WO2020218165A1 - Water-absorbing resin particles, absorbent article, method for producing water-absorbing resin particles, and method for suppressing liquid leakage of absorbent article - Google Patents

Water-absorbing resin particles, absorbent article, method for producing water-absorbing resin particles, and method for suppressing liquid leakage of absorbent article Download PDF

Info

Publication number
WO2020218165A1
WO2020218165A1 PCT/JP2020/016758 JP2020016758W WO2020218165A1 WO 2020218165 A1 WO2020218165 A1 WO 2020218165A1 JP 2020016758 W JP2020016758 W JP 2020016758W WO 2020218165 A1 WO2020218165 A1 WO 2020218165A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
resin particles
absorbent resin
physiological saline
mass
Prior art date
Application number
PCT/JP2020/016758
Other languages
French (fr)
Japanese (ja)
Inventor
志保 岡澤
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=72942669&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2020218165(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to JP2020556832A priority Critical patent/JP6889811B2/en
Publication of WO2020218165A1 publication Critical patent/WO2020218165A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels

Definitions

  • an absorber containing water-absorbent resin particles has been used as an absorbent article for absorbing a liquid containing water as a main component such as urine (for example, Patent Documents 1 to 3).
  • the present invention provides water-absorbent resin particles in which liquid-absorbent resin particles are arranged inside a liquid-permeable sheet containing a spunbonded non-woven fabric and can suppress liquid leakage from the absorbent article, and an absorbent article using the same.
  • Liquid permeation ratio A [%] (water absorption B [g / g] / water absorption C [g / g]) ⁇ 100
  • the liquid permeation ratio A calculated by the above is more than 0% and 60% or less.
  • the water absorption amount B is absorbed by the water-absorbent resin particles when 1.00 g of the water-absorbent resin particles absorb the physiological saline supplied through the spunbonded non-woven fabric by the DW method under no pressure. It is the mass of the physiological saline solution per 1 g of the water-absorbent resin particles that is absorbed within 5 minutes after the start of.
  • the mass per unit area of the spunbonded non-woven fabric is 11 to 15 g / m 2 .
  • the water absorption amount C is the mass of the physiological saline solution per 1 g of the water-absorbent resin particles, which is absorbed when 2.0 g of the water-absorbent resin particles swells in 500 g of physiological saline solution over 60 minutes.
  • Another aspect of the present invention comprises a liquid impermeable sheet, an absorber, and a liquid permeable sheet, wherein the liquid impermeable sheet, the absorber and the liquid permeable sheet are arranged in this order.
  • the absorber contains the water-absorbent resin particles.
  • Yet another aspect of the present invention relates to a method for producing water-absorbent resin particles, which comprises a step of selecting water-absorbent resin particles having a liquid permeation ratio A of more than 0% and 60% or less.
  • Yet another aspect of the present invention is to suppress liquid leakage from the absorbent article containing the water-absorbent resin particles, which comprises setting the liquid permeation ratio A of the water-absorbent resin particles to be more than 0% and 60% or less. Regarding how to do it.
  • a water-absorbent resin particle capable of suppressing liquid leakage from an absorbent article in which water-absorbent resin particles are arranged inside a liquid-permeable sheet containing a spunbonded nonwoven fabric, and an absorbent article using the same. Will be done.
  • Water-soluble means that it exhibits a solubility in water of 5% by mass or more at 25 ° C.
  • the materials exemplified in the present specification may be used alone or in combination of two or more.
  • the content of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
  • the liquid permeation ratio A of the water-absorbent resin particles is calculated by the following formula.
  • the water-absorbent resin particles according to one embodiment have a liquid permeation ratio A of more than 0% and 60% or less.
  • Liquid permeation ratio A [%] (water absorption B [g / g] / water absorption C [g / g]) ⁇ 100
  • the water absorption amount B is determined by the water-absorbent resin particles starting to be absorbed when the physiological saline supplied via the spunbonded non-woven fabric is absorbed by 1.00 g of the water-absorbent resin particles by the DW method under no pressure. It is the mass of the physiological saline solution per 1 g of the water-absorbent resin particles that is absorbed until 5 minutes after that.
  • the spunbonded non-woven fabric used for measuring the water absorption amount B has a mass per unit area of 11 to 15 g / m 2 . More specifically, the spunbonded non-woven fabric used for measuring the water absorption B is a non-woven fabric formed of polypropylene fibers that have been hydrophilized, and is composed of a spunbond layer, a melt blow layer, a melt blow layer, and a spunbond layer. It has a four-layer structure, and these are laminated in this order.
  • FIG. 1 is a schematic diagram showing a method of measuring the water absorption amount B.
  • the measuring device shown in FIG. 1 has the same configuration as the device for measuring the non-pressurized DW value, and has a burette portion 2, a conduit 5, a measuring table 13, a spunbonded non-woven fabric 15, a frame 11, and a frame 11. It has a clamp 3.
  • the burette portion 2 includes a burette tube 21 on which a scale is described, a rubber stopper 23 for sealing the opening at the upper part of the burette tube 21, a cock 22 connected to the tip of the lower portion of the burette tube 21, and a lower portion of the burette tube 21. It has an air introduction pipe 25 and a cock 24 connected to the burette.
  • the burette portion 2 is fixed by a clamp 3.
  • the flat plate-shaped measuring table 13 has a through hole 13a having a diameter of 2 mm formed in the central portion thereof, and is supported by a frame 11 having a variable height.
  • the through hole 13a of the measuring table 13 and the cock 22 of the burette portion 2 are connected by a conduit 5.
  • the inner diameter of the conduit 5 is 6 mm.
  • the water absorption amount B is measured by a method including the following steps in an environment of a temperature of 25 ° C. and a humidity of 50 ⁇ 10%.
  • (1) The cock 22 and the cock 24 of the burette portion 2 are closed, and a physiological saline solution 50 (saline solution having a concentration of 0.9% by mass) at 25 ° C. is put into the burette tube 21 through the opening at the upper part of the burette tube 21.
  • the concentration of 0.9% by mass of the physiological saline is a concentration based on the mass of the physiological saline.
  • the inside of the conduit 5 is filled with saline 50 so that air bubbles do not enter.
  • the height of the measuring table 13 is adjusted so that the height of the water surface of the physiological saline solution that has reached the inside of the through hole 13a is the same as the height of the upper surface of the measuring table 13. After the adjustment, the height of the water surface of the physiological saline solution 50 in the burette tube 21 is read by the scale of the burette tube 21, and the position is set as the zero point (reading value at 0 seconds).
  • a spunbonded non-woven fabric 15 is laid in the vicinity of the through hole 13a on the measuring table 13, and a cylinder having an inner diameter of 30 mm and a height of 20 mm is placed in the center thereof.
  • the decrease amount of the physiological saline solution 50 in the burette tube 21 (that is, the amount of the physiological saline solution absorbed by the water-absorbent resin particles 10a) is sequentially read in units of 0.1 mL.
  • the weight loss Wc (g) of the physiological saline 50 5 minutes after the start of water absorption of the water-absorbent resin particles 10a is read.
  • the water absorption amount B is calculated by the following formula.
  • the water absorption amount B is the mass per 1.00 g of the water-absorbent resin particles of the absorbed physiological saline.
  • Water absorption B [g / g] Wc x 1.0028 / 1.00
  • the water absorption amount C is the mass of the physiological saline solution per 1 g of the water-absorbent resin particles, which is absorbed when 2.0 g of the water-absorbent resin particles swell in 500 g of physiological saline solution over 60 minutes.
  • the water absorption amount C is measured by a method including the following steps in an environment of a temperature of 25 ° C. and a humidity of 50 ⁇ 10%.
  • 500 g of physiological saline saline solution having a concentration of 0.9% by mass
  • the reason why the liquid permeation ratio A is moderately small is that the water-absorbent resin particles span as compared with the water absorption amount C when the water-absorbent resin particles sufficiently absorb the physiological saline by contact with an excessive amount of the physiological saline. It means that the amount of water absorption B when absorbing the physiological saline supplied through the bonded non-woven fabric is small. In the measurement of the water absorption amount B, the water absorption mode of the physiological saline tends to be significantly decelerated at a relatively early stage, and as a result, the water absorption amount B after 5 minutes may remain at a small value.
  • the absorption of the liquid may unexpectedly become a moderately local absorption mode. ing. Therefore, the fact that the liquid permeation ratio A is as small as 60% or less means that the initial water absorption rate of the water-absorbent resin particles is higher than a certain level when the physiological saline is absorbed through the spunbonded non-woven fabric. It is considered that this contributes to the suppression of liquid leakage from the absorbent article in which the water-absorbent resin particles are arranged inside the liquid permeable sheet containing the spunbonded non-woven fabric.
  • the liquid permeation ratio A may be 50% or less.
  • the liquid permeation ratio A may be 1% or more, 5% or more, or 8% or more.
  • the water absorption amount C may be 40 to 65 g / g.
  • the amount of water absorption of the water-absorbent resin particles with respect to physiological saline under a load of 2.07 kPa (hereinafter, may be referred to as "water absorption amount under load”) may be 20 mL / g or more.
  • water absorption amount under load When the amount of water absorption under load is large, high water absorption capacity can be maintained even under the load of the wearer of the absorbent article. From the same viewpoint, the water absorption amount of the water-absorbent resin particles under load may be 25 mL / g or more, 30 mL / g or more, 50 mL / g or less, or 45 mL / g or less.
  • the shape of the water-absorbent resin particles may be, for example, substantially spherical, crushed, or granular.
  • the water-absorbent resin particles according to the present embodiment may be in a form in which fine particles (primary particles) are aggregated (secondary particles) in addition to a form in which each is composed of a single particle.
  • the medium particle size of the water-absorbent resin particles may be 250 to 850 ⁇ m, 300 to 700 ⁇ m, or 300 to 600 ⁇ m.
  • the water-absorbent resin particles may have a desired particle size distribution at the time of being obtained by the production method described later, but the particle size distribution may be adjusted by performing an operation such as particle size adjustment using classification by a sieve. Good.
  • the water-absorbent resin particles can include, for example, a crosslinked polymer formed by polymerizing a monomer containing an ethylenically unsaturated monomer.
  • the crosslinked polymer has a monomer unit derived from an ethylenically unsaturated monomer.
  • the water-absorbent resin particles can be produced by a method including a step of polymerizing a monomer containing an ethylenically unsaturated monomer.
  • the polymerization method include a reverse phase suspension polymerization method, an aqueous solution polymerization method, a bulk polymerization method, and a precipitation polymerization method. From the viewpoint of ensuring good water absorption characteristics of the obtained water-absorbent resin particles and facilitating control of the polymerization reaction, a reverse phase suspension polymerization method or an aqueous solution polymerization method may be applied. In the following, a reverse phase suspension polymerization method will be described as an example as a method for polymerizing an ethylenically unsaturated monomer.
  • the ethylenically unsaturated monomer may be water-soluble.
  • water-soluble ethylenically unsaturated monomers include (meth) acrylic acid and its salts, 2- (meth) acrylamide-2-methylpropanesulfonic acid and its salts, (meth) acrylamide, N, N-dimethyl.
  • the ethylenically unsaturated monomer has an amino group, the amino group may be quaternized.
  • the ethylenically unsaturated monomer may be used alone or in combination of two or more.
  • Functional groups such as the carboxyl group and amino group of the above-mentioned monomers can function as functional groups capable of cross-linking in the surface cross-linking step described later.
  • the ethylenically unsaturated monomer is at least one selected from the group consisting of (meth) acrylic acid and salts thereof, acrylamide, methacrylamide, and N, N-dimethylacrylamide. It may contain a compound of the species.
  • the ethylenically unsaturated monomer may contain (meth) acrylic acid and a salt thereof, and at least one compound selected from the group consisting of acrylamide.
  • the ethylenically unsaturated monomer may contain at least one compound selected from the group consisting of (meth) acrylic acid and salts thereof.
  • the ethylenically unsaturated monomer can be used in the polymerization reaction as an aqueous solution.
  • concentration of the ethylenically unsaturated monomer in the aqueous solution containing the ethylenically unsaturated monomer (hereinafter, simply referred to as "monomer aqueous solution") is 20% by mass or more and the saturation concentration or less, 25 to 70% by mass, or 30. It may be up to 55% by mass.
  • Examples of the water used in the aqueous solution include tap water, distilled water, ion-exchanged water and the like.
  • a monomer other than the above-mentioned ethylenically unsaturated monomer may be used.
  • Such a monomer can be used, for example, by being mixed with an aqueous solution containing the above-mentioned ethylenically unsaturated monomer.
  • the amount of the ethylenically unsaturated monomer used is the total amount of the monomers (the total amount of the monomers for obtaining the water-absorbent resin particles. For example, the total amount of the monomers giving the structural unit of the crosslinked polymer. The same shall apply hereinafter).
  • the ratio of (meth) acrylic acid and its salt may be 70 to 100 mol%, 80 to 100 mol%, 90 to 100 mol%, 95 to 100 mol%, or 100 mol%.
  • the ratio of (meth) acrylic acid and its salt may be 70 to 100 mol%, 80 to 100 mol%, 90 to 100 mol%, 95 to 100 mol%, or 100 mol% with respect to the total amount of the monomer. It may be. "Ratio of (meth) acrylic acid and its salt” means the ratio of the total amount of (meth) acrylic acid and its salt.
  • the acid group may be neutralized with an alkaline neutralizer, and then the monomer solution may be used in the polymerization reaction.
  • the degree of neutralization of an ethylenically unsaturated monomer by an alkaline neutralizing agent increases the osmotic pressure of the obtained water-absorbent resin particles and further enhances the water absorption characteristics (water absorption amount, etc.). It may be 10-100 mol%, 50-90 mol%, or 60-80 mol% of the acidic group in the body.
  • alkaline neutralizing agent examples include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogencarbonate, potassium hydroxide and potassium carbonate; ammonia and the like.
  • the alkaline neutralizer may be used alone or in combination of two or more.
  • the alkaline neutralizer may be used in the form of an aqueous solution to simplify the neutralization operation. Neutralization of the acid group of the ethylenically unsaturated monomer can be performed, for example, by adding an aqueous solution of sodium hydroxide, potassium hydroxide or the like to the above-mentioned monomer aqueous solution and mixing them.
  • the monomer aqueous solution is dispersed in a hydrocarbon dispersion medium in the presence of a surfactant, and the ethylenically unsaturated monomer is polymerized using a radical polymerization initiator or the like.
  • a radical polymerization initiator a water-soluble radical polymerization initiator can be used.
  • Nonionic surfactants include sorbitan fatty acid ester, polyglycerin fatty acid ester, sucrose fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene glycerin fatty acid ester, sorbitol fatty acid ester, polyoxyethylene sorbitol fatty acid ester, and polyoxyethylene.
  • Alkyl ether polyoxyethylene alkyl phenyl ether, polyoxyethylene castor oil, polyoxyethylene hydrogenated castor oil, alkylallyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene polyoxypropylene block copolymer, polyoxyethylene polyoxypropyl alkyl ether, Examples thereof include polyethylene glycol fatty acid ester.
  • Anionic surfactants include fatty acid salts, alkylbenzene sulfonates, alkylmethyl taurates, polyoxyethylene alkylphenyl ether sulfates, polyoxyethylene alkyl ether sulfonates, and polyoxyethylene alkyl ether phosphates. , And the phosphate ester of polyoxyethylene alkyl allyl ether and the like.
  • the surfactant may be used alone or in combination of two or more.
  • the surfactant is a sorbitan fatty acid ester. It may contain at least one compound selected from the group consisting of polyglycerin fatty acid ester and sucrose fatty acid ester. From the viewpoint of easily improving the water absorption characteristics of the obtained water-absorbent resin particles, the surfactant may contain a sucrose fatty acid ester (for example, sucrose stearic acid ester).
  • the amount of the surfactant may be 0.05 to 10 parts by mass, 0.08 to 5 parts by mass, or 0.1 to 3 parts by mass with respect to 100 parts by mass of the monomer aqueous solution.
  • a polymer-based dispersant may be used in combination with the above-mentioned surfactant.
  • the polymer dispersant include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, maleic anhydride-modified EPDM (ethylene / propylene / diene / terpolymer), and maleic anhydride.
  • the polymer-based dispersant may be used alone or in combination of two or more.
  • the polymer-based dispersant includes maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, and maleic anhydride / ethylene copolymer.
  • Maleic anhydride / propylene copolymer, maleic anhydride / ethylene / propylene copolymer, polyethylene, polypropylene, ethylene / propylene copolymer, oxidized polyethylene, oxidized polypropylene, and oxidized ethylene / propylene copolymer It may be at least one selected from the group consisting of.
  • the amount of the polymer-based dispersant may be 0.05 to 10 parts by mass, 0.08 to 5 parts by mass, or 0.1 to 3 parts by mass with respect to 100 parts by mass of the monomer aqueous solution.
  • the hydrocarbon dispersion medium may contain at least one compound selected from the group consisting of chain aliphatic hydrocarbons having 6 to 8 carbon atoms and alicyclic hydrocarbons having 6 to 8 carbon atoms.
  • a chain aliphatic hydrocarbon such as n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane, n-octane; cyclohexane , Methylcyclohexane, cyclopentane, methylcyclopentane, trans-1,2-dimethylcyclopentane, cis-1,3-dimethylcyclopentane, trans-1,3-dimethylcyclopentane and other alicyclic hydrocarbons; benzene, Examples include aromatic hydrocarbons such as toluene and xylene.
  • the hydrocarbon dispersion medium may be used alone
  • the hydrocarbon dispersion medium may contain at least one selected from the group consisting of n-heptane and cyclohexane.
  • n-heptane and cyclohexane from the same viewpoint, as the mixture of the above-mentioned hydrocarbon dispersion medium, for example, a commercially available exol heptane (manufactured by ExxonMobil: containing 75 to 85% of n-heptane and isomeric hydrocarbons) may be used. Good.
  • the amount of the hydrocarbon dispersion medium is 30 to 1000 parts by mass, 40 to 500 parts by mass, or 50 parts by mass with respect to 100 parts by mass of the monomer aqueous solution from the viewpoint of appropriately removing the heat of polymerization and easily controlling the polymerization temperature. It may be up to 300 parts by mass. When the amount of the hydrocarbon dispersion medium is 30 parts by mass or more, the polymerization temperature tends to be easily controlled. When the amount of the hydrocarbon dispersion medium is 1000 parts by mass or less, the productivity of polymerization tends to be improved, which is economical.
  • the radical polymerization initiator may be water-soluble.
  • water-soluble radical polymerization initiators are persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate; methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, and t-butyl cumylper.
  • Peroxides such as oxides, t-butylperoxyacetate, t-butylperoxyisobutyrate, t-butylperoxypivalate, hydrogen peroxide; 2,2'-azobis (2-amidinopropane) dihydrochloride , 2,2'-azobis [2- (N-phenylamidino) propane] dihydrochloride, 2,2'-azobis [2- (N-allylamidino) propane] dihydrochloride, 2,2'-azobis [ 2- (2-Imidazolin-2-yl) propane] 2 hydrochloride, 2,2'-azobis ⁇ 2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane ⁇ 2 hydrochloride, 2,2'-azobis ⁇ 2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide ⁇ , 2,2'-azobis [2-methyl-N- (2-hydroxy) Ethyl) -propion
  • the radical polymerization initiator may be used alone or in combination of two or more.
  • the radical polymerization initiators are potassium persulfate, ammonium persulfate, sodium persulfate, 2,2'-azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis [2- (2-imidazolin-2-yl). ) Propane] 2 hydrochloride and 2,2'-azobis ⁇ 2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane ⁇ 2 hydrochloride at least selected from the group. There may be.
  • the amount of the radical polymerization initiator may be 0.00005 to 0.01 mol per 1 mol of the ethylenically unsaturated monomer.
  • the amount of the radical polymerization initiator used is 0.00005 mol or more, the polymerization reaction does not require a long time and is efficient.
  • the amount of the radical polymerization initiator is 0.01 mol or less, it is easy to suppress the occurrence of a rapid polymerization reaction.
  • the exemplified radical polymerization initiator can also be used as a redox polymerization initiator in combination with a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
  • a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
  • the aqueous monomer solution may contain a chain transfer agent.
  • chain transfer agent include hypophosphates, thiols, thiolic acids, secondary alcohols, amines and the like.
  • the monomer aqueous solution used for polymerization may contain a thickener.
  • the thickener include hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, carboxymethyl cellulose, polyacrylic acid, polyethylene glycol, polyacrylamide, polyethyleneimine, dextrin, sodium alginate, polyvinyl alcohol, polyvinylpyrrolidone, polyethylene oxide and the like. If the stirring speed at the time of polymerization is the same, the higher the viscosity of the aqueous monomer solution, the larger the medium particle size of the obtained particles tends to be.
  • Cross-linking by self-cross-linking may occur during polymerization, but cross-linking may be further performed by using an internal cross-linking agent.
  • an internal cross-linking agent When an internal cross-linking agent is used, it is easy to control the water absorption characteristics of the water-absorbent resin particles.
  • the internal cross-linking agent is usually added to the reaction solution during the polymerization reaction.
  • the internal cross-linking agent examples include di or tri (meth) acrylic acid esters of polyols such as ethylene glycol, propylene glycol, trimethylpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol and polyglycerin; Unsaturated polyesters obtained by reacting polyols with unsaturated acids (maleic acid, fumaric acid, etc.); bis (meth) acrylamides such as N, N'-methylenebis (meth) acrylamide; polyepoxides and (meth) Di or tri (meth) acrylic acid esters obtained by reacting with acrylic acid; di (meth) obtained by reacting polyisocyanate (tolylene diisocyanate, hexamethylene diisocyanate, etc.) with hydroxyethyl (meth) acrylate.
  • polyols such as ethylene glycol, propylene glycol, trimethylpropane, glycerin, polyoxyethylene glycol, polyoxypropylene
  • Acrylic acid carbamil esters compounds having two or more polymerizable unsaturated groups such as allylated starch, allylated cellulose, diallyl phthalate, N, N', N "-triallyl isocyanurate, divinylbenzene; Poly such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, polyglycerol polyglycidyl ether, etc.
  • Poly such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene
  • Glycidyl compounds such as epichlorohydrin, epibromhydrin, ⁇ -methylepichlorohydrin; 2 reactive functional groups such as isocyanate compounds (2,4-tolylene diisocyanate, hexamethylene diisocyanate, etc.) Examples thereof include compounds having more than one.
  • the internal cross-linking agent may be used alone or in combination of two or more.
  • the internal cross-linking agent may be a polyglycidyl compound or diglycidyl. It may be an ether compound.
  • the internal cross-linking agent comprises at least one selected from the group consisting of (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether. It may be.
  • the amount of the internal cross-linking agent is 0 per mol of the ethylenically unsaturated monomer from the viewpoint that the water-soluble property is suppressed by appropriately cross-linking the obtained polymer and a sufficient amount of water absorption can be easily obtained. It may be mmol or more, 0.02 mmol or more, 0.03 mmol or more, 0.04 mmol or more, 0.05 mmol or more, or 0.1 mol or less.
  • Reversed phase suspension polymerization can be carried out in an aqueous system in oil by heating with stirring in a state where the phases are mixed.
  • a monomer aqueous solution containing an ethylenically unsaturated monomer is used as a hydrocarbon dispersion medium in the presence of a surfactant (and, if necessary, a polymer-based dispersant). Disperse in.
  • a surfactant and, if necessary, a polymer-based dispersant.
  • the timing of adding the surfactant, the polymer-based dispersant, etc. may be either before or after the addition of the monomer aqueous solution.
  • the monomer aqueous solution is dispersed in the hydrocarbon dispersion medium in which the polymer-based dispersant is dispersed, and then the surfactant is further dispersed. It may be allowed to carry out polymerization.
  • Reverse phase suspension polymerization can be carried out in one stage or in multiple stages of two or more stages. Reversed phase suspension polymerization may be carried out in two or three stages from the viewpoint of increasing productivity.
  • an ethylenically unsaturated monomer is added to the reaction mixture obtained in the first step polymerization reaction after the first step reverse phase suspension polymerization is carried out. It may be added and mixed, and the reverse phase suspension polymerization of the second and subsequent steps may be carried out in the same manner as in the first step.
  • the above-mentioned radical polymerization initiator is used in the reverse phase suspension polymerization in each stage of the second and subsequent stages.
  • the ethylenically unsaturated monomer to be added Based on the amount of the ethylenically unsaturated monomer to be added, it may be added within the range of the molar ratio of each component to the above-mentioned ethylenically unsaturated monomer to carry out reverse phase suspension polymerization.
  • an internal cross-linking agent In the reverse phase suspension polymerization in each stage after the second stage, an internal cross-linking agent may be used if necessary.
  • an internal cross-linking agent When an internal cross-linking agent is used, it is added within the range of the molar ratio of each component to the above-mentioned ethylenically unsaturated monomer based on the amount of the ethylenically unsaturated monomer provided in each stage, and the suspension is reversed. Muddy polymerization may be carried out.
  • the temperature of the polymerization reaction varies depending on the radical polymerization initiator used, but by advancing the polymerization rapidly and shortening the polymerization time, the efficiency is improved and the heat of polymerization is easily removed to carry out the reaction smoothly. From the viewpoint, it may be 20 to 150 ° C. or 40 to 120 ° C.
  • the reaction time is usually 0.5-4 hours.
  • the completion of the polymerization reaction can be confirmed, for example, by stopping the temperature rise in the reaction system. As a result, the polymer of the ethylenically unsaturated monomer is usually obtained in the state of a hydrogel-like polymer.
  • cross-linking may be performed after polymerization by adding a cross-linking agent to the obtained hydrogel polymer and heating it.
  • a cross-linking agent to the obtained hydrogel polymer and heating it.
  • cross-linking agent for performing post-polymerization cross-linking examples include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; Compounds having two or more epoxy groups such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether; epichlorohydrin, epibromhydrin, ⁇ -methylepicrolhydrin, etc.
  • polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane
  • glycerin polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin
  • Compounds having two or more epoxy groups such as (poly) ethylene glycol
  • Haloepoxy compounds compounds having two or more isocyanate groups such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; oxazoline compounds such as 1,2-ethylenebisoxazoline; carbonate compounds such as ethylenecarbonate; bis [N , N-di ( ⁇ -hydroxyethyl)] hydroxyalkylamide compounds such as adipamide can be mentioned.
  • Crosslinking agents for post-polymerization post-crosslinking are (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, and polyglycerol polyglycidyl. It may be a polyglycidyl compound such as ether. These cross-linking agents may be used alone or in combination of two or more.
  • the amount of the cross-linking agent used for post-polymerization cross-linking is 1 mol of the water-soluble ethylenically unsaturated monomer from the viewpoint of appropriately cross-linking the obtained hydrogel-like polymer to exhibit suitable water absorption characteristics. It may be 0 to 0.03 mol, 0 to 0.01 mol, or 0.00001 to 0.005 mol.
  • the cross-linking agent for post-polymerization cross-linking is added to the reaction solution after the polymerization reaction of the ethylenically unsaturated monomer.
  • a cross-linking agent for post-polymerization cross-linking may be added after the multi-stage polymerization.
  • the cross-linking agent for post-polymerization cross-linking is From the viewpoint of water content (described later), it may be added in the region of [water content immediately after polymerization ⁇ 3% by mass].
  • drying to remove water gives polymer particles containing a polymer of ethylenically unsaturated monomers.
  • the drying method include (a) a method of removing water by co-boiling distillation in a state where the hydrogel polymer is dispersed in a hydrocarbon dispersion medium, and (b) taking out the hydrogel polymer by decantation and reducing the pressure. Examples thereof include a method of drying, and (c) a method of filtering the hydrogel polymer by a filter and drying under reduced pressure.
  • the particle size of the water-absorbent resin particles can be adjusted by adjusting the rotation speed of the stirrer during the polymerization reaction, or by adding a flocculant into the system after the polymerization reaction or in the early stage of drying. By adding a flocculant, the particle size of the obtained water-absorbent resin particles can be increased.
  • an inorganic flocculant can be used as the flocculant.
  • the inorganic flocculant for example, powdered inorganic flocculant
  • the aggregating agent may be at least one selected from the group consisting of silica, aluminum oxide, talc and kaolin.
  • a coagulant is previously dispersed in a hydrocarbon dispersion medium of the same type as that used in the polymerization or water, and then this is placed in a hydrocarbon dispersion medium containing a hydrogel polymer under stirring. May be mixed with.
  • the amount of the flocculant is 0.001 to 1 part by mass, 0.005 to 0.5 part by mass, or 0.01 to 0.2 with respect to 100 parts by mass of the ethylenically unsaturated monomer used for the polymerization. It may be a mass part. When the amount of the flocculant is within these ranges, it is easy to obtain water-absorbent resin particles having a desired particle size distribution.
  • the polymerization reaction can be carried out using various stirrers having stirring blades.
  • a flat plate blade As the stirring blade, a flat plate blade, a lattice blade, a paddle blade, a propeller blade, an anchor blade, a turbine blade, a Faudler blade, a ribbon blade, a full zone blade, a max blend blade and the like can be used.
  • the flat plate blade has a shaft (stirring shaft) and a flat plate portion (stirring portion) arranged around the shaft. Further, the flat plate portion may have a slit or the like.
  • the uniformity of cross-linking of the polymer in the formed polymer particles tends to be high.
  • the water-absorbent resin particles containing the polymer particles having high crosslink uniformity tend to exhibit a moderately low liquid permeation ratio A.
  • the surface portion of the hydrogel polymer may be crosslinked (surface crosslinked) using a crosslinking agent in any of the drying steps and subsequent steps.
  • a crosslinking agent By performing surface cross-linking, it is easy to control the water absorption characteristics of the water-absorbent resin particles.
  • the water content of the surface-crosslinked hydrogel polymer may be 5 to 50% by mass, 10 to 40% by mass, or 15 to 35% by mass.
  • the water content of the hydrogel polymer calculated by adding the water content used according to.
  • Ws A solid content calculated from the amount of materials such as an ethylenically unsaturated monomer, a cross-linking agent, and an initiator that constitute a hydrogel polymer.
