WO2021039714A1 - Absorbent article and auxiliary sheet - Google Patents

Absorbent article and auxiliary sheet Download PDF

Info

Publication number
WO2021039714A1
WO2021039714A1 PCT/JP2020/031838 JP2020031838W WO2021039714A1 WO 2021039714 A1 WO2021039714 A1 WO 2021039714A1 JP 2020031838 W JP2020031838 W JP 2020031838W WO 2021039714 A1 WO2021039714 A1 WO 2021039714A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
resin particles
absorbent resin
liquid
sheet
Prior art date
Application number
PCT/JP2020/031838
Other languages
French (fr)
Japanese (ja)
Inventor
海紗生 谷口
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to KR1020227008321A priority Critical patent/KR20220050917A/en
Priority to CN202080059123.6A priority patent/CN114269310B/en
Priority to JP2021542886A priority patent/JP7457718B2/en
Publication of WO2021039714A1 publication Critical patent/WO2021039714A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/45Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the shape
    • A61F13/49Absorbent articles specially adapted to be worn around the waist, e.g. diapers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F13/534Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/84Accessories, not otherwise provided for, for absorbent pads
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F2013/15008Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterized by the use
    • A61F2013/15146Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterized by the use for urine collection

Definitions

  • the present invention relates to an absorbent article and an auxiliary sheet.
  • Absorbents containing water-absorbent resin particles are generally used as absorbent articles for absorbing water-based liquids such as urine.
  • water-absorbent sheet structure disclosed in Patent Document 1 below water-absorbent resin particles having a physiological saline water absorption rate within a predetermined range are used in the liquid-absorbent layer.
  • one aspect of the present invention is to provide an absorbent article in which liquid leakage at the initial stage of liquid absorption is suppressed.
  • Another aspect of the present invention is to provide an auxiliary sheet capable of suppressing liquid leakage in the initial stage of liquid absorption in an absorbent article.
  • One aspect of the present invention includes a water absorbing core, an auxiliary sheet for assisting liquid absorption by the water absorbing core, a liquid impermeable sheet and a liquid permeable sheet, and includes a liquid impermeable sheet, an auxiliary sheet, a water absorbing core and a liquid permeable sheet.
  • the auxiliary sheet includes a resin layer containing water-absorbent resin particles, and the following steps (1), (2), (3), (4) and (5) are included in this order.
  • the measured dry powder passing liquid absorption rate of the water-absorbent resin particles is 0.25 or more and 1.0 or less.
  • 0.2 g of water-absorbent resin particles are uniformly sprayed over the entire bottom surface of a cylindrical container having an inner diameter of 60 mm having a mesh-like bottom, and the total amount of the container and the water-absorbent resin particles sprayed in the container.
  • the mass Wb (g) is measured.
  • 20 mL of artificial urine having a liquid temperature of 25 ° C. is injected into the container on which the water-absorbent resin particles are sprayed at a constant rate of 8 mL / sec, and at least a part of the artificial urine is absorbed by the water-absorbent resin particles to make the container.
  • a swelling gel is formed within.
  • the dry powder passing liquid absorption amount (g) is determined from Wa (g) -Wb (g).
  • the dry powder passage liquid absorption rate (g / g) is obtained as the ratio of the dry powder passage liquid absorption amount (g) to the artificial urine saturated liquid absorption amount (g) of 0.2 g of the water-absorbent resin particles.
  • an auxiliary sheet capable of suppressing liquid leakage in the initial stage of liquid absorption in an absorbent article.
  • each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
  • the absorbent article according to the embodiment includes a water absorbing core, an auxiliary sheet for assisting liquid absorption by the water absorbing core, a liquid impermeable sheet, and a liquid permeable sheet.
  • the liquid impermeable sheet, the auxiliary sheet, the water absorbing core and the liquid permeable sheet are arranged in this order. That is, the auxiliary sheet is arranged so as to be in contact with the surface of the absorbent core provided with the water absorbing core, which is opposite to the side on which the liquid to be absorbed is invaded.
  • the auxiliary sheet is used in an absorbent article provided with a water absorbing core to assist the liquid absorption of the water absorbing core.
  • the auxiliary sheet includes a resin layer containing water-absorbent resin particles, and is measured by a method including the following steps (1), (2), (3), (4) and (5) in this order.
  • the dry powder water absorption rate of the resin particles is 0.25 or more and 1.0 or less.
  • (1) 0.2 g of water-absorbent resin particles are uniformly sprayed over the entire bottom surface of a cylindrical container having an inner diameter of 60 mm having a mesh-like bottom, and the total amount of the container and the water-absorbent resin particles sprayed in the container.
  • the mass Wb (g) is measured.
  • the dry powder passing liquid absorption amount (g) is determined from Wa (g) -Wb (g).
  • the dry powder passage liquid absorption rate (g / g) is obtained as the ratio of the dry powder passage liquid absorption amount (g) to the artificial urine saturated liquid absorption amount (g) of 0.2 g of the water-absorbent resin particles.
  • the artificial urine sodium chloride (NaCl) 100.0 g, calcium chloride dihydrate (CaCl 2 ⁇ H 2 O) 3.0g, magnesium chloride hexahydrate (MgCl 2 ⁇ 6H 2 O) It is an aqueous solution prepared from 6.0 g, 25.0 g of Triton X-100 (1%), 0.25 g of Edible Blue No. 1, and 9865.75 g of water.
  • the artificial urine saturated liquid absorption amount is an index showing the saturated liquid absorption amount of artificial urine in a predetermined amount of water-absorbent resin particles, and the dry powder passing liquid absorption amount is a short time after contact between the water-absorbent resin particles and artificial urine. It is an index that reflects the amount of liquid absorbed during (initial).
  • the high dry powder passage liquid absorption rate which is the ratio of the dry powder passage liquid absorption amount to the artificial urine saturated liquid absorption amount, means that the liquid permeability of the water-absorbent resin particles in a short time (initial) after contact with artificial urine is high. It is thought to mean high.
  • the auxiliary sheet provided with the resin layer containing the water-absorbent resin particles having high liquid permeability at the initial stage instantly absorbs the liquid that could not be absorbed by the water-absorbing core, so that the liquid at the initial stage of liquid absorption in the absorbent article It is presumed that leakage will be suppressed.
  • the lower limit of the liquid absorption rate of dry powder is 0.25 or more, and from the viewpoint of further excellent effect of suppressing liquid leakage in the initial stage of liquid absorption, 0.30 or more, 0.35 or more, 0.40 or more, 0. It may be 45 or more, 0.50 or more, 0.55 or more, 0.60 or more, 0.65 or more, 0.70 or more, 0.75 or more, 0.80 or more, or 0.85 or more.
  • the upper limit of the dry powder passing liquid absorption rate is 1.0 or less, and may be 0.95 or less, or 0.90 or less.
  • the artificial urine saturated liquid absorption amount of 0.2 g of the water-absorbent resin particles shows the same amount of saturated absorption of 0.2 g of the water-absorbent resin particles as the amount used for measuring the dry powder passage liquid absorption rate, and therefore is usually the same amount.
  • the upper limit of the dry powder liquid absorption rate is usually 1.0 or less.
  • the amount of dry powder flowing through is, for example, 2.7 g or more, 3.0 g or more, 4.0 g or more, 5.0 g or more, 6.0 g or more, 7.0 g or more, 8.0 g or more, or 9.0 g or more. It may be 15.0 g or less, 12.0 g or less, or 10.0 g or less.
  • a specific method for measuring the amount of dry powder flowing through the liquid is as described in Examples described later.
  • the artificial urine saturated liquid absorption amount of 0.2 g of the water-absorbent resin particles is calculated by a method including the following steps (a), (b), (c), (d) and (e) in this order.
  • (A) Put 500 g of artificial urine into a 500 mL beaker.
  • (B) 2.0 g of water-absorbent resin particles are charged into the beaker into which the artificial urine is charged while stirring the artificial urine at 600 rpm using a magnetic stirrer bar (8 mm ⁇ ⁇ 30 mm, without ring).
  • C The artificial urine and the water-absorbent resin particles are stirred at 600 rpm for 60 minutes after the water-absorbent resin particles are added to form a swollen gel.
  • the artificial urine saturated liquid absorption amount of 0.2 g of the water-absorbent resin particles is, for example, 7.0 or more, 8.0 or more, 9.0 or more, or 10.0 from the viewpoint of the water absorption characteristics of the water-absorbent resin particles. It may be 20.0 or less, 15.0 or less, 13.0 or less, or 11.0 or less.
  • a specific method for measuring the artificial urine saturated liquid absorption amount of 0.2 g of the water-absorbent resin particles is as described in Examples described later.
  • the shape of the water-absorbent resin particles may be, for example, substantially spherical, crushed or granular, and particles having agglomerated primary particles having these shapes may be formed.
  • the medium particle size of the water-absorbent resin particles may be 45 to 850 ⁇ m, 75 to 700 ⁇ m, 100 to 600 ⁇ m, or 200 to 600 ⁇ m.
  • the water-absorbent resin particles may have a desired particle size distribution at the time of being obtained by the production method described later, but the particle size distribution may be adjusted by performing an operation such as particle size adjustment using classification with a sieve. Good.
  • the water-absorbent resin particles can include, for example, a crosslinked polymer formed by polymerizing a monomer containing an ethylenically unsaturated monomer.
  • the crosslinked polymer has a monomer unit derived from an ethylenically unsaturated monomer.
  • the water-absorbent resin particles can be produced by a method including a step of polymerizing a monomer containing an ethylenically unsaturated monomer.
  • the polymerization method include a reverse phase suspension polymerization method, an aqueous solution polymerization method, a bulk polymerization method, and a precipitation polymerization method. From the viewpoint of ensuring good water absorption characteristics of the obtained water-absorbent resin particles and facilitating control of the polymerization reaction, a reverse phase suspension polymerization method or an aqueous solution polymerization method may be applied. In the following, a reverse phase suspension polymerization method will be described as an example as a method for polymerizing an ethylenically unsaturated monomer.
  • the ethylenically unsaturated monomer may be water-soluble.
  • water-soluble ethylenically unsaturated monomers include (meth) acrylic acid and its salts, 2- (meth) acrylamide-2-methylpropanesulfonic acid and its salts, (meth) acrylamide, N, N-dimethyl.
  • the ethylenically unsaturated monomer has an amino group, the amino group may be quaternized.
  • the ethylenically unsaturated monomer may be used alone or in combination of two or more.
  • Functional groups such as the carboxyl group and amino group of the above-mentioned monomers can function as functional groups capable of cross-linking in the surface cross-linking step described later.
  • the ethylenically unsaturated monomer is at least one selected from the group consisting of (meth) acrylic acid and salts thereof, acrylamide, methacrylamide, and N, N-dimethylacrylamide. It may contain a compound of the species.
  • the ethylenically unsaturated monomer may contain (meth) acrylic acid and a salt thereof, and at least one compound selected from the group consisting of acrylamide.
  • the ethylenically unsaturated monomer may contain at least one compound selected from the group consisting of (meth) acrylic acid and salts thereof.
  • the ethylenically unsaturated monomer can be used in the polymerization reaction as an aqueous solution.
  • concentration of the ethylenically unsaturated monomer in the aqueous solution containing the ethylenically unsaturated monomer (hereinafter, simply referred to as "monomer aqueous solution") is 20% by mass or more and the saturation concentration or less, 25 to 70% by mass, or 30. It may be up to 55% by mass.
  • Examples of the water used in the aqueous solution include tap water, distilled water, ion-exchanged water and the like.
  • a monomer other than the above-mentioned ethylenically unsaturated monomer may be used.
  • Such a monomer can be used, for example, by being mixed with an aqueous solution containing the above-mentioned ethylenically unsaturated monomer.
  • the amount of the ethylenically unsaturated monomer used may be 70 to 100 mol% with respect to the total amount of the monomers.
  • the ratio of (meth) acrylic acid and a salt thereof may be 70 to 100 mol% with respect to the total amount of the monomer.
  • the acid group may be neutralized with an alkaline neutralizer and then the monomer solution may be used in the polymerization reaction.
  • the degree of neutralization of an ethylenically unsaturated monomer by an alkaline neutralizing agent increases the osmotic pressure of the obtained water-absorbent resin particles and further enhances the water absorption characteristics (water absorption amount, etc.). It may be 10-100 mol%, 50-90 mol%, or 60-80 mol% of the acidic group in the body.
  • the alkaline neutralizer include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide and potassium carbonate; ammonia and the like.
  • the alkaline neutralizer may be used alone or in combination of two or more.
  • the alkaline neutralizer may be used in the form of an aqueous solution to simplify the neutralization operation.
  • Neutralization of the acid group of the ethylenically unsaturated monomer can be performed, for example, by adding an aqueous solution of sodium hydroxide, potassium hydroxide or the like to the above-mentioned monomer aqueous solution and mixing them.
  • the monomer aqueous solution is dispersed in a hydrocarbon dispersion medium in the presence of a surfactant, and the ethylenically unsaturated monomer is polymerized using a radical polymerization initiator or the like.
  • a radical polymerization initiator a water-soluble radical polymerization initiator can be used.
  • surfactant examples include nonionic surfactants and anionic surfactants.
  • nonionic surfactant sorbitan fatty acid ester and (poly) glycerin fatty acid ester (“(poly)” means both with and without the prefix of “poly”. The same shall apply hereinafter.
  • Sucrose fatty acid ester polyoxyethylene sorbitan fatty acid ester, polyoxyethylene glycerin fatty acid ester, sorbitol fatty acid ester, polyoxyethylene sorbitol fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene himashi
  • oil polyoxyethylene cured castor oil, alkylallyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene polyoxypropylene block copolymer, polyoxyethylene polyoxypropyl alkyl ether, polyethylene glycol fatty acid ester and the like.
  • anionic surfactants include fatty acid salts, alkylbenzene sulfonates, alkylmethyl taurates, polyoxyethylene alkylphenyl ether sulfates, polyoxyethylene alkyl ether sulfonates, and phosphoric acid esters of polyoxyethylene alkyl ethers. , And the phosphate ester of polyoxyethylene alkyl allyl ether and the like.
  • the surfactant may be used alone or in combination of two or more.
  • the surfactant is a sorbitan fatty acid ester. It may contain at least one compound selected from the group consisting of polyglycerin fatty acid ester and sucrose fatty acid ester. From the viewpoint of easily improving the water absorption characteristics of the obtained water-absorbent resin particles, a sorbitan fatty acid ester and / or a sucrose fatty acid ester (for example, sucrose stearic acid ester) can be used as the surfactant. These surfactants may be used alone or in combination of two or more.
  • the amount of the surfactant may be 0.05 to 10 parts by mass, 0.08 to 5 parts by mass, or 0.1 to 3 parts by mass with respect to 100 parts by mass of the monomer aqueous solution.
  • a polymer-based dispersant may be used in combination with the above-mentioned surfactant.
  • the polymer dispersant include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, maleic anhydride-modified EPDM (ethylene / propylene / diene / terpolymer), and maleic anhydride.
  • the polymer-based dispersant may be used alone or in combination of two or more.
  • the polymer-based dispersant includes maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, and maleic anhydride / ethylene copolymer.
  • Maleic anhydride / propylene copolymer, maleic anhydride / ethylene / propylene copolymer, polyethylene, polypropylene, ethylene / propylene copolymer, oxidized polyethylene, oxidized polypropylene, and oxidized ethylene / propylene copolymer It may be at least one selected from the group consisting of.
  • the amount of the polymer-based dispersant may be 0.05 to 10 parts by mass, 0.08 to 5 parts by mass, or 0.1 to 3 parts by mass with respect to 100 parts by mass of the monomer aqueous solution.
  • the hydrocarbon dispersion medium may contain at least one compound selected from the group consisting of chain aliphatic hydrocarbons having 6 to 8 carbon atoms and alicyclic hydrocarbons having 6 to 8 carbon atoms.
  • Hydrocarbon dispersion media include chain aliphatic hydrocarbons such as n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane, and n-octane; cyclohexane.
  • the hydrocarbon dispersion medium may be used alone or in combination of two or more.
  • the hydrocarbon dispersion medium may contain at least one selected from the group consisting of n-heptane and cyclohexane.
  • the mixture of the above-mentioned hydrocarbon dispersion medium for example, commercially available ExxonHeptane (manufactured by ExxonMobil: containing 75 to 85% of n-heptane and isomeric hydrocarbons) is used. You may.
  • the amount of the hydrocarbon dispersion medium is 30 to 1000 parts by mass, 40 to 500 parts by mass, or 50 parts by mass with respect to 100 parts by mass of the monomer aqueous solution from the viewpoint of appropriately removing the heat of polymerization and easily controlling the polymerization temperature. It may be up to 300 parts by mass. When the amount of the hydrocarbon dispersion medium is 30 parts by mass or more, the polymerization temperature tends to be easily controlled. When the amount of the hydrocarbon dispersion medium is 1000 parts by mass or less, the productivity of polymerization tends to be improved, which is economical.
  • the radical polymerization initiator may be water-soluble.
  • water-soluble radical polymerization initiators are persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate; methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, and t-butyl cumylper.
  • Peroxides such as oxides, t-butylperoxyacetate, t-butylperoxyisobutyrate, t-butylperoxypivalate, hydrogen peroxide; 2,2'-azobis (2-amidinopropane) dihydrochloride , 2,2'-azobis [2- (N-phenylamidino) propane] dihydrochloride, 2,2'-azobis [2- (N-allylamidino) propane] dihydrochloride, 2,2'-azobis [ 2- (2-Imidazolin-2-yl) propane] 2 hydrochloride, 2,2'-azobis ⁇ 2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane ⁇ 2 hydrochloride, 2,2'-azobis ⁇ 2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide ⁇ , 2,2'-azobis [2-methyl-N- (2-hydroxy) Ethyl) -propion
  • the radical polymerization initiator may be used alone or in combination of two or more.
  • the radical polymerization initiators are potassium persulfate, ammonium persulfate, sodium persulfate, 2,2'-azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis [2- (2-imidazolin-2-yl). ) Propane] 2 hydrochloride and 2,2'-azobis ⁇ 2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane ⁇ 2 hydrochloride at least selected from the group. There may be.
  • the amount of the radical polymerization initiator may be 0.00005 to 0.01 mol per 1 mol of the ethylenically unsaturated monomer.
  • the amount of the radical polymerization initiator used is 0.00005 mol or more, the polymerization reaction does not require a long time and is efficient.
  • the amount of the radical polymerization initiator is 0.01 mol or less, it is easy to suppress the occurrence of a rapid polymerization reaction.
  • the exemplified radical polymerization initiator can also be used as a redox polymerization initiator in combination with a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
  • a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
  • the aqueous monomer solution may contain a chain transfer agent.
  • chain transfer agent include hypophosphates, thiols, thiolic acids, secondary alcohols, amines and the like.
  • the monomer aqueous solution used for the polymerization may contain a thickener.
  • the thickener include hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, carboxymethyl cellulose, polyacrylic acid, polyethylene glycol, polyacrylamide, polyethyleneimine, dextrin, sodium alginate, polyvinyl alcohol, polyvinylpyrrolidone, polyethylene oxide and the like. If the stirring speed at the time of polymerization is the same, the higher the viscosity of the aqueous monomer solution, the larger the medium particle size of the obtained particles tends to be.
  • Cross-linking by self-cross-linking may occur during polymerization, but cross-linking may be further performed by using an internal cross-linking agent.
  • an internal cross-linking agent When an internal cross-linking agent is used, it is easy to control the water absorption characteristics of the water-absorbent resin particles.
  • the internal cross-linking agent is usually added to the reaction solution during the polymerization reaction.
  • the internal cross-linking agent examples include di or tri (meth) acrylic acid esters of polyols such as ethylene glycol, propylene glycol, trimethylpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; Unsaturated polyesters obtained by reacting polyols with unsaturated acids (maleic acid, fumaric acid, etc.); bis (meth) acrylamides such as N, N'-methylenebis (meth) acrylamide; polyepoxides and (meth) Di or tri (meth) acrylic acid esters obtained by reacting with acrylic acid; di (meth) obtained by reacting polyisocyanate (tolylene diisocyanate, hexamethylene diisocyanate, etc.) with hydroxyethyl (meth) acrylate.
  • polyols such as ethylene glycol, propylene glycol, trimethylpropane, glycerin, polyoxyethylene glycol, polyoxypropy
  • Acrylic acid carbamil esters compounds having two or more polymerizable unsaturated groups, such as allylated starch, allylated cellulose, diallyl phthalate, N, N', N "-triallyl isocyanurate, divinylbenzene; Poly such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, polyglycerol polyglycidyl ether, etc.
  • Poly such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propy
  • Glyceridyl compound such as epichlorohydrin, epibromhydrin, ⁇ -methylepichlorohydrin; 2 reactive functional groups such as isocyanate compound (2,4-tolylene diisocyanate, hexamethylene diisocyanate, etc.) Examples thereof include compounds having more than one.
  • the internal cross-linking agent may be used alone or in combination of two or more.
  • the internal cross-linking agent may be a polyglycidyl compound or diglycidyl. It may be an ether compound.
  • the internal cross-linking agent comprises at least one selected from the group consisting of (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether. It may be.
  • the amount of the internal cross-linking agent is not ethylenious from the viewpoint that the water-soluble property is suppressed by appropriately cross-linking the polymer obtained by the polymerization of the above-mentioned monomer aqueous solution, and a sufficient water absorption amount can be easily obtained. It may be 0 mmol or more, 0.01 mmol or more, 0.015 mmol or more, 0.020 mmol or more, or 0.1 mol or less, per 1 mol of saturated monomer.
  • Reverse-phase suspension polymerization can be carried out in an aqueous system in oil by heating with stirring in a state where the phases are mixed.
  • a monomer aqueous solution containing an ethylenically unsaturated monomer is used as a hydrocarbon dispersion medium in the presence of a surfactant (and, if necessary, a polymer-based dispersant). Disperse in.
  • a surfactant and, if necessary, a polymer-based dispersant.
  • the timing of adding the surfactant, the polymer-based dispersant, etc. may be either before or after the addition of the monomer aqueous solution.
  • the monomer aqueous solution is dispersed in the hydrocarbon dispersion medium in which the polymer-based dispersant is dispersed, and then the surfactant is further dispersed. It may be allowed to carry out polymerization.
  • Reverse phase suspension polymerization can be carried out in one stage or in multiple stages of two or more stages. Reversed phase suspension polymerization may be carried out in two or three stages from the viewpoint of increasing productivity.
  • an ethylenically unsaturated monomer is added to the reaction mixture obtained in the first step polymerization reaction after the first step reverse phase suspension polymerization is carried out. It may be added and mixed, and the reverse phase suspension polymerization of the second and subsequent steps may be carried out in the same manner as in the first step.
  • the above-mentioned radical polymerization initiator is used in the reverse phase suspension polymerization in each stage of the second and subsequent stages.
  • the ethylenically unsaturated monomer to be added Based on the amount of the ethylenically unsaturated monomer to be added, it may be added within the range of the molar ratio of each component to the above-mentioned ethylenically unsaturated monomer to carry out reverse phase suspension polymerization.
  • an internal cross-linking agent In the reverse phase suspension polymerization in each stage after the second stage, an internal cross-linking agent may be used if necessary.
  • an internal cross-linking agent When an internal cross-linking agent is used, it is added within the range of the molar ratio of each component to the above-mentioned ethylenically unsaturated monomer based on the amount of the ethylenically unsaturated monomer provided in each stage, and the suspension is reversed. Muddy polymerization may be carried out.
  • the temperature of the polymerization reaction varies depending on the radical polymerization initiator used, but by advancing the polymerization rapidly and shortening the polymerization time, the efficiency is improved and the heat of polymerization is easily removed to carry out the reaction smoothly. From the viewpoint, it may be 20 to 150 ° C. or 40 to 120 ° C.
  • the reaction time is usually 0.5-4 hours.
  • the completion of the polymerization reaction can be confirmed, for example, by stopping the temperature rise in the reaction system. As a result, the polymer of the ethylenically unsaturated monomer is usually obtained in the state of a hydrogel-like polymer.
  • cross-linking may be performed after polymerization by adding a cross-linking agent to the obtained hydrogel polymer and heating it.
  • a cross-linking agent to the obtained hydrogel polymer and heating it.
  • cross-linking agent for performing post-polymerization cross-linking examples include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; Compounds having two or more epoxy groups such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether; epichlorohydrin, epibromhydrin, ⁇ -methylepicrolhydrin, etc.
  • polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane
  • glycerin polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin
  • Compounds having two or more epoxy groups such as (poly) ethylene glycol
  • Haloepoxide compounds compounds having two or more isocyanate groups such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; oxazoline compounds such as 1,2-ethylenebisoxazoline; carbonate compounds such as ethylenecarbonate; bis [N , N-di ( ⁇ -hydroxyethyl)] hydroxyalkylamide compounds such as adipamide can be mentioned.
  • Cross-linking agents for post-polymerization cross-linking are (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, and polyglycerol polyglycidyl ether. It may be a polyglycidyl compound such as. These cross-linking agents may be used alone or in combination of two or more.
  • the amount of the cross-linking agent used for post-polymerization cross-linking is 1 mol of the water-soluble ethylenically unsaturated monomer from the viewpoint of appropriately cross-linking the obtained hydrogel-like polymer to exhibit suitable water absorption characteristics. It may be 0 to 0.03 mol, 0 to 0.01 mol, or 0.00001 to 0.005 mol.
  • the cross-linking agent for post-polymerization cross-linking is added to the reaction solution after the polymerization reaction of the ethylenically unsaturated monomer.
  • a cross-linking agent for post-polymerization cross-linking may be added after the multi-stage polymerization.
  • the cross-linking agent for post-polymerization cross-linking is , From the viewpoint of water content (described later), it may be added in the region of [water content immediately after polymerization ⁇ 3% by mass].
  • drying to remove water gives polymer particles containing a polymer of ethylenically unsaturated monomers.
  • the drying method include (a) a method of removing water by azeotropic distillation in a state where the hydrogel polymer is dispersed in a hydrocarbon dispersion medium, and (b) a method of taking out the hydrogel polymer by decantation and reducing the pressure. Examples thereof include a method of drying, (c) a method of filtering the hydrogel polymer by a filter and drying under reduced pressure.
  • the particle size of the water-absorbent resin particles can be adjusted by adjusting the rotation speed of the stirrer during the polymerization reaction, or by adding a flocculant into the system after the polymerization reaction or in the early stage of drying. By adding a flocculant, the particle size of the obtained water-absorbent resin particles can be increased.
  • an inorganic flocculant can be used as the flocculant.
  • the inorganic flocculant for example, powdered inorganic flocculant
  • the aggregating agent may be at least one selected from the group consisting of silica, aluminum oxide, talc and kaolin.
  • a coagulant is previously dispersed in a hydrocarbon dispersion medium of the same type as that used in the polymerization or water, and then this is placed in a hydrocarbon dispersion medium containing a hydrogel polymer under stirring. May be mixed with.
  • the amount of the flocculant is 0.001 to 1 part by mass, 0.005 to 0.5 part by mass, or 0.01 to 0.2 with respect to 100 parts by mass of the ethylenically unsaturated monomer used for the polymerization. It may be a mass part. When the amount of the flocculant is within these ranges, it is easy to obtain water-absorbent resin particles having a desired particle size distribution.
  • the polymerization reaction can be carried out using various stirrers having stirring blades.
  • a flat plate blade a lattice blade, a paddle blade, a propeller blade, an anchor blade, a turbine blade, a Faudler blade, a ribbon blade, a full zone blade, a max blend blade and the like can be used.
  • the flat plate blade has a shaft (stirring shaft) and a flat plate portion (stirring portion) arranged around the shaft. Further, the flat plate portion may have a slit or the like.
  • the water content of the surface-crosslinked hydrogel polymer may be 5 to 50% by mass, 10 to 40% by mass, or 15 to 35% by mass.
  • the amount of water in the hydrogel polymer calculated by adding the amount of water used as needed.
  • Ws The amount of solids calculated from the amount of materials such as ethylenically unsaturated monomers, cross-linking agents, and initiators that make up the hydrogel polymer.
  • cross-linking agents include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; (poly) ethylene glycol diglycidyl.
  • Polyglycidyl compounds such as ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, trimethylpropan triglycidyl ether (poly) propylene glycol polyglycidyl ether, (poly) glycerol polyglycidyl ether; epichlorohydrin , Epibrom hydrin, ⁇ -methyl epichlorohydrin and other haloepoxy compounds; 2,4-tolylene diisocyanate, hexamethylene diisocyanate and other isocyanate compounds; 3-methyl-3-oxetane methanol, 3-ethyl-3-oxetane Oxetane compounds such as methanol, 3-butyl-3-oxetane methanol, 3-methyl-3-oxetane ethanol, 3-ethyl-3-oxetane ethanol, 3-butyl-3-ox
  • the surface cross-linking agent may be used alone or in combination of two or more.
  • the surface cross-linking agent may be a polyglycidyl compound, and may be (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, and It may contain at least one selected from the group consisting of polyglycerol polyglycidyl ether.
  • the amount of the surface cross-linking agent is 0.00001 to 0.02 mol, 0.00005 to 0.01 mol, or 0.0001 to 0.005 per 1 mol of the ethylenically unsaturated monomer used for the polymerization. It may be a molar.
  • the amount of the surface cross-linking agent is 0.00001 mol or more, the cross-linking density on the surface portion of the water-absorbent resin particles is sufficiently increased, and the gel strength of the water-absorbent resin particles can be easily increased.
  • the amount of the surface cross-linking agent is 0.02 mol or less, it is easy to increase the water absorption amount of the water-absorbent resin particles.
  • the surface portion of the hydrogel polymer is treated (surface modification) with a surface modifier in either the drying step (moisture removal step) or a subsequent step. May be good.
  • the surface modification may be carried out, for example, before, during or after the surface cross-linking step.
  • Surface modification may be carried out after surface cross-linking.
  • a hydrogel polymer obtained by a reverse phase suspension polymerization method, an aqueous solution polymerization method, or another polymerization method when the hydrogel polymer is treated with a surface modifier after surface cross-linking,
  • the obtained water-absorbent resin particles tend to easily form a resin layer showing a high dry powder passing liquid absorption rate.
  • the surface modifier may be, for example, a surfactant such as an anionic surfactant, a cationic surfactant, an amphoteric surfactant, or a nonionic surfactant.
  • a surfactant such as an anionic surfactant, a cationic surfactant, an amphoteric surfactant, or a nonionic surfactant.
  • the HLB value of the nonionic surfactant used as the surface modifier may be, for example, 3 to 12, or 6 to 10.
  • the nonionic surfactant include sorbitan fatty acid esters such as sorbitan monolaurate.
  • the surface modifier is a nonionic surfactant having an HLB value within the above range, the obtained water-absorbent resin particles tend to easily form a resin layer showing a high dry powder flow-through liquid absorption rate.
  • the HLB value is measured by the Griffin method.
  • the amount of the surface modifier is 0.01 to 0.50 parts by mass, 0.02 to 0.40 parts by mass, or 0.04 with respect to 100 parts by mass of the ethylenically unsaturated monomer used for the polymerization. It may be ⁇ 0.30 parts by mass.
  • water and a hydrocarbon dispersion medium can be distilled off from the hydrogel polymer to obtain polymer particles which are dry products. it can.
  • the water-absorbent resin particles according to the present embodiment may be composed of only polymer particles, but various additional particles selected from, for example, a gel stabilizer, a metal chelating agent, a fluidity improver (lubricant), and the like. Ingredients can be further included. Additional components may be placed inside the polymer particles, on the surface of the polymer particles, or both. The additional component may be a fluidity improver (lubricant).
  • the fluidity improver may contain inorganic particles. Examples of the inorganic particles include silica particles such as amorphous silica.
  • the water-absorbent resin particles may contain a plurality of inorganic particles arranged on the surface of the polymer particles. For example, by mixing the polymer particles and the inorganic particles, the inorganic particles can be arranged on the surface of the polymer particles.
  • the inorganic particles may be silica particles such as amorphous silica.
  • the ratio of the amount of the inorganic particles to the mass of the polymer particles is 0.2% by mass or more, 0.5% by mass or more, 1 It may be 0.0% by mass or more, 1.5% by mass or more, 5.0% by mass or less, or 3.5% by mass or less.
  • the inorganic particles here usually have a minute size as compared with the size of the polymer particles.
  • the average particle size of the inorganic particles may be 0.1 to 50 ⁇ m, 0.5 to 30 ⁇ m, or 1 to 20 ⁇ m.
  • the average particle size here can be a value measured by a dynamic light scattering method or a laser diffraction / scattering method.
  • FIG. 1 is a cross-sectional view showing an example of an auxiliary sheet.
  • the auxiliary sheet 60 shown in FIG. 1 has a resin layer 61 and two sheet base materials 62a and 62b.
  • the sheet base materials 62a and 62b are arranged on both sides of the resin layer 61.
  • the resin layer 61 is arranged inside the sheet base materials 62a and 62b.
  • the resin layer 61 is held in shape by being sandwiched between the two sheet base materials 62a and 62b.
  • the sheet base materials 62a and 62b may be two sheets, one folded sheet, or one bag.
  • the auxiliary sheet 60 may further have an adhesive 63a interposed between the sheet base material 62a and the resin layer 61, and further has an adhesive 63b interposed between the sheet base material 62b and the resin layer 61. You may have.
  • the adhesives 63a and 63b may be, for example, a water-based adhesive, a solvent-based adhesive, an elastic adhesive, an aerosol adhesive, a hot melt adhesive, or the like.
  • the thickness of the auxiliary sheet 60 may be, for example, 3.0 mm or less, 2.5 mm or less, 2.0 mm or less, or 1.8 mm or less, and 0.1 mm or more, 0.3 mm or more, or 0.5 mm or more. It may be.
  • the thickness can be measured using, for example, a dial thickness gauge JB manufactured by Ozaki Seisakusho Co., Ltd. (the stylus is made of aluminum having a diameter of 50 mm).
  • the resin layer 61 has the water-absorbent resin particles 61a according to the above-described embodiment and the fiber layer 61b containing a fibrous material.
  • the resin layer 61 does not have to have the fiber layer 61b.
  • the content of the water-absorbent resin particles in the resin layer may be 70 to 100% by mass, 80 to 100% by mass, or 90 to 100% by mass based on the mass of the resin layer 61.
  • the thickness of the resin layer 61 may be, for example, 2.0 mm or less, 1.5 mm or less, 1.0 mm or less, or 0.8 mm or less in a dry state, and is 0.1 mm or more, or 0.3 mm or more. You may.
  • the mass per unit area of the resin layer 61 may be 100 g / m 2 or less, 80 g / m 2 or less, 60 g / m 2 or less, or 40 g / m 2 or less, 10 g / m 2 or more, 20 g / m. It may be 2 or more, or 25 g / m 2 or more.
  • the fibrous material constituting the fiber layer 61b can be, for example, a cellulosic fiber, a synthetic fiber, or a combination thereof.
  • cellulosic fibers include crushed wood pulp, cotton, cotton linters, rayon and cellulosic acetate.
  • synthetic fibers include polyamide fibers, polyester fibers, and polyolefin fibers.
  • the fibrous material may be hydrophilic fibers (for example, pulp).
  • the resin layer 61 may further contain inorganic particles (for example, amorphous silica), a deodorant, an antibacterial agent, a fragrance, and the like.
  • the sheet base materials 62a and 62b may be, for example, non-woven fabric, tissue, or the like.
  • the two sheet base materials 62a and 62b can be the same or different non-woven fabrics.
  • the non-woven fabric may be a non-woven fabric composed of short fibers (that is, staples) (short-fiber non-woven fabric) or a non-woven fabric composed of long fibers (that is, filaments) (long-fiber non-woven fabric).
  • the staples may generally have a fiber length of several hundred mm or less.
  • the non-woven fabrics used as the sheet base materials 62a and 62b are thermal-bonded non-woven fabrics, air-through non-woven fabrics, resin-bonded non-woven fabrics, spunbonded non-woven fabrics, melt-blown non-woven fabrics, air-laid non-woven fabrics, spunlaced non-woven fabrics, point-bonded non-woven fabrics, or two or more kinds selected from these. It may be a laminate containing a non-woven fabric.
  • the non-woven fabric used as the sheet base materials 62a and 62b can be a non-woven fabric formed of synthetic fibers, natural fibers, or a combination thereof.
  • synthetic fibers include polyolefins such as polyethylene (PE) and polypropylene (PP), polyesters such as polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT) and polyethylene naphthalate (PEN), polyamides such as nylon, and Examples thereof include fibers containing a synthetic resin selected from rayon.
  • Examples of natural fibers include fibers containing cotton, silk, hemp, or pulp (cellulose).
  • the fibers forming the non-woven fabric may be polyolefin fibers, polyester fibers or a combination thereof.
