WO2021132266A1 - Absorbent resin particles, absorber, absorbent sheet, absorbent article, and method for producing absorbent resin particles - Google Patents

Absorbent resin particles, absorber, absorbent sheet, absorbent article, and method for producing absorbent resin particles Download PDF

Info

Publication number
WO2021132266A1
WO2021132266A1 PCT/JP2020/048009 JP2020048009W WO2021132266A1 WO 2021132266 A1 WO2021132266 A1 WO 2021132266A1 JP 2020048009 W JP2020048009 W JP 2020048009W WO 2021132266 A1 WO2021132266 A1 WO 2021132266A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
absorbent resin
particles
resin particles
absorbent
Prior art date
Application number
PCT/JP2020/048009
Other languages
French (fr)
Japanese (ja)
Inventor
瞭 平田
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to JP2021567493A priority Critical patent/JPWO2021132266A1/ja
Publication of WO2021132266A1 publication Critical patent/WO2021132266A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/04Acids; Metal salts or ammonium salts thereof
    • C08F120/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions

Definitions

  • the present invention relates to a method for producing water-absorbent resin particles, an absorber, a water-absorbent sheet, an absorbent article, and water-absorbent resin particles.
  • Patent Document 1 discloses a method for producing a water-absorbent resin, which comprises a step of mixing two or more kinds of water-absorbent resins having different blood absorption rates in order to improve the blood absorbency of the water-absorbent resin. ..
  • An object of the present invention is to provide water-absorbent resin particles that provide an absorbent article in which liquid leakage is suppressed.
  • One aspect of the present invention relates to water-absorbent resin particles having two or more differently shaped portions on the surface of one particle.
  • the water-absorbent resin particles preferably have a spherical portion and an irregularly shaped portion on at least a part of the surface of one particle.
  • the water-absorbent resin particles have at least a part of the surface of one particle having a portion having an unevenness of 1 ⁇ m or more and 20 ⁇ m or less and a portion having an unevenness of more than 20 ⁇ m and 200 ⁇ m or less as measured by a laser microscope. It may be there.
  • the water-absorbent resin particles may have a shape in which primary particles are aggregated.
  • Another aspect of the present invention relates to water-absorbent resin particles in which primary particles are aggregated and the average unevenness of the particles measured by a digital microscope is 120 to 180 ⁇ m.
  • the water-absorbent resin particles may have a medium particle size of 300 to 600 ⁇ m and a water absorption rate of 5 to 20 seconds by the Vortex method.
  • the water-absorbent resin particles may have a physiological saline water retention amount of 20 to 60 g / g and a water absorption amount under load at 4.14 kPa of 10 ml / g or more.
  • the present invention also provides an absorber containing the above water-absorbent resin particles.
  • the present invention also provides a water absorption sheet provided with the above absorber.
  • the water absorbing sheet may further include a core wrap sheet, and the absorbent body may be arranged inside the core wrap sheet.
  • the present invention also provides an absorbent article comprising the water absorbing sheet.
  • Another aspect of the present invention relates to a method for producing water-absorbent resin particles, which comprises aggregating and granulating primary particles, wherein the primary particles have two or more shapes.
  • the primary particles include spherical particles and irregularly shaped particles.
  • the mixing ratio of the spherical particles and the irregularly shaped particles is preferably 70:30 to 20:80.
  • the present invention provides water-absorbent resin particles that provide an absorbent article in which liquid leakage is suppressed.
  • FIG. 1 It is a schematic cross-sectional view which shows one Embodiment of a water absorption sheet. It is a schematic plan view which shows an example of the adhesive pattern formed on the core wrap sheet. It is a schematic cross-sectional view which shows one Embodiment of an absorbent article. It is a top view which shows an example of a stirring blade (a flat plate blade which has a slit in a flat plate part). It is a scanning electron micrograph which shows the water-absorbing resin particle of Example 3. FIG. It is a graph which shows the measurement example of the average unevenness of a particle. It is a schematic diagram which shows the measuring apparatus of the water absorption amount under load of a water-absorbing resin particle. It is a schematic diagram which shows the measuring apparatus of non-pressurized DW of a water-absorbent resin particle. It is a schematic diagram which shows the method of evaluating the liquid leakage property.
  • Water-soluble means that it exhibits a solubility in water of 5% by mass or more at 25 ° C.
  • the materials exemplified in the present specification may be used alone or in combination of two or more.
  • the content of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
  • Saline refers to a 0.9% by mass sodium chloride aqueous solution.
  • One aspect of this embodiment relates to water-absorbent resin particles having two or more differently shaped portions on the surface of one particle.
  • two or more different shapes are visually distinguished from each other when one particle is magnified (for example, 10 to 200 times) and observed by a microscope such as an optical microscope, a digital microscope, or a scanning electron microscope. It refers to what can be done, and does not include the shape of parts that cannot be observed from the outside, such as the inside of particles.
  • the two or more different shapes may be, for example, a spherical shape, an indefinite shape, or the like.
  • the water-absorbent resin particles of the present embodiment can suppress liquid leakage when applied to an absorbent article.
  • the mechanism is not limited to the following contents. That is, since one water-absorbent resin particle has a plurality of shapes on the surface, the absorption performance due to each shape is appropriately balanced and both performances are exhibited, so that liquid leakage property is exhibited. Is thought to be suppressed. Such an effect was not confirmed when the particles having two or more different shapes were simply mixed, that is, when two or more different shapes were on the surface of different different particles.
  • the spherical shape includes a true spherical shape, a substantially spherical shape, and an elliptical surface shape. Further, the spherical portion has a spherical shape as a whole, but a part thereof may be chipped and may have holes and / or recesses.
  • the indefinite shape is a non-homogeneous shape that is not spherical, and may be, for example, spongy, cauliflower, amorphous, scaly, crushed, or granular.
  • the portion of the water-absorbent resin particles having an indefinite shape may have an indefinite shape at the time of polymerization obtained by, for example, a polymerization method such as reverse phase suspension polymerization. It may be a crushed product obtained by crushing a water-absorbent resin obtained by a polymerization method such as phase polymerization or aqueous solution polymerization, or an agglomerate of the crushed product.
  • the water-absorbent resin particles according to the present embodiment preferably have at least a spherical portion and an irregularly shaped portion on the surface of one particle.
  • the surface of one particle has an unevenness measured by a laser microscope (hereinafter, also referred to as “shape-specific unevenness”) of 1 ⁇ m or more and 20 ⁇ m or less. (Hereinafter, also referred to as a "low unevenness portion”) and a portion having an unevenness of more than 20 ⁇ m and 200 ⁇ m or less (hereinafter, also referred to as a “high unevenness portion”).
  • shape-specific unevenness measured by a laser microscope
  • low unevenness portion a portion having an unevenness of more than 20 ⁇ m and 200 ⁇ m or less
  • the water-absorbent resin particles used for the measurement are in a dry state before use.
  • the degree of unevenness for each shape is measured within a portion having the same type of shape so as not to include a different type of shape portion.
  • the profile line used for the measurement is set on only one sphere so as not to straddle the boundary of the sphere.
  • the unevenness is measured along the profile line.
  • the profile line shall be a circle with a diameter of 30 to 35 ⁇ m at each location, and 90% or more of the total length of the waveform curve obtained thereby shall be used.
  • the degree of unevenness for each shape is the average value of the values measured at five or more points for the same shape portion.
  • the low unevenness portion of the water-absorbent resin particles may have an unevenness measured by a laser microscope of 3 ⁇ m or more or 5 ⁇ m or more, and may be 20 ⁇ m or less, 18 ⁇ m or less, 15 ⁇ m or less, or 10 ⁇ m or less.
  • the low unevenness portion of the water-absorbent resin particles may have an unevenness measured by a laser microscope of 3 to 20 ⁇ m, 5 to 18 ⁇ m, 5 to 15 ⁇ m, 5 to 13 ⁇ m, or 5 to 10 ⁇ m.
  • the low unevenness portion may be spherical.
  • the high unevenness portion of the water-absorbent resin particles may have unevenness measured by a laser microscope of 25 ⁇ m or more, 30 ⁇ m or more, 40 ⁇ m or more, 45 ⁇ m or more, 50 ⁇ m or more or 55 ⁇ m or more, and 180 ⁇ m or less, 150 ⁇ m or less, 120 ⁇ m.
  • it may be 100 ⁇ m or less, 90 ⁇ m or less, 80 ⁇ m or less, or 70 ⁇ m or less.
  • the high unevenness portion of the water-absorbent resin particles may have irregularities measured by a laser microscope of 25 to 200 ⁇ m, 30 to 180 ⁇ m, 30 to 150 ⁇ m, 30 to 120 ⁇ m, 40 to 120 ⁇ m, or 40 to 80 ⁇ m.
  • the high unevenness portion may have an indefinite shape.
  • the water-absorbent resin particles according to the present embodiment have a spherical portion composed of all or a part of a sphere having a diameter of 30 to 100 ⁇ m on at least a part of the surface thereof.
  • the water-absorbent resin particles preferably have a spherical portion having a sphere diameter of 30 to 80 ⁇ m, 30 to 60 ⁇ m, or 30 to 40 ⁇ m on at least a part of the surface thereof.
  • the water-absorbent resin particles having two or more kinds of differently shaped portions on the surface of one particle may have a shape in which the primary particles are aggregated.
  • Such water-absorbent resin particles can be produced, for example, by aggregating and granulating two or more types of primary particles having different shapes. Details of the manufacturing method will be described later.
  • Another aspect of the present embodiment relates to water-absorbent resin particles in which primary particles are aggregated and the average unevenness of the particles measured by a digital microscope is 120 to 180 ⁇ m.
  • the detailed measurement method of the average unevenness of the particles is shown in Examples described later, but the outline is as follows.
  • the water-absorbent resin particles used for the measurement are in a dry state before use.
  • the profile line used for the measurement shall be a circle having a diameter in the range of 270 to 320 ⁇ m at each location, and 90% or more of the total length of the waveform curve obtained thereby shall be used.
  • the unevenness is measured along the profile line.
  • the degree of unevenness is the sum of the absolute values of the highest peak elevation and the lowest valley bottom elevation, which have the largest elevation difference with respect to the reference line when the average line of the waveform curve is used as the reference line. is there.
  • the degree of unevenness is measured for 12 particles, and the average value of 10 points excluding the maximum value and the minimum value among them is taken as the average degree of unevenness of the particles.
  • a digital microscope that measures the average degree of unevenness of particles a microscope that can measure the degree of unevenness on the surface of an object non-destructively is used.
  • a digital microscope such as VHX-5000 or VHX-7000 manufactured by KEYENCE Corporation can be used.
  • the present inventor has found that water-absorbent resin particles having an aggregated shape of primary particles and having an average unevenness of particles in an appropriate range of 120 to 180 ⁇ m exhibit excellent absorption performance.
  • the surface of the water-absorbent resin particles is not too smooth and not too rough. Since the water-absorbent resin particles have a shape in which the primary particles are aggregated and the average unevenness of the particles is 120 to 180 ⁇ m, the liquid leakage property can be suppressed when applied to an absorbent article.
  • the present inventor speculates as follows. However, the mechanism is not limited to the following contents.
  • the water-absorbent resin particles and the fibers are well entangled, the water-absorbent resin particles are easily fixed in the absorbent article, and the water-absorbing resin particles have an appropriate water absorption rate. It is considered that it is easy to suppress liquid leakage because it is easy to do.
  • the average unevenness of the particles may be 125 ⁇ m or more, 130 ⁇ m or more, 135 ⁇ m or more, 140 ⁇ m or more, 145 ⁇ m or more, 150 ⁇ m or more, 155 ⁇ m or more, 160 ⁇ m or more, or 165 ⁇ m or more.
  • the average unevenness of the particles may be 175 ⁇ m or less, 170 ⁇ m or less, 165 ⁇ m or less, 160 ⁇ m or less, 155 ⁇ m or less, or 150 ⁇ m or less.
  • the average unevenness of the particles may be 130 to 180 ⁇ m, 135 to 175 ⁇ m, or 140 to 170 ⁇ m.
  • the water-absorbent resin particles having an aggregated shape of the primary particles and having an average unevenness of the particles in the range of 120 to 180 ⁇ m may have two or more different shaped portions on the surface of the single particles.
  • at least a part of the surface of one particle may have a spherical part and an irregularly shaped part, and at least a part of the surface of one particle has an unevenness measured by a laser microscope of 1 ⁇ m or more and 20 ⁇ m. It may have a portion having a degree of unevenness of more than 20 ⁇ m and a portion having a degree of unevenness of more than 200 ⁇ m or less.
  • the two or more different shapes are preferably spherical and indefinite, for example.
  • the particles having a shape in which the primary particles are aggregated have at least a part of the shape of the primary particles used as a raw material on the particle surface to the extent that they can be visually observed, but the primary particles are also used. It means that a plurality of primary particles are integrally formed without being separated into the units of.
  • the medium particle size of the water-absorbent resin particles according to the present embodiment is preferably 300 to 600 ⁇ m from the viewpoint of easily obtaining higher absorption performance in the water-absorbent sheet.
  • the medium particle size of the water-absorbent resin particles may be 350 ⁇ m or more, 380 ⁇ m or more, or 400 ⁇ m or more, and may be 550 ⁇ m or less, or 500 ⁇ m or less.
  • the water-absorbent resin particles according to the present embodiment preferably have a water absorption rate of 5 to 20 seconds by the Vortex method from the viewpoint of easily obtaining higher absorption performance in the water-absorbent sheet.
  • the water absorption rate may be 6 seconds or more, 7 seconds or more, or 8 seconds or more, and may be 18 seconds or less, 16 seconds or less, 15 seconds or less, 14 seconds or less, 14 seconds or less, or 12 seconds or less. Good.
  • the water-absorbent resin particles according to the present embodiment preferably have a physiological saline water retention amount of 20 to 60 g / g from the viewpoint of easily obtaining higher absorption performance in the water-absorbent sheet.
  • a detailed measurement method of the physiological saline water retention amount will be shown in Examples described later.
  • the amount of saline water retained may be 23 g / g or more, 25 g / g or more, 27 g / g or more, or 30 g / g or more, and 55 g / g or less, 50 g / g or less, or 45 g / g or less. May be good.
  • the water-absorbent resin particles according to the present embodiment preferably have a water absorption amount of 10 ml / g or more under load at 4.14 kPa from the viewpoint of easily obtaining higher absorption performance in the water-absorbent sheet.
  • the amount of water absorption under load at 4.14 kPa may be 12 ml / g or more, 14 ml / g or more, 16 ml / g or more, 20 ml / g or more, 24 ml / g or more, 40 ml / g or less, 35 ml / g or less, 30 ml. It may be / g or less, 25 ml / g or less, 20 ml / g or less, or 18 ml / g or less.
  • the water-absorbent resin particles according to the present embodiment have a non-pressurized DW 0.5 minute value of 1 ml / g or more, 3 ml / g or more, or 4 ml / g or more from the viewpoint of easily obtaining higher absorption performance in the water-absorbent sheet. It may be 15 ml / g or less, 13 ml / g or less, 11 ml / g or less, or 9 ml / g or less.
  • the water-absorbent resin particles according to the present embodiment have non-pressurized DW 2-minute values of 15 ml / g or more, 20 ml / g or more, 24 ml / g or more, and 30 ml / g from the viewpoint of easily obtaining higher absorption performance in the water-absorbing sheet.
  • the above may be 35 ml / g or more, or 40 ml / g or more, and may be 50 ml / g or less, 45 ml / g or less, 40 ml / g or less, 35 ml / g or less, or 30 ml / g or less.
  • the water-absorbent resin particles according to the present embodiment have non-pressurized DW 5-minute values of 30 ml / g or more, 35 ml / g or more, 40 ml / g or more, and 45 ml / g from the viewpoint of easily obtaining higher absorption performance in the water-absorbing sheet. It may be more than or equal to 50 ml / g or more, and may be 65 ml / g or less, 60 ml / g or less, or 55 ml / g or less.
  • Yet another aspect of the present embodiment relates to a method for producing water-absorbent resin particles, which comprises aggregating and granulating primary particles, wherein the primary particles have two or more shapes.
  • the shape of the primary particles is preferably spherical or indefinite.
  • spherical includes a true spherical shape, a substantially spherical shape, and an ellipsoidal shape, and may be partially chipped, and may have holes and / or recesses.
  • the granulation method a method is used in which the granulation strength is obtained so that most of the formed particles do not decompose into primary particles in normal use. Further, as the granulation method, a method is used in which at least a part of each of the shapes derived from the primary particles having two or more kinds of shapes can be left on the surface of the formed particles.
  • the primary particles used for granulation may be dry particles, but it is preferable that at least a part of the primary particles is in the form of a hydrogel, and it is more preferable that all of the primary particles used are in the form of a hydrogel. When mixing the primary particles for granulation, water for promoting aggregation can be added.
  • the added water may contain a cross-linking agent or the like, and for example, an aqueous solution of the post-polymerization cross-linking agent described later may be used. Further, in order to efficiently perform granulation, it is preferable to add a coagulant such as a powdered inorganic coagulant when mixing the primary particles.
  • the powdered inorganic flocculant examples include silica, zeolite, bentonite, aluminum oxide, talc, titanium dioxide, kaolin, clay, and hydrotalcite.
  • the aggregating agent is preferably at least one selected from the group consisting of silica, aluminum oxide, talc and kaolin.
  • the amount of the flocculant added is preferably 0.001 to 1 part by mass, more preferably 0.005 to 0.5 part by mass, based on 100 parts by mass of the ethylenically unsaturated monomer used for the polymerization. 01 to 0.2 parts by mass is more preferable.
  • a flocculant When a flocculant is used, it is preferable to use it as a dispersion liquid in which the flocculant is dispersed in a solvent in advance because the flocculant is uniformly mixed with the primary particles.
  • a flocculant it is preferable that the primary particles to be used are mixed first, and then the flocculant is added.
  • Granulation can be performed using various stirrers having stirring blades.
  • the stirring blade flat plate blades, lattice blades, paddle blades, propeller blades, anchor blades, turbine blades, Faudler blades, ribbon blades, full zone blades, max blend blades and the like can be used.
  • the flat plate blade has a shaft (stirring shaft) and a flat plate portion (stirring portion) arranged around the shaft. Further, the flat plate portion may have a slit or the like. When a flat plate blade is used as the stirring blade, granulation tends to be performed more uniformly.
  • the primary particles At the time of granulation, it is preferable to mix the primary particles with each other and, if necessary, a flocculant in a hydrocarbon dispersion medium. After the particles having a shape in which the primary particles are aggregated are obtained by granulation, the solvent and water may be removed and surface cross-linking may be carried out as appropriate.
  • the mixing ratio (mass standard) thereof is preferably 70:30 to 20:80 as the solid content.
  • the mixing ratio of spherical particles and irregularly shaped particles may be 60:40 to 20:80, 55:45 to 20:80, 50:50 to 20:80, or 50:50 to 25:75. ..
  • a crushed product of a water-absorbent resin When a crushed product of a water-absorbent resin is used as the irregularly shaped particles, a crushed product that has been previously aggregated only with the crushed product may be further aggregated with spherical particles to granulate, and the crushed product may be aggregated with spherical particles. It may be used directly in.
  • the medium particle size of the primary particles used for granulation may be, for example, 20 to 250 ⁇ m, 30 to 200 ⁇ m, 40 to 180 ⁇ m, or 50 to 160 ⁇ m.
  • water-absorbent resin particles having a spherical portion and an irregularly shaped portion on at least a part of the surface of one particle can be obtained.
  • Spherical particles as primary particles can be obtained, for example, by setting the HLB of the surfactant used at the time of polymerization to 7 or less in the reverse phase suspension polymerization method.
  • Spherical particles can also be obtained by a vapor phase polymerization method.
  • the irregularly shaped particles can be obtained by setting the HLB of the surfactant used at the time of polymerization to 8 or more.
  • the irregularly shaped particles can also be obtained by crushing a water-absorbent resin obtained by various polymerization methods such as a reverse phase suspension polymerization method, an aqueous solution polymerization method, and a gas phase polymerization method, or by aggregating crushed products.
  • the water-absorbent resin particles according to the present embodiment and the primary particles used for the production thereof include, for example, as polymer particles, a crosslinked polymer formed by polymerization of a monomer containing an ethylenically unsaturated monomer. You can stay.
  • the crosslinked polymer has a structural unit derived from an ethylenically unsaturated monomer.
  • a water-soluble ethylenically unsaturated monomer can be used as the following, as a method for polymerizing an ethylenically unsaturated monomer, a reverse phase suspension polymerization method will be described as an example.
  • the ethylenically unsaturated monomer is preferably water-soluble, for example, (meth) acrylic acid and a salt thereof, 2- (meth) acrylamide-2-methylpropanesulfonic acid and a salt thereof, (meth) acrylamide, N. , N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, polyethylene glycol mono (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-diethylamino Examples thereof include propyl (meth) acrylate and diethylaminopropyl (meth) acrylamide.
  • the amino group may be quaternized.
  • the ethylenically unsaturated monomer may be used alone or in combination of two or more.
  • Functional groups such as the carboxyl group and amino group of the above-mentioned monomers can function as functional groups capable of cross-linking in the surface cross-linking step described later.
  • the ethylenically unsaturated monomer is selected from the group consisting of (meth) acrylic acid and its salts, acrylamide, methacrylamide, and N, N-dimethylacrylamide. It is preferable to contain at least one compound selected, and more preferably to contain at least one compound selected from the group consisting of (meth) acrylic acid and salts thereof, and acrylamide. From the viewpoint of further enhancing the water absorption property, the ethylenically unsaturated monomer further preferably contains at least one compound selected from the group consisting of (meth) acrylic acid and salts thereof. That is, the water-absorbent resin particles preferably have a structural unit derived from at least one selected from the group consisting of (meth) acrylic acid and salts thereof.
  • a monomer other than the above-mentioned ethylenically unsaturated monomer may be used.
  • Such a monomer can be used, for example, by mixing with an aqueous solution containing the above-mentioned ethylenically unsaturated monomer.
  • the amount of the ethylenically unsaturated monomer used is preferably 70 to 100 mol% with respect to the total amount of the monomers.
  • the ratio of (meth) acrylic acid and a salt thereof is more preferably 70 to 100 mol% with respect to the total amount of the monomers.
  • the ethylenically unsaturated monomer is usually preferably used as an aqueous solution.
  • concentration of the ethylenically unsaturated monomer in the aqueous solution containing the ethylenically unsaturated monomer (hereinafter, simply referred to as “monomer aqueous solution”) is preferably 20% by mass or more and preferably 25 to 70% by mass. Is more preferable, and 30 to 55% by mass is further preferable.
  • Examples of the water used in the aqueous solution include tap water, distilled water, ion-exchanged water and the like.
  • the monomer aqueous solution may be used by neutralizing the acid group with an alkaline neutralizer.
  • the degree of neutralization of the ethylenically unsaturated monomer by the alkaline neutralizing agent increases the osmotic pressure of the obtained water-absorbent resin particles and further enhances the water absorption characteristics. It is preferably 10 to 100 mol%, more preferably 50 to 90 mol%, and even more preferably 60 to 80 mol% of the group.
  • the alkaline neutralizing agent include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide and potassium carbonate; ammonia and the like.
  • the alkaline neutralizer may be used alone or in combination of two or more.
  • the alkaline neutralizer may be used in the form of an aqueous solution to simplify the neutralization operation.
  • Neutralization of the acid group of the ethylenically unsaturated monomer can be performed, for example, by adding an aqueous solution of sodium hydroxide, potassium hydroxide or the like to the above-mentioned monomer aqueous solution and mixing them.
  • the monomer aqueous solution is dispersed in a hydrocarbon dispersion medium in the presence of a surfactant, and the ethylenically unsaturated monomer is polymerized using a radical polymerization initiator or the like. Can be done.
  • Nonionic surfactants include sorbitan fatty acid ester, (poly) glycerin fatty acid ester, sucrose fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene glycerin fatty acid ester, sorbitol fatty acid ester, polyoxyethylene sorbitol fatty acid ester, and poly.
  • Anionic surfactants include fatty acid salts, alkylbenzene sulfonates, alkylmethyl taurates, polyoxyethylene alkylphenyl ether sulfates, polyoxyethylene alkyl ether sulfonates, and polyoxyethylene alkyl ether phosphates.
  • the surfactant may be used alone or in combination of two or more.
  • the type of surfactant does not matter when producing spherical particles and irregularly shaped particles separately.
  • the surfactant is a sorbitan fatty acid ester. It preferably contains at least one compound selected from the group consisting of polyglycerin fatty acid esters and sucrose fatty acid esters.
  • the amount of the surfactant used is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the monomer aqueous solution from the viewpoint of obtaining a sufficient effect on the amount used and from the viewpoint of economic efficiency. .08 to 5 parts by mass is more preferable, and 0.1 to 3 parts by mass is further preferable.
  • a polymer-based dispersant may be used in combination with the above-mentioned surfactant.
  • the polymer dispersant include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, maleic anhydride-modified EPDM (ethylene / propylene / diene / terpolymer), and maleic anhydride.
  • the polymer-based dispersant may be used alone or in combination of two or more.
  • maleic anhydride-modified polyethylene maleic anhydride-modified polypropylene
  • maleic anhydride-modified ethylene / propylene copolymer maleic anhydride / ethylene copolymer weight.
  • maleic anhydride / propylene copolymer, maleic anhydride / ethylene / propylene copolymer, polyethylene, polypropylene, ethylene / propylene copolymer, oxidized polyethylene, oxidized polypropylene, and oxidized ethylene / propylene copolymer At least one selected from the group consisting of coalescing is preferable.
  • the amount of the polymer-based dispersant used is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the monomer aqueous solution from the viewpoint of obtaining a sufficient effect on the amount used and from the viewpoint of economic efficiency. , 0.08 to 5 parts by mass is more preferable, and 0.1 to 3 parts by mass is further preferable.
  • the hydrocarbon dispersion medium may contain at least one compound selected from the group consisting of chain aliphatic hydrocarbons having 6 to 8 carbon atoms and alicyclic hydrocarbons having 6 to 8 carbon atoms.
  • Hydrocarbon dispersion media include chain aliphatic hydrocarbons such as n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane, and n-octane; cyclohexane.
  • the hydrocarbon dispersion medium may be used alone or in combination of two or more.
  • the hydrocarbon dispersion medium may contain at least one selected from the group consisting of n-heptane and cyclohexane from the viewpoint of being industrially easily available and having stable quality. From the same viewpoint, as the mixture of the above-mentioned hydrocarbon dispersion medium, for example, commercially available ExxonHeptane (manufactured by ExxonMobil: containing 75 to 85% of n-heptane and isomeric hydrocarbons) is used. You may.
  • the amount of the hydrocarbon dispersion medium used is preferably 30 to 1000 parts by mass and 40 to 500 parts by mass with respect to 100 parts by mass of the monomer aqueous solution from the viewpoint of appropriately removing the heat of polymerization and easily controlling the polymerization temperature. Is more preferable, and 50 to 400 parts by mass is further preferable.