  • surface cross-linking agents include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; (poly) ethylene glycol di Polyglycidyl compounds such as glycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, trimethylpropan triglycidyl ether (poly) propylene glycol polyglycidyl ether, (poly) glycerol polyglycidyl ether; epichlorohydre Haloepoxy compounds such as phosphorus, epibromhydrin and ⁇ -methylepichlorohydrin; iso
  • the surface cross-linking agent may be used alone or in combination of two or more.
  • the surface cross-linking agent may be a polyglycidyl compound, and may be (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, and It may contain at least one selected from the group consisting of polyglycerol polyglycidyl ether.
  • the amount of the surface cross-linking agent is 0.00001 to 0.02 mol, 0.00005 to 0.01 mol, or 0.0001 to 0.005 with respect to 1 mol of the ethylenically unsaturated monomer used for the polymerization. It may be a mole.
  • the amount of the surface cross-linking agent is 0.00001 mol or more, the cross-linking density on the surface portion of the water-absorbent resin particles is sufficiently increased, and the gel strength of the water-absorbent resin particles can be easily increased.
  • the amount of the surface cross-linking agent is 0.02 mol or less, it is easy to increase the water absorption amount of the water-absorbent resin particles.
  • the water-absorbent resin particles according to the present embodiment may be composed of only polymer particles, but various additional particles selected from, for example, a gel stabilizer, a metal chelating agent, a fluidity improver (lubricant), and the like. Ingredients can be further included. Additional components may be placed inside the polymer particles, on the surface of the polymer particles, or both. The additional component may be a fluidity improver (lubricant).
  • the fluidity improver may contain inorganic particles. Examples of the inorganic particles include silica particles such as amorphous silica.
  • the water-absorbent resin particles may contain a plurality of inorganic particles arranged on the surface of the polymer particles. For example, by mixing the polymer particles and the inorganic particles, the inorganic particles can be arranged on the surface of the polymer particles.
  • the inorganic particles may be silica particles such as amorphous silica.
  • the ratio of the amount of the inorganic particles to the mass of the polymer particles is 0.2% by mass or more, 0.5% by mass or more, 1 It may be 0.0% by mass or more, 1.5% by mass or more, 5.0% by mass or less, or 3.5% by mass or less.
  • Water-absorbent resin particles containing a large amount of inorganic particles tend to exhibit a smaller liquid permeation ratio A.
  • the inorganic particles here usually have a minute size as compared with the size of the polymer particles.
  • the average particle size of the inorganic particles may be 0.1 to 50 ⁇ m, 0.5 to 30 ⁇ m, or 1 to 20 ⁇ m.
  • the average particle size here can be a value measured by a dynamic light scattering method or a laser diffraction / scattering method.
  • the absorber according to one embodiment contains the water-absorbent resin particles according to this embodiment.
  • the absorber according to the present embodiment can contain a fibrous substance, for example, a mixture containing water-absorbent resin particles and the fibrous substance.
  • the structure of the absorber may be, for example, a structure in which the water-absorbent resin particles and the fibrous material are uniformly mixed, and the water-absorbent resin particles are sandwiched between the fibrous material formed in a sheet or layer. It may be a configuration.
  • the fibrous material examples include finely pulverized wood pulp; cotton; cotton linter; rayon; cellulosic fibers such as cellulose acetate; synthetic fibers such as polyamide, polyester and polyolefin; and a mixture of these fibers.
  • the average fiber length of the fibrous material is usually 0.1 to 10 mm and may be 0.5 to 5 mm.
  • the fibrous material may be used alone or in combination of two or more.
  • hydrophilic fibers can be used.
  • the mass ratio of the water-absorbent resin particles in the absorber may be 2 to 100% by mass, 10 to 90% by mass, or 20 to 80% by mass with respect to the total of the water-absorbent resin particles and the fibrous material.
  • the fibers may be adhered to each other by adding an adhesive binder to the fibrous material.
  • the adhesive binder include heat-sealing synthetic fibers, hot melt adhesives, and adhesive emulsions.
  • the adhesive binder may be used alone or in combination of two or more.
  • the heat-bondable synthetic fiber examples include a total fusion type binder such as polyethylene, polypropylene, and an ethylene-propylene copolymer; a side-by-side of polypropylene and polyethylene, and a non-total fusion type binder having a core-sheath structure.
  • a total fusion type binder such as polyethylene, polypropylene, and an ethylene-propylene copolymer
  • a side-by-side of polypropylene and polyethylene examples of the heat-bondable synthetic fiber.
  • a non-total fusion type binder only the polyethylene portion can be heat-sealed.
  • hot melt adhesive examples include ethylene-vinyl acetate copolymer, styrene-isoprene-styrene block copolymer, styrene-butadiene-styrene block copolymer, styrene-ethylene-butylene-styrene block copolymer, and styrene-ethylene-propylene-styrene block copolymer.
  • a mixture of a base polymer such as amorphous polypropylene and a tackifier, a plasticizer, an antioxidant and the like.
  • Examples of the adhesive emulsion include polymers of at least one monomer selected from the group consisting of methyl methacrylate, styrene, acrylonitrile, 2-ethylhexyl acrylate, butyl acrylate, butadiene, ethylene, and vinyl acetate.
  • the absorber may contain an inorganic powder (for example, amorphous silica), a deodorant, an antibacterial agent, a fragrance, and the like.
  • an inorganic powder for example, amorphous silica
  • the absorber may contain inorganic powder in addition to the inorganic particles in the water-absorbent resin particles.
  • the shape of the absorber is not particularly limited, and may be, for example, a sheet shape.
  • the thickness of the absorber (for example, the thickness of the sheet-shaped absorber) may be, for example, 0.1 to 20 mm and 0.3 to 15 mm.
  • the absorbent article according to one embodiment includes an absorber according to this embodiment.
  • the absorbent article according to the present embodiment is a core wrap that retains the shape of the absorber; a liquid permeable sheet that is arranged on the outermost side of the side where the liquid to be absorbed enters; and the side where the liquid to be absorbed enters. Examples thereof include a liquid permeable sheet arranged on the outermost side on the opposite side.
  • Absorbent articles include diapers (for example, paper diapers), toilet training pants, incontinence pads, sanitary materials (sanitary napkins, tampons, etc.), sweat pads, pet sheets, simple toilet materials, animal excrement treatment materials, and the like. ..
  • FIG. 2 is a cross-sectional view showing an example of an absorbent article.
  • the absorbent article 100 shown in FIG. 2 includes an absorbent body 10, core wraps 20a and 20b, a liquid permeable sheet 30, and a liquid permeable sheet 40.
  • the liquid permeable sheet 40, the core wrap 20b, the absorbent body 10, the core wrap 20a, and the liquid permeable sheet 30 are laminated in this order.
  • FIG. 2 there is a portion shown so that there is a gap between the members, but the members may be in close contact with each other without the gap.
  • the absorber 10 has a water-absorbent resin particle 10a according to the present embodiment and a fiber layer 10b containing a fibrous material.
  • the water-absorbent resin particles 10a are dispersed in the fiber layer 10b.
  • the core wrap 20a is arranged on one side of the absorber 10 (upper side of the absorber 10 in FIG. 2) in contact with the absorber 10.
  • the core wrap 20b is arranged on the other side of the absorber 10 (lower side of the absorber 10 in FIG. 2) in contact with the absorber 10.
  • the absorber 10 is arranged between the core wrap 20a and the core wrap 20b.
  • Examples of the core wraps 20a and 20b include tissue paper, non-woven fabric and the like.
  • the core wrap 20a and the core wrap 20b have, for example, a main surface having the same size as the absorber 10.
  • the liquid permeable sheet 30 is arranged on the outermost side on the side where the liquid to be absorbed enters.
  • the liquid permeable sheet 30 is arranged on the core wrap 20a in contact with the core wrap 20a.
  • the liquid permeable sheet 40 is arranged on the outermost side of the absorbent article 100 on the opposite side of the liquid permeable sheet 30.
  • the liquid permeable sheet 40 is arranged under the core wrap 20b in contact with the core wrap 20b.
  • the liquid permeable sheet 30 and the liquid permeable sheet 40 have, for example, a main surface wider than the main surface of the absorber 10, and the outer edges of the liquid permeable sheet 30 and the liquid permeable sheet 40 are It extends around the absorber 10 and the core wraps 20a, 20b.
  • the magnitude relationship between the absorbent body 10, the core wraps 20a and 20b, the liquid permeable sheet 30, and the liquid permeable sheet 40 is not particularly limited, and is appropriately adjusted according to the use of the absorbent article and the like.
  • the absorber 10 shown in FIG. 2 is held in shape by being sandwiched between two core wraps 20a and 20b.
  • the method of retaining the shape by the core wrap that retains the shape of the absorber is not limited to this, and for example, the absorber may be sandwiched between a single folded core wrap.
  • the core wrap may form a bag and an absorber may be placed therein.
  • the liquid permeable sheet 30 may be a sheet formed of a resin or fiber usually used in the art. From the viewpoint of liquid permeability, flexibility and strength when used in an absorbent article, the liquid permeable sheet 30 is, for example, a polyolefin such as polyethylene (PE) and polypropylene (PP), polyethylene terephthalate (PET), or polytri. Polyesters such as methylene terephthalate (PTT) and polyethylene naphthalate (PEN), polyamides such as nylon, synthetic resins such as rayon, or synthetic fibers containing these synthetic resins may be contained, or cotton, silk, hemp. , Or a natural fiber containing pulp (cellulose).
  • a polyolefin such as polyethylene (PE) and polypropylene (PP), polyethylene terephthalate (PET), or polytri.
  • Polyesters such as methylene terephthalate (PTT) and polyethylene naphthalate (PEN), polyamides such as nylon, synthetic resins such as rayon, or synthetic fiber
  • the liquid permeable sheet 30 may contain synthetic fibers.
  • Synthetic fibers may be, in particular, polyolefin fibers, polyester fibers or combinations thereof. These materials may be used alone or in combination of two or more kinds of materials.
  • the liquid permeable sheet 30 may be a non-woven fabric, a porous sheet, or a combination thereof.
  • Nonwoven fabric is a sheet that is entwined without weaving fibers.
  • the non-woven fabric may be a non-woven fabric composed of short fibers (that is, staples) (short-fiber non-woven fabric) or a non-woven fabric composed of long fibers (that is, filaments) (long-fiber non-woven fabric). Staples are not limited to this, but generally may have a fiber length of several hundred mm or less.
  • the liquid permeable sheet 30 is a thermal bond non-woven fabric, an air-through non-woven fabric, a resin bond non-woven fabric, a spun-bond non-woven fabric, a melt blow non-woven fabric, an air-laid non-woven fabric, a spunlace non-woven fabric, a point bond non-woven fabric, or a laminate of two or more kinds of non-woven fabrics selected from these. It may be there.
  • the liquid permeable sheet 30 may include a spunbonded non-woven fabric.
  • the liquid permeable sheet 30 is preferably a spunbonded non-woven fabric.
  • the spunbonded non-woven fabric may be a single-layer spunbonded non-woven fabric, or may be a multi-layer laminated non-woven fabric having at least a single-layer spunbonded non-woven fabric as a spunbond layer.
  • one or both outermost layers are usually spunbond layers.
  • Examples of the laminated structure of the spunbonded non-woven fabric of the laminated body include a spunbond layer / spunbond layer (SS non-woven fabric), a spunbond layer / melt blow layer / spunbond layer (SMS non-woven fabric), and a spunbond layer / melt blow layer / melt blow. Layer / spunbond layer (SMMS non-woven fabric) can be mentioned. In these laminated configurations, the layers are laminated in the order described.
  • the non-woven fabric used as the liquid permeable sheet 30 may have appropriate hydrophilicity from the viewpoint of the liquid absorption performance of the absorbent article. From this point of view, the liquid permeable sheet 30 is obtained by the pulp and paper test method No. A non-woven fabric having a hydrophilicity of 5 to 200 measured according to the measuring method of 68 (2000) may be used. The hydrophilicity of the non-woven fabric may be 10 to 150. Pulp and paper test method No. For details of 68, for example, WO2011 / 086843 can be referred to.
  • the hydrophilic non-woven fabric may be formed by containing fibers showing appropriate hydrophilicity such as rayon fibers, or hydrophobic chemical fibers such as polyolefin fibers and polyester fibers are hydrophilized. It may be formed by the obtained fibers.
  • a method for obtaining a non-woven fabric containing hydrophobic chemical fibers that have been hydrophobized for example, a method for obtaining a non-woven fabric by a spunbond method using a mixture of hydrophobic chemical fibers and a hydrophilic agent, hydrophobic chemistry.
  • Examples thereof include a method of accommodating a hydrophilic agent when producing a spunbonded nonwoven fabric from fibers, and a method of impregnating a spunbonded nonwoven fabric obtained by using hydrophobic chemical fibers with a hydrophilic agent.
  • the hydrophilizing agent include anionic surfactants such as aliphatic sulfonates and higher alcohol sulfates, cationic surfactants such as quaternary ammonium salts, polyethylene glycol fatty acid esters, polyglycerin fatty acid esters, and sorbitan fatty acids.
  • Nonionic surfactants such as esters, silicone-based surfactants such as polyoxyalkylene-modified silicones, and stain-releasing agents made of polyester-based, polyamide-based, acrylic-based, and urethane-based resins are used.
  • the liquid permeable sheet 30 is moderately bulky and has a basis weight from the viewpoint of imparting good liquid permeability, flexibility, strength and cushioning property to the absorbent article and from the viewpoint of accelerating the liquid penetration rate of the absorbent article. It may be a non-woven fabric having a large weight.
  • the basis weight (mass per unit area) of the liquid permeable sheet 30 may be 5 to 200 g / m 2 , 8 to 150 g / m 2 , or 10 to 100 g / m 2 .
  • the thickness of the liquid permeable sheet 30 may be 20 to 1400 ⁇ m, 50 to 1200 ⁇ m, or 80 to 1000 ⁇ m.
  • the liquid permeable sheet 40 is arranged on the outermost side of the absorbent article 100 on the opposite side of the liquid permeable sheet 30.
  • the liquid permeable sheet 40 is arranged under the core wrap 20b in contact with the core wrap 20b.
  • the liquid impermeable sheet 40 has, for example, a main surface wider than the main surface of the absorber 10, and the outer edge portion of the liquid impermeable sheet 40 extends around the absorber 10 and the core wraps 20a and 20b. Exists.
  • the liquid impermeable sheet 40 prevents the liquid absorbed by the absorber 10 from leaking to the outside from the liquid impermeable sheet 40 side.
  • the liquid impermeable sheet 40 includes a sheet made of a synthetic resin such as polyethylene, polypropylene, and polyvinyl chloride, and a spunbond / meltblow / spunbond (SMS) non-woven fabric in which a water-resistant melt-blow non-woven fabric is sandwiched between high-strength spunbond non-woven fabrics.
  • SMS spunbond / meltblow / spunbond
  • examples thereof include a sheet made of a non-woven fabric such as, and a sheet made of a composite material of these synthetic resins and a non-woven fabric (for example, spunbonded non-woven fabric, spunlaced non-woven fabric).
  • the liquid impermeable sheet 40 may have breathability from the viewpoint that stuffiness at the time of wearing is reduced and discomfort given to the wearer can be reduced.
  • the liquid impermeable sheet 40 a sheet made of a synthetic resin mainly composed of a low density polyethylene (LDPE) resin can be used.
  • the liquid impermeable sheet 40 may be, for example, a sheet made of a synthetic resin having a basis weight of 10 to 50 g / m 2 .
  • the absorbent article 100 is manufactured, for example, by a method comprising placing the absorber 10 between the core wraps 20a, 20b and placing them between the liquid permeable sheet 30 and the liquid impermeable sheet 40. Can be done. A laminate in which the liquid permeable sheet 40, the core wrap 20b, the absorber 10, the core wrap 20a, and the liquid permeable sheet 30 are laminated in this order is pressurized as necessary.
  • the absorber 10 is formed by mixing the water-absorbent resin particles 10a with the fibrous material.
  • the water-absorbent resin particles having the liquid permeation ratio A of more than 0% and 60% or less may be selected and selectively used to form the absorber 10.
  • the liquid absorbing method according to the present embodiment includes a step of bringing the liquid to be absorbed into contact with the water-absorbent resin particles, the absorber or the absorbent article according to the present embodiment.
  • Example 1 First stage polymerization reaction> A round-bottomed cylindrical separable flask having an inner diameter of 11 cm and an internal volume of 2 L equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirrer was prepared. A stirring blade 200 whose outline is shown in FIG. 3 was attached to the stirring machine.
  • the stirring blade 200 includes a shaft 200a and a flat plate portion 200b.
  • the flat plate portion 200b is welded to the shaft 200a and has a curved tip.
  • the flat plate portion 200b is formed with four slits S extending along the axial direction of the shaft 200a.
  • the four slits S are arranged in the width direction of the flat plate portion 200b.
  • the width of the two inner slits S is 1 cm.
  • the width of the two outer slits S is 0.5 cm.
  • the length of the flat plate portion 200b is about 10 cm, and the width of the flat plate portion 200b is about 6 cm.
  • n-heptane 293 g of n-heptane and 0.736 g of a dispersant (maleic anhydride-modified ethylene / propylene copolymer, manufactured by Mitsui Chemicals, Inc., high wax 1105A) were mixed.
  • the dispersant was dissolved in n-heptane by heating the mixture in the separable flask to 80 ° C. while stirring with a stirrer. The formed reaction solution was cooled to 50 ° C.
  • the first-stage monomer aqueous solution was added to the reaction solution in the separable flask described above, and the reaction solution was stirred for 10 minutes.
  • a surfactant solution containing 6.62 g of n-heptane and 0.736 g of sucrose stearic acid ester (HLB: 3, Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370) was added to the reaction solution, and the mixture was stirred.
  • the inside of the system was sufficiently replaced with nitrogen while stirring the reaction solution at a blade rotation speed of 425 rpm.
  • the polymerization reaction was allowed to proceed over 60 minutes while heating the separable flask in a water bath at 70 ° C. By this polymerization reaction, a first-stage polymerization slurry liquid containing a hydrogel-like polymer was obtained.
  • the first-stage polymerized slurry liquid in the separable flask was cooled to 25 ° C. while stirring at a stirring blade rotation speed of 650 rpm.
  • the whole amount of the second-stage monomer aqueous solution was added thereto, and then the inside of the system was replaced with nitrogen over 30 minutes.
  • the second-stage polymerization reaction was allowed to proceed over 60 minutes.
  • n-heptane was distilled off by heating at 125 ° C. to obtain a dried product of polymer particles.
  • the obtained polymer particles were passed through a sieve having an opening of 850 ⁇ m.
  • 2.0% by mass of amorphous silica Oriental Silicas Corporation, Toxile NP-S
  • amorphous silica Oriental Silicas Corporation, Toxile NP-S
  • the medium particle size of the obtained water-absorbent resin particles was 367 ⁇ m.
  • Example 2 The radical polymerization initiator used in the preparation of the aqueous solution in the first stage was changed to 0.0648 g (0.272 mmol) of sodium persulfate, and the amount of ethylene glycol diglycidyl ether added as an internal cross-linking agent was 0. Changed to 0156 g (0.090 mmol), changed the stirrer rotation speed at the time of nitrogen substitution to 350 rpm in the preparation of the first stage polymerization slurry liquid, and radical polymerization used in the preparation of the second stage aqueous liquid.
  • the initiator was changed to 0.0907 g (0.381 mmol) of sodium persulfate, the amount of ethylene glycol diglycidyl ether added as an internal cross-linking agent was changed to 0.0129 g (0.074 mmol), and 235.3 g of water-absorbent resin particles were obtained in the same manner as in Example 1 except that the amount of water extracted to the outside of the system by co-boiling distillation was changed to 254.5 g.
  • the medium particle size of the water-absorbent resin particles was 365 ⁇ m.
  • Example 3 A round-bottomed cylindrical separable flask having an inner diameter of 11 cm and an internal volume of 2 L equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirrer similar to that in Example 1 was prepared.
  • a dispersant Sorbitan monolaurate, manufactured by NOF CORPORATION, Nonion LP-20R, HLB value 8.6
  • the dispersant was dissolved in n-heptane by heating the mixture in the separable flask to 50 ° C. while stirring with a stirrer.
  • the formed reaction solution was cooled to 40 ° C.
  • the prepared monomer aqueous solution was added to the above-mentioned reaction solution in the separable flask, and the inside of the flask was sufficiently replaced with nitrogen. Then, the separable flask was held in a water bath at 70 ° C. for 60 minutes while stirring the reaction solution at a rotation speed of the stirring blade of 300 rpm, whereby the polymerization reaction was allowed to proceed.
  • a dispersion containing 0.103 g of amorphous silica (Oriental Silicas Corporation, Toxile NP-S) and 100 g of n-heptane in the reaction solution while stirring the reaction solution after the polymerization reaction at a stirring blade rotation speed of 650 rpm. was added, and stirring was continued for another 10 minutes. Then, the flask containing the reaction solution was immersed in an oil bath at 125 ° C., and 116.5 g of water was extracted from the system by azeotropic distillation of n-heptane and water.
  • N-heptane was distilled off from the reaction solution after the cross-linking reaction with the surface cross-linking agent to obtain a dried product of water-absorbent resin particles containing 0.1% by mass of silica amorphous silica.
  • a dried product of the water-absorbent resin particles was passed through a sieve having an opening of 850 ⁇ m to obtain 96.5 g of the water-absorbent resin particles.
  • the medium particle size of the obtained water-absorbent resin particles was 420 ⁇ m.
  • Comparative Example 1 The stirring blade was changed to one with a 4-blade inclined paddle blade with a blade diameter of 5 cm in two stages, and the radical polymerization initiator used in the preparation of the aqueous liquid in the first stage was 2,2'-azobis (2-amidino).
  • Comparative Example 2 The stirring blade was changed to one having a 4-blade inclined paddle blade with a blade diameter of 5 cm in two stages, and the radical polymerization initiator used in the preparation of the aqueous liquid in the first stage was 0.0736 g (0.272) of potassium persulfate. Millimole), the stirring speed at the time of nitrogen substitution was changed to 550 rpm in the preparation of the polymerized slurry liquid in the first stage, and the radical polymerization initiator used in the preparation of the aqueous liquid in the second stage was excessive. The change was made to 0.103 g (0.381 mmol) of potassium sulfate, and the number of revolutions of the stirrer when cooling the inside of the separable flask system to 25 ° C.
  • Example 2 The amount of water extracted to the outside of the system by radical polymerization was changed to 257.7 g, and the amount of amorphous silica mixed with the polymer particles was changed to 0.2% by mass based on the mass of the polymer particles.
  • 228.0 g of water-absorbent resin particles were obtained.
  • the medium particle size of the water-absorbent resin particles was 352 ⁇ m.
  • Comparative Example 3 The stirring blade was changed to one with a 4-blade inclined paddle blade with a blade diameter of 5 cm in two stages, and the radical polymerization initiator used in the preparation of the aqueous liquid in the first stage was 2,2'-azobis (2-amidino). Changed to 0.092 g (0.339 mmol) of propane) dihydrochloride and 0.018 g (0.068 mmol) of potassium persulfate, and added 0.0046 g (0) of ethylene glycol diglycidyl ether as an internal cross-linking agent.
  • the stirrer rotation speed at the time of nitrogen substitution was changed to 550 rpm in the preparation of the polymerization slurry liquid in the first stage, and the radical polymerization initiator used in the preparation of the aqueous liquid in the second stage.
  • the radical polymerization initiator used in the preparation of the aqueous liquid in the second stage was changed to 2,2'-azobis (2-amidinopropane) dihydrochloride 0.129 g (0.475 mmol) and potassium persulfate 0.026 g (0.095 mmol), and the second-stage aqueous solution.
  • the stirrer rotation speed when cooling the inside of the separable flask system was 25 ° C.
  • Example 2 The medium particle size of the water-absorbent resin particles was 345 ⁇ m.
  • Comparative Example 4 229.0 g of water-absorbent resin particles were obtained in the same manner as in Comparative Example 3 except that the amount of amorphous silica mixed with the polymer particles was changed to 0.2% by mass with respect to the mass of the polymer particles. ..
  • the medium particle size of the water-absorbent resin particles was 348 ⁇ m.
  • Water-absorbent resin particles were placed in the uppermost sieve and classified according to JIS Z 8815 (1994) using a low-tap shaker (manufactured by Iida Seisakusho Co., Ltd.). After classification, the mass of the water-absorbent resin particles remaining on each sieve was calculated as a mass percentage with respect to the total amount, and the particle size distribution was obtained. By integrating the mass percentages of the water-absorbent resin particles remaining on the sieve in order from the larger particle size with respect to this particle size distribution, the opening of the sieve and the integrated value of the mass percentages of the water-absorbent resin particles remaining on the sieve are integrated. The relationship with is plotted on a logarithmic probability paper. By connecting the plots on the probability paper with a straight line, the particle size corresponding to the cumulative mass percentage of 50% by mass was defined as the medium particle size.
  • the measuring device Y is composed of a burette unit 71, a conduit 72, a measuring table 73, and a measuring unit 74 placed on the measuring table 73.
  • the burette portion 71 has a burette 71a extending in the vertical direction, a rubber stopper 71b arranged at the upper end of the burette 71a, a cock 71c arranged at the lower end of the burette 71a, and one end extending into the burette 71a in the vicinity of the cock 71c. It has an air introduction pipe 71d and a cock 71e arranged on the other end side of the air introduction pipe 71d.
  • the conduit 72 is attached between the burette portion 71 and the measuring table 73.
  • the inner diameter of the conduit 72 is 6 mm.
  • a hole having a diameter of 2 mm is formed in the central portion of the measuring table 73, and the conduit 72 is connected to the hole.
  • the measuring unit 74 has a cylinder 74a (made of acrylic resin (plexiglass)), a nylon mesh 74b adhered to the bottom of the cylinder 74a, and a weight 74c.
  • the inner diameter of the cylinder 74a is 20 mm.
  • the opening of the nylon mesh 74b is 75 ⁇ m (200 mesh).
  • the water-absorbent resin particles 75 to be measured are uniformly sprinkled on the nylon mesh 74b.
  • the diameter of the weight 74c is 19 mm, and the mass of the weight 74c is 59.8 g.
  • the weight 74c is placed on the water-absorbent resin particles 75, and a load of 2.07 kPa can be applied to the water-absorbent resin particles 75.
  • the weight 74c was placed and the measurement was started. Since the same volume of air as the physiological saline absorbed by the water-absorbent resin particles 75 is quickly and smoothly supplied to the inside of the burette 71a from the air introduction pipe, the water level of the physiological saline inside the burette 71a is reduced. However, the amount of physiological saline absorbed by the water-absorbent resin particles 75 is obtained.
  • the scale of the burette 71a is engraved from top to bottom in 0 mL to 0.5 mL increments.
  • Water absorption C The water absorption amount C was measured in an environment of a temperature of 25 ⁇ 2 ° C. and a humidity of 50 ⁇ 10%.
  • 500 g of physiological saline saline with a concentration of 0.9% by mass
  • 2.0 g of water-absorbent resin particles were dispersed in physiological saline so as not to generate maco.
  • the water-absorbent resin particles were sufficiently swollen by being left to stand for 60 minutes in a stirred state.
  • the contents of the beaker were filtered using an open 75 ⁇ m standard sieve.
  • the sieve on which the swelling gel was taken out was tilted so as to have an inclination angle of about 30 degrees with respect to the horizontal, and left in that state for 30 minutes to remove excess water.
  • Water absorption B Using the measuring device shown in FIG. 1, the water absorption amount B was measured in an environment of a temperature of 25 ⁇ 2 ° C. and a humidity of 50 ⁇ 10%. The measurement was carried out 5 times for one type of water-absorbent resin particles, and the average value of the measured values at three points excluding the minimum value and the maximum value was obtained. First, the cock 22 and the cock 24 of the burette portion 2 were closed, and a physiological saline solution 50 (saline solution having a concentration of 0.9% by mass) adjusted to 25 ° C. was put into the burette tube 21 through the opening at the upper part of the burette tube 21.
  • a physiological saline solution 50 saline solution having a concentration of 0.9% by mass
  • the cock 22 and the cock 24 were opened.
  • the inside of the conduit 5 was filled with physiological saline 50 to prevent air bubbles from entering.
  • the height of the measuring table 13 was adjusted so that the height of the water surface of the physiological saline solution that reached the inside of the through hole 13a was the same as the height of the upper surface of the measuring table 13.
  • the height of the water surface of the physiological saline solution 50 in the burette tube 21 was read by the scale of the burette tube 21, and the position was set as the zero point (reading value at 0 seconds).
  • a spunbonded non-woven fabric (SMMS non-woven fabric, basis weight 13 g / m 2 , manufactured by Toray Polytech (Nantong) Co., Ltd., LIVESEN (trade name), 1.6 Dtex) formed of hydrophilized polypropylene fibers was prepared. ..
  • a spunbonded nonwoven fabric 15 having a size of 100 mm ⁇ 100 mm was laid in the vicinity of the through hole 13a on the measuring table 13, and a cylinder having an inner diameter of 30 mm and a height of 20 mm was placed in the center thereof. 1.00 g of water-absorbent resin particles 10a were uniformly sprayed into the cylinder.
  • the cylinder was carefully removed, and the water-absorbent resin particles 10a were uniformly placed in the circular region in the center of the spunbonded nonwoven fabric 15.
  • the spunbonded nonwoven fabric 15 on which the water-absorbent resin particles 10a were placed was quickly moved so that the center thereof was at the position of the through hole 13a so that the water-absorbent resin particles 10a did not dissipate, and the measurement was started. ..
  • the time when the air bubbles were first introduced from the air introduction pipe 25 into the burette pipe 21 was defined as the start of water absorption (0 seconds).
  • FIG. 5 is a schematic view showing a method for evaluating the leakability of an absorbent article.
  • the support plate 1 of length 45cm having a flat inclined surface S 1 (wherein the acrylic resin plate) was fixed by frame 41 in a state that is inclined 30 ⁇ 2 degrees relative to the horizontal plane S 0.
  • the surface of the support plate 1 was smooth, and the liquid did not stay or be absorbed by the support plate 1.
  • the lower end of the absorbent article 100 was not attached to the support plate 1.
  • a mark was marked at a position 8 cm above the center of the absorber in the absorbent article 100.
  • the dropping funnel 42 had an inlet having an inner diameter of 3.4 mm.
  • the dropping funnel 42 was fixed to the gantry 41 at a position where the tip of the insertion port was vertically above the mark and at a distance of 10 ⁇ 1 mm.
  • the throttle of the cock of the dropping funnel 42 was adjusted so that the liquid was poured at a rate of 3 mL / sec.
  • a balance 43 was arranged below the support plate 1, and a metal tray 44 was placed on the balance 43.
  • test solution 55 artificial urine
  • the weight of the test solution that was dropped from the dropping funnel 42 and flowed down without being absorbed by the absorbent article 100 and entered the metal tray 44 was recorded as the first leakage amount [g].
  • the second and third test solutions were added in the same manner as the first test solution, and the leakage amount [g] of each was recorded. It is judged that the smaller the value of the amount of leakage, the smaller the amount of liquid leakage when the absorbent article is worn.
  • the artificial urine used as the test solution was prepared by mixing the following components.
  • Table 1 shows the evaluation results.
  • burette 71a ... burette, 71b ... rubber stopper, 71c ... cock, 71d ... air introduction pipe , 71e ... cock, 72 ... conduit, 73 ... measuring table, 74 ... measuring unit, 74a ... cylinder, 74b ... nylon mesh, 74c ... weight, 75 ... water-absorbent resin particles, 100 ... absorbent article, 200a ... shaft, 200b ... flat plate, S ... slit, S0 ... horizontal plane, S1 ... inclined surface, Y ... measuring device.