  • the sheet base materials 62a and 62b may be tissues.
  • the tissues used as the sheet base materials 62a and 62b may be natural fibers or natural fibers mixed with synthetic fibers.
  • the mass per unit area of the tissue may be 16 ⁇ 2 g / m 2.
  • the thickness of the tissue may be 0.12 ⁇ 0.02 mm.
  • the auxiliary sheet 60 can be obtained, for example, by sandwiching the resin layer 61 between the sheet base materials 62a and 62b and pressurizing the formed structure while heating it as necessary. If necessary, the adhesives 63a and 63b are arranged between the sheet base materials 62a and 62b and the resin layer 61.
  • the auxiliary sheet 60 is used, for example, for producing various absorbent articles.
  • absorbent articles include diapers (eg paper diapers), toilet training pants, incontinence pads, sanitary materials (sanitary napkins, tampons, etc.), sweat pads, pet sheets, toilet components, and animal waste treatment materials. Can be mentioned.
  • FIG. 2 is a cross-sectional view showing an example of an absorbent article.
  • the absorbent article 100 shown in FIG. 2 includes a water absorbing core 50, an auxiliary sheet 60, a liquid permeable sheet 30, and a liquid impermeable sheet 40.
  • the water absorption core 50 and the auxiliary sheet 60 are sandwiched between the liquid permeable sheet 30 and the liquid impermeable sheet 40.
  • the water absorption core 50 has an absorption layer 10 and two core wrap sheets 20a and 20b.
  • the core wrap sheets 20a and 20b are arranged on both sides of the absorption layer 10.
  • the absorbent layer 10 is arranged inside the core wrap sheets 20a and 20b, and is held in shape by being sandwiched between the two core wrap sheets.
  • the core wrap sheets 20a and 20b may be separate sheets, one folded sheet, or one bag body.
  • the water absorption core 50 does not have to have one or both of the two core wrap sheets 20a and 20b.
  • the core wrap sheet 20a may not be arranged between the absorption layer 10 and the auxiliary sheet 60.
  • the absorption layer 10 is sandwiched between one core wrap sheet 20b and the auxiliary sheet 60. It is kept in shape.
  • the water absorption core 50 may further have an adhesive interposed between the core wrap sheet 20a and the absorption layer 10, and further has an adhesive interposed between the core wrap sheet 20b and the absorption layer 10. May be.
  • An adhesive layer may be interposed between the core wrap sheets 20a and 20b on both sides and the absorption layer 10.
  • FIG. 3 is a plan view showing an example of an adhesive application pattern formed on the core wrap sheet.
  • the adhesive 21 shown in FIG. 3 forms a coating pattern composed of a plurality of linear portions arranged at intervals on the core wrap sheet 20a.
  • the coating pattern of the adhesive 21 may be linear, curved, dot-shaped, or a combination thereof.
  • the adhesive may be, for example, a water-based adhesive, a solvent-based adhesive, or a hot melt adhesive.
  • the absorption layer 10 has water-absorbent resin particles 10a and a fiber layer 10b containing a fibrous material.
  • the absorption layer 10 does not have to have the fiber layer 10b.
  • the content of the water-absorbent resin particles in the absorption layer may be 70 to 100% by mass, 80 to 100% by mass, or 90 to 100% by mass based on the mass of the absorption layer 10.
  • the water-absorbent resin particles 10a may be particles containing a polymer containing an ethylenically unsaturated monomer as a monomer unit.
  • the ethylenically unsaturated monomer may be a water-soluble monomer, and examples thereof include (meth) acrylic acid and salts thereof, 2- (meth) acrylamide-2-methylpropanesulfonic acid and its salts.
  • the ethylenically unsaturated monomer may be used alone or in combination of two or more.
  • the water-absorbent resin particles may be particles containing a polymer containing at least one of (meth) acrylic acid or a salt of (meth) acrylic acid as a monomer unit.
  • the water-absorbent resin particles 10a can be produced, for example, by a method including polymerizing a monomer containing an ethylenically unsaturated monomer.
  • the monomer polymerization method can be selected from, for example, a reverse phase suspension polymerization method, an aqueous solution polymerization method, a bulk polymerization method, and a precipitation polymerization method. From the viewpoint of ensuring good water absorption characteristics of the water-absorbent resin particles and easily controlling the polymerization reaction, a reverse phase suspension polymerization method or an aqueous solution polymerization method may be adopted.
  • the polymer constituting the water-absorbent resin particles 10a may be a crosslinked polymer.
  • the polymer may be crosslinked by self-crosslinking, cross-linking by reaction with a cross-linking agent, or both.
  • the water-absorbent resin particles may be surface-crosslinked by cross-linking at least the polymer of the surface layer portion with a cross-linking agent.
  • the water-absorbent resin particles 10a may contain various additional components in addition to the polymer of the ethylenically unsaturated monomer.
  • additional ingredients include gel stabilizers, metal chelating agents, and fluidity improvers (lubricants).
  • Additional components may be placed inside the polymer particles, including the polymer, on the surface of the polymer particles, or both.
  • the additional component may be a fluidity improver (lubricant).
  • the fluidity improver may contain inorganic particles. Examples of the inorganic particles include silica particles such as amorphous silica.
  • the shape of the water-absorbent resin particles 10a may be, for example, substantially spherical, crushed or granular, and particles in which primary particles having these shapes are aggregated may be formed.
  • the medium particle size of the water-absorbent resin particles may be 250 to 850 ⁇ m, 300 to 700 ⁇ m, or 300 to 600 ⁇ m.
  • the water absorption amount of the physiological saline may be 20 to 80 g / g, 30 to 70 g / g, or 40 to 65 g / g.
  • the thickness of the absorption layer 10 may be, for example, 20 mm or less, 15 mm or less, 10 mm or less, 5 mm or less, 4 mm or less, or 3 mm or less in a dry state, and may be 0.1 mm or more or 0.3 mm or more. Good.
  • the mass per unit area of the absorption layer 10 may be 1000 g / m 2 or less, 800 g / m 2 or less, or 600 g / m 2 or less, 100 g / m 2 or more, or 200 g / m 2 or more. May be good.
  • the fibrous material constituting the fiber layer 10b can be, for example, a cellulosic fiber, a synthetic fiber, or a combination thereof.
  • cellulosic fibers include crushed wood pulp, cotton, cotton linters, rayon and cellulosic acetate.
  • synthetic fibers include polyamide fibers, polyester fibers, and polyolefin fibers.
  • the fibrous material may be hydrophilic fibers (for example, pulp).
  • the absorption layer 10 may further contain an inorganic powder (for example, amorphous silica), a deodorant, an antibacterial agent, a fragrance, and the like.
  • an inorganic powder for example, amorphous silica
  • the absorption layer 10 may contain inorganic powder in addition to the inorganic particles in the water-absorbent resin particles 10a.
  • the core wrap sheets 20a and 20b may be, for example, a non-woven fabric.
  • the two core wrap sheets 20a and 20b can be the same or different non-woven fabrics.
  • the non-woven fabric may be a non-woven fabric composed of short fibers (that is, staples) (short-fiber non-woven fabric) or a non-woven fabric composed of long fibers (that is, filaments) (long-fiber non-woven fabric).
  • the staples may generally have a fiber length of several hundred mm or less.
  • the core wrap sheets 20a and 20b are laminated including a thermal bond non-woven fabric, an air-through non-woven fabric, a resin bond non-woven fabric, a spunbond non-woven fabric, a melt blow non-woven fabric, an air-laid non-woven fabric, a spunlace non-woven fabric, a point bond non-woven fabric, or two or more kinds of non-woven fabrics selected from these. It can be a body.
  • the non-woven fabric used as the core wrap sheets 20a and 20b can be a non-woven fabric formed of synthetic fibers, natural fibers, or a combination thereof.
  • synthetic fibers include polyolefins such as polyethylene (PE) and polypropylene (PP), polyesters such as polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT) and polyethylene naphthalate (PEN), polyamides such as nylon, and Examples thereof include fibers containing a synthetic resin selected from rayon.
  • Examples of natural fibers include fibers containing cotton, silk, hemp, or pulp (cellulose).
  • the fibers forming the non-woven fabric may be polyolefin fibers, polyester fibers or a combination thereof.
  • the core wrap sheets 20a and 20b may be tissues.
  • the water-absorbing core 50 is sandwiched between, for example, the water-absorbent resin particles 10a or a mixture containing the water-absorbent resin particles 10a and the fibrous material and the core wrap sheets 20a and 20b, and the formed structure is heated as necessary. It can be obtained by the method of pressurizing. If necessary, an adhesive is placed between the core wrap sheets 20a and 20b and the water-absorbent resin particles 10a or a mixture containing the same.
  • the water-absorbing core substantially includes a fiber layer as a whole, in addition to the water-absorbing core in which the core wrap sheet 20a, the water-absorbent resin particles 10a, the absorption layer 10 composed of the fiber layer 10b, and the core wrap sheet 20b are arranged in this order. It may be in the form of no sheet.
  • FIG. 4 is a cross-sectional view of the water absorption core formed in a sheet shape, showing another example of the water absorption core.
  • the 4 includes a core wrap sheet 25a, an adhesive 26a, an absorption layer 10A made of water-absorbent resin particles, a core wrap sheet 25b, an absorption layer 10B made of water-absorbent resin particles, an adhesive 26b, and a core wrap.
  • the sheets 25c are arranged in this order.
  • the water-absorbent resin particles contained in the absorption layers 10A and 10B may be of the same type or different types.
  • the mass and thickness of each of the absorption layers 10A and 10B per unit area may be the same or different.
  • the liquid permeable sheet 30 is arranged at the position of the outermost layer on the side where the liquid to be absorbed enters.
  • the liquid permeable sheet 30 is arranged on the outside of the core wrap sheet 20b in contact with the core wrap sheet 20b.
  • the liquid permeable sheet 40 is arranged at the position of the outermost layer on the side opposite to the liquid permeable sheet 30 in the absorbent article 100.
  • the liquid impermeable sheet 40 is arranged on the outside of the core wrap sheet 20a in contact with the core wrap sheet 20a.
  • the liquid permeable sheet 30 and the liquid permeable sheet 40 have a main surface wider than the main surface of the water absorbing core 50, and the outer edges of the liquid permeable sheet 30 and the liquid permeable sheet 40 are an absorbing layer.
  • the magnitude relationship of the absorbent layer 10, the core wrap sheets 20a and 20b, the auxiliary sheet 60, the liquid permeable sheet 30, and the liquid permeable sheet 40 is appropriately adjusted according to the use of the absorbent article and the like.
  • the liquid permeable sheet 30 may be a non-woven fabric.
  • the non-woven fabric used as the liquid permeable sheet 30 may have appropriate hydrophilicity from the viewpoint of the liquid absorption performance of the absorbent article. From this point of view, the liquid permeable sheet 30 is a pulp and paper test method No. 1 by the Paper and Pulp Technology Association. A non-woven fabric having a hydrophilicity of 5 to 200 measured according to the measuring method of 68 (2000) may be used. The hydrophilicity of the non-woven fabric may be 10 to 150. Pulp and paper test method No. For details of 68, for example, WO2011 / 086843 can be referred to.
  • the non-woven fabric having hydrophilicity may be formed of fibers showing appropriate hydrophilicity such as rayon fiber, or obtained by hydrophilizing a hydrophobic chemical fiber such as polyolefin fiber or polyester fiber. It may be formed of rayon fibers.
  • a method for obtaining a non-woven fabric containing hydrophobic chemical fibers that have been hydrophobized for example, a method for obtaining a non-woven fabric by a spunbond method using a mixture of hydrophobic chemical fibers and a hydrophilic agent, hydrophobic chemistry.
  • Examples thereof include a method of accommodating a hydrophilic agent when producing a spunbonded nonwoven fabric from fibers, and a method of impregnating a spunbonded nonwoven fabric obtained by using a hydrophobic chemical fiber with a hydrophilic agent.
  • the hydrophilizing agent include anionic surfactants such as aliphatic sulfonates and higher alcohol sulfates, cationic surfactants such as quaternary ammonium salts, polyethylene glycol fatty acid esters, polyglycerin fatty acid esters, and sorbitan fatty acids.
  • Nonionic surfactants such as esters, silicone-based surfactants such as polyoxyalkylene-modified silicones, and stain-releasing agents made of polyester-based, polyamide-based, acrylic-based, and urethane-based resins are used.
  • the amount of texture (mass per unit area) of the non-woven fabric used as the liquid permeable sheet 30 is from the viewpoint of imparting good liquid permeability, flexibility, strength and cushioning property to the absorbent article, and the liquid of the absorbent article. From the viewpoint of increasing the permeation rate, it may be 5 to 200 g / m 2 , 8 to 150 g / m 2 , or 10 to 100 g / m 2 .
  • the thickness of the liquid permeable sheet 30 may be 20 to 1400 ⁇ m, 50 to 1200 ⁇ m, or 80 to 1000 ⁇ m.
  • the liquid impermeable sheet 40 prevents the liquid absorbed by the absorption layer 10 or the resin layer 61 from leaking to the outside from the liquid impermeable sheet 40 side.
  • the liquid impermeable sheet 40 may be a resin sheet or a non-woven fabric.
  • the resin sheet may be a sheet made of a synthetic resin such as polyethylene, polypropylene, or polyvinyl chloride.
  • the non-woven fabric may be a spunbond / melt blow / spunbond (SMS) non-woven fabric in which a water resistant melt blow non-woven fabric is sandwiched between high-strength spunbond non-woven fabrics.
  • SMS spunbond / melt blow / spunbond
  • the liquid permeable sheet 40 may be a composite sheet of a resin sheet and a non-woven fabric (for example, a spunbonded non-woven fabric or a spunlaced non-woven fabric).
  • the liquid impermeable sheet 40 may have breathability from the viewpoint that stuffiness at the time of wearing is reduced and discomfort given to the wearer can be reduced.
  • a sheet of low density polyethylene (LDPE) resin can be used as the liquid impermeable sheet 40 having breathability.
  • the basis weight (mass per unit area) of the liquid impermeable sheet 40 is 5 to 100 g / m 2 or 10 to 50 g / m 2. It may be.
  • the absorbent article 100 can be manufactured, for example, by a method including arranging the water absorbing core 50 and the auxiliary sheet 60 between the liquid permeable sheet 30 and the liquid impermeable sheet 40.
  • a laminate in which the liquid impermeable sheet 40, the auxiliary sheet 60, the water absorption core 50, and the liquid permeable sheet 30 are laminated in this order is pressurized as necessary.
  • the absorbent article 100 can also be obtained by arranging the permeable sheets 40 in this order and pressurizing the formed structure while heating if necessary.
  • each structural unit may be bonded with an adhesive.
  • the first-stage monomer aqueous solution prepared above was added to the separable flask, and after stirring for 10 minutes, 6.62 g of n-heptane was added as a surfactant to the sucrose stearic acid ester of HLB3. Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370) 0.736 g of a surfactant solution dissolved by heating is further added, and the inside of the system is sufficiently filled with nitrogen while stirring at a stirring speed of 550 rpm. After the replacement, the flask was immersed in a water bath at 70 ° C. to raise the temperature, and polymerization was carried out for 60 minutes to obtain a first-stage polymerization slurry solution.
  • ⁇ Second stage polymerization reaction> Take 128.8 g (1.44 mol) of an 80.5 mass% acrylic acid aqueous solution as a water-soluble ethylenically unsaturated monomer in a beaker having an internal volume of 500 mL, and while cooling from the outside, 27 mass% sodium hydroxide. After 159.0 g of the aqueous solution was added dropwise to neutralize 75 mol%, 0.090 g (0.333 mmol) of potassium persulfate was used as the water-soluble radical polymerization initiator, and ethylene glycol diglycidyl ether was used as the internal cross-linking agent. 0116 g (0.067 mmol) was added and dissolved to prepare a second-stage monomer aqueous solution.
  • the entire amount of the monomer aqueous solution in the second stage is added to the polymerized slurry liquid in the first stage.
  • the flask was again immersed in a water bath at 70 ° C. to raise the temperature, and the polymerization reaction was carried out for 60 minutes to obtain a hydrogel polymer.
  • n-heptane and water were heated in an oil bath at 125 ° C. to evaporate and dry to obtain a dried product of polymer particles.
  • the polymer particles are passed through a sieve having an opening of 850 ⁇ m, and 0.2% by mass of amorphous silica (Oriental Silicas Corporation, Toxile NP-S) with respect to the mass of the polymer particles is mixed with the polymer particles.
  • amorphous silica Oriental Silicas Corporation, Toxile NP-S
  • 233.0 g of water-absorbent resin particles A containing amorphous silica were obtained.
  • the medium particle size of the water-absorbent resin particles A was 128 ⁇ m.
  • the first-stage monomer aqueous solution prepared above was added to the separable flask, and after stirring for 10 minutes, 6.62 g of n-heptane was added as a surfactant to the sucrose stearic acid ester of HLB3. Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370) 0.736 g of a surfactant solution dissolved by heating is further added, and the inside of the system is sufficiently filled with nitrogen while stirring at a stirring speed of 550 rpm. After the replacement, the flask was immersed in a water bath at 70 ° C. to raise the temperature, and polymerization was carried out for 60 minutes to obtain a first-stage polymerization slurry solution.
  • ⁇ Second stage polymerization reaction> Take 128.8 g (1.44 mol) of an 80.5 mass% acrylic acid aqueous solution as a water-soluble ethylenically unsaturated monomer in a beaker having an internal volume of 500 mL, and while cooling from the outside, 27 mass% sodium hydroxide. After 159.0 g of the aqueous solution was added dropwise to neutralize 75 mol%, 0.129 g (0.476 mmol) of 2,2'-azobis (2-amidinopropane) dihydrochloride as a water-soluble radical polymerization initiator.
  • the entire amount of the monomer aqueous solution in the second stage is added to the polymerized slurry liquid in the first stage.
  • the inside of the system was replaced with nitrogen for 30 minutes, and then the flask was again immersed in a water bath at 70 ° C. to raise the temperature, and the polymerization reaction was carried out for 60 minutes. As a result, a hydrogel polymer was obtained.
  • n-heptane and water were heated in an oil bath at 125 ° C. to evaporate and dry to obtain a dried product of polymer particles.
  • the polymer particles are passed through a sieve having an opening of 850 ⁇ m, 0.2% by mass of amorphous silica (Oriental Silicas Corporation, Toxile NP-S) is mixed with respect to the mass of the polymer particles, and a water-absorbent resin is mixed. 228.5 g of particle C was obtained.
  • the medium particle size of the water-absorbent resin particles C was 354 ⁇ m.
  • Manufacturing example 4 229.0 g of water-absorbent resin particles D were obtained in the same manner as in Production Example 3 except that 216.7 g of water was extracted from the system by azeotropic distillation.
  • the medium particle size of the water-absorbent resin particles D was 348 ⁇ m.
  • Production example 5 Water-absorbent resin particles E227.6 g were obtained in the same manner as in Production Example 3 except that 201.4 g of water was extracted from the system by azeotropic distillation.
  • the medium particle size of the water-absorbent resin particles E was 356 ⁇ m.
  • Production example 6 Inner diameter 11 cm, contents equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirrer (a stirrer blade having two stages of four inclined paddle blades (surface treated with fluororesin) with a blade diameter of 5 cm).
  • n-heptane as a hydrocarbon dispersion medium
  • sorbitan monolaurate Naonion LP-20R, HLB value: 8.6, manufactured by NOF CORPORATION
  • the mixture was obtained by addition.
  • the sorbitan monolaurate was dissolved in n-heptane by heating the mixture to 50 ° C. while stirring at a stirring speed of 300 rpm, and then the mixture was cooled to 40 ° C.
  • the inside of the system was sufficiently replaced with nitrogen. Then, the flask was immersed in a water bath at 70 ° C. while stirring at a rotation speed of 700 rpm of the stirrer, and then held for 60 minutes to complete the polymerization, thereby obtaining a hydrogel polymer.
  • amorphous silica (Oriental Silicas Corporation, oriental silicas corporation, etc.) was added to the polymer solution containing the produced hydrogel polymer, n-heptane and a surfactant as a powdery inorganic flocculant.
  • the flask containing the reaction solution was immersed in an oil bath at 125 ° C., and 98.0 g of water was extracted from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. Then, 4.14 g (ethylene glycol diglycidyl ether: 0.475 mmol) of 2% by mass of an ethylene glycol diglycidyl ether aqueous solution was added as a surface cross-linking agent, and the mixture was maintained at an internal temperature of 83 ⁇ 2 ° C. for 2 hours.
  • ethylene glycol diglycidyl ether 0.475 mmol
  • water and n-heptane were heated in an oil bath at 125 ° C. to evaporate, and dried until almost no evaporation from the system was distilled off to obtain a dried product of polymer particles.
  • the polymer particles were passed through a sieve having an opening of 850 ⁇ m to obtain 90.1 g of water-absorbent resin particles F.
  • the medium particle size of the water-absorbent resin particles F was 352 ⁇ m.
  • Production example 7 90.6 g of water-absorbent resin particles G were obtained in the same manner as in Production Example 6 except that the powdery inorganic flocculant was not added to the hydrogel polymer.
  • the medium particle size of the water-absorbent resin particles G was 156 ⁇ m.
  • Production Example 8 104.0 g of water was extracted from the system by azeotropic distillation, and the surface cross-linking agent was changed to 8.28 g of an ethylene glycol diglycidyl ether aqueous solution (ethylene glycol diglycidyl ether: 0.951 mmol). Except for the above, 90.3 g of water-absorbent resin particles H were obtained in the same manner as in Production Example 6. The medium particle size of the water-absorbent resin particles H was 420 ⁇ m.
  • Production Example 11 In the preparation of the water-containing gel polymer in the second stage, the temperature inside the separable flask was changed to 28 ° C instead of 31 ° C, and 234.7 g of water was extracted from the system by azeotropic distillation. 230.1 g of water-absorbent resin particles L were obtained in the same manner as in Production Example 3 except that no surfactant was added after the surface cross-linking step. The medium particle size of the water-absorbent resin particles L was 308 ⁇ m.
  • Production Example 12 In the preparation of the water-containing gel polymer in the second stage, the temperature in the separable flask was changed to 25 ° C instead of 31 ° C, and in the water-containing gel polymer after the polymerization in the second stage, co-boiling was performed. Similar to Production Example 1, except that 256.5 g of water was extracted from the system by distillation, no surfactant was added after the surface cross-linking step, and amorphous silica was not mixed. 227.2 g of water-absorbent resin particles M were obtained. The medium particle size of the water-absorbent resin particles M was 351 ⁇ m.
  • Production example 14 A round-bottomed cylindrical separable flask with an inner diameter of 11 cm and a volume of 2 L equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirring blade having four inclined paddle blades with a blade diameter of 5 cm in two stages as a stirrer. Got ready. To this flask, take 293 g of n-heptane as a hydrocarbon dispersion medium, add 0.736 g of a maleic anhydride-modified ethylene-propylene copolymer (Mitsui Chemicals Co., Ltd., High Wax 1105A) as a polymer-based dispersant, and stir. The temperature was raised to 80 ° C. to dissolve the dispersant, and then cooled to 50 ° C.
  • a maleic anhydride-modified ethylene-propylene copolymer Mitsubishi Chemicals Co., Ltd., High Wax 1105A
  • the monomer aqueous solution prepared above was added to the separable flask, and after stirring for 10 minutes, sucrose stearic acid ester of HLB3 as a surfactant in 6.62 g of n-heptane (Mitsubishi Chemical Foods Co., Ltd.) , Ryoto Sugar Ester S-370) 0.736 g of a surfactant solution is further added, and the inside of the system is sufficiently replaced with nitrogen while stirring at a stirring speed of 400 rpm, and then the flask.
  • the flask was immersed in an oil bath set at 125 ° C., and 116 g of water was extracted from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. Then, 1.84 g (0.211 mmol) of a 2% by mass ethylene glycol diglycidyl ether aqueous solution was added to the flask as a surface cross-linking agent, and the flask was kept at 83 ° C. for 2 hours.
  • n-heptane and water were evaporated at 125 ° C. and dried to obtain a dried product of polymer particles.
  • the polymer particles are passed through a sieve having an opening of 850 ⁇ m, and 0.2% by mass of amorphous silica (Oriental Silicas Corporation, Toxile NP-S) with respect to the mass of the polymer particles is mixed with the polymer particles.
  • 90.9 g of water-absorbent resin particles P containing amorphous silica were obtained.
  • the medium particle size of the water-absorbent resin particles P was 422 ⁇ m.
  • the medium particle size of the particles was measured by the following procedure. That is, from the top, the JIS standard sieve has a mesh size of 600 ⁇ m, a mesh size of 500 ⁇ m, a mesh size of 425 ⁇ m, a mesh size of 300 ⁇ m, a mesh size of 250 ⁇ m, a mesh size of 180 ⁇ m, and a mesh size of 150 ⁇ m. , And the saucer in that order. 50 g of particles were placed in the best combined sieve and classified according to JIS Z 8815 (1994) using a low-tap shaker (manufactured by Iida Seisakusho Co., Ltd.).
  • the mass of the particles remaining on each sieve was calculated as a mass percentage with respect to the total amount, and the particle size distribution was obtained.
  • the relationship between the mesh size of the sieve and the integrated value of the mass percentage of the particles remaining on the sieve was plotted on a logarithmic probability paper by integrating the particle size distribution on the sieve in order from the largest particle size. By connecting the plots on the probability paper with a straight line, the particle size corresponding to the cumulative mass percentage of 50% by mass was obtained as the medium particle size.
  • Air-laid non-woven fabric-2 with hot melt coating machine (Henkel Co., Ltd., pump: Marshal150, table: XA-DT, tank set temperature: 150 ° C, hose set temperature: 165 ° C, gun head set temperature: 170 ° C)
  • 0.2 g of hot melt adhesive (Henkel Japan Ltd., ME-765E) was applied in 12 linear lines at 10 mm intervals.
  • the adhesive application pattern was a spiral stripe.
  • the surface of the air-laid non-woven fabric-2 to which the hot melt was attached was aligned with the surface on which the water-absorbent resin particles of the air-through non-woven fabric were sprayed, and sandwiched between release papers and turned upside down. Then, the release paper and the air-laid non-woven fabric-1 were removed.
  • the water absorption core A has the same configuration as the water absorption core shown in FIG.
  • Production example 16 Water-absorbent resin particles (Aquakeep SA60S manufactured by Sumitomo Seika Chemical Co., Ltd., water absorption of physiological saline 60 g / g, medium particle diameter 342 ⁇ m) using an air flow type mixer (Padformer manufactured by Otec Co., Ltd.) A sheet-shaped absorbent layer having a size of 40 cm ⁇ 10 cm was prepared by uniformly mixing 12.0 g and 3.0 g of pulverized pulp by air papermaking.
  • water absorption is performed by applying a load of 196 kPa to the entire surface for 30 seconds with the upper and lower sides of the absorbent layer sandwiched between two sheets of tissue having the same size as the sheet-shaped absorbent layer and having a basis weight of 16 g / m 2.
  • the core was made. This was designated as the water absorption core B.
  • the produced water-absorbing core B has an absorbing layer made of water-absorbing resin particles and crushed pulp arranged between two sheets of tissue.
  • Example 1 (Preparation of auxiliary sheet) Two pieces of tissue having a basis weight of 16 g / m 2 were cut into a size of 14 cm ⁇ 42 cm to obtain an upper sheet base material and a lower sheet base material of the auxiliary sheet. After uniformly applying 0.3 g of adhesive (3M Spray Glue 77 manufactured by 3M Japan Ltd.) to the inner surface of the roll of the lower sheet base material, promptly airflow type mixing device (manufactured by Otec Co., Ltd., pad former) ) was used to uniformly spray 1.5 g of the water-absorbent resin particles A prepared in Production Example 1 over a range of 10 cm ⁇ 40 cm in the center of the lower sheet base material.
  • adhesive 3M Spray Glue 77 manufactured by 3M Japan Ltd.
  • an adhesive (3M spray glue 77 manufactured by 3M Japan Ltd.) was uniformly applied to the upper sheet base material.
  • the surface coated with the adhesive of the upper sheet base material is overlapped with the surface on which the water-absorbent resin of the lower sheet base material is sprayed, with both ends aligned, and the entire surface is adhered to the area where the water-absorbent resin is sprayed. (10 cm ⁇ 40 cm) was cut out to obtain an auxiliary sheet.
  • Example 2 An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles B produced in Production Example 2.
  • Example 3 An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles C produced in Production Example 3.
  • Example 4 An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles D produced in Production Example 4.
  • Example 5 An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles E produced in Production Example 5.
  • Example 6 An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles F produced in Production Example 6.
  • Example 7 An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles G produced in Production Example 7.
  • Example 8 An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles H produced in Production Example 8.
  • Example 9 An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles J produced in Production Example 9.
  • Example 10 The upper sheet base material and the lower sheet base material of the auxiliary sheet were changed to spunbonded non-woven fabric (manufactured by Toray Polytech (Nantong) Co., Ltd., trade name: LIVESEN) having a basis weight of 17 g / m 2.
  • An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the sheet were changed to the water-absorbent resin particles F produced in Production Example 6.
  • Example 11 The upper sheet base material and the lower sheet base material of the auxiliary sheet were changed to air-through non-woven fabric manufactured by Rengo Nonwoven Products Co., Ltd. with a grain size of 21 g / m 2, and water-absorbent resin particles for the auxiliary sheet were produced.
  • An absorbent article was obtained in the same manner as in Example 1 except that the particles were changed to the water-absorbent resin particles F produced in 1.
  • Example 12 The upper sheet base material of the auxiliary sheet was changed to an air-through non-woven fabric manufactured by Hualong (Nanjining) with a grain size of 45 g / m 2, and the water-absorbent resin particles for the auxiliary sheet were prepared in Production Example 6. An absorbent article was obtained in the same manner as in Example 1 except that it was changed to F.
  • Example 13 (Preparation of auxiliary sheet) By using an air flow type mixer (Padformer manufactured by Otec Co., Ltd.) to uniformly mix 1.5 g of the water-absorbent resin particles F and 1.5 g of crushed pulp of Production Example 6 by air papermaking, the size is 40 cm ⁇ 10 cm. A sheet-shaped resin layer having a size was prepared. Next, a load of 196 kPa is applied to the entire surface for 30 seconds while the resin layer is sandwiched between two sheets of tissue having the same size as the sheet-shaped resin layer and having a grain size of 16 g / m 2, and pressed. An auxiliary sheet was obtained in which a resin layer composed of water-absorbent resin particles and crushed pulp was arranged between two sheets of tissue.
  • an air flow type mixer Padformer manufactured by Otec Co., Ltd.
  • Example 14 The same as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles F produced in Production Example 6 and the amount of the water-absorbent resin particles used was changed to 1.0 g. An absorbent article was obtained.
  • Example 15 An auxiliary sheet was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles F produced in Production Example 6.
  • the water-absorbing core B produced in Production Example 16 was placed on the obtained auxiliary sheet to obtain an absorbent article.
  • Example 16 The same as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles F produced in Production Example 6 and the amount of the water-absorbent resin particles used was changed to 0.4 g. An absorbent article was obtained.
  • Comparative Example 1 Only the water-absorbing core A produced in Production Example 15 without using the auxiliary sheet was used as the absorbent article for the test.
  • the water-absorbing core was prepared in the same manner as in Production Example 15 except that the amount of the water-absorbent resin particles sprayed between the air-laid non-woven fabric-2 and the air-through non-woven fabric of Production Example 15 was changed from 6.0 g to 5.0 g. Obtained. Only the above-mentioned water-absorbing core obtained without using the auxiliary sheet was used as an absorbent article for testing.
  • Comparative Example 3 An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles were not used.
  • Comparative Example 4 An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles K produced in Production Example 10.
  • Comparative Example 5 An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles L produced in Production Example 11.
  • Comparative Example 6 An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles M produced in Production Example 12.
  • Comparative Example 7 An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles N produced in Production Example 13.
  • Comparative Example 8 An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles P produced in Production Example 14.
  • dry powder passing liquid absorption rate dry powder passing liquid absorbing amount (g) / 0.2 g artificial urine saturated liquid absorbing amount (g) of the water-absorbent resin.
  • dry powder passing liquid absorption amount and the artificial urine saturated liquid absorption amount of 0.2 g were measured and calculated by the methods shown below.
  • FIG. 5 is a schematic view showing a method for measuring the liquid absorption rate of dry powder.
  • 61a was uniformly sprayed, and the total mass Wb of the container and the water-absorbent resin particles 61a sprayed in the container was measured.
  • a plastic beaker with an opening diameter of 60 mm and a height of 70 mm was used as the receiver 53, and the cylindrical container 52 was placed on the receiver 53.
  • the dropping funnel 54 was installed so that the distance H between the tip 54a and the upper surface of the mesh 51 was 13 mm and the tip 54a was located above the center of the bottom surface of the cylindrical container 52.
  • Artificial urine 45 (20 mL) adjusted to a liquid temperature of 25 ° C. was injected at a constant rate of 8 mL / sec, and the stopwatch was started at the same time.
  • the artificial urine diffuses over the entire bottom surface of the cylindrical container 52, passes through the mesh 51 and falls into the receiver 53, but a part of the artificial urine is absorbed by the water-absorbent resin particles 61a.
  • the water-absorbent resin particles 61a absorb the artificial urine 45 to form a swollen gel.
  • the total mass Wa of the cylindrical container 52 and the swollen gel in the cylindrical container 52 was measured.
  • the amount of dry powder flowing through the liquid (g) was determined by Wa-Wb.
  • the mass Wd (g) of the sieve containing the swelling gel was measured, and the artificial urine saturated liquid absorption amount was determined by the following formula.
  • -Artificial urine saturated liquid absorption (g / g) (Wd-Wc) /2.0
  • -0.2 g of artificial urine saturated liquid absorption (g) 0.2 x artificial urine saturated liquid absorption (g / g)
  • auxiliary sheet thickness evaluation The thickness of the auxiliary sheet was measured using a precision thickness measuring instrument (manufactured by Ozaki Seisakusho, dial thickness gauge JB, stylus: aluminum ⁇ 50 mm). The measurement was performed at a position where the stylus was in contact with the central portion of the auxiliary sheet, and the average of the values measured three times was taken as the thickness (mm) of the auxiliary sheet.
  • FIG. 6 is a schematic view showing an apparatus for evaluating liquid leakage of an absorbent article.
  • the liquid leakage property at the initial stage of liquid absorption of the absorbent article 100 for testing was evaluated by the following procedures (i), (ii), (iii) and (iv). ..
  • the results are shown in Table 1.
  • the resin in the table represents water-absorbent resin particles, and gsm represents g / m 2 .
  • (I) is a mechanical fastener (3M mechanical fastener hook), vertical 45cm, was cut to the size of the acrylic resin plate 1 having a rectangular main surface of the lateral 62cm, was adhered to the entire main surface S 1 of the acrylic resin plate 1.
  • On the main surface S 1 of the acrylic resin plate 1 is extremely fine irregularities are caused by mechanical fasteners, no retention and absorption of liquids on the main surface S 1 of the acrylic resin plate 1.
  • the long side of the acrylic resin plate 1 was parallel to the horizontal plane, and the main surface of the acrylic resin plate 1 and the horizontal plane S 0 were fixed so as to form 45 ⁇ 2 degrees.
  • a fixed main surface S 1 of the acrylic resin plate 1, the absorbent article 100 for testing, in a direction that long sides are perpendicular to the long side of the acrylic resin plate 1, an absorbent article for testing 100 The lower end of the acrylic resin plate 1 was attached so as to be at the same position as the lower end of the acrylic resin plate 1.
  • the test absorbent article 100 composed of the water absorption core and the auxiliary sheet was attached on the acrylic resin plate 1 so that the water absorption core was on the front side.
  • the upper end of the absorbent article 100 for testing was fixed to the acrylic resin plate 1 with an adhesive tape to prevent it from falling.
  • the loading point is 8 cm above the center of the absorption core in the absorbent article 100 for testing, and from a position 1 cm vertically above the loading point, the dropping funnel 42 (300 mL of dropping funnel manufactured by Cosmos Bead Co., Ltd., tip) An inner diameter of 8 mm ⁇ 6 mm) was used to inject a predetermined amount of artificial urine 45 adjusted to a liquid temperature of 25 ° C. at a rate of 8 mL / sec.
  • the injection amount of artificial urine 45 when using the water-absorbing core A having an absorption layer made of water-absorbent resin particles is 80 mL, and when using the water-absorbing core B having an absorption layer made of water-absorbent resin particles and crushed pulp.
  • the injection amount of artificial urine 45 was 120 mL (Examples or comparative examples marked with * in Table 1).
  • (Iv) The artificial urine leaked from the absorbent article 100 for testing was collected in a metal tray 44 previously placed below the absorbent article 100 and placed on the balance. The collected artificial urine was weighed, and the ratio (%) of the amount of leaked artificial urine (g) to the input amount (g) of artificial urine was calculated.
  • Table 1 shows the evaluation results. It has been shown that an absorbent article having an auxiliary sheet prepared by using water-absorbent resin particles having a dry powder passing liquid absorption rate of a specific numerical value improves liquid leakage in the initial stage of liquid absorption.
  • 10, 10A, 10B Absorbent layer, 10a ... Water-absorbent resin particles, 10b ... Fiber layer, 20a, 20b ... Core wrap sheet, 21 ... Adhesive, 25a, 25b, 25c ... Core wrap sheet, 26a, 26b ... Adhesive , 30 ... Liquid permeable sheet, 40 ... Liquid permeable sheet, 50 ... Water absorption core, 51 ... Mesh (mesh-like bottom), 52 ... Cylindrical container, 60 ... Auxiliary sheet, 61 ... Resin layer, 61a ... Water absorption Sex resin particles, 61b ... fiber layer, 62a, 62b ... sheet base material, 63a, 63b ... adhesive, 100 ... absorbent article.
  • 10a Water-absorbent resin particles, 10b ... Fiber layer, 20a, 20b ... Core wrap sheet, 21 ... Adhesive, 25a, 25b, 25c ... Core wrap sheet, 26a, 26

