使所述云台到达相对所述基座的所述指定角度。
在一个实施例中,可移动平台在根据当前时刻相对所述基座的转速,控制所述云台转动到所述目标角度时,可先基于所述当前时刻相对所述基座的转速以及跟随速度,确定所述云台的实际转动速度,并根据所述实际转动速度控制所述云台进行转动,以达到所述指定角度。
可移动平台在对控制云台转动时,由于所述可移动平台的基座对应的当前角度是一直变化的,所以,所述可移动平台可重复执行步骤S302-步骤S306,以使得所述云台最终达到用户输入的指定角度,完成在不参考可移动平台运行状态的情形下,对云台转动的控制。
在本发明实施例中,可移动平台可基于用户输入的指定角度,所述云台的当前角度和所述基座的当前角度,确定所述云台转动的目标角度,并可获取所述云台在上一时刻相对基座的相对角度,从而可根据所述相对角度确定所述云台在上一时刻相对所述基座的转速,进一步地,可移动平台可根据所述云台在上一时刻相对所述基座的转速,确定所述云台在上一时刻相对所述基座运行的角度,从而在一并参考指定角度后,确定所述云台当前角度与所述指定角度之间的角度差,并可基于所述角度差实时调整所述云台在当前时刻相对所述基座的转速,从而可根据所述云台在当前时刻相对所述基座的转速,控制所述云台转动到所述目标角度,以使所述云台达到相对所述基座的指定角度,实现了在不参考可移动平台的运动状态的情形下,对云台转动的控制,优化了控制云台转动时的计算规则,可有效提高处理器的计算效率。
本发明实施例提供了一种云台控制装置,所述云台控制装置用于执行前述 任一项所述的方法的单元,具体地,参见图5,是本发明实施例提供的一种云台控制装置的示意框图,本实施例的云台控制装置可设置在例如自动驾驶汽车等类型的可移动平台中,所述云台控制装置包括:确定单元501,获取单元502,调整单元503和控制单元504。
确定单元501,用于基于用户输入的指定角度、所述云台的当前角度和所述基座的当前角度,确定所述云台转动的目标角度,其中,所述指定角度是所述用户输入的所述云台相对于所述基座的角度;
获取单元502,用于获取所述云台在上一时刻相对基座的相对角度;
所述确定单元501,还用于根据所述相对角度确定所述云台在上一时刻相对所述基座的转速;
所述确定单元501,还用于根据所述云台在上一时刻相对所述基座的转速,确定所述云台当前角度与所述指定角度之间的角度差;
调整单元503,用于根据所述角度差实时调整所述云台在当前时刻相对所述基座的转速;
控制单元504,用于根据所述云台在当前时刻相对所述基座的转速,控制所述云台转动到所述目标角度,以使所述云台到达相对所述基座的所述指定角度。
在一个实施例中,所述确定单元501在基于用户输入的指定角度、所述云台的当前角度和所述基座的当前角度,确定所述云台转动的目标角度时,具体用于:
计算所述云台的当前角度和所述基座的当前角度之间的角度差;
确定所述云台的当前关节角,所述当前关节角为所述云台已转过的角度;
基于所述当前关节角所属的角度范围、所述角度差和用户输入的指定角度,确定所述云台转动的目标角度。
在一个实施例中,所述确定单元501在基于所述当前关节角所属的角度范围、所述角度差和用户输入的指定角度,确定所述云台转动的目标角度时,具体用于:
若所述当前关节角所属的角度范围属于第一预设角度范围,则根据用户输入的指定角度和所述角度差按照第一运算规则,计算所述云台转动的目标角度;
若所述当前关节角所属的角度范围属于第二预设角度范围,则根据用户输 入的指定角度和所述角度差按照第二运算规则,计算所述云台转动的目标角度;
若所述当前关节角所属的角度范围属于第三预设角度范围,则根据用户输入的指定角度和所述角度差按照第三运算规则,计算所述云台转动的目标角度。
在一个实施例中,所述第一预设角度范围为所述当前关节角大于第一预设角度的范围;所述第一运算规则是基于用户输入的指定角度、所述角度差以及所述第一预设角度进行运算的规则。
在一个实施例中,所述第二预设角度范围为所述当前关节角小于第二预设角度的范围;所述第二运算规则是基于用户输入的指定角度、所述角度差以及所述第二预设角度进行运算的规则。
在一个实施例中,所述第三预设角度范围为所述当前关节角大于或等于第二预设角度的范围,且小于或等于第一预设角度的范围;所述第三运算规则是基于用户输入的指定角度以及所述角度差进行运算的规则。
在一个实施例中,所述确定单元501在获取所述云台在上一时刻相对基座的相对角度,并根据所述相对角度确定所述云台在上一时刻相对所述基座的转速时,具体用于:
获取所述云台在上一时刻相对基座的相对角度,并根据所述相对角度确定所述云台在上一时刻的实际转速;