Abstract

The present invention discloses water-absorbing resin particles in which the liquid permeation ratio A is greater than 0% and no greater than 60%. The liquid permeation ratio A is calculated according to the formula: liquid permeation ratio A (%)=(amount of water absorbed B (g/g)/amount of water absorbed C (g/g))×100. The amount of water absorbed B, once physiological saline supplied through a spun bond nonwoven textile is absorbed by 1.00 g of the water-absorbing resin particles according to the DW method without pressurization, is the mass of physiological saline per gram of water-absorbing resin particles absorbed by the water-absorbing resin particles up to five minutes from the start of absorption. The amount of water absorbed C, when 2.0 g of water-absorbing resins particles has swelled in 500 g of physiological saline over 60 minutes, is the mass of physiological saline per gram of water-absorbing resin particles absorbed.

Description

吸水性樹脂粒子、吸収性物品、吸水性樹脂粒子を製造する方法、及び吸収性物品の液漏れを抑制する方法A method for producing water-absorbent resin particles, an absorbent article, a water-absorbent resin particle, and a method for suppressing liquid leakage of the absorbent article.
 吸水性樹脂粒子、吸収性物品、吸水性樹脂粒子を製造する方法、及び吸収性物品の液漏れを抑制する方法 Method for producing water-absorbent resin particles, absorbent articles, water-absorbent resin particles, and method for suppressing liquid leakage of absorbent articles
 従来、尿等の水を主成分とする液体を吸収するための吸収性物品には、吸水性樹脂粒子を含有する吸収体が用いられている(例えば、特許文献1~3)。 Conventionally, an absorber containing water-absorbent resin particles has been used as an absorbent article for absorbing a liquid containing water as a main component such as urine (for example, Patent Documents 1 to 3).
特開2010-116548号公報Japanese Unexamined Patent Publication No. 2010-116548 特開2010-126552号公報JP-A-2010-126552 特開2016-121297号公報Japanese Unexamined Patent Publication No. 2016-12127
 本発明は、スパンボンド不織布を含む液体透過シートの内側に吸水性樹脂粒子が配置された吸収性物品からの液漏れを抑制できる吸水性樹脂粒子、及びこれを用いた吸収性物品を提供する。 The present invention provides water-absorbent resin particles in which liquid-absorbent resin particles are arranged inside a liquid-permeable sheet containing a spunbonded non-woven fabric and can suppress liquid leakage from the absorbent article, and an absorbent article using the same.
 本発明の一側面は、下記式:
液透過比率A[%]=(吸水量B[g/g]/吸水量C[g/g])×100
によって算出される液透過比率Aが、0%を超えて60%以下である、吸水性樹脂粒子に関する。吸水量Bは、無加圧下のDW法によって、スパンボンド不織布を介して供給される生理食塩水を1.00gの当該吸水性樹脂粒子に吸収させたときに、当該吸水性樹脂粒子が、吸収を開始してから5分後までに吸収する、当該吸水性樹脂粒子1g当たりの生理食塩水の質量である。前記スパンボンド不織布の単位面積当たりの質量が11~15g/mである。吸水量Cは、2.0gの当該吸水性樹脂粒子が500gの生理食塩水中で60分間かけて膨潤したときに吸収する、当該吸水性樹脂粒子1g当たりの生理食塩水の質量である。
One aspect of the present invention is as follows:
Liquid permeation ratio A [%] = (water absorption B [g / g] / water absorption C [g / g]) × 100
The liquid permeation ratio A calculated by the above is more than 0% and 60% or less. The water absorption amount B is absorbed by the water-absorbent resin particles when 1.00 g of the water-absorbent resin particles absorb the physiological saline supplied through the spunbonded non-woven fabric by the DW method under no pressure. It is the mass of the physiological saline solution per 1 g of the water-absorbent resin particles that is absorbed within 5 minutes after the start of. The mass per unit area of the spunbonded non-woven fabric is 11 to 15 g / m 2 . The water absorption amount C is the mass of the physiological saline solution per 1 g of the water-absorbent resin particles, which is absorbed when 2.0 g of the water-absorbent resin particles swells in 500 g of physiological saline solution over 60 minutes.
 本発明の別の一側面は、液体不透過性シート、吸収体、及び液体透過性シートを備え、前記液体不透過性シート、前記吸収体及び前記液体透過性シートがこの順に配置されている、吸収性物品に関する。前記吸収体が、上記吸水性樹脂粒子を含む。 Another aspect of the present invention comprises a liquid impermeable sheet, an absorber, and a liquid permeable sheet, wherein the liquid impermeable sheet, the absorber and the liquid permeable sheet are arranged in this order. Regarding absorbent articles. The absorber contains the water-absorbent resin particles.
 本発明の更に別の一側面は、上記液透過比率Aが0%を超えて60%以下である、吸水性樹脂粒子を選別する工程を含む、吸水性樹脂粒子を製造する方法に関する。 Yet another aspect of the present invention relates to a method for producing water-absorbent resin particles, which comprises a step of selecting water-absorbent resin particles having a liquid permeation ratio A of more than 0% and 60% or less.
 本発明の更に別の一側面は、吸水性樹脂粒子の上記液透過比率Aを0%を超えて60%以下とすることを含む、吸水性樹脂粒子を含む吸収性物品からの液漏れを抑制する方法に関する。 Yet another aspect of the present invention is to suppress liquid leakage from the absorbent article containing the water-absorbent resin particles, which comprises setting the liquid permeation ratio A of the water-absorbent resin particles to be more than 0% and 60% or less. Regarding how to do it.
 本発明によれば、スパンボンド不織布を含む液体透過シートの内側に吸水性樹脂粒子が配置された吸収性物品からの液漏れを抑制できる吸水性樹脂粒子、及びこれを用いた吸収性物品が提供される。 According to the present invention, there are provided a water-absorbent resin particle capable of suppressing liquid leakage from an absorbent article in which water-absorbent resin particles are arranged inside a liquid-permeable sheet containing a spunbonded nonwoven fabric, and an absorbent article using the same. Will be done.
吸水量Bを測定する方法を示す模式図である。It is a schematic diagram which shows the method of measuring the water absorption amount B. 吸収性物品の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of an absorbent article. 攪拌翼(平板部にスリットを有する平板翼)の一例を示す平面図である。It is a top view which shows an example of a stirring blade (a flat plate blade which has a slit in a flat plate part). 荷重下吸水量を測定する方法を示す模式図である。It is a schematic diagram which shows the method of measuring the water absorption under load. 吸収性物品の漏れ性を評価する方法を示す模式図である。It is a schematic diagram which shows the method of evaluating the leakability of an absorbent article.
 以下、本発明のいくつかの実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, some embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
 本明細書において、「アクリル」及び「メタクリル」を合わせて「(メタ)アクリル」と表記する。「アクリレート」及び「メタクリレート」も同様に「(メタ)アクリレート」と表記する。「(ポリ)」とは、「ポリ」の接頭語がある場合及びない場合の双方を意味するものとする。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。「水溶性」とは、25℃において水に5質量%以上の溶解性を示すことをいう。本明細書に例示する材料は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 In this specification, "acrylic" and "methacryl" are collectively referred to as "(meth) acrylic". Similarly, "acrylate" and "methacrylate" are also referred to as "(meth) acrylate". "(Poly)" shall mean both with and without the "poly" prefix. In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value of the numerical range of one step can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another step. In the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples. “A or B” may include either A or B, or both. "Water-soluble" means that it exhibits a solubility in water of 5% by mass or more at 25 ° C. The materials exemplified in the present specification may be used alone or in combination of two or more. The content of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
 吸水性樹脂粒子の液透過比率Aは、下記式によって算出される。一実施形態に係る吸水性樹脂粒子は、0%を超えて60%以下の液透過比率Aを示す。
液透過比率A[%]=(吸水量B[g/g]/吸水量C[g/g])×100
 吸水量Bは、無加圧下のDW法によって、スパンボンド不織布を介して供給される生理食塩水を1.00gの吸水性樹脂粒子に吸収させたときに、吸水性樹脂粒子が、吸収を開始してから5分後まで吸収する、当該吸水性樹脂粒子1g当たりの生理食塩水の質量である。
The liquid permeation ratio A of the water-absorbent resin particles is calculated by the following formula. The water-absorbent resin particles according to one embodiment have a liquid permeation ratio A of more than 0% and 60% or less.
Liquid permeation ratio A [%] = (water absorption B [g / g] / water absorption C [g / g]) × 100
The water absorption amount B is determined by the water-absorbent resin particles starting to be absorbed when the physiological saline supplied via the spunbonded non-woven fabric is absorbed by 1.00 g of the water-absorbent resin particles by the DW method under no pressure. It is the mass of the physiological saline solution per 1 g of the water-absorbent resin particles that is absorbed until 5 minutes after that.
 吸水量Bを測定するために用いられるスパンボンド不織布は、単位面積当たりの質量が、11~15g/mである。より詳細には、吸水量Bを測定するために用いられるスパンボンド不織布は、親水化処理されたポリプロピレン繊維によって形成された不織布であって、スパンボンド層、メルトブロー層、メルトブロー層及びスパンボンド層の4層構成を有し、これらがこの順で積層された積層体である。 The spunbonded non-woven fabric used for measuring the water absorption amount B has a mass per unit area of 11 to 15 g / m 2 . More specifically, the spunbonded non-woven fabric used for measuring the water absorption B is a non-woven fabric formed of polypropylene fibers that have been hydrophilized, and is composed of a spunbond layer, a melt blow layer, a melt blow layer, and a spunbond layer. It has a four-layer structure, and these are laminated in this order.
 図1は、吸水量Bを測定する方法を示す模式図である。図1に示される測定装置は、無加圧DW値を測定するための装置と同様の構成を有しており、ビュレット部2、導管5、測定台13、スパンボンド不織布15、架台11、及びクランプ3を有する。ビュレット部2は、目盛が記載されたビュレット管21と、ビュレット管21の上部の開口を密栓するゴム栓23と、ビュレット管21の下部の先端に連結されたコック22と、ビュレット管21の下部に連結された空気導入管25及びコック24とを有する。ビュレット部2はクランプ3で固定されている。平板状の測定台13は、その中央部に形成された直径2mmの貫通孔13aを有しており、高さが可変の架台11によって支持されている。測定台13の貫通孔13aとビュレット部2のコック22とが導管5によって連結されている。導管5の内径は6mmである。 FIG. 1 is a schematic diagram showing a method of measuring the water absorption amount B. The measuring device shown in FIG. 1 has the same configuration as the device for measuring the non-pressurized DW value, and has a burette portion 2, a conduit 5, a measuring table 13, a spunbonded non-woven fabric 15, a frame 11, and a frame 11. It has a clamp 3. The burette portion 2 includes a burette tube 21 on which a scale is described, a rubber stopper 23 for sealing the opening at the upper part of the burette tube 21, a cock 22 connected to the tip of the lower portion of the burette tube 21, and a lower portion of the burette tube 21. It has an air introduction pipe 25 and a cock 24 connected to the burette. The burette portion 2 is fixed by a clamp 3. The flat plate-shaped measuring table 13 has a through hole 13a having a diameter of 2 mm formed in the central portion thereof, and is supported by a frame 11 having a variable height. The through hole 13a of the measuring table 13 and the cock 22 of the burette portion 2 are connected by a conduit 5. The inner diameter of the conduit 5 is 6 mm.
 吸水量Bは、温度25℃、湿度50±10%の環境下で以下の工程を含む方法によって測定される。
(1)ビュレット部2のコック22とコック24を閉め、25℃の生理食塩水50(濃度0.9質量%の食塩水)をビュレット管21上部の開口からビュレット管21に入れる。生理食塩水の濃度0.9質量%は、生理食塩水の質量を基準とする濃度である。
(2)ゴム栓23でビュレット管21の開口を密栓した後、コック22及びコック24を開ける。気泡が入らないように、導管5内部を生理食塩水50で満たす。
(3)貫通孔13a内に到達した生理食塩水の水面の高さが、測定台13の上面の高さと同じになるように、測定台13の高さを調整する。調整後、ビュレット管21内の生理食塩水50の水面の高さをビュレット管21の目盛で読み取り、その位置をゼロ点(0秒時点の読み値)とする。
(4)測定台13上の貫通孔13aの近傍にてスパンボンド不織布15を敷き、その中央部に、内径30mm、高さ20mmのシリンダーを置く。このシリンダー内に、1.00gの吸水性樹脂粒子10aを投入する。
(5)シリンダーを注意深く取り除き、スパンボンド不織布15の中央部の円状の領域に、吸水性樹脂粒子10aを配置する。次いで、吸水性樹脂粒子10aが配置されたスパンボンド不織布15を、その中心が貫通孔13aの位置になるように、吸水性樹脂粒子10aが散逸しない程度にすばやく移動させて、測定を開始する。空気導入管25からビュレット管21内に気泡が最初に導入された時点を吸水開始(0秒)とみなす。
(6)ビュレット管21内の生理食塩水50の減少量(すなわち、吸水性樹脂粒子10aが吸収した生理食塩水の量)を0.1mL単位で順次読み取る。吸水性樹脂粒子10aの吸水開始から起算して5分後の生理食塩水50の減量分Wc(g)を読み取る。Wcと生理食塩水の密度(1.0028g/mL)から、下記式により吸水量Bを求める。吸水量Bは、吸収された生理食塩水の吸水性樹脂粒子1.00g当たりの質量である。
吸水量B[g/g]=Wc×1.0028/1.00
The water absorption amount B is measured by a method including the following steps in an environment of a temperature of 25 ° C. and a humidity of 50 ± 10%.
(1) The cock 22 and the cock 24 of the burette portion 2 are closed, and a physiological saline solution 50 (saline solution having a concentration of 0.9% by mass) at 25 ° C. is put into the burette tube 21 through the opening at the upper part of the burette tube 21. The concentration of 0.9% by mass of the physiological saline is a concentration based on the mass of the physiological saline.
(2) After sealing the opening of the burette tube 21 with the rubber stopper 23, the cock 22 and the cock 24 are opened. The inside of the conduit 5 is filled with saline 50 so that air bubbles do not enter.
(3) The height of the measuring table 13 is adjusted so that the height of the water surface of the physiological saline solution that has reached the inside of the through hole 13a is the same as the height of the upper surface of the measuring table 13. After the adjustment, the height of the water surface of the physiological saline solution 50 in the burette tube 21 is read by the scale of the burette tube 21, and the position is set as the zero point (reading value at 0 seconds).
(4) A spunbonded non-woven fabric 15 is laid in the vicinity of the through hole 13a on the measuring table 13, and a cylinder having an inner diameter of 30 mm and a height of 20 mm is placed in the center thereof. 1.00 g of water-absorbent resin particles 10a are charged into this cylinder.
(5) Carefully remove the cylinder, and place the water-absorbent resin particles 10a in the circular region in the center of the spunbonded nonwoven fabric 15. Next, the spunbonded nonwoven fabric 15 on which the water-absorbent resin particles 10a are arranged is quickly moved so that the center thereof is at the position of the through hole 13a so that the water-absorbent resin particles 10a do not dissipate, and the measurement is started. The time when the air bubbles are first introduced from the air introduction pipe 25 into the burette pipe 21 is regarded as the start of water absorption (0 seconds).
(6) The decrease amount of the physiological saline solution 50 in the burette tube 21 (that is, the amount of the physiological saline solution absorbed by the water-absorbent resin particles 10a) is sequentially read in units of 0.1 mL. The weight loss Wc (g) of the physiological saline 50 5 minutes after the start of water absorption of the water-absorbent resin particles 10a is read. From the density of Wc and physiological saline (1.028 g / mL), the water absorption amount B is calculated by the following formula. The water absorption amount B is the mass per 1.00 g of the water-absorbent resin particles of the absorbed physiological saline.
Water absorption B [g / g] = Wc x 1.0028 / 1.00
 吸水量Cは、2.0gの吸水性樹脂粒子が500gの生理食塩水中で60分間かけて膨潤したときに吸収する、吸水性樹脂粒子1g当たりの生理食塩水の質量である。吸水量Cは、温度25℃、湿度50±10%の環境下で以下の工程を含む方法によって測定される。
(1)内容積500mLのビーカー中で生理食塩水(濃度0.9質量%の食塩水)500gを600rpmで攪拌し、そこに吸水性樹脂粒子2.0gを分散させる。
(2)生理食塩水を攪拌した状態で60分間放置し、それにより吸水性樹脂粒子を膨潤させる。
(3)目開き75μm標準篩を用いたろ過により膨潤ゲルを取り出す。
(4)取り出された膨潤ゲルが載った篩いを、水平に対して約30度の傾斜角となるように傾け、その状態で、30分間放置することにより余剰の水分を除去する。
(5)膨潤ゲルが載った篩いの質量Wb(g)を測定する。Wbと予め測定した篩の質量Wa(g)から、下の式により、吸水量Cを求める。
吸水量C=(Wb-Wa)/2.0
The water absorption amount C is the mass of the physiological saline solution per 1 g of the water-absorbent resin particles, which is absorbed when 2.0 g of the water-absorbent resin particles swell in 500 g of physiological saline solution over 60 minutes. The water absorption amount C is measured by a method including the following steps in an environment of a temperature of 25 ° C. and a humidity of 50 ± 10%.
(1) 500 g of physiological saline (saline solution having a concentration of 0.9% by mass) is stirred at 600 rpm in a beaker having an internal volume of 500 mL, and 2.0 g of water-absorbent resin particles are dispersed therein.
(2) The physiological saline solution is left to stand for 60 minutes in a stirred state, whereby the water-absorbent resin particles are swollen.
(3) The swollen gel is taken out by filtration using a standard sieve having a mesh size of 75 μm.
(4) The sieve on which the removed swelling gel is placed is tilted so as to have an inclination angle of about 30 degrees with respect to the horizontal, and in that state, it is left for 30 minutes to remove excess water.
(5) The mass Wb (g) of the sieve on which the swollen gel is placed is measured. From Wb and the mass Wa (g) of the sieve measured in advance, the water absorption amount C is obtained by the following formula.
Water absorption C = (Wb-Wa) /2.0
 液透過比率Aが適度に小さいことは、吸水性樹脂粒子が過剰量の生理食塩水との接触によって十分に生理食塩水を吸収したときの吸水量Cと比較して、吸水性樹脂粒子がスパンボンド不織布を介して供給される生理食塩水を吸収したときの吸水量Bが小さいことを意味する。吸水量Bの測定において、比較的早い段階で生理食塩水の吸水様態が大幅に減速傾向となり、その結果、5分経過後の吸水量Bが小さい値にとどまることがある。この理由は明確ではないが、本発明者は、スパンボンド不織布と特定の吸水性樹脂粒子との組み合わせにおいて、予期せず液体の吸収が適度に局所的な吸収様態になるのではないかと推察している。したがって、液透過比率Aが60%以下のように小さいことは、スパンボンド不織布を介して生理食塩水を吸収するときの、吸水性樹脂粒子の初期の吸水速度がある程度以上に大きいことを意味すると考えられ、そのことが、スパンボンド不織布を含む液体透過シートの内側に吸水性樹脂粒子が配置された吸収性物品からの液漏れ抑制に寄与するものと考えられる。 The reason why the liquid permeation ratio A is moderately small is that the water-absorbent resin particles span as compared with the water absorption amount C when the water-absorbent resin particles sufficiently absorb the physiological saline by contact with an excessive amount of the physiological saline. It means that the amount of water absorption B when absorbing the physiological saline supplied through the bonded non-woven fabric is small. In the measurement of the water absorption amount B, the water absorption mode of the physiological saline tends to be significantly decelerated at a relatively early stage, and as a result, the water absorption amount B after 5 minutes may remain at a small value. The reason for this is not clear, but the present inventor speculates that in the combination of the spunbonded non-woven fabric and specific water-absorbent resin particles, the absorption of the liquid may unexpectedly become a moderately local absorption mode. ing. Therefore, the fact that the liquid permeation ratio A is as small as 60% or less means that the initial water absorption rate of the water-absorbent resin particles is higher than a certain level when the physiological saline is absorbed through the spunbonded non-woven fabric. It is considered that this contributes to the suppression of liquid leakage from the absorbent article in which the water-absorbent resin particles are arranged inside the liquid permeable sheet containing the spunbonded non-woven fabric.
 液漏れ抑制の観点から、液透過比率Aは、50%以下であってもよい。液透過比率Aは、1%以上、5%以上、又は8%以上であってもよい。吸水量Cは、40~65g/gであってもよい。 From the viewpoint of suppressing liquid leakage, the liquid permeation ratio A may be 50% or less. The liquid permeation ratio A may be 1% or more, 5% or more, or 8% or more. The water absorption amount C may be 40 to 65 g / g.
 吸水性樹脂粒子の2.07kPaの荷重下での生理食塩水に対する吸水量(以下「荷重下吸水量」ということがある。)が、20mL/g以上であってもよい。荷重下吸水量が大きいと、吸収性物品の装着者の荷重を受けた状態でも、高い吸水能力を維持することができる。同様の観点から、吸水性樹脂粒子の荷重下吸水量が、25mL/g以上、又は30mL/g以上であってもよく、50mL/g以下、又は45mL/g以下であってもよい。 The amount of water absorption of the water-absorbent resin particles with respect to physiological saline under a load of 2.07 kPa (hereinafter, may be referred to as "water absorption amount under load") may be 20 mL / g or more. When the amount of water absorption under load is large, high water absorption capacity can be maintained even under the load of the wearer of the absorbent article. From the same viewpoint, the water absorption amount of the water-absorbent resin particles under load may be 25 mL / g or more, 30 mL / g or more, 50 mL / g or less, or 45 mL / g or less.
 吸水性樹脂粒子の形状は、例えば略球状、破砕状、又は顆粒状であってもよい。本実施形態に係る吸水性樹脂粒子は、各々が単一の粒子からなる形態のほかに、微細な粒子(一次粒子)が凝集した形態(二次粒子)であってもよい。本吸水性樹脂粒子の中位粒子径は、250~850μm、300~700μm、又は、300~600μmであってよい。吸水性樹脂粒子は、後述する製造方法により得られた時点で所望の粒度分布を有していてよいが、篩による分級を用いた粒度調整等の操作を行うことにより粒度分布を調整してもよい。 The shape of the water-absorbent resin particles may be, for example, substantially spherical, crushed, or granular. The water-absorbent resin particles according to the present embodiment may be in a form in which fine particles (primary particles) are aggregated (secondary particles) in addition to a form in which each is composed of a single particle. The medium particle size of the water-absorbent resin particles may be 250 to 850 μm, 300 to 700 μm, or 300 to 600 μm. The water-absorbent resin particles may have a desired particle size distribution at the time of being obtained by the production method described later, but the particle size distribution may be adjusted by performing an operation such as particle size adjustment using classification by a sieve. Good.
 吸水性樹脂粒子は、例えば、エチレン性不飽和単量体を含む単量体の重合により形成された架橋重合体を含むことができる。架橋重合体は、エチレン性不飽和単量体に由来する単量体単位を有する。 The water-absorbent resin particles can include, for example, a crosslinked polymer formed by polymerizing a monomer containing an ethylenically unsaturated monomer. The crosslinked polymer has a monomer unit derived from an ethylenically unsaturated monomer.
 吸水性樹脂粒子は、エチレン性不飽和単量体を含む単量体を重合させる工程を含む方法により、製造することができる。重合方法としては、逆相懸濁重合法、水溶液重合法、バルク重合法、沈殿重合法等が挙げられる。得られる吸水性樹脂粒子の良好な吸水特性の確保、及び、重合反応の制御が容易である観点から、逆相懸濁重合法又は水溶液重合法を適用してもよい。以下においては、エチレン性不飽和単量体を重合させる方法として、逆相懸濁重合法を例にとって説明する。 The water-absorbent resin particles can be produced by a method including a step of polymerizing a monomer containing an ethylenically unsaturated monomer. Examples of the polymerization method include a reverse phase suspension polymerization method, an aqueous solution polymerization method, a bulk polymerization method, and a precipitation polymerization method. From the viewpoint of ensuring good water absorption characteristics of the obtained water-absorbent resin particles and facilitating control of the polymerization reaction, a reverse phase suspension polymerization method or an aqueous solution polymerization method may be applied. In the following, a reverse phase suspension polymerization method will be described as an example as a method for polymerizing an ethylenically unsaturated monomer.
 エチレン性不飽和単量体は水溶性であってもよい。水溶性エチレン性不飽和単量体の例としては、(メタ)アクリル酸及びその塩、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸及びその塩、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリルアミド等が挙げられる。エチレン性不飽和単量体がアミノ基を有する場合、当該アミノ基は4級化されていてもよい。エチレン性不飽和単量体は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。上述の単量体のカルボキシル基、アミノ基等の官能基は、後述する表面架橋の工程において架橋が可能な官能基として機能し得る。 The ethylenically unsaturated monomer may be water-soluble. Examples of water-soluble ethylenically unsaturated monomers include (meth) acrylic acid and its salts, 2- (meth) acrylamide-2-methylpropanesulfonic acid and its salts, (meth) acrylamide, N, N-dimethyl. (Meta) acrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, polyethylene glycol mono (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-diethylaminopropyl (meth) Examples thereof include acrylate and diethylaminopropyl (meth) acrylamide. When the ethylenically unsaturated monomer has an amino group, the amino group may be quaternized. The ethylenically unsaturated monomer may be used alone or in combination of two or more. Functional groups such as the carboxyl group and amino group of the above-mentioned monomers can function as functional groups capable of cross-linking in the surface cross-linking step described later.
 工業的に入手が容易である観点から、エチレン性不飽和単量体は、(メタ)アクリル酸及びその塩、アクリルアミド、メタクリルアミド、並びに、N,N-ジメチルアクリルアミドからなる群より選ばれる少なくとも1種の化合物を含んでいてもよい。エチレン性不飽和単量体が、(メタ)アクリル酸及びその塩、並びに、アクリルアミドからなる群より選ばれる少なくとも1種の化合物を含んでいてもよい。吸水特性を更に高める観点から、エチレン性不飽和単量体は、(メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも1種の化合物を含んでもよい。 From the viewpoint of industrial availability, the ethylenically unsaturated monomer is at least one selected from the group consisting of (meth) acrylic acid and salts thereof, acrylamide, methacrylamide, and N, N-dimethylacrylamide. It may contain a compound of the species. The ethylenically unsaturated monomer may contain (meth) acrylic acid and a salt thereof, and at least one compound selected from the group consisting of acrylamide. From the viewpoint of further enhancing the water absorption property, the ethylenically unsaturated monomer may contain at least one compound selected from the group consisting of (meth) acrylic acid and salts thereof.
 エチレン性不飽和単量体は、水溶液として重合反応に用いることができる。エチレン性不飽和単量体を含む水溶液(以下、単に「単量体水溶液」という)におけるエチレン性不飽和単量体の濃度は、20質量%以上飽和濃度以下、25~70質量%、又は30~55質量%であってもよい。水溶液において使用される水としては、水道水、蒸留水、イオン交換水等が挙げられる。 The ethylenically unsaturated monomer can be used in the polymerization reaction as an aqueous solution. The concentration of the ethylenically unsaturated monomer in the aqueous solution containing the ethylenically unsaturated monomer (hereinafter, simply referred to as "monomer aqueous solution") is 20% by mass or more and the saturation concentration or less, 25 to 70% by mass, or 30. It may be up to 55% by mass. Examples of the water used in the aqueous solution include tap water, distilled water, ion-exchanged water and the like.
 吸水性樹脂粒子を得るための単量体として、上述のエチレン性不飽和単量体以外の単量体が使用されてもよい。このような単量体は、例えば、上述のエチレン性不飽和単量体を含む水溶液に混合して用いることができる。エチレン性不飽和単量体の使用量は、単量体全量(吸水性樹脂粒子を得るための単量体全量。例えば、架橋重合体の構造単位を与える単量体の全量。以下同様。)に対して70~100モル%であってよく、80~100モル%、90~100モル%、95~100モル%、又は100モル%であってもよい。(メタ)アクリル酸及びその塩の割合が単量体全量に対して70~100モル%であってよく、80~100モル%、90~100モル%、95~100モル%、又は100モル%であってもよい。「(メタ)アクリル酸及びその塩の割合」は、(メタ)アクリル酸及びその塩の合計量の割合を意味する。 As the monomer for obtaining the water-absorbent resin particles, a monomer other than the above-mentioned ethylenically unsaturated monomer may be used. Such a monomer can be used, for example, by being mixed with an aqueous solution containing the above-mentioned ethylenically unsaturated monomer. The amount of the ethylenically unsaturated monomer used is the total amount of the monomers (the total amount of the monomers for obtaining the water-absorbent resin particles. For example, the total amount of the monomers giving the structural unit of the crosslinked polymer. The same shall apply hereinafter). It may be 70 to 100 mol%, 80 to 100 mol%, 90 to 100 mol%, 95 to 100 mol%, or 100 mol%. The ratio of (meth) acrylic acid and its salt may be 70 to 100 mol%, 80 to 100 mol%, 90 to 100 mol%, 95 to 100 mol%, or 100 mol% with respect to the total amount of the monomer. It may be. "Ratio of (meth) acrylic acid and its salt" means the ratio of the total amount of (meth) acrylic acid and its salt.
 エチレン性不飽和単量体が酸基を有する場合、その酸基をアルカリ性中和剤によって中和してから、単量体溶液を重合反応に用いてもよい。エチレン性不飽和単量体における、アルカリ性中和剤による中和度は、得られる吸水性樹脂粒子の浸透圧を高くし、吸水特性(吸水量等)を更に高める観点から、エチレン性不飽和単量体中の酸性基の10~100モル%、50~90モル%、又は60~80モル%であってもよい。アルカリ性中和剤としては、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム等のアルカリ金属塩;アンモニアなどが挙げられる。アルカリ性中和剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。アルカリ性中和剤は、中和操作を簡便にするために水溶液の状態で用いられてもよい。エチレン性不飽和単量体の酸基の中和は、例えば、水酸化ナトリウム、水酸化カリウム等の水溶液を上述の単量体水溶液に滴下して混合することにより行うことができる。 When the ethylenically unsaturated monomer has an acid group, the acid group may be neutralized with an alkaline neutralizer, and then the monomer solution may be used in the polymerization reaction. The degree of neutralization of an ethylenically unsaturated monomer by an alkaline neutralizing agent increases the osmotic pressure of the obtained water-absorbent resin particles and further enhances the water absorption characteristics (water absorption amount, etc.). It may be 10-100 mol%, 50-90 mol%, or 60-80 mol% of the acidic group in the body. Examples of the alkaline neutralizing agent include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogencarbonate, potassium hydroxide and potassium carbonate; ammonia and the like. The alkaline neutralizer may be used alone or in combination of two or more. The alkaline neutralizer may be used in the form of an aqueous solution to simplify the neutralization operation. Neutralization of the acid group of the ethylenically unsaturated monomer can be performed, for example, by adding an aqueous solution of sodium hydroxide, potassium hydroxide or the like to the above-mentioned monomer aqueous solution and mixing them.
 逆相懸濁重合法においては、界面活性剤の存在下、炭化水素分散媒中で単量体水溶液を分散し、ラジカル重合開始剤等を用いてエチレン性不飽和単量体の重合を行うことができる。ラジカル重合開始剤としては、水溶性ラジカル重合開始剤を用いることができる。 In the reverse phase suspension polymerization method, the monomer aqueous solution is dispersed in a hydrocarbon dispersion medium in the presence of a surfactant, and the ethylenically unsaturated monomer is polymerized using a radical polymerization initiator or the like. Can be done. As the radical polymerization initiator, a water-soluble radical polymerization initiator can be used.
 界面活性剤としては、ノニオン系界面活性剤、アニオン系界面活性剤等が挙げられる。ノニオン系界面活性剤としては、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピルアルキルエーテル、ポリエチレングリコール脂肪酸エステル等が挙げられる。アニオン系界面活性剤としては、脂肪酸塩、アルキルベンゼンスルホン酸塩、アルキルメチルタウリン酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンアルキルエーテルスルホン酸塩、ポリオキシエチレンアルキルエーテルのリン酸エステル、及びポリオキシエチレンアルキルアリルエーテルのリン酸エステル等が挙げられる。界面活性剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。 Examples of the surfactant include nonionic surfactants and anionic surfactants. Nonionic surfactants include sorbitan fatty acid ester, polyglycerin fatty acid ester, sucrose fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene glycerin fatty acid ester, sorbitol fatty acid ester, polyoxyethylene sorbitol fatty acid ester, and polyoxyethylene. Alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene castor oil, polyoxyethylene hydrogenated castor oil, alkylallyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene polyoxypropylene block copolymer, polyoxyethylene polyoxypropyl alkyl ether, Examples thereof include polyethylene glycol fatty acid ester. Anionic surfactants include fatty acid salts, alkylbenzene sulfonates, alkylmethyl taurates, polyoxyethylene alkylphenyl ether sulfates, polyoxyethylene alkyl ether sulfonates, and polyoxyethylene alkyl ether phosphates. , And the phosphate ester of polyoxyethylene alkyl allyl ether and the like. The surfactant may be used alone or in combination of two or more.
 W/O型逆相懸濁の状態が良好であり、好適な粒子径を有する吸水性樹脂粒子が得られやすく、工業的に入手が容易である観点から、界面活性剤は、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル及びショ糖脂肪酸エステルからなる群より選ばれる少なくとも1種の化合物を含んでもよい。得られる吸水性樹脂粒子の吸水特性が向上しやすい観点から、界面活性剤は、ショ糖脂肪酸エステル(例えばショ糖ステアリン酸エステル)を含んでもよい。 From the viewpoint that the W / O type reverse phase suspension is in a good state, water-absorbent resin particles having a suitable particle size can be easily obtained, and industrially available, the surfactant is a sorbitan fatty acid ester. It may contain at least one compound selected from the group consisting of polyglycerin fatty acid ester and sucrose fatty acid ester. From the viewpoint of easily improving the water absorption characteristics of the obtained water-absorbent resin particles, the surfactant may contain a sucrose fatty acid ester (for example, sucrose stearic acid ester).