  • the amount of the hydrocarbon dispersion medium used is 30 parts by mass or more, the polymerization temperature tends to be easily controlled.
  • the amount of the hydrocarbon dispersion medium used is 1000 parts by mass or less, the productivity of polymerization tends to be improved, which is economical.
  • the radical polymerization initiator is preferably water-soluble, for example, persulfates such as potassium persulfate, ammonium persulfate, sodium persulfate; methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t.
  • persulfates such as potassium persulfate, ammonium persulfate, sodium persulfate
  • methyl ethyl ketone peroxide methyl isobutyl ketone peroxide, di-t-butyl peroxide, t.
  • -Peroxides such as butyl cumylperoxide, t-butylperoxyacetate, t-butylperoxyisobutyrate, t-butylperoxypivalate, hydrogen peroxide; 2,2'-azobis (2-amidinopropane) ) 2 hydrochloride, 2,2'-azobis [2- (N-phenylamidino) propane] 2 hydrochloride, 2,2'-azobis [2- (N-allylamidino) propane] 2 hydrochloride, 2,2 '-Azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis ⁇ 2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane ⁇ Dihydrochloride, 2,2'-azobis ⁇ 2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide ⁇ , 2,2'-azobis [2-methyl-N-
  • the radical polymerization initiator may be used alone or in combination of two or more.
  • examples of the radical polymerization initiator include potassium persulfate, ammonium persulfate, sodium persulfate, 2,2'-azobis (2-amidinopropane) dihydrochloride, and 2,2'-azobis [2- (2-imidazolin-2-).
  • the amount of the radical polymerization initiator used may be 0.05 to 10 mmol per 1 mol of the ethylenically unsaturated monomer.
  • the amount of the radical polymerization initiator used is 0.05 mmol or more, the polymerization reaction does not require a long time and is efficient.
  • the amount of the radical polymerization initiator used is 10 mmol or less, it is easy to suppress the occurrence of a rapid polymerization reaction.
  • the above-mentioned radical polymerization initiator can also be used as a redox polymerization initiator in combination with a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
  • a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
  • the monomer aqueous solution used for the polymerization may contain a chain transfer agent.
  • chain transfer agent include hypophosphates, thiols, thiolic acids, secondary alcohols, amines and the like.
  • the monomer aqueous solution used for the polymerization may contain a thickener in order to control the particle size of the water-absorbent resin particles.
  • the thickener include hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, carboxymethyl cellulose, polyethylene glycol, polyacrylamide, polyethyleneimine, dextrin, sodium alginate, polyvinyl alcohol, polyvinylpyrrolidone, polyethylene oxide and the like. If the stirring speed at the time of polymerization is the same, the higher the viscosity of the aqueous monomer solution, the larger the medium particle size of the obtained particles tends to be.
  • Cross-linking by self-cross-linking may occur during polymerization, but cross-linking may be performed by using an internal cross-linking agent.
  • an internal cross-linking agent When an internal cross-linking agent is used, it is easy to control the water absorption characteristics of the water-absorbent resin particles.
  • the internal cross-linking agent is usually added to the reaction solution during the polymerization reaction.
  • the internal cross-linking agent examples include di or tri (meth) acrylic acid esters of polyols such as ethylene glycol, propylene glycol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; Unsaturated polyesters obtained by reacting polyols with unsaturated acids (maleic acid, fumaric acid, etc.); bis (meth) acrylamides such as N, N'-methylenebis (meth) acrylamide; polyepoxides and (meth) Di or tri (meth) acrylic acid esters obtained by reacting with acrylic acid; di (meth) obtained by reacting polyisocyanate (tolylene diisocyanate, hexamethylene diisocyanate, etc.) with hydroxyethyl (meth) acrylate.
  • polyols such as ethylene glycol, propylene glycol, trimethylolpropane, glycerin, polyoxyethylene glycol,
  • Acrylic acid carbamil esters compounds having two or more polymerizable unsaturated groups such as allylated starch, allylated cellulose, diallyl phthalate, N, N', N "-triallyl isocyanurate, divinylbenzene; Poly such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, polyglycerol polyglycidyl ether, etc.
  • Poly such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene
  • Glycidyl compounds such as epichlorohydrin, epibromhydrin, ⁇ -methylepichlorohydrin; 2 reactive functional groups such as isocyanate compounds (2,4-tolylene diisocyanate, hexamethylene diisocyanate, etc.) Examples thereof include compounds having more than one.
  • the internal cross-linking agent may be used alone or in combination of two or more. As the internal cross-linking agent, a polyglycidyl compound is preferable, and a diglycidyl ether compound is used.
  • the amount of the internal cross-linking agent used is from the viewpoint of suppressing liquid leakage in the absorbent article, and the water-soluble property is suppressed by appropriately cross-linking the obtained polymer, so that a sufficient water absorption amount can be easily obtained.
  • 30 mmol or less is preferable, 0.01 to 10 mmol is more preferable, 0.012 to 5 mmol is further preferable, and 0.015 to 1 mmol is particularly preferable, per 1 mol of the ethylenically unsaturated monomer. 0.02 to 0.1 mmol is highly preferred, and 0.025 to 0.08 mmol is very preferred.
  • a monomer aqueous solution containing an ethylenically unsaturated monomer is used as a hydrocarbon dispersion medium in the presence of a surfactant (more polymer-based dispersant if necessary). Disperse.
  • a surfactant more polymer-based dispersant if necessary.
  • the timing of adding the surfactant, the polymer-based dispersant, or the like may be either before or after the addition of the monomer aqueous solution, as long as it is before the start of the polymerization reaction.
  • the surfactant is prepared after the monomer aqueous solution is dispersed in the hydrocarbon dispersion medium in which the polymer-based dispersant is dispersed. It is preferable to further disperse the above and then carry out the polymerization.
  • Reverse phase suspension polymerization can be carried out in one stage or in multiple stages of two or more stages. Reversed phase suspension polymerization may be carried out in 2 to 3 steps from the viewpoint of increasing productivity.
  • the reaction mixture obtained in the first-step polymerization reaction after the first-step reverse-phase suspension polymerization is subjected to an ethylenically unsaturated single amount.
  • the body may be added and mixed, and the reverse phase suspension polymerization of the second and subsequent steps may be carried out in the same manner as in the first step.
  • the above-mentioned radical polymerization initiator and / or internal cross-linking agent is used in the reverse phase in each stage after the second stage.
  • reverse phase suspension polymerization is carried out by adding within the range of the molar ratio of each component to the above-mentioned ethylenically unsaturated monomer.
  • An internal cross-linking agent may be used in the reverse phase suspension polymerization in each of the second and subsequent stages, if necessary.
  • an internal cross-linking agent it is added within the range of the molar ratio of each component to the above-mentioned ethylenically unsaturated monomer based on the amount of the ethylenically unsaturated monomer provided in each stage, and the suspension is reversed. It is preferable to carry out turbid polymerization.
  • the temperature of the polymerization reaction varies depending on the radical polymerization initiator used, but by rapidly advancing the polymerization and shortening the polymerization time, the efficiency is improved and the heat of polymerization is easily removed to carry out the reaction smoothly. From the viewpoint, 20 to 150 ° C. is preferable, and 40 to 120 ° C. is more preferable.
  • the reaction time is usually 0.5-4 hours.
  • the completion of the polymerization reaction can be confirmed, for example, by stopping the temperature rise in the reaction system. As a result, the polymer of the ethylenically unsaturated monomer is usually obtained in the state of a hydrogel.
  • the polymerization reaction can be carried out using various stirrers having stirring blades.
  • stirring blade flat plate blades, lattice blades, paddle blades, propeller blades, anchor blades, turbine blades, Faudler blades, ribbon blades, full zone blades, max blend blades and the like can be used.
  • cross-linking may be performed by adding a cross-linking agent to the obtained hydrogel polymer and heating it.
  • a cross-linking agent By performing cross-linking after the polymerization, the degree of cross-linking of the hydrogel polymer can be increased to further improve the water absorption characteristics.
  • the post-polymerization cross-linking agent the same type as the surface cross-linking agent described later can be used.
  • the time for adding the cross-linking agent after polymerization may be after the polymerization of the ethylenically unsaturated monomer used for polymerization.
  • the post-polymerization cross-linking agent contains water in consideration of heat generation during and after polymerization, retention due to process delay, opening of the system when the cross-linking agent is added, and fluctuation of water content due to addition of water accompanying the addition of the cross-linking agent. From the viewpoint of rate (described later), it is preferable to add in the region of [moisture content immediately after polymerization ⁇ 3% by mass].
  • the post-polymerization cross-linking agent aqueous solution can also serve as a granulator for aggregating the primary particles.
  • hydrogel-like polymer As the primary particles, granulation is performed by aggregation as described above, and the hydrogel-like polymer in the form in which the primary particles are aggregated can be obtained.
  • polymer particles for example, polymer particles having a structural unit derived from an ethylenically unsaturated monomer
  • a drying method for example, (a) a hydrogel-like polymer is dispersed in a hydrocarbon dispersion medium, and co-boiling distillation is performed by heating from the outside, and the hydrocarbon dispersion medium is refluxed to remove water.
  • Examples thereof include (b) a method of taking out the hydrogel polymer by decantation and drying under reduced pressure, and (c) a method of filtering the hydrogel polymer with a filter and drying under reduced pressure. Above all, it is preferable to use the method (a) because of the simplicity in the manufacturing process.
  • surface cross-linking of the surface portion (surface and vicinity of the surface) of the hydrogel polymer using a cross-linking agent in the drying step (moisture removing step) after the granulation step or the subsequent steps. is preferably performed.
  • the surface cross-linking is preferably performed at a timing when the water-containing gel polymer has a specific water content.
  • the time of surface cross-linking is preferably when the water content of the hydrogel polymer is 5 to 50% by mass, more preferably 10 to 40% by mass, and even more preferably 15 to 35% by mass.
  • the water content (mass%) of the water-containing gel polymer is calculated by the following formula.
  • Moisture content [Ww / (Ww + Ws)] x 100
  • Ww A flocculant, a surface cross-linking agent, etc. are mixed in an amount obtained by subtracting the amount of water discharged to the outside of the system by a step such as a drying step from the amount of water contained in the monomer aqueous solution before polymerization in the entire polymerization step.
  • the amount of water in the hydrogel polymer to which the amount of water used as needed is added.
  • Ws A solid content calculated from the amount of materials such as an ethylenically unsaturated monomer, a cross-linking agent, and an initiator that constitute a hydrogel polymer.
  • examples of the surface cross-linking agent include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; (poly) ethylene glycol diglycidyl ether.
  • the surface cross-linking agent may be used alone or in combination of two or more.
  • a polyglycidyl compound is preferable, and (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, and polyglycerol are used. At least one selected from the group consisting of polyglycidyl ether is more preferable.
  • the amount of the surface cross-linking agent used is preferably 0.01 to 20 mmol, preferably 0.05 to 10 to 1 mol of the ethylenically unsaturated monomer used for polymerization, from the viewpoint that suitable water absorption characteristics can be easily obtained. Millimole is more preferable, 0.1 to 5 mmol is further preferable, 0.15 to 2 mmol is particularly preferable, and 0.2 to 0.8 mmol is extremely preferable.
  • water and a hydrocarbon dispersion medium are distilled off by a known method, and the polymer particles are dried under heating and reduced pressure to obtain polymer particles which are dry products with surface cross-linking.
  • the water-absorbent resin particles according to the present embodiment may be composed of only polymer particles, and for example, a gel stabilizer and a metal chelating agent (ethylenediaminetetraacetic acid and a salt thereof, diethylenetriamine-5 acetic acid and a salt thereof, for example, diethylenetriamine). 5 Sodium acetate, etc.), additional components such as a fluidity improver (lubricant) for polymer particles can be further included. Additional components may be placed inside the polymer particles, on the surface of the polymer particles, or both.
  • a gel stabilizer and a metal chelating agent ethylenediaminetetraacetic acid and a salt thereof, diethylenetriamine-5 acetic acid and a salt thereof, for example, diethylenetriamine. 5 Sodium acetate, etc.
  • additional components such as a fluidity improver (lubricant) for polymer particles can be further included. Additional components may be placed inside the polymer particles, on the surface of the polymer particles, or both.
  • the water-absorbent resin particles may contain a plurality of inorganic particles arranged on the surface of the polymer particles.
  • the inorganic particles can be arranged on the surface of the polymer particles.
  • the inorganic particles may be silica particles such as amorphous silica.
  • the content of the inorganic particles may be in the following range based on the total mass of the polymer particles.
  • the content of the inorganic particles may be 0.05% by mass or more, 0.1% by mass or more, 0.15% by mass or more, or 0.2% by mass or more.
  • the content of the inorganic particles may be 5.0% by mass or less, 3.0% by mass or less, 1.0% by mass or less, 0.5% by mass or less, or 0.3% by mass or less.
  • the water-absorbent resin particles according to the present embodiment have excellent absorbency of body fluids such as urine and blood, and for example, disposable diapers, sanitary napkins, light incontinence pads, sanitary products such as tampons, pet sheets, dogs or cats. It can be applied to fields such as animal excrement treatment materials such as toilet formulations.
  • FIG. 1 is a cross-sectional view showing an example of a water absorption sheet.
  • the water absorbing sheet 50 shown in FIG. 1 has an absorber 10 and two core wrap sheets 20a and 20b.
  • the core wrap sheets 20a and 20b are arranged on both sides of the absorber 10.
  • the absorber 10 is arranged inside the core wrap sheets 20a and 20b.
  • the absorber 10 is held in shape by being sandwiched between the two core wrap sheets 20a and 20b.
  • the core wrap sheets 20a and 20b may be two sheets, one folded sheet, or one bag body.
  • the water absorbing sheet 50 may further have an adhesive 21 interposed between the core wrap sheet 20a and the absorber 10.
  • FIG. 2 is a plan view showing an example of an adhesive pattern formed on the core wrap sheet.
  • the adhesive 21 shown in FIG. 2 forms a pattern composed of a plurality of linear portions arranged at intervals on the core wrap sheet 20a.
  • the pattern of the adhesive 21 is not limited to this.
  • the adhesive 21 may be interposed not only between the core wrap sheet 20a and the absorber 10 but also between the core wrap sheet 20b and the absorber 10.
  • the adhesive 21 is not particularly limited, and may be, for example, a hot melt adhesive.
  • the absorber 10 has the water-absorbent resin particles 10a according to the above-described embodiment and the fiber layer 10b containing a fibrous material.
  • the absorber 10 does not have to have the fiber layer 10b.
  • the content of the water-absorbent resin particles in the absorber may be 70 to 100% by mass, 80 to 100% by mass, or 90 to 100% by mass based on the mass of the absorber 10.
  • the content of the water-absorbent resin particles in the absorber 10 is, for example, 30 g or more, 50 g or more, 70 g or more, 80 g or more, 90 g or more, 100 g or more, per 1 m 2 of the absorbent body 10 from the viewpoint of easily obtaining sufficient water absorption performance.
  • it may be 120 g or more, and may be 1000 g or less, 800 g or less, 700 g or less, 600 g or less, 500 g or less, 400 g or less, and 300 g or less.
  • the thickness of the absorber 10 is not particularly limited, but may be, for example, 20 mm or less, 15 mm or less, 10 mm or less, 5 mm or less, 4 mm or less, or 3 mm or less in a dry state, and may be 0.1 mm or more or 0.3 mm or less. It may be the above.
  • the mass per unit area of the absorber 10 may be 1000 g / m 2 or less, 800 g / m 2 or less, 600 g / m 2 or less, or 100 g / m 2 or more.
  • the fibrous material constituting the fiber layer 10b can be, for example, a cellulosic fiber, a synthetic fiber, or a combination thereof.
  • cellulosic fibers include crushed wood pulp, cotton, cotton linters, rayon and cellulosic acetate.
  • synthetic fibers include polyamide fibers, polyester fibers, and polyolefin fibers.
  • the fibrous material may be hydrophilic fibers (for example, pulp).
  • the absorber 10 may further contain an inorganic powder (for example, amorphous silica), a deodorant, an antibacterial agent, a fragrance, and the like.
  • an inorganic powder for example, amorphous silica
  • the absorber 10 may contain inorganic powder in addition to the inorganic particles in the water-absorbent resin particles 10a.
  • the core wrap sheets 20a and 20b may be, for example, a non-woven fabric.
  • the two core wrap sheets 20a and 20b can be the same or different non-woven fabrics.
  • the non-woven fabric may be a non-woven fabric composed of short fibers (that is, staples) (short-fiber non-woven fabric) or a non-woven fabric composed of long fibers (that is, filaments) (long-fiber non-woven fabric). Staples are not limited to this, but generally may have a fiber length of several hundred mm or less.
  • the core wrap sheets 20a and 20b are laminated including a thermal bond non-woven fabric, an air-through non-woven fabric, a resin bond non-woven fabric, a spunbond non-woven fabric, a melt blow non-woven fabric, an air-laid non-woven fabric, a spunlace non-woven fabric, a point bond non-woven fabric, or two or more kinds of non-woven fabrics selected from these. It can be a body.
  • the non-woven fabric used as the core wrap sheets 20a and 20b can be a non-woven fabric formed of synthetic fibers, natural fibers, or a combination thereof.
  • synthetic fibers include polyolefins such as polyethylene (PE) and polypropylene (PP), polyesters such as polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT) and polyethylene naphthalate (PEN), polyamides such as nylon, and Examples thereof include fibers containing a synthetic resin selected from rayon.
  • Examples of natural fibers include fibers containing cotton, silk, hemp, or pulp (cellulose).
  • the fibers forming the non-woven fabric may be polyolefin fibers, polyester fibers or a combination thereof.
  • the core wrap sheets 20a and 20b may be tissue paper.
  • the water absorbing resin particles 10a or a mixture containing the water absorbing resin particles 10a and the fibrous material is sandwiched between the core wrap sheets 20a and 20b, and the formed structure is heated as necessary. It can be obtained by the method of pressurizing. If necessary, the adhesive 21 is arranged between the core wrap sheets 20a and 20b and the water-absorbent resin particles 10a or a mixture containing the same.
  • the water absorption sheet 50 may have two layers of the absorber 10 by further providing the absorber 10 and the core wrap sheet on the surface of the core wrap sheet 20b opposite to the surface on which the absorber 10 exists. Good. Since the water-absorbent resin particles according to the present embodiment are particularly excellent in suppressing leakage, they have high absorption performance even in a water-absorbent sheet having a single-layer absorption layer, and can suppress liquid leakage.
  • the content of the water-absorbent resin particles in the water-absorbent sheet 50 is, for example, 30 g or more, 50 g or more, 70 g or more, 80 g or more, 90 g or more, 100 g or more, per 1 m 2 of the absorber 10 from the viewpoint of easily obtaining sufficient water absorption performance.
  • it may be 120 g or more, and may be 1000 g or less, 800 g or less, 700 g or less, 600 g or less, 500 g or less, 400 g or less, and 300 g or less.
  • the water absorption sheet 50 is used, for example, for producing various absorbent articles.
  • absorbent articles include diapers (eg paper diapers), toilet training pants, incontinence pads, sanitary materials (sanitary napkins, tampons, etc.), sweat pads, pet sheets, toilet components, and animal waste treatment materials. Can be mentioned.
  • FIG. 3 is a cross-sectional view showing an example of an absorbent article.
  • the absorbent article 100 shown in FIG. 3 includes a water absorbing sheet 50, a liquid permeable sheet 30, and a liquid permeable sheet 40.
  • the water absorbing sheet 50 is sandwiched between the liquid permeable sheet 30 and the liquid impermeable sheet 40.
  • the liquid permeable sheet 30 is arranged at the position of the outermost layer on the side where the liquid to be absorbed enters.
  • the liquid permeable sheet 30 is arranged on the outside of the core wrap sheet 20b in contact with the core wrap sheet 20b.
  • the liquid permeable sheet 40 is arranged at the position of the outermost layer on the side opposite to the liquid permeable sheet 30 in the absorbent article 100.
  • the liquid impermeable sheet 40 is arranged on the outside of the core wrap sheet 20a in a state of being in contact with the core wrap sheet 20a.
  • the liquid permeable sheet 30 and the liquid permeable sheet 40 have a main surface wider than the main surface of the water absorbing sheet 50, and the outer edges of the liquid permeable sheet 30 and the liquid permeable sheet 40 are absorbers.
  • the magnitude relationship between the absorbent body 10, the core wrap sheets 20a and 20b, the liquid permeable sheet 30, and the liquid permeable sheet 40 is not particularly limited, and is appropriately adjusted according to the use of the absorbent article and the like. ..
  • the liquid permeable sheet 30 may be a non-woven fabric.
  • the non-woven fabric used as the liquid permeable sheet 30 may have appropriate hydrophilicity from the viewpoint of the liquid absorption performance of the absorbent article. From this point of view, the liquid permeable sheet 30 is obtained from the pulp and paper test method No. 1 by the Paper and Pulp Technology Association. A non-woven fabric having a hydrophilicity of 5 to 200 measured according to the measuring method of 68 (2000) may be used. The hydrophilicity of the non-woven fabric may be 10 to 150. Pulp and paper test method No. For details of 68, for example, WO2011 / 086843 can be referred to.
  • the non-woven fabric having hydrophilicity may be formed of fibers showing appropriate hydrophilicity such as rayon fiber, or obtained by hydrophilizing a hydrophobic chemical fiber such as polyolefin fiber or polyester fiber. It may be formed of rayon fibers.
  • Examples of a method for obtaining a non-woven fabric containing hydrophobic chemical fibers that have been hydrophilized include a method for obtaining a non-woven fabric by a spunbond method using a mixture of hydrophobic chemical fibers and a hydrophilic agent, and hydrophobic chemistry.
  • Examples thereof include a method of accommodating a hydrophilic agent when producing a spunbonded non-woven fabric from fibers, and a method of impregnating a spunbonded non-woven fabric obtained by using hydrophobic chemical fibers with a hydrophilicizing agent.
  • the hydrophilizing agent include anionic surfactants such as aliphatic sulfonates and higher alcohol sulfates, cationic surfactants such as quaternary ammonium salts, polyethylene glycol fatty acid esters, polyglycerin fatty acid esters, and sorbitan fatty acids.
  • Nonionic surfactants such as esters, silicone-based surfactants such as polyoxyalkylene-modified silicones, and stain-releasing agents made of polyester-based, polyamide-based, acrylic-based, and urethane-based resins are used.
  • the amount of texture (mass per unit area) of the non-woven fabric used as the liquid permeable sheet 30 is from the viewpoint of imparting good liquid permeability, flexibility, strength and cushioning property to the absorbent article, and the liquid of the absorbent article. From the viewpoint of increasing the permeation rate, it may be 5 to 200 g / m 2 , 8 to 150 g / m 2 , or 10 to 100 g / m 2 .
  • the thickness of the liquid permeable sheet 30 may be 20 to 1400 ⁇ m, 50 to 1200 ⁇ m, or 80 to 1000 ⁇ m.
  • the liquid impermeable sheet 40 prevents the liquid absorbed by the absorber 10 from leaking to the outside from the liquid impermeable sheet 40 side.
  • the liquid impermeable sheet 40 may be a resin sheet or a non-woven fabric.
  • the resin sheet may be a sheet made of a synthetic resin such as polyethylene, polypropylene, or polyvinyl chloride.
  • the non-woven fabric may be a spunbond / meltblow / spunbond (SMS) non-woven fabric in which a water-resistant melt-blow non-woven fabric is sandwiched between high-strength spunbond non-woven fabrics.
  • SMS spunbond / meltblow / spunbond
  • the liquid impermeable sheet 40 may be a composite sheet of a resin sheet and a non-woven fabric (for example, a spunbonded non-woven fabric or a spunlaced non-woven fabric).
  • the liquid impermeable sheet 40 may have breathability from the viewpoint that stuffiness at the time of wearing is reduced and discomfort given to the wearer can be reduced.
  • a sheet of low density polyethylene (LDPE) resin can be used as the liquid impermeable sheet 40 having breathability.
  • the basis weight (mass per unit area) of the liquid impermeable sheet 40 may be 10 to 50 g / m 2.
  • the absorbent article 100 can be manufactured, for example, by a method including arranging the water absorbing sheet 50 between the liquid permeable sheet 30 and the liquid permeable sheet 40.
  • a laminated body in which the liquid permeable sheet 40, the water absorbing sheet 50, and the liquid permeable sheet 30 are laminated in this order is pressurized as necessary.
  • the liquid permeable sheet 30, the core wrap sheet 20b, the water-absorbent resin particles 10a, or the mixture containing the water-absorbent resin particles 10a and the fibrous material, and the core wrap sheet 20a and the liquid impermeable sheet 40 are used.
  • the absorbent article 100 can also be obtained by arranging in this order and pressurizing the formed structure while heating if necessary.
  • a non-woven fabric may be arranged between the liquid permeable sheet 30 and the core wrap sheet 20b for the purpose of diffusing the liquid.
  • hydroxylethyl cellulose Suditomo Seika Co., Ltd., HEC AW-15F
  • 0.0736 g 0.0736 g (0.272 mmol) of potassium persulfate as a water-soluble radical polymerization initiator
  • ethylene as an internal cross-linking agent.
  • a first-stage monomer aqueous solution was prepared by adding 0.010 g (0.057 mmol) of glycol diglycidyl ether and dissolving it.
  • the first-stage monomer aqueous solution was added to the flask and stirred for 10 minutes. Separately, 0.736 g of sucrose stearic acid ester (Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370, HLB: 3) as a surfactant is dissolved in 6.62 g of n-heptane by heating to dissolve the surfactant solution. was prepared. The surfactant solution was further added to the flask, and the inside of the system was sufficiently replaced with nitrogen while stirring at a stirring speed of 550 rpm. Then, the flask was immersed in a water bath at 70 ° C. for heating, and polymerization was carried out for 60 minutes to obtain a slurry containing a spherical hydrogel polymer a.
  • sucrose stearic acid ester Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370, HLB: 3
  • the surfactant solution was further added to the flask
  • n-heptane as a hydrocarbon dispersion medium
  • sorbitan monolaurate Naonion LP-20R, HLB value: 8.6, manufactured by NOF CORPORATION
  • the mixture was obtained by addition.
  • the sorbitan monolaurate was dissolved in n-heptane by heating the mixture to 50 ° C. while stirring at a stirring speed of 300 rpm. The mixture was then cooled to 40 ° C.
  • the stirring blade 200 includes a shaft 200a and a flat plate portion 200b.
  • the flat plate portion 200b is welded to the shaft 200a and has a curved tip.
  • the flat plate portion 200b is formed with four slits S extending along the axial direction of the shaft 200a.
  • the four slits S are arranged in the width direction of the flat plate portion 200b, the width of the two inner slits S is 1 cm, and the width of the two outer slits S is 0.5 cm.
  • the length of the flat plate portion 200b is about 10 cm, and the width of the flat plate portion 200b is about 6 cm.
  • a slurry containing 220 g of n-heptane and a slurry containing a hydrogel polymer a filtered from n-heptane using a JIS standard sieve having a mesh size of 75 ⁇ m, and a JIS standard sieve having a mesh size of 75 ⁇ m were used.