根据所述云台在上一时刻的实际转速,确定所述云台在上一时刻相对所述基座的转速。
在一个实施例中,所述获取单元502在获取所述云台在上一时刻相对基座的相对角度时,具体用于:
将所述云台在上一时刻的当前角度作为第一角度,并将所述云台在上一时刻的前一时刻的当前角度作为第二角度;
将所述第一角度与所述第二角度之间的角度差,作为所述云台在上一时刻相对基座的相对角度。
在一个实施例中,所述确定单元501在根据所述云台在上一时刻的实际转速,确定所述云台在上一时刻相对所述基座的转速时,具体用于:
根据所述云台的当前角度和所述基座的当前角度,确定所述云台相对所述基座的跟随速度;
基于所述云台在上一时刻的实际转速,以及所述云台相对所述基座的跟随 速度,确定所述云台在上一时刻相对所述基座的相对转速。
在一个实施例中,所述确定单元501在根据所述云台在上一时刻相对所述基座的转速,确定所述云台当前角度与所述指定角度之间的角度差时,具体用于:
根据所述云台在上一时刻相对基座的转速,确定所述云台在上一时刻相对所述基座运行的角度;
根据所述指定角度和所述云台在上一时刻相对基座运行的角度,确定所述云台当前角度与所述指定角度之间的角度差。
在一个实施例中,所述云台的当前角度为所述云台在当前时刻测量的角度;所述基座的当前角度为所述基座在当前时刻的测量角度。
在一个实施例中,本实施例提供的云台控制装置能执行前述实施例提供的如图2和图3所示的云台控制方法,且执行方式和有益效果类似,在这里不再赘述。
本发明实施例提供了一种云台控制设备,所述云台控制设备可应用于上述实施例提及的可移动平台中,其中,图6是本发明实施例提供的一种云台控制设备的结构图,如图6所示,所述云台控制设备600包括处理器601。
其中,所述处理器601可以是中央处理器(central processing unit,CPU)。所述处理器601可以是硬件芯片。所述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。所述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
在一个实施例中,所述云台控制设备600还可包括存储器602和视觉传感器603,所述存储器602用于存储程序代码,以便于所述处理器601从所述存储器602中获取所述程序代码;所述视觉传感器603包括感测元件,所述感测元件可用于获取云台可基座的转动角度。
处理器601调用存储器602中的程序代码,当程序代码被执行时,处理器601执行如下操作:
基于用户输入的指定角度、所述云台的当前角度和所述基座的当前角度,确定所述云台转动的目标角度,其中,所述指定角度是所述用户输入的所述云台相对于所述基座的角度;
获取所述云台在上一时刻相对基座的相对角度,并根据所述相对角度确定所述云台在上一时刻相对所述基座的转速;
根据所述云台在上一时刻相对所述基座的转速,确定所述云台当前角度与所述指定角度之间的角度差,并根据所述角度差实时调整所述云台在当前时刻相对所述基座的转速;
根据所述云台在当前时刻相对所述基座的转速,控制所述云台转动到所述目标角度,以使所述云台到达相对所述基座的所述指定角度。
在一个实施例中,所述处理器601在基于用户输入的指定角度、所述云台的当前角度和所述基座的当前角度,确定所述云台转动的目标角度时,用于:
计算所述云台的当前角度和所述基座的当前角度之间的角度差;
确定所述云台的当前关节角,所述当前关节角为所述云台已转过的角度;
基于所述当前关节角所属的角度范围、所述角度差和用户输入的指定角度,确定所述云台转动的目标角度。
在一个实施例中,所述处理器601在基于所述当前关节角所属的角度范围、所述角度差和用户输入的指定角度,确定所述云台转动的目标角度时,用于:
若所述当前关节角所属的角度范围属于第一预设角度范围,则根据用户输入的指定角度和所述角度差按照第一运算规则,计算所述云台转动的目标角度;
若所述当前关节角所属的角度范围属于第二预设角度范围,则根据用户输入的指定角度和所述角度差按照第二运算规则,计算所述云台转动的目标角度;
若所述当前关节角所属的角度范围属于第三预设角度范围,则根据用户输入的指定角度和所述角度差按照第三运算规则,计算所述云台转动的目标角度。
在一个实施例中,所述第一预设角度范围为所述当前关节角大于第一预设角度的范围;所述第一运算规则是基于用户输入的指定角度、所述角度差以及所述第一预设角度进行运算的规则。
在一个实施例中,所述第二预设角度范围为所述当前关节角小于第二预设角度的范围;所述第二运算规则是基于用户输入的指定角度、所述角度差以及所述第二预设角度进行运算的规则。