Abstract

Disclosed is an absorbent article comprising: a water-absorbing core; an auxiliary sheet that supplements liquid absorption by the water-absorbing core; a liquid-impermeable sheet; and a liquid-permeable sheet, the liquid-impermeable sheet, auxiliary sheet, water-absorbing core, and liquid-permeable sheet being arranged in this order. The auxiliary sheet is provided with a resin layer containing water-absorbent resin particles, and the dry powder liquid absorption rate of the water-absorbent resin particles is 0.25-1.0.

Description

吸収性物品及び補助シートAbsorbent articles and auxiliary sheets
 本発明は、吸収性物品及び補助シートに関する。 The present invention relates to an absorbent article and an auxiliary sheet.
 尿等の水を主成分とする液体を吸収するための吸収性物品には、一般に、吸水性樹脂粒子を含む吸収体が用いられている。例えば、下記特許文献1に開示される吸水シート構成体には、生理食塩水吸水速度が所定の範囲内にある吸水性樹脂粒子が吸液層に用いられている。 Absorbents containing water-absorbent resin particles are generally used as absorbent articles for absorbing water-based liquids such as urine. For example, in the water-absorbent sheet structure disclosed in Patent Document 1 below, water-absorbent resin particles having a physiological saline water absorption rate within a predetermined range are used in the liquid-absorbent layer.
特開2012-183175号公報Japanese Unexamined Patent Publication No. 2012-183175
 上述の吸水シートのような超薄型の吸水コアを備える吸収性物品では、吸液対象の液体が吸収体に供されてから比較的短時間(吸液初期段階)で液体漏れが発生する場合があり、吸液初期段階の液体漏れを改善する技術の開発が求められていた。 In an absorbent article having an ultra-thin water-absorbing core such as the above-mentioned water-absorbing sheet, when the liquid to be absorbed occurs in a relatively short time (initial stage of liquid absorption) after the liquid to be absorbed is provided to the absorber. Therefore, there was a need to develop a technology to improve liquid leakage in the initial stage of water absorption.
 そこで、本発明の一側面は、吸液初期段階の液体漏れが抑制された吸収性物品を提供することを目的とする。本発明の他の側面は、吸収性物品における吸液初期段階の液体漏れを抑制可能な補助シートを提供することを目的とする。 Therefore, one aspect of the present invention is to provide an absorbent article in which liquid leakage at the initial stage of liquid absorption is suppressed. Another aspect of the present invention is to provide an auxiliary sheet capable of suppressing liquid leakage in the initial stage of liquid absorption in an absorbent article.
 本発明の一側面は、吸水コア、該吸水コアによる吸液を補助する補助シート、液体不透過性シート及び液体透過性シートを備え、液体不透過性シート、補助シート、吸水コア及び液体透過性シートがこの順に配置されている、吸収性物品に関する。当該吸収性物品において、補助シートは、吸水性樹脂粒子を含む樹脂層を備え、以下の(1)、(2)、(3)、(4)及び(5)の工程をこの順に含む方法により測定される、吸水性樹脂粒子の乾粉通液吸液率が0.25以上1.0以下である。
(1)メッシュ状の底部を備える内径60mmの円筒状容器内の底面全体にわたり、0.2gの吸水性樹脂粒子を均一に散布し、容器及び該容器内に散布された吸水性樹脂粒子の合計質量Wb(g)を測定する。
(2)吸水性樹脂粒子が散布された容器内に液温25℃の人工尿20mLを8mL/秒の一定速度で注入し、人工尿の少なくとも一部を吸水性樹脂粒子に吸液させて容器内で膨潤ゲルを形成させる。
(3)注入開始から30秒後に、容器及び該容器内の膨潤ゲルの合計質量Wa(g)を測定する。
(4)Wa(g)-Wb(g)により乾粉通液吸液量(g)を求める。
(5)0.2gの吸水性樹脂粒子の人工尿飽和吸液量(g)に対する乾粉通液吸液量(g)の比として、乾粉通液吸液率(g/g)を得る。
One aspect of the present invention includes a water absorbing core, an auxiliary sheet for assisting liquid absorption by the water absorbing core, a liquid impermeable sheet and a liquid permeable sheet, and includes a liquid impermeable sheet, an auxiliary sheet, a water absorbing core and a liquid permeable sheet. With respect to absorbent articles in which the sheets are arranged in this order. In the absorbent article, the auxiliary sheet includes a resin layer containing water-absorbent resin particles, and the following steps (1), (2), (3), (4) and (5) are included in this order. The measured dry powder passing liquid absorption rate of the water-absorbent resin particles is 0.25 or more and 1.0 or less.
(1) 0.2 g of water-absorbent resin particles are uniformly sprayed over the entire bottom surface of a cylindrical container having an inner diameter of 60 mm having a mesh-like bottom, and the total amount of the container and the water-absorbent resin particles sprayed in the container. The mass Wb (g) is measured.
(2) 20 mL of artificial urine having a liquid temperature of 25 ° C. is injected into the container on which the water-absorbent resin particles are sprayed at a constant rate of 8 mL / sec, and at least a part of the artificial urine is absorbed by the water-absorbent resin particles to make the container. A swelling gel is formed within.
(3) 30 seconds after the start of injection, the total mass Wa (g) of the container and the swollen gel in the container is measured.
(4) The dry powder passing liquid absorption amount (g) is determined from Wa (g) -Wb (g).
(5) The dry powder passage liquid absorption rate (g / g) is obtained as the ratio of the dry powder passage liquid absorption amount (g) to the artificial urine saturated liquid absorption amount (g) of 0.2 g of the water-absorbent resin particles.
 本発明によれば、吸液初期段階の液体漏れが抑制された吸収性物品を提供することができる。 According to the present invention, it is possible to provide an absorbent article in which liquid leakage at the initial stage of liquid absorption is suppressed.
 また、本発明によれば、吸収性物品における吸液初期段階の液体漏れを抑制可能な補助シートを提供することができる。 Further, according to the present invention, it is possible to provide an auxiliary sheet capable of suppressing liquid leakage in the initial stage of liquid absorption in an absorbent article.
補助シートの一例を示す断面図である。It is sectional drawing which shows an example of the auxiliary sheet. 吸収性物品の一例を示す断面図である。It is sectional drawing which shows an example of an absorbent article. コアラップシート上に形成された接着剤の塗布パターンの一例を示す平面図である。It is a top view which shows an example of the application pattern of the adhesive formed on the core wrap sheet. シート状の吸水コアの一例を示す断面図である。It is sectional drawing which shows an example of a sheet-shaped water absorption core. 乾粉通液吸液率の測定方法を示す模式図である。It is a schematic diagram which shows the measuring method of the dry powder passing liquid absorption rate. 吸収性物品の液体漏れを評価する装置を示す模式図である。It is a schematic diagram which shows the apparatus which evaluates the liquid leakage of an absorbent article.
 以下、本発明のいくつかの実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, some embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
 本明細書において、「アクリル」及び「メタクリル」を合わせて「(メタ)アクリル」と表記する。「アクリレート」及び「メタクリレート」も同様に「(メタ)アクリレート」と表記する。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。「水溶性」とは、25℃において水に5質量%以上の溶解性を示すことをいう。本明細書に例示する材料は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 In this specification, "acrylic" and "methacryl" are collectively referred to as "(meth) acrylic". Similarly, "acrylate" and "methacrylate" are also referred to as "(meth) acrylate". In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value of the numerical range of one step can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another step. In the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples. “A or B” may include either A or B, or both. "Water-soluble" means that it exhibits a solubility in water of 5% by mass or more at 25 ° C. The materials exemplified in the present specification may be used alone or in combination of two or more. The content of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
 一実施形態に係る吸収性物品は、吸水コア、該吸水コアによる吸液を補助する補助シート、液体不透過性シート及び液体透過性シートを備える。吸収性物品において、液体不透過性シート、補助シート、吸水コア及び液体透過性シートがこの順に配置されている。すなわち、補助シートは、吸水コアを備える吸収性物品において、吸水コアの吸液対象の液体が侵入する側とは反対側の面に接するように配置されている。補助シートは、吸水コアを備える吸収性物品において、吸水コアの吸液を補助するために用いられる。 The absorbent article according to the embodiment includes a water absorbing core, an auxiliary sheet for assisting liquid absorption by the water absorbing core, a liquid impermeable sheet, and a liquid permeable sheet. In the absorbent article, the liquid impermeable sheet, the auxiliary sheet, the water absorbing core and the liquid permeable sheet are arranged in this order. That is, the auxiliary sheet is arranged so as to be in contact with the surface of the absorbent core provided with the water absorbing core, which is opposite to the side on which the liquid to be absorbed is invaded. The auxiliary sheet is used in an absorbent article provided with a water absorbing core to assist the liquid absorption of the water absorbing core.
 補助シートは、吸水性樹脂粒子を含む樹脂層を備え、以下の(1)、(2)、(3)、(4)及び(5)の工程をこの順に含む方法により測定される、吸水性樹脂粒子の乾粉通液吸液率が0.25以上1.0以下である。
(1)メッシュ状の底部を備える内径60mmの円筒状容器内の底面全体にわたり、0.2gの吸水性樹脂粒子を均一に散布し、容器及び該容器内に散布された吸水性樹脂粒子の合計質量Wb(g)を測定する。
(2)吸水性樹脂粒子が散布された容器内に液温25℃の人工尿20mLを8mL/秒の一定速度で注入し、人工尿の少なくとも一部を吸水性樹脂粒子に吸液させて容器内で膨潤ゲルを形成させる。
(3)注入開始から30秒後に、容器及び該容器内の膨潤ゲルの合計質量Wa(g)を測定する。
(4)Wa(g)-Wb(g)により乾粉通液吸液量(g)を求める。
(5)0.2gの吸水性樹脂粒子の人工尿飽和吸液量(g)に対する乾粉通液吸液量(g)の比として、乾粉通液吸液率(g/g)を得る。
The auxiliary sheet includes a resin layer containing water-absorbent resin particles, and is measured by a method including the following steps (1), (2), (3), (4) and (5) in this order. The dry powder water absorption rate of the resin particles is 0.25 or more and 1.0 or less.
(1) 0.2 g of water-absorbent resin particles are uniformly sprayed over the entire bottom surface of a cylindrical container having an inner diameter of 60 mm having a mesh-like bottom, and the total amount of the container and the water-absorbent resin particles sprayed in the container. The mass Wb (g) is measured.
(2) 20 mL of artificial urine having a liquid temperature of 25 ° C. is injected into the container on which the water-absorbent resin particles are sprayed at a constant rate of 8 mL / sec, and at least a part of the artificial urine is absorbed by the water-absorbent resin particles to make the container. A swelling gel is formed within.
(3) 30 seconds after the start of injection, the total mass Wa (g) of the container and the swollen gel in the container is measured.
(4) The dry powder passing liquid absorption amount (g) is determined from Wa (g) -Wb (g).
(5) The dry powder passage liquid absorption rate (g / g) is obtained as the ratio of the dry powder passage liquid absorption amount (g) to the artificial urine saturated liquid absorption amount (g) of 0.2 g of the water-absorbent resin particles.
 本明細書において、人工尿は、塩化ナトリウム(NaCl)100.0g、塩化カルシウム2水和物(CaCl・HO)3.0g、塩化マグネシウム6水和物(MgCl・6HO)6.0g、トリトンX-100(1%)25.0g及び食用青色1号0.25gと、水9865.75gとから調製される水溶液である。 In this specification, the artificial urine, sodium chloride (NaCl) 100.0 g, calcium chloride dihydrate (CaCl 2 · H 2 O) 3.0g, magnesium chloride hexahydrate (MgCl 2 · 6H 2 O) It is an aqueous solution prepared from 6.0 g, 25.0 g of Triton X-100 (1%), 0.25 g of Edible Blue No. 1, and 9865.75 g of water.
 人工尿飽和吸液量は、所定量の吸水性樹脂粒子における人工尿の飽和吸液量を表す指標であり、乾粉通液吸液量は、吸水性樹脂粒子と人工尿との接触後短時間の間(初期)での吸液量を反映する指標である。人工尿飽和吸液量に対する乾粉通液吸液量の比である乾粉通液吸液率が高いことは、人工尿との接触後短時間(初期)での吸水性樹脂粒子の液浸透性が高いことを意味すると考えられる。初期での液浸透性が高い吸水性樹脂粒子を含む樹脂層を備える補助シートにより、吸水コアで吸収しきれなかった液体が瞬時に吸収されることによって、吸収性物品における吸液初期段階の液体漏れが抑制されると推察される。 The artificial urine saturated liquid absorption amount is an index showing the saturated liquid absorption amount of artificial urine in a predetermined amount of water-absorbent resin particles, and the dry powder passing liquid absorption amount is a short time after contact between the water-absorbent resin particles and artificial urine. It is an index that reflects the amount of liquid absorbed during (initial). The high dry powder passage liquid absorption rate, which is the ratio of the dry powder passage liquid absorption amount to the artificial urine saturated liquid absorption amount, means that the liquid permeability of the water-absorbent resin particles in a short time (initial) after contact with artificial urine is high. It is thought to mean high. The auxiliary sheet provided with the resin layer containing the water-absorbent resin particles having high liquid permeability at the initial stage instantly absorbs the liquid that could not be absorbed by the water-absorbing core, so that the liquid at the initial stage of liquid absorption in the absorbent article It is presumed that leakage will be suppressed.
 乾粉通液吸液率の下限値は、0.25以上であり、吸液初期段階における液体漏れ抑制効果に更に優れる観点から、0.30以上、0.35以上、0.40以上、0.45以上、0.50以上、0.55以上、0.60以上、0.65以上、0.70以上、0.75以上、0.80以上、又は0.85以上であってよい。乾粉通液吸液率の上限値は、1.0以下であり、0.95以下、又は0.90以下であってよい。吸水性樹脂粒子0.2gの人工尿飽和吸液量は、乾粉通液吸液率の測定に用いる量と同じ0.2gの吸水性樹脂粒子の飽和吸収量を示すため、通常、同量の吸水性樹脂粒子を用いて測定した場合には、乾粉通液吸液量は、人工尿飽和吸液量を超えない。よって、通常、乾粉通液吸液率の上限値は1.0以下となる。 The lower limit of the liquid absorption rate of dry powder is 0.25 or more, and from the viewpoint of further excellent effect of suppressing liquid leakage in the initial stage of liquid absorption, 0.30 or more, 0.35 or more, 0.40 or more, 0. It may be 45 or more, 0.50 or more, 0.55 or more, 0.60 or more, 0.65 or more, 0.70 or more, 0.75 or more, 0.80 or more, or 0.85 or more. The upper limit of the dry powder passing liquid absorption rate is 1.0 or less, and may be 0.95 or less, or 0.90 or less. The artificial urine saturated liquid absorption amount of 0.2 g of the water-absorbent resin particles shows the same amount of saturated absorption of 0.2 g of the water-absorbent resin particles as the amount used for measuring the dry powder passage liquid absorption rate, and therefore is usually the same amount. When measured using water-absorbent resin particles, the amount of dry powder flowing through the liquid does not exceed the amount of artificial urine saturated liquid absorbed. Therefore, the upper limit of the dry powder liquid absorption rate is usually 1.0 or less.
 乾粉通液吸液量は、例えば、2.7g以上、3.0g以上、4.0g以上、5.0g以上、6.0g以上、7.0g以上、8.0g以上、又は9.0g以上であってよく、15.0g以下、12.0g以下、又は10.0g以下であってよい。乾粉通液吸液量の具体的な測定方法は、後述する実施例に記載のとおりである。 The amount of dry powder flowing through is, for example, 2.7 g or more, 3.0 g or more, 4.0 g or more, 5.0 g or more, 6.0 g or more, 7.0 g or more, 8.0 g or more, or 9.0 g or more. It may be 15.0 g or less, 12.0 g or less, or 10.0 g or less. A specific method for measuring the amount of dry powder flowing through the liquid is as described in Examples described later.
 吸水性樹脂粒子0.2gの人工尿飽和吸液量は、次に示す工程(a)、(b)、(c)、(d)及び(e)をこの順に含む方法により算出される。
(a)500mL容のビーカー内に500gの人工尿を投入する。
(b)人工尿が投入されたビーカー内に、人工尿をマグネチックスターラーバー(8mmφ×30mm、リング無し)を用いて600rpmで攪拌させながら、2.0gの吸水性樹脂粒子を投入する。
(c)吸水性樹脂粒子の投入後60分間人工尿及び吸水性樹脂粒子を600rpmで撹拌して膨潤ゲルを形成させる。
(d)ビーカー内の内容物を目開き75μm標準篩でろ過し、1分間静置して余剰の水分を取り除く。
(e)膨潤ゲル及び篩の合計質量Wcを測定し、予め測定した篩の質量Wdから、次の式により0.2gの人工尿飽和吸液量(g)を求める。
 0.2gの人工尿飽和吸液量(g)=0.2×(Wc-Wd)/2.0
The artificial urine saturated liquid absorption amount of 0.2 g of the water-absorbent resin particles is calculated by a method including the following steps (a), (b), (c), (d) and (e) in this order.
(A) Put 500 g of artificial urine into a 500 mL beaker.
(B) 2.0 g of water-absorbent resin particles are charged into the beaker into which the artificial urine is charged while stirring the artificial urine at 600 rpm using a magnetic stirrer bar (8 mmφ × 30 mm, without ring).
(C) The artificial urine and the water-absorbent resin particles are stirred at 600 rpm for 60 minutes after the water-absorbent resin particles are added to form a swollen gel.
(D) The contents in the beaker are filtered through a 75 μm standard sieve with an opening, and allowed to stand for 1 minute to remove excess water.
(E) The total mass Wc of the swollen gel and the sieve is measured, and 0.2 g of the artificial urine saturated liquid absorption amount (g) is obtained from the previously measured mass Wd of the sieve by the following formula.
0.2 g artificial urine saturated liquid absorption amount (g) = 0.2 × (Wc-Wd) /2.0
 吸水性樹脂粒子0.2gの人工尿飽和吸液量は、例えば、吸水性樹脂粒子の吸水特性の観点から、7.0以上であり、8.0以上、9.0以上、又は10.0以上であってよく、20.0以下、15.0以下、13.0以下、又は11.0以下であってよい。吸水性樹脂粒子0.2gの人工尿飽和吸液量の具体的な測定方法は、後述する実施例に記載のとおりである。 The artificial urine saturated liquid absorption amount of 0.2 g of the water-absorbent resin particles is, for example, 7.0 or more, 8.0 or more, 9.0 or more, or 10.0 from the viewpoint of the water absorption characteristics of the water-absorbent resin particles. It may be 20.0 or less, 15.0 or less, 13.0 or less, or 11.0 or less. A specific method for measuring the artificial urine saturated liquid absorption amount of 0.2 g of the water-absorbent resin particles is as described in Examples described later.
 吸水性樹脂粒子の形状は、例えば略球状、破砕状又は顆粒状であってもよく、これらの形状を有する一次粒子が凝集した粒子が形成されていてもよい。吸水性樹脂粒子の中位粒子径は、45~850μm、75~700μm、100~600μm、又は200~600μmであってよい。吸水性樹脂粒子は、後述する製造方法により得られた時点で所望の粒度分布を有していてよいが、篩による分級を用いた粒度調整等の操作を行うことにより粒度分布を調整してもよい。 The shape of the water-absorbent resin particles may be, for example, substantially spherical, crushed or granular, and particles having agglomerated primary particles having these shapes may be formed. The medium particle size of the water-absorbent resin particles may be 45 to 850 μm, 75 to 700 μm, 100 to 600 μm, or 200 to 600 μm. The water-absorbent resin particles may have a desired particle size distribution at the time of being obtained by the production method described later, but the particle size distribution may be adjusted by performing an operation such as particle size adjustment using classification with a sieve. Good.
 吸水性樹脂粒子は、例えば、エチレン性不飽和単量体を含む単量体の重合により形成された架橋重合体を含むことができる。架橋重合体は、エチレン性不飽和単量体に由来する単量体単位を有する。 The water-absorbent resin particles can include, for example, a crosslinked polymer formed by polymerizing a monomer containing an ethylenically unsaturated monomer. The crosslinked polymer has a monomer unit derived from an ethylenically unsaturated monomer.
 吸水性樹脂粒子は、エチレン性不飽和単量体を含む単量体を重合させる工程を含む方法により、製造することができる。重合方法としては、逆相懸濁重合法、水溶液重合法、バルク重合法、沈殿重合法等が挙げられる。得られる吸水性樹脂粒子の良好な吸水特性の確保、及び、重合反応の制御が容易である観点から、逆相懸濁重合法又は水溶液重合法を適用してもよい。以下においては、エチレン性不飽和単量体を重合させる方法として、逆相懸濁重合法を例にとって説明する。 The water-absorbent resin particles can be produced by a method including a step of polymerizing a monomer containing an ethylenically unsaturated monomer. Examples of the polymerization method include a reverse phase suspension polymerization method, an aqueous solution polymerization method, a bulk polymerization method, and a precipitation polymerization method. From the viewpoint of ensuring good water absorption characteristics of the obtained water-absorbent resin particles and facilitating control of the polymerization reaction, a reverse phase suspension polymerization method or an aqueous solution polymerization method may be applied. In the following, a reverse phase suspension polymerization method will be described as an example as a method for polymerizing an ethylenically unsaturated monomer.
<吸水性樹脂粒子>
 エチレン性不飽和単量体は水溶性であってもよい。水溶性エチレン性不飽和単量体の例としては、(メタ)アクリル酸及びその塩、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸及びその塩、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリルアミド等が挙げられる。エチレン性不飽和単量体がアミノ基を有する場合、当該アミノ基は4級化されていてもよい。エチレン性不飽和単量体は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。上述の単量体のカルボキシル基、アミノ基等の官能基は、後述する表面架橋工程において架橋が可能な官能基として機能し得る。
<Water-absorbent resin particles>
The ethylenically unsaturated monomer may be water-soluble. Examples of water-soluble ethylenically unsaturated monomers include (meth) acrylic acid and its salts, 2- (meth) acrylamide-2-methylpropanesulfonic acid and its salts, (meth) acrylamide, N, N-dimethyl. (Meta) acrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, polyethylene glycol mono (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-diethylaminopropyl (meth) Examples thereof include acrylate and diethylaminopropyl (meth) acrylamide. When the ethylenically unsaturated monomer has an amino group, the amino group may be quaternized. The ethylenically unsaturated monomer may be used alone or in combination of two or more. Functional groups such as the carboxyl group and amino group of the above-mentioned monomers can function as functional groups capable of cross-linking in the surface cross-linking step described later.
 工業的に入手が容易である観点から、エチレン性不飽和単量体は、(メタ)アクリル酸及びその塩、アクリルアミド、メタクリルアミド、並びに、N,N-ジメチルアクリルアミドからなる群より選ばれる少なくとも1種の化合物を含んでいてもよい。エチレン性不飽和単量体が、(メタ)アクリル酸及びその塩、並びに、アクリルアミドからなる群より選ばれる少なくとも1種の化合物を含んでいてもよい。吸水特性を更に高める観点から、エチレン性不飽和単量体は、(メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも1種の化合物を含んでもよい。 From the viewpoint of industrial availability, the ethylenically unsaturated monomer is at least one selected from the group consisting of (meth) acrylic acid and salts thereof, acrylamide, methacrylamide, and N, N-dimethylacrylamide. It may contain a compound of the species. The ethylenically unsaturated monomer may contain (meth) acrylic acid and a salt thereof, and at least one compound selected from the group consisting of acrylamide. From the viewpoint of further enhancing the water absorption property, the ethylenically unsaturated monomer may contain at least one compound selected from the group consisting of (meth) acrylic acid and salts thereof.
 エチレン性不飽和単量体は、水溶液として重合反応に用いることができる。エチレン性不飽和単量体を含む水溶液(以下、単に「単量体水溶液」という)におけるエチレン性不飽和単量体の濃度は、20質量%以上飽和濃度以下、25~70質量%、又は30~55質量%であってもよい。水溶液において使用される水としては、水道水、蒸留水、イオン交換水等が挙げられる。 The ethylenically unsaturated monomer can be used in the polymerization reaction as an aqueous solution. The concentration of the ethylenically unsaturated monomer in the aqueous solution containing the ethylenically unsaturated monomer (hereinafter, simply referred to as "monomer aqueous solution") is 20% by mass or more and the saturation concentration or less, 25 to 70% by mass, or 30. It may be up to 55% by mass. Examples of the water used in the aqueous solution include tap water, distilled water, ion-exchanged water and the like.
 吸水性樹脂粒子を得るための単量体として、上述のエチレン性不飽和単量体以外の単量体が使用されてもよい。このような単量体は、例えば、上述のエチレン性不飽和単量体を含む水溶液に混合して用いることができる。エチレン性不飽和単量体の使用量は、単量体全量に対して70~100モル%であってもよい。(メタ)アクリル酸及びその塩の割合が単量体全量に対して70~100モル%であってもよい。 As the monomer for obtaining the water-absorbent resin particles, a monomer other than the above-mentioned ethylenically unsaturated monomer may be used. Such a monomer can be used, for example, by being mixed with an aqueous solution containing the above-mentioned ethylenically unsaturated monomer. The amount of the ethylenically unsaturated monomer used may be 70 to 100 mol% with respect to the total amount of the monomers. The ratio of (meth) acrylic acid and a salt thereof may be 70 to 100 mol% with respect to the total amount of the monomer.
 エチレン性不飽和単量体が酸基を有する場合、その酸基をアルカリ性中和剤によって中和してから、単量体溶液を重合反応に用いてもよい。エチレン性不飽和単量体における、アルカリ性中和剤による中和度は、得られる吸水性樹脂粒子の浸透圧を高くし、吸水特性(吸水量等)を更に高める観点から、エチレン性不飽和単量体中の酸性基の10~100モル%、50~90モル%、又は60~80モル%であってもよい。アルカリ性中和剤としては、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム等のアルカリ金属塩;アンモニアなどが挙げられる。アルカリ性中和剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。アルカリ性中和剤は、中和操作を簡便にするために水溶液の状態で用いられてもよい。エチレン性不飽和単量体の酸基の中和は、例えば、水酸化ナトリウム、水酸化カリウム等の水溶液を上述の単量体水溶液に滴下して混合することにより行うことができる。 When the ethylenically unsaturated monomer has an acid group, the acid group may be neutralized with an alkaline neutralizer and then the monomer solution may be used in the polymerization reaction. The degree of neutralization of an ethylenically unsaturated monomer by an alkaline neutralizing agent increases the osmotic pressure of the obtained water-absorbent resin particles and further enhances the water absorption characteristics (water absorption amount, etc.). It may be 10-100 mol%, 50-90 mol%, or 60-80 mol% of the acidic group in the body. Examples of the alkaline neutralizer include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide and potassium carbonate; ammonia and the like. The alkaline neutralizer may be used alone or in combination of two or more. The alkaline neutralizer may be used in the form of an aqueous solution to simplify the neutralization operation. Neutralization of the acid group of the ethylenically unsaturated monomer can be performed, for example, by adding an aqueous solution of sodium hydroxide, potassium hydroxide or the like to the above-mentioned monomer aqueous solution and mixing them.
 逆相懸濁重合法においては、界面活性剤の存在下、炭化水素分散媒中で単量体水溶液を分散し、ラジカル重合開始剤等を用いてエチレン性不飽和単量体の重合を行うことができる。ラジカル重合開始剤としては、水溶性ラジカル重合開始剤を用いることができる。 In the reverse phase suspension polymerization method, the monomer aqueous solution is dispersed in a hydrocarbon dispersion medium in the presence of a surfactant, and the ethylenically unsaturated monomer is polymerized using a radical polymerization initiator or the like. Can be done. As the radical polymerization initiator, a water-soluble radical polymerization initiator can be used.
 界面活性剤としては、ノニオン系界面活性剤、アニオン系界面活性剤等が挙げられる。ノニオン系界面活性剤としては、ソルビタン脂肪酸エステル、(ポリ)グリセリン脂肪酸エステル(「(ポリ)」とは、「ポリ」の接頭語がある場合及びない場合の双方を意味するものとする。以下同じ。)、ショ糖脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピルアルキルエーテル、ポリエチレングリコール脂肪酸エステル等が挙げられる。アニオン系界面活性剤としては、脂肪酸塩、アルキルベンゼンスルホン酸塩、アルキルメチルタウリン酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンアルキルエーテルスルホン酸塩、ポリオキシエチレンアルキルエーテルのリン酸エステル、及びポリオキシエチレンアルキルアリルエーテルのリン酸エステル等が挙げられる。界面活性剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。 Examples of the surfactant include nonionic surfactants and anionic surfactants. As the nonionic surfactant, sorbitan fatty acid ester and (poly) glycerin fatty acid ester (“(poly)” means both with and without the prefix of “poly”. The same shall apply hereinafter. ), Sucrose fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene glycerin fatty acid ester, sorbitol fatty acid ester, polyoxyethylene sorbitol fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene himashi Examples thereof include oil, polyoxyethylene cured castor oil, alkylallyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene polyoxypropylene block copolymer, polyoxyethylene polyoxypropyl alkyl ether, polyethylene glycol fatty acid ester and the like. Examples of anionic surfactants include fatty acid salts, alkylbenzene sulfonates, alkylmethyl taurates, polyoxyethylene alkylphenyl ether sulfates, polyoxyethylene alkyl ether sulfonates, and phosphoric acid esters of polyoxyethylene alkyl ethers. , And the phosphate ester of polyoxyethylene alkyl allyl ether and the like. The surfactant may be used alone or in combination of two or more.
 W/O型逆相懸濁の状態が良好であり、好適な粒子径を有する吸水性樹脂粒子が得られやすく、工業的に入手が容易である観点から、界面活性剤は、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル及びショ糖脂肪酸エステルからなる群より選ばれる少なくとも1種の化合物を含んでもよい。得られる吸水性樹脂粒子の吸水特性が向上しやすい観点から、界面活性剤は、ソルビタン脂肪酸エステル、及び/又はショ糖脂肪酸エステル(例えばショ糖ステアリン酸エステル)を用いることができる。これらの界面活性剤は、単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。 From the viewpoint that the W / O type reverse phase suspension is in a good state, water-absorbent resin particles having a suitable particle size can be easily obtained, and industrially available, the surfactant is a sorbitan fatty acid ester. It may contain at least one compound selected from the group consisting of polyglycerin fatty acid ester and sucrose fatty acid ester. From the viewpoint of easily improving the water absorption characteristics of the obtained water-absorbent resin particles, a sorbitan fatty acid ester and / or a sucrose fatty acid ester (for example, sucrose stearic acid ester) can be used as the surfactant. These surfactants may be used alone or in combination of two or more.
 界面活性剤の量は、単量体水溶液100質量部に対して、0.05~10質量部、0.08~5質量部、又は0.1~3質量部であってもよい。 The amount of the surfactant may be 0.05 to 10 parts by mass, 0.08 to 5 parts by mass, or 0.1 to 3 parts by mass with respect to 100 parts by mass of the monomer aqueous solution.
 逆相懸濁重合では、上述の界面活性剤と共に高分子系分散剤を併せて用いてもよい。高分子系分散剤としては、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸変性EPDM(エチレン・プロピレン・ジエン・ターポリマー)、無水マレイン酸変性ポリブタジエン、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、無水マレイン酸・ブタジエン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、酸化型エチレン・プロピレン共重合体、エチレン・アクリル酸共重合体、エチルセルロース、エチルヒドロキシエチルセルロース等が挙げられる。高分子系分散剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。高分子系分散剤は、単量体の分散安定性に優れる観点から、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、及び、酸化型エチレン・プロピレン共重合体からなる群より選ばれる少なくとも一種であってもよい。 In reverse phase suspension polymerization, a polymer-based dispersant may be used in combination with the above-mentioned surfactant. Examples of the polymer dispersant include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, maleic anhydride-modified EPDM (ethylene / propylene / diene / terpolymer), and maleic anhydride. Modified polybutadiene, maleic anhydride / ethylene copolymer, maleic anhydride / propylene copolymer, maleic anhydride / ethylene / propylene copolymer, maleic anhydride / butadiene copolymer, polyethylene, polypropylene, ethylene / propylene copolymer Examples thereof include coalescence, oxidized polyethylene, oxidized polypropylene, oxidized ethylene / propylene copolymer, ethylene / acrylic acid copolymer, ethyl cellulose, ethyl hydroxyethyl cellulose and the like. The polymer-based dispersant may be used alone or in combination of two or more. From the viewpoint of excellent monomer dispersion stability, the polymer-based dispersant includes maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, and maleic anhydride / ethylene copolymer. , Maleic anhydride / propylene copolymer, maleic anhydride / ethylene / propylene copolymer, polyethylene, polypropylene, ethylene / propylene copolymer, oxidized polyethylene, oxidized polypropylene, and oxidized ethylene / propylene copolymer It may be at least one selected from the group consisting of.
 高分子系分散剤の量は、単量体水溶液100質量部に対して、0.05~10質量部、0.08~5質量部、又は0.1~3質量部であってもよい。 The amount of the polymer-based dispersant may be 0.05 to 10 parts by mass, 0.08 to 5 parts by mass, or 0.1 to 3 parts by mass with respect to 100 parts by mass of the monomer aqueous solution.