  • -185 g of a slurry containing the hydrogel polymer b filtered from heptane was added, and the slurry was immersed in an oil bath at 80 ° C. while stirring at a stirring speed of 1000 rpm.
  • a dispersion was prepared by dispersing 0.092 g of amorphous silica (Oriental Silicas Corporation, Toxile NP-S) as a powdery inorganic flocculant in 100 g of n-heptane.
  • the dispersion liquid was added to the flask and mixed for 10 minutes to aggregate the hydrogel polymer a and the hydrogel polymer b.
  • Mixing ratio of hydrogel polymer a and hydrogel polymer b (theoretical ratio calculated based on the results of measuring the content of water-absorbent resin solids contained in each slurry by separately heating and drying, and so on. ) Is 50:50.
  • the flask was immersed in an oil bath set at 125 ° C., and 100.0 g of water was extracted from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. Then, 4.14 g (0.475 mmol) of a 2% by mass ethylene glycol diglycidyl ether aqueous solution was added to the flask as a surface cross-linking agent, and the flask was kept at 83 ° C. for 2 hours.
  • n-heptane and water were heated in an oil bath at 125 ° C. to evaporate and dry to obtain a dried product of polymer particles.
  • the polymer particles were passed through a sieve having an opening of 850 ⁇ m to obtain 59.9 g of water-absorbent resin particles A.
  • the medium particle size of the water-absorbent resin particles A was 486 ⁇ m.
  • Each of the water-absorbent resin particles A had a spherical portion and an irregularly shaped portion.
  • Example 2 The amount of 2% by mass ethylene glycol diglycidyl ether aqueous solution added after aggregation was changed to 8.28 g (0.951 mmol), and the mixture was extracted by azeotropic distillation of n-heptane and water. 51.8 g of water-absorbent resin particles B were obtained in the same manner as in Example 1 except that the amount of water was changed to 101.6 g. The medium particle size of the water-absorbent resin particles B was 517 ⁇ m. Each of the water-absorbent resin particles B had a spherical portion and an irregularly shaped portion.
  • Example 3 The amount of the hydrogel polymer a added during granulation was changed to 100 g, the amount of the hydrogel polymer b was changed to 222 g, and the water extracted by azeotropic distillation of n-heptane and water. 75.6 g of water-absorbent resin particles C was obtained in the same manner as in Example 1 except that the amount was changed to 114.0 g.
  • the mixing ratio (mass basis) of the hydrogel polymer a and the hydrogel polymer b is 40:60.
  • the medium particle size of the water-absorbent resin particles was 453 ⁇ m.
  • Each of the water-absorbent resin particles C had a spherical portion and an irregularly shaped portion. A scanning electron micrograph of the water-absorbent resin particles C is shown in FIG.
  • Example 4 The amount of the hydrogel polymer a added during granulation was changed to 75 g, the amount of the hydrogel polymer b was changed to 259 g, and the water extracted by azeotropic distillation of n-heptane and water. 69.9 g of water-absorbent resin particles D was obtained in the same manner as in Example 1 except that the amount was changed to 106.3 g.
  • the mixing ratio (mass basis) of the hydrogel polymer a and the hydrogel polymer b is 30:70.
  • the medium particle size of the water-absorbent resin particles was 424 ⁇ m.
  • Each of the water-absorbent resin particles D had a spherical portion and an irregularly shaped portion.
  • n-heptane and water were heated in an oil bath at 125 ° C. to evaporate and dry to obtain a dried product of polymer particles.
  • the polymer particles were passed through a sieve having an opening of 850 ⁇ m to obtain 90.5 g of spherical water-absorbent resin particles E.
  • the medium particle size of the water-absorbent resin particles E was 55 ⁇ m.
  • a slurry containing the hydrogel polymer was obtained in the same manner as in the hydrogel polymer b of Example 1.
  • the flask containing the slurry was immersed in an oil bath at 125 ° C., and 96.7 g of water was extracted from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water.
  • 4.14 g (ethylene glycol diglycidyl ether: 0.475 mmol) of 2% by mass of an ethylene glycol diglycidyl ether aqueous solution was added as a surface cross-linking agent, and the mixture was maintained at an internal temperature of 83 ⁇ 2 ° C. for 2 hours.
  • Comparative Example 1 was a mixture of water-absorbent resin particles E and water-absorbent resin particles F at a mass ratio of 50:50.
  • n-heptane as a hydrocarbon dispersion medium
  • 0.736 g of a maleic anhydride-modified ethylene-propylene copolymer Mitsubishi Chemicals, Inc., High Wax 1105A
  • the dispersant was dissolved in n-heptane by heating the mixture in the flask to 80 ° C. with stirring, and then cooled to 50 ° C.
  • hydroxylethyl cellulose (Sumitomo Seika Co., Ltd., HEC AW-15F) was used as a thickener, and 0.110 g of 2,2'-azobis (2-amidinopropane) dihydrochloride as a water-soluble radical polymerization initiator (. 0.407 mmol) and 0.0046 g (0.026 mmol) of ethylene glycol diglycidyl ether as an internal cross-linking agent were added to the beaker and dissolved to prepare a first-stage monomer aqueous solution.
  • the first-stage monomer aqueous solution was added to the flask and stirred for 10 minutes. Separately, 0.736 g of sucrose stearic acid ester (Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370, HLB: 3) as a surfactant is dissolved in 6.62 g of n-heptane by heating to dissolve the surfactant solution. was prepared. The surfactant solution was further added to the flask, and the inside of the system was sufficiently replaced with nitrogen while stirring at a stirring speed of 400 rpm. Then, the flask was immersed in a water bath at 70 ° C. and heated, and polymerization was carried out for 60 minutes to obtain a slurry containing a hydrogel polymer.
  • sucrose stearic acid ester Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370, HLB: 3
  • the surfactant solution was further added to the flask, and the inside of the system was
  • the flask containing the slurry was immersed in an oil bath set at 125 ° C., and 108.2 water was extracted from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. Then, 4.60 g (0.528 mmol) of a 2% by mass ethylene glycol diglycidyl ether aqueous solution was added to the flask as a surface cross-linking agent, and the flask was kept at 83 ° C. for 2 hours.
  • n-heptane and water were heated in an oil bath at 125 ° C. to evaporate and dry to obtain a dried product of polymer particles.
  • the polymer particles were passed through a sieve having an opening of 850 ⁇ m to obtain 91.2 spherical water-absorbent resin particles G.
  • the medium particle size of the water-absorbent resin particles G was 381 ⁇ m.
  • a hydrogel polymer was obtained in the same manner as in the hydrogel polymer b of Example 1. Separately, 0.092 g of amorphous silica (Oriental Silicas Corporation, Toxile NP-S) as a powdery inorganic flocculant was dispersed in 100 g of n-heptane to obtain a dispersion liquid. While stirring at a rotation speed of 1000 rpm of a stirrer, the above dispersion was added to a polymerization solution containing a hydrogel polymer, n-heptane and a surfactant, and mixed for 10 minutes.
  • amorphous silica Oriental Silicas Corporation, Toxile NP-S
  • a powdery inorganic flocculant was dispersed in 100 g of n-heptane to obtain a dispersion liquid. While stirring at a rotation speed of 1000 rpm of a stirrer, the above dispersion was added to a polymerization solution containing a
  • the flask was immersed in an oil bath at 125 ° C., and 98.0 g of water was extracted from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. Then, 4.14 g (ethylene glycol diglycidyl ether: 0.475 mmol) of 2% by mass of an ethylene glycol diglycidyl ether aqueous solution was added to the flask as a surface cross-linking agent, and the mixture was kept at an internal temperature of 83 ⁇ 2 ° C. for 2 hours. ..
  • Comparative Example 2 was a mixture of water-absorbent resin particles G and water-absorbent resin particles H at a mass ratio of 50:50.
  • hydroxylethyl cellulose Suditomo Seika Co., Ltd., HEC AW-15F
  • 0.0736 g 0.0736 g (0.272 mmol) of potassium persulfate as a water-soluble radical polymerization initiator
  • ethylene as an internal cross-linking agent.
  • a first-stage monomer aqueous solution was prepared by adding 0.010 g (0.057 mmol) of glycol diglycidyl ether to the above beaker and dissolving it.
  • the first-stage monomer aqueous solution was added to the flask and stirred for 10 minutes. Separately, 0.736 g of sucrose stearic acid ester (Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370, HLB: 3) as a surfactant is dissolved in 6.62 g of n-heptane by heating to dissolve the surfactant solution. was prepared. The surfactant solution was further added to the flask, and the inside of the system was sufficiently replaced with nitrogen while stirring at a rotation speed of a stirrer of 500 rpm. Then, the flask was immersed in a water bath at 70 ° C. for heating, and polymerization was carried out for 60 minutes to obtain a first-stage polymerization slurry liquid.
  • sucrose stearic acid ester Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370, HLB: 3
  • the surfactant solution was further added to the flask, and the
  • the entire amount of the monomer aqueous solution in the second stage was added to the polymerized slurry solution in the first stage. Then, the inside of the system was replaced with nitrogen for 30 minutes, the flask was again immersed in a water bath at 70 ° C. for heating, and the polymerization reaction was carried out for 60 minutes to obtain a slurry containing a hydrogel polymer.
  • the flask containing the above slurry was immersed in an oil bath set at 125 ° C., and 248.2 g of water was extracted from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. Then, 4.42 g (0.507 mmol) of a 2% by mass ethylene glycol diglycidyl ether aqueous solution was added to the flask as a surface cross-linking agent, and the flask was kept at 83 ° C. for 2 hours.
  • n-heptane and water were heated in an oil bath at 125 ° C. to evaporate and dry to obtain a dried product of polymer particles.
  • the polymer particles are passed through a sieve having an opening of 850 ⁇ m, and 0.2% by mass of amorphous silica (Oriental Silicas Corporation, Toxile NP-S) with respect to the mass of the polymer particles is mixed with the polymer particles.
  • amorphous silica Oriental Silicas Corporation, Toxile NP-S
  • 230.8 g of water-absorbent resin particles I having a shape in which spherical primary particles were aggregated were obtained.
  • the medium particle size of the water-absorbent resin particles I was 363 ⁇ m.
  • the degree of unevenness for each shape was measured by the following method using a laser microscope (manufactured by KEYENCE CORPORATION, VK-X150).
  • the water-absorbent resin particles A obtained in Example 1 were further classified, and particles having a medium particle diameter in the range of 300 to 355 ⁇ m were used as shape-specific unevenness measurement samples.
  • the measurement sample was in a dry state before water absorption and was stored at a humidity of 40%.
  • the observation application was set to "bright field” and the shape measurement was set to "dark field”.
  • the magnification of the lens was set to 20 times.
  • a 3D image of the sample was taken with a laser color confocal image.
  • a circular profile line (circumference of about 100 to 105 ⁇ m) having a diameter in the range of 31.8 to 33.4 ⁇ m was set on the acquired image of the water-absorbent resin particles. The unevenness of the particle surface is measured along this profile line.
  • spherical parts were measured at 5 points and irregularly shaped parts were measured at 5 places.
  • the profile line was set so as not to protrude from the spherical portion of one sphere, and the boundary between the spheres was not included.
  • the irregularly shaped portion only the irregularly shaped portion was set so that the profile line did not include the spherical portion.
  • the average line of the waveform curve in the extracted portion is drawn, and the sum of the absolute values of the highest peak elevation and the lowest valley bottom elevation of the extracted portion of the waveform curve is maximized with reference to the average line. It was calculated as height roughness Rz.
  • the average line is automatically set so that the area surrounded by the average line and the waveform curve above the average line and the area surrounded by the average line and the waveform curve below the average line are equal. For each of the spherical part and the irregular shape part, the average of the measured values at five places was obtained as the degree of unevenness for each shape. The results are shown in Table 1.
  • the spherical portion had a shape-specific unevenness of 1 ⁇ m or more and 20 ⁇ m or less, and the irregular shape portion had a shape-specific unevenness of more than 20 ⁇ m and 200 ⁇ m or less.
  • the degree of unevenness for each shape is determined in Example 1. Shows substantially the same value as.
  • the water-absorbent resin particles of the examples or comparative examples were further classified, and the particles having a medium particle size in the range of 300 to 355 ⁇ m were used as the unevenness measurement sample.
  • the measurement sample was in a dry state before use and was stored at a humidity of 40%.
  • the settings of the digital microscope were set to epi-illumination: 10, ring illumination, and VH-Z20R lens magnification: 200 times. Depth synthesis was performed using "quick synthesis & 3D" as the program of the above digital microscope, and a 3D image of the surface of the water-absorbent resin particles was taken.
  • a circular profile line (circumference of about 850 to 1000 ⁇ m) having a diameter in the range of 270 to 320 ⁇ m was set on the acquired image of the water-absorbent resin particles. At the time of setting, the center of the circular profile line was aligned with the center of the water-absorbent resin particles, and the profile line was prevented from protruding from the water-absorbent resin particles.
  • FIG. 6 is an example of a graph showing a waveform curve and an average line.
  • the line indicated by the arrowhead in the graph is the average line.
  • the broken line in the vertical direction is a line indicating the range of the sampling points of the waveform curve.
  • the average line is drawn so as to connect the points where the waveform curve and the vertical broken line intersect.
  • the sampling point of the waveform curve is set at a position where the average line satisfies the above area condition.
  • the degree of unevenness was measured for 12 samples, and the average value of 10 points excluding the maximum value and the minimum value was taken as the average degree of unevenness of the particles.
  • VHX-5000 manufactured by KEYENCE CORPORATION (with the following functions)
  • Video engine 23-inch IPS full HD LCD built-in
  • live depth composition function live depth composition function
  • real-time super-resolution HDR function shooting setting reproduction function
  • ultra-high-speed image connection function 50-frame CMOS camera (high-spec multi-scan camera head (VHX-5100)) ))
  • TRIPLE'R lens ultra-compact high-performance Z lens TR [20-200] (VH-Z20T), lens joint for VH-Z20T (VHX-J20T))
  • Free-angle observation stand XYZ electric stage (VHX-S550)
  • VHX-H4M 3D shape measurement software
  • the medium particle size of the particles was measured in an environment of room temperature (25 ⁇ 2 ° C.) and humidity of 50 ⁇ 10% according to the following procedure. Using a continuous fully automatic sonic vibration type sieving measuring instrument (Robot Shifter RPS-205, manufactured by Seishin Enterprise Co., Ltd.), using JIS standard 850 ⁇ m, 600 ⁇ m, 500 ⁇ m, 425 ⁇ m, 300 ⁇ m, 250 ⁇ m and 180 ⁇ m sieves, and a saucer. , The particle size distribution of 5 g of water-absorbent resin particles was measured.
  • the relationship between the mesh size of the sieve and the integrated value of the mass percentage of the particles remaining on the sieve was plotted on a logarithmic probability paper by integrating on the sieve in order from the one having the largest particle size with respect to this particle size distribution. By connecting the plots on the probability paper with a straight line, the particle size corresponding to the cumulative mass percentage of 50% by mass was obtained as the medium particle size.
  • the water retention amount (room temperature, 25 ⁇ 2 ° C.) of the physiological saline of the water-absorbent resin particles was measured by the following procedure. First, a cotton bag (Membroad No. 60, width 100 mm ⁇ length 200 mm) weighing 2.0 g of water-absorbent resin particles was placed in a beaker having an internal volume of 500 mL. After pouring 500 g of physiological saline into a cotton bag containing water-absorbent resin particles at a time so that mako cannot be made, tie the upper part of the cotton bag with a rubber band and let it stand for 30 minutes to swell the water-absorbent resin particles. I let you.
  • the cotton bag was dehydrated for 1 minute using a dehydrator (manufactured by Kokusan Co., Ltd., product number: H-122) set to have a centrifugal force of 167 G, and then contained a swollen gel after dehydration.
  • the mass Wa [g] of the cotton bag was measured.
  • the same operation was performed without adding the water-absorbent resin particles, the empty mass Wb [g] of the cotton bag when wet was measured, and the water retention amount of the physiological saline of the water-absorbent resin particles was calculated from the following formula.
  • the measuring device Y is composed of a burette unit 61, a conduit 62, a measuring table 63, and a measuring unit 64 placed on the measuring table 63.
  • the burette portion 61 has a burette 61a extending in the vertical direction, a rubber stopper 61b arranged at the upper end of the burette 61a, a cock 61c arranged at the lower end of the burette 61a, and one end extending into the burette 61a in the vicinity of the cock 61c. It has an air introduction pipe 61d and a cock 61e arranged on the other end side of the air introduction pipe 61d.
  • the conduit 62 is attached between the burette portion 61 and the measuring table 63.
  • the inner diameter of the conduit 62 is 6 mm.
  • a hole having a diameter of 2 mm is formed in the central portion of the measuring table 63, and the conduit 62 is connected to the hole.
  • the measuring unit 64 has a cylinder 64a (made of acrylic resin), a nylon mesh 64b adhered to the bottom of the cylinder 64a, and a weight 64c.
  • the inner diameter of the cylinder 64a is 20 mm.
  • the opening of the nylon mesh 64b is 75 ⁇ m (200 mesh).
  • the water-absorbent resin particles 65 to be measured are uniformly sprinkled on the nylon mesh 64b.
  • the diameter of the weight 64c is 19 mm, and the mass of the weight 64c is 119.6 g.
  • the weight 64c is placed on the water-absorbent resin particles 65, and a load of 4.14 kPa can be applied to the water-absorbent resin particles 65.
  • the weight 64c was placed and the measurement was started. Since the same volume of air as the physiological saline absorbed by the water-absorbent resin particles 65 is quickly and smoothly supplied to the inside of the burette 61a from the air introduction pipe, the water level of the physiological saline inside the burette 61a is reduced. However, the amount of physiological saline absorbed by the water-absorbent resin particles 65 is obtained.
  • the scale of the burette 61a is engraved from top to bottom in increments of 0 mL to 0.5 mL, and the scale Va of the burette 61a before the start of water absorption and the burette 61a 60 minutes after the start of water absorption are used as the water level of the physiological saline.
  • the water absorption rate of the physiological saline of the water-absorbent resin particles was measured by the following procedure based on the Vortex method. First, 50 ⁇ 0.1 g of a 0.9 mass% sodium chloride aqueous solution (physiological saline) adjusted to a temperature of 25 ⁇ 0.2 ° C. in a constant temperature water tank was weighed in a beaker having an internal volume of 100 mL. Next, a vortex was generated by stirring at a rotation speed of 600 rpm using a magnetic stirrer bar (8 mm ⁇ ⁇ 30 mm, without ring). 2.0 ⁇ 0.002 g of water-absorbent resin particles were added to the aqueous sodium chloride solution at one time.
  • Unpressurized DW The non-pressurized DW of the water-absorbent resin particles was measured using the measuring device Z shown in FIG. The measurement was carried out 5 times for one type of water-absorbent resin particles, and the average value of the measured values at three points excluding the minimum value and the maximum value was obtained.
  • the measuring device Z has a burette portion 71, a conduit 72, a flat plate-shaped measuring table 73, a nylon mesh 74, a pedestal 75, and a clamp 76.
  • the burette portion 71 was connected to a burette 71a on which a scale was written, a rubber stopper 71b for sealing the opening at the upper part of the burette 71a, a cock 71c connected to the tip of the lower part of the burette 71a, and a lower part of the burette 71a. It has an air introduction pipe 71d and a cock 71e.
  • the burette portion 71 is fixed by a clamp 76.
  • the measuring table 73 has a through hole 73a having a diameter of 2 mm formed in the central portion thereof, and is supported by a frame 75 having a variable height.
  • the through hole 73a of the measuring table 73 and the cock 71c of the burette portion 71 are connected by a conduit 72.
  • the inner diameter of the conduit 72 is 6 mm.
  • the measurement was performed in an environment with a temperature of 25 ° C and a humidity of 60 ⁇ 10%.
  • the cock 71c and the cock 71e of the burette portion 71 were closed, and the physiological saline 77 adjusted to 25 ° C. was put into the burette 71a through the opening at the upper part of the burette 71a.
  • the cock 71c and the cock 71e were opened.
  • the inside of the conduit 72 was filled with saline 77 to prevent air bubbles from entering.
  • the height of the measuring table 73 was adjusted so that the height of the water surface of the physiological saline 77 that reached the inside of the through hole 73a was the same as the height of the upper surface of the measuring table 73. After the adjustment, the height of the water surface of the physiological saline 77 in the burette 71a was read by the scale of the burette 71a, and the position was set as the zero point (reading value at 0 seconds).
  • a nylon mesh 74 (100 mm ⁇ 100 mm, 250 mesh, thickness: about 50 ⁇ m) was laid in the vicinity of the through hole 73a on the measuring table 73, and a cylinder having an inner diameter of 30 mm and a height of 20 mm was placed in the center thereof. 1.00 g of water-absorbent resin particles 78 were uniformly sprayed on this cylinder. Then, the cylinder was carefully removed to obtain a sample in which the water-absorbent resin particles 78 were dispersed in a circle in the central portion of the nylon mesh 74.
  • the nylon mesh 74 on which the water-absorbent resin particles 78 were placed was quickly moved so that the center thereof was at the position of the through hole 73a so that the water-absorbent resin particles 78 did not dissipate, and the measurement was started.
  • the time when air bubbles were first introduced into the burette 71a from the air introduction pipe 71d was defined as the start of water absorption (0 seconds).
  • the application pattern of the hot melt adhesive was 12 spiral stripes at 10 mm intervals.
  • Evaluation Examples 2, 3 and 4 are the same as those in Evaluation Example 1 except that the water-absorbent resin particles A are changed to the water-absorbent resin particles B, C and D produced in Examples 2, 3 and 4. Water absorption sheets were prepared respectively.
  • a water-absorbent sheet was produced in the same manner as in Evaluation Example 1 except that the water-absorbent resin particles A were changed to the mixture of the water-absorbent resin particles.
  • a water-absorbent sheet was produced in the same manner as in Evaluation Comparative Example 1 except that the water-absorbent resin particles E and F were changed to the water-absorbent resin particles G and H produced in Comparative Example 2.
  • the medium particle size of the mixture of the water-absorbent resin particles G and H was 366 ⁇ m.
  • Two spunbonded non-woven fabrics (LIVSEN manufactured by Toray Industries, Inc.) having a basis weight of 17 g / m 2 were cut into two pieces having a size of 40 cm ⁇ 12 cm to obtain spunbonded nonwoven fabrics 1 and 2, respectively.
  • 0.16 g of a hot melt adhesive was applied to the spunbonded nonwoven fabric 1 using a hot melt coating machine in the same manner as in Evaluation Example 1.
  • the surface of the spunbonded nonwoven fabric 1 to which the hot melt was attached was faced with the surface of the spunlaced nonwoven fabric on which the water-absorbent resin particles H were sprayed, and both ends were aligned, sandwiched between release papers, and turned upside down. Then, the release paper was removed.
  • FIG. 9 is a schematic view showing a method for evaluating the liquid leakage property of the water absorption sheet.
  • a support plate 1 having a flat main surface and a length of 45 cm (here, an acrylic resin plate; hereinafter also referred to as an “inclined surface S1”) is fixed by a gantry 81 in a state of being inclined at 45 ⁇ 2 degrees with respect to the horizontal plane S0. did.
  • a water absorption sheet 50 for testing was attached on the inclined surface S1 of the fixed support plate 1 so that the longitudinal direction thereof was along the longitudinal direction of the support plate 1.
  • a test solution artificial urine adjusted to 25 ⁇ 1 ° C.
  • test solution was dropped from the dropping funnel 82 arranged vertically above the water absorption sheet 50 toward a position 8 cm above the center of the water absorption sheet 50.
  • 80 mL of the test solution was added dropwise at a rate of 8 mL / sec.
  • the distance between the tip of the dropping funnel 82 and the water absorbing sheet 50 was 10 ⁇ 1 mm.
  • the test solution was repeatedly added under the same conditions at intervals of 10 minutes from the start of the first addition of the test solution, and the test solution was added until leakage was observed.
  • the water-absorbent sheet of the example has a small total leakage amount when artificial urine is added three times, and even a single-layer structure water-absorbent sheet sufficiently suppresses leakage. It was confirmed that On the other hand, the water-absorbing sheets of Evaluation Comparative Examples 1 and 2 using the water-absorbent resin particles of Comparative Example 1 or 2 had a large amount of leakage. In addition, the water-absorbing sheet of Evaluation Comparative Example 3 in which the water-absorbent resin particles of Comparative Examples 3 and 4 were used in a two-layer structure also had a large amount of leakage.
  • Support plate 10 ... Absorbent, 10a ... Water-absorbent resin particles, 10b ... Fiber layer, 20a ... Core wrap sheet, 20b ... Core wrap sheet, 21 ... Adhesive, 30 ... Liquid permeable sheet, 40 ... Liquid impervious Permeable sheet, 50 ... water absorption sheet, 61, 71 ... burette part, 61a, 71a ... burette, 61b, 71b ... rubber stopper, 61c, 71c, 71e ... cock, 61d, 71d ... air introduction pipe, 61e ... cock, 62 , 72 ... Conduit, 63, 73 ... Measuring table, 64 ...
  • Measuring unit 64a ... Cylindrical, 64b, 74 ... Nylon mesh, 64c ... Weight, 73a ... Through hole, 75 ... Stand, 76 ... Clamp, 77 ... Physiological saline , 81 ... gantry, 82 ... dripping funnel, 83 ... balance, 84 ... metal tray, 100 ... absorbent article, 200 ... stirring blade, 200a ... shaft, 200b ... flat plate, S ... slit, S 0 ... horizontal plane, S 1 ... Inclined surface, Y, Z ... Measuring device.

Abstract

Disclosed are absorbent resin particles having, on the surface of each of the particles, two or more portions having different shapes.

Description

吸水性樹脂粒子、吸収体、吸水シート、吸収性物品、吸水性樹脂粒子の製造方法Method for manufacturing water-absorbent resin particles, absorber, water-absorbent sheet, absorbent article, water-absorbent resin particles
 本発明は、吸水性樹脂粒子、吸収体、吸水シート、吸収性物品、及び吸水性樹脂粒子の製造方法に関する。 The present invention relates to a method for producing water-absorbent resin particles, an absorber, a water-absorbent sheet, an absorbent article, and water-absorbent resin particles.
 従来、尿等の水を主成分とする液体を吸収するための吸収性物品には、吸水性樹脂粒子を含有する吸収体が用いられている。吸水性樹脂粒子の製造効率を向上させるために、吸水性樹脂粒子同士を凝集させて造粒することが行われている(例えば特許文献1)。また、例えば特許文献2には、吸水性樹脂の血液吸収性を向上させるため、血液吸収速度の異なる二種以上の吸水性樹脂を混合する工程を含む吸水性樹脂の製造方法が開示されている。 Conventionally, an absorber containing water-absorbent resin particles has been used as an absorbent article for absorbing a liquid containing water as a main component such as urine. In order to improve the production efficiency of the water-absorbent resin particles, the water-absorbent resin particles are aggregated and granulated (for example, Patent Document 1). Further, for example, Patent Document 2 discloses a method for producing a water-absorbent resin, which comprises a step of mixing two or more kinds of water-absorbent resins having different blood absorption rates in order to improve the blood absorbency of the water-absorbent resin. ..