在一个实施例中,所述第三预设角度范围为所述当前关节角大于或等于第二预设角度的范围,且小于或等于第一预设角度的范围;所述第三运算规则是基于用户输入的指定角度以及所述角度差进行运算的规则。
在一个实施例中,所述处理器601在获取所述云台在上一时刻相对基座的相对角度,并根据所述相对角度确定所述云台在上一时刻相对所述基座的转速时,用于:
获取所述云台在上一时刻相对基座的相对角度,并根据所述相对角度确定所述云台在上一时刻的实际转速;
根据所述云台在上一时刻的实际转速,确定所述云台在上一时刻相对所述基座的转速。
在一个实施例中,所述处理器601在获取所述云台在上一时刻相对基座的相对角度时,用于:
将所述云台在上一时刻的当前角度作为第一角度,并将所述云台在上一时刻的前一时刻的当前角度作为第二角度;
将所述第一角度与所述第二角度之间的角度差,作为所述云台在上一时刻相对基座的相对角度。
在一个实施例中,所述处理器601在根据所述云台在上一时刻的实际转速,确定所述云台在上一时刻相对所述基座的转速时,用于:
根据所述云台的当前角度和所述基座的当前角度,确定所述云台相对所述基座的跟随速度;
基于所述云台在上一时刻的实际转速,以及所述云台相对所述基座的跟随速度,确定所述云台在上一时刻相对所述基座的相对转速。
在一个实施例中,所述处理器601在根据所述云台在上一时刻相对所述基座的转速,确定所述云台当前角度与所述指定角度之间的角度差时,用于:
根据所述云台在上一时刻相对基座的转速,确定所述云台在上一时刻相对所述基座运行的角度;
根据所述指定角度和所述云台在上一时刻相对基座运行的角度,确定所述云台当前角度与所述指定角度之间的角度差。
在一个实施例中,所述云台的当前角度为所述云台在当前时刻测量的角度;所述基座的当前角度为所述基座在当前时刻的测量角度。
本实施例提供的云台控制设备能执行前述实施例提供的如图2和图3所示的云台控制方法,且执行方式和有益效果类似,在这里不再赘述。
本发明实施例还提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述方法实施例所述的云台控制方法的相关步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明部分实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (28)

  1. 一种云台控制方法,应用于可移动平台,所述可移动平台包括基座和云台,所述云台可转动地设置于所述基座上,其特征在于,包括:
    基于用户输入的指定角度、所述云台的当前角度和所述基座的当前角度,确定所述云台转动的目标角度,其中,所述指定角度是所述用户输入的所述云台相对于所述基座的角度;
    获取所述云台在上一时刻相对基座的相对角度,并根据所述相对角度确定所述云台在上一时刻相对所述基座的转速;
    根据所述云台在上一时刻相对所述基座的转速,确定所述云台当前角度与所述指定角度之间的角度差,并根据所述角度差实时调整所述云台在当前时刻相对所述基座的转速;
    根据所述云台在当前时刻相对所述基座的转速,控制所述云台转动到所述目标角度,以使所述云台到达相对所述基座的所述指定角度。
  2. 根据权利要求1所述的方法,其特征在于,所述基于用户输入的指定角度、所述云台的当前角度和所述基座的当前角度,确定所述云台转动的目标角度,包括:
    计算所述云台的当前角度和所述基座的当前角度之间的角度差;
    确定所述云台的当前关节角,所述当前关节角为所述云台已转过的角度;
    基于所述当前关节角所属的角度范围、所述角度差和用户输入的指定角度,确定所述云台转动的目标角度。
  3. 根据权利要求2所述的方法,其特征在于,所述基于所述当前关节角所属的角度范围、所述角度差和用户输入的指定角度,确定所述云台转动的目标角度,包括:
    若所述当前关节角所属的角度范围属于第一预设角度范围,则根据用户输入的指定角度和所述角度差按照第一运算规则,计算所述云台转动的目标角度;
    若所述当前关节角所属的角度范围属于第二预设角度范围,则根据用户输入的指定角度和所述角度差按照第二运算规则,计算所述云台转动的目标角度;
    若所述当前关节角所属的角度范围属于第三预设角度范围,则根据用户输入的指定角度和所述角度差按照第三运算规则,计算所述云台转动的目标角度。
  4. 根据权利要求3所述的方法,其特征在于,所述第一预设角度范围为所述当前关节角大于第一预设角度的范围;所述第一运算规则是基于用户输入的指定角度、所述角度差以及所述第一预设角度进行运算的规则。