 界面活性剤の量は、単量体水溶液100質量部に対して、0.05~10質量部、0.08~5質量部、又は0.1~3質量部であってもよい。 The amount of the surfactant may be 0.05 to 10 parts by mass, 0.08 to 5 parts by mass, or 0.1 to 3 parts by mass with respect to 100 parts by mass of the monomer aqueous solution.
 逆相懸濁重合では、上述の界面活性剤と共に高分子系分散剤を併せて用いてもよい。高分子系分散剤としては、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸変性EPDM(エチレン・プロピレン・ジエン・ターポリマー)、無水マレイン酸変性ポリブタジエン、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、無水マレイン酸・ブタジエン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、酸化型エチレン・プロピレン共重合体、エチレン・アクリル酸共重合体、エチルセルロース、エチルヒドロキシエチルセルロース等が挙げられる。高分子系分散剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。高分子系分散剤は、単量体の分散安定性に優れる観点から、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、及び、酸化型エチレン・プロピレン共重合体からなる群より選ばれる少なくとも一種であってもよい。 In reverse phase suspension polymerization, a polymer-based dispersant may be used in combination with the above-mentioned surfactant. Examples of the polymer dispersant include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, maleic anhydride-modified EPDM (ethylene / propylene / diene / terpolymer), and maleic anhydride. Modified polybutadiene, maleic anhydride / ethylene copolymer, maleic anhydride / propylene copolymer, maleic anhydride / ethylene / propylene copolymer, maleic anhydride / butadiene copolymer, polyethylene, polypropylene, ethylene / propylene copolymer Examples thereof include coalescence, oxidized polyethylene, oxidized polypropylene, oxidized ethylene / propylene copolymer, ethylene / acrylic acid copolymer, ethyl cellulose, ethyl hydroxyethyl cellulose and the like. The polymer-based dispersant may be used alone or in combination of two or more. From the viewpoint of excellent dispersion stability of the monomer, the polymer-based dispersant includes maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, and maleic anhydride / ethylene copolymer. , Maleic anhydride / propylene copolymer, maleic anhydride / ethylene / propylene copolymer, polyethylene, polypropylene, ethylene / propylene copolymer, oxidized polyethylene, oxidized polypropylene, and oxidized ethylene / propylene copolymer It may be at least one selected from the group consisting of.
 高分子系分散剤の量は、単量体水溶液100質量部に対して、0.05~10質量部、0.08~5質量部、又は0.1~3質量部であってもよい。 The amount of the polymer-based dispersant may be 0.05 to 10 parts by mass, 0.08 to 5 parts by mass, or 0.1 to 3 parts by mass with respect to 100 parts by mass of the monomer aqueous solution.
 炭化水素分散媒は、炭素数6~8の鎖状脂肪族炭化水素、及び、炭素数6~8の脂環式炭化水素からなる群より選ばれる少なくとも1種の化合物を含んでいてもよい。炭化水素分散媒としては、n-ヘキサン、n-ヘプタン、2-メチルヘキサン、3-メチルヘキサン、2,3-ジメチルペンタン、3-エチルペンタン、n-オクタン等の鎖状脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン、シクロペンタン、メチルシクロペンタン、trans-1,2-ジメチルシクロペンタン、cis-1,3-ジメチルシクロペンタン、trans-1,3-ジメチルシクロペンタン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素などが挙げられる。炭化水素分散媒は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。 The hydrocarbon dispersion medium may contain at least one compound selected from the group consisting of chain aliphatic hydrocarbons having 6 to 8 carbon atoms and alicyclic hydrocarbons having 6 to 8 carbon atoms. As the hydrocarbon dispersion medium, a chain aliphatic hydrocarbon such as n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane, n-octane; cyclohexane , Methylcyclohexane, cyclopentane, methylcyclopentane, trans-1,2-dimethylcyclopentane, cis-1,3-dimethylcyclopentane, trans-1,3-dimethylcyclopentane and other alicyclic hydrocarbons; benzene, Examples include aromatic hydrocarbons such as toluene and xylene. The hydrocarbon dispersion medium may be used alone or in combination of two or more.
 工業的に入手が容易であり、かつ、品質が安定している観点から、炭化水素分散媒は、n-ヘプタン及びシクロヘキサンからなる群より選ばれる少なくとも一種を含んでいてもよい。同様の観点から、上述の炭化水素分散媒の混合物としては、例えば、市販されているエクソールヘプタン(エクソンモービル社製:n-ヘプタン及び異性体の炭化水素75~85%含有)を用いてもよい。 From the viewpoint of being industrially easily available and having stable quality, the hydrocarbon dispersion medium may contain at least one selected from the group consisting of n-heptane and cyclohexane. From the same viewpoint, as the mixture of the above-mentioned hydrocarbon dispersion medium, for example, a commercially available exol heptane (manufactured by ExxonMobil: containing 75 to 85% of n-heptane and isomeric hydrocarbons) may be used. Good.
 炭化水素分散媒の量は、重合熱を適度に除去し、重合温度を制御しやすい観点から、単量体水溶液100質量部に対して、30~1000質量部、40~500質量部、又は50~300質量部であってもよい。炭化水素分散媒の量が30質量部以上であることにより、重合温度の制御が容易である傾向がある。炭化水素分散媒の量が1000質量部以下であることにより、重合の生産性が向上する傾向があり、経済的である。 The amount of the hydrocarbon dispersion medium is 30 to 1000 parts by mass, 40 to 500 parts by mass, or 50 parts by mass with respect to 100 parts by mass of the monomer aqueous solution from the viewpoint of appropriately removing the heat of polymerization and easily controlling the polymerization temperature. It may be up to 300 parts by mass. When the amount of the hydrocarbon dispersion medium is 30 parts by mass or more, the polymerization temperature tends to be easily controlled. When the amount of the hydrocarbon dispersion medium is 1000 parts by mass or less, the productivity of polymerization tends to be improved, which is economical.
 ラジカル重合開始剤は水溶性であってもよい。水溶性ラジカル重合開始剤の例としては、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩;メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート、過酸化水素等の過酸化物;2,2’-アゾビス(2-アミジノプロパン)2塩酸塩、2,2’-アゾビス[2-(N-フェニルアミジノ)プロパン]2塩酸塩、2,2’-アゾビス[2-(N-アリルアミジノ)プロパン]2塩酸塩、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]2塩酸塩、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}2塩酸塩、2,2’-アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド}、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド]、4,4’-アゾビス(4-シアノ吉草酸)等のアゾ化合物が挙げられる。ラジカル重合開始剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。ラジカル重合開始剤は、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]2塩酸塩、及び、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}2塩酸塩からなる群より選ばれる少なくとも一種であってもよい。 The radical polymerization initiator may be water-soluble. Examples of water-soluble radical polymerization initiators are persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate; methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, and t-butyl cumylper. Peroxides such as oxides, t-butylperoxyacetate, t-butylperoxyisobutyrate, t-butylperoxypivalate, hydrogen peroxide; 2,2'-azobis (2-amidinopropane) dihydrochloride , 2,2'-azobis [2- (N-phenylamidino) propane] dihydrochloride, 2,2'-azobis [2- (N-allylamidino) propane] dihydrochloride, 2,2'-azobis [ 2- (2-Imidazolin-2-yl) propane] 2 hydrochloride, 2,2'-azobis {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane} 2 hydrochloride, 2,2'-azobis {2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide}, 2,2'-azobis [2-methyl-N- (2-hydroxy) Ethyl) -propionamide], azo compounds such as 4,4'-azobis (4-cyanovaleric acid) can be mentioned. The radical polymerization initiator may be used alone or in combination of two or more. The radical polymerization initiators are potassium persulfate, ammonium persulfate, sodium persulfate, 2,2'-azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis [2- (2-imidazolin-2-yl). ) Propane] 2 hydrochloride and 2,2'-azobis {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane} 2 hydrochloride at least selected from the group. There may be.
 ラジカル重合開始剤の量は、エチレン性不飽和単量体1モルに対して0.00005~0.01モルであってよい。ラジカル重合開始剤の使用量が0.00005モル以上であると、重合反応に長時間を要さず、効率的である。ラジカル重合開始剤の量が0.01モル以下であると、急激な重合反応が起こることを抑制しやすい。 The amount of the radical polymerization initiator may be 0.00005 to 0.01 mol per 1 mol of the ethylenically unsaturated monomer. When the amount of the radical polymerization initiator used is 0.00005 mol or more, the polymerization reaction does not require a long time and is efficient. When the amount of the radical polymerization initiator is 0.01 mol or less, it is easy to suppress the occurrence of a rapid polymerization reaction.
 例示されたラジカル重合開始剤は、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第一鉄、L-アスコルビン酸等の還元剤と併用して、レドックス重合開始剤として用いることもできる。 The exemplified radical polymerization initiator can also be used as a redox polymerization initiator in combination with a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
 重合反応の際、単量体水溶液は、連鎖移動剤を含んでいてもよい。連鎖移動剤としては、次亜リン酸塩類、チオール類、チオール酸類、第2級アルコール類、アミン類等が挙げられる。 At the time of the polymerization reaction, the aqueous monomer solution may contain a chain transfer agent. Examples of the chain transfer agent include hypophosphates, thiols, thiolic acids, secondary alcohols, amines and the like.
 吸水性樹脂粒子の粒子径を制御するために、重合に用いる単量体水溶液は、増粘剤を含んでいてもよい。増粘剤としては、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、カルボキシメチルセルロース、ポリアクリル酸、ポリエチレングリコール、ポリアクリルアミド、ポリエチレンイミン、デキストリン、アルギン酸ナトリウム、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキサイド等が挙げられる。重合時の攪拌速度が同じであれば、単量体水溶液の粘度が高いほど、得られる粒子の中位粒子径は大きくなる傾向にある。 In order to control the particle size of the water-absorbent resin particles, the monomer aqueous solution used for polymerization may contain a thickener. Examples of the thickener include hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, carboxymethyl cellulose, polyacrylic acid, polyethylene glycol, polyacrylamide, polyethyleneimine, dextrin, sodium alginate, polyvinyl alcohol, polyvinylpyrrolidone, polyethylene oxide and the like. If the stirring speed at the time of polymerization is the same, the higher the viscosity of the aqueous monomer solution, the larger the medium particle size of the obtained particles tends to be.
 重合の際に自己架橋による架橋が生じ得るが、更に内部架橋剤を用いることで架橋を施してもよい。内部架橋剤を用いると、吸水性樹脂粒子の吸水特性を制御しやすい。内部架橋剤は、通常、重合反応の際に反応液に添加される。内部架橋剤としては、例えば、エチレングリコール、プロピレングリコール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類のジ又はトリ(メタ)アクリル酸エステル類;上述のポリオール類と不飽和酸(マレイン酸、フマール酸等)とを反応させて得られる不飽和ポリエステル類;N,N’-メチレンビス(メタ)アクリルアミド等のビス(メタ)アクリルアミド類;ポリエポキシドと(メタ)アクリル酸とを反応させて得られるジ又はトリ(メタ)アクリル酸エステル類;ポリイソシアネート(トリレンジイソシアネート、ヘキサメチレンジイソシアネート等)と(メタ)アクリル酸ヒドロキシエチルとを反応させて得られるジ(メタ)アクリル酸カルバミルエステル類;アリル化澱粉、アリル化セルロース、ジアリルフタレート、N,N’,N”-トリアリルイソシアヌレート、ジビニルベンゼン等の,重合性不飽和基を2個以上有する化合物;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロロヒドリン、エピブロムヒドリン、α-メチルエピクロロヒドリン等のハロエポキシ化合物;イソシアネート化合物(2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等)などの、反応性官能基を2個以上有する化合物が挙げられる。内部架橋剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。内部架橋剤としては、ポリグリシジル化合物であってもよく、ジグリシジルエーテル化合物であってもよい。内部架橋剤が、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、及び、(ポリ)グリセリンジグリシジルエーテルからなる群より選ばれる少なくとも一種を含んでもよい。 Cross-linking by self-cross-linking may occur during polymerization, but cross-linking may be further performed by using an internal cross-linking agent. When an internal cross-linking agent is used, it is easy to control the water absorption characteristics of the water-absorbent resin particles. The internal cross-linking agent is usually added to the reaction solution during the polymerization reaction. Examples of the internal cross-linking agent include di or tri (meth) acrylic acid esters of polyols such as ethylene glycol, propylene glycol, trimethylpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol and polyglycerin; Unsaturated polyesters obtained by reacting polyols with unsaturated acids (maleic acid, fumaric acid, etc.); bis (meth) acrylamides such as N, N'-methylenebis (meth) acrylamide; polyepoxides and (meth) Di or tri (meth) acrylic acid esters obtained by reacting with acrylic acid; di (meth) obtained by reacting polyisocyanate (tolylene diisocyanate, hexamethylene diisocyanate, etc.) with hydroxyethyl (meth) acrylate. ) Acrylic acid carbamil esters; compounds having two or more polymerizable unsaturated groups such as allylated starch, allylated cellulose, diallyl phthalate, N, N', N "-triallyl isocyanurate, divinylbenzene; Poly such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, polyglycerol polyglycidyl ether, etc. Glycidyl compounds; haloepoxy compounds such as epichlorohydrin, epibromhydrin, α-methylepichlorohydrin; 2 reactive functional groups such as isocyanate compounds (2,4-tolylene diisocyanate, hexamethylene diisocyanate, etc.) Examples thereof include compounds having more than one. The internal cross-linking agent may be used alone or in combination of two or more. The internal cross-linking agent may be a polyglycidyl compound or diglycidyl. It may be an ether compound. The internal cross-linking agent comprises at least one selected from the group consisting of (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether. It may be.
 内部架橋剤の量は、得られる重合体が適度に架橋されることにより水溶性の性質が抑制され、充分な吸水量が得られやすい観点から、エチレン性不飽和単量体1モル当たり、0ミリモル以上、0.02ミリモル以上、0.03ミリモル以上、0.04ミリモル以上、又は0.05ミリモル以上であってもよく、0.1モル以下であってもよい。 The amount of the internal cross-linking agent is 0 per mol of the ethylenically unsaturated monomer from the viewpoint that the water-soluble property is suppressed by appropriately cross-linking the obtained polymer and a sufficient amount of water absorption can be easily obtained. It may be mmol or more, 0.02 mmol or more, 0.03 mmol or more, 0.04 mmol or more, 0.05 mmol or more, or 0.1 mol or less.
 エチレン性不飽和単量体、ラジカル重合開始剤、必要に応じて内部架橋剤等を含む水相と、炭化水素系分散剤と必要に応じて界面活性剤、高分子系分散剤等を含む油相を混合した状態において攪拌下で加熱し、油中水系において逆相懸濁重合を行うことができる。 An aqueous phase containing an ethylenically unsaturated monomer, a radical polymerization initiator, an internal cross-linking agent, etc., if necessary, and an oil containing a hydrocarbon-based dispersant, a surfactant, a polymer-based dispersant, etc., if necessary. Reversed phase suspension polymerization can be carried out in an aqueous system in oil by heating with stirring in a state where the phases are mixed.
 逆相懸濁重合を行う際には、界面活性剤(必要に応じて更に、高分子系分散剤)の存在下で、エチレン性不飽和単量体を含む単量体水溶液を炭化水素分散媒に分散させる。このとき、重合反応を開始する前であれば、界面活性剤、高分子系分散剤等の添加時期は、単量体水溶液の添加の前後どちらであってもよい。 When performing reverse phase suspension polymerization, a monomer aqueous solution containing an ethylenically unsaturated monomer is used as a hydrocarbon dispersion medium in the presence of a surfactant (and, if necessary, a polymer-based dispersant). Disperse in. At this time, before the start of the polymerization reaction, the timing of adding the surfactant, the polymer-based dispersant, etc. may be either before or after the addition of the monomer aqueous solution.
 得られる吸水性樹脂に残存する炭化水素分散媒の量を低減しやすい観点から、高分子系分散剤を分散させた炭化水素分散媒に単量体水溶液を分散させた後に界面活性剤を更に分散させてから重合を行ってもよい。 From the viewpoint of easily reducing the amount of the hydrocarbon dispersion medium remaining in the obtained water-absorbent resin, the monomer aqueous solution is dispersed in the hydrocarbon dispersion medium in which the polymer-based dispersant is dispersed, and then the surfactant is further dispersed. It may be allowed to carry out polymerization.
 逆相懸濁重合は、1段、又は、2段以上の多段で行うことができる。逆相懸濁重合は、生産性を高める観点から、2段又は3段で行ってもよい。 Reverse phase suspension polymerization can be carried out in one stage or in multiple stages of two or more stages. Reversed phase suspension polymerization may be carried out in two or three stages from the viewpoint of increasing productivity.
 2段以上の多段で逆相懸濁重合を行う場合、1段目の逆相懸濁重合を行った後、1段目の重合反応で得られた反応混合物にエチレン性不飽和単量体を添加して混合し、1段目と同様の方法で2段目以降の逆相懸濁重合を行えばよい。2段目以降の各段における逆相懸濁重合では、エチレン性不飽和単量体の他に、上述のラジカル重合開始剤を、2段目以降の各段における逆相懸濁重合の際に添加するエチレン性不飽和単量体の量を基準として、上述のエチレン性不飽和単量体に対する各成分のモル比の範囲内で添加して逆相懸濁重合を行ってもよい。2段目以降の各段における逆相懸濁重合では、必要に応じて内部架橋剤を用いてもよい。内部架橋剤を用いる場合は、各段に供するエチレン性不飽和単量体の量を基準として、上述のエチレン性不飽和単量体に対する各成分のモル比の範囲内で添加して逆相懸濁重合を行ってもよい。 When reverse phase suspension polymerization is carried out in two or more stages, an ethylenically unsaturated monomer is added to the reaction mixture obtained in the first step polymerization reaction after the first step reverse phase suspension polymerization is carried out. It may be added and mixed, and the reverse phase suspension polymerization of the second and subsequent steps may be carried out in the same manner as in the first step. In the reverse phase suspension polymerization in each stage of the second and subsequent stages, in addition to the ethylenically unsaturated monomer, the above-mentioned radical polymerization initiator is used in the reverse phase suspension polymerization in each stage of the second and subsequent stages. Based on the amount of the ethylenically unsaturated monomer to be added, it may be added within the range of the molar ratio of each component to the above-mentioned ethylenically unsaturated monomer to carry out reverse phase suspension polymerization. In the reverse phase suspension polymerization in each stage after the second stage, an internal cross-linking agent may be used if necessary. When an internal cross-linking agent is used, it is added within the range of the molar ratio of each component to the above-mentioned ethylenically unsaturated monomer based on the amount of the ethylenically unsaturated monomer provided in each stage, and the suspension is reversed. Muddy polymerization may be carried out.
 重合反応の温度は、使用するラジカル重合開始剤によって異なるが、重合を迅速に進行させ、重合時間を短くすることにより、経済性を高めると共に、容易に重合熱を除去して円滑に反応を行う観点から、20~150℃、又は40~120℃であってもよい。反応時間は、通常、0.5~4時間である。重合反応の終了は、例えば、反応系内の温度上昇の停止により確認することができる。これにより、エチレン性不飽和単量体の重合体は、通常、含水ゲル状重合体の状態で得られる。 The temperature of the polymerization reaction varies depending on the radical polymerization initiator used, but by advancing the polymerization rapidly and shortening the polymerization time, the efficiency is improved and the heat of polymerization is easily removed to carry out the reaction smoothly. From the viewpoint, it may be 20 to 150 ° C. or 40 to 120 ° C. The reaction time is usually 0.5-4 hours. The completion of the polymerization reaction can be confirmed, for example, by stopping the temperature rise in the reaction system. As a result, the polymer of the ethylenically unsaturated monomer is usually obtained in the state of a hydrogel-like polymer.
 重合後、得られた含水ゲル状重合体に架橋剤を添加して加熱することで、重合後架橋を施してもよい。重合後架橋を行なうことで含水ゲル状重合体の架橋度を高め、それにより吸水性樹脂粒子の吸水特性を更に向上させることができる。 After polymerization, cross-linking may be performed after polymerization by adding a cross-linking agent to the obtained hydrogel polymer and heating it. By performing cross-linking after polymerization, the degree of cross-linking of the hydrogel polymer can be increased, whereby the water-absorbing characteristics of the water-absorbent resin particles can be further improved.
 重合後架橋を行うための架橋剤としては、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、及び(ポリ)グリセリンジグリシジルエーテル等の2個以上のエポキシ基を有する化合物;エピクロルヒドリン、エピブロムヒドリン、及びα-メチルエピクロルヒドリン等のハロエポキシ化合物;2,4-トリレンジイソシアネート、及びヘキサメチレンジイソシアネート等の2個以上のイソシアネート基を有する化合物;1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;エチレンカーボネート等のカーボネート化合物;ビス[N,N-ジ(β-ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物等が挙げられる。重合後後架橋のための架橋剤が、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、及びポリグリセロールポリグリシジルエーテル等のポリグリシジル化合物であってもよい。これらの架橋剤は、単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。 Examples of the cross-linking agent for performing post-polymerization cross-linking include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; Compounds having two or more epoxy groups such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether; epichlorohydrin, epibromhydrin, α-methylepicrolhydrin, etc. Haloepoxy compounds; compounds having two or more isocyanate groups such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; oxazoline compounds such as 1,2-ethylenebisoxazoline; carbonate compounds such as ethylenecarbonate; bis [N , N-di (β-hydroxyethyl)] hydroxyalkylamide compounds such as adipamide can be mentioned. Crosslinking agents for post-polymerization post-crosslinking are (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, and polyglycerol polyglycidyl. It may be a polyglycidyl compound such as ether. These cross-linking agents may be used alone or in combination of two or more.
 重合後架橋に用いられる架橋剤の量は、得られる含水ゲル状重合体が適度に架橋されることにより好適な吸水特性を示すようにする観点から、水溶性エチレン性不飽和単量体1モル当たり、0~0.03モル、0~0.01モル、又は0.00001~0.005モルであってもよい。 The amount of the cross-linking agent used for post-polymerization cross-linking is 1 mol of the water-soluble ethylenically unsaturated monomer from the viewpoint of appropriately cross-linking the obtained hydrogel-like polymer to exhibit suitable water absorption characteristics. It may be 0 to 0.03 mol, 0 to 0.01 mol, or 0.00001 to 0.005 mol.
 重合後架橋のための架橋剤は、エチレン性不飽和単量体の重合反応後に反応液に添加される。多段重合の場合、多段重合後に重合後架橋のための架橋剤を添加してもよい。重合時および重合後の発熱、工程遅延による滞留、架橋剤添加時の系の開放、及び架橋剤添加に伴う水の添加等による水分の変動を考慮して、重合後架橋のための架橋剤は、含水率(後述)の観点から、[重合直後の含水率±3質量%]の領域で添加してもよい。 The cross-linking agent for post-polymerization cross-linking is added to the reaction solution after the polymerization reaction of the ethylenically unsaturated monomer. In the case of multi-stage polymerization, a cross-linking agent for post-polymerization cross-linking may be added after the multi-stage polymerization. Considering the fluctuation of water content due to heat generation during and after polymerization, retention due to process delay, opening of the system when adding a cross-linking agent, and addition of water due to addition of a cross-linking agent, the cross-linking agent for post-polymerization cross-linking is From the viewpoint of water content (described later), it may be added in the region of [water content immediately after polymerization ± 3% by mass].
 引き続き、得られた含水ゲル状重合体から水分が除去される。水分の除去する乾燥により、エチレン性不飽和単量体の重合体を含む重合体粒子が得られる。乾燥方法としては、例えば、(a)含水ゲル状重合体が炭化水素分散媒に分散した状態で共沸蒸留により水分を除去する方法、(b)デカンテーションにより含水ゲル状重合体を取り出し、減圧乾燥する方法、(c)フィルターにより含水ゲル状重合体をろ別し、減圧乾燥する方法等が挙げられる。 Subsequently, water is removed from the obtained hydrogel polymer. Drying to remove water gives polymer particles containing a polymer of ethylenically unsaturated monomers. Examples of the drying method include (a) a method of removing water by co-boiling distillation in a state where the hydrogel polymer is dispersed in a hydrocarbon dispersion medium, and (b) taking out the hydrogel polymer by decantation and reducing the pressure. Examples thereof include a method of drying, and (c) a method of filtering the hydrogel polymer by a filter and drying under reduced pressure.
 重合反応時の攪拌機の回転数を調整することによって、あるいは、重合反応後又は乾燥の初期において凝集剤を系内に添加することによって吸水性樹脂粒子の粒子径を調整することができる。凝集剤を添加することにより、得られる吸水性樹脂粒子の粒子径を大きくすることができる。凝集剤としては、無機凝集剤を用いることができる。無機凝集剤(例えば粉末状無機凝集剤)としては、シリカ、ゼオライト、ベントナイト、酸化アルミニウム、タルク、二酸化チタン、カオリン、クレイ、ハイドロタルサイト等が挙げられる。凝集効果に優れる観点から、凝集剤が、シリカ、酸化アルミニウム、タルク及びカオリンからなる群より選ばれる少なくとも一種であってもよい。 The particle size of the water-absorbent resin particles can be adjusted by adjusting the rotation speed of the stirrer during the polymerization reaction, or by adding a flocculant into the system after the polymerization reaction or in the early stage of drying. By adding a flocculant, the particle size of the obtained water-absorbent resin particles can be increased. As the flocculant, an inorganic flocculant can be used. Examples of the inorganic flocculant (for example, powdered inorganic flocculant) include silica, zeolite, bentonite, aluminum oxide, talc, titanium dioxide, kaolin, clay, hydrotalcite and the like. From the viewpoint of excellent aggregating effect, the aggregating agent may be at least one selected from the group consisting of silica, aluminum oxide, talc and kaolin.
 逆相懸濁重合において、重合で用いられるものと同種の炭化水素分散媒又は水に凝集剤を予め分散させてから、これを、攪拌下で、含水ゲル状重合体を含む炭化水素分散媒中に混合してもよい。 In reverse phase suspension polymerization, a coagulant is previously dispersed in a hydrocarbon dispersion medium of the same type as that used in the polymerization or water, and then this is placed in a hydrocarbon dispersion medium containing a hydrogel polymer under stirring. May be mixed with.
 凝集剤の量は、重合に使用するエチレン性不飽和単量体100質量部に対して、0.001~1質量部、0.005~0.5質量部、又は0.01~0.2質量部であってもよい。凝集剤の量がこれら範囲内であることによって、目的とする粒度分布を有する吸水性樹脂粒子が得られやすい。 The amount of the flocculant is 0.001 to 1 part by mass, 0.005 to 0.5 part by mass, or 0.01 to 0.2 with respect to 100 parts by mass of the ethylenically unsaturated monomer used for the polymerization. It may be a mass part. When the amount of the flocculant is within these ranges, it is easy to obtain water-absorbent resin particles having a desired particle size distribution.
 重合反応は、攪拌翼を有する各種攪拌機を用いて行うことができる。攪拌翼としては、平板翼、格子翼、パドル翼、プロペラ翼、アンカー翼、タービン翼、ファウドラー翼、リボン翼、フルゾーン翼、マックスブレンド翼等を用いることができる。平板翼は、軸(攪拌軸)と、軸の周囲に配置された平板部(攪拌部)とを有している。さらに、平板部は、スリット等を有していてもよい。攪拌翼として平板翼を用いると、形成される重合体粒子における重合体の架橋の均一性が高くなる傾向がある。架橋の均一性が高い重合体粒子を含む吸水性樹脂粒子は、適度に低い液透過比率Aを示す傾向がある。 The polymerization reaction can be carried out using various stirrers having stirring blades. As the stirring blade, a flat plate blade, a lattice blade, a paddle blade, a propeller blade, an anchor blade, a turbine blade, a Faudler blade, a ribbon blade, a full zone blade, a max blend blade and the like can be used. The flat plate blade has a shaft (stirring shaft) and a flat plate portion (stirring portion) arranged around the shaft. Further, the flat plate portion may have a slit or the like. When a flat plate blade is used as the stirring blade, the uniformity of cross-linking of the polymer in the formed polymer particles tends to be high. The water-absorbent resin particles containing the polymer particles having high crosslink uniformity tend to exhibit a moderately low liquid permeation ratio A.
 吸水性樹脂粒子の製造においては、乾燥工程又はそれ以降のいずれかの工程において、架橋剤を用いて含水ゲル状重合体の表面部分の架橋(表面架橋)が行われてもよい。表面架橋を行うことで、吸水性樹脂粒子の吸水特性を制御しやすい。表面架橋される含水ゲル状重合体の含水率が、5~50質量%、10~40質量%、又は15~35質量%であってもよい。含水ゲル状重合体の含水率(質量%)は、次の式で算出される。
含水率=[Ww/(Ww+Ws)]×100
 Ww:全重合工程の重合前の単量体水溶液に含まれる水分量から、乾燥工程により系外部に排出された水分量を差し引いた量に、凝集剤、表面架橋剤等を混合する際に必要に応じて用いられる水分量を加えることで算出される含水ゲル状重合体の水分量。
 Ws:含水ゲル状重合体を構成するエチレン性不飽和単量体、架橋剤、開始剤等の材料の仕込量から算出される固形分量。
In the production of the water-absorbent resin particles, the surface portion of the hydrogel polymer may be crosslinked (surface crosslinked) using a crosslinking agent in any of the drying steps and subsequent steps. By performing surface cross-linking, it is easy to control the water absorption characteristics of the water-absorbent resin particles. The water content of the surface-crosslinked hydrogel polymer may be 5 to 50% by mass, 10 to 40% by mass, or 15 to 35% by mass. The water content (mass%) of the water-containing gel polymer is calculated by the following formula.
Moisture content = [Ww / (Ww + Ws)] x 100
Ww: Necessary when mixing a flocculant, a surface cross-linking agent, etc. to the amount obtained by subtracting the amount of water discharged to the outside of the system by the drying step from the amount of water contained in the monomer aqueous solution before polymerization in the entire polymerization step. The water content of the hydrogel polymer calculated by adding the water content used according to.
Ws: A solid content calculated from the amount of materials such as an ethylenically unsaturated monomer, a cross-linking agent, and an initiator that constitute a hydrogel polymer.
 表面架橋を行うための架橋剤(表面架橋剤)としては、例えば、反応性官能基を2個以上有する化合物を挙げることができる。表面架橋剤の例としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル(ポリ)プロピレングリコールポリグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロロヒドリン、エピブロムヒドリン、α-メチルエピクロロヒドリン等のハロエポキシ化合物;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル-3-オキセタンエタノール等のオキセタン化合物;1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;エチレンカーボネート等のカーボネート化合物;ビス[N,N-ジ(β-ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物が挙げられる。表面架橋剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。表面架橋剤は、ポリグリシジル化合物であってもよく、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、及び、ポリグリセロールポリグリシジルエーテルからなる群より選ばれる少なくとも一種を含んでもよい。 Examples of the cross-linking agent (surface cross-linking agent) for performing surface cross-linking include compounds having two or more reactive functional groups. Examples of surface cross-linking agents include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; (poly) ethylene glycol di Polyglycidyl compounds such as glycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, trimethylpropan triglycidyl ether (poly) propylene glycol polyglycidyl ether, (poly) glycerol polyglycidyl ether; epichlorohydre Haloepoxy compounds such as phosphorus, epibromhydrin and α-methylepichlorohydrin; isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; 3-methyl-3-oxetane methanol, 3-ethyl-3- Oxetane compounds such as oxetane methanol, 3-butyl-3-oxetane methanol, 3-methyl-3-oxetane ethanol, 3-ethyl-3-oxetane ethanol, 3-butyl-3-oxetane ethanol; 1,2-ethylenebisoxazoline Oxazoline compounds such as; carbonate compounds such as ethylene carbonate; hydroxyalkylamide compounds such as bis [N, N-di (β-hydroxyethyl)] adipamide can be mentioned. The surface cross-linking agent may be used alone or in combination of two or more. The surface cross-linking agent may be a polyglycidyl compound, and may be (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, and It may contain at least one selected from the group consisting of polyglycerol polyglycidyl ether.
 表面架橋剤の量は、重合に使用するエチレン性不飽和単量体1モルに対して、0.00001~0.02モル、0.00005~0.01モル、又は0.0001~0.005モルであってもよい。表面架橋剤の量が0.00001モル以上であると、吸水性樹脂粒子の表面部分における架橋密度が充分に高められ、吸水性樹脂粒子のゲル強度を高めやすい。表面架橋剤の量が0.02モル以下であると、吸水性樹脂粒子の吸水量を高めやすい。 The amount of the surface cross-linking agent is 0.00001 to 0.02 mol, 0.00005 to 0.01 mol, or 0.0001 to 0.005 with respect to 1 mol of the ethylenically unsaturated monomer used for the polymerization. It may be a mole. When the amount of the surface cross-linking agent is 0.00001 mol or more, the cross-linking density on the surface portion of the water-absorbent resin particles is sufficiently increased, and the gel strength of the water-absorbent resin particles can be easily increased. When the amount of the surface cross-linking agent is 0.02 mol or less, it is easy to increase the water absorption amount of the water-absorbent resin particles.
 表面架橋後、水及び炭化水素分散媒を留去することにより、表面架橋された吸水性樹脂粒子の乾燥品である重合体粒子を得ることができる。 After surface cross-linking, water and a hydrocarbon dispersion medium are distilled off to obtain polymer particles which are dried products of surface-cross-linked water-absorbent resin particles.