 炭化水素分散媒は、炭素数6~8の鎖状脂肪族炭化水素、及び、炭素数6~8の脂環式炭化水素からなる群より選ばれる少なくとも1種の化合物を含んでいてもよい。炭化水素分散媒としては、n-ヘキサン、n-ヘプタン、2-メチルヘキサン、3-メチルヘキサン、2,3-ジメチルペンタン、3-エチルペンタン、n-オクタン等の鎖状脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン、シクロペンタン、メチルシクロペンタン、trans-1,2-ジメチルシクロペンタン、cis-1,3-ジメチルシクロペンタン、trans-1,3-ジメチルシクロペンタン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素などが挙げられる。炭化水素分散媒は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。 The hydrocarbon dispersion medium may contain at least one compound selected from the group consisting of chain aliphatic hydrocarbons having 6 to 8 carbon atoms and alicyclic hydrocarbons having 6 to 8 carbon atoms. Hydrocarbon dispersion media include chain aliphatic hydrocarbons such as n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane, and n-octane; cyclohexane. , Methylcyclohexane, cyclopentane, methylcyclopentane, trans-1,2-dimethylcyclopentane, cis-1,3-dimethylcyclopentane, trans-1,3-dimethylcyclopentane and other alicyclic hydrocarbons; benzene, Examples include aromatic hydrocarbons such as toluene and xylene. The hydrocarbon dispersion medium may be used alone or in combination of two or more.
 工業的に入手が容易であり、かつ、品質が安定している観点から、炭化水素分散媒は、n-ヘプタン及びシクロヘキサンからなる群より選ばれる少なくとも一種を含んでいてもよい。また、同様の観点から、上述の炭化水素分散媒の混合物としては、例えば、市販されているエクソールヘプタン(エクソンモービル社製:n-ヘプタン及び異性体の炭化水素75~85%含有)を用いてもよい。 From the viewpoint of being industrially easily available and having stable quality, the hydrocarbon dispersion medium may contain at least one selected from the group consisting of n-heptane and cyclohexane. From the same viewpoint, as the mixture of the above-mentioned hydrocarbon dispersion medium, for example, commercially available ExxonHeptane (manufactured by ExxonMobil: containing 75 to 85% of n-heptane and isomeric hydrocarbons) is used. You may.
 炭化水素分散媒の量は、重合熱を適度に除去し、重合温度を制御しやすい観点から、単量体水溶液100質量部に対して、30~1000質量部、40~500質量部、又は50~300質量部であってもよい。炭化水素分散媒の量が30質量部以上であることにより、重合温度の制御が容易である傾向がある。炭化水素分散媒の量が1000質量部以下であることにより、重合の生産性が向上する傾向があり、経済的である。 The amount of the hydrocarbon dispersion medium is 30 to 1000 parts by mass, 40 to 500 parts by mass, or 50 parts by mass with respect to 100 parts by mass of the monomer aqueous solution from the viewpoint of appropriately removing the heat of polymerization and easily controlling the polymerization temperature. It may be up to 300 parts by mass. When the amount of the hydrocarbon dispersion medium is 30 parts by mass or more, the polymerization temperature tends to be easily controlled. When the amount of the hydrocarbon dispersion medium is 1000 parts by mass or less, the productivity of polymerization tends to be improved, which is economical.
 ラジカル重合開始剤は水溶性であってもよい。水溶性ラジカル重合開始剤の例としては、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩;メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート、過酸化水素等の過酸化物;2,2’-アゾビス(2-アミジノプロパン)2塩酸塩、2,2’-アゾビス[2-(N-フェニルアミジノ)プロパン]2塩酸塩、2,2’-アゾビス[2-(N-アリルアミジノ)プロパン]2塩酸塩、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]2塩酸塩、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}2塩酸塩、2,2’-アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド}、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド]、4,4’-アゾビス(4-シアノ吉草酸)等のアゾ化合物が挙げられる。ラジカル重合開始剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。ラジカル重合開始剤は、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]2塩酸塩、及び、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}2塩酸塩からなる群より選ばれる少なくとも一種であってもよい。 The radical polymerization initiator may be water-soluble. Examples of water-soluble radical polymerization initiators are persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate; methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, and t-butyl cumylper. Peroxides such as oxides, t-butylperoxyacetate, t-butylperoxyisobutyrate, t-butylperoxypivalate, hydrogen peroxide; 2,2'-azobis (2-amidinopropane) dihydrochloride , 2,2'-azobis [2- (N-phenylamidino) propane] dihydrochloride, 2,2'-azobis [2- (N-allylamidino) propane] dihydrochloride, 2,2'-azobis [ 2- (2-Imidazolin-2-yl) propane] 2 hydrochloride, 2,2'-azobis {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane} 2 hydrochloride, 2,2'-azobis {2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide}, 2,2'-azobis [2-methyl-N- (2-hydroxy) Ethyl) -propionamide], azo compounds such as 4,4'-azobis (4-cyanovaleric acid) can be mentioned. The radical polymerization initiator may be used alone or in combination of two or more. The radical polymerization initiators are potassium persulfate, ammonium persulfate, sodium persulfate, 2,2'-azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis [2- (2-imidazolin-2-yl). ) Propane] 2 hydrochloride and 2,2'-azobis {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane} 2 hydrochloride at least selected from the group. There may be.
 ラジカル重合開始剤の量は、エチレン性不飽和単量体1モルに対して0.00005~0.01モルであってよい。ラジカル重合開始剤の使用量が0.00005モル以上であると、重合反応に長時間を要さず、効率的である。ラジカル重合開始剤の量が0.01モル以下であると、急激な重合反応が起こることを抑制しやすい。 The amount of the radical polymerization initiator may be 0.00005 to 0.01 mol per 1 mol of the ethylenically unsaturated monomer. When the amount of the radical polymerization initiator used is 0.00005 mol or more, the polymerization reaction does not require a long time and is efficient. When the amount of the radical polymerization initiator is 0.01 mol or less, it is easy to suppress the occurrence of a rapid polymerization reaction.
 例示されたラジカル重合開始剤は、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第一鉄、L-アスコルビン酸等の還元剤と併用して、レドックス重合開始剤として用いることもできる。 The exemplified radical polymerization initiator can also be used as a redox polymerization initiator in combination with a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
 重合反応の際、単量体水溶液は、連鎖移動剤を含んでいてもよい。連鎖移動剤としては、次亜リン酸塩類、チオール類、チオール酸類、第2級アルコール類、アミン類等が挙げられる。 At the time of the polymerization reaction, the aqueous monomer solution may contain a chain transfer agent. Examples of the chain transfer agent include hypophosphates, thiols, thiolic acids, secondary alcohols, amines and the like.
 吸水性樹脂粒子の粒子径を制御するために、重合に用いる単量体水溶液は、増粘剤を含んでいてもよい。増粘剤としては、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、カルボキシメチルセルロース、ポリアクリル酸、ポリエチレングリコール、ポリアクリルアミド、ポリエチレンイミン、デキストリン、アルギン酸ナトリウム、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキサイド等が挙げられる。重合時の攪拌速度が同じであれば、単量体水溶液の粘度が高いほど、得られる粒子の中位粒子径は大きくなる傾向にある。 In order to control the particle size of the water-absorbent resin particles, the monomer aqueous solution used for the polymerization may contain a thickener. Examples of the thickener include hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, carboxymethyl cellulose, polyacrylic acid, polyethylene glycol, polyacrylamide, polyethyleneimine, dextrin, sodium alginate, polyvinyl alcohol, polyvinylpyrrolidone, polyethylene oxide and the like. If the stirring speed at the time of polymerization is the same, the higher the viscosity of the aqueous monomer solution, the larger the medium particle size of the obtained particles tends to be.
 重合の際に自己架橋による架橋が生じうるが、更に内部架橋剤を用いることで架橋を施してもよい。内部架橋剤を用いると、吸水性樹脂粒子の吸水特性を制御しやすい。内部架橋剤は、通常、重合反応の際に反応液に添加される。内部架橋剤としては、例えば、エチレングリコール、プロピレングリコール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類のジ又はトリ(メタ)アクリル酸エステル類;上述のポリオール類と不飽和酸(マレイン酸、フマール酸等)とを反応させて得られる不飽和ポリエステル類;N,N’-メチレンビス(メタ)アクリルアミド等のビス(メタ)アクリルアミド類;ポリエポキシドと(メタ)アクリル酸とを反応させて得られるジ又はトリ(メタ)アクリル酸エステル類;ポリイソシアネート(トリレンジイソシアネート、ヘキサメチレンジイソシアネート等)と(メタ)アクリル酸ヒドロキシエチルとを反応させて得られるジ(メタ)アクリル酸カルバミルエステル類;アリル化澱粉、アリル化セルロース、ジアリルフタレート、N,N’,N”-トリアリルイソシアヌレート、ジビニルベンゼン等の,重合性不飽和基を2個以上有する化合物;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロロヒドリン、エピブロムヒドリン、α-メチルエピクロロヒドリン等のハロエポキシ化合物;イソシアネート化合物(2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等)などの、反応性官能基を2個以上有する化合物が挙げられる。内部架橋剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。内部架橋剤としては、ポリグリシジル化合物であってもよく、ジグリシジルエーテル化合物であってもよい。内部架橋剤が、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、及び、(ポリ)グリセリンジグリシジルエーテルからなる群より選ばれる少なくとも一種を含んでもよい。 Cross-linking by self-cross-linking may occur during polymerization, but cross-linking may be further performed by using an internal cross-linking agent. When an internal cross-linking agent is used, it is easy to control the water absorption characteristics of the water-absorbent resin particles. The internal cross-linking agent is usually added to the reaction solution during the polymerization reaction. Examples of the internal cross-linking agent include di or tri (meth) acrylic acid esters of polyols such as ethylene glycol, propylene glycol, trimethylpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; Unsaturated polyesters obtained by reacting polyols with unsaturated acids (maleic acid, fumaric acid, etc.); bis (meth) acrylamides such as N, N'-methylenebis (meth) acrylamide; polyepoxides and (meth) Di or tri (meth) acrylic acid esters obtained by reacting with acrylic acid; di (meth) obtained by reacting polyisocyanate (tolylene diisocyanate, hexamethylene diisocyanate, etc.) with hydroxyethyl (meth) acrylate. ) Acrylic acid carbamil esters; compounds having two or more polymerizable unsaturated groups, such as allylated starch, allylated cellulose, diallyl phthalate, N, N', N "-triallyl isocyanurate, divinylbenzene; Poly such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, polyglycerol polyglycidyl ether, etc. Glyceridyl compound; haloepoxy compound such as epichlorohydrin, epibromhydrin, α-methylepichlorohydrin; 2 reactive functional groups such as isocyanate compound (2,4-tolylene diisocyanate, hexamethylene diisocyanate, etc.) Examples thereof include compounds having more than one. The internal cross-linking agent may be used alone or in combination of two or more. The internal cross-linking agent may be a polyglycidyl compound or diglycidyl. It may be an ether compound. The internal cross-linking agent comprises at least one selected from the group consisting of (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether. It may be.
 内部架橋剤の量は、上述の単量体水溶液の重合により得られる重合体が適度に架橋されることにより水溶性の性質が抑制され、充分な吸水量が得られやすい観点から、エチレン性不飽和単量体1モル当たり、0ミリモル以上、0.01ミリモル以上、0.015ミリモル以上、又は0.020ミリモル以上であってもよく、0.1モル以下であってもよい。 The amount of the internal cross-linking agent is not ethylenious from the viewpoint that the water-soluble property is suppressed by appropriately cross-linking the polymer obtained by the polymerization of the above-mentioned monomer aqueous solution, and a sufficient water absorption amount can be easily obtained. It may be 0 mmol or more, 0.01 mmol or more, 0.015 mmol or more, 0.020 mmol or more, or 0.1 mol or less, per 1 mol of saturated monomer.
 エチレン性不飽和単量体、ラジカル重合開始剤、必要に応じて内部架橋剤等を含む水相と、炭化水素系分散剤と必要に応じて界面活性剤、高分子系分散剤等を含む油相を混合した状態において攪拌下で加熱し、油中水系において逆相懸濁重合を行うことができる。 An aqueous phase containing an ethylenically unsaturated monomer, a radical polymerization initiator, an internal cross-linking agent, etc., if necessary, and an oil containing a hydrocarbon-based dispersant and, if necessary, a surfactant, a polymer-based dispersant, etc. Reverse-phase suspension polymerization can be carried out in an aqueous system in oil by heating with stirring in a state where the phases are mixed.
 逆相懸濁重合を行う際には、界面活性剤(必要に応じて更に、高分子系分散剤)の存在下で、エチレン性不飽和単量体を含む単量体水溶液を炭化水素分散媒に分散させる。このとき、重合反応を開始する前であれば、界面活性剤、高分子系分散剤等の添加時期は、単量体水溶液の添加の前後どちらであってもよい。 When performing reverse phase suspension polymerization, a monomer aqueous solution containing an ethylenically unsaturated monomer is used as a hydrocarbon dispersion medium in the presence of a surfactant (and, if necessary, a polymer-based dispersant). Disperse in. At this time, before the start of the polymerization reaction, the timing of adding the surfactant, the polymer-based dispersant, etc. may be either before or after the addition of the monomer aqueous solution.
 得られる吸水性樹脂に残存する炭化水素分散媒の量を低減しやすい観点から、高分子系分散剤を分散させた炭化水素分散媒に単量体水溶液を分散させた後に界面活性剤を更に分散させてから重合を行ってもよい。 From the viewpoint of easily reducing the amount of the hydrocarbon dispersion medium remaining in the obtained water-absorbent resin, the monomer aqueous solution is dispersed in the hydrocarbon dispersion medium in which the polymer-based dispersant is dispersed, and then the surfactant is further dispersed. It may be allowed to carry out polymerization.
 逆相懸濁重合は、1段、又は、2段以上の多段で行うことができる。逆相懸濁重合は、生産性を高める観点から、2段又は3段で行ってもよい。 Reverse phase suspension polymerization can be carried out in one stage or in multiple stages of two or more stages. Reversed phase suspension polymerization may be carried out in two or three stages from the viewpoint of increasing productivity.
 2段以上の多段で逆相懸濁重合を行う場合、1段目の逆相懸濁重合を行った後、1段目の重合反応で得られた反応混合物にエチレン性不飽和単量体を添加して混合し、1段目と同様の方法で2段目以降の逆相懸濁重合を行えばよい。2段目以降の各段における逆相懸濁重合では、エチレン性不飽和単量体の他に、上述のラジカル重合開始剤を、2段目以降の各段における逆相懸濁重合の際に添加するエチレン性不飽和単量体の量を基準として、上述のエチレン性不飽和単量体に対する各成分のモル比の範囲内で添加して逆相懸濁重合を行ってもよい。2段目以降の各段における逆相懸濁重合では、必要に応じて内部架橋剤を用いてもよい。内部架橋剤を用いる場合は、各段に供するエチレン性不飽和単量体の量を基準として、上述のエチレン性不飽和単量体に対する各成分のモル比の範囲内で添加して逆相懸濁重合を行ってもよい。 When reverse phase suspension polymerization is carried out in two or more stages, an ethylenically unsaturated monomer is added to the reaction mixture obtained in the first step polymerization reaction after the first step reverse phase suspension polymerization is carried out. It may be added and mixed, and the reverse phase suspension polymerization of the second and subsequent steps may be carried out in the same manner as in the first step. In the reverse phase suspension polymerization in each stage of the second and subsequent stages, in addition to the ethylenically unsaturated monomer, the above-mentioned radical polymerization initiator is used in the reverse phase suspension polymerization in each stage of the second and subsequent stages. Based on the amount of the ethylenically unsaturated monomer to be added, it may be added within the range of the molar ratio of each component to the above-mentioned ethylenically unsaturated monomer to carry out reverse phase suspension polymerization. In the reverse phase suspension polymerization in each stage after the second stage, an internal cross-linking agent may be used if necessary. When an internal cross-linking agent is used, it is added within the range of the molar ratio of each component to the above-mentioned ethylenically unsaturated monomer based on the amount of the ethylenically unsaturated monomer provided in each stage, and the suspension is reversed. Muddy polymerization may be carried out.
 重合反応の温度は、使用するラジカル重合開始剤によって異なるが、重合を迅速に進行させ、重合時間を短くすることにより、経済性を高めると共に、容易に重合熱を除去して円滑に反応を行う観点から、20~150℃、又は40~120℃であってもよい。反応時間は、通常、0.5~4時間である。重合反応の終了は、例えば、反応系内の温度上昇の停止により確認することができる。これにより、エチレン性不飽和単量体の重合体は、通常、含水ゲル状重合体の状態で得られる。 The temperature of the polymerization reaction varies depending on the radical polymerization initiator used, but by advancing the polymerization rapidly and shortening the polymerization time, the efficiency is improved and the heat of polymerization is easily removed to carry out the reaction smoothly. From the viewpoint, it may be 20 to 150 ° C. or 40 to 120 ° C. The reaction time is usually 0.5-4 hours. The completion of the polymerization reaction can be confirmed, for example, by stopping the temperature rise in the reaction system. As a result, the polymer of the ethylenically unsaturated monomer is usually obtained in the state of a hydrogel-like polymer.
 重合後、得られた含水ゲル状重合体に架橋剤を添加して加熱することで、重合後架橋を施してもよい。重合後架橋を行なうことで含水ゲル状重合体の架橋度を高め、それにより吸水性樹脂粒子の吸水特性を更に向上させることができる。 After polymerization, cross-linking may be performed after polymerization by adding a cross-linking agent to the obtained hydrogel polymer and heating it. By performing cross-linking after polymerization, the degree of cross-linking of the hydrogel polymer can be increased, whereby the water-absorbing characteristics of the water-absorbent resin particles can be further improved.
 重合後架橋を行うための架橋剤としては、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、及び(ポリ)グリセリンジグリシジルエーテル等の2個以上のエポキシ基を有する化合物;エピクロルヒドリン、エピブロムヒドリン、及びα-メチルエピクロルヒドリン等のハロエポキシ化合物;2,4-トリレンジイソシアネート、及びヘキサメチレンジイソシアネート等の2個以上のイソシアネート基を有する化合物;1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;エチレンカーボネート等のカーボネート化合物;ビス[N,N-ジ(β-ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物等が挙げられる。重合後架橋のための架橋剤が、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、及びポリグリセロールポリグリシジルエーテル等のポリグリシジル化合物であってもよい。これらの架橋剤は、単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。 Examples of the cross-linking agent for performing post-polymerization cross-linking include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; Compounds having two or more epoxy groups such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether; epichlorohydrin, epibromhydrin, α-methylepicrolhydrin, etc. Haloepoxide compounds; compounds having two or more isocyanate groups such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; oxazoline compounds such as 1,2-ethylenebisoxazoline; carbonate compounds such as ethylenecarbonate; bis [N , N-di (β-hydroxyethyl)] hydroxyalkylamide compounds such as adipamide can be mentioned. Cross-linking agents for post-polymerization cross-linking are (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, and polyglycerol polyglycidyl ether. It may be a polyglycidyl compound such as. These cross-linking agents may be used alone or in combination of two or more.
 重合後架橋に用いられる架橋剤の量は、得られる含水ゲル状重合体が適度に架橋されることにより好適な吸水特性を示すようにする観点から、水溶性エチレン性不飽和単量体1モル当たり、0~0.03モル、0~0.01モル、又は0.00001~0.005モルであってもよい。 The amount of the cross-linking agent used for post-polymerization cross-linking is 1 mol of the water-soluble ethylenically unsaturated monomer from the viewpoint of appropriately cross-linking the obtained hydrogel-like polymer to exhibit suitable water absorption characteristics. It may be 0 to 0.03 mol, 0 to 0.01 mol, or 0.00001 to 0.005 mol.
 重合後架橋のための架橋剤は、エチレン性不飽和単量体の重合反応後に反応液に添加される。多段重合の場合、多段重合後に重合後架橋のための架橋剤を添加してもよい。重合時および重合後の発熱、工程遅延による滞留、架橋剤添加時の系の開放、及び架橋剤添加に伴う水の添加等による水分の変動を考慮して、重合後架橋のための架橋剤は、含水率(後述)の観点から、[重合直後の含水率±3質量%]の領域で添加してもよい。 The cross-linking agent for post-polymerization cross-linking is added to the reaction solution after the polymerization reaction of the ethylenically unsaturated monomer. In the case of multi-stage polymerization, a cross-linking agent for post-polymerization cross-linking may be added after the multi-stage polymerization. Considering the fluctuation of water content due to heat generation during and after polymerization, retention due to process delay, opening of the system when adding a cross-linking agent, and addition of water due to addition of a cross-linking agent, the cross-linking agent for post-polymerization cross-linking is , From the viewpoint of water content (described later), it may be added in the region of [water content immediately after polymerization ± 3% by mass].
 引き続き、得られた含水ゲル状重合体から水分が除去される。水分の除去する乾燥により、エチレン性不飽和単量体の重合体を含む重合体粒子が得られる。乾燥方法としては、例えば、(a)含水ゲル状重合体が炭化水素分散媒に分散した状態で共沸蒸留により水分を除去する方法、(b)デカンテーションにより含水ゲル状重合体を取り出し、減圧乾燥する方法、(c)フィルターにより含水ゲル状重合体をろ別し、減圧乾燥する方法等が挙げられる。 Subsequently, water is removed from the obtained hydrogel polymer. Drying to remove water gives polymer particles containing a polymer of ethylenically unsaturated monomers. Examples of the drying method include (a) a method of removing water by azeotropic distillation in a state where the hydrogel polymer is dispersed in a hydrocarbon dispersion medium, and (b) a method of taking out the hydrogel polymer by decantation and reducing the pressure. Examples thereof include a method of drying, (c) a method of filtering the hydrogel polymer by a filter and drying under reduced pressure.
 重合反応時の攪拌機の回転数を調整することによって、あるいは、重合反応後又は乾燥の初期において凝集剤を系内に添加することによって吸水性樹脂粒子の粒子径を調整することができる。凝集剤を添加することにより、得られる吸水性樹脂粒子の粒子径を大きくすることができる。凝集剤としては、無機凝集剤を用いることができる。無機凝集剤(例えば粉末状無機凝集剤)としては、シリカ、ゼオライト、ベントナイト、酸化アルミニウム、タルク、二酸化チタン、カオリン、クレイ、ハイドロタルサイト等が挙げられる。凝集効果に優れる観点から、凝集剤が、シリカ、酸化アルミニウム、タルク及びカオリンからなる群より選ばれる少なくとも一種であってもよい。 The particle size of the water-absorbent resin particles can be adjusted by adjusting the rotation speed of the stirrer during the polymerization reaction, or by adding a flocculant into the system after the polymerization reaction or in the early stage of drying. By adding a flocculant, the particle size of the obtained water-absorbent resin particles can be increased. As the flocculant, an inorganic flocculant can be used. Examples of the inorganic flocculant (for example, powdered inorganic flocculant) include silica, zeolite, bentonite, aluminum oxide, talc, titanium dioxide, kaolin, clay, hydrotalcite and the like. From the viewpoint of excellent aggregating effect, the aggregating agent may be at least one selected from the group consisting of silica, aluminum oxide, talc and kaolin.
 逆相懸濁重合において、重合で用いられるものと同種の炭化水素分散媒又は水に凝集剤を予め分散させてから、これを、攪拌下で、含水ゲル状重合体を含む炭化水素分散媒中に混合してもよい。 In reverse phase suspension polymerization, a coagulant is previously dispersed in a hydrocarbon dispersion medium of the same type as that used in the polymerization or water, and then this is placed in a hydrocarbon dispersion medium containing a hydrogel polymer under stirring. May be mixed with.
 凝集剤の量は、重合に使用するエチレン性不飽和単量体100質量部に対して、0.001~1質量部、0.005~0.5質量部、又は0.01~0.2質量部であってもよい。凝集剤の量がこれら範囲内であることによって、目的とする粒度分布を有する吸水性樹脂粒子が得られやすい。 The amount of the flocculant is 0.001 to 1 part by mass, 0.005 to 0.5 part by mass, or 0.01 to 0.2 with respect to 100 parts by mass of the ethylenically unsaturated monomer used for the polymerization. It may be a mass part. When the amount of the flocculant is within these ranges, it is easy to obtain water-absorbent resin particles having a desired particle size distribution.
 重合反応は、攪拌翼を有する各種攪拌機を用いて行うことができる。攪拌翼としては、平板翼、格子翼、パドル翼、プロペラ翼、アンカー翼、タービン翼、ファウドラー翼、リボン翼、フルゾーン翼、マックスブレンド翼等を用いることができる。平板翼は、軸(撹拌軸)と、軸の周囲に配置された平板部(撹拌部)とを有している。さらに、平板部は、スリット等を有していてもよい。 The polymerization reaction can be carried out using various stirrers having stirring blades. As the stirring blade, a flat plate blade, a lattice blade, a paddle blade, a propeller blade, an anchor blade, a turbine blade, a Faudler blade, a ribbon blade, a full zone blade, a max blend blade and the like can be used. The flat plate blade has a shaft (stirring shaft) and a flat plate portion (stirring portion) arranged around the shaft. Further, the flat plate portion may have a slit or the like.
 吸水性樹脂粒子の製造においては、乾燥工程(水分除去工程)又はそれ以降のいずれかの工程において、架橋剤を用いて含水ゲル状重合体の表面部分の架橋(表面架橋)が行われてもよい。表面架橋を行うことで、吸水性樹脂粒子の吸水特性を制御しやすい。表面架橋される含水ゲル状重合体の含水率が、5~50質量%、10~40質量%、又は15~35質量%であってもよい。含水ゲル状重合体の含水率(質量%)は、次の式で算出される。
含水率=[Ww/(Ww+Ws)]×100
 Ww:全重合工程の重合前の単量体水溶液に含まれる水分量から、乾燥工程等により系外部に排出された水分量を差し引いた量に、凝集剤、表面架橋剤等を混合する際に必要に応じて用いられる水分量を加えることで算出される含水ゲル状重合体の水分量。
In the production of the water-absorbent resin particles, even if the surface portion of the hydrogel polymer is crosslinked (surface crosslink) using a cross-linking agent in any of the drying step (moisture removing step) and subsequent steps. Good. By performing surface cross-linking, it is easy to control the water absorption characteristics of the water-absorbent resin particles. The water content of the surface-crosslinked hydrogel polymer may be 5 to 50% by mass, 10 to 40% by mass, or 15 to 35% by mass. The water content (mass%) of the water-containing gel polymer is calculated by the following formula.
Moisture content = [Ww / (Ww + Ws)] x 100
Ww: When the flocculant, surface cross-linking agent, etc. are mixed in the amount obtained by subtracting the amount of water discharged to the outside of the system by the drying step or the like from the amount of water contained in the monomer aqueous solution before polymerization in the total polymerization step. The amount of water in the hydrogel polymer calculated by adding the amount of water used as needed.
 Ws:含水ゲル状重合体を構成するエチレン性不飽和単量体、架橋剤、開始剤等の材料の仕込量から算出される固形分量。 Ws: The amount of solids calculated from the amount of materials such as ethylenically unsaturated monomers, cross-linking agents, and initiators that make up the hydrogel polymer.
 表面架橋を行うための架橋剤(表面架橋剤)としては、例えば、反応性官能基を2個以上有する化合物を挙げることができる。架橋剤の例としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル(ポリ)プロピレングリコールポリグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロロヒドリン、エピブロムヒドリン、α-メチルエピクロロヒドリン等のハロエポキシ化合物;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル-3-オキセタンエタノール等のオキセタン化合物;1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;エチレンカーボネート等のカーボネート化合物;ビス[N,N-ジ(β-ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物が挙げられる。表面架橋剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。表面架橋剤は、ポリグリシジル化合物であってもよく、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、及び、ポリグリセロールポリグリシジルエーテルからなる群より選ばれる少なくとも一種を含んでもよい。 Examples of the cross-linking agent (surface cross-linking agent) for performing surface cross-linking include compounds having two or more reactive functional groups. Examples of cross-linking agents include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; (poly) ethylene glycol diglycidyl. Polyglycidyl compounds such as ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, trimethylpropan triglycidyl ether (poly) propylene glycol polyglycidyl ether, (poly) glycerol polyglycidyl ether; epichlorohydrin , Epibrom hydrin, α-methyl epichlorohydrin and other haloepoxy compounds; 2,4-tolylene diisocyanate, hexamethylene diisocyanate and other isocyanate compounds; 3-methyl-3-oxetane methanol, 3-ethyl-3-oxetane Oxetane compounds such as methanol, 3-butyl-3-oxetane methanol, 3-methyl-3-oxetane ethanol, 3-ethyl-3-oxetane ethanol, 3-butyl-3-oxetane ethanol; 1,2-ethylenebisoxazoline and the like. Oxetane compounds; carbonate compounds such as ethylene carbonate; hydroxyalkylamide compounds such as bis [N, N-di (β-hydroxyethyl)] adipamide can be mentioned. The surface cross-linking agent may be used alone or in combination of two or more. The surface cross-linking agent may be a polyglycidyl compound, and may be (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, and It may contain at least one selected from the group consisting of polyglycerol polyglycidyl ether.
 表面架橋剤の量は、重合に使用するエチレン性不飽和単量体1モルに対して、0.00001~0.02モル、0.00005~0.01モル、又は0.0001~0.005モルであってもよい。表面架橋剤の量が0.00001モル以上であると、吸水性樹脂粒子の表面部分における架橋密度が充分に高められ、吸水性樹脂粒子のゲル強度を高めやすい。表面架橋剤の量が0.02モル以下であると、吸水性樹脂粒子の吸水量を高めやすい。 The amount of the surface cross-linking agent is 0.00001 to 0.02 mol, 0.00005 to 0.01 mol, or 0.0001 to 0.005 per 1 mol of the ethylenically unsaturated monomer used for the polymerization. It may be a molar. When the amount of the surface cross-linking agent is 0.00001 mol or more, the cross-linking density on the surface portion of the water-absorbent resin particles is sufficiently increased, and the gel strength of the water-absorbent resin particles can be easily increased. When the amount of the surface cross-linking agent is 0.02 mol or less, it is easy to increase the water absorption amount of the water-absorbent resin particles.
 吸水性樹脂粒子の製造においては、乾燥工程(水分除去工程)又はそれ以降のいずれかの工程において、表面改質剤を用いて含水ゲル状重合体の表面部分を処理(表面改質)してもよい。表面改質は、例えば、表面架橋工程の前、途中または後に行われてよい。表面改質は、なかでも表面架橋後に行われてよい。特に、逆相懸濁重合法、水溶液重合法、その他の重合方法により得られた含水ゲル状重合体において、含水ゲル状重合体を、表面架橋後に、表面改質剤により処理する場合には、得られる吸水性樹脂粒子が、高い乾粉通液吸液率を示す樹脂層を形成しやすい傾向がある。 In the production of water-absorbent resin particles, the surface portion of the hydrogel polymer is treated (surface modification) with a surface modifier in either the drying step (moisture removal step) or a subsequent step. May be good. The surface modification may be carried out, for example, before, during or after the surface cross-linking step. Surface modification may be carried out after surface cross-linking. In particular, in a hydrogel polymer obtained by a reverse phase suspension polymerization method, an aqueous solution polymerization method, or another polymerization method, when the hydrogel polymer is treated with a surface modifier after surface cross-linking, The obtained water-absorbent resin particles tend to easily form a resin layer showing a high dry powder passing liquid absorption rate.
 表面改質剤は、例えば、陰イオン界面活性剤、陽イオン界面活性剤、両性界面活性剤、ノニオン界面活性剤等の界面活性剤であってよい。例えば、表面改質剤として用いられるノニオン界面活性剤のHLB値は、例えば、3~12、又は6~10であってよい。ノニオン界面活性剤としては、例えば、ソルビタンモノラウレート等のソルビタン脂肪酸エステルが挙げられる。特に、表面改質剤が、HLB値が上記範囲内のノニオン界面活性剤である場合、得られる吸水性樹脂粒子が、高い乾粉通液吸液率を示す樹脂層を形成しやすい傾向がある。HLB値は、グリフィン法により測定される。 The surface modifier may be, for example, a surfactant such as an anionic surfactant, a cationic surfactant, an amphoteric surfactant, or a nonionic surfactant. For example, the HLB value of the nonionic surfactant used as the surface modifier may be, for example, 3 to 12, or 6 to 10. Examples of the nonionic surfactant include sorbitan fatty acid esters such as sorbitan monolaurate. In particular, when the surface modifier is a nonionic surfactant having an HLB value within the above range, the obtained water-absorbent resin particles tend to easily form a resin layer showing a high dry powder flow-through liquid absorption rate. The HLB value is measured by the Griffin method.
 表面改質剤の量は、重合に使用するエチレン性不飽和単量体100質量部に対して、0.01~0.50質量部、0.02~0.40質量部、又は0.04~0.30質量部であってもよい。 The amount of the surface modifier is 0.01 to 0.50 parts by mass, 0.02 to 0.40 parts by mass, or 0.04 with respect to 100 parts by mass of the ethylenically unsaturated monomer used for the polymerization. It may be ~ 0.30 parts by mass.
 必要に応じて、表面架橋及び/又は表面改質が行われた後、含水ゲル状重合体から水及び炭化水素分散媒を留去すること等により、乾燥品である重合体粒子を得ることができる。 If necessary, after surface cross-linking and / or surface modification, water and a hydrocarbon dispersion medium can be distilled off from the hydrogel polymer to obtain polymer particles which are dry products. it can.