  5. 根据权利要求3所述的方法,其特征在于,所述第二预设角度范围为所述当前关节角小于第二预设角度的范围;所述第二运算规则是基于用户输入的指定角度、所述角度差以及所述第二预设角度进行运算的规则。
  6. 根据权利要求3所述的方法,其特征在于,所述第三预设角度范围为所述当前关节角大于或等于第二预设角度的范围,且小于或等于第一预设角度的范围;所述第三运算规则是基于用户输入的指定角度以及所述角度差进行运算的规则。
  7. 根据权利要求1所述的方法,其特征在于,所述获取所述云台在上一时刻相对基座的相对角度,并根据所述相对角度确定所述云台在上一时刻相对所述基座的转速,包括:
    获取所述云台在上一时刻相对基座的相对角度,并根据所述相对角度确定所述云台在上一时刻的实际转速;
    根据所述云台在上一时刻的实际转速,确定所述云台在上一时刻相对所述基座的转速。
  8. 根据权利要求7所述的方法,其特征在于,所述获取所述云台在上一时刻相对基座的相对角度,包括:
    将所述云台在上一时刻的当前角度作为第一角度,并将所述云台在上一时刻的前一时刻的当前角度作为第二角度;
    将所述第一角度与所述第二角度之间的角度差,作为所述云台在上一时刻相对基座的相对角度。
  9. 根据权利要求7所述的方法,其特征在于,所述根据所述云台在上一时刻的实际转速,确定所述云台在上一时刻相对所述基座的转速,包括:
    根据所述云台的当前角度和所述基座的当前角度,确定所述云台相对所述基座的跟随速度;
    基于所述云台在上一时刻的实际转速,以及所述云台相对所述基座的跟随速度,确定所述云台在上一时刻相对所述基座的相对转速。
  10. 根据权利要求1所述的方法,其特征在于,所述根据所述云台在上一时刻相对所述基座的转速,确定所述云台当前角度与所述指定角度之间的角度差,包括:
    根据所述云台在上一时刻相对基座的转速,确定所述云台在上一时刻相对所述基座运行的角度;
    根据所述指定角度和所述云台在上一时刻相对基座运行的角度,确定所述云台当前角度与所述指定角度之间的角度差。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述云台的当前角度为所述云台在当前时刻测量的角度;所述基座的当前角度为所述基座在当前时刻的测量角度。
  12. 一种云台控制设备,所述云台控制设备内置于可移动平台中,所述可移动平台包括基座和云台,所述云台可转动地设置于所述基座上,其特征在于,所述云台控制设备包括处理器;
    所述处理器用于执行程序代码,当程序代码被执行时,用于执行以下操作:
    基于用户输入的指定角度、所述云台的当前角度和所述基座的当前角度,确定所述云台转动的目标角度,其中,所述指定角度是所述用户输入的所述云台相对于所述基座的角度;
    获取所述云台在上一时刻相对基座的相对角度,并根据所述相对角度确定所述云台在上一时刻相对所述基座的转速;
    根据所述云台在上一时刻相对所述基座的转速,确定所述云台当前角度与 所述指定角度之间的角度差,并根据所述角度差实时调整所述云台在当前时刻相对所述基座的转速;
    根据所述云台在当前时刻相对所述基座的转速,控制所述云台转动到所述目标角度,以使所述云台到达相对所述基座的所述指定角度。
  13. 根据权利要求12所述的设备,其特征在于,所述云台控制设备还包括:
    存储器,所述存储器用于存储程序代码,以便于所述处理器从所述存储器获取所述程序代码。
  14. 根据权利要求9所述的设备,其特征在于,所述处理器在基于用户输入的指定角度、所述云台的当前角度和所述基座的当前角度,确定所述云台转动的目标角度时,执行如下操作:
    计算所述云台的当前角度和所述基座的当前角度之间的角度差;
    确定所述云台的当前关节角,所述当前关节角为所述云台已转过的角度;
    基于所述当前关节角所属的角度范围、所述角度差和用户输入的指定角度,确定所述云台转动的目标角度。
  15. 根据权利要求14所述的设备,其特征在于,所述处理器在基于所述当前关节角所属的角度范围、所述角度差和用户输入的指定角度,确定所述云台转动的目标角度时,执行如下操作:
    若所述当前关节角所属的角度范围属于第一预设角度范围,则根据用户输入的指定角度和所述角度差按照第一运算规则,计算所述云台转动的目标角度;
    若所述当前关节角所属的角度范围属于第二预设角度范围,则根据用户输入的指定角度和所述角度差按照第二运算规则,计算所述云台转动的目标角度;