 本実施形態に係る吸水性樹脂粒子は、重合体粒子のみから構成されていてもよいが、例えば、ゲル安定剤、金属キレート剤、及び流動性向上剤(滑剤)等から選ばれる各種の追加の成分を更に含むことができる。追加の成分は、重合体粒子の内部、重合体粒子の表面上、又はそれらの両方に配置され得る。追加の成分は、流動性向上剤(滑剤)であってもよい。流動性向上剤は無機粒子を含んでいてもよい。無機粒子としては、例えば、非晶質シリカ等のシリカ粒子が挙げられる。 The water-absorbent resin particles according to the present embodiment may be composed of only polymer particles, but various additional particles selected from, for example, a gel stabilizer, a metal chelating agent, a fluidity improver (lubricant), and the like. Ingredients can be further included. Additional components may be placed inside the polymer particles, on the surface of the polymer particles, or both. The additional component may be a fluidity improver (lubricant). The fluidity improver may contain inorganic particles. Examples of the inorganic particles include silica particles such as amorphous silica.
 吸水性樹脂粒子は、重合体粒子の表面上に配置された複数の無機粒子を含んでいてもよい。例えば、重合体粒子と無機粒子とを混合することにより、重合体粒子の表面上に無機粒子を配置することができる。この無機粒子は、非晶質シリカ等のシリカ粒子であってもよい。吸水性樹脂粒子が重合体粒子の表面上に配置された無機粒子を含む場合、重合体粒子の質量に対する無機粒子の量の割合は、0.2質量%以上、0.5質量%以上、1.0質量%以上、又は1.5質量%以上であってもよく、5.0質量%以下、又は3.5質量%以下であってもよい。無機粒子を多く含む吸水性樹脂粒子は、より小さな液透過比率Aを示す傾向がある。ここでの無機粒子は、通常、重合体粒子の大きさと比較して微小な大きさを有する。例えば、無機粒子の平均粒子径が、0.1~50μm、0.5~30μm、又は1~20μmであってもよい。ここでの平均粒子径は、動的光散乱法、又はレーザー回折・散乱法によって測定される値であることができる。 The water-absorbent resin particles may contain a plurality of inorganic particles arranged on the surface of the polymer particles. For example, by mixing the polymer particles and the inorganic particles, the inorganic particles can be arranged on the surface of the polymer particles. The inorganic particles may be silica particles such as amorphous silica. When the water-absorbent resin particles include inorganic particles arranged on the surface of the polymer particles, the ratio of the amount of the inorganic particles to the mass of the polymer particles is 0.2% by mass or more, 0.5% by mass or more, 1 It may be 0.0% by mass or more, 1.5% by mass or more, 5.0% by mass or less, or 3.5% by mass or less. Water-absorbent resin particles containing a large amount of inorganic particles tend to exhibit a smaller liquid permeation ratio A. The inorganic particles here usually have a minute size as compared with the size of the polymer particles. For example, the average particle size of the inorganic particles may be 0.1 to 50 μm, 0.5 to 30 μm, or 1 to 20 μm. The average particle size here can be a value measured by a dynamic light scattering method or a laser diffraction / scattering method.
 一実施形態に係る吸収体は、本実施形態に係る吸水性樹脂粒子を含有する。本実施形態に係る吸収体は、繊維状物を含有することが可能であり、例えば、吸水性樹脂粒子及び繊維状物を含む混合物である。吸収体の構成としては、例えば、吸水性樹脂粒子及び繊維状物が均一混合された構成であってよく、シート状又は層状に形成された繊維状物の間に吸水性樹脂粒子が挟まれた構成であってもよい。 The absorber according to one embodiment contains the water-absorbent resin particles according to this embodiment. The absorber according to the present embodiment can contain a fibrous substance, for example, a mixture containing water-absorbent resin particles and the fibrous substance. The structure of the absorber may be, for example, a structure in which the water-absorbent resin particles and the fibrous material are uniformly mixed, and the water-absorbent resin particles are sandwiched between the fibrous material formed in a sheet or layer. It may be a configuration.
 繊維状物としては、微粉砕された木材パルプ;コットン;コットンリンター;レーヨン;セルロースアセテート等のセルロース系繊維;ポリアミド、ポリエステル、ポリオレフィン等の合成繊維;これらの繊維の混合物などが挙げられる。繊維状物の平均繊維長は、通常、0.1~10mmであり、0.5~5mmであってよい。繊維状物は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。繊維状物としては、親水性繊維を用いることができる。 Examples of the fibrous material include finely pulverized wood pulp; cotton; cotton linter; rayon; cellulosic fibers such as cellulose acetate; synthetic fibers such as polyamide, polyester and polyolefin; and a mixture of these fibers. The average fiber length of the fibrous material is usually 0.1 to 10 mm and may be 0.5 to 5 mm. The fibrous material may be used alone or in combination of two or more. As the fibrous material, hydrophilic fibers can be used.
 吸収体における吸水性樹脂粒子の質量割合は、吸水性樹脂粒子及び繊維状物の合計に対して、2~100質量%、10~90質量%又は20~80質量%であってよい。 The mass ratio of the water-absorbent resin particles in the absorber may be 2 to 100% by mass, 10 to 90% by mass, or 20 to 80% by mass with respect to the total of the water-absorbent resin particles and the fibrous material.
 吸収体の使用前及び使用中における形態保持性を高めるために、繊維状物に接着性バインダーを添加することによって繊維同士を接着させてもよい。接着性バインダーとしては、熱融着性合成繊維、ホットメルト接着剤、接着性エマルジョン等が挙げられる。接着性バインダーは、1種単独で、又は2種以上を組み合わせて用いられる。 In order to enhance the shape retention before and during use of the absorber, the fibers may be adhered to each other by adding an adhesive binder to the fibrous material. Examples of the adhesive binder include heat-sealing synthetic fibers, hot melt adhesives, and adhesive emulsions. The adhesive binder may be used alone or in combination of two or more.
 熱融着性合成繊維としては、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等の全融型バインダー;ポリプロピレンとポリエチレンとのサイドバイサイドや芯鞘構造からなる非全融型バインダーなどが挙げられる。上述の非全融型バインダーにおいては、ポリエチレン部分のみ熱融着することができる。 Examples of the heat-bondable synthetic fiber include a total fusion type binder such as polyethylene, polypropylene, and an ethylene-propylene copolymer; a side-by-side of polypropylene and polyethylene, and a non-total fusion type binder having a core-sheath structure. In the above-mentioned non-total fusion type binder, only the polyethylene portion can be heat-sealed.
 ホットメルト接着剤としては、例えば、エチレン-酢酸ビニルコポリマー、スチレン-イソプレン-スチレンブロックコポリマー、スチレン-ブタジエン-スチレンブロックコポリマー、スチレン-エチレン-ブチレン-スチレンブロックコポリマー、スチレン-エチレン-プロピレン-スチレンブロックコポリマー、アモルファスポリプロピレン等のベースポリマーと、粘着付与剤、可塑剤、酸化防止剤等との混合物が挙げられる。 Examples of the hot melt adhesive include ethylene-vinyl acetate copolymer, styrene-isoprene-styrene block copolymer, styrene-butadiene-styrene block copolymer, styrene-ethylene-butylene-styrene block copolymer, and styrene-ethylene-propylene-styrene block copolymer. , A mixture of a base polymer such as amorphous polypropylene and a tackifier, a plasticizer, an antioxidant and the like.
 接着性エマルジョンとしては、例えば、メチルメタクリレート、スチレン、アクリロニトリル、2ーエチルヘキシルアクリレート、ブチルアクリレート、ブタジエン、エチレン、及び、酢酸ビニルからなる群より選ばれる少なくとも一種の単量体の重合物が挙げられる。 Examples of the adhesive emulsion include polymers of at least one monomer selected from the group consisting of methyl methacrylate, styrene, acrylonitrile, 2-ethylhexyl acrylate, butyl acrylate, butadiene, ethylene, and vinyl acetate.
 吸収体は、無機粉末(例えば非晶質シリカ)、消臭剤、抗菌剤、香料等を含有してもよい。吸水性樹脂粒子が無機粒子を含む場合、吸収体は吸水性樹脂粒子中の無機粒子とは別に無機粉末を含んでいてもよい。 The absorber may contain an inorganic powder (for example, amorphous silica), a deodorant, an antibacterial agent, a fragrance, and the like. When the water-absorbent resin particles contain inorganic particles, the absorber may contain inorganic powder in addition to the inorganic particles in the water-absorbent resin particles.
 吸収体の形状は、特に限定されず、例えばシート状であってよい。吸収体の厚さ(例えば、シート状の吸収体の厚さ)は、例えば0.1~20mm、0.3~15mmであってよい。 The shape of the absorber is not particularly limited, and may be, for example, a sheet shape. The thickness of the absorber (for example, the thickness of the sheet-shaped absorber) may be, for example, 0.1 to 20 mm and 0.3 to 15 mm.
 一実施形態に係る吸収性物品は、本実施形態に係る吸収体を備える。本実施形態に係る吸収性物品は、吸収体を保形するコアラップ;吸液対象の液が浸入する側の最外部に配置される液体透過性シート;吸液対象の液が浸入する側とは反対側の最外部に配置される液体不透過性シート等が挙げられる。吸収性物品としては、おむつ(例えば紙おむつ)、トイレトレーニングパンツ、失禁パッド、衛生材料(生理用ナプキン、タンポン等)、汗取りパッド、ペットシート、簡易トイレ用部材、動物排泄物処理材などが挙げられる。 The absorbent article according to one embodiment includes an absorber according to this embodiment. The absorbent article according to the present embodiment is a core wrap that retains the shape of the absorber; a liquid permeable sheet that is arranged on the outermost side of the side where the liquid to be absorbed enters; and the side where the liquid to be absorbed enters. Examples thereof include a liquid permeable sheet arranged on the outermost side on the opposite side. Absorbent articles include diapers (for example, paper diapers), toilet training pants, incontinence pads, sanitary materials (sanitary napkins, tampons, etc.), sweat pads, pet sheets, simple toilet materials, animal excrement treatment materials, and the like. ..
 図2は、吸収性物品の一例を示す断面図である。図2に示す吸収性物品100は、吸収体10と、コアラップ20a,20bと、液体透過性シート30と、液体不透過性シート40と、を備える。吸収性物品100において、液体不透過性シート40、コアラップ20b、吸収体10、コアラップ20a、及び、液体透過性シート30がこの順に積層されている。図2において、部材間に間隙があるように図示されている部分があるが、当該間隙が存在することなく部材間が密着していてよい。 FIG. 2 is a cross-sectional view showing an example of an absorbent article. The absorbent article 100 shown in FIG. 2 includes an absorbent body 10, core wraps 20a and 20b, a liquid permeable sheet 30, and a liquid permeable sheet 40. In the absorbent article 100, the liquid permeable sheet 40, the core wrap 20b, the absorbent body 10, the core wrap 20a, and the liquid permeable sheet 30 are laminated in this order. In FIG. 2, there is a portion shown so that there is a gap between the members, but the members may be in close contact with each other without the gap.
 吸収体10は、本実施形態に係る吸水性樹脂粒子10aと、繊維状物を含む繊維層10bと、を有する。吸水性樹脂粒子10aは、繊維層10b内に分散している。 The absorber 10 has a water-absorbent resin particle 10a according to the present embodiment and a fiber layer 10b containing a fibrous material. The water-absorbent resin particles 10a are dispersed in the fiber layer 10b.
 コアラップ20aは、吸収体10に接した状態で吸収体10の一方面側(図2中、吸収体10の上側)に配置されている。コアラップ20bは、吸収体10に接した状態で吸収体10の他方面側(図2中、吸収体10の下側)に配置されている。吸収体10は、コアラップ20aとコアラップ20bとの間に配置されている。コアラップ20a,20bとしては、ティッシュペーパー、不織布等が挙げられる。コアラップ20a及びコアラップ20bは、例えば、吸収体10と同等の大きさの主面を有している。 The core wrap 20a is arranged on one side of the absorber 10 (upper side of the absorber 10 in FIG. 2) in contact with the absorber 10. The core wrap 20b is arranged on the other side of the absorber 10 (lower side of the absorber 10 in FIG. 2) in contact with the absorber 10. The absorber 10 is arranged between the core wrap 20a and the core wrap 20b. Examples of the core wraps 20a and 20b include tissue paper, non-woven fabric and the like. The core wrap 20a and the core wrap 20b have, for example, a main surface having the same size as the absorber 10.
 液体透過性シート30は、吸収対象の液が浸入する側の最外部に配置されている。液体透過性シート30は、コアラップ20aに接した状態でコアラップ20a上に配置されている。液体不透過性シート40は、吸収性物品100において液体透過性シート30とは反対側の最外部に配置されている。液体不透過性シート40は、コアラップ20bに接した状態でコアラップ20bの下側に配置されている。液体透過性シート30及び液体不透過性シート40は、例えば、吸収体10の主面よりも広い主面を有しており、液体透過性シート30及び液体不透過性シート40の外縁部は、吸収体10及びコアラップ20a,20bの周囲に延在している。 The liquid permeable sheet 30 is arranged on the outermost side on the side where the liquid to be absorbed enters. The liquid permeable sheet 30 is arranged on the core wrap 20a in contact with the core wrap 20a. The liquid permeable sheet 40 is arranged on the outermost side of the absorbent article 100 on the opposite side of the liquid permeable sheet 30. The liquid permeable sheet 40 is arranged under the core wrap 20b in contact with the core wrap 20b. The liquid permeable sheet 30 and the liquid permeable sheet 40 have, for example, a main surface wider than the main surface of the absorber 10, and the outer edges of the liquid permeable sheet 30 and the liquid permeable sheet 40 are It extends around the absorber 10 and the core wraps 20a, 20b.
 吸収体10、コアラップ20a,20b、液体透過性シート30、及び、液体不透過性シート40の大小関係は、特に限定されず、吸収性物品の用途等に応じて適宜調整される。図2に示される吸収体10は、2枚のコアラップ20a,20bの間に挟むことにより、保形されている。吸収体を保形するコアラップによって保形する方法はこれに限られず、例えば、折り畳まれた1枚のコアラップで吸収体を挟んでもよい。コアラップが袋体を形成し、その内部に吸収体が配置されてもよい。 The magnitude relationship between the absorbent body 10, the core wraps 20a and 20b, the liquid permeable sheet 30, and the liquid permeable sheet 40 is not particularly limited, and is appropriately adjusted according to the use of the absorbent article and the like. The absorber 10 shown in FIG. 2 is held in shape by being sandwiched between two core wraps 20a and 20b. The method of retaining the shape by the core wrap that retains the shape of the absorber is not limited to this, and for example, the absorber may be sandwiched between a single folded core wrap. The core wrap may form a bag and an absorber may be placed therein.
 液体透過性シート30は、当該技術分野で通常用いられる樹脂又は繊維から形成されたシートであってよい。液体透過性シート30は、吸収性物品に用いられる際の液体浸透性、柔軟性及び強度の観点から、例えば、ポリエチレン(PE)及びポリプロピレン(PP)等のポリオレフィン、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)及びポリエチレンナフタレート(PEN)等のポリエステル、ナイロン等のポリアミド、並びにレーヨンのような合成樹脂、又はこれら合成樹脂を含む合成繊維を含んでいてもよいし、綿、絹、麻、又はパルプ(セルロース)を含む天然繊維であってもよい。液体透過性シート30の強度を高める等の観点から、液体透過性シート30が合成繊維を含んでいてもよい。合成繊維が特に、ポリオレフィン繊維、ポリエステル繊維又はこれらの組み合わせであってよい。これらの素材は、単独で用いられてもよく、2種以上の素材を組み合わせて用いられてもよい。 The liquid permeable sheet 30 may be a sheet formed of a resin or fiber usually used in the art. From the viewpoint of liquid permeability, flexibility and strength when used in an absorbent article, the liquid permeable sheet 30 is, for example, a polyolefin such as polyethylene (PE) and polypropylene (PP), polyethylene terephthalate (PET), or polytri. Polyesters such as methylene terephthalate (PTT) and polyethylene naphthalate (PEN), polyamides such as nylon, synthetic resins such as rayon, or synthetic fibers containing these synthetic resins may be contained, or cotton, silk, hemp. , Or a natural fiber containing pulp (cellulose). From the viewpoint of increasing the strength of the liquid permeable sheet 30, the liquid permeable sheet 30 may contain synthetic fibers. Synthetic fibers may be, in particular, polyolefin fibers, polyester fibers or combinations thereof. These materials may be used alone or in combination of two or more kinds of materials.
 液体透過性シート30は、不織布、多孔質シート、又はこれらの組み合わせであってよい。不織布は、繊維を織らずに絡み合わせたシートである。不織布は、短繊維(すなわちステープル)で構成される不織布(短繊維不織布)であってもよく、長繊維(すなわちフィラメント)で構成される不織布(長繊維不織布)であってもよい。ステープルは、これに限定されないが、一般的には数百mm以下の繊維長を有していてよい。 The liquid permeable sheet 30 may be a non-woven fabric, a porous sheet, or a combination thereof. Nonwoven fabric is a sheet that is entwined without weaving fibers. The non-woven fabric may be a non-woven fabric composed of short fibers (that is, staples) (short-fiber non-woven fabric) or a non-woven fabric composed of long fibers (that is, filaments) (long-fiber non-woven fabric). Staples are not limited to this, but generally may have a fiber length of several hundred mm or less.
 液体透過性シート30は、サーマルボンド不織布、エアスルー不織布、レジンボンド不織布、スパンボンド不織布、メルトブロー不織布、エアレイド不織布、スパンレース不織布、ポイントボンド不織布、又はこれらから選ばれる2種以上の不織布の積層体であってよい。液体透過性シート30が、スパンボンド不織布を含んでいてもよい。 The liquid permeable sheet 30 is a thermal bond non-woven fabric, an air-through non-woven fabric, a resin bond non-woven fabric, a spun-bond non-woven fabric, a melt blow non-woven fabric, an air-laid non-woven fabric, a spunlace non-woven fabric, a point bond non-woven fabric, or a laminate of two or more kinds of non-woven fabrics selected from these. It may be there. The liquid permeable sheet 30 may include a spunbonded non-woven fabric.
 液体透過性シート30は、スパンボンド不織布であることが好ましい。スパンボンド不織布は、単層のスパンボンド不織布であってもよいし、少なくとも単層のスパンボンド不織布をスパンボンド層として有する複層の積層体不織布であってもよい。積層体のスパンボンド不織布の場合、通常、その片方又は両方の最表層がスパンボンド層である。積層体のスパンボンド不織布の積層構成の例としては、スパンボンド層/スパンボンド層(SS不織布)、スパンボンド層/メルトブロー層/スパンボンド層(SMS不織布)、及びスパンボンド層/メルトブロー層/メルトブロー層/スパンボンド層(SMMS不織布)が挙げられる。これら積層構成では、各層が記載順に積層される。 The liquid permeable sheet 30 is preferably a spunbonded non-woven fabric. The spunbonded non-woven fabric may be a single-layer spunbonded non-woven fabric, or may be a multi-layer laminated non-woven fabric having at least a single-layer spunbonded non-woven fabric as a spunbond layer. In the case of a laminated spunbonded non-woven fabric, one or both outermost layers are usually spunbond layers. Examples of the laminated structure of the spunbonded non-woven fabric of the laminated body include a spunbond layer / spunbond layer (SS non-woven fabric), a spunbond layer / melt blow layer / spunbond layer (SMS non-woven fabric), and a spunbond layer / melt blow layer / melt blow. Layer / spunbond layer (SMMS non-woven fabric) can be mentioned. In these laminated configurations, the layers are laminated in the order described.
 液体透過性シート30として用いられる不織布は、吸収性物品の液体吸収性能の観点から、適度な親水性を有していてもよい。その観点から、液体透過性シート30は、紙パルプ技術協会による紙パルプ試験方法No.68(2000)の測定方法に従って測定される親水度が5~200の不織布であってもよい。不織布の上記親水度は、10~150であってもよい。紙パルプ試験方法No.68の詳細については、例えばWO2011/086843号を参照することができる。 The non-woven fabric used as the liquid permeable sheet 30 may have appropriate hydrophilicity from the viewpoint of the liquid absorption performance of the absorbent article. From this point of view, the liquid permeable sheet 30 is obtained by the pulp and paper test method No. A non-woven fabric having a hydrophilicity of 5 to 200 measured according to the measuring method of 68 (2000) may be used. The hydrophilicity of the non-woven fabric may be 10 to 150. Pulp and paper test method No. For details of 68, for example, WO2011 / 086843 can be referred to.
 親水性を有する不織布は、例えば、レーヨン繊維のように適度な親水度を示す繊維を含んで形成されたものでもよいし、ポリオレフィン繊維、ポリエステル繊維のような疎水性の化学繊維を親水化処理して得た繊維によって形成されたものであってもよい。親水化処理された疎水性の化学繊維を含む不織布を得る方法としては、例えば、疎水性の化学繊維に親水化剤を混合したものを用いてスパンボンド法にて不織布を得る方法、疎水性化学繊維でスパンボンド不織布を作製する際に親水化剤を同伴させる方法、疎水性の化学繊維を用いて得たスパンボンド不織布に親水化剤を含浸させる方法が挙げられる。親水化剤としては、脂肪族スルホン酸塩、高級アルコール硫酸エステル塩等のアニオン系界面活性剤、第4級アンモニウム塩等のカチオン系界面活性剤、ポリエチレングリコール脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル等のノニオン系界面活性剤、ポリオキシアルキレン変性シリコーン等のシリコーン系界面活性剤、及びポリエステル系、ポリアミド系、アクリル系、ウレタン系の樹脂からなるステイン・リリース剤等が用いられる。 The hydrophilic non-woven fabric may be formed by containing fibers showing appropriate hydrophilicity such as rayon fibers, or hydrophobic chemical fibers such as polyolefin fibers and polyester fibers are hydrophilized. It may be formed by the obtained fibers. As a method for obtaining a non-woven fabric containing hydrophobic chemical fibers that have been hydrophobized, for example, a method for obtaining a non-woven fabric by a spunbond method using a mixture of hydrophobic chemical fibers and a hydrophilic agent, hydrophobic chemistry. Examples thereof include a method of accommodating a hydrophilic agent when producing a spunbonded nonwoven fabric from fibers, and a method of impregnating a spunbonded nonwoven fabric obtained by using hydrophobic chemical fibers with a hydrophilic agent. Examples of the hydrophilizing agent include anionic surfactants such as aliphatic sulfonates and higher alcohol sulfates, cationic surfactants such as quaternary ammonium salts, polyethylene glycol fatty acid esters, polyglycerin fatty acid esters, and sorbitan fatty acids. Nonionic surfactants such as esters, silicone-based surfactants such as polyoxyalkylene-modified silicones, and stain-releasing agents made of polyester-based, polyamide-based, acrylic-based, and urethane-based resins are used.
 液体透過性シート30は、吸収性物品に、良好な液体浸透性、柔軟性、強度及びクッション性を付与できる観点、及び吸収性物品の液体浸透速度を速める観点から、適度に嵩高く、目付量が大きい不織布であってもよい。液体透過性シート30の目付量(単位面積当たりの質量)は、5~200g/m、8~150g/m、又は10~100g/mであってもよい。液体透過性シート30の厚さは、20~1400μm、50~1200μm、又は80~1000μmであってもよい。 The liquid permeable sheet 30 is moderately bulky and has a basis weight from the viewpoint of imparting good liquid permeability, flexibility, strength and cushioning property to the absorbent article and from the viewpoint of accelerating the liquid penetration rate of the absorbent article. It may be a non-woven fabric having a large weight. The basis weight (mass per unit area) of the liquid permeable sheet 30 may be 5 to 200 g / m 2 , 8 to 150 g / m 2 , or 10 to 100 g / m 2 . The thickness of the liquid permeable sheet 30 may be 20 to 1400 μm, 50 to 1200 μm, or 80 to 1000 μm.
 液体不透過性シート40は、吸収性物品100において液体透過性シート30とは反対側の最外部に配置されている。液体不透過性シート40は、コアラップ20bに接した状態でコアラップ20bの下側に配置されている。液体不透過性シート40は、例えば、吸収体10の主面よりも広い主面を有しており、液体不透過性シート40の外縁部は、吸収体10及びコアラップ20a,20bの周囲に延在している。液体不透過性シート40は、吸収体10に吸収された液体が液体不透過性シート40側から外部へ漏れ出すのを防止する。 The liquid permeable sheet 40 is arranged on the outermost side of the absorbent article 100 on the opposite side of the liquid permeable sheet 30. The liquid permeable sheet 40 is arranged under the core wrap 20b in contact with the core wrap 20b. The liquid impermeable sheet 40 has, for example, a main surface wider than the main surface of the absorber 10, and the outer edge portion of the liquid impermeable sheet 40 extends around the absorber 10 and the core wraps 20a and 20b. Exists. The liquid impermeable sheet 40 prevents the liquid absorbed by the absorber 10 from leaking to the outside from the liquid impermeable sheet 40 side.
 液体不透過性シート40としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等の合成樹脂からなるシート、耐水性のメルトブロー不織布を高強度のスパンボンド不織布で挟んだスパンボンド/メルトブロー/スパンボンド(SMS)不織布等の不織布からなるシート、これらの合成樹脂と不織布(例えば、スパンボンド不織布、スパンレース不織布)との複合材料からなるシートなどが挙げられる。液体不透過性シート40は、装着時のムレが低減されて、着用者に与える不快感を軽減することができる等の観点から、通気性を有していてもよい。液体不透過性シート40として、低密度ポリエチレン(LDPE)樹脂を主体とする合成樹脂からなるシートを用いることができる。吸収性物品の着用感を損なわないよう、柔軟性を確保する観点から、液体不透過性シート40は、例えば、目付量が10~50g/mの合成樹脂からなるシートであってよい。 The liquid impermeable sheet 40 includes a sheet made of a synthetic resin such as polyethylene, polypropylene, and polyvinyl chloride, and a spunbond / meltblow / spunbond (SMS) non-woven fabric in which a water-resistant melt-blow non-woven fabric is sandwiched between high-strength spunbond non-woven fabrics. Examples thereof include a sheet made of a non-woven fabric such as, and a sheet made of a composite material of these synthetic resins and a non-woven fabric (for example, spunbonded non-woven fabric, spunlaced non-woven fabric). The liquid impermeable sheet 40 may have breathability from the viewpoint that stuffiness at the time of wearing is reduced and discomfort given to the wearer can be reduced. As the liquid impermeable sheet 40, a sheet made of a synthetic resin mainly composed of a low density polyethylene (LDPE) resin can be used. From the viewpoint of ensuring flexibility so as not to impair the wearing feeling of the absorbent article, the liquid impermeable sheet 40 may be, for example, a sheet made of a synthetic resin having a basis weight of 10 to 50 g / m 2 .
 吸収性物品100は、例えば、吸収体10をコアラップ20a,20bの間に配置し、これらを液体透過性シート30及び液体不透過性シート40の間に配置することを含む方法により、製造することができる。液体不透過性シート40、コアラップ20b、吸収体10、コアラップ20a、及び液体透過性シート30の順に積層された積層体が、必要により加圧される。 The absorbent article 100 is manufactured, for example, by a method comprising placing the absorber 10 between the core wraps 20a, 20b and placing them between the liquid permeable sheet 30 and the liquid impermeable sheet 40. Can be done. A laminate in which the liquid permeable sheet 40, the core wrap 20b, the absorber 10, the core wrap 20a, and the liquid permeable sheet 30 are laminated in this order is pressurized as necessary.
 吸収体10は、吸水性樹脂粒子10aを繊維状物と混合することにより形成される。上記液透過比率Aが0%を超えて60%以下である吸水性樹脂粒子を選別し、これを選択的に用いて吸収体10を形成してもよい。 The absorber 10 is formed by mixing the water-absorbent resin particles 10a with the fibrous material. The water-absorbent resin particles having the liquid permeation ratio A of more than 0% and 60% or less may be selected and selectively used to form the absorber 10.
 本実施形態によれば、本実施形態に係る吸水性樹脂粒子、吸収体又は吸収性物品を用いた吸液方法を提供することができる。本実施形態に係る吸液方法は、本実施形態に係る吸水性樹脂粒子、吸収体又は吸収性物品に吸液対象の液を接触させる工程を備える。 According to the present embodiment, it is possible to provide a liquid absorbing method using the water-absorbent resin particles, the absorbent body or the absorbent article according to the present embodiment. The liquid absorbing method according to the present embodiment includes a step of bringing the liquid to be absorbed into contact with the water-absorbent resin particles, the absorber or the absorbent article according to the present embodiment.
 以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 The present invention will be described in more detail with reference to Examples below, but the present invention is not limited to these Examples.
1.吸水性樹脂粒子の作製
実施例1
<第1段目の重合反応>
 還流冷却器、滴下ロート、窒素ガス導入管、及び、攪拌機を備えた内径11cm、内容積2Lの丸底円筒型セパラブルフラスコを準備した。攪拌機に図3に概形を示す攪拌翼200を取り付けた。攪拌翼200は、軸200a及び平板部200bを備えている。平板部200bは、軸200aに溶接されると共に、湾曲した先端を有している。平板部200bには、軸200aの軸方向に沿って延びる4つのスリットSが形成されている。4つのスリットSは平板部200bの幅方向に配列されている。内側の二つのスリットSの幅は1cmである。外側二つのスリットSの幅は0.5cmである。平板部200bの長さは約10cmであり、平板部200bの幅は約6cmである。
1. 1. Preparation of water-absorbent resin particles Example 1
<First stage polymerization reaction>
A round-bottomed cylindrical separable flask having an inner diameter of 11 cm and an internal volume of 2 L equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirrer was prepared. A stirring blade 200 whose outline is shown in FIG. 3 was attached to the stirring machine. The stirring blade 200 includes a shaft 200a and a flat plate portion 200b. The flat plate portion 200b is welded to the shaft 200a and has a curved tip. The flat plate portion 200b is formed with four slits S extending along the axial direction of the shaft 200a. The four slits S are arranged in the width direction of the flat plate portion 200b. The width of the two inner slits S is 1 cm. The width of the two outer slits S is 0.5 cm. The length of the flat plate portion 200b is about 10 cm, and the width of the flat plate portion 200b is about 6 cm.
 準備したセパラブルフラスコ内でn-ヘプタン293g、及び分散剤(無水マレイン酸変性エチレン・プロピレン共重合体、三井化学株式会社製、ハイワックス1105A)0.736gを混合した。セパラブルフラスコ内の混合物を、攪拌機で攪拌しつつ、80℃まで昇温することにより、分散剤をn-ヘプタンに溶解させた。形成された反応液を50℃まで冷却した。 In the prepared separable flask, 293 g of n-heptane and 0.736 g of a dispersant (maleic anhydride-modified ethylene / propylene copolymer, manufactured by Mitsui Chemicals, Inc., high wax 1105A) were mixed. The dispersant was dissolved in n-heptane by heating the mixture in the separable flask to 80 ° C. while stirring with a stirrer. The formed reaction solution was cooled to 50 ° C.
 内容積300mLのビーカーに、濃度80.5質量%のアクリル酸水溶液92.0g(1.03モル)を入れた。ビーカーを外部から冷却しつつ、アクリル酸水溶液に20.9質量%の水酸化ナトリウム水溶液147.7gを滴下し、それにより75モル%のアクリル酸を中和した。中和後のアクリル酸水溶液に、増粘剤としてヒドロキシルエチルセルロース0.092g(住友精化株式会社、HECAW-15F)、水溶性ラジカル重合開始剤として2,2’-アゾビス(2-アミジノプロパン)2塩酸塩0.092g(0.339ミリモル)、及び過硫酸ナトリウム0.0162g(0.068ミリモル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.010g(0.057ミリモル)を加えてこれらを溶解させて、第1段目の単量体水溶液を調製した。 92.0 g (1.03 mol) of an acrylic acid aqueous solution having a concentration of 80.5 mass% was placed in a beaker having an internal volume of 300 mL. While cooling the beaker from the outside, 147.7 g of a 20.9 mass% sodium hydroxide aqueous solution was added dropwise to the acrylic acid aqueous solution, thereby neutralizing 75 mol% of acrylic acid. 0.092 g of hydroxylethyl cellulose (Sumitomo Seika Co., Ltd., HECAW-15F) as a thickener and 2,2'-azobis (2-amidinopropane) 2 as a water-soluble radical polymerization initiator in the neutralized acrylic acid aqueous solution. Dissolve these by adding 0.092 g (0.339 mmol) of hydrochloride, 0.0162 g (0.068 mmol) of sodium persulfate, and 0.010 g (0.057 mmol) of ethylene glycol diglycidyl ether as an internal cross-linking agent. The first-stage monomer aqueous solution was prepared.
 第1段目の単量体水溶液を、上述のセパラブルフラスコ内の反応液に添加し、反応液を10分間攪拌した。次いで、n-ヘプタン6.62g及びショ糖ステアリン酸エステル(HLB:3、三菱化学フーズ株式会社、リョートーシュガーエステルS-370)0.736gを含む界面活性剤溶液を反応液に添加し、攪拌翼の回転数を425rpmとして反応液を攪拌しながら、系内を窒素で十分に置換した。その後、セパラブルフラスコを70℃の水浴中で加熱しながら、60分間かけて重合反応を進行させた。この重合反応により、含水ゲル状重合体を含む第1段目の重合スラリー液を得た。 The first-stage monomer aqueous solution was added to the reaction solution in the separable flask described above, and the reaction solution was stirred for 10 minutes. Next, a surfactant solution containing 6.62 g of n-heptane and 0.736 g of sucrose stearic acid ester (HLB: 3, Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370) was added to the reaction solution, and the mixture was stirred. The inside of the system was sufficiently replaced with nitrogen while stirring the reaction solution at a blade rotation speed of 425 rpm. Then, the polymerization reaction was allowed to proceed over 60 minutes while heating the separable flask in a water bath at 70 ° C. By this polymerization reaction, a first-stage polymerization slurry liquid containing a hydrogel-like polymer was obtained.
<第2段目の重合反応>
 内容積500mLのビーカーに、濃度80.5質量%のアクリル酸水溶液128.8g(1.44モル)を入れた。ビーカーを外部より冷却しつつ、アクリル酸水溶液に対して濃度27質量%の水酸化ナトリウム水溶液159.0gを滴下し、それにより75モル%のアクリル酸を中和した。次いで、アクリル酸水溶液に、水溶性ラジカル重合開始剤として2,2’-アゾビス(2-アミジノプロパン)2塩酸塩0.129g(0.475ミリモル)及び過硫酸ナトリウム0.0226g(0.095ミリモル)と、内部架橋剤としてエチレングリコールジグリシジルエーテル0.0116g(0.067ミリモル)とを加えてこれらを溶解し、第2段目の単量体水溶液を調製した。
<Second stage polymerization reaction>
128.8 g (1.44 mol) of an aqueous acrylic acid solution having a concentration of 80.5 mass% was placed in a beaker having an internal volume of 500 mL. While cooling the beaker from the outside, 159.0 g of a sodium hydroxide aqueous solution having a concentration of 27% by mass was added dropwise to the acrylic acid aqueous solution, thereby neutralizing 75 mol% of acrylic acid. Next, in an aqueous acrylic acid solution, 0.129 g (0.475 mmol) of 2,2'-azobis (2-amidinopropane) dihydrochloride salt and 0.0226 g (0.095 mmol) of sodium persulfate as a water-soluble radical polymerization initiator. ) And 0.0116 g (0.067 mmol) of ethylene glycol diglycidyl ether as an internal cross-linking agent were added to dissolve them to prepare a second-stage monomer aqueous solution.
 セパラブルフラスコ内の第1段目の重合スラリー液を、攪拌翼の回転数を650rpmとして攪拌しながら25℃に冷却した。そこに、第2段目の単量体水溶液の全量を添加し、続いて系内を窒素で30分間かけて置換した。その後、セパラブルフラスコを70℃の水浴中で加熱しながら、60分かけて第2段目の重合反応を進行させた。 The first-stage polymerized slurry liquid in the separable flask was cooled to 25 ° C. while stirring at a stirring blade rotation speed of 650 rpm. The whole amount of the second-stage monomer aqueous solution was added thereto, and then the inside of the system was replaced with nitrogen over 30 minutes. Then, while heating the separable flask in a water bath at 70 ° C., the second-stage polymerization reaction was allowed to proceed over 60 minutes.
 第2段目の重合反応後の反応液に、45質量%のジエチレントリアミン5酢酸5ナトリウム水溶液0.589gを攪拌下で添加した。その後、125℃の油浴にセパラブルフラスコを浸漬し、n-ヘプタンと水との共沸蒸留により、239.6gの水を系外へ抜き出した。その後、反応液に表面架橋剤として濃度2質量%のエチレングリコールジグリシジルエーテル水溶液4.42g(0.507ミリモル)を添加し、反応液を83℃で2時間保持することにより、表面架橋剤による架橋反応を進行させた。 0.589 g of a 45% by mass diethylenetriamine-5 sodium acetate aqueous solution was added to the reaction solution after the second stage polymerization reaction under stirring. Then, a separable flask was immersed in an oil bath at 125 ° C., and 239.6 g of water was extracted from the system by azeotropic distillation of n-heptane and water. Then, 4.42 g (0.507 mmol) of an ethylene glycol diglycidyl ether aqueous solution having a concentration of 2% by mass was added to the reaction solution as a surface cross-linking agent, and the reaction solution was held at 83 ° C. for 2 hours to obtain a surface cross-linking agent. The cross-linking reaction was allowed to proceed.