特表2008-533213号公報Japanese Patent Publication No. 2008-533213 特開平11-246625号公報JP-A-11-246625
 従来の吸水性樹脂粒子を用いた吸収性物品では、吸収対象の液が吸収性物品の外に漏れる点で改善の余地がある。 In the conventional absorbent article using water-absorbent resin particles, there is room for improvement in that the liquid to be absorbed leaks out of the absorbent article.
 本発明は、液体漏れが抑制された吸収性物品をもたらす吸水性樹脂粒子を提供することを目的とする。 An object of the present invention is to provide water-absorbent resin particles that provide an absorbent article in which liquid leakage is suppressed.
 本発明の一側面は、一粒子の表面に2種以上の異なる形状の部分を有する吸水性樹脂粒子に関する。 One aspect of the present invention relates to water-absorbent resin particles having two or more differently shaped portions on the surface of one particle.
 上記吸水性樹脂粒子は、一粒子の表面の少なくとも一部に球面状の部分及び不定形状の部分を有することが好ましい。 The water-absorbent resin particles preferably have a spherical portion and an irregularly shaped portion on at least a part of the surface of one particle.
 上記吸水性樹脂粒子は、一粒子の表面の少なくとも一部に、レーザー顕微鏡によって測定される凹凸度が1μm以上20μm以下である部分と、凹凸度が20μm超200μm以下である部分とを有するものであってよい。 The water-absorbent resin particles have at least a part of the surface of one particle having a portion having an unevenness of 1 μm or more and 20 μm or less and a portion having an unevenness of more than 20 μm and 200 μm or less as measured by a laser microscope. It may be there.
 上記吸水性樹脂粒子は、一次粒子が凝集した形状を有するものであってよい。 The water-absorbent resin particles may have a shape in which primary particles are aggregated.
 本発明の別の一側面は、一次粒子が凝集した形状の吸水性樹脂粒子であって、デジタルマイクロスコープによって測定される粒子の平均凹凸度が120~180μmである、吸水性樹脂粒子に関する。 Another aspect of the present invention relates to water-absorbent resin particles in which primary particles are aggregated and the average unevenness of the particles measured by a digital microscope is 120 to 180 μm.
 上記吸水性樹脂粒子は、中位粒子径が300~600μmであり、かつVortex法による吸水速度が5~20秒であってよい。 The water-absorbent resin particles may have a medium particle size of 300 to 600 μm and a water absorption rate of 5 to 20 seconds by the Vortex method.
 上記吸水性樹脂粒子は、生理食塩水保水量が20~60g/gであり、かつ4.14kPaにおける荷重下吸水量が10ml/g以上であってよい。 The water-absorbent resin particles may have a physiological saline water retention amount of 20 to 60 g / g and a water absorption amount under load at 4.14 kPa of 10 ml / g or more.
 本発明はまた、上記吸水性樹脂粒子を含む吸収体を提供する。 The present invention also provides an absorber containing the above water-absorbent resin particles.
 本発明はまた、上記吸収体を備える吸水シートを提供する。 The present invention also provides a water absorption sheet provided with the above absorber.
 上記吸水シートは、コアラップシートを更に備え、該コアラップシートの内側に上記吸収体が配置されているものであってよい。 The water absorbing sheet may further include a core wrap sheet, and the absorbent body may be arranged inside the core wrap sheet.
 本発明は又、上記吸水シートを備える吸収性物品を提供する。 The present invention also provides an absorbent article comprising the water absorbing sheet.
 本発明のまた別の一側面は、一次粒子を凝集させて造粒することを含む吸水性樹脂粒子の製造方法であって、該一次粒子の形状が2種以上である方法に関する。 Another aspect of the present invention relates to a method for producing water-absorbent resin particles, which comprises aggregating and granulating primary particles, wherein the primary particles have two or more shapes.
 上記方法において、上記一次粒子が、球状粒子及び不定形状粒子を含むことが好ましい。 In the above method, it is preferable that the primary particles include spherical particles and irregularly shaped particles.
 上記方法において、球状粒子及び不定形状粒子の混合比が70:30~20:80であることが好ましい。 In the above method, the mixing ratio of the spherical particles and the irregularly shaped particles is preferably 70:30 to 20:80.
 本発明により、液体漏れが抑制された吸収性物品をもたらす吸水性樹脂粒子が提供される。 INDUSTRIAL APPLICABILITY The present invention provides water-absorbent resin particles that provide an absorbent article in which liquid leakage is suppressed.
吸水シートの一実施形態を示す模式断面図である。It is a schematic cross-sectional view which shows one Embodiment of a water absorption sheet. コアラップシート上に形成された接着剤のパターンの一例を示す模式平面図である。It is a schematic plan view which shows an example of the adhesive pattern formed on the core wrap sheet. 吸収性物品の一実施形態を示す模式断面図である。It is a schematic cross-sectional view which shows one Embodiment of an absorbent article. 撹拌翼(平板部にスリットを有する平板翼)の一例を示す平面図である。It is a top view which shows an example of a stirring blade (a flat plate blade which has a slit in a flat plate part). 実施例3の吸水性樹脂粒子を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the water-absorbing resin particle of Example 3. FIG. 粒子の平均凹凸度の測定例を示すグラフである。It is a graph which shows the measurement example of the average unevenness of a particle. 吸水性樹脂粒子の荷重下吸水量の測定装置を示す模式図である。It is a schematic diagram which shows the measuring apparatus of the water absorption amount under load of a water-absorbing resin particle. 吸水性樹脂粒子の無加圧DWの測定装置を示す模式図である。It is a schematic diagram which shows the measuring apparatus of non-pressurized DW of a water-absorbent resin particle. 液体漏れ性を評価する方法を示す模式図である。It is a schematic diagram which shows the method of evaluating the liquid leakage property.
 以下、本発明の実施形態について詳細に説明する。ただし、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and can be variously modified and implemented within the scope of the gist thereof.
 本明細書において、「アクリル」及び「メタクリル」を合わせて「(メタ)アクリル」と表記する。「アクリレート」及び「メタクリレート」も同様に「(メタ)アクリレート」と表記する。「(ポリ)」とは、「ポリ」の接頭語がある場合及びない場合の双方を意味するものとする。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「水溶性」とは、25℃において水に5質量%以上の溶解性を示すことをいう。本明細書に例示する材料は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。「生理食塩水」とは、0.9質量%塩化ナトリウム水溶液をいう。 In this specification, "acrylic" and "methacryl" are collectively referred to as "(meth) acrylic". Similarly, "acrylate" and "methacrylate" are also referred to as "(meth) acrylate". "(Poly)" shall mean both with and without the "poly" prefix. In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value of the numerical range of one step can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another step. In the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples. "Water-soluble" means that it exhibits a solubility in water of 5% by mass or more at 25 ° C. The materials exemplified in the present specification may be used alone or in combination of two or more. The content of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. "Saline" refers to a 0.9% by mass sodium chloride aqueous solution.
 本実施形態の一側面は、一粒子の表面に2種以上の異なる形状の部分を有する吸水性樹脂粒子に関する。本明細書において2種以上の異なる形状とは、例えば光学顕微鏡、デジタルマイクロスコープ、走査型電子顕微鏡等の顕微鏡によって1つの粒子を拡大(例えば10~200倍)して観察した際に外観上区別できるものをいい、粒子の内部等の外観上観察できない部分の形状は含まない。2種以上の異なる形状は、例えば、球面状、不定形状等の形状であってよい。 One aspect of this embodiment relates to water-absorbent resin particles having two or more differently shaped portions on the surface of one particle. In the present specification, two or more different shapes are visually distinguished from each other when one particle is magnified (for example, 10 to 200 times) and observed by a microscope such as an optical microscope, a digital microscope, or a scanning electron microscope. It refers to what can be done, and does not include the shape of parts that cannot be observed from the outside, such as the inside of particles. The two or more different shapes may be, for example, a spherical shape, an indefinite shape, or the like.
 本実施形態の吸水性樹脂粒子は、一粒子の表面に2種以上の異なる形状の部分を有することにより、吸収性物品に適用した際に液体漏れ性を抑制することができる。このような効果が得られる原因は必ずしも明らかではないものの、本発明者は次のように推察している。ただし機構は下記の内容に限定されない。すなわち、1つの吸水性樹脂粒子が複数の形状を表面に有していることにより、それぞれの形状に起因する吸収性能が適度にバランスをとり両者の性能がともに発揮されることにより、液体漏れ性が抑制されると考えられる。このような効果は、2種以上の異なる形状を有する粒子を単に混合したもの、すなわち2種以上の異なる形状が、異なる別の粒子の表面にあるときには、確認されなかった。 By having two or more kinds of differently shaped portions on the surface of one particle, the water-absorbent resin particles of the present embodiment can suppress liquid leakage when applied to an absorbent article. Although the cause for obtaining such an effect is not always clear, the present inventor speculates as follows. However, the mechanism is not limited to the following contents. That is, since one water-absorbent resin particle has a plurality of shapes on the surface, the absorption performance due to each shape is appropriately balanced and both performances are exhibited, so that liquid leakage property is exhibited. Is thought to be suppressed. Such an effect was not confirmed when the particles having two or more different shapes were simply mixed, that is, when two or more different shapes were on the surface of different different particles.
 本明細書において球面状とは、真球面状、略球面状及び楕円体面状を含む。また、球面状の部分は、該部分が全体としては球面状の形状を有しているが、その一部に欠け、孔及び/又は凹部を有していてもよい。 In the present specification, the spherical shape includes a true spherical shape, a substantially spherical shape, and an elliptical surface shape. Further, the spherical portion has a spherical shape as a whole, but a part thereof may be chipped and may have holes and / or recesses.
 本明細書において不定形状とは、球面状ではない不均質な形状であり、例えば、海綿状、カリフラワー状、アモルファス状、鱗片状、破砕状又は顆粒状であってよい。不定形状である吸水性樹脂粒子の部分は、例えば、逆相懸濁重合等の重合法により、重合して得た時点で不定形状であるものであってもよく、逆相懸濁重合、気相重合、水溶液重合等の重合法により得られた吸水性樹脂を破砕して得られる破砕品、又は破砕品の凝集物であってもよい。 In the present specification, the indefinite shape is a non-homogeneous shape that is not spherical, and may be, for example, spongy, cauliflower, amorphous, scaly, crushed, or granular. The portion of the water-absorbent resin particles having an indefinite shape may have an indefinite shape at the time of polymerization obtained by, for example, a polymerization method such as reverse phase suspension polymerization. It may be a crushed product obtained by crushing a water-absorbent resin obtained by a polymerization method such as phase polymerization or aqueous solution polymerization, or an agglomerate of the crushed product.
 本実施形態に係る吸水性樹脂粒子は、一粒子の表面に、球面状の部分及び不定形状の部分を少なくとも有することが好ましい。 The water-absorbent resin particles according to the present embodiment preferably have at least a spherical portion and an irregularly shaped portion on the surface of one particle.
 本実施形態に係る吸水性樹脂粒子は、一粒子の表面の少なくとも一部に、レーザー顕微鏡によって測定される凹凸度(以下、「形状別凹凸度」ともいう。)が1μm以上20μm以下である部分(以下、「低凹凸度部分」ともいう。)と、凹凸度が20μm超200μm以下である部分(以下、「高凹凸度部分」ともいう。)とを有することが好ましい。 In the water-absorbent resin particles according to the present embodiment, at least a part of the surface of one particle has an unevenness measured by a laser microscope (hereinafter, also referred to as “shape-specific unevenness”) of 1 μm or more and 20 μm or less. (Hereinafter, also referred to as a "low unevenness portion") and a portion having an unevenness of more than 20 μm and 200 μm or less (hereinafter, also referred to as a “high unevenness portion”).
 形状別凹凸度の測定方法の詳細は後述の実施例に示すが、概要は以下のとおりである。測定に用いる吸水性樹脂粒子は、使用前の乾燥状態のものである。形状別凹凸度は、同一の種類の形状を有する部分内で測定し、異なる種類の形状部分を含まないようにする。球面状部分の凹凸度を測定する際は、測定に用いるプロファイル線を1つの球体上にのみ設定し、球体の境界をまたがないようにする。凹凸はプロファイル線に沿って測定される。プロファイル線は、1箇所につき直径30~35μmの円形とし、それにより得られる波形曲線の全長の90%以上を用いる。形状別凹凸度は、同一形状部分について5箇所以上を測定した値の平均値とする。 Details of the method for measuring the degree of unevenness by shape will be shown in Examples described later, but the outline is as follows. The water-absorbent resin particles used for the measurement are in a dry state before use. The degree of unevenness for each shape is measured within a portion having the same type of shape so as not to include a different type of shape portion. When measuring the degree of unevenness of the spherical portion, the profile line used for the measurement is set on only one sphere so as not to straddle the boundary of the sphere. The unevenness is measured along the profile line. The profile line shall be a circle with a diameter of 30 to 35 μm at each location, and 90% or more of the total length of the waveform curve obtained thereby shall be used. The degree of unevenness for each shape is the average value of the values measured at five or more points for the same shape portion.
 吸水性樹脂粒子の低凹凸度部分は、レーザー顕微鏡によって測定される凹凸度が、3μm以上又は5μm以上であってもよく、20μm以下、18μm以下、15μm以下、又は10μm以下であってもよい。吸水性樹脂粒子の低凹凸度部分は、レーザー顕微鏡によって測定される凹凸度が、3~20μm、5~18μm、5~15μm、5~13μm又は5~10μmであってよい。低凹凸度部分は、球面状であってよい。 The low unevenness portion of the water-absorbent resin particles may have an unevenness measured by a laser microscope of 3 μm or more or 5 μm or more, and may be 20 μm or less, 18 μm or less, 15 μm or less, or 10 μm or less. The low unevenness portion of the water-absorbent resin particles may have an unevenness measured by a laser microscope of 3 to 20 μm, 5 to 18 μm, 5 to 15 μm, 5 to 13 μm, or 5 to 10 μm. The low unevenness portion may be spherical.
 吸水性樹脂粒子の高凹凸度部分は、レーザー顕微鏡によって測定される凹凸度が、25μm以上、30μm以上、40μm以上、45μm以上、50μm以上又は55μm以上であってよく、180μm以下、150μm以下、120μm以下、100μm以下、90μm以下、80μm以下又は70μm以下であってよい。吸水性樹脂粒子の高凹凸度部分は、レーザー顕微鏡によって測定される凹凸度が、25~200μm、30~180μm、30~150μm、30~120μm、40~120μm、又は40~80μmであってよい。高凹凸度部分は、不定形状であってよい。 The high unevenness portion of the water-absorbent resin particles may have unevenness measured by a laser microscope of 25 μm or more, 30 μm or more, 40 μm or more, 45 μm or more, 50 μm or more or 55 μm or more, and 180 μm or less, 150 μm or less, 120 μm. Hereinafter, it may be 100 μm or less, 90 μm or less, 80 μm or less, or 70 μm or less. The high unevenness portion of the water-absorbent resin particles may have irregularities measured by a laser microscope of 25 to 200 μm, 30 to 180 μm, 30 to 150 μm, 30 to 120 μm, 40 to 120 μm, or 40 to 80 μm. The high unevenness portion may have an indefinite shape.
 本実施形態に係る吸水性樹脂粒子は、その表面の少なくとも一部に、直径が30~100μmである球体の全部又は一部で構成される球面状である部分を有することが好ましい。吸水性樹脂粒子は、その表面の少なくとも一部に、球体の直径として30~80μm、30~60μm、又は30~40μmである球面状の部分を有することが好ましい。 It is preferable that the water-absorbent resin particles according to the present embodiment have a spherical portion composed of all or a part of a sphere having a diameter of 30 to 100 μm on at least a part of the surface thereof. The water-absorbent resin particles preferably have a spherical portion having a sphere diameter of 30 to 80 μm, 30 to 60 μm, or 30 to 40 μm on at least a part of the surface thereof.
 一粒子の表面に2種以上の異なる形状の部分を有する吸水性樹脂粒子は、一次粒子が凝集した形状を有していてよい。このような吸水性樹脂粒子は、例えば、2種以上の異なる形状である一次粒子を凝集させて造粒することにより製造することができる。製造方法の詳細は後述される。 The water-absorbent resin particles having two or more kinds of differently shaped portions on the surface of one particle may have a shape in which the primary particles are aggregated. Such water-absorbent resin particles can be produced, for example, by aggregating and granulating two or more types of primary particles having different shapes. Details of the manufacturing method will be described later.
 本実施形態の別の一側面は、一次粒子が凝集した形状の吸水性樹脂粒子であって、デジタルマイクロスコープによって測定される粒子の平均凹凸度が120~180μmである、吸水性樹脂粒子に関する。 Another aspect of the present embodiment relates to water-absorbent resin particles in which primary particles are aggregated and the average unevenness of the particles measured by a digital microscope is 120 to 180 μm.
 粒子の平均凹凸度の詳細な測定方法は後述の実施例に示されるが、概要は以下のとおりである。測定に用いる吸水性樹脂粒子は、使用前の乾燥状態のものである。測定に用いるプロファイル線は、1箇所につき直径270~320μmの範囲の円形とし、それにより得られる波形曲線の全長の90%以上を用いる。凹凸はプロファイル線に沿って測定される。凹凸度は、波形曲線のうち平均線を基準線としたときに、その基準線に対し標高差が最大である、最も高い山頂の標高と、最も低い谷底の標高のそれぞれの絶対値の合計である。凹凸度を12個の粒子について測定し、そのうちの最大値及び最小値を除く10点の平均値を、粒子の平均凹凸度とする。 The detailed measurement method of the average unevenness of the particles is shown in Examples described later, but the outline is as follows. The water-absorbent resin particles used for the measurement are in a dry state before use. The profile line used for the measurement shall be a circle having a diameter in the range of 270 to 320 μm at each location, and 90% or more of the total length of the waveform curve obtained thereby shall be used. The unevenness is measured along the profile line. The degree of unevenness is the sum of the absolute values of the highest peak elevation and the lowest valley bottom elevation, which have the largest elevation difference with respect to the reference line when the average line of the waveform curve is used as the reference line. is there. The degree of unevenness is measured for 12 particles, and the average value of 10 points excluding the maximum value and the minimum value among them is taken as the average degree of unevenness of the particles.
 粒子の平均凹凸度を測定するデジタルマイクロスコープとしては、物体表面の凹凸度を非破壊で測定可能なものを用いる。このような測定装置としては、例えばキーエンス社のVHX-5000、VHX-7000等のデジタルマイクロスコープを用いることができる。 As a digital microscope that measures the average degree of unevenness of particles, a microscope that can measure the degree of unevenness on the surface of an object non-destructively is used. As such a measuring device, for example, a digital microscope such as VHX-5000 or VHX-7000 manufactured by KEYENCE Corporation can be used.
 一次粒子が凝集した形状であって、粒子の平均凹凸度が120~180μmという適度な範囲である吸水性樹脂粒子は、優れた吸収性能を発揮することを本発明者は見出した。当該吸水性樹脂粒子は、その表面が滑らかすぎずかつ粗すぎない形状である。吸水性樹脂粒子が、一次粒子が凝集した形状であって、粒子の平均凹凸度が120~180μmであることによって、吸収性物品に適用した際に液体漏れ性を抑制することができる。このような効果が得られる原因は必ずしも定かではないものの、本発明者は以下のように推察している。ただし機構は下記の内容に限定されない。すなわち、粒子の平均凹凸度が所定の範囲内であると、吸水性樹脂粒子と繊維との絡みが良く、吸収性物品中で吸水性樹脂粒子が固定化されやすく、また適度な吸水速度を有しやすいため液体漏れ性を抑制しやすいと考えられる。 The present inventor has found that water-absorbent resin particles having an aggregated shape of primary particles and having an average unevenness of particles in an appropriate range of 120 to 180 μm exhibit excellent absorption performance. The surface of the water-absorbent resin particles is not too smooth and not too rough. Since the water-absorbent resin particles have a shape in which the primary particles are aggregated and the average unevenness of the particles is 120 to 180 μm, the liquid leakage property can be suppressed when applied to an absorbent article. Although the cause for obtaining such an effect is not always clear, the present inventor speculates as follows. However, the mechanism is not limited to the following contents. That is, when the average unevenness of the particles is within a predetermined range, the water-absorbent resin particles and the fibers are well entangled, the water-absorbent resin particles are easily fixed in the absorbent article, and the water-absorbing resin particles have an appropriate water absorption rate. It is considered that it is easy to suppress liquid leakage because it is easy to do.
 粒子の平均凹凸度は、125μm以上、130μm以上、135μm以上、140μm以上、145μm以上、150μm以上、155μm以上、160μm以上または165μm以上であってもよい。粒子の平均凹凸度は、175μm以下、170μm以下、165μm以下、160μm以下、155μm以下又は150μm以下であってもよい。粒子の平均凹凸度は、130~180μm、135~175μm、又は140~170μmであってもよい。 The average unevenness of the particles may be 125 μm or more, 130 μm or more, 135 μm or more, 140 μm or more, 145 μm or more, 150 μm or more, 155 μm or more, 160 μm or more, or 165 μm or more. The average unevenness of the particles may be 175 μm or less, 170 μm or less, 165 μm or less, 160 μm or less, 155 μm or less, or 150 μm or less. The average unevenness of the particles may be 130 to 180 μm, 135 to 175 μm, or 140 to 170 μm.
 一次粒子が凝集した形状であって、かつ粒子の平均凹凸度が120~180μmの範囲内である吸水性樹脂粒子は、一粒子の表面に2種以上の異なる形状の部分を有していてもよく、一粒子の表面の少なくとも一部に球面状の部分及び不定形状の部分を有していてもよく、一粒子の表面の少なくとも一部に、レーザー顕微鏡によって測定される凹凸度が1μm以上20μm以下である部分と、凹凸度が20μm超200μm以下である部分とを有していてもよい。 The water-absorbent resin particles having an aggregated shape of the primary particles and having an average unevenness of the particles in the range of 120 to 180 μm may have two or more different shaped portions on the surface of the single particles. Often, at least a part of the surface of one particle may have a spherical part and an irregularly shaped part, and at least a part of the surface of one particle has an unevenness measured by a laser microscope of 1 μm or more and 20 μm. It may have a portion having a degree of unevenness of more than 20 μm and a portion having a degree of unevenness of more than 200 μm or less.
 一次粒子が凝集した形状であって、かつ粒子の平均凹凸度が120~180μmの範囲内である吸水性樹脂粒子は、例えば、2種以上の異なる形状を有する一次粒子を凝集して造粒させることにより得ることができる。2種以上の異なる形状としては、例えば、球面状及び不定形状であることが好ましい。 The water-absorbent resin particles having an aggregated shape of the primary particles and having an average unevenness of the particles in the range of 120 to 180 μm, for example, aggregate and granulate the primary particles having two or more different shapes. Can be obtained by The two or more different shapes are preferably spherical and indefinite, for example.
 本明細書において、一次粒子が凝集した形状の粒子とは、原料として用いる一次粒子の形状の少なくとも一部を外観上観察できる程度に粒子表面に有しているが、使用する際にも一次粒子の単位に分離せずに、複数の一次粒子が一体となって形成されているものをいう。 In the present specification, the particles having a shape in which the primary particles are aggregated have at least a part of the shape of the primary particles used as a raw material on the particle surface to the extent that they can be visually observed, but the primary particles are also used. It means that a plurality of primary particles are integrally formed without being separated into the units of.
 本実施形態に係る吸水性樹脂粒子の中位粒子径は、吸水シートにおいてより高い吸収性能を得やすい観点から、300~600μmであることが好ましい。吸水性樹脂粒子の中位粒子径は、350μm以上、380μm以上又は400μm以上であってよく、550μm以下、又は500μm以下であってもよい。 The medium particle size of the water-absorbent resin particles according to the present embodiment is preferably 300 to 600 μm from the viewpoint of easily obtaining higher absorption performance in the water-absorbent sheet. The medium particle size of the water-absorbent resin particles may be 350 μm or more, 380 μm or more, or 400 μm or more, and may be 550 μm or less, or 500 μm or less.
 本実施形態に係る吸水性樹脂粒子は、吸水シートにおいてより高い吸収性能を得やすい観点から、Vortex法による吸水速度が5~20秒であることが好ましい。Vortex法による吸水速度の詳細な測定方法は後述の実施例に示される。吸水速度は、6秒以上、7秒以上、又は8秒以上であってもよく、18秒以下、16秒以下、15秒以下、14秒以下、14秒以下、又は12秒以下であってもよい。 The water-absorbent resin particles according to the present embodiment preferably have a water absorption rate of 5 to 20 seconds by the Vortex method from the viewpoint of easily obtaining higher absorption performance in the water-absorbent sheet. A detailed measurement method of the water absorption rate by the Vortex method will be shown in Examples described later. The water absorption rate may be 6 seconds or more, 7 seconds or more, or 8 seconds or more, and may be 18 seconds or less, 16 seconds or less, 15 seconds or less, 14 seconds or less, 14 seconds or less, or 12 seconds or less. Good.
 本実施形態に係る吸水性樹脂粒子は、吸水シートにおいてより高い吸収性能を得やすい観点から、生理食塩水保水量が20~60g/gであることが好ましい。生理食塩水保水量の詳細な測定方法は後述の実施例に示される。生理食塩水保水量は、23g/g以上、25g/g以上、27g/g以上、又は30g/g以上であってもよく、55g/g以下、50g/g以下又は45g/g以下であってもよい。 The water-absorbent resin particles according to the present embodiment preferably have a physiological saline water retention amount of 20 to 60 g / g from the viewpoint of easily obtaining higher absorption performance in the water-absorbent sheet. A detailed measurement method of the physiological saline water retention amount will be shown in Examples described later. The amount of saline water retained may be 23 g / g or more, 25 g / g or more, 27 g / g or more, or 30 g / g or more, and 55 g / g or less, 50 g / g or less, or 45 g / g or less. May be good.
 本実施形態に係る吸水性樹脂粒子は、吸水シートにおいてより高い吸収性能を得やすい観点から、4.14kPaにおける荷重下吸水量が10ml/g以上であることが好ましい。4.14kPaにおける荷重下吸水量は、12ml/g以上、14ml/g以上、16ml/g以上、20ml/g以上、24ml/g以上であってよく、40ml/g以下、35ml/g以下、30ml/g以下、25ml/g以下、20ml/g以下、又は18ml/g以下であってもよい。 The water-absorbent resin particles according to the present embodiment preferably have a water absorption amount of 10 ml / g or more under load at 4.14 kPa from the viewpoint of easily obtaining higher absorption performance in the water-absorbent sheet. The amount of water absorption under load at 4.14 kPa may be 12 ml / g or more, 14 ml / g or more, 16 ml / g or more, 20 ml / g or more, 24 ml / g or more, 40 ml / g or less, 35 ml / g or less, 30 ml. It may be / g or less, 25 ml / g or less, 20 ml / g or less, or 18 ml / g or less.