    若所述当前关节角所属的角度范围属于第三预设角度范围,则根据用户输入的指定角度和所述角度差按照第三运算规则,计算所述云台转动的目标角度。
  16. 根据权利要求15所述的方法,其特征在于,所述第一预设角度范围为所述当前关节角大于第一预设角度的范围;所述第一运算规则是基于用户输 入的指定角度、所述角度差以及所述第一预设角度进行运算的规则。
  17. 根据权利要求15所述的方法,其特征在于,所述第二预设角度范围为所述当前关节角小于第二预设角度的范围;所述第二运算规则是基于用户输入的指定角度、所述角度差以及所述第二预设角度进行运算的规则。
  18. 根据权利要求15所述的方法,其特征在于,所述第三预设角度范围为所述当前关节角大于或等于第二预设角度的范围,且小于或等于第一预设角度的范围;所述第三运算规则是基于用户输入的指定角度以及所述角度差进行运算的规则。
  19. 根据权利要求12所述的设备,其特征在于,所述处理器在获取所述云台在上一时刻相对基座的相对角度,并根据所述相对角度确定所述云台在上一时刻相对所述基座的转速时,执行如下操作:
    获取所述云台在上一时刻相对基座的相对角度,并根据所述相对角度确定所述云台在上一时刻的实际转速;
    根据所述云台在上一时刻的实际转速,确定所述云台在上一时刻相对所述基座的转速。
  20. 根据权利要求19所述的设备,其特征在于,所述处理器在获取所述云台在上一时刻相对基座的相对角度时,执行如下操作:
    将所述云台在上一时刻的当前角度作为第一角度,并将所述云台在上一时刻的前一时刻的当前角度作为第二角度;
    将所述第一角度与所述第二角度之间的角度差,作为所述云台在上一时刻相对基座的相对角度。
  21. 根据权利要求19所述的设备,其特征在于,所述处理器在根据所述云台在上一时刻的实际转速,确定所述云台在上一时刻相对所述基座的转速时,执行如下操作:
    根据所述云台的当前角度和所述基座的当前角度,确定所述云台相对所述基座的跟随速度;
    基于所述云台在上一时刻的实际转速,以及所述云台相对所述基座的跟随速度,确定所述云台在上一时刻相对所述基座的相对转速。
  22. 根据权利要求12所述的设备,其特征在于,所述处理器在根据所述云台在上一时刻相对所述基座的转速,确定所述云台当前角度与所述指定角度之间的角度差时,执行如下操作:
    根据所述云台在上一时刻相对基座的转速,确定所述云台在上一时刻相对所述基座运行的角度;
    根据所述指定角度和所述云台在上一时刻相对基座运行的角度,确定所述云台当前角度与所述指定角度之间的角度差。
  23. 根据权利要求12-22任一项所述的设备,其特征在于,所述云台的当前角度为所述云台在当前时刻测量的角度;所述基座的当前角度为所述基座在当前时刻的测量角度。
  24. 一种可移动平台,其特征在于,包括:
    基座;
    与所述基座可转动连接的云台;
    动力系统,用于为所述可移动平台提供动力;
    感测元件,用于获取所述云台和基座的转动角度;
    以及如权利要求12-22中任一项所述的云台控制设备,所述云台控制设备用于控制所述云台可所述基座的相对转动。
  25. 根据权利要求24所述的可移动平台,其特征在于,所述动力系统为多个电机,所述感测元件为设置于所述多个电机的电位计,用于获取所述电机的转动行程。
  26. 根据权利要求24所述的可移动平台,其特征在于,所述可移动平台为智能机器人。
  27. 根据权利要求26所述的可移动平台,其特征在于,所述智能机器人为可移动车辆。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有程序指令,当所述程序指令在处理器上运行时,实现权利要求1-11任一项所述的云台控制方法。
PCT/CN2019/084847 2019-04-28 2019-04-28 一种云台控制方法、设备、可移动平台及存储介质 WO2020220169A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/084847 WO2020220169A1 (zh) 2019-04-28 2019-04-28 一种云台控制方法、设备、可移动平台及存储介质
CN201980007901.4A CN111656299A (zh) 2019-04-28 2019-04-28 一种云台控制方法、设备、可移动平台及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/084847 WO2020220169A1 (zh) 2019-04-28 2019-04-28 一种云台控制方法、设备、可移动平台及存储介质