 本実施形態に係る吸水性樹脂粒子は、重合体粒子のみから構成されていてもよいが、例えば、ゲル安定剤、金属キレート剤、及び流動性向上剤(滑剤)等から選ばれる各種の追加の成分を更に含むことができる。追加の成分は、重合体粒子の内部、重合体粒子の表面上、又はそれらの両方に配置され得る。追加の成分は、流動性向上剤(滑剤)であってもよい。流動性向上剤は無機粒子を含んでいてもよい。無機粒子としては、例えば、非晶質シリカ等のシリカ粒子が挙げられる。 The water-absorbent resin particles according to the present embodiment may be composed of only polymer particles, but various additional particles selected from, for example, a gel stabilizer, a metal chelating agent, a fluidity improver (lubricant), and the like. Ingredients can be further included. Additional components may be placed inside the polymer particles, on the surface of the polymer particles, or both. The additional component may be a fluidity improver (lubricant). The fluidity improver may contain inorganic particles. Examples of the inorganic particles include silica particles such as amorphous silica.
 吸水性樹脂粒子は、重合体粒子の表面上に配置された複数の無機粒子を含んでいてもよい。例えば、重合体粒子と無機粒子とを混合することにより、重合体粒子の表面上に無機粒子を配置することができる。この無機粒子は、非晶質シリカ等のシリカ粒子であってもよい。吸水性樹脂粒子が重合体粒子の表面上に配置された無機粒子を含む場合、重合体粒子の質量に対する無機粒子の量の割合は、0.2質量%以上、0.5質量%以上、1.0質量%以上、又は1.5質量%以上であってもよく、5.0質量%以下、又は3.5質量%以下であってもよい。ここでの無機粒子は、通常、重合体粒子の大きさと比較して微小な大きさを有する。例えば、無機粒子の平均粒子径が、0.1~50μm、0.5~30μm、又は1~20μmであってもよい。ここでの平均粒子径は、動的光散乱法、又はレーザー回折・散乱法によって測定される値であることができる。 The water-absorbent resin particles may contain a plurality of inorganic particles arranged on the surface of the polymer particles. For example, by mixing the polymer particles and the inorganic particles, the inorganic particles can be arranged on the surface of the polymer particles. The inorganic particles may be silica particles such as amorphous silica. When the water-absorbent resin particles include inorganic particles arranged on the surface of the polymer particles, the ratio of the amount of the inorganic particles to the mass of the polymer particles is 0.2% by mass or more, 0.5% by mass or more, 1 It may be 0.0% by mass or more, 1.5% by mass or more, 5.0% by mass or less, or 3.5% by mass or less. The inorganic particles here usually have a minute size as compared with the size of the polymer particles. For example, the average particle size of the inorganic particles may be 0.1 to 50 μm, 0.5 to 30 μm, or 1 to 20 μm. The average particle size here can be a value measured by a dynamic light scattering method or a laser diffraction / scattering method.
<補助シート>
 図1は、補助シートの一例を示す断面図である。図1に示す補助シート60は、樹脂層61と、2枚のシート基材62a,62bとを有する。シート基材62a,62bは、樹脂層61の両側に配置されている。言い換えると、樹脂層61は、シート基材62a,62bの内側に配置されている。樹脂層61は、2枚のシート基材62a,62bの間に挟まれることにより、保形されている。シート基材62a,62bは、2枚のシートであってもよいし、折り返された1枚のシート、又は1枚の袋体であってもよい。
<Auxiliary sheet>
FIG. 1 is a cross-sectional view showing an example of an auxiliary sheet. The auxiliary sheet 60 shown in FIG. 1 has a resin layer 61 and two sheet base materials 62a and 62b. The sheet base materials 62a and 62b are arranged on both sides of the resin layer 61. In other words, the resin layer 61 is arranged inside the sheet base materials 62a and 62b. The resin layer 61 is held in shape by being sandwiched between the two sheet base materials 62a and 62b. The sheet base materials 62a and 62b may be two sheets, one folded sheet, or one bag.
 補助シート60は、シート基材62aと樹脂層61との間に介在する接着剤63aを更に有していてもよく、シート基材62bと樹脂層61との間に介在する接着剤63bを更に有していてもよい。接着剤63a,63bとしては、例えば水性接着剤、溶剤型接着剤、弾性接着剤、エアゾール接着剤、ホットメルト接着剤等であってよい。 The auxiliary sheet 60 may further have an adhesive 63a interposed between the sheet base material 62a and the resin layer 61, and further has an adhesive 63b interposed between the sheet base material 62b and the resin layer 61. You may have. The adhesives 63a and 63b may be, for example, a water-based adhesive, a solvent-based adhesive, an elastic adhesive, an aerosol adhesive, a hot melt adhesive, or the like.
 補助シート60の厚さは、例えば、3.0mm以下、2.5mm以下、2.0mm以下、又は1.8mm以下であってよく、0.1mm以上、0.3mm以上、又は0.5mm以上であってもよい。厚さは、例えば、尾崎製作所製ダイヤルシックネスゲージJ-B(測定子はφ50mmのアルミ製)を用いて測定することができる。 The thickness of the auxiliary sheet 60 may be, for example, 3.0 mm or less, 2.5 mm or less, 2.0 mm or less, or 1.8 mm or less, and 0.1 mm or more, 0.3 mm or more, or 0.5 mm or more. It may be. The thickness can be measured using, for example, a dial thickness gauge JB manufactured by Ozaki Seisakusho Co., Ltd. (the stylus is made of aluminum having a diameter of 50 mm).
 樹脂層61は、上述の実施形態に係る吸水性樹脂粒子61aと、繊維状物を含む繊維層61bとを有する。樹脂層61は、繊維層61bを有していなくてもよい。樹脂層における吸水性樹脂粒子の含有量は、樹脂層61の質量を基準として、70~100質量%、80~100質量%、又は90~100質量%であってもよい。 The resin layer 61 has the water-absorbent resin particles 61a according to the above-described embodiment and the fiber layer 61b containing a fibrous material. The resin layer 61 does not have to have the fiber layer 61b. The content of the water-absorbent resin particles in the resin layer may be 70 to 100% by mass, 80 to 100% by mass, or 90 to 100% by mass based on the mass of the resin layer 61.
 樹脂層61の厚さは、乾燥状態で、例えば2.0mm以下、1.5mm以下、1.0mm以下、又は0.8mm以下であってよく、0.1mm以上、又は0.3mm以上であってもよい。樹脂層61の単位面積当たりの質量は、100g/m以下、80g/m以下、60g/m以下、又は40g/m以下であってもよく、10g/m以上、20g/m以上、又は25g/m以上であってもよい。 The thickness of the resin layer 61 may be, for example, 2.0 mm or less, 1.5 mm or less, 1.0 mm or less, or 0.8 mm or less in a dry state, and is 0.1 mm or more, or 0.3 mm or more. You may. The mass per unit area of the resin layer 61 may be 100 g / m 2 or less, 80 g / m 2 or less, 60 g / m 2 or less, or 40 g / m 2 or less, 10 g / m 2 or more, 20 g / m. It may be 2 or more, or 25 g / m 2 or more.
 繊維層61bを構成する繊維状物は、例えば、セルロース系繊維、合成繊維、又はこれらの組み合わせであることができる。セルロース系繊維の例としては、粉砕された木材パルプ、コットン、コットンリンター、レーヨン、セルロースアセテートが挙げられる。合成繊維の例としては、ポリアミド繊維、ポリエステル繊維、及びポリオレフィン繊維が挙げられる。繊維状物が親水性繊維(例えばパルプ)であってもよい。 The fibrous material constituting the fiber layer 61b can be, for example, a cellulosic fiber, a synthetic fiber, or a combination thereof. Examples of cellulosic fibers include crushed wood pulp, cotton, cotton linters, rayon and cellulosic acetate. Examples of synthetic fibers include polyamide fibers, polyester fibers, and polyolefin fibers. The fibrous material may be hydrophilic fibers (for example, pulp).
 樹脂層61は、無機粒子(例えば非晶質シリカ)、消臭剤、抗菌剤、香料等を更に含んでもよい。 The resin layer 61 may further contain inorganic particles (for example, amorphous silica), a deodorant, an antibacterial agent, a fragrance, and the like.
 シート基材62a,62bは、例えば、不織布、又はティッシュ等であってもよい。2枚のシート基材62a,62bが、同一又は異なる不織布であることができる。不織布は、短繊維(すなわちステープル)で構成される不織布(短繊維不織布)であってもよく、長繊維(すなわちフィラメント)で構成される不織布(長繊維不織布)であってもよい。ステープルは、一般的には数百mm以下の繊維長を有していてよい。 The sheet base materials 62a and 62b may be, for example, non-woven fabric, tissue, or the like. The two sheet base materials 62a and 62b can be the same or different non-woven fabrics. The non-woven fabric may be a non-woven fabric composed of short fibers (that is, staples) (short-fiber non-woven fabric) or a non-woven fabric composed of long fibers (that is, filaments) (long-fiber non-woven fabric). The staples may generally have a fiber length of several hundred mm or less.
 シート基材62a,62bとして用いられる不織布は、サーマルボンド不織布、エアスルー不織布、レジンボンド不織布、スパンボンド不織布、メルトブロー不織布、エアレイド不織布、スパンレース不織布、ポイントボンド不織布、又はこれらから選ばれる2種以上の不織布を含む積層体であってよい。 The non-woven fabrics used as the sheet base materials 62a and 62b are thermal-bonded non-woven fabrics, air-through non-woven fabrics, resin-bonded non-woven fabrics, spunbonded non-woven fabrics, melt-blown non-woven fabrics, air-laid non-woven fabrics, spunlaced non-woven fabrics, point-bonded non-woven fabrics, or two or more kinds selected from these. It may be a laminate containing a non-woven fabric.
 シート基材62a,62bとして用いられる不織布は、合成繊維、天然繊維、又はこれらの組み合わせによって形成された不織布であることができる。合成繊維の例としては、ポリエチレン(PE)及びポリプロピレン(PP)等のポリオレフィン、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)及びポリエチレンナフタレート(PEN)等のポリエステル、ナイロン等のポリアミド、並びにレーヨンから選ばれる合成樹脂を含む繊維が挙げられる。天然繊維の例としては、綿、絹、麻、又はパルプ(セルロース)を含む繊維が挙げられる。不織布を形成する繊維が、ポリオレフィン繊維、ポリエステル繊維又はこれらの組み合わせであってよい。シート基材62a,62bがティッシュであってもよい。 The non-woven fabric used as the sheet base materials 62a and 62b can be a non-woven fabric formed of synthetic fibers, natural fibers, or a combination thereof. Examples of synthetic fibers include polyolefins such as polyethylene (PE) and polypropylene (PP), polyesters such as polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT) and polyethylene naphthalate (PEN), polyamides such as nylon, and Examples thereof include fibers containing a synthetic resin selected from rayon. Examples of natural fibers include fibers containing cotton, silk, hemp, or pulp (cellulose). The fibers forming the non-woven fabric may be polyolefin fibers, polyester fibers or a combination thereof. The sheet base materials 62a and 62b may be tissues.
 シート基材62a,62bとして用いられるティッシュは、天然繊維、あるいは天然繊維に合成繊維を配合したものであってもよい。ティッシュの単位面積当たりの質量は、16±2g/mであってもよい。ティッシュの厚みは、0.12±0.02mmであってもよい。 The tissues used as the sheet base materials 62a and 62b may be natural fibers or natural fibers mixed with synthetic fibers. The mass per unit area of the tissue may be 16 ± 2 g / m 2. The thickness of the tissue may be 0.12 ± 0.02 mm.
 補助シート60は、例えば、樹脂層61をシート基材62a,62bの間に挟み、形成された構造体を必要により加熱しながら加圧する方法により、得ることができる。必要により、シート基材62a,62bと、樹脂層61との間に接着剤63a,63bが配置される。 The auxiliary sheet 60 can be obtained, for example, by sandwiching the resin layer 61 between the sheet base materials 62a and 62b and pressurizing the formed structure while heating it as necessary. If necessary, the adhesives 63a and 63b are arranged between the sheet base materials 62a and 62b and the resin layer 61.
 補助シート60は、例えば各種の吸収性物品を製造するために用いられる。吸収性物品の例としては、おむつ(例えば紙おむつ)、トイレトレーニングパンツ、失禁パッド、衛生材料(生理用ナプキン、タンポン等)、汗取りパッド、ペットシート、簡易トイレ用部材、及び動物排泄物処理材が挙げられる。 The auxiliary sheet 60 is used, for example, for producing various absorbent articles. Examples of absorbent articles include diapers (eg paper diapers), toilet training pants, incontinence pads, sanitary materials (sanitary napkins, tampons, etc.), sweat pads, pet sheets, toilet components, and animal waste treatment materials. Can be mentioned.
<吸収性物品>
 図2は、吸収性物品の一例を示す断面図である。図2に示す吸収性物品100は、吸水コア50と、補助シート60と、液体透過性シート30と、液体不透過性シート40とを備える。言い換えると、吸水コア50と補助シート60が、液体透過性シート30と液体不透過性シート40との間に挟まれている。
<Absorbable article>
FIG. 2 is a cross-sectional view showing an example of an absorbent article. The absorbent article 100 shown in FIG. 2 includes a water absorbing core 50, an auxiliary sheet 60, a liquid permeable sheet 30, and a liquid impermeable sheet 40. In other words, the water absorption core 50 and the auxiliary sheet 60 are sandwiched between the liquid permeable sheet 30 and the liquid impermeable sheet 40.
 吸水コア50は、吸収層10と、2枚のコアラップシート20a,20bとを有する。コアラップシート20a,20bは、吸収層10の両側に配置されている。言い換えると、吸収層10は、コアラップシート20a,20bの内側に配置されており、上記2枚のコアラップシートの間に挟まれることにより、保形されている。コアラップシート20a,20bは、別々のシートであってもよいし、折り返された1枚のシート、又は1枚の袋体であってもよい。但し、吸水コア50は、2枚のコアラップシート20a,20bのうち一方又は両方を有していなくてもよい。例えば、吸収層10と、補助シート60との間にコアラップシート20aが配置されていなくてもよい。吸収層10と、補助シート60との間にコアラップシートが配置されていない場合、例えば、吸収層10は、1枚のコアラップシート20bと、補助シート60との間に挟まれることにより、保形される。 The water absorption core 50 has an absorption layer 10 and two core wrap sheets 20a and 20b. The core wrap sheets 20a and 20b are arranged on both sides of the absorption layer 10. In other words, the absorbent layer 10 is arranged inside the core wrap sheets 20a and 20b, and is held in shape by being sandwiched between the two core wrap sheets. The core wrap sheets 20a and 20b may be separate sheets, one folded sheet, or one bag body. However, the water absorption core 50 does not have to have one or both of the two core wrap sheets 20a and 20b. For example, the core wrap sheet 20a may not be arranged between the absorption layer 10 and the auxiliary sheet 60. When the core wrap sheet is not arranged between the absorption layer 10 and the auxiliary sheet 60, for example, the absorption layer 10 is sandwiched between one core wrap sheet 20b and the auxiliary sheet 60. It is kept in shape.
 吸水コア50は、コアラップシート20aと吸収層10との間に介在する接着剤を更に有していてもよく、コアラップシート20bと吸収層10との間に介在する接着剤を更に有していてもよい。両側のコアラップシート20a,20bと吸収層10との間に接着層が介在してもよい。図3は、コアラップシート上に形成された接着剤の塗布パターンの一例を示す平面図である。図3に示される接着剤21は、コアラップシート20a上で間隔を空けながら配列された複数の線状部分から構成される塗布パターンを形成している。なお、接着剤21の塗布パターンは、直線状、曲線状、ドット状、又はこれらの組み合わせ等であってもよい。接着剤は、例えば水性接着剤、溶剤型接着剤、ホットメルト接着剤であってもよい。 The water absorption core 50 may further have an adhesive interposed between the core wrap sheet 20a and the absorption layer 10, and further has an adhesive interposed between the core wrap sheet 20b and the absorption layer 10. May be. An adhesive layer may be interposed between the core wrap sheets 20a and 20b on both sides and the absorption layer 10. FIG. 3 is a plan view showing an example of an adhesive application pattern formed on the core wrap sheet. The adhesive 21 shown in FIG. 3 forms a coating pattern composed of a plurality of linear portions arranged at intervals on the core wrap sheet 20a. The coating pattern of the adhesive 21 may be linear, curved, dot-shaped, or a combination thereof. The adhesive may be, for example, a water-based adhesive, a solvent-based adhesive, or a hot melt adhesive.
 吸収層10は、吸水性樹脂粒子10aと、繊維状物を含む繊維層10bとを有する。吸収層10は、繊維層10bを有していなくてもよい。吸収層における吸水性樹脂粒子の含有量は、吸収層10の質量を基準として、70~100質量%、80~100質量%、又は90~100質量%であってもよい。 The absorption layer 10 has water-absorbent resin particles 10a and a fiber layer 10b containing a fibrous material. The absorption layer 10 does not have to have the fiber layer 10b. The content of the water-absorbent resin particles in the absorption layer may be 70 to 100% by mass, 80 to 100% by mass, or 90 to 100% by mass based on the mass of the absorption layer 10.
 吸水性樹脂粒子10aは、エチレン性不飽和単量体を単量体単位として含む重合体を含む粒子であってもよい。エチレン性不飽和単量体は、水溶性の単量体であってもよく、その例としては、(メタ)アクリル酸及びその塩、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸及びその塩、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、並びにジエチルアミノプロピル(メタ)アクリルアミドが挙げられる。エチレン性不飽和単量体は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。エチレン性不飽和単量体がカルボキシル基、アミノ基等の官能基を有する場合、それらは重合体を架橋させる官能基として機能し得る。吸水性樹脂粒子は、(メタ)アクリル酸又は(メタ)アクリル酸の塩のうち少なくとも一方を単量体単位として含む重合体を含む粒子であってもよい。 The water-absorbent resin particles 10a may be particles containing a polymer containing an ethylenically unsaturated monomer as a monomer unit. The ethylenically unsaturated monomer may be a water-soluble monomer, and examples thereof include (meth) acrylic acid and salts thereof, 2- (meth) acrylamide-2-methylpropanesulfonic acid and its salts. Salt, (meth) acrylamide, N, N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, polyethylene glycol mono (meth) acrylate, N, N-diethylaminoethyl (meth) ) Acrylate, N, N-diethylaminopropyl (meth) acrylate, and diethylaminopropyl (meth) acrylamide. The ethylenically unsaturated monomer may be used alone or in combination of two or more. When the ethylenically unsaturated monomer has a functional group such as a carboxyl group or an amino group, they can function as a functional group for cross-linking the polymer. The water-absorbent resin particles may be particles containing a polymer containing at least one of (meth) acrylic acid or a salt of (meth) acrylic acid as a monomer unit.
 吸水性樹脂粒子10aは、例えば、エチレン性不飽和単量体を含む単量体を重合することを含む方法によって、製造することができる。単量体の重合方法は、例えば、逆相懸濁重合法、水溶液重合法、バルク重合法、及び沈殿重合法から選択され得る。吸水性樹脂粒子の良好な吸水特性の確保、及び、重合反応の容易な制御の観点から、逆相懸濁重合法又は水溶液重合法を採用してもよい。 The water-absorbent resin particles 10a can be produced, for example, by a method including polymerizing a monomer containing an ethylenically unsaturated monomer. The monomer polymerization method can be selected from, for example, a reverse phase suspension polymerization method, an aqueous solution polymerization method, a bulk polymerization method, and a precipitation polymerization method. From the viewpoint of ensuring good water absorption characteristics of the water-absorbent resin particles and easily controlling the polymerization reaction, a reverse phase suspension polymerization method or an aqueous solution polymerization method may be adopted.
 吸水性樹脂粒子10aを構成する重合体は、架橋重合体であってもよい。この場合、重合体は、自己架橋、架橋剤との反応による架橋、又はこれらの両方によって架橋されていてもよい。吸水性樹脂粒子が、少なくともその表層部分の重合体を架橋剤で架橋することによって表面架橋されていてもよい。 The polymer constituting the water-absorbent resin particles 10a may be a crosslinked polymer. In this case, the polymer may be crosslinked by self-crosslinking, cross-linking by reaction with a cross-linking agent, or both. The water-absorbent resin particles may be surface-crosslinked by cross-linking at least the polymer of the surface layer portion with a cross-linking agent.
 吸水性樹脂粒子10aは、エチレン性不飽和単量体の重合体に加えて、各種の追加の成分を含んでいてもよい。追加の成分の例としては、ゲル安定剤、金属キレート剤、及び流動性向上剤(滑剤)が挙げられる。追加の成分は、重合体を含む重合体粒子の内部、重合体粒子の表面上、又はそれらの両方に配置され得る。追加の成分は、流動性向上剤(滑剤)であってもよい。流動性向上剤は、無機粒子を含んでいてもよい。無機粒子としては、例えば、非晶質シリカ等のシリカ粒子が挙げられる。 The water-absorbent resin particles 10a may contain various additional components in addition to the polymer of the ethylenically unsaturated monomer. Examples of additional ingredients include gel stabilizers, metal chelating agents, and fluidity improvers (lubricants). Additional components may be placed inside the polymer particles, including the polymer, on the surface of the polymer particles, or both. The additional component may be a fluidity improver (lubricant). The fluidity improver may contain inorganic particles. Examples of the inorganic particles include silica particles such as amorphous silica.
 吸水性樹脂粒子10aの形状は、例えば略球状、破砕状又は顆粒状であってもよく、これらの形状を有する一次粒子が凝集した粒子が形成されていてもよい。吸水性樹脂粒子の中位粒子径は、250~850μm、300~700μm、又は、300~600μmであってよい。また、吸水性樹脂粒子10aの吸水特性としては、例えば生理食塩水の吸水量が、20~80g/g、30~70g/g、又は40~65g/gであってよい。 The shape of the water-absorbent resin particles 10a may be, for example, substantially spherical, crushed or granular, and particles in which primary particles having these shapes are aggregated may be formed. The medium particle size of the water-absorbent resin particles may be 250 to 850 μm, 300 to 700 μm, or 300 to 600 μm. As for the water absorption characteristics of the water-absorbent resin particles 10a, for example, the water absorption amount of the physiological saline may be 20 to 80 g / g, 30 to 70 g / g, or 40 to 65 g / g.
 吸収層10の厚さは、乾燥状態で、例えば20mm以下、15mm以下、10mm以下、5mm以下、4mm以下、又は3mm以下であってよく、0.1mm以上、又は0.3mm以上であってもよい。吸収層10の単位面積当たりの質量は、1000g/m以下、800g/m以下、又は600g/m以下であってもよく、100g/m以上、又は200g/m以上であってもよい。 The thickness of the absorption layer 10 may be, for example, 20 mm or less, 15 mm or less, 10 mm or less, 5 mm or less, 4 mm or less, or 3 mm or less in a dry state, and may be 0.1 mm or more or 0.3 mm or more. Good. The mass per unit area of the absorption layer 10 may be 1000 g / m 2 or less, 800 g / m 2 or less, or 600 g / m 2 or less, 100 g / m 2 or more, or 200 g / m 2 or more. May be good.
 繊維層10bを構成する繊維状物は、例えば、セルロース系繊維、合成繊維、又はこれらの組み合わせであることができる。セルロース系繊維の例としては、粉砕された木材パルプ、コットン、コットンリンター、レーヨン、セルロースアセテートが挙げられる。合成繊維の例としては、ポリアミド繊維、ポリエステル繊維、及びポリオレフィン繊維が挙げられる。繊維状物が親水性繊維(例えばパルプ)であってもよい。 The fibrous material constituting the fiber layer 10b can be, for example, a cellulosic fiber, a synthetic fiber, or a combination thereof. Examples of cellulosic fibers include crushed wood pulp, cotton, cotton linters, rayon and cellulosic acetate. Examples of synthetic fibers include polyamide fibers, polyester fibers, and polyolefin fibers. The fibrous material may be hydrophilic fibers (for example, pulp).
 吸収層10(又は繊維層10b)は、無機粉末(例えば非晶質シリカ)、消臭剤、抗菌剤、香料等を更に含んでもよい。吸水性樹脂粒子10aが無機粒子を含む場合、吸収層10は吸水性樹脂粒子10a中の無機粒子とは別に無機粉末を含んでいてもよい。 The absorption layer 10 (or fiber layer 10b) may further contain an inorganic powder (for example, amorphous silica), a deodorant, an antibacterial agent, a fragrance, and the like. When the water-absorbent resin particles 10a contain inorganic particles, the absorption layer 10 may contain inorganic powder in addition to the inorganic particles in the water-absorbent resin particles 10a.
 コアラップシート20a,20bは、例えば不織布であってもよい。2枚のコアラップシート20a,20bが、同一又は異なる不織布であることができる。不織布は、短繊維(すなわちステープル)で構成される不織布(短繊維不織布)であってもよく、長繊維(すなわちフィラメント)で構成される不織布(長繊維不織布)であってもよい。ステープルは、一般的には数百mm以下の繊維長を有していてよい。 The core wrap sheets 20a and 20b may be, for example, a non-woven fabric. The two core wrap sheets 20a and 20b can be the same or different non-woven fabrics. The non-woven fabric may be a non-woven fabric composed of short fibers (that is, staples) (short-fiber non-woven fabric) or a non-woven fabric composed of long fibers (that is, filaments) (long-fiber non-woven fabric). The staples may generally have a fiber length of several hundred mm or less.
 コアラップシート20a,20bは、サーマルボンド不織布、エアスルー不織布、レジンボンド不織布、スパンボンド不織布、メルトブロー不織布、エアレイド不織布、スパンレース不織布、ポイントボンド不織布、又はこれらから選ばれる2種以上の不織布を含む積層体であってよい。 The core wrap sheets 20a and 20b are laminated including a thermal bond non-woven fabric, an air-through non-woven fabric, a resin bond non-woven fabric, a spunbond non-woven fabric, a melt blow non-woven fabric, an air-laid non-woven fabric, a spunlace non-woven fabric, a point bond non-woven fabric, or two or more kinds of non-woven fabrics selected from these. It can be a body.
 コアラップシート20a,20bとして用いられる不織布は、合成繊維、天然繊維、又はこれらの組み合わせによって形成された不織布であることができる。合成繊維の例としては、ポリエチレン(PE)及びポリプロピレン(PP)等のポリオレフィン、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)及びポリエチレンナフタレート(PEN)等のポリエステル、ナイロン等のポリアミド、並びにレーヨンから選ばれる合成樹脂を含む繊維が挙げられる。天然繊維の例としては、綿、絹、麻、又はパルプ(セルロース)を含む繊維が挙げられる。不織布を形成する繊維が、ポリオレフィン繊維、ポリエステル繊維又はこれらの組み合わせであってよい。コアラップシート20a,20bがティッシュであってもよい。 The non-woven fabric used as the core wrap sheets 20a and 20b can be a non-woven fabric formed of synthetic fibers, natural fibers, or a combination thereof. Examples of synthetic fibers include polyolefins such as polyethylene (PE) and polypropylene (PP), polyesters such as polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT) and polyethylene naphthalate (PEN), polyamides such as nylon, and Examples thereof include fibers containing a synthetic resin selected from rayon. Examples of natural fibers include fibers containing cotton, silk, hemp, or pulp (cellulose). The fibers forming the non-woven fabric may be polyolefin fibers, polyester fibers or a combination thereof. The core wrap sheets 20a and 20b may be tissues.
 吸水コア50は、例えば、吸水性樹脂粒子10a、又は吸水性樹脂粒子10aと繊維状物とを含む混合物とコアラップシート20a,20bの間に挟み、形成された構造体を必要により加熱しながら加圧する方法により、得ることができる。必要により、コアラップシート20a,20bと、吸水性樹脂粒子10a、又はこれを含む混合物との間に接着剤が配置される。 The water-absorbing core 50 is sandwiched between, for example, the water-absorbent resin particles 10a or a mixture containing the water-absorbent resin particles 10a and the fibrous material and the core wrap sheets 20a and 20b, and the formed structure is heated as necessary. It can be obtained by the method of pressurizing. If necessary, an adhesive is placed between the core wrap sheets 20a and 20b and the water-absorbent resin particles 10a or a mixture containing the same.
 吸水コアは、コアラップシート20a、吸水性樹脂粒子10a及び繊維層10bからなる吸収層10及びコアラップシート20bがこの順に配置されている吸水コアのほかに、全体が繊維層を実質的に含まないシート状であってもよい。図4は、吸水コアの他の一例を示す、シート状に形成された吸水コアの断面図である。図4に示される吸水コア50は、コアラップシート25a、接着剤26a、吸水性樹脂粒子からなる吸収層10A、コアラップシート25b、吸水性樹脂粒子からなる吸収層10B、接着剤26b及びコアラップシート25cがこの順に配置されている。吸収層10A,10Bに含まれる吸水性樹脂粒子は、同種であっても異種であってもよい。吸収層10A,10Bそれぞれの単位面積当たりの質量及び厚さは同一であっても異なっていてもよい。 The water-absorbing core substantially includes a fiber layer as a whole, in addition to the water-absorbing core in which the core wrap sheet 20a, the water-absorbent resin particles 10a, the absorption layer 10 composed of the fiber layer 10b, and the core wrap sheet 20b are arranged in this order. It may be in the form of no sheet. FIG. 4 is a cross-sectional view of the water absorption core formed in a sheet shape, showing another example of the water absorption core. The water-absorbent core 50 shown in FIG. 4 includes a core wrap sheet 25a, an adhesive 26a, an absorption layer 10A made of water-absorbent resin particles, a core wrap sheet 25b, an absorption layer 10B made of water-absorbent resin particles, an adhesive 26b, and a core wrap. The sheets 25c are arranged in this order. The water-absorbent resin particles contained in the absorption layers 10A and 10B may be of the same type or different types. The mass and thickness of each of the absorption layers 10A and 10B per unit area may be the same or different.
 液体透過性シート30は、吸収対象の液が浸入する側の最外層の位置に配置されている。液体透過性シート30は、コアラップシート20bに接した状態でコアラップシート20bの外側に配置されている。液体不透過性シート40は、吸収性物品100において液体透過性シート30とは反対側の最外層の位置に配置されている。液体不透過性シート40は、コアラップシート20aに接した状態でコアラップシート20aの外側に配置されている。液体透過性シート30及び液体不透過性シート40は、吸水コア50の主面よりも広い主面を有しており、液体透過性シート30及び液体不透過性シート40の外縁部は、吸収層10及びコアラップシート20a,20bの周囲に延在している。ただし、吸収層10、コアラップシート20a,20b、補助シート60、液体透過性シート30、及び、液体不透過性シート40の大小関係は、吸収性物品の用途等に応じて適宜調整される。 The liquid permeable sheet 30 is arranged at the position of the outermost layer on the side where the liquid to be absorbed enters. The liquid permeable sheet 30 is arranged on the outside of the core wrap sheet 20b in contact with the core wrap sheet 20b. The liquid permeable sheet 40 is arranged at the position of the outermost layer on the side opposite to the liquid permeable sheet 30 in the absorbent article 100. The liquid impermeable sheet 40 is arranged on the outside of the core wrap sheet 20a in contact with the core wrap sheet 20a. The liquid permeable sheet 30 and the liquid permeable sheet 40 have a main surface wider than the main surface of the water absorbing core 50, and the outer edges of the liquid permeable sheet 30 and the liquid permeable sheet 40 are an absorbing layer. It extends around 10 and the core wrap sheets 20a and 20b. However, the magnitude relationship of the absorbent layer 10, the core wrap sheets 20a and 20b, the auxiliary sheet 60, the liquid permeable sheet 30, and the liquid permeable sheet 40 is appropriately adjusted according to the use of the absorbent article and the like.
 液体透過性シート30は、不織布であってもよい。液体透過性シート30として用いられる不織布は、吸収性物品の液体吸収性能の観点から、適度な親水性を有していてもよい。その観点から、液体透過性シート30は、紙パルプ技術協会による紙パルプ試験方法No.68(2000)の測定方法に従って測定される親水度が5~200の不織布であってもよい。不織布の親水度は、10~150であってもよい。紙パルプ試験方法No.68の詳細については、例えばWO2011/086843号を参照することができる。 The liquid permeable sheet 30 may be a non-woven fabric. The non-woven fabric used as the liquid permeable sheet 30 may have appropriate hydrophilicity from the viewpoint of the liquid absorption performance of the absorbent article. From this point of view, the liquid permeable sheet 30 is a pulp and paper test method No. 1 by the Paper and Pulp Technology Association. A non-woven fabric having a hydrophilicity of 5 to 200 measured according to the measuring method of 68 (2000) may be used. The hydrophilicity of the non-woven fabric may be 10 to 150. Pulp and paper test method No. For details of 68, for example, WO2011 / 086843 can be referred to.
 親水性を有する不織布は、例えば、レーヨン繊維のように適度な親水度を示す繊維によって形成されたものでもよいし、ポリオレフィン繊維、ポリエステル繊維のような疎水性の化学繊維を親水化処理して得た繊維によって形成されたものであってもよい。親水化処理された疎水性の化学繊維を含む不織布を得る方法としては、例えば、疎水性の化学繊維に親水化剤を混合したものを用いてスパンボンド法にて不織布を得る方法、疎水性化学繊維でスパンボンド不織布を作製する際に親水化剤を同伴させる方法、疎水性の化学繊維を用いて得たスパンボンド不織布に親水化剤を含浸させる方法が挙げられる。親水化剤としては、脂肪族スルホン酸塩、高級アルコール硫酸エステル塩等のアニオン系界面活性剤、第4級アンモニウム塩等のカチオン系界面活性剤、ポリエチレングリコール脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル等のノニオン系界面活性剤、ポリオキシアルキレン変性シリコーン等のシリコーン系界面活性剤、及びポリエステル系、ポリアミド系、アクリル系、ウレタン系の樹脂からなるステイン・リリース剤等が用いられる。 The non-woven fabric having hydrophilicity may be formed of fibers showing appropriate hydrophilicity such as rayon fiber, or obtained by hydrophilizing a hydrophobic chemical fiber such as polyolefin fiber or polyester fiber. It may be formed of rayon fibers. As a method for obtaining a non-woven fabric containing hydrophobic chemical fibers that have been hydrophobized, for example, a method for obtaining a non-woven fabric by a spunbond method using a mixture of hydrophobic chemical fibers and a hydrophilic agent, hydrophobic chemistry. Examples thereof include a method of accommodating a hydrophilic agent when producing a spunbonded nonwoven fabric from fibers, and a method of impregnating a spunbonded nonwoven fabric obtained by using a hydrophobic chemical fiber with a hydrophilic agent. Examples of the hydrophilizing agent include anionic surfactants such as aliphatic sulfonates and higher alcohol sulfates, cationic surfactants such as quaternary ammonium salts, polyethylene glycol fatty acid esters, polyglycerin fatty acid esters, and sorbitan fatty acids. Nonionic surfactants such as esters, silicone-based surfactants such as polyoxyalkylene-modified silicones, and stain-releasing agents made of polyester-based, polyamide-based, acrylic-based, and urethane-based resins are used.
 液体透過性シート30として用いられる不織布の目付量(単位面積当たりの質量)は、吸収性物品に、良好な液体浸透性、柔軟性、強度及びクッション性を付与できる観点、及び吸収性物品の液体浸透速度を速める観点から、5~200g/m、8~150g/m、又は10~100g/mであってもよい。液体透過性シート30の厚さは、20~1400μm、50~1200μm、又は80~1000μmであってもよい。 The amount of texture (mass per unit area) of the non-woven fabric used as the liquid permeable sheet 30 is from the viewpoint of imparting good liquid permeability, flexibility, strength and cushioning property to the absorbent article, and the liquid of the absorbent article. From the viewpoint of increasing the permeation rate, it may be 5 to 200 g / m 2 , 8 to 150 g / m 2 , or 10 to 100 g / m 2 . The thickness of the liquid permeable sheet 30 may be 20 to 1400 μm, 50 to 1200 μm, or 80 to 1000 μm.