 本実施形態に係る吸水性樹脂粒子は、吸水シートにおいてより高い吸収性能を得やすい観点から、無加圧DW0.5分値が、1ml/g以上、3ml/g以上、又は4ml/g以上であってよく、15ml/g以下、13ml/g以下、11ml/g以下、又は9ml/g以下であってよい。本実施形態に係る吸水性樹脂粒子は、吸水シートにおいてより高い吸収性能を得やすい観点から、無加圧DW2分値が、15ml/g以上、20ml/g以上、24ml/g以上、30ml/g以上、35ml/g以上、又は40ml/g以上であってよく、50ml/g以下、45ml/g以下、40ml/g以下、35ml/g以下、又は30ml/g以下であってもよい。本実施形態に係る吸水性樹脂粒子は、吸水シートにおいてより高い吸収性能を得やすい観点から、無加圧DW5分値が、30ml/g以上、35ml/g以上、40ml/g以上、45ml/g以上、又は50ml/g以上であってよく、65ml/g以下、60ml/g以下、又は55ml/g以下であってもよい。 The water-absorbent resin particles according to the present embodiment have a non-pressurized DW 0.5 minute value of 1 ml / g or more, 3 ml / g or more, or 4 ml / g or more from the viewpoint of easily obtaining higher absorption performance in the water-absorbent sheet. It may be 15 ml / g or less, 13 ml / g or less, 11 ml / g or less, or 9 ml / g or less. The water-absorbent resin particles according to the present embodiment have non-pressurized DW 2-minute values of 15 ml / g or more, 20 ml / g or more, 24 ml / g or more, and 30 ml / g from the viewpoint of easily obtaining higher absorption performance in the water-absorbing sheet. The above may be 35 ml / g or more, or 40 ml / g or more, and may be 50 ml / g or less, 45 ml / g or less, 40 ml / g or less, 35 ml / g or less, or 30 ml / g or less. The water-absorbent resin particles according to the present embodiment have non-pressurized DW 5-minute values of 30 ml / g or more, 35 ml / g or more, 40 ml / g or more, and 45 ml / g from the viewpoint of easily obtaining higher absorption performance in the water-absorbing sheet. It may be more than or equal to 50 ml / g or more, and may be 65 ml / g or less, 60 ml / g or less, or 55 ml / g or less.
 本実施形態の更に別の一側面は、一次粒子を凝集させて造粒することを含む吸水性樹脂粒子の製造方法であって、一次粒子の形状が2種以上である方法に関する。該一次粒子の形状は、球状及び不定形状であることが好ましい。本明細書において球状とは、真球状、略球状及び楕円体状を含み、一部に欠け、孔及び/又は凹部を有していてもよい。 Yet another aspect of the present embodiment relates to a method for producing water-absorbent resin particles, which comprises aggregating and granulating primary particles, wherein the primary particles have two or more shapes. The shape of the primary particles is preferably spherical or indefinite. As used herein, the term "spherical" includes a true spherical shape, a substantially spherical shape, and an ellipsoidal shape, and may be partially chipped, and may have holes and / or recesses.
 造粒方法としては、形成された粒子の大部分が通常の使用において一次粒子に分解しないような造粒強度を得られる方法を用いる。また、造粒方法は、2種以上の形状を有する一次粒子に由来する形状のそれぞれ少なくとも一部を、形成された粒子の表面に残すことができる方法を用いる。造粒に用いる一次粒子は、乾燥粒子であってもよいが、一次粒子の少なくとも一部が含水ゲル状であることが好ましく、用いる一次粒子の全てが含水ゲル状であることがより好ましい。造粒のための一次粒子の混合の際には、凝集を促すための水を添加することができる。この添加する水には架橋剤等を含めることができ、例えば後述の重合後架橋剤の水溶液を用いてもよい。また、造粒を効率よく行うためには、一次粒子の混合時に、粉末状無機凝集剤等の凝集剤を添加することが好ましい。 As the granulation method, a method is used in which the granulation strength is obtained so that most of the formed particles do not decompose into primary particles in normal use. Further, as the granulation method, a method is used in which at least a part of each of the shapes derived from the primary particles having two or more kinds of shapes can be left on the surface of the formed particles. The primary particles used for granulation may be dry particles, but it is preferable that at least a part of the primary particles is in the form of a hydrogel, and it is more preferable that all of the primary particles used are in the form of a hydrogel. When mixing the primary particles for granulation, water for promoting aggregation can be added. The added water may contain a cross-linking agent or the like, and for example, an aqueous solution of the post-polymerization cross-linking agent described later may be used. Further, in order to efficiently perform granulation, it is preferable to add a coagulant such as a powdered inorganic coagulant when mixing the primary particles.
 粉末状無機凝集剤としては、シリカ、ゼオライト、ベントナイト、酸化アルミニウム、タルク、二酸化チタン、カオリン、クレイ、ハイドロタルサイト等が挙げられる。凝集効果に優れる観点から、凝集剤としては、シリカ、酸化アルミニウム、タルク及びカオリンからなる群より選ばれる少なくとも一種が好ましい。 Examples of the powdered inorganic flocculant include silica, zeolite, bentonite, aluminum oxide, talc, titanium dioxide, kaolin, clay, and hydrotalcite. From the viewpoint of excellent aggregating effect, the aggregating agent is preferably at least one selected from the group consisting of silica, aluminum oxide, talc and kaolin.
 凝集剤の添加量は、重合に使用するエチレン性不飽和単量体100質量部に対して、0.001~1質量部が好ましく、0.005~0.5質量部がより好ましく、0.01~0.2質量部が更に好ましい。 The amount of the flocculant added is preferably 0.001 to 1 part by mass, more preferably 0.005 to 0.5 part by mass, based on 100 parts by mass of the ethylenically unsaturated monomer used for the polymerization. 01 to 0.2 parts by mass is more preferable.
 凝集剤を用いる場合は、凝集剤を均一に一次粒子と混合するため、あらかじめ凝集剤を溶媒に分散させた分散液として用いることが好ましい。また、凝集剤を用いる場合は、用いる一次粒子同士を先に混合しておき、その後凝集剤を添加することが好ましい。 When a flocculant is used, it is preferable to use it as a dispersion liquid in which the flocculant is dispersed in a solvent in advance because the flocculant is uniformly mixed with the primary particles. When a flocculant is used, it is preferable that the primary particles to be used are mixed first, and then the flocculant is added.
 造粒は、撹拌翼を有する各種撹拌機を用いて行うことができる。撹拌翼としては、平板翼、格子翼、パドル翼、プロペラ翼、アンカー翼、タービン翼、ファウドラー翼、リボン翼、フルゾーン翼、マックスブレンド翼等を用いることができる。平板翼は、軸(撹拌軸)と、軸の周囲に配置された平板部(撹拌部)とを有している。さらに、平板部は、スリット等を有していてもよい。撹拌翼として平板翼を用いると、より均一に造粒を行うことができる傾向がある。 Granulation can be performed using various stirrers having stirring blades. As the stirring blade, flat plate blades, lattice blades, paddle blades, propeller blades, anchor blades, turbine blades, Faudler blades, ribbon blades, full zone blades, max blend blades and the like can be used. The flat plate blade has a shaft (stirring shaft) and a flat plate portion (stirring portion) arranged around the shaft. Further, the flat plate portion may have a slit or the like. When a flat plate blade is used as the stirring blade, granulation tends to be performed more uniformly.
 造粒の際は、一次粒子同士、及び必要に応じて凝集剤の混合を炭化水素分散媒中で行うことが好ましい。造粒により一次粒子が凝集した形状の粒子が得られた後は、適宜、溶媒及び水の除去、表面架橋を行ってもよい。 At the time of granulation, it is preferable to mix the primary particles with each other and, if necessary, a flocculant in a hydrocarbon dispersion medium. After the particles having a shape in which the primary particles are aggregated are obtained by granulation, the solvent and water may be removed and surface cross-linking may be carried out as appropriate.
 造粒に用いる一次粒子として、球状の粒子及び不定形状の粒子を用いる場合、その混合比(質量基準)は、固形分として、70:30~20:80であることが好ましい。混合比が上記範囲内であると、それぞれの一次粒子の持つ吸水性能を互いに適度に発揮することができ、形成される粒子の吸水性能をより高められるため好ましい。球状の粒子及び不定形状の粒子の混合比は、60:40~20:80、55:45~20:80、50:50~20:80、又は50:50~25:75であってもよい。 When spherical particles and irregularly shaped particles are used as the primary particles used for granulation, the mixing ratio (mass standard) thereof is preferably 70:30 to 20:80 as the solid content. When the mixing ratio is within the above range, the water absorption performance of each primary particle can be appropriately exhibited, and the water absorption performance of the formed particles can be further enhanced, which is preferable. The mixing ratio of spherical particles and irregularly shaped particles may be 60:40 to 20:80, 55:45 to 20:80, 50:50 to 20:80, or 50:50 to 25:75. ..
 不定形状の粒子として吸水性樹脂の破砕品を用いる場合は、あらかじめ破砕品のみで凝集させたものを更に球状の粒子と凝集させて造粒してもよく、破砕品を球状の粒子との凝集に直接用いてもよい。 When a crushed product of a water-absorbent resin is used as the irregularly shaped particles, a crushed product that has been previously aggregated only with the crushed product may be further aggregated with spherical particles to granulate, and the crushed product may be aggregated with spherical particles. It may be used directly in.
 造粒に用いる一次粒子の中位粒子径は、例えば、20~250μm、30~200μmであってよく、40~180μm、又は50~160μmであってよい。 The medium particle size of the primary particles used for granulation may be, for example, 20 to 250 μm, 30 to 200 μm, 40 to 180 μm, or 50 to 160 μm.
 上記造粒方法により、一粒子の表面の少なくとも一部に球面状の部分及び不定形状の部分を有する吸水性樹脂粒子を得ることができる。 By the above granulation method, water-absorbent resin particles having a spherical portion and an irregularly shaped portion on at least a part of the surface of one particle can be obtained.
 一次粒子としての球状の粒子は、例えば、逆相懸濁重合法において、重合時に用いる界面活性剤のHLBを7以下にすることにより得ることができる。また、球状の粒子は、気相重合法によって得ることもできる。不定形状の粒子は、逆相懸濁重合法の場合、重合時に用いる界面活性剤のHLBを8以上にすることにより得ることができる。不定形状の粒子は、その他に例えば、逆相懸濁重合法、水溶液重合法、気相重合法等の各種重合法により得られる吸水性樹脂の破砕又は破砕品の凝集によって得ることもできる。 Spherical particles as primary particles can be obtained, for example, by setting the HLB of the surfactant used at the time of polymerization to 7 or less in the reverse phase suspension polymerization method. Spherical particles can also be obtained by a vapor phase polymerization method. In the case of the reverse phase suspension polymerization method, the irregularly shaped particles can be obtained by setting the HLB of the surfactant used at the time of polymerization to 8 or more. The irregularly shaped particles can also be obtained by crushing a water-absorbent resin obtained by various polymerization methods such as a reverse phase suspension polymerization method, an aqueous solution polymerization method, and a gas phase polymerization method, or by aggregating crushed products.
 本実施形態に係る吸水性樹脂粒子及びその製造に用いられる一次粒子は、例えば、重合体粒子として、エチレン性不飽和単量体を含む単量体の重合により形成される架橋重合体を含んでいてよい。該架橋重合体は、エチレン性不飽和単量体に由来する構造単位を有する。エチレン性不飽和単量体としては、水溶性エチレン性不飽和単量体を用いることができる。以下においては、エチレン性不飽和単量体を重合させる方法として、逆相懸濁重合法を例にとって説明する。 The water-absorbent resin particles according to the present embodiment and the primary particles used for the production thereof include, for example, as polymer particles, a crosslinked polymer formed by polymerization of a monomer containing an ethylenically unsaturated monomer. You can stay. The crosslinked polymer has a structural unit derived from an ethylenically unsaturated monomer. As the ethylenically unsaturated monomer, a water-soluble ethylenically unsaturated monomer can be used. In the following, as a method for polymerizing an ethylenically unsaturated monomer, a reverse phase suspension polymerization method will be described as an example.
 エチレン性不飽和単量体は水溶性であることが好ましく、例えば、(メタ)アクリル酸及びその塩、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸及びその塩、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリルアミド等が挙げられる。エチレン性不飽和単量体がアミノ基を有する場合、当該アミノ基は4級化されていてもよい。エチレン性不飽和単量体は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。上述の単量体のカルボキシル基、アミノ基等の官能基は、後述する表面架橋工程において架橋が可能な官能基として機能し得る。 The ethylenically unsaturated monomer is preferably water-soluble, for example, (meth) acrylic acid and a salt thereof, 2- (meth) acrylamide-2-methylpropanesulfonic acid and a salt thereof, (meth) acrylamide, N. , N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, polyethylene glycol mono (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-diethylamino Examples thereof include propyl (meth) acrylate and diethylaminopropyl (meth) acrylamide. When the ethylenically unsaturated monomer has an amino group, the amino group may be quaternized. The ethylenically unsaturated monomer may be used alone or in combination of two or more. Functional groups such as the carboxyl group and amino group of the above-mentioned monomers can function as functional groups capable of cross-linking in the surface cross-linking step described later.
 これらの中でも、工業的に入手が容易である観点から、エチレン性不飽和単量体は、(メタ)アクリル酸及びその塩、アクリルアミド、メタクリルアミド、並びに、N,N-ジメチルアクリルアミドからなる群より選ばれる少なくとも一種の化合物を含むことが好ましく、(メタ)アクリル酸及びその塩、並びに、アクリルアミドからなる群より選ばれる少なくとも一種の化合物を含むことがより好ましい。吸水特性を更に高める観点から、エチレン性不飽和単量体は、(メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも一種の化合物を含むことが更に好ましい。すなわち、吸水性樹脂粒子は、(メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも一種に由来する構造単位を有することが好ましい。 Among these, from the viewpoint of industrial availability, the ethylenically unsaturated monomer is selected from the group consisting of (meth) acrylic acid and its salts, acrylamide, methacrylamide, and N, N-dimethylacrylamide. It is preferable to contain at least one compound selected, and more preferably to contain at least one compound selected from the group consisting of (meth) acrylic acid and salts thereof, and acrylamide. From the viewpoint of further enhancing the water absorption property, the ethylenically unsaturated monomer further preferably contains at least one compound selected from the group consisting of (meth) acrylic acid and salts thereof. That is, the water-absorbent resin particles preferably have a structural unit derived from at least one selected from the group consisting of (meth) acrylic acid and salts thereof.
 吸水性樹脂粒子を得るための単量体としては、上述のエチレン性不飽和単量体以外の単量体が使用されてもよい。このような単量体は、例えば、上述のエチレン性不飽和単量体を含む水溶液に混合して用いることができる。エチレン性不飽和単量体の使用量は、単量体全量に対して70~100モル%であることが好ましい。中でも、(メタ)アクリル酸及びその塩の割合が単量体全量に対して70~100モル%であることがより好ましい。 As the monomer for obtaining the water-absorbent resin particles, a monomer other than the above-mentioned ethylenically unsaturated monomer may be used. Such a monomer can be used, for example, by mixing with an aqueous solution containing the above-mentioned ethylenically unsaturated monomer. The amount of the ethylenically unsaturated monomer used is preferably 70 to 100 mol% with respect to the total amount of the monomers. Above all, the ratio of (meth) acrylic acid and a salt thereof is more preferably 70 to 100 mol% with respect to the total amount of the monomers.
 エチレン性不飽和単量体は、通常、水溶液として用いることが好適である。エチレン性不飽和単量体を含む水溶液(以下、単に「単量体水溶液」という。)におけるエチレン性不飽和単量体の濃度は、20質量%以上飽和濃度以下が好ましく、25~70質量%がより好ましく、30~55質量%が更に好ましい。水溶液において使用される水としては、水道水、蒸留水、イオン交換水等が挙げられる。 The ethylenically unsaturated monomer is usually preferably used as an aqueous solution. The concentration of the ethylenically unsaturated monomer in the aqueous solution containing the ethylenically unsaturated monomer (hereinafter, simply referred to as “monomer aqueous solution”) is preferably 20% by mass or more and preferably 25 to 70% by mass. Is more preferable, and 30 to 55% by mass is further preferable. Examples of the water used in the aqueous solution include tap water, distilled water, ion-exchanged water and the like.
 単量体水溶液は、エチレン性不飽和単量体が酸基を有する場合、その酸基をアルカリ性中和剤によって中和して用いてもよい。エチレン性不飽和単量体における、アルカリ性中和剤による中和度は、得られる吸水性樹脂粒子の浸透圧を高くし、吸水特性を更に高める観点から、エチレン性不飽和単量体中の酸性基の10~100モル%であることが好ましく、50~90モル%であることがより好ましく、60~80モル%であることが更に好ましい。アルカリ性中和剤としては、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム等のアルカリ金属塩;アンモニアなどが挙げられる。アルカリ性中和剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。アルカリ性中和剤は、中和操作を簡便にするために水溶液の状態で用いられてもよい。エチレン性不飽和単量体の酸基の中和は、例えば、水酸化ナトリウム、水酸化カリウム等の水溶液を上述の単量体水溶液に滴下して混合することにより行うことができる。 When the ethylenically unsaturated monomer has an acid group, the monomer aqueous solution may be used by neutralizing the acid group with an alkaline neutralizer. The degree of neutralization of the ethylenically unsaturated monomer by the alkaline neutralizing agent increases the osmotic pressure of the obtained water-absorbent resin particles and further enhances the water absorption characteristics. It is preferably 10 to 100 mol%, more preferably 50 to 90 mol%, and even more preferably 60 to 80 mol% of the group. Examples of the alkaline neutralizing agent include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide and potassium carbonate; ammonia and the like. The alkaline neutralizer may be used alone or in combination of two or more. The alkaline neutralizer may be used in the form of an aqueous solution to simplify the neutralization operation. Neutralization of the acid group of the ethylenically unsaturated monomer can be performed, for example, by adding an aqueous solution of sodium hydroxide, potassium hydroxide or the like to the above-mentioned monomer aqueous solution and mixing them.
 逆相懸濁重合法においては、界面活性剤の存在下、炭化水素分散媒中で単量体水溶液を分散し、ラジカル重合開始剤等を用いてエチレン性不飽和単量体の重合を行うことができる。 In the reverse phase suspension polymerization method, the monomer aqueous solution is dispersed in a hydrocarbon dispersion medium in the presence of a surfactant, and the ethylenically unsaturated monomer is polymerized using a radical polymerization initiator or the like. Can be done.
 重合の際に用いる界面活性剤としては、例えば、ノニオン系界面活性剤、アニオン系界面活性剤等が挙げられる。ノニオン系界面活性剤としては、ソルビタン脂肪酸エステル、(ポリ)グリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピルアルキルエーテル、ポリエチレングリコール脂肪酸エステル等が挙げられる。アニオン系界面活性剤としては、脂肪酸塩、アルキルベンゼンスルホン酸塩、アルキルメチルタウリン酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンアルキルエーテルスルホン酸塩、ポリオキシエチレンアルキルエーテルのリン酸エステル、ポリオキシエチレンアルキルアリルエーテルのリン酸エステル等が挙げられる。界面活性剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。なお、球状粒子及び不定形状粒子を作り分けるに際しては、界面活性剤の種類は問われない。 Examples of the surfactant used in the polymerization include nonionic surfactants and anionic surfactants. Nonionic surfactants include sorbitan fatty acid ester, (poly) glycerin fatty acid ester, sucrose fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene glycerin fatty acid ester, sorbitol fatty acid ester, polyoxyethylene sorbitol fatty acid ester, and poly. Oxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene castor oil, polyoxyethylene hydrogenated castor oil, alkylallyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene polyoxypropylene block copolymer, polyoxyethylene polyoxypropyl alkyl Examples include ether and polyethylene glycol fatty acid ester. Anionic surfactants include fatty acid salts, alkylbenzene sulfonates, alkylmethyl taurates, polyoxyethylene alkylphenyl ether sulfates, polyoxyethylene alkyl ether sulfonates, and polyoxyethylene alkyl ether phosphates. , Phosphate ester of polyoxyethylene alkyl allyl ether and the like. The surfactant may be used alone or in combination of two or more. The type of surfactant does not matter when producing spherical particles and irregularly shaped particles separately.
 W/O型逆相懸濁の状態が良好であり、好適な粒子径を有する吸水性樹脂粒子が得られやすく、工業的に入手が容易である観点から、界面活性剤は、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル及びショ糖脂肪酸エステルからなる群より選ばれる少なくとも一種の化合物を含むことが好ましい。 From the viewpoint that the W / O type reverse phase suspension is in a good state, water-absorbent resin particles having a suitable particle size can be easily obtained, and industrially available, the surfactant is a sorbitan fatty acid ester. It preferably contains at least one compound selected from the group consisting of polyglycerin fatty acid esters and sucrose fatty acid esters.
 界面活性剤の使用量は、使用量に対する効果が充分に得られる観点、及び、経済的である観点から、単量体水溶液100質量部に対して、0.05~10質量部が好ましく、0.08~5質量部がより好ましく、0.1~3質量部が更に好ましい。 The amount of the surfactant used is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the monomer aqueous solution from the viewpoint of obtaining a sufficient effect on the amount used and from the viewpoint of economic efficiency. .08 to 5 parts by mass is more preferable, and 0.1 to 3 parts by mass is further preferable.
 逆相懸濁重合では、上述の界面活性剤と共に高分子系分散剤を併せて用いてもよい。高分子系分散剤としては、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸変性EPDM(エチレン・プロピレン・ジエン・ターポリマー)、無水マレイン酸変性ポリブタジエン、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、無水マレイン酸・ブタジエン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、酸化型エチレン・プロピレン共重合体、エチレン・アクリル酸共重合体、エチルセルロース、エチルヒドロキシエチルセルロース等が挙げられる。高分子系分散剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。高分子系分散剤としては、単量体の分散安定性に優れる観点から、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、及び、酸化型エチレン・プロピレン共重合体からなる群より選ばれる少なくとも一種が好ましい。 In reverse phase suspension polymerization, a polymer-based dispersant may be used in combination with the above-mentioned surfactant. Examples of the polymer dispersant include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, maleic anhydride-modified EPDM (ethylene / propylene / diene / terpolymer), and maleic anhydride. Modified polybutadiene, maleic anhydride / ethylene copolymer, maleic anhydride / propylene copolymer, maleic anhydride / ethylene / propylene copolymer, maleic anhydride / butadiene copolymer, polyethylene, polypropylene, ethylene / propylene copolymer Examples thereof include coalescence, oxidized polyethylene, oxidized polypropylene, oxidized ethylene / propylene copolymer, ethylene / acrylic acid copolymer, ethyl cellulose, ethyl hydroxyethyl cellulose and the like. The polymer-based dispersant may be used alone or in combination of two or more. As the polymer-based dispersant, from the viewpoint of excellent dispersion stability of the monomer, maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, and maleic anhydride / ethylene copolymer weight. Combined, maleic anhydride / propylene copolymer, maleic anhydride / ethylene / propylene copolymer, polyethylene, polypropylene, ethylene / propylene copolymer, oxidized polyethylene, oxidized polypropylene, and oxidized ethylene / propylene copolymer At least one selected from the group consisting of coalescing is preferable.
 高分子系分散剤の使用量は、使用量に対する効果が充分に得られる観点、及び、経済的である観点から、単量体水溶液100質量部に対して、0.05~10質量部が好ましく、0.08~5質量部がより好ましく、0.1~3質量部が更に好ましい。 The amount of the polymer-based dispersant used is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the monomer aqueous solution from the viewpoint of obtaining a sufficient effect on the amount used and from the viewpoint of economic efficiency. , 0.08 to 5 parts by mass is more preferable, and 0.1 to 3 parts by mass is further preferable.
 炭化水素分散媒は、炭素数6~8の鎖状脂肪族炭化水素、及び、炭素数6~8の脂環式炭化水素からなる群より選ばれる少なくとも一種の化合物を含んでいてもよい。炭化水素分散媒としては、n-ヘキサン、n-ヘプタン、2-メチルヘキサン、3-メチルヘキサン、2,3-ジメチルペンタン、3-エチルペンタン、n-オクタン等の鎖状脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン、シクロペンタン、メチルシクロペンタン、trans-1,2-ジメチルシクロペンタン、cis-1,3-ジメチルシクロペンタン、trans-1,3-ジメチルシクロペンタン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素などが挙げられる。炭化水素分散媒は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。 The hydrocarbon dispersion medium may contain at least one compound selected from the group consisting of chain aliphatic hydrocarbons having 6 to 8 carbon atoms and alicyclic hydrocarbons having 6 to 8 carbon atoms. Hydrocarbon dispersion media include chain aliphatic hydrocarbons such as n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane, and n-octane; cyclohexane. , Methylcyclohexane, cyclopentane, methylcyclopentane, trans-1,2-dimethylcyclopentane, cis-1,3-dimethylcyclopentane, trans-1,3-dimethylcyclopentane and other alicyclic hydrocarbons; benzene, Examples include aromatic hydrocarbons such as toluene and xylene. The hydrocarbon dispersion medium may be used alone or in combination of two or more.
 炭化水素分散媒は、工業的に入手が容易であり、かつ、品質が安定している観点から、n-ヘプタン及びシクロヘキサンからなる群より選ばれる少なくとも一種を含んでいてもよい。また、同様の観点から、上述の炭化水素分散媒の混合物としては、例えば、市販されているエクソールヘプタン(エクソンモービル社製:n-ヘプタン及び異性体の炭化水素75~85%含有)を用いてもよい。 The hydrocarbon dispersion medium may contain at least one selected from the group consisting of n-heptane and cyclohexane from the viewpoint of being industrially easily available and having stable quality. From the same viewpoint, as the mixture of the above-mentioned hydrocarbon dispersion medium, for example, commercially available ExxonHeptane (manufactured by ExxonMobil: containing 75 to 85% of n-heptane and isomeric hydrocarbons) is used. You may.
 炭化水素分散媒の使用量は、重合熱を適度に除去し、重合温度を制御しやすい観点から、単量体水溶液100質量部に対して、30~1000質量部が好ましく、40~500質量部がより好ましく、50~400質量部が更に好ましい。炭化水素分散媒の使用量が30質量部以上であることにより、重合温度の制御が容易である傾向がある。炭化水素分散媒の使用量が1000質量部以下であることにより、重合の生産性が向上する傾向があり、経済的である。 The amount of the hydrocarbon dispersion medium used is preferably 30 to 1000 parts by mass and 40 to 500 parts by mass with respect to 100 parts by mass of the monomer aqueous solution from the viewpoint of appropriately removing the heat of polymerization and easily controlling the polymerization temperature. Is more preferable, and 50 to 400 parts by mass is further preferable. When the amount of the hydrocarbon dispersion medium used is 30 parts by mass or more, the polymerization temperature tends to be easily controlled. When the amount of the hydrocarbon dispersion medium used is 1000 parts by mass or less, the productivity of polymerization tends to be improved, which is economical.