Publications (1)

Publication Number Publication Date
WO2020220169A1 true WO2020220169A1 (zh) 2020-11-05

Family

ID=72351851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084847 WO2020220169A1 (zh) 2019-04-28 2019-04-28 一种云台控制方法、设备、可移动平台及存储介质

Country Status (2)

Country Link
CN (1) CN111656299A (zh)
WO (1) WO2020220169A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180024558A1 (en) * 2016-07-19 2018-01-25 Christopher Andrew Tacklind Two Wheel In-Line Robots
CN108488572A (zh) * 2018-05-23 2018-09-04 高新兴科技集团股份有限公司 一种主动式防抖云台及其控制方法
CN108521814A (zh) * 2017-09-12 2018-09-11 深圳市大疆灵眸科技有限公司 云台的控制方法、控制器和云台
CN108549399A (zh) * 2018-05-23 2018-09-18 深圳市道通智能航空技术有限公司 飞行器偏航角修正方法、装置及飞行器
CN109076101A (zh) * 2017-12-29 2018-12-21 深圳市大疆创新科技有限公司 云台控制方法、设备及计算机可读存储介质
KR20190024189A (ko) * 2017-08-31 2019-03-08 재단법인대구경북과학기술원 지하구조물 유지보수를 위한 이동 로봇 및 그것을 이용한 자율 동작 생성 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108513652B (zh) * 2017-04-21 2021-08-31 深圳市大疆灵眸科技有限公司 云台的控制方法及装置
CN109213207B (zh) * 2017-06-29 2022-03-29 北京远度互联科技有限公司 云台镜头调整方法、装置及手持云台
CN107526373B (zh) * 2017-09-08 2020-06-05 国网智能科技股份有限公司 一种云台控制系统及其控制方法和装置
CN109154836A (zh) * 2017-09-26 2019-01-04 深圳市大疆灵眸科技有限公司 云台的控制方法、控制设备及云台
CN108780328A (zh) * 2017-12-18 2018-11-09 深圳市大疆灵眸科技有限公司 一种云台控制方法、无人机、云台及存储介质
WO2019126932A1 (zh) * 2017-12-25 2019-07-04 深圳市大疆创新科技有限公司 云台的控制方法和控制设备
WO2019127094A1 (zh) * 2017-12-27 2019-07-04 深圳市大疆创新科技有限公司 无人机、无人机控制方法和装置
EP3734395A4 (en) * 2017-12-27 2021-08-04 SZ DJI Technology Co., Ltd. METHOD OF SWITCHING THE OPERATING MODE OF A CARDAN SUSPENSION AND CONTROL AND IMAGE STABILITY ENHANCEMENT DEVICE
CN108778932B (zh) * 2017-12-29 2021-08-24 深圳市大疆创新科技有限公司 控制云台复位的方法和装置、云台、无人飞行器
JP7033661B2 (ja) * 2018-01-05 2022-03-10 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド 手持ち雲台の制御方法および手持ち雲台

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180024558A1 (en) * 2016-07-19 2018-01-25 Christopher Andrew Tacklind Two Wheel In-Line Robots