 液体不透過性シート40は、吸収層10又は樹脂層61に吸収された液体が液体不透過性シート40側から外部へ漏れ出すのを防止する。液体不透過性シート40は、樹脂シート、又は不織布であってもよい。樹脂シートは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等の合成樹脂からなるシートであってもよい。不織布は、耐水性のメルトブロー不織布を高強度のスパンボンド不織布で挟んだスパンボンド/メルトブロー/スパンボンド(SMS)不織布であってもよい。また、液体不透過性シート40が、樹脂シートと不織布(例えば、スパンボンド不織布、スパンレース不織布)との複合シートであってもよい。液体不透過性シート40は、装着時のムレが低減されて、着用者に与える不快感を軽減することができる等の観点から、通気性を有していてもよい。通気性を有する液体不透過性シート40として、例えば低密度ポリエチレン(LDPE)樹脂のシートを用いることができる。 The liquid impermeable sheet 40 prevents the liquid absorbed by the absorption layer 10 or the resin layer 61 from leaking to the outside from the liquid impermeable sheet 40 side. The liquid impermeable sheet 40 may be a resin sheet or a non-woven fabric. The resin sheet may be a sheet made of a synthetic resin such as polyethylene, polypropylene, or polyvinyl chloride. The non-woven fabric may be a spunbond / melt blow / spunbond (SMS) non-woven fabric in which a water resistant melt blow non-woven fabric is sandwiched between high-strength spunbond non-woven fabrics. Further, the liquid permeable sheet 40 may be a composite sheet of a resin sheet and a non-woven fabric (for example, a spunbonded non-woven fabric or a spunlaced non-woven fabric). The liquid impermeable sheet 40 may have breathability from the viewpoint that stuffiness at the time of wearing is reduced and discomfort given to the wearer can be reduced. As the liquid impermeable sheet 40 having breathability, for example, a sheet of low density polyethylene (LDPE) resin can be used.
 吸収性物品の着用感を損なわないよう、柔軟性を確保する観点から、液体不透過性シート40の目付量(単位面積当たりの質量)が5~100g/m、又は10~50g/mであってもよい。 From the viewpoint of ensuring flexibility so as not to impair the wearing feeling of the absorbent article, the basis weight (mass per unit area) of the liquid impermeable sheet 40 is 5 to 100 g / m 2 or 10 to 50 g / m 2. It may be.
 吸収性物品100は、例えば、吸水コア50及び補助シート60を液体透過性シート30及び液体不透過性シート40の間に配置することを含む方法により、製造することができる。液体不透過性シート40、補助シート60、吸水コア50及び液体透過性シート30の順に積層された積層体が、必要により加圧される。あるいは、液体透過性シート30と、コアラップシート20bと、吸水性樹脂粒子10a、又は吸水性樹脂粒子10aと繊維状物とを含む混合物と、コアラップシート20aと、補助シート60と、液体不透過性シート40とをこの順に配置し、形成された構造体を必要により加熱しながら加圧する方法により、吸収性物品100を得ることもできる。なお、各構成単位間を接着剤で結合させてもよい。 The absorbent article 100 can be manufactured, for example, by a method including arranging the water absorbing core 50 and the auxiliary sheet 60 between the liquid permeable sheet 30 and the liquid impermeable sheet 40. A laminate in which the liquid impermeable sheet 40, the auxiliary sheet 60, the water absorption core 50, and the liquid permeable sheet 30 are laminated in this order is pressurized as necessary. Alternatively, the liquid permeable sheet 30, the core wrap sheet 20b, the water-absorbent resin particles 10a, or the mixture containing the water-absorbent resin particles 10a and the fibrous material, the core wrap sheet 20a, the auxiliary sheet 60, and the liquid non-liquid. The absorbent article 100 can also be obtained by arranging the permeable sheets 40 in this order and pressurizing the formed structure while heating if necessary. In addition, each structural unit may be bonded with an adhesive.
 以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
[吸水性樹脂粒子の作製]
製造例1
<第1段目の重合反応>
 還流冷却器、滴下ロート、窒素ガス導入管、並びに、攪拌機として、翼径5cmの4枚傾斜パドル翼を2段で有する攪拌翼を備えた内径11cm、2L容の丸底円筒型セパラブルフラスコを準備した。このフラスコに、炭化水素分散媒としてn-ヘプタン293gをとり、高分子系分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社、ハイワックス1105A)0.736gを添加し、攪拌しつつ80℃まで昇温して分散剤を溶解した後、50℃まで冷却した。
[Preparation of water-absorbent resin particles]
Manufacturing example 1
<First stage polymerization reaction>
A round-bottomed cylindrical separable flask with an inner diameter of 11 cm and a volume of 2 L equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirring blade having four inclined paddle blades with a blade diameter of 5 cm in two stages as a stirrer. Got ready. To this flask, take 293 g of n-heptane as a hydrocarbon dispersion medium, add 0.736 g of a maleic anhydride-modified ethylene-propylene copolymer (Mitsui Chemicals Co., Ltd., High Wax 1105A) as a polymer-based dispersant, and stir. The temperature was raised to 80 ° C. to dissolve the dispersant, and then cooled to 50 ° C.
 内容積300mLのビーカーに、水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液92.0g(1.03モル)をとり、外部より冷却しつつ、20.9質量%の水酸化ナトリウム水溶液147.7gを滴下して75モル%の中和を行った後、増粘剤としてヒドロキシルエチルセルロース0.092g(住友精化株式会社、HECAW-15F)、水溶性ラジカル重合開始剤として過硫酸カリウム0.0736g(0.272ミリモル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.010g(0.057ミリモル)を加えて溶解し、第1段目の単量体水溶液を調製した。 In a beaker with an internal volume of 300 mL, take 92.0 g (1.03 mol) of an 80.5 mass% aqueous acrylic acid solution as a water-soluble ethylenically unsaturated monomer, and cool it from the outside to 20.9 mass%. After adding 147.7 g of an aqueous sodium hydroxide solution to neutralize 75 mol%, 0.092 g of hydroxylethyl cellulose (Sumitomo Seika Co., Ltd., HECAW-15F) as a thickener, as a water-soluble radical polymerization initiator. 0.0736 g (0.272 mmol) of potassium persulfate and 0.010 g (0.057 mmol) of ethylene glycol diglycidyl ether as an internal cross-linking agent were added and dissolved to prepare a first-stage monomer aqueous solution.
 そして、上記にて調製した第1段目の単量体水溶液をセパラブルフラスコに添加して、10分間攪拌した後、n-ヘプタン6.62gに界面活性剤としてHLB3のショ糖ステアリン酸エステル(三菱化学フーズ株式会社、リョートーシュガーエステルS-370)0.736gを加熱溶解した界面活性剤溶液を、さらに添加して、撹拌機の回転数を550rpmとして攪拌しながら系内を窒素で十分に置換した後、フラスコを70℃の水浴に浸漬して昇温し、重合を60分間行うことにより、第1段目の重合スラリー液を得た。 Then, the first-stage monomer aqueous solution prepared above was added to the separable flask, and after stirring for 10 minutes, 6.62 g of n-heptane was added as a surfactant to the sucrose stearic acid ester of HLB3. Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370) 0.736 g of a surfactant solution dissolved by heating is further added, and the inside of the system is sufficiently filled with nitrogen while stirring at a stirring speed of 550 rpm. After the replacement, the flask was immersed in a water bath at 70 ° C. to raise the temperature, and polymerization was carried out for 60 minutes to obtain a first-stage polymerization slurry solution.
<第2段目の重合反応>
 内容積500mLのビーカーに水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液128.8g(1.44モル)をとり、外部より冷却しつつ、27質量%の水酸化ナトリウム水溶液159.0gを滴下して75モル%の中和を行った後、水溶性ラジカル重合開始剤として過硫酸カリウム0.090g(0.333ミリモル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.0116g(0.067ミリモル)を加えて溶解し、第2段目の単量体水溶液を調製した。
<Second stage polymerization reaction>
Take 128.8 g (1.44 mol) of an 80.5 mass% acrylic acid aqueous solution as a water-soluble ethylenically unsaturated monomer in a beaker having an internal volume of 500 mL, and while cooling from the outside, 27 mass% sodium hydroxide. After 159.0 g of the aqueous solution was added dropwise to neutralize 75 mol%, 0.090 g (0.333 mmol) of potassium persulfate was used as the water-soluble radical polymerization initiator, and ethylene glycol diglycidyl ether was used as the internal cross-linking agent. 0116 g (0.067 mmol) was added and dissolved to prepare a second-stage monomer aqueous solution.
 撹拌機の回転数を1000rpmとして撹拌しながら、上記のセパラブルフラスコ系内を31℃に冷却した後、上記第2段目の単量体水溶液の全量を、第1段目の重合スラリー液に添加して、系内を窒素で30分間置換した後、再度、フラスコを70℃の水浴に浸漬して昇温し、重合反応を60分間行って、含水ゲル状重合体を得た。 After cooling the inside of the separable flask system to 31 ° C. while stirring at a stirring speed of 1000 rpm, the entire amount of the monomer aqueous solution in the second stage is added to the polymerized slurry liquid in the first stage. After adding and replacing the inside of the system with nitrogen for 30 minutes, the flask was again immersed in a water bath at 70 ° C. to raise the temperature, and the polymerization reaction was carried out for 60 minutes to obtain a hydrogel polymer.
 重合後、得られた含水ゲル状重合体に、45質量%のジエチレントリアミン5酢酸5ナトリウム水溶液0.589gを攪拌下で添加した。その後、125℃に設定した油浴にフラスコを浸漬し、n-ヘプタンと水との共沸蒸留により、n-ヘプタンを還流しながら、275.8gの水を系外へ抜き出した。その後、フラスコに表面架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液4.42g(0.507ミリモル)を添加し、83℃で2時間保持した。 After the polymerization, 0.589 g of a 45% by mass diethylenetriamine-5 sodium acetate aqueous solution was added to the obtained hydrogel polymer under stirring. Then, the flask was immersed in an oil bath set at 125 ° C., and 275.8 g of water was extracted from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. Then, 4.42 g (0.507 mmol) of a 2% by mass ethylene glycol diglycidyl ether aqueous solution was added to the flask as a surface cross-linking agent, and the flask was kept at 83 ° C. for 2 hours.
 次いで、n-ヘプタン6.62gに界面活性剤であるソルビタンモノラウレート(商品名:ノニオンLP-20R、HLB値8.6、日油株式会社製)0.074gが溶解した界面活性剤溶液をフラスコ内に添加した。 Next, a surfactant solution in which 0.074 g of sorbitan monolaurate (trade name: Nonion LP-20R, HLB value 8.6, manufactured by Nichiyu Co., Ltd.), which is a surfactant, was dissolved in 6.62 g of n-heptane was added. Added in the flask.
 その後、n-ヘプタンと水を125℃の油浴で加熱して蒸発させて乾燥させることによって、重合体粒子の乾燥品を得た。この重合体粒子を目開き850μmの篩に通過させ、重合体粒子の質量に対して0.2質量%の非晶質シリカ(オリエンタルシリカズコーポレーション、トクシールNP-S)を重合体粒子と混合し、非晶質シリカを含む吸水性樹脂粒子Aを233.0g得た。該吸水性樹脂粒子Aの中位粒子径は128μmであった。 Then, n-heptane and water were heated in an oil bath at 125 ° C. to evaporate and dry to obtain a dried product of polymer particles. The polymer particles are passed through a sieve having an opening of 850 μm, and 0.2% by mass of amorphous silica (Oriental Silicas Corporation, Toxile NP-S) with respect to the mass of the polymer particles is mixed with the polymer particles. , 233.0 g of water-absorbent resin particles A containing amorphous silica were obtained. The medium particle size of the water-absorbent resin particles A was 128 μm.
製造例2
 第2段目の含水ゲル状重合体の作製において、セパラブルフラスコ内の温度を31℃に代えて25℃に変更したこと、第2段目の重合後の含水ゲル状重合体において、共沸蒸留により256.8gの水を系外へ抜き出したこと、重合体粒子と混合する非晶質シリカの量を重合体粒子質量に対して0.5質量%に変更したこと以外は、製造例1と同様にして、吸水性樹脂粒子Bを230.2g得た。吸水性樹脂粒子Bの中位粒子径は358μmであった。
Manufacturing example 2
In the preparation of the hydrogel polymer in the second stage, the temperature in the separable flask was changed to 25 ° C instead of 31 ° C, and in the hydrogel polymer after the polymerization in the second stage, co-boiling was performed. Production Example 1 except that 256.8 g of water was extracted from the system by distillation and the amount of amorphous silica mixed with the polymer particles was changed to 0.5% by mass with respect to the mass of the polymer particles. In the same manner as above, 230.2 g of water-absorbent resin particles B were obtained. The medium particle size of the water-absorbent resin particles B was 358 μm.
製造例3
<第1段目の重合反応>
 還流冷却器、滴下ロート、窒素ガス導入管、並びに、攪拌機として、翼径5cmの4枚傾斜パドル翼を2段で有する攪拌翼を備えた内径11cm、2L容の丸底円筒型セパラブルフラスコを準備した。このフラスコに、炭化水素分散媒としてn-ヘプタン293gをとり、高分子系分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社、ハイワックス1105A)0.736gを添加し、攪拌しつつ80℃まで昇温して分散剤を溶解した後、50℃まで冷却した。
Manufacturing example 3
<First stage polymerization reaction>
A round-bottomed cylindrical separable flask with an inner diameter of 11 cm and a volume of 2 L equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirring blade having four inclined paddle blades with a blade diameter of 5 cm in two stages as a stirrer. Got ready. To this flask, take 293 g of n-heptane as a hydrocarbon dispersion medium, add 0.736 g of a maleic anhydride-modified ethylene-propylene copolymer (Mitsui Chemicals Co., Ltd., High Wax 1105A) as a polymer-based dispersant, and stir. The temperature was raised to 80 ° C. to dissolve the dispersant, and then cooled to 50 ° C.
 内容積300mLのビーカーに、水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液92.0g(1.03モル)をとり、外部より冷却しつつ、20.9質量%の水酸化ナトリウム水溶液147.7gを滴下して75モル%の中和を行った後、増粘剤としてヒドロキシルエチルセルロース0.092g(住友精化株式会社、HECAW-15F)、水溶性ラジカル重合開始剤として2,2’-アゾビス(2-アミジノプロパン)2塩酸塩0.092g(0.339ミリモル)、および過硫酸カリウム0.018g(0.067ミリモル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.0046g(0.026ミリモル)を加えて溶解し、第1段目の単量体水溶液を調製した。 In a beaker having an internal volume of 300 mL, 92.0 g (1.03 mol) of an 80.5 mass% acrylic acid aqueous solution as a water-soluble ethylenically unsaturated monomer was placed, and while being cooled from the outside, 20.9 mass%. After adding 147.7 g of an aqueous sodium hydroxide solution to neutralize 75 mol%, 0.092 g of hydroxylethyl cellulose (Sumitomo Seika Co., Ltd., HECAW-15F) as a thickener, as a water-soluble radical polymerization initiator. 0.092 g (0.339 mmol) of 2,2'-azobis (2-amidinopropane) dihydrochloride, 0.018 g (0.067 mmol) of potassium persulfate, and ethylene glycol diglycidyl ether as an internal cross-linking agent. 0046 g (0.026 mmol) was added and dissolved to prepare a first-stage monomer aqueous solution.
 そして、上記にて調製した第1段目の単量体水溶液をセパラブルフラスコに添加して、10分間攪拌した後、n-ヘプタン6.62gに界面活性剤としてHLB3のショ糖ステアリン酸エステル(三菱化学フーズ株式会社、リョートーシュガーエステルS-370)0.736gを加熱溶解した界面活性剤溶液を、さらに添加して、撹拌機の回転数を550rpmとして攪拌しながら系内を窒素で十分に置換した後、フラスコを70℃の水浴に浸漬して昇温し、重合を60分間行うことにより、第1段目の重合スラリー液を得た。 Then, the first-stage monomer aqueous solution prepared above was added to the separable flask, and after stirring for 10 minutes, 6.62 g of n-heptane was added as a surfactant to the sucrose stearic acid ester of HLB3. Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370) 0.736 g of a surfactant solution dissolved by heating is further added, and the inside of the system is sufficiently filled with nitrogen while stirring at a stirring speed of 550 rpm. After the replacement, the flask was immersed in a water bath at 70 ° C. to raise the temperature, and polymerization was carried out for 60 minutes to obtain a first-stage polymerization slurry solution.
<第2段目の重合反応>
 内容積500mLのビーカーに水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液128.8g(1.44モル)をとり、外部より冷却しつつ、27質量%の水酸化ナトリウム水溶液159.0gを滴下して75モル%の中和を行った後、水溶性ラジカル重合開始剤として2,2’-アゾビス(2-アミジノプロパン)2塩酸塩0.129g(0.476ミリモル)、および過硫酸カリウム0.026g(0.096ミリモル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.0116g(0.067ミリモル)を加えて溶解し、第2段目の単量体水溶液を調製した。
<Second stage polymerization reaction>
Take 128.8 g (1.44 mol) of an 80.5 mass% acrylic acid aqueous solution as a water-soluble ethylenically unsaturated monomer in a beaker having an internal volume of 500 mL, and while cooling from the outside, 27 mass% sodium hydroxide. After 159.0 g of the aqueous solution was added dropwise to neutralize 75 mol%, 0.129 g (0.476 mmol) of 2,2'-azobis (2-amidinopropane) dihydrochloride as a water-soluble radical polymerization initiator. , 0.026 g (0.096 mmol) of potassium persulfate, and 0.0116 g (0.067 mmol) of ethylene glycol diglycidyl ether as an internal cross-linking agent are added and dissolved to prepare a second-stage monomer aqueous solution. did.
 撹拌機の回転数を1000rpmとして撹拌しながら、上記のセパラブルフラスコ系内を25℃に冷却した後、上記第2段目の単量体水溶液の全量を、第1段目の重合スラリー液に添加して、系内を窒素で30分間置換した後、再度、フラスコを70℃の水浴に浸漬して昇温し、重合反応を60分間行った。これにより含水ゲル状重合体を得た。 After cooling the inside of the separable flask system to 25 ° C. while stirring at a stirring speed of 1000 rpm, the entire amount of the monomer aqueous solution in the second stage is added to the polymerized slurry liquid in the first stage. After the addition, the inside of the system was replaced with nitrogen for 30 minutes, and then the flask was again immersed in a water bath at 70 ° C. to raise the temperature, and the polymerization reaction was carried out for 60 minutes. As a result, a hydrogel polymer was obtained.
 重合後、含水ゲル状重合体に、45質量%のジエチレントリアミン5酢酸5ナトリウム水溶液0.589gを攪拌下で添加した。その後、125℃の油浴で反応液を昇温し、n-ヘプタンと水との共沸蒸留により、n-ヘプタンを還流しながら、232.0gの水を系外へ抜き出した。その後、フラスコに表面架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液4.42g(0.507ミリモル)を添加し、83℃で2時間保持した。 After the polymerization, 0.589 g of a 45% by mass diethylenetriamine-5 sodium acetate aqueous solution was added to the hydrogel polymer under stirring. Then, the temperature of the reaction solution was raised in an oil bath at 125 ° C., and 232.0 g of water was extracted from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. Then, 4.42 g (0.507 mmol) of a 2% by mass ethylene glycol diglycidyl ether aqueous solution was added to the flask as a surface cross-linking agent, and the flask was kept at 83 ° C. for 2 hours.
 次いで、n-ヘプタン6.62gに界面活性剤であるソルビタンモノラウレート(商品名:ノニオンLP-20R、HLB値8.6、日油株式会社製)0.074gが溶解した界面活性剤溶液をフラスコ内に添加した。 Next, a surfactant solution in which 0.074 g of sorbitan monolaurate (trade name: Nonion LP-20R, HLB value 8.6, manufactured by Nichiyu Co., Ltd.), which is a surfactant, was dissolved in 6.62 g of n-heptane was added. Added in the flask.
 その後、n-ヘプタンと水を125℃の油浴で加熱して蒸発させて乾燥させることによって、重合体粒子の乾燥品を得た。この重合体粒子を目開き850μmの篩に通過させ、重合体粒子の質量に対して0.2質量%の非晶質シリカ(オリエンタルシリカズコーポレーション、トクシールNP-S)を混合し、吸水性樹脂粒子Cを228.5g得た。吸水性樹脂粒子Cの中位粒子径は354μmであった。 Then, n-heptane and water were heated in an oil bath at 125 ° C. to evaporate and dry to obtain a dried product of polymer particles. The polymer particles are passed through a sieve having an opening of 850 μm, 0.2% by mass of amorphous silica (Oriental Silicas Corporation, Toxile NP-S) is mixed with respect to the mass of the polymer particles, and a water-absorbent resin is mixed. 228.5 g of particle C was obtained. The medium particle size of the water-absorbent resin particles C was 354 μm.
製造例4
 共沸蒸留により216.7gの水を系外へ抜き出したこと以外は、製造例3と同様にして、吸水性樹脂粒子Dを229.0g得た。吸水性樹脂粒子Dの中位粒子径は348μmであった。
Manufacturing example 4
229.0 g of water-absorbent resin particles D were obtained in the same manner as in Production Example 3 except that 216.7 g of water was extracted from the system by azeotropic distillation. The medium particle size of the water-absorbent resin particles D was 348 μm.
製造例5
 共沸蒸留により201.4gの水を系外へ抜き出したこと以外は、製造例3と同様にして、吸水性樹脂粒子E227.6gを得た。吸水性樹脂粒子Eの中位粒子径は356μmであった。
Production example 5
Water-absorbent resin particles E227.6 g were obtained in the same manner as in Production Example 3 except that 201.4 g of water was extracted from the system by azeotropic distillation. The medium particle size of the water-absorbent resin particles E was 356 μm.
製造例6
 還流冷却器、滴下ロート、窒素ガス導入管、及び、撹拌機(翼径5cmの4枚傾斜パドル翼(フッ素樹脂にて表面処理したもの)を2段有する撹拌翼)を備えた内径11cm、内容積2Lの、4箇所の側壁バッフル付き丸底円筒型セパラブルフラスコ(バッフル長さ:10cmバッフル幅:7mm)を準備した。このフラスコに、炭化水素分散媒としてn-ヘプタン451.4gを添加し、界面活性剤としてソルビタンモノラウレート(ノニオンLP-20R、HLB値:8.6、日油株式会社製)1.288gを添加することにより混合物を得た。この混合物を撹拌機の回転数300rpmで撹拌しつつ50℃まで昇温することによりソルビタンモノラウレートをn-ヘプタンに溶解させた後、混合物を40℃まで冷却した。
Production example 6
Inner diameter 11 cm, contents equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirrer (a stirrer blade having two stages of four inclined paddle blades (surface treated with fluororesin) with a blade diameter of 5 cm). A round-bottomed cylindrical separable flask with a stack of 2 L and four side wall baffles (baffle length: 10 cm, baffle width: 7 mm) was prepared. To this flask, 451.4 g of n-heptane as a hydrocarbon dispersion medium was added, and 1.288 g of sorbitan monolaurate (Nonion LP-20R, HLB value: 8.6, manufactured by NOF CORPORATION) was added as a surfactant. The mixture was obtained by addition. The sorbitan monolaurate was dissolved in n-heptane by heating the mixture to 50 ° C. while stirring at a stirring speed of 300 rpm, and then the mixture was cooled to 40 ° C.
 次に、内容積500mLの三角フラスコに80.5質量%のアクリル酸水溶液92.0g(アクリル酸:1.03モル)を入れた。続いて、外部より氷冷しながら20.9質量%水酸化ナトリウム水溶液147.7gを滴下することによってアクリル酸の中和を行うことによりアクリル酸部分中和物水溶液を得た。次に、水溶性ラジカル重合開始剤として過硫酸カリウム0.1012g(0.374ミリモル)をアクリル酸部分中和物水溶液に加えた後に溶解させることによりモノマー水溶液を調製した。 Next, 92.0 g (acrylic acid: 1.03 mol) of an 80.5 mass% acrylic acid aqueous solution was placed in an Erlenmeyer flask having an internal volume of 500 mL. Subsequently, 147.7 g of a 20.9 mass% sodium hydroxide aqueous solution was added dropwise from the outside while cooling with ice to neutralize the acrylic acid, thereby obtaining an aqueous solution of a partially neutralized acrylic acid. Next, a monomer aqueous solution was prepared by adding 0.1012 g (0.374 mmol) of potassium persulfate as a water-soluble radical polymerization initiator to the acrylic acid partially neutralized aqueous solution and then dissolving the mixture.
 上述のモノマー水溶液を上述のセパラブルフラスコに添加した後、系内を窒素で充分に置換した。その後、撹拌機の回転数700rpmで撹拌しつつ、フラスコを70℃の水浴に浸漬した後に60分間保持して重合を完了させることにより含水ゲル状重合体を得た。 After adding the above-mentioned aqueous monomer solution to the above-mentioned separable flask, the inside of the system was sufficiently replaced with nitrogen. Then, the flask was immersed in a water bath at 70 ° C. while stirring at a rotation speed of 700 rpm of the stirrer, and then held for 60 minutes to complete the polymerization, thereby obtaining a hydrogel polymer.
 その後、撹拌機の回転数1000rpmで撹拌しつつ、生成した含水ゲル状重合体、n-ヘプタン及び界面活性剤を含む重合液に、粉末状無機凝集剤として非晶質シリカ(オリエンタルシリカズコーポレーション、トクシールNP-S)0.092gを予めn-ヘプタン100gに分散させることにより得られた分散液を添加した後、10分間混合した。その後、反応液を含むフラスコを125℃の油浴に浸漬し、n-ヘプタンと水との共沸蒸留によりn-ヘプタンを還流しながら98.0gの水を系外へ抜き出した。その後、表面架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液4.14g(エチレングリコールジグリシジルエーテル:0.475ミリモル)を添加した後、内温83±2℃で2時間保持した。 After that, while stirring at a stirring speed of 1000 rpm, amorphous silica (Oriental Silicas Corporation, oriental silicas corporation, etc.) was added to the polymer solution containing the produced hydrogel polymer, n-heptane and a surfactant as a powdery inorganic flocculant. A dispersion obtained by previously dispersing 0.092 g of Toxile NP-S) in 100 g of n-heptane was added and then mixed for 10 minutes. Then, the flask containing the reaction solution was immersed in an oil bath at 125 ° C., and 98.0 g of water was extracted from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. Then, 4.14 g (ethylene glycol diglycidyl ether: 0.475 mmol) of 2% by mass of an ethylene glycol diglycidyl ether aqueous solution was added as a surface cross-linking agent, and the mixture was maintained at an internal temperature of 83 ± 2 ° C. for 2 hours.
 次いで、n-ヘプタン6.62gに界面活性剤であるソルビタンモノラウレート(商品名:ノニオンLP-20R、HLB値8.6、日油株式会社製)0.074gが溶解した界面活性剤溶液をフラスコ内に添加した。 Next, a surfactant solution in which 0.074 g of sorbitan monolaurate (trade name: Nonion LP-20R, HLB value 8.6, manufactured by Nichiyu Co., Ltd.), which is a surfactant, was dissolved in 6.62 g of n-heptane was added. Added in the flask.
 その後、水及びn-ヘプタンを125℃の油浴で加熱して蒸発させ、系内からの蒸発物がほとんど留出されなくなるまで乾燥させることにより、重合体粒子の乾燥品を得た。この重合体粒子を目開き850μmの篩に通すことにより吸水性樹脂粒子Fを90.1g得た。吸水性樹脂粒子Fの中位粒子径は352μmであった。 Then, water and n-heptane were heated in an oil bath at 125 ° C. to evaporate, and dried until almost no evaporation from the system was distilled off to obtain a dried product of polymer particles. The polymer particles were passed through a sieve having an opening of 850 μm to obtain 90.1 g of water-absorbent resin particles F. The medium particle size of the water-absorbent resin particles F was 352 μm.
製造例7
 含水ゲル状重合体に粉末状無機凝集剤を添加しなかったこと以外は製造例6と同様にして、吸水性樹脂粒子Gを90.6g得た。吸水性樹脂粒子Gの中位粒子径は156μmであった。
Production example 7
90.6 g of water-absorbent resin particles G were obtained in the same manner as in Production Example 6 except that the powdery inorganic flocculant was not added to the hydrogel polymer. The medium particle size of the water-absorbent resin particles G was 156 μm.
製造例8
 共沸蒸留により104.0gの水を系外へ抜き出したこと、表面架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液8.28g(エチレングリコールジグリシジルエーテル:0.951ミリモル)に変更したこと以外は製造例6と同様にして、吸水性樹脂粒子Hを90.3g得た。吸水性樹脂粒子Hの中位粒子径は420μmであった。
Production Example 8
104.0 g of water was extracted from the system by azeotropic distillation, and the surface cross-linking agent was changed to 8.28 g of an ethylene glycol diglycidyl ether aqueous solution (ethylene glycol diglycidyl ether: 0.951 mmol). Except for the above, 90.3 g of water-absorbent resin particles H were obtained in the same manner as in Production Example 6. The medium particle size of the water-absorbent resin particles H was 420 μm.
製造例9
 第2段目の含水ゲル状重合体の作製において、セパラブルフラスコ内の温度を31℃に代えて25℃に変更したこと、第2段目の重合後の含水ゲル状重合体において、共沸蒸留により256.5gの水を系外へ抜き出したこと、重合体粒子と混合する非晶質シリカの量を重合体粒子の質量に対して0.25質量%に変更したこと以外は、製造例1と同様にして、吸水性樹脂粒子Jを228.2g得た。吸水性樹脂粒子Jの中位粒子径は360μmであった。
Manufacturing example 9
In the preparation of the hydrogel polymer in the second stage, the temperature in the separable flask was changed to 25 ° C instead of 31 ° C, and in the hydrogel polymer after the polymerization in the second stage, co-boiling was performed. Production example except that 256.5 g of water was extracted from the system by distillation and the amount of amorphous silica mixed with the polymer particles was changed to 0.25% by mass with respect to the mass of the polymer particles. In the same manner as in 1, 228.2 g of water-absorbent resin particles J was obtained. The medium particle size of the water-absorbent resin particles J was 360 μm.
製造例10
 第1段目の撹拌速度を550rpmから500rpmに変更し、第2段目の含水ゲル状重合体の作製において、セパラブルフラスコ内の温度を31℃に代えて25℃に変更したこと、第2段目の重合後の含水ゲル状重合体において、共沸蒸留により257.2gの水を系外へ抜き出したこと、表面架橋工程後に界面活性剤を添加しなかったこと以外は、製造例1と同様にして、吸水性樹脂粒子Kを231.2g得た。吸水性樹脂粒子Kの中位粒子径は359μmであった。
Production Example 10
The stirring speed of the first stage was changed from 550 rpm to 500 rpm, and in the preparation of the hydrogel polymer of the second stage, the temperature inside the separable flask was changed to 25 ° C instead of 31 ° C. In the hydrogel polymer after the stage polymerization, 257.2 g of water was extracted from the system by co-boiling distillation, and no surfactant was added after the surface cross-linking step. Similarly, 231.2 g of water-absorbent resin particles K were obtained. The medium particle size of the water-absorbent resin particles K was 359 μm.
製造例11
 第2段目の含水ゲル状重合体の作製において、セパラブルフラスコ内の温度を31℃に代えて28℃に変更したこと、共沸蒸留により234.7gの水を系外へ抜き出したこと、表面架橋工程後に界面活性剤を添加しなかったこと以外は、製造例3と同様にして、吸水性樹脂粒子Lを230.1g得た。吸水性樹脂粒子Lの中位粒子径は308μmであった。
Production Example 11
In the preparation of the water-containing gel polymer in the second stage, the temperature inside the separable flask was changed to 28 ° C instead of 31 ° C, and 234.7 g of water was extracted from the system by azeotropic distillation. 230.1 g of water-absorbent resin particles L were obtained in the same manner as in Production Example 3 except that no surfactant was added after the surface cross-linking step. The medium particle size of the water-absorbent resin particles L was 308 μm.
製造例12
 第2段目の含水ゲル状重合体の作製において、セパラブルフラスコ内の温度を31℃に代えて25℃に変更したこと、第2段目の重合後の含水ゲル状重合体において、共沸蒸留により256.5gの水を系外へ抜き出したこと、表面架橋工程後に界面活性剤を添加しなかったこと、非晶質シリカを混合しなかったこと以外は、製造例1と同様にして、吸水性樹脂粒子Mを227.2g得た。吸水性樹脂粒子Mの中位粒子径は351μmであった。
Production Example 12
In the preparation of the water-containing gel polymer in the second stage, the temperature in the separable flask was changed to 25 ° C instead of 31 ° C, and in the water-containing gel polymer after the polymerization in the second stage, co-boiling was performed. Similar to Production Example 1, except that 256.5 g of water was extracted from the system by distillation, no surfactant was added after the surface cross-linking step, and amorphous silica was not mixed. 227.2 g of water-absorbent resin particles M were obtained. The medium particle size of the water-absorbent resin particles M was 351 μm.
製造例13
 第2段目の含水ゲル状重合体の作製において、セパラブルフラスコ内の温度を31℃に代えて25℃に変更したこと、第2段目の重合後の含水ゲル状重合体において、共沸蒸留により256.5gの水を系外へ抜き出したこと、表面架橋工程後に界面活性剤を添加しなかったこと、重合体粒子の質量に対して0.5質量%の非晶質シリカ(東ソー・シリカ株式会社製、Nipsil SS-30P)を重合体粒子と混合したこと以外は、製造例1と同様にして、吸水性樹脂粒子Nを229.2g得た。吸水性樹脂粒子Nの中位粒子径は359μmであった。
Production Example 13
In the preparation of the hydrogel polymer in the second stage, the temperature in the separable flask was changed to 25 ° C instead of 31 ° C, and in the hydrogel polymer after the polymerization in the second stage, co-boiling 256.5 g of water was extracted from the system by distillation, no surfactant was added after the surface cross-linking step, and 0.5% by mass of amorphous silica with respect to the mass of the polymer particles (Tosoh. 229.2 g of water-absorbent resin particles N were obtained in the same manner as in Production Example 1 except that Nipsil SS-30P manufactured by Silica Co., Ltd. was mixed with the polymer particles. The medium particle size of the water-absorbent resin particles N was 359 μm.
製造例14
 還流冷却器、滴下ロート、窒素ガス導入管、並びに、攪拌機として、翼径5cmの4枚傾斜パドル翼を2段で有する攪拌翼を備えた内径11cm、2L容の丸底円筒型セパラブルフラスコを準備した。このフラスコに、炭化水素分散媒としてn-ヘプタン293gをとり、高分子系分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社、ハイワックス1105A)0.736gを添加し、攪拌しつつ80℃まで昇温して分散剤を溶解した後、50℃まで冷却した。
Production example 14
A round-bottomed cylindrical separable flask with an inner diameter of 11 cm and a volume of 2 L equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirring blade having four inclined paddle blades with a blade diameter of 5 cm in two stages as a stirrer. Got ready. To this flask, take 293 g of n-heptane as a hydrocarbon dispersion medium, add 0.736 g of a maleic anhydride-modified ethylene-propylene copolymer (Mitsui Chemicals Co., Ltd., High Wax 1105A) as a polymer-based dispersant, and stir. The temperature was raised to 80 ° C. to dissolve the dispersant, and then cooled to 50 ° C.
 内容積300mLのビーカーに、水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液92.0g(1.03モル)をとり、外部より冷却しつつ、20.9質量%の水酸化ナトリウム水溶液147.7gを滴下して75モル%の中和を行った後、増粘剤としてヒドロキシルエチルセルロース1.38g(住友精化株式会社、HECAW-15F)、水溶性ラジカル重合開始剤として過硫酸カリウム0.0736g(0.272ミリモル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.010g(0.057ミリモル)を加えて溶解し、第1段目の単量体水溶液を調製した。 In a beaker with an internal volume of 300 mL, take 92.0 g (1.03 mol) of an 80.5 mass% aqueous acrylic acid solution as a water-soluble ethylenically unsaturated monomer, and cool it from the outside to 20.9 mass%. After 147.7 g of an aqueous sodium hydroxide solution was added dropwise to neutralize 75 mol%, 1.38 g of hydroxylethyl cellulose (Sumitomo Seika Co., Ltd., HECAW-15F) was used as a thickener, and as a water-soluble radical polymerization initiator. 0.0736 g (0.272 mmol) of potassium persulfate and 0.010 g (0.057 mmol) of ethylene glycol diglycidyl ether as an internal cross-linking agent were added and dissolved to prepare a first-stage monomer aqueous solution.
 そして、上記にて調製した単量体水溶液をセパラブルフラスコに添加して、10分間攪拌した後、n-ヘプタン6.62gに界面活性剤としてHLB3のショ糖ステアリン酸エステル(三菱化学フーズ株式会社、リョートーシュガーエステルS-370)0.736gを加熱溶解した界面活性剤溶液を、さらに添加して、撹拌機の回転数を400rpmとして攪拌しながら系内を窒素で十分に置換した後、フラスコを70℃の水浴に浸漬して昇温し、重合を60分間行うことにより、第1段目の重合スラリー液を得た。 Then, the monomer aqueous solution prepared above was added to the separable flask, and after stirring for 10 minutes, sucrose stearic acid ester of HLB3 as a surfactant in 6.62 g of n-heptane (Mitsubishi Chemical Foods Co., Ltd.) , Ryoto Sugar Ester S-370) 0.736 g of a surfactant solution is further added, and the inside of the system is sufficiently replaced with nitrogen while stirring at a stirring speed of 400 rpm, and then the flask. Was immersed in a water bath at 70 ° C. to raise the temperature, and polymerization was carried out for 60 minutes to obtain a first-stage polymerization slurry solution.