 ラジカル重合開始剤は水溶性であることが好ましく、例えば、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩;メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート、過酸化水素等の過酸化物;2,2’-アゾビス(2-アミジノプロパン)2塩酸塩、2,2’-アゾビス[2-(N-フェニルアミジノ)プロパン]2塩酸塩、2,2’-アゾビス[2-(N-アリルアミジノ)プロパン]2塩酸塩、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]2塩酸塩、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}2塩酸塩、2,2’-アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド}、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド]、4,4’-アゾビス(4-シアノ吉草酸)等のアゾ化合物などが挙げられる。ラジカル重合開始剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。ラジカル重合開始剤としては、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム、2,2’-アゾビス(2-アミジノプロパン)2塩酸塩、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]2塩酸塩、及び、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}2塩酸塩からなる群より選ばれる少なくとも一種が好ましい。 The radical polymerization initiator is preferably water-soluble, for example, persulfates such as potassium persulfate, ammonium persulfate, sodium persulfate; methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t. -Peroxides such as butyl cumylperoxide, t-butylperoxyacetate, t-butylperoxyisobutyrate, t-butylperoxypivalate, hydrogen peroxide; 2,2'-azobis (2-amidinopropane) ) 2 hydrochloride, 2,2'-azobis [2- (N-phenylamidino) propane] 2 hydrochloride, 2,2'-azobis [2- (N-allylamidino) propane] 2 hydrochloride, 2,2 '-Azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane} Dihydrochloride, 2,2'-azobis {2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide}, 2,2'-azobis [2-methyl-N- (2-Hydroxyethyl) -propionamide], azo compounds such as 4,4'-azobis (4-cyanovaleric acid) and the like can be mentioned. The radical polymerization initiator may be used alone or in combination of two or more. Examples of the radical polymerization initiator include potassium persulfate, ammonium persulfate, sodium persulfate, 2,2'-azobis (2-amidinopropane) dihydrochloride, and 2,2'-azobis [2- (2-imidazolin-2-). Il) Propane] 2 hydrochloride and 2,2'-azobis {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane} 2 hydrochloride at least selected from the group. Is preferable.
 ラジカル重合開始剤の使用量は、エチレン性不飽和単量体1モルに対して0.05~10ミリモルであってよい。ラジカル重合開始剤の使用量が0.05ミリモル以上であると、重合反応に長時間を要さず、効率的である。ラジカル重合開始剤の使用量が10ミリモル以下であると、急激な重合反応が起こることを抑制しやすい。 The amount of the radical polymerization initiator used may be 0.05 to 10 mmol per 1 mol of the ethylenically unsaturated monomer. When the amount of the radical polymerization initiator used is 0.05 mmol or more, the polymerization reaction does not require a long time and is efficient. When the amount of the radical polymerization initiator used is 10 mmol or less, it is easy to suppress the occurrence of a rapid polymerization reaction.
 上述のラジカル重合開始剤は、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第一鉄、L-アスコルビン酸等の還元剤と併用して、レドックス重合開始剤として用いることもできる。 The above-mentioned radical polymerization initiator can also be used as a redox polymerization initiator in combination with a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
 重合反応の際、重合に用いる単量体水溶液は、連鎖移動剤を含んでいてもよい。連鎖移動剤としては、次亜リン酸塩類、チオール類、チオール酸類、第2級アルコール類、アミン類等が挙げられる。 At the time of the polymerization reaction, the monomer aqueous solution used for the polymerization may contain a chain transfer agent. Examples of the chain transfer agent include hypophosphates, thiols, thiolic acids, secondary alcohols, amines and the like.
 逆相懸濁重合を行う際には、吸水性樹脂粒子の粒子径を制御するために、重合に用いる単量体水溶液は、増粘剤を含んでいてもよい。増粘剤としては、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、カルボキシメチルセルロース、ポリエチレングリコール、ポリアクリルアミド、ポリエチレンイミン、デキストリン、アルギン酸ナトリウム、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキサイド等が挙げられる。なお、重合時の撹拌速度が同じであれば、単量体水溶液の粘度が高いほど、得られる粒子の中位粒子径は大きくなる傾向にある。 When performing reverse phase suspension polymerization, the monomer aqueous solution used for the polymerization may contain a thickener in order to control the particle size of the water-absorbent resin particles. Examples of the thickener include hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, carboxymethyl cellulose, polyethylene glycol, polyacrylamide, polyethyleneimine, dextrin, sodium alginate, polyvinyl alcohol, polyvinylpyrrolidone, polyethylene oxide and the like. If the stirring speed at the time of polymerization is the same, the higher the viscosity of the aqueous monomer solution, the larger the medium particle size of the obtained particles tends to be.
 重合の際に自己架橋による架橋が生じ得るが、内部架橋剤を用いることで架橋を施してもよい。内部架橋剤を用いると、吸水性樹脂粒子の吸水特性を制御しやすい。内部架橋剤は、通常、重合反応の際に反応液に添加される。内部架橋剤としては、例えば、エチレングリコール、プロピレングリコール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類のジ又はトリ(メタ)アクリル酸エステル類;上述のポリオール類と不飽和酸(マレイン酸、フマール酸等)とを反応させて得られる不飽和ポリエステル類;N,N’-メチレンビス(メタ)アクリルアミド等のビス(メタ)アクリルアミド類;ポリエポキシドと(メタ)アクリル酸とを反応させて得られるジ又はトリ(メタ)アクリル酸エステル類;ポリイソシアネート(トリレンジイソシアネート、ヘキサメチレンジイソシアネート等)と(メタ)アクリル酸ヒドロキシエチルとを反応させて得られるジ(メタ)アクリル酸カルバミルエステル類;アリル化澱粉、アリル化セルロース、ジアリルフタレート、N,N’,N”-トリアリルイソシアヌレート、ジビニルベンゼン等の,重合性不飽和基を2個以上有する化合物;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロロヒドリン、エピブロムヒドリン、α-メチルエピクロロヒドリン等のハロエポキシ化合物;イソシアネート化合物(2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等)などの、反応性官能基を2個以上有する化合物などが挙げられる。内部架橋剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。内部架橋剤としては、ポリグリシジル化合物が好ましく、ジグリシジルエーテル化合物がより好ましく、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、及び、(ポリ)グリセリンジグリシジルエーテルからなる群より選ばれる少なくとも一種が更に好ましい。 Cross-linking by self-cross-linking may occur during polymerization, but cross-linking may be performed by using an internal cross-linking agent. When an internal cross-linking agent is used, it is easy to control the water absorption characteristics of the water-absorbent resin particles. The internal cross-linking agent is usually added to the reaction solution during the polymerization reaction. Examples of the internal cross-linking agent include di or tri (meth) acrylic acid esters of polyols such as ethylene glycol, propylene glycol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; Unsaturated polyesters obtained by reacting polyols with unsaturated acids (maleic acid, fumaric acid, etc.); bis (meth) acrylamides such as N, N'-methylenebis (meth) acrylamide; polyepoxides and (meth) Di or tri (meth) acrylic acid esters obtained by reacting with acrylic acid; di (meth) obtained by reacting polyisocyanate (tolylene diisocyanate, hexamethylene diisocyanate, etc.) with hydroxyethyl (meth) acrylate. ) Acrylic acid carbamil esters; compounds having two or more polymerizable unsaturated groups such as allylated starch, allylated cellulose, diallyl phthalate, N, N', N "-triallyl isocyanurate, divinylbenzene; Poly such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, polyglycerol polyglycidyl ether, etc. Glycidyl compounds; haloepoxy compounds such as epichlorohydrin, epibromhydrin, α-methylepichlorohydrin; 2 reactive functional groups such as isocyanate compounds (2,4-tolylene diisocyanate, hexamethylene diisocyanate, etc.) Examples thereof include compounds having more than one. The internal cross-linking agent may be used alone or in combination of two or more. As the internal cross-linking agent, a polyglycidyl compound is preferable, and a diglycidyl ether compound is used. Is more preferable, and at least one selected from the group consisting of (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether is further preferable.
 内部架橋剤の使用量は、吸収性物品において液体漏れ性を抑制する観点、及び、得られる重合体が適度に架橋されることにより水溶性の性質が抑制され、充分な吸水量が得られやすい観点から、エチレン性不飽和単量体1モル当たり、30ミリモル以下が好ましく、0.01~10ミリモルがより好ましく、0.012~5ミリモルが更に好ましく、0.015~1ミリモルが特に好ましく、0.02~0.1ミリモルが極めて好ましく、0.025~0.08ミリモルが非常に好ましい。 The amount of the internal cross-linking agent used is from the viewpoint of suppressing liquid leakage in the absorbent article, and the water-soluble property is suppressed by appropriately cross-linking the obtained polymer, so that a sufficient water absorption amount can be easily obtained. From the viewpoint, 30 mmol or less is preferable, 0.01 to 10 mmol is more preferable, 0.012 to 5 mmol is further preferable, and 0.015 to 1 mmol is particularly preferable, per 1 mol of the ethylenically unsaturated monomer. 0.02 to 0.1 mmol is highly preferred, and 0.025 to 0.08 mmol is very preferred.
 エチレン性不飽和単量体、ラジカル重合開始剤、必要に応じて内部架橋剤を含む水相と、炭化水素分散媒、界面活性剤、必要に応じて高分子系分散剤等を含む油相とを混合した状態において撹拌下で加熱し、油中水系において逆相懸濁重合を行うことができる。 An aqueous phase containing an ethylenically unsaturated monomer, a radical polymerization initiator and an internal cross-linking agent if necessary, and an oil phase containing a hydrocarbon dispersion medium, a surfactant and a polymer-based dispersant if necessary. Can be heated under stirring in a mixed state to carry out reverse phase suspension polymerization in an aqueous system in oil.
 逆相懸濁重合を行う際には、界面活性剤(必要に応じて更に高分子系分散剤)の存在下で、エチレン性不飽和単量体を含む単量体水溶液を炭化水素分散媒に分散させる。このとき、重合反応を開始する前であれば、界面活性剤、高分子系分散剤等の添加時期は、単量体水溶液の添加の前後どちらであってもよい。 When performing reverse phase suspension polymerization, a monomer aqueous solution containing an ethylenically unsaturated monomer is used as a hydrocarbon dispersion medium in the presence of a surfactant (more polymer-based dispersant if necessary). Disperse. At this time, the timing of adding the surfactant, the polymer-based dispersant, or the like may be either before or after the addition of the monomer aqueous solution, as long as it is before the start of the polymerization reaction.
 その中でも、得られる吸水性樹脂に残存する炭化水素分散媒の量を低減しやすい観点から、高分子系分散剤を分散させた炭化水素分散媒に単量体水溶液を分散させた後に界面活性剤を更に分散させてから重合を行うことが好ましい。 Among them, from the viewpoint of easily reducing the amount of the hydrocarbon dispersion medium remaining in the obtained water-absorbent resin, the surfactant is prepared after the monomer aqueous solution is dispersed in the hydrocarbon dispersion medium in which the polymer-based dispersant is dispersed. It is preferable to further disperse the above and then carry out the polymerization.
 逆相懸濁重合は、1段、又は、2段以上の多段で行うことができる。逆相懸濁重合は、生産性を高める観点から、2~3段で行ってもよい。 Reverse phase suspension polymerization can be carried out in one stage or in multiple stages of two or more stages. Reversed phase suspension polymerization may be carried out in 2 to 3 steps from the viewpoint of increasing productivity.
 2段以上の多段で逆相懸濁重合を行う場合には、1段目の逆相懸濁重合を行った後、1段目の重合反応で得られた反応混合物にエチレン性不飽和単量体を添加して混合し、1段目と同様の方法で2段目以降の逆相懸濁重合を行えばよい。2段目以降の各段における逆相懸濁重合では、エチレン性不飽和単量体の他に、上述のラジカル重合開始剤及び/又は内部架橋剤を、2段目以降の各段における逆相懸濁重合の際に添加するエチレン性不飽和単量体の量を基準として、上述のエチレン性不飽和単量体に対する各成分のモル比の範囲内で添加して逆相懸濁重合を行うことが好ましい。なお、2段目以降の各段における逆相懸濁重合では、必要に応じて内部架橋剤を用いてもよい。内部架橋剤を用いる場合は、各段に供するエチレン性不飽和単量体の量を基準として、上述のエチレン性不飽和単量体に対する各成分のモル比の範囲内で添加して逆相懸濁重合を行うことが好ましい。 When reverse-phase suspension polymerization is carried out in two or more stages, the reaction mixture obtained in the first-step polymerization reaction after the first-step reverse-phase suspension polymerization is subjected to an ethylenically unsaturated single amount. The body may be added and mixed, and the reverse phase suspension polymerization of the second and subsequent steps may be carried out in the same manner as in the first step. In the reverse phase suspension polymerization in each stage after the second stage, in addition to the ethylenically unsaturated monomer, the above-mentioned radical polymerization initiator and / or internal cross-linking agent is used in the reverse phase in each stage after the second stage. Based on the amount of ethylenically unsaturated monomer added during suspension polymerization, reverse phase suspension polymerization is carried out by adding within the range of the molar ratio of each component to the above-mentioned ethylenically unsaturated monomer. Is preferable. An internal cross-linking agent may be used in the reverse phase suspension polymerization in each of the second and subsequent stages, if necessary. When an internal cross-linking agent is used, it is added within the range of the molar ratio of each component to the above-mentioned ethylenically unsaturated monomer based on the amount of the ethylenically unsaturated monomer provided in each stage, and the suspension is reversed. It is preferable to carry out turbid polymerization.
 重合反応の温度は、使用するラジカル重合開始剤によって異なるが、重合を迅速に進行させ、重合時間を短くすることにより、経済性を高めるとともに、容易に重合熱を除去して円滑に反応を行う観点から、20~150℃が好ましく、40~120℃がより好ましい。反応時間は、通常、0.5~4時間である。重合反応の終了は、例えば、反応系内の温度上昇の停止により確認することができる。これにより、エチレン性不飽和単量体の重合体は、通常、含水ゲルの状態で得られる。 The temperature of the polymerization reaction varies depending on the radical polymerization initiator used, but by rapidly advancing the polymerization and shortening the polymerization time, the efficiency is improved and the heat of polymerization is easily removed to carry out the reaction smoothly. From the viewpoint, 20 to 150 ° C. is preferable, and 40 to 120 ° C. is more preferable. The reaction time is usually 0.5-4 hours. The completion of the polymerization reaction can be confirmed, for example, by stopping the temperature rise in the reaction system. As a result, the polymer of the ethylenically unsaturated monomer is usually obtained in the state of a hydrogel.
 重合反応は、撹拌翼を有する各種撹拌機を用いて行うことができる。撹拌翼としては、平板翼、格子翼、パドル翼、プロペラ翼、アンカー翼、タービン翼、ファウドラー翼、リボン翼、フルゾーン翼、マックスブレンド翼等を用いることができる。 The polymerization reaction can be carried out using various stirrers having stirring blades. As the stirring blade, flat plate blades, lattice blades, paddle blades, propeller blades, anchor blades, turbine blades, Faudler blades, ribbon blades, full zone blades, max blend blades and the like can be used.
 重合後、得られた含水ゲル状重合体に重合後架橋剤を添加して加熱することで架橋を施してもよい。重合後に架橋を行うことで含水ゲル状重合体の架橋度を高めて吸水特性を更に向上させることができる。重合後架橋剤としては、後述の表面架橋剤と同種のものを用いることができる。 After polymerization, cross-linking may be performed by adding a cross-linking agent to the obtained hydrogel polymer and heating it. By performing cross-linking after the polymerization, the degree of cross-linking of the hydrogel polymer can be increased to further improve the water absorption characteristics. As the post-polymerization cross-linking agent, the same type as the surface cross-linking agent described later can be used.
 重合後架橋剤の添加時期としては、重合に用いられるエチレン性不飽和単量体の重合後であればよい。なお、重合時及び重合後の発熱、工程遅延による滞留、架橋剤添加時の系の開放、及び架橋剤添加に伴う水の添加等による水分の変動を考慮して、重合後架橋剤は、含水率(後述)の観点から、[重合直後の含水率±3質量%]の領域で添加することが好ましい。また、重合後の含水ゲル状重合体に重合後架橋剤水溶液を添加することで、重合後架橋剤水溶液は一次粒子を凝集させる造粒剤としての役割を兼ねることができる。 The time for adding the cross-linking agent after polymerization may be after the polymerization of the ethylenically unsaturated monomer used for polymerization. The post-polymerization cross-linking agent contains water in consideration of heat generation during and after polymerization, retention due to process delay, opening of the system when the cross-linking agent is added, and fluctuation of water content due to addition of water accompanying the addition of the cross-linking agent. From the viewpoint of rate (described later), it is preferable to add in the region of [moisture content immediately after polymerization ± 3% by mass]. Further, by adding the post-polymerization cross-linking agent aqueous solution to the post-polymerization hydrogel polymer, the post-polymerization cross-linking agent aqueous solution can also serve as a granulator for aggregating the primary particles.
 一次粒子としての含水ゲル状重合体を得た後、上述のとおり凝集により造粒を行い、一次粒子が凝集した形状である含水ゲル状重合体を得ることができる。 After obtaining the hydrogel-like polymer as the primary particles, granulation is performed by aggregation as described above, and the hydrogel-like polymer in the form in which the primary particles are aggregated can be obtained.
 引き続き、得られた含水ゲル状重合体から水分を除去するために乾燥を行うことにより重合体粒子(例えば、エチレン性不飽和単量体に由来する構造単位を有する重合体粒子)が得られる。乾燥方法としては、例えば、(a)含水ゲル状重合体が炭化水素分散媒に分散した状態で、外部から加熱することにより共沸蒸留を行い、炭化水素分散媒を還流させて水分を除去する方法、(b)デカンテーションにより含水ゲル状重合体を取り出し、減圧乾燥する方法、(c)フィルターにより含水ゲル状重合体をろ別し、減圧乾燥する方法等が挙げられる。中でも、製造工程における簡便さから、(a)の方法を用いることが好ましい。 Subsequently, by carrying out drying to remove water from the obtained hydrogel-like polymer, polymer particles (for example, polymer particles having a structural unit derived from an ethylenically unsaturated monomer) can be obtained. As a drying method, for example, (a) a hydrogel-like polymer is dispersed in a hydrocarbon dispersion medium, and co-boiling distillation is performed by heating from the outside, and the hydrocarbon dispersion medium is refluxed to remove water. Examples thereof include (b) a method of taking out the hydrogel polymer by decantation and drying under reduced pressure, and (c) a method of filtering the hydrogel polymer with a filter and drying under reduced pressure. Above all, it is preferable to use the method (a) because of the simplicity in the manufacturing process.
 重合反応時、又は造粒時の撹拌機の回転数を調整することによって、あるいは、重合反応後又は乾燥の初期において凝集剤を系内に添加することによって得られる吸水性樹脂粒子の粒子径を調整することができる。 The particle size of the water-absorbent resin particles obtained by adjusting the number of rotations of the stirrer during the polymerization reaction or granulation, or by adding a flocculant into the system after the polymerization reaction or in the early stage of drying. Can be adjusted.
 吸水性樹脂粒子の製造においては、造粒工程後の乾燥工程(水分除去工程)又はそれ以降の工程において、架橋剤を用いて含水ゲル状重合体の表面部分(表面及び表面近傍)の表面架橋が行われることが好ましい。表面架橋を行うことで、吸水特性を制御しやすい。表面架橋は、含水ゲル状重合体が特定の含水率であるタイミングで行われることが好ましい。表面架橋の時期は、含水ゲル状重合体の含水率が5~50質量%である時点が好ましく、10~40質量%である時点がより好ましく、15~35質量%である時点が更に好ましい。 In the production of water-absorbent resin particles, surface cross-linking of the surface portion (surface and vicinity of the surface) of the hydrogel polymer using a cross-linking agent in the drying step (moisture removing step) after the granulation step or the subsequent steps. Is preferably performed. By performing surface cross-linking, it is easy to control the water absorption characteristics. The surface cross-linking is preferably performed at a timing when the water-containing gel polymer has a specific water content. The time of surface cross-linking is preferably when the water content of the hydrogel polymer is 5 to 50% by mass, more preferably 10 to 40% by mass, and even more preferably 15 to 35% by mass.
 含水ゲル状重合体の含水率(質量%)は、次の式で算出される。
  含水率=[Ww/(Ww+Ws)]×100
 Ww:全重合工程の重合前の単量体水溶液に含まれる水分量から、乾燥工程等の工程により系外部に排出された水分量を差し引いた量に、凝集剤、表面架橋剤等を混合する際に必要に応じて用いられる水分量を加えた含水ゲル状重合体の水分量。
 Ws:含水ゲル状重合体を構成するエチレン性不飽和単量体、架橋剤、開始剤等の材料の仕込量から算出される固形分量。
The water content (mass%) of the water-containing gel polymer is calculated by the following formula.
Moisture content = [Ww / (Ww + Ws)] x 100
Ww: A flocculant, a surface cross-linking agent, etc. are mixed in an amount obtained by subtracting the amount of water discharged to the outside of the system by a step such as a drying step from the amount of water contained in the monomer aqueous solution before polymerization in the entire polymerization step. The amount of water in the hydrogel polymer to which the amount of water used as needed is added.
Ws: A solid content calculated from the amount of materials such as an ethylenically unsaturated monomer, a cross-linking agent, and an initiator that constitute a hydrogel polymer.
 表面架橋を行うための架橋剤(表面架橋剤)としては、例えば、反応性官能基を2個以上有する化合物を挙げることができる。表面架橋剤としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル(ポリ)プロピレングリコールポリグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロロヒドリン、エピブロムヒドリン、α-メチルエピクロロヒドリン等のハロエポキシ化合物;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル-3-オキセタンエタノール等のオキセタン化合物;1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;エチレンカーボネート等のカーボネート化合物;ビス[N,N-ジ(β-ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物などが挙げられる。表面架橋剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。表面架橋剤としては、ポリグリシジル化合物が好ましく、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、及び、ポリグリセロールポリグリシジルエーテルからなる群より選ばれる少なくとも一種がより好ましい。 Examples of the cross-linking agent (surface cross-linking agent) for performing surface cross-linking include compounds having two or more reactive functional groups. Examples of the surface cross-linking agent include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; (poly) ethylene glycol diglycidyl ether. , (Poly) Glycerin diglycidyl ether, (Poly) Glycerin triglycidyl ether, Trimethylol propantriglycidyl ether (Poly) propylene glycol Polyglycidyl ether, (Poly) Oxetane Polyglycidyl ether and other polyglycidyl compounds; Epichlorohydrin, Haloepoxy compounds such as epibromhydrin and α-methylepichlorohydrin; isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylenediisocyanate; 3-methyl-3-oxetanemethanol, 3-ethyl-3-oxetanemethanol , 3-butyl-3-oxetane methanol, 3-methyl-3-oxetane ethanol, 3-ethyl-3-oxetane ethanol, 3-butyl-3-oxetane ethanol and other oxetane compounds; 1,2-ethylenebisoxazoline and the like. Examples thereof include oxazoline compounds; carbonate compounds such as ethylene carbonate; hydroxyalkylamide compounds such as bis [N, N-di (β-hydroxyethyl)] adipamide. The surface cross-linking agent may be used alone or in combination of two or more. As the surface cross-linking agent, a polyglycidyl compound is preferable, and (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, and polyglycerol are used. At least one selected from the group consisting of polyglycidyl ether is more preferable.
 表面架橋剤の使用量は、好適な吸水特性が得られやすい観点から、重合に使用するエチレン性不飽和単量体1モルに対して、0.01~20ミリモルが好ましく、0.05~10ミリモルがより好ましく、0.1~5ミリモルが更に好ましく、0.15~2ミリモルが特に好ましく、0.2~0.8ミリモルが極めて好ましい。 The amount of the surface cross-linking agent used is preferably 0.01 to 20 mmol, preferably 0.05 to 10 to 1 mol of the ethylenically unsaturated monomer used for polymerization, from the viewpoint that suitable water absorption characteristics can be easily obtained. Millimole is more preferable, 0.1 to 5 mmol is further preferable, 0.15 to 2 mmol is particularly preferable, and 0.2 to 0.8 mmol is extremely preferable.
 表面架橋後において、公知の方法で水及び炭化水素分散媒を留去すること、加熱減圧下で乾燥すること等により、表面架橋がなされた乾燥品である重合体粒子を得ることができる。 After surface cross-linking, water and a hydrocarbon dispersion medium are distilled off by a known method, and the polymer particles are dried under heating and reduced pressure to obtain polymer particles which are dry products with surface cross-linking.
 本実施形態に係る吸水性樹脂粒子は、重合体粒子のみから構成されていてもよいが、例えば、ゲル安定剤、金属キレート剤(エチレンジアミン4酢酸及びその塩、ジエチレントリアミン5酢酸及びその塩、例えばジエチレントリアミン5酢酸5ナトリウム等)、重合体粒子の流動性向上剤(滑剤)等の追加成分を更に含むことができる。追加成分は、重合体粒子の内部、重合体粒子の表面上、又は、これらの両方に配置され得る。 The water-absorbent resin particles according to the present embodiment may be composed of only polymer particles, and for example, a gel stabilizer and a metal chelating agent (ethylenediaminetetraacetic acid and a salt thereof, diethylenetriamine-5 acetic acid and a salt thereof, for example, diethylenetriamine). 5 Sodium acetate, etc.), additional components such as a fluidity improver (lubricant) for polymer particles can be further included. Additional components may be placed inside the polymer particles, on the surface of the polymer particles, or both.
 吸水性樹脂粒子は、重合体粒子の表面上に配置された複数の無機粒子を含んでいてもよい。例えば、重合体粒子と無機粒子とを混合することにより、重合体粒子の表面上に無機粒子を配置することができる。この無機粒子は、非晶質シリカ等のシリカ粒子であってもよい。 The water-absorbent resin particles may contain a plurality of inorganic particles arranged on the surface of the polymer particles. For example, by mixing the polymer particles and the inorganic particles, the inorganic particles can be arranged on the surface of the polymer particles. The inorganic particles may be silica particles such as amorphous silica.
 吸水性樹脂粒子が、重合体粒子の表面上に配置された無機粒子を含む場合、無機粒子の含有量は、重合体粒子の全質量を基準として下記の範囲であってよい。無機粒子の含有量は、0.05質量%以上、0.1質量%以上、0.15質量%以上、又は、0.2質量%以上であってよい。無機粒子の含有量は、5.0質量%以下、3.0質量%以下、1.0質量%以下、0.5質量%以下、又は0.3質量%以下であってよい。 When the water-absorbent resin particles include inorganic particles arranged on the surface of the polymer particles, the content of the inorganic particles may be in the following range based on the total mass of the polymer particles. The content of the inorganic particles may be 0.05% by mass or more, 0.1% by mass or more, 0.15% by mass or more, or 0.2% by mass or more. The content of the inorganic particles may be 5.0% by mass or less, 3.0% by mass or less, 1.0% by mass or less, 0.5% by mass or less, or 0.3% by mass or less.