 表面架橋剤による架橋反応後の反応液から、125℃での加熱によりn-ヘプタンを留去して、重合体粒子の乾燥品を得た。得られた重合体粒子に目開き850μmの篩を通過させた。その後、重合体粒子の質量に対して2.0質量%の非晶質シリカ(オリエンタルシリカズコーポレーション、トクシールNP-S)を重合体粒子と混合し、非晶質シリカを含む吸水性樹脂粒子230.5gを得た。得られた吸水性樹脂粒子の中位粒子径は367μmであった。 From the reaction solution after the cross-linking reaction with the surface cross-linking agent, n-heptane was distilled off by heating at 125 ° C. to obtain a dried product of polymer particles. The obtained polymer particles were passed through a sieve having an opening of 850 μm. Then, 2.0% by mass of amorphous silica (Oriental Silicas Corporation, Toxile NP-S) with respect to the mass of the polymer particles is mixed with the polymer particles, and the water-absorbent resin particles 230 containing the amorphous silica are mixed. 5.5 g was obtained. The medium particle size of the obtained water-absorbent resin particles was 367 μm.
実施例2
 第1段目の水性液の調製において使用するラジカル重合開始剤を過硫酸ナトリウム0.0648g(0.272ミリモル)に変更したこと、内部架橋剤としてのエチレングリコールジグリシジルエーテルの添加量を0.0156g(0.090ミリモル)に変更したこと、第1段目重合スラリー液の調製において窒素置換時の攪拌機回転数を350rpmに変更したこと、第2段目の水性液調製において、使用するラジカル重合開始剤を過硫酸ナトリウム0.0907g(0.381ミリモル)に変更したこと、内部架橋剤としてのエチレングリコールジグリシジルエーテルの添加量を0.0129g(0.074ミリモル)に変更したこと、並びに、共沸蒸留により系外へ抜き出す水の量を254.5gに変更したこと以外は実施例1と同様にして、235.3gの吸水性樹脂粒子を得た。吸水性樹脂粒子の中位粒子径は365μmであった。
Example 2
The radical polymerization initiator used in the preparation of the aqueous solution in the first stage was changed to 0.0648 g (0.272 mmol) of sodium persulfate, and the amount of ethylene glycol diglycidyl ether added as an internal cross-linking agent was 0. Changed to 0156 g (0.090 mmol), changed the stirrer rotation speed at the time of nitrogen substitution to 350 rpm in the preparation of the first stage polymerization slurry liquid, and radical polymerization used in the preparation of the second stage aqueous liquid. The initiator was changed to 0.0907 g (0.381 mmol) of sodium persulfate, the amount of ethylene glycol diglycidyl ether added as an internal cross-linking agent was changed to 0.0129 g (0.074 mmol), and 235.3 g of water-absorbent resin particles were obtained in the same manner as in Example 1 except that the amount of water extracted to the outside of the system by co-boiling distillation was changed to 254.5 g. The medium particle size of the water-absorbent resin particles was 365 μm.
実施例3
 実施例1と同様の還流冷却器、滴下ロート、窒素ガス導入管、及び、攪拌機を備えた内径11cm、内容積2Lの丸底円筒型セパラブルフラスコを準備した。準備したセパラブルフラスコ内でn-ヘプタン536.3g、及び分散剤(ソルビタンモノラウレート、日油株式会社製、ノニオンLP-20R、HLB値8.6)1.237gを混合した。セパラブルフラスコ内の混合物を、攪拌機で攪拌しつつ、50℃まで昇温することにより、分散剤をn-ヘプタンに溶解させた。形成された反応液を40℃まで冷却した。
Example 3
A round-bottomed cylindrical separable flask having an inner diameter of 11 cm and an internal volume of 2 L equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirrer similar to that in Example 1 was prepared. In the prepared separable flask, 536.3 g of n-heptane and 1.237 g of a dispersant (Sorbitan monolaurate, manufactured by NOF CORPORATION, Nonion LP-20R, HLB value 8.6) were mixed. The dispersant was dissolved in n-heptane by heating the mixture in the separable flask to 50 ° C. while stirring with a stirrer. The formed reaction solution was cooled to 40 ° C.
 内容積500mLの三角フラスコに、濃度80.5質量%のアクリル酸水溶液103.1g(1.15モル)を入れた。三角フラスコを外部から氷冷しつつ、アクリル酸水溶液に濃度20.9質量%水酸化ナトリウム水溶液165.3gを滴下し、それにより75モル%のアクリル酸を中和した。中和後のアクリル酸水溶液に、水溶性ラジカル重合開始剤として過硫酸ナトリウム0.10g(0.420ミリモル)を加え、単量体水溶液を得た。 103.1 g (1.15 mol) of an acrylic acid aqueous solution having a concentration of 80.5 mass% was placed in an Erlenmeyer flask having an internal volume of 500 mL. While cooling the Erlenmeyer flask with ice from the outside, 165.3 g of a 20.9 mass% sodium hydroxide aqueous solution was added dropwise to the acrylic acid aqueous solution, thereby neutralizing 75 mol% of acrylic acid. To the neutralized acrylic acid aqueous solution, 0.10 g (0.420 mmol) of sodium persulfate was added as a water-soluble radical polymerization initiator to obtain a monomer aqueous solution.
 準備した単量体水溶液を、セパラブルフラスコ内の上述の反応液に添加し、フラスコ内を窒素で十分に置換した。その後、攪拌翼の回転数を300rpmとして反応液を攪拌しながら、セパラブルフラスコを70℃の水浴中に60分間保持し、それにより重合反応を進行させた。 The prepared monomer aqueous solution was added to the above-mentioned reaction solution in the separable flask, and the inside of the flask was sufficiently replaced with nitrogen. Then, the separable flask was held in a water bath at 70 ° C. for 60 minutes while stirring the reaction solution at a rotation speed of the stirring blade of 300 rpm, whereby the polymerization reaction was allowed to proceed.
 重合反応後の反応液を攪拌翼の回転数を650rpmとして攪拌しながら、反応液に、非晶質シリカ(オリエンタルシリカズコーポレーション、トクシールNP-S)0.103g及びn-ヘプタン100gを含む分散液を添加し、攪拌を更に10分間継続した。その後、反応液を含むフラスコを125℃の油浴に浸漬し、n-ヘプタンと水との共沸蒸留により、116.5gの水を系外へ抜き出した。続いて、表面架橋剤としてエチレングリコールジグリシジルエーテルの2質量%水溶液9.28g(1.07ミリモル)を反応液に添加し、反応液を内温83±2℃で2時間保持することにより、表面架橋剤による架橋反応を進行させた。 A dispersion containing 0.103 g of amorphous silica (Oriental Silicas Corporation, Toxile NP-S) and 100 g of n-heptane in the reaction solution while stirring the reaction solution after the polymerization reaction at a stirring blade rotation speed of 650 rpm. Was added, and stirring was continued for another 10 minutes. Then, the flask containing the reaction solution was immersed in an oil bath at 125 ° C., and 116.5 g of water was extracted from the system by azeotropic distillation of n-heptane and water. Subsequently, 9.28 g (1.07 mmol) of a 2% by mass aqueous solution of ethylene glycol diglycidyl ether was added to the reaction solution as a surface cross-linking agent, and the reaction solution was kept at an internal temperature of 83 ± 2 ° C. for 2 hours. The cross-linking reaction with the surface cross-linking agent was allowed to proceed.
 表面架橋剤による架橋反応後の反応液からn-ヘプタンを留去して、0.1質量%のシリカ非晶質シリカを含む吸水性樹脂粒子の乾燥品を得た。吸水性樹脂粒子の乾燥品に目開き850μmの篩を通過させて、吸水性樹脂粒子96.5gを得た。得られた吸水性樹脂粒子の中位粒子径は420μmであった。 N-heptane was distilled off from the reaction solution after the cross-linking reaction with the surface cross-linking agent to obtain a dried product of water-absorbent resin particles containing 0.1% by mass of silica amorphous silica. A dried product of the water-absorbent resin particles was passed through a sieve having an opening of 850 μm to obtain 96.5 g of the water-absorbent resin particles. The medium particle size of the obtained water-absorbent resin particles was 420 μm.
比較例1
 攪拌翼を翼径5cmの4枚傾斜パドル翼を2段で有するものに変更したこと、第1段目の水性液調製において、使用するラジカル重合開始剤を2,2’-アゾビス(2-アミジノプロパン)2塩酸塩0.092g(0.339ミリモル)及び過硫酸カリウム0.018g(0.068ミリモル)に変更したこと、第1段目の重合スラリー液の調製において窒素置換時の攪拌機回転数を550rpmに変更したこと、第2段目の水性液調製において、使用するラジカル重合開始剤を2,2’-アゾビス(2-アミジノプロパン)2塩酸塩0.129g(0.475ミリモル)及び過硫酸カリウム0.026g(0.095ミリモル)に変更したこと、第2段目の水性液の調製後に、セパラブルフラスコ系内を25℃に冷却する際の攪拌機回転数を1000rpmに変更したこと、共沸蒸留により系外へ抜き出す水の量を239.2gに変更したこと、並びに、重合体粒子と混合する非晶質シリカの量を重合体粒子質量に対して0.2質量%に変更したこと以外は実施例1と同様にして、228.1gの吸水性樹脂粒子を得た。吸水性樹脂粒子の中位粒子径は374μmであった。
Comparative Example 1
The stirring blade was changed to one with a 4-blade inclined paddle blade with a blade diameter of 5 cm in two stages, and the radical polymerization initiator used in the preparation of the aqueous liquid in the first stage was 2,2'-azobis (2-amidino). Changed to 0.092 g (0.339 mmol) of propane) dihydrochloride and 0.018 g (0.068 mmol) of potassium persulfate, and the number of rotations of the stirrer at the time of nitrogen substitution in the preparation of the first-stage polymerized slurry Was changed to 550 rpm, and the radical polymerization initiator used in the preparation of the aqueous solution in the second stage was 0.129 g (0.475 mmol) of 2,2'-azobis (2-amidinopropane) dihydrochloride and excess. The change to 0.026 g (0.095 mmol) of potassium sulfate, and the change of the stirrer rotation speed when cooling the inside of the separable flask system to 25 ° C. to 1000 rpm after the preparation of the aqueous solution in the second stage. The amount of water extracted to the outside of the system by co-boiling distillation was changed to 239.2 g, and the amount of amorphous silica mixed with the polymer particles was changed to 0.2% by mass based on the mass of the polymer particles. 228.1 g of water-absorbent resin particles were obtained in the same manner as in Example 1 except for the above. The medium particle size of the water-absorbent resin particles was 374 μm.
比較例2
 攪拌翼を翼径5cmの4枚傾斜パドル翼を2段で有するものに変更したこと、第1段目の水性液調製において、使用するラジカル重合開始剤を過硫酸カリウム0.0736g(0.272ミリモル)に変更したこと、第1段目の重合スラリー液の調製において窒素置換時の攪拌機回転数を550rpmに変更したこと、第2段目の水性液調製において、使用するラジカル重合開始剤を過硫酸カリウム0.103g(0.381ミリモル)に変更したこと、第2段目の水性液の調製後に、セパラブルフラスコ系内を25℃に冷却する際の攪拌機回転数を1000rpmに変更したこと、共沸蒸留により系外へ抜き出す水の量を257.7gに変更したこと、並びに、重合体粒子と混合する非晶質シリカの量を重合体粒子質量に対して0.2質量%に変更したこと以外は実施例1と同様にして、228.0gの吸水性樹脂粒子を得た。吸水性樹脂粒子の中位粒子径は352μmであった。
Comparative Example 2
The stirring blade was changed to one having a 4-blade inclined paddle blade with a blade diameter of 5 cm in two stages, and the radical polymerization initiator used in the preparation of the aqueous liquid in the first stage was 0.0736 g (0.272) of potassium persulfate. Millimole), the stirring speed at the time of nitrogen substitution was changed to 550 rpm in the preparation of the polymerized slurry liquid in the first stage, and the radical polymerization initiator used in the preparation of the aqueous liquid in the second stage was excessive. The change was made to 0.103 g (0.381 mmol) of potassium sulfate, and the number of revolutions of the stirrer when cooling the inside of the separable flask system to 25 ° C. was changed to 1000 rpm after the preparation of the aqueous solution in the second stage. The amount of water extracted to the outside of the system by radical polymerization was changed to 257.7 g, and the amount of amorphous silica mixed with the polymer particles was changed to 0.2% by mass based on the mass of the polymer particles. In the same manner as in Example 1, 228.0 g of water-absorbent resin particles were obtained. The medium particle size of the water-absorbent resin particles was 352 μm.
比較例3
 攪拌翼を翼径5cmの4枚傾斜パドル翼を2段で有するものに変更したこと、第1段目の水性液調製において、使用するラジカル重合開始剤を2,2’-アゾビス(2-アミジノプロパン)2塩酸塩0.092g(0.339ミリモル)及び過硫酸カリウム0.018g(0.068ミリモル)に変更したこと、内部架橋剤としてのエチレングリコールジグリシジルエーテル添加量を0.0046g(0.026ミリモル)に変更したこと、第1段目の重合スラリー液の調製において窒素置換時の攪拌機回転数を550rpmに変更したこと、第2段目の水性液調製において、使用するラジカル重合開始剤を2,2’-アゾビス(2-アミジノプロパン)2塩酸塩0.129g(0.475ミリモル)及び過硫酸カリウム0.026g(0.095ミリモル)に変更したこと、第2段目の水性液の調製後に、セパラブルフラスコ系内を25℃に冷却する際の攪拌機回転数を1000rpmに変更したこと、並びに、共沸蒸留により系外へ抜き出す水の量を216.7gに変更したこと以外は実施例1と同様にして、223.3gの吸水性樹脂粒子を得た。吸水性樹脂粒子の中位粒子径は345μmであった。
Comparative Example 3
The stirring blade was changed to one with a 4-blade inclined paddle blade with a blade diameter of 5 cm in two stages, and the radical polymerization initiator used in the preparation of the aqueous liquid in the first stage was 2,2'-azobis (2-amidino). Changed to 0.092 g (0.339 mmol) of propane) dihydrochloride and 0.018 g (0.068 mmol) of potassium persulfate, and added 0.0046 g (0) of ethylene glycol diglycidyl ether as an internal cross-linking agent. .026 mmol), the stirrer rotation speed at the time of nitrogen substitution was changed to 550 rpm in the preparation of the polymerization slurry liquid in the first stage, and the radical polymerization initiator used in the preparation of the aqueous liquid in the second stage. Was changed to 2,2'-azobis (2-amidinopropane) dihydrochloride 0.129 g (0.475 mmol) and potassium persulfate 0.026 g (0.095 mmol), and the second-stage aqueous solution. After the preparation of the above, the stirrer rotation speed when cooling the inside of the separable flask system to 25 ° C. was changed to 1000 rpm, and the amount of water extracted to the outside of the system by co-boiling distillation was changed to 216.7 g. In the same manner as in Example 1, 223.3 g of water-absorbent resin particles were obtained. The medium particle size of the water-absorbent resin particles was 345 μm.
比較例4
 重合体粒子と混合する非晶質シリカの量を重合体粒子質量に対して0.2質量%に変更したこと以外は比較例3と同様にして、229.0gの吸水性樹脂粒子を得た。吸水性樹脂粒子の中位粒子径は348μmであった。
Comparative Example 4
229.0 g of water-absorbent resin particles were obtained in the same manner as in Comparative Example 3 except that the amount of amorphous silica mixed with the polymer particles was changed to 0.2% by mass with respect to the mass of the polymer particles. .. The medium particle size of the water-absorbent resin particles was 348 μm.
2.評価
2-1.中位粒子径
 吸水性樹脂粒子50gを中位粒子径測定用に用いた。測定は温度25±2℃、湿度50±10%の環境下で行なわれた。JIS標準篩を上から、目開き850μmの篩、目開き500μmの篩、目開き425μmの篩、目開き300μmの篩、目開き250μmの篩、目開き180μmの篩、目開き150μmの篩、及び受け皿の順に組み合わせた。最上部の篩に、吸水性樹脂粒子を入れ、ロータップ式振とう器(株式会社飯田製作所製)を用いてJIS Z 8815(1994)に準じて分級した。分級後、各篩上に残った吸水性樹脂粒子の質量を全量に対する質量百分率として算出し粒度分布を求めた。この粒度分布に関して粒子径の大きい方から順に、篩上に残った吸水性樹脂粒子の質量百分率を積算することにより、篩の目開きと篩上に残った吸水性樹脂粒子の質量百分率の積算値との関係を対数確率紙にプロットした。確率紙上のプロットを直線で結ぶことにより、積算質量百分率50質量%に相当する粒子径を中位粒子径とした。
2. Evaluation 2-1. Medium particle size 50 g of water-absorbent resin particles were used for measuring the medium particle size. The measurement was performed in an environment with a temperature of 25 ± 2 ° C. and a humidity of 50 ± 10%. From the top, JIS standard sieves have a mesh size of 850 μm, a mesh size of 500 μm, a mesh size of 425 μm, a mesh size of 300 μm, a mesh size of 250 μm, a mesh size of 180 μm, a mesh size of 150 μm, and a sieve. Combined in the order of the saucer. Water-absorbent resin particles were placed in the uppermost sieve and classified according to JIS Z 8815 (1994) using a low-tap shaker (manufactured by Iida Seisakusho Co., Ltd.). After classification, the mass of the water-absorbent resin particles remaining on each sieve was calculated as a mass percentage with respect to the total amount, and the particle size distribution was obtained. By integrating the mass percentages of the water-absorbent resin particles remaining on the sieve in order from the larger particle size with respect to this particle size distribution, the opening of the sieve and the integrated value of the mass percentages of the water-absorbent resin particles remaining on the sieve are integrated. The relationship with is plotted on a logarithmic probability paper. By connecting the plots on the probability paper with a straight line, the particle size corresponding to the cumulative mass percentage of 50% by mass was defined as the medium particle size.
2-2.荷重下吸水量
 吸水性樹脂粒子の2.07kPaの荷重下での生理食塩水に対する吸水量を、温度25℃±2℃、湿度50±10%の環境下で、図4に示す測定装置Yを用いて測定した。測定装置Yは、ビュレット部71、導管72、測定台73、及び、測定台73上に置かれた測定部74から構成される。ビュレット部71は、鉛直方向に伸びるビュレット71aと、ビュレット71aの上端に配置されたゴム栓71bと、ビュレット71aの下端に配置されたコック71cと、コック71cの近傍において一端がビュレット71a内に伸びる空気導入管71dと、空気導入管71dの他端側に配置されたコック71eとを有している。導管72は、ビュレット部71と測定台73との間に取り付けられている。導管72の内径は6mmである。測定台73の中央部には、直径2mmの穴があいており、導管72が連結されている。測定部74は、円筒74a(アクリル樹脂(プレキシグラス)製)と、円筒74aの底部に接着されたナイロンメッシュ74bと、重り74cとを有している。円筒74aの内径は20mmである。ナイロンメッシュ74bの目開きは75μm(200メッシュ)である。測定時にはナイロンメッシュ74b上に測定対象の吸水性樹脂粒子75が均一に撒布される。重り74cの直径は19mmであり、重り74cの質量は59.8gである。重り74cは、吸水性樹脂粒子75上に置かれ、吸水性樹脂粒子75に対して2.07kPaの荷重を加えることができる。
2-2. Amount of water absorption under load The amount of water absorption of water-absorbent resin particles with respect to physiological saline under a load of 2.07 kPa was measured by measuring device Y shown in FIG. 4 under an environment of a temperature of 25 ° C. ± 2 ° C. and a humidity of 50 ± 10%. Measured using. The measuring device Y is composed of a burette unit 71, a conduit 72, a measuring table 73, and a measuring unit 74 placed on the measuring table 73. The burette portion 71 has a burette 71a extending in the vertical direction, a rubber stopper 71b arranged at the upper end of the burette 71a, a cock 71c arranged at the lower end of the burette 71a, and one end extending into the burette 71a in the vicinity of the cock 71c. It has an air introduction pipe 71d and a cock 71e arranged on the other end side of the air introduction pipe 71d. The conduit 72 is attached between the burette portion 71 and the measuring table 73. The inner diameter of the conduit 72 is 6 mm. A hole having a diameter of 2 mm is formed in the central portion of the measuring table 73, and the conduit 72 is connected to the hole. The measuring unit 74 has a cylinder 74a (made of acrylic resin (plexiglass)), a nylon mesh 74b adhered to the bottom of the cylinder 74a, and a weight 74c. The inner diameter of the cylinder 74a is 20 mm. The opening of the nylon mesh 74b is 75 μm (200 mesh). At the time of measurement, the water-absorbent resin particles 75 to be measured are uniformly sprinkled on the nylon mesh 74b. The diameter of the weight 74c is 19 mm, and the mass of the weight 74c is 59.8 g. The weight 74c is placed on the water-absorbent resin particles 75, and a load of 2.07 kPa can be applied to the water-absorbent resin particles 75.
 測定装置Yの円筒74aの中に0.100gの吸水性樹脂粒子75を入れた後、重り74cを載せて測定を開始した。吸水性樹脂粒子75が吸水した生理食塩水と同容積の空気が、空気導入管より、速やかにかつスムーズにビュレット71aの内部に供給されるため、ビュレット71aの内部の生理食塩水の水位の減量が、吸水性樹脂粒子75が吸水した生理食塩水量となる。ビュレット71aの目盛は、上から下方向に0mLから0.5mL刻みで刻印されている。生理食塩水の水位として、吸水開始前のビュレット71aの目盛りVaと、吸水開始から60分後のビュレット71aの目盛りVbとを読み取り、下記式より荷重下吸水量(2.07kPaの荷重下での生理食塩水に対する吸水量)を算出した。
荷重下吸水量[mL/g]=(Vb-Va)/0.1
After 0.100 g of the water-absorbent resin particles 75 were placed in the cylinder 74a of the measuring device Y, the weight 74c was placed and the measurement was started. Since the same volume of air as the physiological saline absorbed by the water-absorbent resin particles 75 is quickly and smoothly supplied to the inside of the burette 71a from the air introduction pipe, the water level of the physiological saline inside the burette 71a is reduced. However, the amount of physiological saline absorbed by the water-absorbent resin particles 75 is obtained. The scale of the burette 71a is engraved from top to bottom in 0 mL to 0.5 mL increments. As the water level of the physiological saline, the scale Va of the burette 71a before the start of water absorption and the scale Vb of the burette 71a 60 minutes after the start of water absorption are read, and the amount of water absorption under load (under a load of 2.07 kPa) is read from the following formula. The amount of water absorbed with respect to physiological saline) was calculated.
Water absorption under load [mL / g] = (Vb-Va) /0.1
2-3.吸水量C
 吸水量Cは、温度25±2℃、湿度50±10%の環境下で測定した。まず、内容積500mLのビーカーに、生理食塩水(濃度0.9質量%の食塩水)500gを量り取った。600rpmで攪拌しながら、吸水性樹脂粒子2.0gを、ママコが発生しないように生理食塩中に分散させた。攪拌した状態で60分間放置し、吸水性樹脂粒子を十分に膨潤させた。ビーカーの内容物を目開き75μm標準篩を用いてろ過した。取り出された膨潤ゲルが載った篩いを、水平に対して約30度の傾斜角となるように傾け、その状態で30分間放置することにより余剰の水分を除去した。膨潤ゲルが載った篩いの質量Wb(g)を測定した。Wbと、予め測定した篩の質量Wa(g)から、下の式により、吸水量Cを求めた。
吸水量C[g/g]=(Wb-Wa)/2.0
2-3. Water absorption C
The water absorption amount C was measured in an environment of a temperature of 25 ± 2 ° C. and a humidity of 50 ± 10%. First, 500 g of physiological saline (saline with a concentration of 0.9% by mass) was weighed into a beaker having an internal volume of 500 mL. While stirring at 600 rpm, 2.0 g of water-absorbent resin particles were dispersed in physiological saline so as not to generate mamaco. The water-absorbent resin particles were sufficiently swollen by being left to stand for 60 minutes in a stirred state. The contents of the beaker were filtered using an open 75 μm standard sieve. The sieve on which the swelling gel was taken out was tilted so as to have an inclination angle of about 30 degrees with respect to the horizontal, and left in that state for 30 minutes to remove excess water. The mass Wb (g) of the sieve on which the swelling gel was placed was measured. From Wb and the mass Wa (g) of the sieve measured in advance, the water absorption amount C was determined by the following formula.
Water absorption C [g / g] = (Wb-Wa) /2.0
2-4.吸水量B
 図1に示す測定装置を用いて、温度25±2℃、湿度50±10%の環境下で吸水量Bを測定した。測定は1種類の吸水性樹脂粒子に関して5回実施し、最低値と最高値とを除いた3点の測定値の平均値を求めた。まずビュレット部2のコック22とコック24を閉め、25℃に調節された生理食塩水50(濃度0.9質量%の食塩水)をビュレット管21上部の開口からビュレット管21に入れた。ゴム栓23でビュレット管21の開口を密栓した後、コック22及びコック24を開けた。気泡が入らないよう導管5内部を生理食塩水50で満たした。貫通孔13a内に到達した生理食塩水の水面の高さが、測定台13の上面の高さと同じになるように、測定台13の高さを調整した。調整後、ビュレット管21内の生理食塩水50の水面の高さをビュレット管21の目盛で読み取り、その位置をゼロ点(0秒時点の読み値)とした。
2-4. Water absorption B
Using the measuring device shown in FIG. 1, the water absorption amount B was measured in an environment of a temperature of 25 ± 2 ° C. and a humidity of 50 ± 10%. The measurement was carried out 5 times for one type of water-absorbent resin particles, and the average value of the measured values at three points excluding the minimum value and the maximum value was obtained. First, the cock 22 and the cock 24 of the burette portion 2 were closed, and a physiological saline solution 50 (saline solution having a concentration of 0.9% by mass) adjusted to 25 ° C. was put into the burette tube 21 through the opening at the upper part of the burette tube 21. After sealing the opening of the burette tube 21 with the rubber stopper 23, the cock 22 and the cock 24 were opened. The inside of the conduit 5 was filled with physiological saline 50 to prevent air bubbles from entering. The height of the measuring table 13 was adjusted so that the height of the water surface of the physiological saline solution that reached the inside of the through hole 13a was the same as the height of the upper surface of the measuring table 13. After the adjustment, the height of the water surface of the physiological saline solution 50 in the burette tube 21 was read by the scale of the burette tube 21, and the position was set as the zero point (reading value at 0 seconds).
 親水化処理されたポリプロピレン繊維によって形成されたスパンボンド不織布(SMMS不織布、目付量13g/m、Toray Polytech(Nantong)Co.,Ltd.製、LIVSEN(商品名)、1.6Dtex)を準備した。100mm×100mmのサイズのスパンボンド不織布15を、測定台13上の貫通孔13aの近傍に敷き、その中央部に、内径30mm、高さ20mmのシリンダーを置いた。このシリンダー内に、1.00gの吸水性樹脂粒子10aを均一に散布した。その後、シリンダーを注意深く取り除き、スパンボンド不織布15の中央部の円形の領域に吸水性樹脂粒子10aを均一に載置した。次いで、吸水性樹脂粒子10aが載置されたスパンボンド不織布15を、その中心が貫通孔13aの位置になるように、吸水性樹脂粒子10aが散逸しない程度にすばやく移動させて、測定を開始した。空気導入管25からビュレット管21内に気泡が最初に導入された時点を吸水開始(0秒)とした。 A spunbonded non-woven fabric (SMMS non-woven fabric, basis weight 13 g / m 2 , manufactured by Toray Polytech (Nantong) Co., Ltd., LIVESEN (trade name), 1.6 Dtex) formed of hydrophilized polypropylene fibers was prepared. .. A spunbonded nonwoven fabric 15 having a size of 100 mm × 100 mm was laid in the vicinity of the through hole 13a on the measuring table 13, and a cylinder having an inner diameter of 30 mm and a height of 20 mm was placed in the center thereof. 1.00 g of water-absorbent resin particles 10a were uniformly sprayed into the cylinder. Then, the cylinder was carefully removed, and the water-absorbent resin particles 10a were uniformly placed in the circular region in the center of the spunbonded nonwoven fabric 15. Next, the spunbonded nonwoven fabric 15 on which the water-absorbent resin particles 10a were placed was quickly moved so that the center thereof was at the position of the through hole 13a so that the water-absorbent resin particles 10a did not dissipate, and the measurement was started. .. The time when the air bubbles were first introduced from the air introduction pipe 25 into the burette pipe 21 was defined as the start of water absorption (0 seconds).
 ビュレット管21内の生理食塩水50の減少量(すなわち、吸水性樹脂粒子10aが吸水した生理食塩水の量)を0.1mL単位で順次読み取り、吸水性樹脂粒子10aの吸水開始から起算して5分後の生理食塩水50の減量分Wc(mL)を読み取った。Wcと生理食塩水の密度(1.0028g/mL)から、下記式により吸水量Bを求めた。吸水量Bは、吸収された生理食塩水の吸水性樹脂粒子1.00g当たりの質量である。
吸水量B[g/g]=Wc×1.0028/1.00
The decrease amount of the physiological saline solution 50 in the bullet tube 21 (that is, the amount of the physiological saline solution absorbed by the water-absorbent resin particles 10a) is sequentially read in units of 0.1 mL, and calculated from the start of water absorption of the water-absorbent resin particles 10a. After 5 minutes, the weight loss Wc (mL) of the physiological saline 50 was read. From the density of Wc and physiological saline (1.028 g / mL), the water absorption amount B was determined by the following formula. The water absorption amount B is the mass per 1.00 g of the water-absorbent resin particles of the absorbed physiological saline.
Water absorption B [g / g] = Wc x 1.0028 / 1.00
2-5.液透過比率A
 吸水量B、及び吸水量Cから、下記式により液透過比率Aを求めた。
液透過比率A[%]=(吸水量B/吸水量C)×100
2-5. Liquid permeation ratio A
From the water absorption amount B and the water absorption amount C, the liquid permeation ratio A was determined by the following formula.
Liquid permeation ratio A [%] = (water absorption amount B / water absorption amount C) x 100
2-6.吸収性物品の作製とその評価
 気流型混合装置(有限会社オーテック社製、パッドフォーマー)を用いて、吸水性樹脂粒子10.0g及び粉砕パルプ9.5gを空気抄造によって均一混合することにより、32cm×12cmの大きさのシート状の吸収体を作製した。吸収体の上下を、吸収体と同じ大きさの2枚のスパンボンド不織布で挟んだ。スパンボンド不織布として、吸水量Bの測定に用いたスパンボンド不織布と同様のものを用いた。その状態で、全体に588kPaの荷重を30秒間加えることにより、試験用のコアラップ付吸収体を吸収性物品として得た。
2-6. Preparation of absorbent article and its evaluation Using an airflow type mixer (Padformer manufactured by Otec Co., Ltd.), 10.0 g of water-absorbent resin particles and 9.5 g of crushed pulp are uniformly mixed by air papermaking. A sheet-shaped absorber having a size of 32 cm × 12 cm was prepared. The top and bottom of the absorber were sandwiched between two spunbonded non-woven fabrics having the same size as the absorber. As the spunbonded non-woven fabric, the same spunbonded non-woven fabric as that used for measuring the water absorption amount B was used. In that state, a load of 588 kPa was applied to the whole for 30 seconds to obtain an absorber with a core wrap for testing as an absorbent article.
 図5は、吸収性物品の漏れ性を評価する方法を示す模式図である。平坦な傾斜面Sを有する長さ45cmの支持板1(ここではアクリル樹脂板)を、水平面Sに対して30±2度に傾斜した状態で架台41によって固定した。支持板1の表面は滑らかであり、支持板1に液体が滞留したり吸収されたりすることはなかった。温度25±2℃、湿度50±10%の環境下で、固定された支持板1の傾斜面S上に、試験用の吸収性物品100の上端を、吸収性物品100の長手方向が支持板1の長手方向に沿う向きとなるように粘着テープで貼り付けた。吸収性物品100の下端は支持板1に貼り付けなかった。次いで、吸収性物品100中の吸収体の中央から8cm上方の位置に目印をマークした。滴下ロート42は内径3.4mmの投入口を有していた。滴下ロート42を、その投入口の先端が目印から鉛直上方で距離10±1mmになる位置で架台41に対して固定した。滴下ロート42のコックの絞りを、3mL/秒の速度で液が投入されるように調整した。支持板1の下方に天秤43を配置し、天秤43に金属製トレイ44を載せた。 FIG. 5 is a schematic view showing a method for evaluating the leakability of an absorbent article. The support plate 1 of length 45cm having a flat inclined surface S 1 (wherein the acrylic resin plate) was fixed by frame 41 in a state that is inclined 30 ± 2 degrees relative to the horizontal plane S 0. The surface of the support plate 1 was smooth, and the liquid did not stay or be absorbed by the support plate 1. Temperature 25 ± 2 ° C., under a humidity 50 ± 10% of the environment, on the inclined surface S 1 of the fixed support plate 1, the upper end of the absorbent article 100 for testing, the longitudinal direction of the absorbent article 100 is supported It was attached with an adhesive tape so as to be oriented along the longitudinal direction of the plate 1. The lower end of the absorbent article 100 was not attached to the support plate 1. Next, a mark was marked at a position 8 cm above the center of the absorber in the absorbent article 100. The dropping funnel 42 had an inlet having an inner diameter of 3.4 mm. The dropping funnel 42 was fixed to the gantry 41 at a position where the tip of the insertion port was vertically above the mark and at a distance of 10 ± 1 mm. The throttle of the cock of the dropping funnel 42 was adjusted so that the liquid was poured at a rate of 3 mL / sec. A balance 43 was arranged below the support plate 1, and a metal tray 44 was placed on the balance 43.
 天秤43を起動させ、表示をゼロに補正した後、滴下ロート42に、25±1℃に調整した試験液55(人工尿)80mLを一度に投入した。滴下ロート42から滴下され、吸収性物品100に吸収されずに流れ落ちて金属製トレイ44に入った試験液の重量を、1回目の漏れ量[g]として記録した。1回目の試験液投入開始から10分間隔で、1回目と同様に2回目、及び3回目の試験液を投入し、それぞれの漏れ量[g]を記録した。漏れ量の数値が小さいほど、吸収性物品の着用時における液体漏れ量が少ないと判断される。試験液として用いられた人工尿は以下の成分を混合して調製した。
・イオン交換水:5919.6g
・NaCl:60.0g
・CaCl2・H2O:1.8g
・MgCl2・6H2O:3.6g
・食用青色1号(着色用):0.15g
・トリトン X-100(1%)(オクチルフェノールエトキシレート水溶液):15.0g
After starting the balance 43 and correcting the display to zero, 80 mL of the test solution 55 (artificial urine) adjusted to 25 ± 1 ° C. was charged into the dropping funnel 42 at a time. The weight of the test solution that was dropped from the dropping funnel 42 and flowed down without being absorbed by the absorbent article 100 and entered the metal tray 44 was recorded as the first leakage amount [g]. At 10-minute intervals from the start of the first test solution injection, the second and third test solutions were added in the same manner as the first test solution, and the leakage amount [g] of each was recorded. It is judged that the smaller the value of the amount of leakage, the smaller the amount of liquid leakage when the absorbent article is worn. The artificial urine used as the test solution was prepared by mixing the following components.
-Ion-exchanged water: 5919.6 g
・ NaCl: 60.0 g
・ CaCl2 ・ H2O: 1.8g
-MgCl2.6H2O: 3.6g
・ Edible blue No. 1 (for coloring): 0.15 g
-Triton X-100 (1%) (octylphenol ethoxylate aqueous solution): 15.0 g
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に評価結果を示す。液透過比率Aが特定の数値を示す実施例の吸水性樹脂粒子を用いて作製された吸収性物品は、漏れ性の評価試験において3回目の試験液投入まで少量の液漏れしか発生させなかった。 Table 1 shows the evaluation results. The absorbent article prepared by using the water-absorbent resin particles of the example in which the liquid permeation ratio A shows a specific value caused only a small amount of liquid leakage until the third test liquid injection in the leakability evaluation test. ..
 1…支持板、2…ビュレット部、3…クランプ、5…導管、10…吸収体、10a…吸水性樹脂粒子、10b…繊維層、11…架台、13…測定台、13a…貫通孔、15…スパンボンド不織布、20a…コアラップ、20b…コアラップ、21…ビュレット管、22…コック、23…ゴム栓、24…コック、25…空気導入管、30…液体透過性シート、40…液体不透過性シート、41…架台、42…滴下ロート、43…天秤、44…金属製トレイ、50…生理食塩水、71…ビュレット部、71a…ビュレット、71b…ゴム栓、71c…コック、71d…空気導入管、71e…コック、72…導管、73…測定台、74…測定部、74a…円筒、74b…ナイロンメッシュ、74c…重り、75…吸水性樹脂粒子、100…吸収性物品、200a…軸、200b…平板部、S…スリット、S0…水平面、S1…傾斜面、Y…測定装置。 1 ... Support plate, 2 ... Burette, 3 ... Clamp, 5 ... Conduit, 10 ... Absorber, 10a ... Water-absorbent resin particles, 10b ... Fiber layer, 11 ... Mount, 13 ... Measuring table, 13a ... Through hole, 15 ... spunbonded non-woven fabric, 20a ... core wrap, 20b ... core wrap, 21 ... burette tube, 22 ... cock, 23 ... rubber stopper, 24 ... cock, 25 ... air introduction tube, 30 ... liquid permeable sheet, 40 ... liquid impermeable Sheet, 41 ... gantry, 42 ... dripping funnel, 43 ... balance, 44 ... metal tray, 50 ... physiological saline, 71 ... burette, 71a ... burette, 71b ... rubber stopper, 71c ... cock, 71d ... air introduction pipe , 71e ... cock, 72 ... conduit, 73 ... measuring table, 74 ... measuring unit, 74a ... cylinder, 74b ... nylon mesh, 74c ... weight, 75 ... water-absorbent resin particles, 100 ... absorbent article, 200a ... shaft, 200b ... flat plate, S ... slit, S0 ... horizontal plane, S1 ... inclined surface, Y ... measuring device.