 その後、125℃に設定した油浴にフラスコを浸漬し、n-ヘプタンと水との共沸蒸留により、n-ヘプタンを還流しながら、116gの水を系外へ抜き出した。その後、フラスコに表面架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液1.84g(0.211ミリモル)を添加し、83℃で2時間保持した。 After that, the flask was immersed in an oil bath set at 125 ° C., and 116 g of water was extracted from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. Then, 1.84 g (0.211 mmol) of a 2% by mass ethylene glycol diglycidyl ether aqueous solution was added to the flask as a surface cross-linking agent, and the flask was kept at 83 ° C. for 2 hours.
 その後、n-ヘプタンと水を125℃にて蒸発させて乾燥させることによって、重合体粒子の乾燥品を得た。この重合体粒子を目開き850μmの篩に通過させ、重合体粒子の質量に対して0.2質量%の非晶質シリカ(オリエンタルシリカズコーポレーション、トクシールNP-S)を重合体粒子と混合し、非晶質シリカを含む吸水性樹脂粒子Pを90.9g得た。該吸水性樹脂粒子Pの中位粒子径は422μmであった。 Then, n-heptane and water were evaporated at 125 ° C. and dried to obtain a dried product of polymer particles. The polymer particles are passed through a sieve having an opening of 850 μm, and 0.2% by mass of amorphous silica (Oriental Silicas Corporation, Toxile NP-S) with respect to the mass of the polymer particles is mixed with the polymer particles. , 90.9 g of water-absorbent resin particles P containing amorphous silica were obtained. The medium particle size of the water-absorbent resin particles P was 422 μm.
[中位粒子径の測定]
 粒子の中位粒子径は下記手順により測定した。すなわち、JIS標準篩を上から、目開き600μmの篩、目開き500μmの篩、目開き425μmの篩、目開き300μmの篩、目開き250μmの篩、目開き180μmの篩、目開き150μmの篩、及び、受け皿の順に組み合わせた。組み合わせた最上の篩に、粒子50gを入れ、ロータップ式振とう器(株式会社飯田製作所製)を用いてJIS Z 8815(1994)に準じて分級した。分級後、各篩上に残った粒子の質量を全量に対する質量百分率として算出し粒度分布を求めた。この粒度分布に関して粒子径の大きい方から順に篩上を積算することにより、篩の目開きと篩上に残った粒子の質量百分率の積算値との関係を対数確率紙にプロットした。確率紙上のプロットを直線で結ぶことにより、積算質量百分率50質量%に相当する粒子径を中位粒子径として得た。
[Measurement of medium particle size]
The medium particle size of the particles was measured by the following procedure. That is, from the top, the JIS standard sieve has a mesh size of 600 μm, a mesh size of 500 μm, a mesh size of 425 μm, a mesh size of 300 μm, a mesh size of 250 μm, a mesh size of 180 μm, and a mesh size of 150 μm. , And the saucer in that order. 50 g of particles were placed in the best combined sieve and classified according to JIS Z 8815 (1994) using a low-tap shaker (manufactured by Iida Seisakusho Co., Ltd.). After classification, the mass of the particles remaining on each sieve was calculated as a mass percentage with respect to the total amount, and the particle size distribution was obtained. The relationship between the mesh size of the sieve and the integrated value of the mass percentage of the particles remaining on the sieve was plotted on a logarithmic probability paper by integrating the particle size distribution on the sieve in order from the largest particle size. By connecting the plots on the probability paper with a straight line, the particle size corresponding to the cumulative mass percentage of 50% by mass was obtained as the medium particle size.
[生理食塩水の吸水量(g/g)]
 吸水性樹脂粒子の生理食塩水吸水量は以下の方法で測定した。500mL容のビーカーに、生理食塩水500gを量り取り、マグネチックスターラーバー(8mmφ×30mm、リング無し)で600rpm(r/min)で撹拌させながら、吸水性樹脂粒子2.0gを、ママコが発生しないように分散させた。撹拌させた状態で60分間放置し、吸水性樹脂粒子を十分に膨潤させた。その後、あらかじめ目開き75μm標準篩の質量We(g)を測定しておき、これを用いて、上記ビーカーの内容物をろ過し、篩を水平に対して約30度の傾斜角となるように傾けた状態で、30分間放置することにより余剰の水分をろ別した。膨潤ゲルの入った篩の質量Wf(g)を測定し、以下の式により、生理食塩水の吸水量を求めた。
   生理食塩水の吸水量=(Wf-We)/2.0
[Water absorption of saline (g / g)]
The amount of physiological saline absorbed by the water-absorbent resin particles was measured by the following method. Weigh 500 g of physiological saline in a 500 mL beaker and stir with a magnetic stirrer bar (8 mmφ x 30 mm, no ring) at 600 rpm (r / min) to generate 2.0 g of water-absorbent resin particles. Dispersed so as not to. The water-absorbent resin particles were sufficiently swollen by being left to stand for 60 minutes in a stirred state. After that, the mass We (g) of a standard sieve having an opening of 75 μm is measured in advance, and the contents of the beaker are filtered using this so that the sieve has an inclination angle of about 30 degrees with respect to the horizontal. Excess water was filtered off by leaving it in an inclined state for 30 minutes. The mass Wf (g) of the sieve containing the swelling gel was measured, and the amount of water absorbed by the physiological saline was determined by the following formula.
Water absorption of saline = (Wf-We) /2.0
[吸水コアの製造]
製造例15
 目付量38g/mのエアレイド不織布(Chinasilk(Shanghai)New Material Technology Co.,Ltd.MB0401-T1)を14cm×42cmのサイズに2枚分裁断し、エアレイド不織布―1、2とした。エアレイド不織布―1に14cm×42cmのサイズに裁断した目付量45g/mのエアスルー不織布(Hualong(Nanjing)製)を載置し、気流型混合装置(有限会社オーテック社製、パッドフォーマー)を用い、不織布の中心部10cm×40cmの範囲に対して6.0gの吸水性樹脂粒子(住友精化株式会社製のアクアキープSA60S、生理食塩水の吸水量60g/g、中位粒子径342μm)を均一に散布させた。
[Manufacturing of water absorption core]
Production example 15
Two air-laid non-woven fabrics (Chinasilk (Shanghai) New Material Technology Co., Ltd. MB0401-T1) having a basis weight of 38 g / m 2 were cut into two pieces having a size of 14 cm × 42 cm to obtain air-laid non-woven fabrics-1 and 2. An air-through non-woven fabric (manufactured by Hualong (Nanjining)) with a grain size of 45 g / m 2 cut into a size of 14 cm x 42 cm is placed on the air-laid non-woven fabric-1 and an air flow type mixer (manufactured by Otec Co., Ltd., pad former) is installed. 6.0 g of water-absorbent resin particles (Aquakeep SA60S manufactured by Sumitomo Seika Chemical Co., Ltd., water absorption of physiological saline 60 g / g, medium particle diameter 342 μm) for a range of 10 cm × 40 cm in the center of the non-woven fabric. Was evenly sprayed.
 エアレイド不織布―2にホットメルト塗工機(株式会社ハリーズ、ポンプ:Marshal150、テーブル:XA-DT、タンク設定温度:150℃、ホース内設定温度:165℃、ガンヘッド設定温度:170℃)で、全量0.2gのホットメルト接着剤(ヘンケルジャパン株式会社、ME-765E)を、10mm間隔で12本の直線状に塗布した。接着剤の塗布パターンは、スパイラルストライプであった。エアレイド系不織布―2のホットメルトが付着した面を、エアスルー不織布の吸水性樹脂粒子を散布された面に両端を揃えて合わせ、剥離紙で挟み、上下反転させた。その後、剥離紙およびエアレイド不織布―1を取り除いた。 Air-laid non-woven fabric-2 with hot melt coating machine (Henkel Co., Ltd., pump: Marshal150, table: XA-DT, tank set temperature: 150 ° C, hose set temperature: 165 ° C, gun head set temperature: 170 ° C) 0.2 g of hot melt adhesive (Henkel Japan Ltd., ME-765E) was applied in 12 linear lines at 10 mm intervals. The adhesive application pattern was a spiral stripe. The surface of the air-laid non-woven fabric-2 to which the hot melt was attached was aligned with the surface on which the water-absorbent resin particles of the air-through non-woven fabric were sprayed, and sandwiched between release papers and turned upside down. Then, the release paper and the air-laid non-woven fabric-1 were removed.
 エアスルー不織布のうち、吸水性樹脂粒子を散布した面とは逆の面に対し、気流型混合装置を用い、不織布の中心部10cm×40cmの範囲に対して3.0gの吸水性樹脂粒子(住友精化株式会社製のアクアキープSA60S、生理食塩水の吸水量60g/g、中位粒子径342μm)を均一に散布させた。取り除いていたエアレイド系不織布―1に上記と同様の操作にてホットメルトを0.2g塗布した。エアスルー不織布の上からエアレイド不織布―1を接着剤塗布面が下側になるよう両端を揃えて合わせ、剥離紙で挟み、ラミネート機(株式会社ハシマ、Straight Linear Fussing Press、型式HP-600LFS)を110℃、0.1MPaの条件にてプレスして張り合わせ、吸水性樹脂粒子が散布されている10cm×40cmのみ切り取り、吸水コアを作製した。これを吸水コアAとした。吸水コアAは、図4に示す吸水コアと同様の構成を有する。 Of the air-through non-woven fabric, 3.0 g of water-absorbent resin particles (Sumitomo) was used on the surface opposite to the surface on which the water-absorbent resin particles were sprayed, using an air-flow type mixer to cover a range of 10 cm x 40 cm in the center of the non-woven fabric. Aquakeep SA60S manufactured by Seika Co., Ltd., water absorption of physiological saline 60 g / g, medium particle size 342 μm) were uniformly sprayed. 0.2 g of hot melt was applied to the removed air-laid nonwoven fabric-1 by the same operation as described above. Align both ends of the air-laid non-woven fabric-1 from the top of the air-through non-woven fabric so that the adhesive coating surface is on the lower side, sandwich it with release paper, and use a laminating machine (Hashima Co., Ltd., Straight Liner Fusion Press, model HP-600LFS) 110 It was pressed and bonded under the conditions of ° C. and 0.1 MPa, and only 10 cm × 40 cm on which the water-absorbent resin particles were sprayed was cut out to prepare a water-absorbent core. This was designated as the water absorption core A. The water absorption core A has the same configuration as the water absorption core shown in FIG.
製造例16
 気流型混合装置(有限会社オーテック社製、パッドフォーマー)を用いて、吸水性樹脂粒子(住友精化株式会社製アクアキープSA60S、生理食塩水の吸水量60g/g、中位粒子径342μm)12.0g及び粉砕パルプ3.0gを空気抄造によって均一混合することにより、40cm×10cmの大きさのシート状の吸収層を作製した。次に、シート状の吸収層と同じ大きさを有する目付量16g/mの2枚のティッシュで吸収層の上下を挟んだ状態で全体に196kPaの荷重を30秒間加えてプレスすることにより吸水コアを作製した。これを吸水コアBとした。作製した吸水コアBは、2枚のティッシュの間に、吸水性樹脂粒子及び粉砕パルプからなる吸収層が配置されたものである。
Production example 16
Water-absorbent resin particles (Aquakeep SA60S manufactured by Sumitomo Seika Chemical Co., Ltd., water absorption of physiological saline 60 g / g, medium particle diameter 342 μm) using an air flow type mixer (Padformer manufactured by Otec Co., Ltd.) A sheet-shaped absorbent layer having a size of 40 cm × 10 cm was prepared by uniformly mixing 12.0 g and 3.0 g of pulverized pulp by air papermaking. Next, water absorption is performed by applying a load of 196 kPa to the entire surface for 30 seconds with the upper and lower sides of the absorbent layer sandwiched between two sheets of tissue having the same size as the sheet-shaped absorbent layer and having a basis weight of 16 g / m 2. The core was made. This was designated as the water absorption core B. The produced water-absorbing core B has an absorbing layer made of water-absorbing resin particles and crushed pulp arranged between two sheets of tissue.
[試験用の吸収性物品の作製]
実施例1
(補助シートの作製)
 目付量16g/mのティッシュを14cm×42cmのサイズに2枚分裁断し、補助シートの上部用シート基材、下部用シート基材とした。下部用シート基材のロール内側面に接着剤(スリーエムジャパン株式会社製、3Mスプレーのり77)を0.3g均一に塗布した後、速やかに気流型混合装置(有限会社オーテック社製、パッドフォーマー)を用いて、下部用シート基材の中心部10cm×40cmの範囲に対し、製造例1にて作製した吸水性樹脂粒子A1.5gを均一に散布させた。上部用シート基材に接着剤(スリーエムジャパン株式会社製、3Mスプレーのり77)を0.3g均一に塗布した。上部用シート基材の接着剤を塗布した面を下部用シート基材の吸水性樹脂が散布された面に両端を揃えて合わせ重ね、面全体を接着させ、吸水性樹脂が散布されている範囲(10cm×40cm)を切り取り、補助シートを得た。
[Preparation of absorbent articles for testing]
Example 1
(Preparation of auxiliary sheet)
Two pieces of tissue having a basis weight of 16 g / m 2 were cut into a size of 14 cm × 42 cm to obtain an upper sheet base material and a lower sheet base material of the auxiliary sheet. After uniformly applying 0.3 g of adhesive (3M Spray Glue 77 manufactured by 3M Japan Ltd.) to the inner surface of the roll of the lower sheet base material, promptly airflow type mixing device (manufactured by Otec Co., Ltd., pad former) ) Was used to uniformly spray 1.5 g of the water-absorbent resin particles A prepared in Production Example 1 over a range of 10 cm × 40 cm in the center of the lower sheet base material. 0.3 g of an adhesive (3M spray glue 77 manufactured by 3M Japan Ltd.) was uniformly applied to the upper sheet base material. The surface coated with the adhesive of the upper sheet base material is overlapped with the surface on which the water-absorbent resin of the lower sheet base material is sprayed, with both ends aligned, and the entire surface is adhered to the area where the water-absorbent resin is sprayed. (10 cm × 40 cm) was cut out to obtain an auxiliary sheet.
(試験用の吸収性物品の作製)
 得られた補助シートの上部用シート基材上に製造例15にて作製した吸水コアAを載せ、吸収性物品を得た。
(Preparation of absorbent articles for testing)
The water-absorbing core A prepared in Production Example 15 was placed on the upper sheet base material of the obtained auxiliary sheet to obtain an absorbent article.
実施例2
 補助シート用の吸水性樹脂粒子を製造例2にて作製した吸水性樹脂粒子Bに変更したこと以外は実施例1と同様にして吸収性物品を得た。
Example 2
An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles B produced in Production Example 2.
実施例3
 補助シート用の吸水性樹脂粒子を製造例3にて作製した吸水性樹脂粒子Cに変更したこと以外は実施例1と同様にして吸収性物品を得た。
Example 3
An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles C produced in Production Example 3.
実施例4
 補助シート用の吸水性樹脂粒子を製造例4にて作製した吸水性樹脂粒子Dに変更したこと以外は実施例1と同様にして吸収性物品を得た。
Example 4
An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles D produced in Production Example 4.
実施例5
 補助シート用の吸水性樹脂粒子を製造例5にて作製した吸水性樹脂粒子Eに変更したこと以外は実施例1と同様にして吸収性物品を得た。
Example 5
An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles E produced in Production Example 5.
実施例6
 補助シート用の吸水性樹脂粒子を製造例6にて作製した吸水性樹脂粒子Fに変更したこと以外は実施例1と同様にして吸収性物品を得た。
Example 6
An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles F produced in Production Example 6.
実施例7
 補助シート用の吸水性樹脂粒子を製造例7にて作製した吸水性樹脂粒子Gに変更したこと以外は実施例1と同様にして吸収性物品を得た。
Example 7
An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles G produced in Production Example 7.
実施例8
 補助シート用の吸水性樹脂粒子を製造例8にて作製した吸水性樹脂粒子Hに変更したこと以外は実施例1と同様にして吸収性物品を得た。
Example 8
An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles H produced in Production Example 8.
実施例9
 補助シート用の吸水性樹脂粒子を製造例9にて作製した吸水性樹脂粒子Jに変更したこと以外は実施例1と同様にして吸収性物品を得た。
Example 9
An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles J produced in Production Example 9.
実施例10
 補助シートの上部用シート基材及び下部用シート基材を目付量17g/mのスパンボンド不織布(Toray Polytech(Nantong)Co.,Ltd.製、商品名:LIVSEN)に変更したこと、並びに補助シート用の吸水性樹脂粒子を製造例6にて作製した吸水性樹脂粒子Fに変更したこと以外は実施例1と同様にして吸収性物品を得た。
Example 10
The upper sheet base material and the lower sheet base material of the auxiliary sheet were changed to spunbonded non-woven fabric (manufactured by Toray Polytech (Nantong) Co., Ltd., trade name: LIVESEN) having a basis weight of 17 g / m 2. An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the sheet were changed to the water-absorbent resin particles F produced in Production Example 6.
実施例11
 補助シートの上部用シート基材及び下部用シート基材を目付量21g/mのレンゴー・ノンウーブン・プロダクツ株式会社製エアスルー不織布に変更したこと、並びに補助シート用の吸水性樹脂粒子を製造例6にて作製した吸水性樹脂粒子Fに変更したこと以外は実施例1と同様にして吸収性物品を得た。
Example 11
The upper sheet base material and the lower sheet base material of the auxiliary sheet were changed to air-through non-woven fabric manufactured by Rengo Nonwoven Products Co., Ltd. with a grain size of 21 g / m 2, and water-absorbent resin particles for the auxiliary sheet were produced. An absorbent article was obtained in the same manner as in Example 1 except that the particles were changed to the water-absorbent resin particles F produced in 1.
実施例12
 補助シートの上部用シート基材を目付量45g/mのHualong(Nanjing)社製エアスルー不織布に変更したこと、及び補助シート用の吸水性樹脂粒子を製造例6にて作製した吸水性樹脂粒子Fに変更したこと以外は実施例1と同様にして吸収性物品を得た。
Example 12
The upper sheet base material of the auxiliary sheet was changed to an air-through non-woven fabric manufactured by Hualong (Nanjining) with a grain size of 45 g / m 2, and the water-absorbent resin particles for the auxiliary sheet were prepared in Production Example 6. An absorbent article was obtained in the same manner as in Example 1 except that it was changed to F.
実施例13
(補助シートの作製)
 気流型混合装置(有限会社オーテック社製、パッドフォーマー)を用いて、製造例6の吸水性樹脂粒子F1.5g及び粉砕パルプ1.5gを空気抄造によって均一混合することにより、40cm×10cmの大きさのシート状の樹脂層を作製した。次に、シート状の樹脂層と同じ大きさを有する目付量16g/mの2枚のティッシュで樹脂層の上下を挟んだ状態で全体に196kPaの荷重を30秒間加えてプレスすることにより、吸水性樹脂粒子及び粉砕パルプからなる樹脂層が、2枚のティッシュの間に配置されている、補助シートを得た。
Example 13
(Preparation of auxiliary sheet)
By using an air flow type mixer (Padformer manufactured by Otec Co., Ltd.) to uniformly mix 1.5 g of the water-absorbent resin particles F and 1.5 g of crushed pulp of Production Example 6 by air papermaking, the size is 40 cm × 10 cm. A sheet-shaped resin layer having a size was prepared. Next, a load of 196 kPa is applied to the entire surface for 30 seconds while the resin layer is sandwiched between two sheets of tissue having the same size as the sheet-shaped resin layer and having a grain size of 16 g / m 2, and pressed. An auxiliary sheet was obtained in which a resin layer composed of water-absorbent resin particles and crushed pulp was arranged between two sheets of tissue.
(試験用の吸収性物品の作製)
 得られた補助シートの上に製造例15にて作製した吸水コアAを置き、吸収性物品を得た。
(Preparation of absorbent articles for testing)
The water-absorbing core A prepared in Production Example 15 was placed on the obtained auxiliary sheet to obtain an absorbent article.
実施例14
 補助シート用の吸水性樹脂粒子を製造例6にて作製した吸水性樹脂粒子Fに変更したこと、吸水性樹脂粒子の使用量を1.0gに変更したこと以外は実施例1と同様にして吸収性物品を得た。
Example 14
The same as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles F produced in Production Example 6 and the amount of the water-absorbent resin particles used was changed to 1.0 g. An absorbent article was obtained.
実施例15
 補助シート用の吸水性樹脂粒子を製造例6にて作製した吸水性樹脂粒子Fに変更したこと以外は実施例1と同様にして補助シートを得た。得られた補助シートに製造例16にて作製した吸水コアBを載せ、吸収性物品を得た。
Example 15
An auxiliary sheet was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles F produced in Production Example 6. The water-absorbing core B produced in Production Example 16 was placed on the obtained auxiliary sheet to obtain an absorbent article.
実施例16
 補助シート用の吸水性樹脂粒子を製造例6にて作製した吸水性樹脂粒子Fに変更したこと、吸水性樹脂粒子の使用量を0.4gに変更したこと以外は実施例1と同様にして吸収性物品を得た。
Example 16
The same as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles F produced in Production Example 6 and the amount of the water-absorbent resin particles used was changed to 0.4 g. An absorbent article was obtained.
比較例1
 補助シートを用いずに製造例15にて作製した吸水コアAのみを試験用の吸収性物品とした。
Comparative Example 1
Only the water-absorbing core A produced in Production Example 15 without using the auxiliary sheet was used as the absorbent article for the test.
比較例2
 製造例15のエアレイド不織布―2とエアスルー不織布との間に散布する吸水性樹脂粒子の使用量を6.0gから、5.0gに変更したこと以外は製造例15と同様にして、吸水コアを得た。補助シートを用いずに得られた上記吸水コアのみを試験用の吸収性物品とした。
Comparative Example 2
The water-absorbing core was prepared in the same manner as in Production Example 15 except that the amount of the water-absorbent resin particles sprayed between the air-laid non-woven fabric-2 and the air-through non-woven fabric of Production Example 15 was changed from 6.0 g to 5.0 g. Obtained. Only the above-mentioned water-absorbing core obtained without using the auxiliary sheet was used as an absorbent article for testing.
比較例3
 吸水性樹脂粒子を用いなかったこと以外は実施例1と同様にして吸収性物品を得た。
Comparative Example 3
An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles were not used.
比較例4
 補助シート用の吸水性樹脂粒子を製造例10にて作製した吸水性樹脂粒子Kに変更したこと以外は実施例1と同様にして吸収性物品を得た。
Comparative Example 4
An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles K produced in Production Example 10.
比較例5
 補助シート用の吸水性樹脂粒子を製造例11にて作製した吸水性樹脂粒子Lに変更したこと以外は実施例1と同様にして吸収性物品を得た。
Comparative Example 5
An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles L produced in Production Example 11.
比較例6
 補助シート用の吸水性樹脂粒子を製造例12にて作製した吸水性樹脂粒子Mに変更したこと以外は実施例1と同様にして吸収性物品を得た。
Comparative Example 6
An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles M produced in Production Example 12.
比較例7
 補助シート用の吸水性樹脂粒子を製造例13にて作製した吸水性樹脂粒子Nに変更したこと以外は実施例1と同様にして吸収性物品を得た。
Comparative Example 7
An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles N produced in Production Example 13.
比較例8
 補助シート用の吸水性樹脂粒子を製造例14にて作製した吸水性樹脂粒子Pに変更したこと以外は実施例1と同様にして吸収性物品を得た。
Comparative Example 8
An absorbent article was obtained in the same manner as in Example 1 except that the water-absorbent resin particles for the auxiliary sheet were changed to the water-absorbent resin particles P produced in Production Example 14.
比較例9
 補助シートを用いずに製造例16にて作製した吸収コアのみを試験用の吸収性物品とした。
Comparative Example 9
Only the absorbent core prepared in Production Example 16 without using the auxiliary sheet was used as the absorbent article for the test.
[人工尿の調製]
 以下の材料を用いて人工尿を調製した。
・イオン交換水:9865.75g
・NaCl:100.0g
・CaCl・HO:3.0g
・MgCl・6HO:6.0g
・トリトン X-100(1%):25.0g
・食用青色1号(着色用):0.25g
[Preparation of artificial urine]
Artificial urine was prepared using the following materials.
-Ion-exchanged water: 9865.75 g
-NaCl: 100.0 g
・ CaCl 2・ H 2 O: 3.0 g
· MgCl 2 · 6H 2 O: 6.0g
-Triton X-100 (1%): 25.0 g
・ Edible blue No. 1 (for coloring): 0.25g
[乾粉通液吸液率の測定]
 乾粉通液吸液率は、式:乾粉通液吸液率=乾粉通液吸液量(g)/0.2gの吸水性樹脂の人工尿飽和吸液量(g)により算出される。乾粉通液吸液量及び0.2gの人工尿飽和吸液量は以下に示す方法で測定・算出した。
[Measurement of dry powder flow absorption rate]
The dry powder passing liquid absorption rate is calculated by the formula: dry powder passing liquid absorbing rate = dry powder passing liquid absorbing amount (g) / 0.2 g artificial urine saturated liquid absorbing amount (g) of the water-absorbent resin. The dry powder passing liquid absorption amount and the artificial urine saturated liquid absorption amount of 0.2 g were measured and calculated by the methods shown below.
[乾粉通液吸液量の測定]
 図5は、乾粉通液吸液率の測定方法を示す模式図である。ステンレス製のメッシュ51(目開き50μm)がメッシュ状の底部として接着された、内径60mm、外径69mm、高さ60mmであるアクリル樹脂製の円筒状容器52に、0.2gの吸水性樹脂粒子61aを均一に散布し、容器及び容器内に散布された吸水性樹脂粒子61aの合計質量Wbを測定した。
[Measurement of dry powder flow absorption amount]
FIG. 5 is a schematic view showing a method for measuring the liquid absorption rate of dry powder. 0.2 g of water-absorbent resin particles in a cylindrical container 52 made of acrylic resin having an inner diameter of 60 mm, an outer diameter of 69 mm, and a height of 60 mm to which a stainless steel mesh 51 (opening 50 μm) is adhered as a mesh-like bottom. 61a was uniformly sprayed, and the total mass Wb of the container and the water-absorbent resin particles 61a sprayed in the container was measured.
 開口径60mm、高さ70mmのプラスチック製ビーカーを受器53とし、円筒状容器52を受器53の上に載置した。 A plastic beaker with an opening diameter of 60 mm and a height of 70 mm was used as the receiver 53, and the cylindrical container 52 was placed on the receiver 53.
 滴下漏斗54を、その先端54aとメッシュ51の上面との距離Hが13mmで、先端54aが円筒状容器52の底面中心の上方に位置するように設置した。液温25℃に調整した人工尿45(20mL)を、8mL/秒の一定速度にて注入すると同時にストップウォッチをスタートさせた。人工尿は円筒状容器52の底面全体に拡散し、メッシュ51を通過して受器53内に落下するが、一部は吸水性樹脂粒子61aによって吸収される。円筒状容器52内には、吸水性樹脂粒子61aが人工尿45を吸液して膨潤ゲルが形成される。 The dropping funnel 54 was installed so that the distance H between the tip 54a and the upper surface of the mesh 51 was 13 mm and the tip 54a was located above the center of the bottom surface of the cylindrical container 52. Artificial urine 45 (20 mL) adjusted to a liquid temperature of 25 ° C. was injected at a constant rate of 8 mL / sec, and the stopwatch was started at the same time. The artificial urine diffuses over the entire bottom surface of the cylindrical container 52, passes through the mesh 51 and falls into the receiver 53, but a part of the artificial urine is absorbed by the water-absorbent resin particles 61a. In the cylindrical container 52, the water-absorbent resin particles 61a absorb the artificial urine 45 to form a swollen gel.
 液注入から30秒後、円筒状容器52及び円筒状容器52内の膨潤ゲルの合計質量Waを測定した。乾粉通液吸液量(g)をWa-Wbにより求めた。 Thirty seconds after the liquid injection, the total mass Wa of the cylindrical container 52 and the swollen gel in the cylindrical container 52 was measured. The amount of dry powder flowing through the liquid (g) was determined by Wa-Wb.
[吸水性樹脂粒子の人工尿飽和吸液量の測定]
 500mL容のビーカーに、人工尿500gを量り取り、マグネチックスターラーバー(8mmφ×30mm、リング無し)を用いて600rpm(r/min)で撹拌させながら、2.0gの吸水性樹脂粒子を、ママコが発生しないように分散させた。60分間撹拌を継続し、吸水性樹脂粒子を十分に膨潤させた。あらかじめ目開き75μm標準篩の質量Wc(g)を測定しておき、これを用いて、ビーカーの内容物をろ過し、1分間静置することで余剰の水分をろ別した。膨潤ゲルの入った篩の質量Wd(g)を測定し、以下の式により、人工尿飽和吸液量を求めた。
・人工尿飽和吸液量(g/g)=(Wd-Wc)/2.0
・0.2gの人工尿飽和吸液量(g)=0.2×人工尿飽和吸液量(g/g)
[Measurement of artificial urine saturated liquid absorption amount of water-absorbent resin particles]
Weigh 500 g of artificial urine into a 500 mL beaker, and stir at 600 rpm (r / min) using a magnetic stirrer bar (8 mmφ x 30 mm, without ring) to add 2.0 g of water-absorbent resin particles to Mamako. Was dispersed so that Stirring was continued for 60 minutes to sufficiently swell the water-absorbent resin particles. The mass Wc (g) of a standard sieve having a mesh size of 75 μm was measured in advance, and the contents of the beaker were filtered using this and allowed to stand for 1 minute to filter out excess water. The mass Wd (g) of the sieve containing the swelling gel was measured, and the artificial urine saturated liquid absorption amount was determined by the following formula.
-Artificial urine saturated liquid absorption (g / g) = (Wd-Wc) /2.0
-0.2 g of artificial urine saturated liquid absorption (g) = 0.2 x artificial urine saturated liquid absorption (g / g)
[補助シートの厚さ評価]
 補助シートの厚みを、精密厚み測定器(尾崎製作所製、ダイヤルシックネスゲージJ-B、測定子:アルミ製φ50mm)を用いて測定した。測定は補助シートの中央部に測定子が接する位置にて行い、3回測定した値を平均したものを補助シートの厚み(mm)とした。
[Auxiliary sheet thickness evaluation]
The thickness of the auxiliary sheet was measured using a precision thickness measuring instrument (manufactured by Ozaki Seisakusho, dial thickness gauge JB, stylus: aluminum φ50 mm). The measurement was performed at a position where the stylus was in contact with the central portion of the auxiliary sheet, and the average of the values measured three times was taken as the thickness (mm) of the auxiliary sheet.
[吸液初期段階の液体漏れの評価]
 図6は、吸収性物品の液体漏れを評価する装置を示す模式図である。図6に示される装置を用いて、以下の(i),(ii),(iii)及び(iv)の手順により、試験用の吸収性物品100の吸液初期段階の液体漏れ性を評価した。表1に結果を示す。表中の樹脂は吸水性樹脂粒子を表し、gsmはg/mを表す。
[Evaluation of liquid leakage in the initial stage of liquid absorption]
FIG. 6 is a schematic view showing an apparatus for evaluating liquid leakage of an absorbent article. Using the apparatus shown in FIG. 6, the liquid leakage property at the initial stage of liquid absorption of the absorbent article 100 for testing was evaluated by the following procedures (i), (ii), (iii) and (iv). .. The results are shown in Table 1. The resin in the table represents water-absorbent resin particles, and gsm represents g / m 2 .
(i)メカニカルファスナー(3M メカニカルファスナー フック)を、縦45cm、横62cmの長方形の主面を有するアクリル樹脂板1のサイズに裁断し、アクリル樹脂板1の主面S全体に接着させた。アクリル樹脂板1の主面S上には、メカニカルファスナーによりごく微細な凹凸が生じているが、アクリル樹脂板1の主面S上での液体の滞留及び吸収はなかった。
(ii)アクリル樹脂板1を、メカニカルファスナーが接着された主面Sを上方にして、市販の実験設備用の架台41を用いて固定した。このとき、アクリル樹脂板1の長辺が水平面に平行で、アクリル樹脂板1の主面と水平面Sとが45±2度をなすように固定した。固定されたアクリル樹脂板1の主面Sに、試験用の吸収性物品100を、その長辺がアクリル樹脂板1の長辺に対して垂直になる向きで、試験用の吸収性物品100の下端が、アクリル樹脂板1の下端と同じ位置になるように貼り付けた。吸水コア及び補助シートからなる試験用の吸収性物品100は、吸水コアが表側になるようにアクリル樹脂板1上に貼り付けた。落下防止のため、試験用の吸収性物品100の上端をアクリル樹脂板1に粘着テープで固定した。
(iii)試験用の吸収性物品100中の吸収コアの中央から8cm上方を投入点とし、投入点から鉛直上方1cmの位置から、滴下漏斗42(株式会社コスモスビード製 滴下ロート300mL容、先端部の内径が8mm×6mm)を用いて、8mL/秒の速度にて液温25℃に調整した所定量の人工尿45を注入した。吸水性樹脂粒子からなる吸収層を備える吸水コアAを用いたときの人工尿45の注入量は、80mLであり、吸水性樹脂粒子及び粉砕パルプからなる吸収層を備える吸水コアBを用いたときの人工尿45の注入量は120mLであった(表1中、*を付した実施例又は比較例)。
(iv)試験用の吸収性物品100から漏れ出た人工尿は、予め吸収性物品100の下方に設置され、かつ天秤上に配置された金属トレー44内に回収された。回収された人工尿を計量し、人工尿の投入量(g)に対する漏れ出た人工尿の量(g)の割合(%)を算出した。
(I) is a mechanical fastener (3M mechanical fastener hook), vertical 45cm, was cut to the size of the acrylic resin plate 1 having a rectangular main surface of the lateral 62cm, was adhered to the entire main surface S 1 of the acrylic resin plate 1. On the main surface S 1 of the acrylic resin plate 1 is extremely fine irregularities are caused by mechanical fasteners, no retention and absorption of liquids on the main surface S 1 of the acrylic resin plate 1.
The (ii) an acrylic resin plate 1, and the main surface S 1 in which a mechanical fastener is adhered upwardly, and fixed with the frame 41 of a commercially available laboratory equipment. At this time, the long side of the acrylic resin plate 1 was parallel to the horizontal plane, and the main surface of the acrylic resin plate 1 and the horizontal plane S 0 were fixed so as to form 45 ± 2 degrees. A fixed main surface S 1 of the acrylic resin plate 1, the absorbent article 100 for testing, in a direction that long sides are perpendicular to the long side of the acrylic resin plate 1, an absorbent article for testing 100 The lower end of the acrylic resin plate 1 was attached so as to be at the same position as the lower end of the acrylic resin plate 1. The test absorbent article 100 composed of the water absorption core and the auxiliary sheet was attached on the acrylic resin plate 1 so that the water absorption core was on the front side. The upper end of the absorbent article 100 for testing was fixed to the acrylic resin plate 1 with an adhesive tape to prevent it from falling.
(Iii) The loading point is 8 cm above the center of the absorption core in the absorbent article 100 for testing, and from a position 1 cm vertically above the loading point, the dropping funnel 42 (300 mL of dropping funnel manufactured by Cosmos Bead Co., Ltd., tip) An inner diameter of 8 mm × 6 mm) was used to inject a predetermined amount of artificial urine 45 adjusted to a liquid temperature of 25 ° C. at a rate of 8 mL / sec. The injection amount of artificial urine 45 when using the water-absorbing core A having an absorption layer made of water-absorbent resin particles is 80 mL, and when using the water-absorbing core B having an absorption layer made of water-absorbent resin particles and crushed pulp. The injection amount of artificial urine 45 was 120 mL (Examples or comparative examples marked with * in Table 1).
(Iv) The artificial urine leaked from the absorbent article 100 for testing was collected in a metal tray 44 previously placed below the absorbent article 100 and placed on the balance. The collected artificial urine was weighed, and the ratio (%) of the amount of leaked artificial urine (g) to the input amount (g) of artificial urine was calculated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に評価結果が示される。乾粉通液吸液率が特定の数値である吸水性樹脂粒子を用いて作製された補助シートを有する吸収性物品は、吸液初期段階の液体漏れが改善されることが示された。 Table 1 shows the evaluation results. It has been shown that an absorbent article having an auxiliary sheet prepared by using water-absorbent resin particles having a dry powder passing liquid absorption rate of a specific numerical value improves liquid leakage in the initial stage of liquid absorption.
 10,10A,10B…吸収層、10a…吸水性樹脂粒子、10b…繊維層、20a,20b…コアラップシート、21…接着剤、25a,25b,25c…コアラップシート、26a,26b…接着剤、30…液体透過性シート、40…液体不透過性シート、50…吸水コア、51…メッシュ(メッシュ状の底部)、52…円筒状容器、60…補助シート、61…樹脂層、61a…吸水性樹脂粒子、61b…繊維層、62a,62b…シート基材、63a,63b…接着剤、100…吸収性物品。