 本実施形態に係る吸水性樹脂粒子は、尿、血液等の体液の吸収性に優れており、例えば、紙おむつ、生理用ナプキン、軽失禁パッド、タンポン等の衛生用品、ペットシート、犬又は猫のトイレ配合物等の動物排泄物処理材などの分野に応用することができる。 The water-absorbent resin particles according to the present embodiment have excellent absorbency of body fluids such as urine and blood, and for example, disposable diapers, sanitary napkins, light incontinence pads, sanitary products such as tampons, pet sheets, dogs or cats. It can be applied to fields such as animal excrement treatment materials such as toilet formulations.
 上記吸水性樹脂粒子は、例えば吸水シートに好適である。図1は、吸水シートの一例を示す断面図である。図1に示す吸水シート50は、吸収体10と、2枚のコアラップシート20a,20bとを有する。コアラップシート20a,20bは、吸収体10の両側に配置されている。言い換えると、吸収体10は、コアラップシート20a,20bの内側に配置されている。吸収体10は、2枚のコアラップシート20a,20bの間に挟まれることにより、保形されている。コアラップシート20a,20bは、2枚のシートであってもよいし、折り返された1枚のシート、又は1枚の袋体であってもよい。 The water-absorbent resin particles are suitable for, for example, a water-absorbent sheet. FIG. 1 is a cross-sectional view showing an example of a water absorption sheet. The water absorbing sheet 50 shown in FIG. 1 has an absorber 10 and two core wrap sheets 20a and 20b. The core wrap sheets 20a and 20b are arranged on both sides of the absorber 10. In other words, the absorber 10 is arranged inside the core wrap sheets 20a and 20b. The absorber 10 is held in shape by being sandwiched between the two core wrap sheets 20a and 20b. The core wrap sheets 20a and 20b may be two sheets, one folded sheet, or one bag body.
 吸水シート50は、コアラップシート20aと吸収体10との間に介在する接着剤21を更に有していてもよい。図2は、コアラップシート上に形成された接着剤のパターンの一例を示す平面図である。図2に示される接着剤21は、コアラップシート20a上で間隔を空けながら配列された複数の線状部分から構成されるパターンを形成している。ただし、接着剤21のパターンはこれに限定されない。接着剤21は、コアラップシート20aと吸収体10との間だけでなく、更にコアラップシート20bと吸収体10との間に介在してもよい。接着剤21は特に限定されず、例えばホットメルト接着剤であってもよい。 The water absorbing sheet 50 may further have an adhesive 21 interposed between the core wrap sheet 20a and the absorber 10. FIG. 2 is a plan view showing an example of an adhesive pattern formed on the core wrap sheet. The adhesive 21 shown in FIG. 2 forms a pattern composed of a plurality of linear portions arranged at intervals on the core wrap sheet 20a. However, the pattern of the adhesive 21 is not limited to this. The adhesive 21 may be interposed not only between the core wrap sheet 20a and the absorber 10 but also between the core wrap sheet 20b and the absorber 10. The adhesive 21 is not particularly limited, and may be, for example, a hot melt adhesive.
 吸収体10は、上述の実施形態に係る吸水性樹脂粒子10aと、繊維状物を含む繊維層10bとを有する。吸収体10は、繊維層10bを有していなくてもよい。吸収体における吸水性樹脂粒子の含有量は、吸収体10の質量を基準として、70~100質量%、80~100質量%、又は90~100質量%であってもよい。 The absorber 10 has the water-absorbent resin particles 10a according to the above-described embodiment and the fiber layer 10b containing a fibrous material. The absorber 10 does not have to have the fiber layer 10b. The content of the water-absorbent resin particles in the absorber may be 70 to 100% by mass, 80 to 100% by mass, or 90 to 100% by mass based on the mass of the absorber 10.
 吸収体10における吸水性樹脂粒子の含有量は、十分な吸水性能を得やすい観点から、吸収体10の1m当たり、例えば30g以上、50g以上、70g以上、80g以上、90g以上、100g以上、又は120g以上であってよく、1000g以下、800g以下、700g以下、600g以下、500g以下、400g以下、300g以下であってよい。 The content of the water-absorbent resin particles in the absorber 10 is, for example, 30 g or more, 50 g or more, 70 g or more, 80 g or more, 90 g or more, 100 g or more, per 1 m 2 of the absorbent body 10 from the viewpoint of easily obtaining sufficient water absorption performance. Alternatively, it may be 120 g or more, and may be 1000 g or less, 800 g or less, 700 g or less, 600 g or less, 500 g or less, 400 g or less, and 300 g or less.
 吸収体10の厚さは、特に限定されないが、乾燥状態で、例えば20mm以下、15mm以下、10mm以下、5mm以下、4mm以下、又は3mm以下であってよく、0.1mm以上、又は0.3mm以上であってもよい。吸収体10の単位面積当たりの質量は、1000g/m以下、800g/m以下、又は600g/m以下であってもよく、100g/m以上であってもよい。 The thickness of the absorber 10 is not particularly limited, but may be, for example, 20 mm or less, 15 mm or less, 10 mm or less, 5 mm or less, 4 mm or less, or 3 mm or less in a dry state, and may be 0.1 mm or more or 0.3 mm or less. It may be the above. The mass per unit area of the absorber 10 may be 1000 g / m 2 or less, 800 g / m 2 or less, 600 g / m 2 or less, or 100 g / m 2 or more.
 繊維層10bを構成する繊維状物は、例えば、セルロース系繊維、合成繊維、又はこれらの組み合わせであることができる。セルロース系繊維の例としては、粉砕された木材パルプ、コットン、コットンリンター、レーヨン、セルロースアセテートが挙げられる。合成繊維の例としては、ポリアミド繊維、ポリエステル繊維、及びポリオレフィン繊維が挙げられる。繊維状物が親水性繊維(例えばパルプ)であってもよい。 The fibrous material constituting the fiber layer 10b can be, for example, a cellulosic fiber, a synthetic fiber, or a combination thereof. Examples of cellulosic fibers include crushed wood pulp, cotton, cotton linters, rayon and cellulosic acetate. Examples of synthetic fibers include polyamide fibers, polyester fibers, and polyolefin fibers. The fibrous material may be hydrophilic fibers (for example, pulp).
 吸収体10(又は繊維層10b)は、無機粉末(例えば非晶質シリカ)、消臭剤、抗菌剤、香料等を更に含んでもよい。吸水性樹脂粒子10aが無機粒子を含む場合、吸収体10は吸水性樹脂粒子10a中の無機粒子とは別に無機粉末を含んでいてもよい。 The absorber 10 (or fiber layer 10b) may further contain an inorganic powder (for example, amorphous silica), a deodorant, an antibacterial agent, a fragrance, and the like. When the water-absorbent resin particles 10a contain inorganic particles, the absorber 10 may contain inorganic powder in addition to the inorganic particles in the water-absorbent resin particles 10a.
 コアラップシート20a,20bは、例えば不織布であってもよい。2枚のコアラップシート20a,20bが、同一又は異なる不織布であることができる。不織布は、短繊維(すなわちステープル)で構成される不織布(短繊維不織布)であってもよく、長繊維(すなわちフィラメント)で構成される不織布(長繊維不織布)であってもよい。ステープルは、これに限定されないが、一般的には数百mm以下の繊維長を有していてよい。 The core wrap sheets 20a and 20b may be, for example, a non-woven fabric. The two core wrap sheets 20a and 20b can be the same or different non-woven fabrics. The non-woven fabric may be a non-woven fabric composed of short fibers (that is, staples) (short-fiber non-woven fabric) or a non-woven fabric composed of long fibers (that is, filaments) (long-fiber non-woven fabric). Staples are not limited to this, but generally may have a fiber length of several hundred mm or less.
 コアラップシート20a,20bは、サーマルボンド不織布、エアスルー不織布、レジンボンド不織布、スパンボンド不織布、メルトブロー不織布、エアレイド不織布、スパンレース不織布、ポイントボンド不織布、又はこれらから選ばれる2種以上の不織布を含む積層体であってよい。 The core wrap sheets 20a and 20b are laminated including a thermal bond non-woven fabric, an air-through non-woven fabric, a resin bond non-woven fabric, a spunbond non-woven fabric, a melt blow non-woven fabric, an air-laid non-woven fabric, a spunlace non-woven fabric, a point bond non-woven fabric, or two or more kinds of non-woven fabrics selected from these. It can be a body.
 コアラップシート20a,20bとして用いられる不織布は、合成繊維、天然繊維、又はこれらの組み合わせによって形成された不織布であることができる。合成繊維の例としては、ポリエチレン(PE)及びポリプロピレン(PP)等のポリオレフィン、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)及びポリエチレンナフタレート(PEN)等のポリエステル、ナイロン等のポリアミド、並びにレーヨンから選ばれる合成樹脂を含む繊維が挙げられる。天然繊維の例としては、綿、絹、麻、又はパルプ(セルロース)を含む繊維が挙げられる。不織布を形成する繊維が、ポリオレフィン繊維、ポリエステル繊維又はこれらの組み合わせであってよい。コアラップシート20a,20bがティッシュペーパーであってもよい。 The non-woven fabric used as the core wrap sheets 20a and 20b can be a non-woven fabric formed of synthetic fibers, natural fibers, or a combination thereof. Examples of synthetic fibers include polyolefins such as polyethylene (PE) and polypropylene (PP), polyesters such as polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT) and polyethylene naphthalate (PEN), polyamides such as nylon, and Examples thereof include fibers containing a synthetic resin selected from rayon. Examples of natural fibers include fibers containing cotton, silk, hemp, or pulp (cellulose). The fibers forming the non-woven fabric may be polyolefin fibers, polyester fibers or a combination thereof. The core wrap sheets 20a and 20b may be tissue paper.
 吸水シート50は、例えば、吸水性樹脂粒子10a、又は吸水性樹脂粒子10aと繊維状物とを含む混合物をコアラップシート20a,20bの間に挟み、形成された構造体を必要により加熱しながら加圧する方法により、得ることができる。必要により、コアラップシート20a,20bと、吸水性樹脂粒子10a、又はこれを含む混合物との間に接着剤21が配置される。 In the water absorbing sheet 50, for example, the water absorbing resin particles 10a or a mixture containing the water absorbing resin particles 10a and the fibrous material is sandwiched between the core wrap sheets 20a and 20b, and the formed structure is heated as necessary. It can be obtained by the method of pressurizing. If necessary, the adhesive 21 is arranged between the core wrap sheets 20a and 20b and the water-absorbent resin particles 10a or a mixture containing the same.
 吸水シート50は、コアラップシート20bの、吸収体10が存在する面とは反対側の面上に、更に吸収体10及びコアラップシートを設けることにより、吸収体10を2層有する構成としてもよい。本実施形態に係る吸水性樹脂粒子は、特に漏れの抑制に優れているため、例えば吸収層が単層である吸水シートにおいても高い吸収性能を有し、液体漏れ性を抑制することができる。 The water absorption sheet 50 may have two layers of the absorber 10 by further providing the absorber 10 and the core wrap sheet on the surface of the core wrap sheet 20b opposite to the surface on which the absorber 10 exists. Good. Since the water-absorbent resin particles according to the present embodiment are particularly excellent in suppressing leakage, they have high absorption performance even in a water-absorbent sheet having a single-layer absorption layer, and can suppress liquid leakage.
 吸水シート50における吸水性樹脂粒子の含有量は、十分な吸水性能を得やすい観点から、吸収体10の1m当たり、例えば30g以上、50g以上、70g以上、80g以上、90g以上、100g以上、又は120g以上であってよく、1000g以下、800g以下、700g以下、600g以下、500g以下、400g以下、300g以下であってよい。 The content of the water-absorbent resin particles in the water-absorbent sheet 50 is, for example, 30 g or more, 50 g or more, 70 g or more, 80 g or more, 90 g or more, 100 g or more, per 1 m 2 of the absorber 10 from the viewpoint of easily obtaining sufficient water absorption performance. Alternatively, it may be 120 g or more, and may be 1000 g or less, 800 g or less, 700 g or less, 600 g or less, 500 g or less, 400 g or less, and 300 g or less.
 吸水シート50は、例えば各種の吸収性物品を製造するために用いられる。吸収性物品の例としては、おむつ(例えば紙おむつ)、トイレトレーニングパンツ、失禁パッド、衛生材料(生理用ナプキン、タンポン等)、汗取りパッド、ペットシート、簡易トイレ用部材、及び動物排泄物処理材が挙げられる。 The water absorption sheet 50 is used, for example, for producing various absorbent articles. Examples of absorbent articles include diapers (eg paper diapers), toilet training pants, incontinence pads, sanitary materials (sanitary napkins, tampons, etc.), sweat pads, pet sheets, toilet components, and animal waste treatment materials. Can be mentioned.
 図3は、吸収性物品の一例を示す断面図である。図3に示す吸収性物品100は、吸水シート50と、液体透過性シート30と、液体不透過性シート40とを備える。言い換えると、吸水シート50が、液体透過性シート30と液体不透過性シート40との間に挟まれている。 FIG. 3 is a cross-sectional view showing an example of an absorbent article. The absorbent article 100 shown in FIG. 3 includes a water absorbing sheet 50, a liquid permeable sheet 30, and a liquid permeable sheet 40. In other words, the water absorbing sheet 50 is sandwiched between the liquid permeable sheet 30 and the liquid impermeable sheet 40.
 液体透過性シート30は、吸収対象の液が浸入する側の最外層の位置に配置されている。液体透過性シート30は、コアラップシート20bに接した状態でコアラップシート20bの外側に配置されている。液体不透過性シート40は、吸収性物品100において液体透過性シート30とは反対側の最外層の位置に配置されている。液体不透過性シート40は、コアラップシート20aに接した状態でコアラップシート20aの外側に配置されている。液体透過性シート30及び液体不透過性シート40は、吸水シート50の主面よりも広い主面を有しており、液体透過性シート30及び液体不透過性シート40の外縁部は、吸収体10及びコアラップシート20a,20bの周囲に延在している。ただし、吸収体10、コアラップシート20a,20b、液体透過性シート30、及び、液体不透過性シート40の大小関係は、特に限定されず、吸収性物品の用途等に応じて適宜調整される。 The liquid permeable sheet 30 is arranged at the position of the outermost layer on the side where the liquid to be absorbed enters. The liquid permeable sheet 30 is arranged on the outside of the core wrap sheet 20b in contact with the core wrap sheet 20b. The liquid permeable sheet 40 is arranged at the position of the outermost layer on the side opposite to the liquid permeable sheet 30 in the absorbent article 100. The liquid impermeable sheet 40 is arranged on the outside of the core wrap sheet 20a in a state of being in contact with the core wrap sheet 20a. The liquid permeable sheet 30 and the liquid permeable sheet 40 have a main surface wider than the main surface of the water absorbing sheet 50, and the outer edges of the liquid permeable sheet 30 and the liquid permeable sheet 40 are absorbers. It extends around 10 and the core wrap sheets 20a and 20b. However, the magnitude relationship between the absorbent body 10, the core wrap sheets 20a and 20b, the liquid permeable sheet 30, and the liquid permeable sheet 40 is not particularly limited, and is appropriately adjusted according to the use of the absorbent article and the like. ..
 液体透過性シート30は、不織布であってもよい。液体透過性シート30として用いられる不織布は、吸収性物品の液体吸収性能の観点から、適度な親水性を有していてもよい。その観点から、液体透過性シート30は、紙パルプ技術協会による紙パルプ試験方法No.68(2000)の測定方法に従って測定される親水度が5~200の不織布であってもよい。不織布の親水度は、10~150であってもよい。紙パルプ試験方法No.68の詳細については、例えばWO2011/086843号を参照することができる。 The liquid permeable sheet 30 may be a non-woven fabric. The non-woven fabric used as the liquid permeable sheet 30 may have appropriate hydrophilicity from the viewpoint of the liquid absorption performance of the absorbent article. From this point of view, the liquid permeable sheet 30 is obtained from the pulp and paper test method No. 1 by the Paper and Pulp Technology Association. A non-woven fabric having a hydrophilicity of 5 to 200 measured according to the measuring method of 68 (2000) may be used. The hydrophilicity of the non-woven fabric may be 10 to 150. Pulp and paper test method No. For details of 68, for example, WO2011 / 086843 can be referred to.
 親水性を有する不織布は、例えば、レーヨン繊維のように適度な親水度を示す繊維によって形成されたものでもよいし、ポリオレフィン繊維、ポリエステル繊維のような疎水性の化学繊維を親水化処理して得た繊維によって形成されたものであってもよい。親水化処理された疎水性の化学繊維を含む不織布を得る方法としては、例えば、疎水性の化学繊維に親水化剤を混合したものを用いてスパンボンド法にて不織布を得る方法、疎水性化学繊維でスパンボンド不織布を作製する際に親水化剤を同伴させる方法、疎水性の化学繊維を用いて得たスパンボンド不織布に親水化剤を含浸させる方法が挙げられる。親水化剤としては、脂肪族スルホン酸塩、高級アルコール硫酸エステル塩等のアニオン系界面活性剤、第4級アンモニウム塩等のカチオン系界面活性剤、ポリエチレングリコール脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル等のノニオン系界面活性剤、ポリオキシアルキレン変性シリコーン等のシリコーン系界面活性剤、及びポリエステル系、ポリアミド系、アクリル系、ウレタン系の樹脂からなるステイン・リリース剤等が用いられる。 The non-woven fabric having hydrophilicity may be formed of fibers showing appropriate hydrophilicity such as rayon fiber, or obtained by hydrophilizing a hydrophobic chemical fiber such as polyolefin fiber or polyester fiber. It may be formed of rayon fibers. Examples of a method for obtaining a non-woven fabric containing hydrophobic chemical fibers that have been hydrophilized include a method for obtaining a non-woven fabric by a spunbond method using a mixture of hydrophobic chemical fibers and a hydrophilic agent, and hydrophobic chemistry. Examples thereof include a method of accommodating a hydrophilic agent when producing a spunbonded non-woven fabric from fibers, and a method of impregnating a spunbonded non-woven fabric obtained by using hydrophobic chemical fibers with a hydrophilicizing agent. Examples of the hydrophilizing agent include anionic surfactants such as aliphatic sulfonates and higher alcohol sulfates, cationic surfactants such as quaternary ammonium salts, polyethylene glycol fatty acid esters, polyglycerin fatty acid esters, and sorbitan fatty acids. Nonionic surfactants such as esters, silicone-based surfactants such as polyoxyalkylene-modified silicones, and stain-releasing agents made of polyester-based, polyamide-based, acrylic-based, and urethane-based resins are used.
 液体透過性シート30として用いられる不織布の目付量(単位面積当たりの質量)は、吸収性物品に、良好な液体浸透性、柔軟性、強度及びクッション性を付与できる観点、及び吸収性物品の液体浸透速度を速める観点から、5~200g/m、8~150g/m、又は10~100g/mであってもよい。液体透過性シート30の厚さは、20~1400μm、50~1200μm、又は80~1000μmであってもよい。 The amount of texture (mass per unit area) of the non-woven fabric used as the liquid permeable sheet 30 is from the viewpoint of imparting good liquid permeability, flexibility, strength and cushioning property to the absorbent article, and the liquid of the absorbent article. From the viewpoint of increasing the permeation rate, it may be 5 to 200 g / m 2 , 8 to 150 g / m 2 , or 10 to 100 g / m 2 . The thickness of the liquid permeable sheet 30 may be 20 to 1400 μm, 50 to 1200 μm, or 80 to 1000 μm.
 液体不透過性シート40は、吸収体10に吸収された液体が液体不透過性シート40側から外部へ漏れ出すのを防止する。液体不透過性シート40は、樹脂シート、又は不織布であってもよい。樹脂シートは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等の合成樹脂からなるシートであってもよい。不織布は、耐水性のメルトブロー不織布を高強度のスパンボンド不織布で挟んだスパンボンド/メルトブロー/スパンボンド(SMS)不織布であってもよい。液体不透過性シート40が、樹脂シートと不織布(例えば、スパンボンド不織布、スパンレース不織布)との複合シートであってもよい。液体不透過性シート40は、装着時のムレが低減されて、着用者に与える不快感を軽減することができる等の観点から、通気性を有していてもよい。通気性を有する液体不透過性シート40として、例えば低密度ポリエチレン(LDPE)樹脂のシートを用いることができる。 The liquid impermeable sheet 40 prevents the liquid absorbed by the absorber 10 from leaking to the outside from the liquid impermeable sheet 40 side. The liquid impermeable sheet 40 may be a resin sheet or a non-woven fabric. The resin sheet may be a sheet made of a synthetic resin such as polyethylene, polypropylene, or polyvinyl chloride. The non-woven fabric may be a spunbond / meltblow / spunbond (SMS) non-woven fabric in which a water-resistant melt-blow non-woven fabric is sandwiched between high-strength spunbond non-woven fabrics. The liquid impermeable sheet 40 may be a composite sheet of a resin sheet and a non-woven fabric (for example, a spunbonded non-woven fabric or a spunlaced non-woven fabric). The liquid impermeable sheet 40 may have breathability from the viewpoint that stuffiness at the time of wearing is reduced and discomfort given to the wearer can be reduced. As the liquid impermeable sheet 40 having breathability, for example, a sheet of low density polyethylene (LDPE) resin can be used.
 吸収性物品の着用感を損なわないよう、柔軟性を確保する観点から、液体不透過性シート40の目付量(単位面積当たりの質量)が10~50g/mであってもよい。 From the viewpoint of ensuring flexibility so as not to impair the wearing feeling of the absorbent article, the basis weight (mass per unit area) of the liquid impermeable sheet 40 may be 10 to 50 g / m 2.
 吸収性物品100は、例えば、吸水シート50を液体透過性シート30及び液体不透過性シート40の間に配置することを含む方法により、製造することができる。液体不透過性シート40、吸水シート50及び液体透過性シート30の順に積層された積層体が、必要により加圧される。あるいは、液体透過性シート30と、コアラップシート20bと、吸水性樹脂粒子10a、又は吸水性樹脂粒子10aと繊維状物とを含む混合物と、コアラップシート20aと液体不透過性シート40とをこの順に配置し、形成された構造体を必要により加熱しながら加圧する方法により、吸収性物品100を得ることもできる。なお、液体透過性シート30とコアラップシート20bの間に液を拡散させる目的で不織布を配置してもよい。 The absorbent article 100 can be manufactured, for example, by a method including arranging the water absorbing sheet 50 between the liquid permeable sheet 30 and the liquid permeable sheet 40. A laminated body in which the liquid permeable sheet 40, the water absorbing sheet 50, and the liquid permeable sheet 30 are laminated in this order is pressurized as necessary. Alternatively, the liquid permeable sheet 30, the core wrap sheet 20b, the water-absorbent resin particles 10a, or the mixture containing the water-absorbent resin particles 10a and the fibrous material, and the core wrap sheet 20a and the liquid impermeable sheet 40 are used. The absorbent article 100 can also be obtained by arranging in this order and pressurizing the formed structure while heating if necessary. A non-woven fabric may be arranged between the liquid permeable sheet 30 and the core wrap sheet 20b for the purpose of diffusing the liquid.
 以下、実施例及び比較例を用いて本発明の内容を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the content of the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
<実施例1>
[含水ゲル状重合体aの製造]
 還流冷却器、滴下ロート、窒素ガス導入管、及び、撹拌機として、翼径5cmの4枚傾斜パドル翼を2段で有する撹拌翼を備えた内径11cm、2L容の丸底円筒型セパラブルフラスコを準備した。該フラスコに、炭化水素分散媒としてn-ヘプタン293gを入れ、高分子系分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社、ハイワックス1105A)0.736gを添加して混合した。フラスコ内の混合物を撹拌しつつ80℃まで昇温することにより分散剤をn-ヘプタンに溶解させた後、50℃まで冷却した。
<Example 1>
[Production of hydrogel polymer a]
A round-bottomed cylindrical separable flask with an inner diameter of 11 cm and a capacity of 2 L, equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirring blade having four inclined paddle blades with a blade diameter of 5 cm in two stages as a stirrer. Prepared. In the flask, 293 g of n-heptane as a hydrocarbon dispersion medium is added, and 0.736 g of a maleic anhydride-modified ethylene-propylene copolymer (Mitsui Chemicals, Inc., High Wax 1105A) is added and mixed as a polymer-based dispersant. did. The dispersant was dissolved in n-heptane by heating the mixture in the flask to 80 ° C. with stirring, and then cooled to 50 ° C.
 内容積300mLのビーカーに、水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液92.0g(1.03モル)を入れ、外部より冷却しつつ、20.9質量%の水酸化ナトリウム水溶液147.7gを滴下することにより75モル%の中和を行った。その後、増粘剤としてヒドロキシルエチルセルロース0.092g(住友精化株式会社、HEC AW-15F)、水溶性ラジカル重合開始剤として過硫酸カリウム0.0736g(0.272ミリモル)、及び内部架橋剤としてエチレングリコールジグリシジルエーテル0.010g(0.057ミリモル)を加えて溶解することにより、第1段目の単量体水溶液を調製した。 In a beaker with an internal volume of 300 mL, 92.0 g (1.03 mol) of an 80.5 mass% acrylic acid aqueous solution as a water-soluble ethylenically unsaturated monomer was placed, and while being cooled from the outside, 20.9 mass% was added. Neutralization of 75 mol% was carried out by dropping 147.7 g of an aqueous sodium hydroxide solution. Then, 0.092 g of hydroxylethyl cellulose (Sumitomo Seika Co., Ltd., HEC AW-15F) as a thickener, 0.0736 g (0.272 mmol) of potassium persulfate as a water-soluble radical polymerization initiator, and ethylene as an internal cross-linking agent. A first-stage monomer aqueous solution was prepared by adding 0.010 g (0.057 mmol) of glycol diglycidyl ether and dissolving it.
 第1段目の単量体水溶液を上記フラスコに添加して、10分間撹拌した。別途、n-ヘプタン6.62gに界面活性剤としてショ糖ステアリン酸エステル(三菱化学フーズ株式会社、リョートーシュガーエステルS-370、HLB:3)0.736gを加熱溶解することにより界面活性剤溶液を調製した。該界面活性剤溶液を上記フラスコに更に添加して、撹拌機の回転数を550rpmとして撹拌しながら系内を窒素で十分に置換した。その後、上記フラスコを70℃の水浴に浸漬して加温し、重合を60分間行うことにより、真球状である含水ゲル状重合体aを含むスラリーを得た。 The first-stage monomer aqueous solution was added to the flask and stirred for 10 minutes. Separately, 0.736 g of sucrose stearic acid ester (Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370, HLB: 3) as a surfactant is dissolved in 6.62 g of n-heptane by heating to dissolve the surfactant solution. Was prepared. The surfactant solution was further added to the flask, and the inside of the system was sufficiently replaced with nitrogen while stirring at a stirring speed of 550 rpm. Then, the flask was immersed in a water bath at 70 ° C. for heating, and polymerization was carried out for 60 minutes to obtain a slurry containing a spherical hydrogel polymer a.