Claims (7)

  1.  下記式:
    液透過比率A[%]=(吸水量B[g/g]/吸水量C[g/g])×100
    によって算出される液透過比率Aが、0%を超えて60%以下である、吸水性樹脂粒子であって、
     吸水量Bが、無加圧下のDW法によって、スパンボンド不織布を介して供給される生理食塩水を1.00gの当該吸水性樹脂粒子に吸収させたときに、当該吸水性樹脂粒子が、吸収を開始してから5分後までに吸収する、当該吸水性樹脂粒子1g当たりの生理食塩水の質量であり、
     前記スパンボンド不織布の単位面積当たりの質量が11~15g/mであり、
     吸水量Cが、2.0gの当該吸水性樹脂粒子が500gの生理食塩水中で60分間かけて膨潤したときに吸収する、当該吸水性樹脂粒子1g当たりの生理食塩水の質量である、
    吸水性樹脂粒子。
    The following formula:
    Liquid permeation ratio A [%] = (water absorption B [g / g] / water absorption C [g / g]) × 100
    The water-absorbent resin particles having a liquid permeation ratio A calculated by the above method are more than 0% and 60% or less.
    When the physiological saline supplied through the spunbonded non-woven fabric is absorbed by the water-absorbent resin particles of 1.00 g by the DW method under no pressure, the water-absorbent resin particles absorb the water-absorbent amount B. It is the mass of physiological saline per 1 g of the water-absorbent resin particles that is absorbed within 5 minutes after the start of.
    The mass per unit area of the spunbonded non-woven fabric is 11 to 15 g / m 2 .
    The water absorption amount C is the mass of the physiological saline solution per 1 g of the water-absorbent resin particles, which is absorbed when 2.0 g of the water-absorbent resin particles swells in 500 g of physiological saline solution over 60 minutes.
    Water-absorbent resin particles.
  2.  当該吸水性樹脂粒子の2.07kPaの荷重下での生理食塩水に対する吸水量が20mL/g以上である、請求項1に記載の吸水性樹脂粒子。 The water-absorbent resin particle according to claim 1, wherein the water-absorbent resin particle has a water absorption amount of 20 mL / g or more with respect to a physiological saline solution under a load of 2.07 kPa.
  3.  液体不透過性シート、吸収体、及び液体透過性シートを備え、前記液体不透過性シート、前記吸収体及び前記液体透過性シートがこの順に配置されている、吸収性物品であって、
     前記吸収体が、請求項1又は2に記載の吸水性樹脂粒子を含む、吸収性物品。
    An absorbent article comprising a liquid impermeable sheet, an absorbent body, and a liquid permeable sheet, wherein the liquid impermeable sheet, the absorbent body, and the liquid permeable sheet are arranged in this order.
    An absorbent article in which the absorber contains the water-absorbent resin particles according to claim 1 or 2.
  4.  前記液体透過性シートが、スパンボンド層を有するスパンボンド不織布を含む、請求項3に記載の吸収性物品。 The absorbent article according to claim 3, wherein the liquid permeable sheet contains a spunbonded non-woven fabric having a spunbond layer.
  5.  前記スパンボンド不織布が、親水化処理されたポリオレフィン繊維によって形成された不織布である、請求項4に記載の吸収性物品。 The absorbent article according to claim 4, wherein the spunbonded nonwoven fabric is a nonwoven fabric formed of hydrophilically treated polyolefin fibers.
  6.  下記式:
    液透過比率A[%]=(吸水量B[g/g]/吸水量C[g/g])×100
    によって算出される液透過比率Aが0%を超えて60%以下である、吸水性樹脂粒子を選別する工程を含み、
     吸水量Bが、無加圧下のDW法によって、スパンボンド不織布を介して供給される生理食塩水を1.00gの当該吸水性樹脂粒子に吸収させたときに、当該吸水性樹脂粒子が、吸収を開始してから5分後までに吸収する、当該吸水性樹脂粒子1g当たりの生理食塩水の質量であり、
     前記スパンボンド不織布の単位面積当たりの質量が11~15g/mであり、
     吸水量Cが、2.0gの当該吸水性樹脂粒子が500gの生理食塩水中で60分間かけて膨潤したときに吸収する、当該吸水性樹脂粒子1g当たりの生理食塩水の質量である、
    吸水性樹脂粒子を製造する方法。
    The following formula:
    Liquid permeation ratio A [%] = (water absorption B [g / g] / water absorption C [g / g]) × 100
    Including a step of selecting water-absorbent resin particles having a liquid permeation ratio A of more than 0% and 60% or less calculated by
    When the physiological saline supplied through the spunbonded non-woven fabric is absorbed by the water-absorbent resin particles of 1.00 g by the DW method under no pressure, the water-absorbent resin particles absorb the water-absorbent amount B. It is the mass of physiological saline per 1 g of the water-absorbent resin particles that is absorbed within 5 minutes after the start of.
    The mass per unit area of the spunbonded non-woven fabric is 11 to 15 g / m 2 .
    The water absorption amount C is the mass of the physiological saline solution per 1 g of the water-absorbent resin particles, which is absorbed when 2.0 g of the water-absorbent resin particles swells in 500 g of physiological saline solution over 60 minutes.
    A method for producing water-absorbent resin particles.
  7.  下記式:
    液透過比率A[%]=(吸水量B[g/g]/吸水量C[g/g])×100
    によって算出される吸水性樹脂粒子の液透過比率Aを0%を超えて60%以下とすることを含む、吸水性樹脂粒子を含む吸収性物品からの液漏れを抑制する方法であって、
     吸水量Bが、無加圧下のDW法によって、スパンボンド不織布を介して供給される生理食塩水を1.00gの当該吸水性樹脂粒子に吸収させたときに、当該吸水性樹脂粒子が、吸収を開始してから5分後までに吸収する、当該吸水性樹脂粒子1g当たりの生理食塩水の質量であり、
     前記スパンボンド不織布の単位面積当たりの質量が11~15g/mであり、
     吸水量Cが、2.0gの当該吸水性樹脂粒子が500gの生理食塩水中で60分間かけて膨潤したときに吸収する、当該吸水性樹脂粒子1g当たりの生理食塩水の質量である、
    方法。
    The following formula:
    Liquid permeation ratio A [%] = (water absorption B [g / g] / water absorption C [g / g]) × 100
    A method for suppressing liquid leakage from an absorbent article containing water-absorbent resin particles, which comprises setting the liquid permeation ratio A of the water-absorbent resin particles to be more than 0% and 60% or less.
    When the physiological saline supplied through the spunbonded non-woven fabric is absorbed by the water-absorbent resin particles of 1.00 g by the DW method under no pressure, the water-absorbent resin particles absorb the water-absorbent amount B. It is the mass of physiological saline per 1 g of the water-absorbent resin particles that is absorbed within 5 minutes after the start of.
    The mass per unit area of the spunbonded non-woven fabric is 11 to 15 g / m 2 .
    The water absorption amount C is the mass of the physiological saline solution per 1 g of the water-absorbent resin particles, which is absorbed when 2.0 g of the water-absorbent resin particles swells in 500 g of physiological saline solution over 60 minutes.
    Method.
PCT/JP2020/016758 2019-04-23 2020-04-16 Water-absorbing resin particles, absorbent article, method for producing water-absorbing resin particles, and method for suppressing liquid leakage of absorbent article WO2020218165A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020556832A JP6889811B2 (en) 2019-04-23 2020-04-16 A method for producing water-absorbent resin particles, an absorbent article, a water-absorbent resin particle, and a method for suppressing liquid leakage of the absorbent article.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-082036 2019-04-23
JP2019082036 2019-04-23