 
10, 10A, 10B ... Absorbent layer, 10a ... Water-absorbent resin particles, 10b ... Fiber layer, 20a, 20b ... Core wrap sheet, 21 ... Adhesive, 25a, 25b, 25c ... Core wrap sheet, 26a, 26b ... Adhesive , 30 ... Liquid permeable sheet, 40 ... Liquid permeable sheet, 50 ... Water absorption core, 51 ... Mesh (mesh-like bottom), 52 ... Cylindrical container, 60 ... Auxiliary sheet, 61 ... Resin layer, 61a ... Water absorption Sex resin particles, 61b ... fiber layer, 62a, 62b ... sheet base material, 63a, 63b ... adhesive, 100 ... absorbent article.

Claims (3)

  1.  吸水コア、該吸水コアによる吸液を補助する補助シート、液体不透過性シート及び液体透過性シートを備え、前記液体不透過性シート、前記補助シート、前記吸水コア及び前記液体透過性シートがこの順に配置されている、吸収性物品であって、
     前記補助シートが吸水性樹脂粒子を含む樹脂層を備え、
     以下の(1)、(2)、(3)、(4)及び(5)の工程をこの順に含む方法により測定される、前記吸水性樹脂粒子の乾粉通液吸液率が0.25以上1.0以下である、吸収性物品。
    (1)メッシュ状の底部を備える内径60mmの円筒状容器内の底面全体にわたり、0.2gの吸水性樹脂粒子を均一に散布し、前記容器及び該容器内に散布された前記吸水性樹脂粒子の合計質量Wb(g)を測定する。
    (2)前記吸水性樹脂粒子が散布された前記容器内に液温25℃の人工尿20mLを8mL/秒の一定速度で注入し、前記人工尿の少なくとも一部を前記吸水性樹脂粒子に吸液させて前記容器内で膨潤ゲルを形成させる。
    (3)注入開始から30秒後に、前記容器及び該容器内の膨潤ゲルの合計質量Wa(g)を測定する。
    (4)Wa(g)-Wb(g)により乾粉通液吸液量(g)を求める。
    (5)0.2gの吸水性樹脂粒子の人工尿飽和吸液量(g)に対する乾粉通液吸液量(g)の比として、乾粉通液吸液率(g/g)を得る。
    A water absorption core, an auxiliary sheet assisting liquid absorption by the water absorption core, a liquid impermeable sheet and a liquid permeable sheet are provided, and the liquid impermeable sheet, the auxiliary sheet, the water absorption core and the liquid permeable sheet are the same. Absorbent articles arranged in order,
    The auxiliary sheet includes a resin layer containing water-absorbent resin particles.
    The dry powder passing liquid absorption rate of the water-absorbent resin particles measured by a method including the following steps (1), (2), (3), (4) and (5) in this order is 0.25 or more. Absorbent article, 1.0 or less.
    (1) 0.2 g of water-absorbent resin particles are uniformly sprayed over the entire bottom surface of a cylindrical container having an inner diameter of 60 mm having a mesh-like bottom, and the container and the water-absorbent resin particles sprayed in the container. The total mass Wb (g) of the above is measured.
    (2) 20 mL of artificial urine having a liquid temperature of 25 ° C. is injected into the container on which the water-absorbent resin particles are sprayed at a constant rate of 8 mL / sec, and at least a part of the artificial urine is absorbed by the water-absorbent resin particles. Let it liquid to form a swollen gel in the container.
    (3) 30 seconds after the start of injection, the total mass Wa (g) of the container and the swollen gel in the container is measured.
    (4) The dry powder passing liquid absorption amount (g) is determined from Wa (g) -Wb (g).
    (5) The dry powder passage liquid absorption rate (g / g) is obtained as the ratio of the dry powder passage liquid absorption amount (g) to the artificial urine saturated liquid absorption amount (g) of 0.2 g of the water-absorbent resin particles.
  2.  おむつである、請求項1に記載の吸収性物品。 The absorbent article according to claim 1, which is a diaper.
  3.  吸水コアを備える吸収性物品において、前記吸水コアの吸液を補助するために用いられる補助シートであって、
     吸水性樹脂粒子を含む樹脂層を備え、
     以下の(1)、(2)、(3)、(4)及び(5)の工程をこの順に含む方法により測定される、前記吸水性樹脂粒子の乾粉通液吸液率が0.25以上1.0以下である、補助シート。
    (1)メッシュ状の底部を備える内径60mmの円筒状容器内の底面全体にわたり、0.2gの吸水性樹脂粒子を均一に散布し、前記容器及び該容器内に散布された前記吸水性樹脂粒子の合計質量Wb(g)を測定する。
    (2)前記吸水性樹脂粒子が散布された前記容器内に液温25℃の人工尿20mLを8mL/秒の一定速度で注入し、前記人工尿の少なくとも一部を前記吸水性樹脂粒子に吸液させて前記容器内で膨潤ゲルを形成させる。
    (3)注入開始から30秒後に、前記容器及び該容器内の前記膨潤ゲルの合計質量Wa(g)を測定する。
    (4)Wa(g)-Wb(g)により乾粉通液吸液量(g)を求める。
    (5)0.2gの吸水性樹脂粒子の人工尿飽和吸液量(g)に対する乾粉通液吸液量(g)の比として、乾粉通液吸液率(g/g)を得る。

     
    An auxiliary sheet used to assist the absorption of liquid in the water absorption core in an absorbent article including the water absorption core.
    With a resin layer containing water-absorbent resin particles,
    The dry powder passing liquid absorption rate of the water-absorbent resin particles measured by a method including the following steps (1), (2), (3), (4) and (5) in this order is 0.25 or more. Auxiliary sheet that is 1.0 or less.
    (1) 0.2 g of water-absorbent resin particles are uniformly sprayed over the entire bottom surface of a cylindrical container having an inner diameter of 60 mm having a mesh-like bottom, and the container and the water-absorbent resin particles sprayed in the container. The total mass Wb (g) of the above is measured.
    (2) 20 mL of artificial urine having a liquid temperature of 25 ° C. is injected into the container on which the water-absorbent resin particles are sprayed at a constant rate of 8 mL / sec, and at least a part of the artificial urine is absorbed by the water-absorbent resin particles. Let it liquid to form a swollen gel in the container.
    (3) 30 seconds after the start of injection, the total mass Wa (g) of the container and the swollen gel in the container is measured.
    (4) The dry powder passing liquid absorption amount (g) is determined from Wa (g) -Wb (g).
    (5) The dry powder passage liquid absorption rate (g / g) is obtained as the ratio of the dry powder passage liquid absorption amount (g) to the artificial urine saturated liquid absorption amount (g) of 0.2 g of the water-absorbent resin particles.

PCT/JP2020/031838 2019-08-26 2020-08-24 Absorbent article and auxiliary sheet WO2021039714A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227008321A KR20220050917A (en) 2019-08-26 2020-08-24 Absorbent articles and auxiliary sheets
CN202080059123.6A CN114269310B (en) 2019-08-26 2020-08-24 Absorbent article and auxiliary sheet
JP2021542886A JP7457718B2 (en) 2019-08-26 2020-08-24 Absorbent articles and auxiliary sheets

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019154028 2019-08-26
JP2019-154028 2019-08-26

Publications (1)

Publication Number Publication Date
WO2021039714A1 true WO2021039714A1 (en) 2021-03-04

Family

ID=74684183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031838 WO2021039714A1 (en) 2019-08-26 2020-08-24 Absorbent article and auxiliary sheet

Country Status (4)

Country Link
JP (1) JP7457718B2 (en)
KR (1) KR20220050917A (en)
CN (1) CN114269310B (en)
WO (1) WO2021039714A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018571A1 (en) * 2011-08-03 2013-02-07 住友精化株式会社 Water absorbing resin particles, method for manufacturing water absorbing resin particles, absorption body, absorptive article, and water-sealing material
JP2014073448A (en) * 2012-10-03 2014-04-24 Nippon Shokubai Co Ltd Particulate water absorbent and its manufacturing method
JP2016112047A (en) * 2014-12-11 2016-06-23 株式会社リブドゥコーポレーション Sheet member for absorptive article and absorptive article
JP2017177065A (en) * 2016-03-31 2017-10-05 株式会社日本触媒 Method for producing water absorbent

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065368A1 (en) * 2009-11-27 2011-06-03 住友精化株式会社 Process for production of water-absorbing resin paticles, water-absorbing resin particles, water-stopping material, and absorbent article
JP6050685B2 (en) * 2011-02-08 2016-12-21 住友精化株式会社 Method for producing water absorbent resin
JP2012183175A (en) 2011-03-04 2012-09-27 Sumitomo Seika Chem Co Ltd Water absorbent sheet configuration body
JP6004729B2 (en) * 2012-04-26 2016-10-12 株式会社リブドゥコーポレーション Absorbent articles
EP3604360A4 (en) * 2017-03-31 2020-11-18 Sumitomo Seika Chemicals Co. Ltd. Water-absorbent resin particle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018571A1 (en) * 2011-08-03 2013-02-07 住友精化株式会社 Water absorbing resin particles, method for manufacturing water absorbing resin particles, absorption body, absorptive article, and water-sealing material
JP2014073448A (en) * 2012-10-03 2014-04-24 Nippon Shokubai Co Ltd Particulate water absorbent and its manufacturing method
JP2016112047A (en) * 2014-12-11 2016-06-23 株式会社リブドゥコーポレーション Sheet member for absorptive article and absorptive article
JP2017177065A (en) * 2016-03-31 2017-10-05 株式会社日本触媒 Method for producing water absorbent

Also Published As

Publication number Publication date
JP7457718B2 (en) 2024-03-28
CN114269310A (en) 2022-04-01
CN114269310B (en) 2023-07-11
KR20220050917A (en) 2022-04-25
JPWO2021039714A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
JP6828222B1 (en) A method for producing water-absorbent resin particles, an absorbent article, a method for producing water-absorbent resin particles, and a method for increasing the amount of absorption of the absorber under pressure.
WO2021075508A1 (en) Absorbent article and auxiliary sheet
WO2020184386A1 (en) Water absorbing resin particles, absorbent article, method for manufacturing water absorbing resin particles, method for facilitating permeation of physiological saline solution into absorbent body
US20220143576A1 (en) Water absorbing resin particles and method for producing same, absorbent body, and absorbent article
EP3896095A1 (en) Water-absorbent resin particles, absorbent body, and absorbent article
US20220055014A1 (en) Water absorbent resin particles, absorbent, absorbent article and liquid suction power measurement method
EP3895676A1 (en) Absorbent article
WO2021039715A1 (en) Water-absorbing sheet and absorbent article
WO2021132266A1 (en) Absorbent resin particles, absorber, absorbent sheet, absorbent article, and method for producing absorbent resin particles
JP6856826B1 (en) Water-absorbent resin particles
US20220219140A1 (en) Water-absorbent resin particles
WO2021039714A1 (en) Absorbent article and auxiliary sheet
EP3936530A1 (en) Absorbent body, absorbent article and method for adjusting permeation speed
WO2020218168A1 (en) Water-absorbent resin particles, absorbent body, and absorbent article
WO2021039713A1 (en) Absorbent article and auxiliary sheet
EP3896120A1 (en) Water-absorbing resin particles, absorbent, and absorbent article
WO2021075507A1 (en) Absorber
JP6889811B2 (en) A method for producing water-absorbent resin particles, an absorbent article, a water-absorbent resin particle, and a method for suppressing liquid leakage of the absorbent article.
JP7091556B2 (en) Water-absorbent resin particles and water-absorbent sheet
JP6775050B2 (en) Absorbent article
JP6752320B2 (en) Absorbent article and its manufacturing method
WO2021187501A1 (en) Water-absorbing sheet and absorbent article
JP6775051B2 (en) Absorbent article
WO2020218166A1 (en) Water-absorbing resin particles
EP3960795A1 (en) Water-absorbent resin particles, absorbent body, and absorbent article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856568

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542886

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227008321

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20856568

Country of ref document: EP

Kind code of ref document: A1