KR20190024189A (ko) * 2017-08-31 2019-03-08 재단법인대구경북과학기술원 지하구조물 유지보수를 위한 이동 로봇 및 그것을 이용한 자율 동작 생성 방법
CN108521814A (zh) * 2017-09-12 2018-09-11 深圳市大疆灵眸科技有限公司 云台的控制方法、控制器和云台
CN109076101A (zh) * 2017-12-29 2018-12-21 深圳市大疆创新科技有限公司 云台控制方法、设备及计算机可读存储介质
CN108488572A (zh) * 2018-05-23 2018-09-04 高新兴科技集团股份有限公司 一种主动式防抖云台及其控制方法
CN108549399A (zh) * 2018-05-23 2018-09-18 深圳市道通智能航空技术有限公司 飞行器偏航角修正方法、装置及飞行器

Also Published As

Publication number Publication date
CN111656299A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
JP7465615B2 (ja) 航空機のスマート着陸
WO2018077306A1 (zh) 一种避障跟随方法和电子设备、存储介质
US10796151B2 (en) Mapping a space using a multi-directional camera
WO2018209864A1 (zh) 移动控制方法、装置、机器人及存储介质
CN104184932A (zh) 球机控制方法及装置
US20180210442A1 (en) Systems and methods for controlling a vehicle using a mobile device
US20210263394A1 (en) Method for controlling handheld gimbal, and handheld gimbal
US20170106536A1 (en) Methods and Systems for Selecting a Velocity Profile for Controlling a Robotic Device
CN112824183A (zh) 一种自动泊车交互方法及装置
JP2010231371A (ja) 移動体画像追尾装置および方法
TWI691208B (zh) 改良之監視攝影機方向控制
US11245841B2 (en) Method for marking target position of gimbal, gimbal, and photographing device
CN106060527B (zh) 一种扩展双目相机定位范围的方法和装置
JP2012235712A (ja) 芝刈り状況監視機能を有する自動芝刈り機
KR20220082805A (ko) 모바일 로봇의 항행
JPH10150656A (ja) 画像処理装置及び侵入者監視装置
CN104739514A (zh) 大视场下手术器械的自动跟踪定位方法
WO2020220169A1 (zh) 一种云台控制方法、设备、可移动平台及存储介质
US20210156710A1 (en) Map processing method, device, and computer-readable storage medium
CN114325642A (zh) 激光雷达扫描方法、扫描设备以及计算机可读存储介质
CN110347184B (zh) 一种用于云台自动跟随系统的方位角的实现方法
KR101966396B1 (ko) 위치 판단 시스템, 방법 및 컴퓨터 판독 가능한 기록매체
Digor et al. Exploration strategies for a robot with a continously rotating 3d scanner
CN114667462A (zh) 激光雷达装置、系统以及其控制方法
WO2021081993A1 (zh) 数据存储和处理方法、相关设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926950

Country of ref document: EP

Kind code of ref document: A1