Publications (1)

Publication Number Publication Date
WO2020218165A1 true WO2020218165A1 (en) 2020-10-29

Family

ID=72942669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016758 WO2020218165A1 (en) 2019-04-23 2020-04-16 Water-absorbing resin particles, absorbent article, method for producing water-absorbing resin particles, and method for suppressing liquid leakage of absorbent article

Country Status (2)

Country Link
JP (1) JP6889811B2 (en)
WO (1) WO2020218165A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186506A (en) * 1984-03-05 1985-09-24 Kao Corp Preparation of highly water absorbing polymer
JPH08509522A (en) * 1993-10-27 1996-10-08 アライド コロイド リミテッド Superabsorbent polymers and products containing them
JP2000026510A (en) * 1998-07-06 2000-01-25 Sanyo Chem Ind Ltd Production of resin and water-absorbing resin
WO2006054487A1 (en) * 2004-11-17 2006-05-26 Sumitomo Seika Chemicals Co., Ltd. Water absorbing resin particle and, making use of the same, absorber material and absorbent article
WO2011086841A1 (en) * 2010-01-13 2011-07-21 住友精化株式会社 Water-absorbable sheet structure
WO2014034897A1 (en) * 2012-08-30 2014-03-06 株式会社日本触媒 Particulate water-absorbing agent and method for manufacturing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186506A (en) * 1984-03-05 1985-09-24 Kao Corp Preparation of highly water absorbing polymer
JPH08509522A (en) * 1993-10-27 1996-10-08 アライド コロイド リミテッド Superabsorbent polymers and products containing them
JP2000026510A (en) * 1998-07-06 2000-01-25 Sanyo Chem Ind Ltd Production of resin and water-absorbing resin
WO2006054487A1 (en) * 2004-11-17 2006-05-26 Sumitomo Seika Chemicals Co., Ltd. Water absorbing resin particle and, making use of the same, absorber material and absorbent article
WO2011086841A1 (en) * 2010-01-13 2011-07-21 住友精化株式会社 Water-absorbable sheet structure
WO2014034897A1 (en) * 2012-08-30 2014-03-06 株式会社日本触媒 Particulate water-absorbing agent and method for manufacturing same

Also Published As

Publication number Publication date
JP6889811B2 (en) 2021-06-18
JPWO2020218165A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
JP6828222B1 (en) A method for producing water-absorbent resin particles, an absorbent article, a method for producing water-absorbent resin particles, and a method for increasing the amount of absorption of the absorber under pressure.
WO2020184394A1 (en) Water absorbent resin particle, absorber, absorbent article, method for measuring permeation retention rate of water absorbent resin particle, and method for producing water absorbent resin particle
WO2020184389A1 (en) Water absorbing resin particles
WO2020184386A1 (en) Water absorbing resin particles, absorbent article, method for manufacturing water absorbing resin particles, method for facilitating permeation of physiological saline solution into absorbent body
WO2020184387A1 (en) Water absorbing resin particles and method for producing same, absorbent body, and absorbent article
WO2020184398A1 (en) Water absorbing resin particles and method for producing same, absorbent body, and absorbent article
EP3936538A1 (en) Water absorbing resin particles and method for producing same, absorbent body. absorbent article, and method for adjusting permeation speed
EP3896095A1 (en) Water-absorbent resin particles, absorbent body, and absorbent article
US20220219140A1 (en) Water-absorbent resin particles
JP6856826B1 (en) Water-absorbent resin particles
WO2021039715A1 (en) Water-absorbing sheet and absorbent article
JP6710303B1 (en) Absorbent article and manufacturing method thereof
EP3936530A1 (en) Absorbent body, absorbent article and method for adjusting permeation speed
WO2020218168A1 (en) Water-absorbent resin particles, absorbent body, and absorbent article
WO2020184393A1 (en) Water absorbent resin particles, absorber and absorbent article
JP7470496B2 (en) Particulate water-absorbent resin composition
WO2020218165A1 (en) Water-absorbing resin particles, absorbent article, method for producing water-absorbing resin particles, and method for suppressing liquid leakage of absorbent article
WO2020122214A1 (en) Water absorbent resin particles and absorbent article
KR20210139288A (en) Water-absorbing resin particles and manufacturing method thereof
JP6775051B2 (en) Absorbent article
JP6775050B2 (en) Absorbent article
JP6752320B2 (en) Absorbent article and its manufacturing method
WO2021039714A1 (en) Absorbent article and auxiliary sheet
WO2021039713A1 (en) Absorbent article and auxiliary sheet
WO2020218164A1 (en) Water-absorbent resin particles and water-absorbent sheet

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020556832

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20796425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20796425

Country of ref document: EP

Kind code of ref document: A1