[含水ゲル状重合体bの製造]
 還流冷却器、滴下ロート、窒素ガス導入管、及び、撹拌機を備えた内径11cm、内容積2Lの、4箇所の側壁バッフル付き丸底円筒型セパラブルフラスコ(バッフル長さ:10cmバッフル幅:7mm)を準備した。撹拌機としては、翼径5cmの4枚傾斜パドル翼(フッ素樹脂にて表面処理したもの)を2段有する撹拌翼を有するものを用いた。該フラスコに、炭化水素分散媒としてn-ヘプタン451.4gを添加し、界面活性剤としてソルビタンモノラウレート(ノニオンLP-20R、HLB値:8.6、日油株式会社製)1.29gを添加することにより混合物を得た。該混合物を撹拌機の回転数300rpmで撹拌しつつ50℃まで昇温することにより、ソルビタンモノラウレートをn-ヘプタンに溶解させた。その後、混合物を40℃まで冷却した。
[Production of hydrogel polymer b]
Round-bottomed cylindrical separable flask with four side wall baffles with an inner diameter of 11 cm and an internal volume of 2 L equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirrer (baffle length: 10 cm, baffle width: 7 mm) ) Was prepared. As the stirrer, one having a stirrer blade having two stages of four inclined paddle blades (surface treated with fluororesin) having a blade diameter of 5 cm was used. To the flask, 451.4 g of n-heptane as a hydrocarbon dispersion medium was added, and 1.29 g of sorbitan monolaurate (Nonion LP-20R, HLB value: 8.6, manufactured by NOF CORPORATION) was added as a surfactant. The mixture was obtained by addition. The sorbitan monolaurate was dissolved in n-heptane by heating the mixture to 50 ° C. while stirring at a stirring speed of 300 rpm. The mixture was then cooled to 40 ° C.
 次に、内容積500mLの三角フラスコに80.5質量%のアクリル酸水溶液92.0g(アクリル酸:1.03モル)を入れた。続いて、外部より氷冷しながら20.9質量%水酸化ナトリウム水溶液147.7gを滴下することによってアクリル酸の中和を行うことによりアクリル酸部分中和物水溶液を得た。次に、水溶性ラジカル重合開始剤として過硫酸カリウム0.1012g(0.374ミリモル)をアクリル酸部分中和物水溶液に加えた後に溶解させることにより単量体水溶液を調製した。 Next, 92.0 g (acrylic acid: 1.03 mol) of an 80.5 mass% acrylic acid aqueous solution was placed in an Erlenmeyer flask having an internal volume of 500 mL. Subsequently, 147.7 g of a 20.9 mass% sodium hydroxide aqueous solution was added dropwise from the outside while cooling with ice to neutralize the acrylic acid, thereby obtaining an aqueous solution of a partially neutralized acrylic acid. Next, a monomer aqueous solution was prepared by adding 0.1012 g (0.374 mmol) of potassium persulfate as a water-soluble radical polymerization initiator to the acrylic acid partially neutralized aqueous solution and then dissolving the mixture.
 上述の単量体水溶液を上記フラスコに添加した後、系内を窒素で充分に置換した。その後、上記フラスコ内の混合物を撹拌機の回転数700rpmで撹拌しつつ、フラスコを70℃の水浴に浸漬して60分間保持して重合を完了させることにより、不定形状である含水ゲル状重合体bを含むスラリーを得た。 After adding the above-mentioned monomer aqueous solution to the above-mentioned flask, the inside of the system was sufficiently replaced with nitrogen. Then, while stirring the mixture in the flask at a rotation speed of 700 rpm of the stirrer, the flask is immersed in a water bath at 70 ° C. and held for 60 minutes to complete the polymerization. A slurry containing b was obtained.
[造粒]
 還流冷却器、滴下ロート、窒素ガス導入管、及び、撹拌機を備えた内径11cm、2L容の丸底円筒型セパラブルフラスコを準備した。撹拌機には、図4に概形を示す撹拌翼200を取り付けた。撹拌翼200は、軸200a及び平板部200bを備えている。平板部200bは、軸200aに溶接されるとともに、湾曲した先端を有している。平板部200bには、軸200aの軸方向に沿って延びる4つのスリットSが形成されている。4つのスリットSは平板部200bの幅方向に配列されており、内側の二つのスリットSの幅は1cmであり、外側二つのスリットSの幅は0.5cmである。平板部200bの長さは約10cmであり、平板部200bの幅は約6cmである。
[Granulation]
A round-bottomed cylindrical separable flask having an inner diameter of 11 cm and a volume of 2 L equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirrer was prepared. The stirrer was equipped with a stirrer blade 200 whose outline is shown in FIG. The stirring blade 200 includes a shaft 200a and a flat plate portion 200b. The flat plate portion 200b is welded to the shaft 200a and has a curved tip. The flat plate portion 200b is formed with four slits S extending along the axial direction of the shaft 200a. The four slits S are arranged in the width direction of the flat plate portion 200b, the width of the two inner slits S is 1 cm, and the width of the two outer slits S is 0.5 cm. The length of the flat plate portion 200b is about 10 cm, and the width of the flat plate portion 200b is about 6 cm.
 上記フラスコに、n-ヘプタン220g、目開き75μmのJIS標準篩を用いてn-ヘプタンから濾別した含水ゲル状重合体aを含むスラリー125g、及び、目開き75μmのJIS標準篩を用いてn-ヘプタンから濾別した含水ゲル状重合体bを含むスラリー185gを添加し、撹拌機の回転数1000rpmで撹拌しつつ80℃のオイルバスに浸漬した。別途、粉末状無機凝集剤として非晶質シリカ(オリエンタルシリカズコーポレーション、トクシールNP-S)0.092gをn-ヘプタン100gに分散させることにより、分散液を調製した。該分散液を上記フラスコに添加して10分間混合することにより、含水ゲル状重合体aと含水ゲル状重合体bとを凝集させた。含水ゲル状重合体a及び含水ゲル状重合体bの混合比(各スラリー中に含まれる吸水性樹脂固形分の含有量を別途加熱乾固して測定した結果に基づき算出した理論比、以下同様)は、50:50である。 In the flask, a slurry containing 220 g of n-heptane and a slurry containing a hydrogel polymer a filtered from n-heptane using a JIS standard sieve having a mesh size of 75 μm, and a JIS standard sieve having a mesh size of 75 μm were used. -185 g of a slurry containing the hydrogel polymer b filtered from heptane was added, and the slurry was immersed in an oil bath at 80 ° C. while stirring at a stirring speed of 1000 rpm. Separately, a dispersion was prepared by dispersing 0.092 g of amorphous silica (Oriental Silicas Corporation, Toxile NP-S) as a powdery inorganic flocculant in 100 g of n-heptane. The dispersion liquid was added to the flask and mixed for 10 minutes to aggregate the hydrogel polymer a and the hydrogel polymer b. Mixing ratio of hydrogel polymer a and hydrogel polymer b (theoretical ratio calculated based on the results of measuring the content of water-absorbent resin solids contained in each slurry by separately heating and drying, and so on. ) Is 50:50.
 凝集後、125℃に設定した油浴に上記フラスコを浸漬し、n-ヘプタンと水との共沸蒸留により、n-ヘプタンを還流しながら100.0gの水を系外へ抜き出した。その後、上記フラスコに表面架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液4.14g(0.475ミリモル)を添加し、83℃で2時間保持した。 After aggregation, the flask was immersed in an oil bath set at 125 ° C., and 100.0 g of water was extracted from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. Then, 4.14 g (0.475 mmol) of a 2% by mass ethylene glycol diglycidyl ether aqueous solution was added to the flask as a surface cross-linking agent, and the flask was kept at 83 ° C. for 2 hours.
 その後、n-ヘプタン及び水を125℃の油浴で加熱して蒸発させて乾燥させることによって、重合体粒子の乾燥品を得た。この重合体粒子を目開き850μmの篩に通過させ、吸水性樹脂粒子Aを59.9g得た。吸水性樹脂粒子Aの中位粒子径は486μmであった。吸水性樹脂粒子Aは、粒子それぞれが真球状部分及び不定形状部分を有していた。 Then, n-heptane and water were heated in an oil bath at 125 ° C. to evaporate and dry to obtain a dried product of polymer particles. The polymer particles were passed through a sieve having an opening of 850 μm to obtain 59.9 g of water-absorbent resin particles A. The medium particle size of the water-absorbent resin particles A was 486 μm. Each of the water-absorbent resin particles A had a spherical portion and an irregularly shaped portion.
<実施例2>
 凝集後に添加する、表面架橋剤としての2質量%のエチレングリコールジグリシジルエーテル水溶液の量を8.28g(0.951ミリモル)に変更したこと、及びn-ヘプタンと水との共沸蒸留により抜き出す水の量を101.6gに変更したこと以外は実施例1と同様にして、吸水性樹脂粒子Bを51.8g得た。吸水性樹脂粒子Bの中位粒子径は517μmであった。吸水性樹脂粒子Bは、粒子それぞれが真球状部分及び不定形状部分を有していた。
<Example 2>
The amount of 2% by mass ethylene glycol diglycidyl ether aqueous solution added after aggregation was changed to 8.28 g (0.951 mmol), and the mixture was extracted by azeotropic distillation of n-heptane and water. 51.8 g of water-absorbent resin particles B were obtained in the same manner as in Example 1 except that the amount of water was changed to 101.6 g. The medium particle size of the water-absorbent resin particles B was 517 μm. Each of the water-absorbent resin particles B had a spherical portion and an irregularly shaped portion.
<実施例3>
 造粒の際に添加する含水ゲル状重合体aの量を100gに、含水ゲル状重合体bの量を222gに変更したこと、及び、n-ヘプタンと水との共沸蒸留により抜き出す水の量を114.0gに変更したこと以外は実施例1と同様にして、吸水性樹脂粒子Cを75.6g得た。含水ゲル状重合体a及び含水ゲル状重合体bの混合比(質量基準)は40:60である。該吸水性樹脂粒子の中位粒子径は453μmであった。吸水性樹脂粒子Cは、粒子それぞれが真球状部分及び不定形状部分を有していた。吸水性樹脂粒子Cの走査型電子顕微鏡写真を図5に示す。
<Example 3>
The amount of the hydrogel polymer a added during granulation was changed to 100 g, the amount of the hydrogel polymer b was changed to 222 g, and the water extracted by azeotropic distillation of n-heptane and water. 75.6 g of water-absorbent resin particles C was obtained in the same manner as in Example 1 except that the amount was changed to 114.0 g. The mixing ratio (mass basis) of the hydrogel polymer a and the hydrogel polymer b is 40:60. The medium particle size of the water-absorbent resin particles was 453 μm. Each of the water-absorbent resin particles C had a spherical portion and an irregularly shaped portion. A scanning electron micrograph of the water-absorbent resin particles C is shown in FIG.
<実施例4>
 造粒の際に添加する含水ゲル状重合体aの量を75gに、含水ゲル状重合体bの量を259gに変更したこと、及び、n-ヘプタンと水との共沸蒸留により抜き出す水の量を106.3gに変更したこと以外は実施例1と同様にして、吸水性樹脂粒子Dを69.9g得た。含水ゲル状重合体a及び含水ゲル状重合体bの混合比(質量基準)は30:70である。該吸水性樹脂粒子の中位粒子径は424μmであった。吸水性樹脂粒子Dは、粒子それぞれが真球状部分及び不定形状部分を有していた。
<Example 4>
The amount of the hydrogel polymer a added during granulation was changed to 75 g, the amount of the hydrogel polymer b was changed to 259 g, and the water extracted by azeotropic distillation of n-heptane and water. 69.9 g of water-absorbent resin particles D was obtained in the same manner as in Example 1 except that the amount was changed to 106.3 g. The mixing ratio (mass basis) of the hydrogel polymer a and the hydrogel polymer b is 30:70. The medium particle size of the water-absorbent resin particles was 424 μm. Each of the water-absorbent resin particles D had a spherical portion and an irregularly shaped portion.
<比較例1>
[真球状粒子の製造]
 実施例1の含水ゲル状重合体aと同様にして、含水ゲル状重合体を含むスラリーを得た。該スラリーを含むフラスコを、125℃に設定した油浴に浸漬し、n-ヘプタンと水との共沸蒸留により、n-ヘプタンを還流しながら、117.8gの水を系外へ抜き出した。その後、上記フラスコに表面架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液4.42g(0.507ミリモル)を添加し、83℃で2時間保持した。
<Comparative example 1>
[Manufacturing of spherical particles]
A slurry containing the hydrogel polymer was obtained in the same manner as in the hydrogel polymer a of Example 1. The flask containing the slurry was immersed in an oil bath set at 125 ° C., and 117.8 g of water was extracted from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. Then, 4.42 g (0.507 mmol) of a 2% by mass ethylene glycol diglycidyl ether aqueous solution was added to the flask as a surface cross-linking agent, and the flask was kept at 83 ° C. for 2 hours.
 その後、n-ヘプタン及び水を125℃の油浴で加熱して蒸発させて乾燥させることによって、重合体粒子の乾燥品を得た。この重合体粒子を目開き850μmの篩に通過させ、真球状の吸水性樹脂粒子Eを90.5g得た。吸水性樹脂粒子Eの中位粒子径は55μmであった。 Then, n-heptane and water were heated in an oil bath at 125 ° C. to evaporate and dry to obtain a dried product of polymer particles. The polymer particles were passed through a sieve having an opening of 850 μm to obtain 90.5 g of spherical water-absorbent resin particles E. The medium particle size of the water-absorbent resin particles E was 55 μm.
[不定形状粒子の製造]
 実施例1の含水ゲル状重合体bと同様にして、含水ゲル状重合体を含むスラリーを得た。該スラリーを含むフラスコを125℃の油浴に浸漬し、n-ヘプタンと水との共沸蒸留によりn-ヘプタンを還流しながら96.7gの水を系外へ抜き出した。その後、表面架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液4.14g(エチレングリコールジグリシジルエーテル:0.475ミリモル)を添加し、内温83±2℃で2時間保持した。
[Manufacturing of amorphous particles]
A slurry containing the hydrogel polymer was obtained in the same manner as in the hydrogel polymer b of Example 1. The flask containing the slurry was immersed in an oil bath at 125 ° C., and 96.7 g of water was extracted from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. Then, 4.14 g (ethylene glycol diglycidyl ether: 0.475 mmol) of 2% by mass of an ethylene glycol diglycidyl ether aqueous solution was added as a surface cross-linking agent, and the mixture was maintained at an internal temperature of 83 ± 2 ° C. for 2 hours.
 その後、水及びn-ヘプタンを125℃の油浴で加熱して蒸発させ、系内からの蒸発物がほとんど留出されなくなるまで乾燥させることにより、重合体粒子の乾燥品を得た。この重合体粒子を目開き850μmの篩に通すことにより、不定形状の吸水性樹脂粒子Fを90.6g得た。吸水性樹脂粒子Fの中位粒子径は156μmであった。 Then, water and n-heptane were heated in an oil bath at 125 ° C. to evaporate, and dried until almost no evaporation from the system was distilled off to obtain a dried product of polymer particles. By passing the polymer particles through a sieve having an opening of 850 μm, 90.6 g of water-absorbent resin particles F having an indefinite shape were obtained. The medium particle size of the water-absorbent resin particles F was 156 μm.
 吸水性樹脂粒子E及び吸水性樹脂粒子Fを50:50の質量比で混合したものを比較例1とした。 Comparative Example 1 was a mixture of water-absorbent resin particles E and water-absorbent resin particles F at a mass ratio of 50:50.
<比較例2>
[真球状粒子の製造]
 還流冷却器、滴下ロート、窒素ガス導入管、及び、撹拌機として、翼径5cmの4枚傾斜パドル翼を2段で有する撹拌翼を備えた内径11cm、2L容の丸底円筒型セパラブルフラスコを準備した。該フラスコに、炭化水素分散媒としてn-ヘプタン293gを入れ、高分子系分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社、ハイワックス1105A)0.736gを添加して混合した。フラスコ内の混合物を撹拌しつつ80℃まで昇温することにより分散剤をn-ヘプタンに溶解させた後、50℃まで冷却した。
<Comparative example 2>
[Manufacturing of spherical particles]
A round-bottomed cylindrical separable flask with an inner diameter of 11 cm and a capacity of 2 L, equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirring blade having four inclined paddle blades with a blade diameter of 5 cm in two stages as a stirrer. Prepared. In the flask, 293 g of n-heptane as a hydrocarbon dispersion medium is added, and 0.736 g of a maleic anhydride-modified ethylene-propylene copolymer (Mitsui Chemicals, Inc., High Wax 1105A) is added and mixed as a polymer-based dispersant. did. The dispersant was dissolved in n-heptane by heating the mixture in the flask to 80 ° C. with stirring, and then cooled to 50 ° C.
 内容積300mLのビーカーに、水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液92.0g(1.03モル)を入れ、外部より冷却しつつ、20.9質量%の水酸化ナトリウム水溶液147.7gを滴下することにより75モル%の中和を行った。その後、増粘剤としてヒドロキシルエチルセルロース1.38g(住友精化株式会社、HEC AW-15F)、水溶性ラジカル重合開始剤として2,2’-アゾビス(2-アミジノプロパン)2塩酸塩0.110g(0.407ミリモル)、及び内部架橋剤としてエチレングリコールジグリシジルエーテル0.0046g(0.026ミリモル)を上記ビーカーに加えて溶解することにより、第1段目の単量体水溶液を調製した。 In a beaker with an internal volume of 300 mL, 92.0 g (1.03 mol) of an 80.5 mass% acrylic acid aqueous solution as a water-soluble ethylenically unsaturated monomer was placed, and while being cooled from the outside, 20.9 mass% was added. Neutralization of 75 mol% was carried out by dropping 147.7 g of an aqueous sodium hydroxide solution. After that, 1.38 g of hydroxylethyl cellulose (Sumitomo Seika Co., Ltd., HEC AW-15F) was used as a thickener, and 0.110 g of 2,2'-azobis (2-amidinopropane) dihydrochloride as a water-soluble radical polymerization initiator (. 0.407 mmol) and 0.0046 g (0.026 mmol) of ethylene glycol diglycidyl ether as an internal cross-linking agent were added to the beaker and dissolved to prepare a first-stage monomer aqueous solution.
 第1段目の単量体水溶液を上記フラスコに添加して10分間撹拌した。別途、n-ヘプタン6.62gに界面活性剤としてショ糖ステアリン酸エステル(三菱化学フーズ株式会社、リョートーシュガーエステルS-370、HLB:3)0.736gを加熱溶解することにより界面活性剤溶液を調製した。該界面活性剤溶液を上記フラスコに更に添加して、撹拌機の回転数を400rpmとして撹拌しながら系内を窒素で十分に置換した。その後、上記フラスコを70℃の水浴に浸漬して加温し、重合を60分間行うことにより、含水ゲル状重合体を含むスラリーを得た。 The first-stage monomer aqueous solution was added to the flask and stirred for 10 minutes. Separately, 0.736 g of sucrose stearic acid ester (Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370, HLB: 3) as a surfactant is dissolved in 6.62 g of n-heptane by heating to dissolve the surfactant solution. Was prepared. The surfactant solution was further added to the flask, and the inside of the system was sufficiently replaced with nitrogen while stirring at a stirring speed of 400 rpm. Then, the flask was immersed in a water bath at 70 ° C. and heated, and polymerization was carried out for 60 minutes to obtain a slurry containing a hydrogel polymer.
 該スラリーを含むフラスコを、125℃に設定した油浴に浸漬し、n-ヘプタンと水との共沸蒸留により、n-ヘプタンを還流しながら108.2の水を系外へ抜き出した。その後、上記フラスコに表面架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液4.60g(0.528ミリモル)を添加し、83℃で2時間保持した。 The flask containing the slurry was immersed in an oil bath set at 125 ° C., and 108.2 water was extracted from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. Then, 4.60 g (0.528 mmol) of a 2% by mass ethylene glycol diglycidyl ether aqueous solution was added to the flask as a surface cross-linking agent, and the flask was kept at 83 ° C. for 2 hours.
 その後、n-ヘプタン及び水を125℃の油浴で加熱して蒸発させて乾燥させることによって、重合体粒子の乾燥品を得た。この重合体粒子を目開き850μmの篩に通過させ、真球状の吸水性樹脂粒子Gを91.2得た。吸水性樹脂粒子Gの中位粒子径は381μmであった。 Then, n-heptane and water were heated in an oil bath at 125 ° C. to evaporate and dry to obtain a dried product of polymer particles. The polymer particles were passed through a sieve having an opening of 850 μm to obtain 91.2 spherical water-absorbent resin particles G. The medium particle size of the water-absorbent resin particles G was 381 μm.
[不定形状粒子の製造]
 実施例1の含水ゲル状重合体bと同様にして、含水ゲル状重合体を得た。別途、粉末状無機凝集剤として非晶質シリカ(オリエンタルシリカズコーポレーション、トクシールNP-S)0.092gをn-ヘプタン100gに分散させることにより分散液を得た。撹拌機の回転数1000rpmで撹拌しつつ、含水ゲル状重合体、n-ヘプタン及び界面活性剤を含む重合液に、上記分散液を添加して10分間混合した。その後、上記フラスコを125℃の油浴に浸漬し、n-ヘプタンと水との共沸蒸留によりn-ヘプタンを還流しながら98.0gの水を系外へ抜き出した。その後、上記フラスコに、表面架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液4.14g(エチレングリコールジグリシジルエーテル:0.475ミリモル)を添加し、内温83±2℃で2時間保持した。
[Manufacturing of amorphous particles]
A hydrogel polymer was obtained in the same manner as in the hydrogel polymer b of Example 1. Separately, 0.092 g of amorphous silica (Oriental Silicas Corporation, Toxile NP-S) as a powdery inorganic flocculant was dispersed in 100 g of n-heptane to obtain a dispersion liquid. While stirring at a rotation speed of 1000 rpm of a stirrer, the above dispersion was added to a polymerization solution containing a hydrogel polymer, n-heptane and a surfactant, and mixed for 10 minutes. Then, the flask was immersed in an oil bath at 125 ° C., and 98.0 g of water was extracted from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. Then, 4.14 g (ethylene glycol diglycidyl ether: 0.475 mmol) of 2% by mass of an ethylene glycol diglycidyl ether aqueous solution was added to the flask as a surface cross-linking agent, and the mixture was kept at an internal temperature of 83 ± 2 ° C. for 2 hours. ..
 その後、水及びn-ヘプタンを125℃の油浴で加熱して蒸発させ、系内からの蒸発物がほとんど留出されなくなるまで乾燥させることにより、重合体粒子の乾燥品を得た。この重合体粒子を目開き850μmの篩に通すことにより、不定形状の吸水性樹脂粒子Hを90.1g得た。吸水性樹脂粒子Hの中位粒子径は352μmであった。 Then, water and n-heptane were heated in an oil bath at 125 ° C. to evaporate, and dried until almost no evaporation from the system was distilled off to obtain a dried product of polymer particles. By passing the polymer particles through a sieve having an opening of 850 μm, 90.1 g of water-absorbent resin particles H having an indefinite shape was obtained. The medium particle size of the water-absorbent resin particles H was 352 μm.
 吸水性樹脂粒子G及び吸水性樹脂粒子Hを50:50の質量比で混合したものを比較例2とした。 Comparative Example 2 was a mixture of water-absorbent resin particles G and water-absorbent resin particles H at a mass ratio of 50:50.
<比較例3>
 比較例2で得た不定形状の吸水性樹脂粒子Hを単独で比較例3とした。
<Comparative example 3>
The water-absorbent resin particles H having an indefinite shape obtained in Comparative Example 2 were used alone as Comparative Example 3.
<比較例4>
 還流冷却器、滴下ロート、窒素ガス導入管、及び、撹拌機として、翼径5cmの4枚傾斜パドル翼を2段で有する撹拌翼を備えた内径11cm、2L容の丸底円筒型セパラブルフラスコを準備した。該フラスコに、炭化水素分散媒としてn-ヘプタン293gを入れ、高分子系分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社、ハイワックス1105A)0.736gを添加して混合した。フラスコ内の混合物を撹拌しつつ80℃まで昇温することにより分散剤をn-ヘプタンに溶解させた後、50℃まで冷却した。
<Comparative example 4>
A round-bottomed cylindrical separable flask with an inner diameter of 11 cm and a capacity of 2 L, equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirring blade having four inclined paddle blades with a blade diameter of 5 cm in two stages as a stirrer. Prepared. In the flask, 293 g of n-heptane as a hydrocarbon dispersion medium is added, and 0.736 g of a maleic anhydride-modified ethylene-propylene copolymer (Mitsui Chemicals, Inc., High Wax 1105A) is added and mixed as a polymer-based dispersant. did. The dispersant was dissolved in n-heptane by heating the mixture in the flask to 80 ° C. with stirring, and then cooled to 50 ° C.
 内容積300mLのビーカーに、水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液92.0g(1.03モル)を入れ、外部より冷却しつつ、20.9質量%の水酸化ナトリウム水溶液147.7gを滴下することにより75モル%の中和を行った。その後、増粘剤としてヒドロキシルエチルセルロース0.092g(住友精化株式会社、HEC AW-15F)、水溶性ラジカル重合開始剤として過硫酸カリウム0.0736g(0.272ミリモル)、及び内部架橋剤としてエチレングリコールジグリシジルエーテル0.010g(0.057ミリモル)を上記ビーカーに加えて溶解することにより、第1段目の単量体水溶液を調製した。 In a beaker with an internal volume of 300 mL, 92.0 g (1.03 mol) of an 80.5 mass% acrylic acid aqueous solution as a water-soluble ethylenically unsaturated monomer was placed, and while being cooled from the outside, 20.9 mass% was added. Neutralization of 75 mol% was carried out by dropping 147.7 g of an aqueous sodium hydroxide solution. Then, 0.092 g of hydroxylethyl cellulose (Sumitomo Seika Co., Ltd., HEC AW-15F) as a thickener, 0.0736 g (0.272 mmol) of potassium persulfate as a water-soluble radical polymerization initiator, and ethylene as an internal cross-linking agent. A first-stage monomer aqueous solution was prepared by adding 0.010 g (0.057 mmol) of glycol diglycidyl ether to the above beaker and dissolving it.
 第1段目の単量体水溶液を上記フラスコに添加して10分間撹拌した。別途、n-ヘプタン6.62gに界面活性剤としてショ糖ステアリン酸エステル(三菱化学フーズ株式会社、リョートーシュガーエステルS-370、HLB:3)0.736gを加熱溶解することにより界面活性剤溶液を調製した。該界面活性剤溶液を上記フラスコに更に添加して、撹拌機の回転数を500rpmとして撹拌しながら系内を窒素で十分に置換した。その後、上記フラスコを70℃の水浴に浸漬して加温し、重合を60分間行うことにより、第1段目の重合スラリー液を得た。 The first-stage monomer aqueous solution was added to the flask and stirred for 10 minutes. Separately, 0.736 g of sucrose stearic acid ester (Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370, HLB: 3) as a surfactant is dissolved in 6.62 g of n-heptane by heating to dissolve the surfactant solution. Was prepared. The surfactant solution was further added to the flask, and the inside of the system was sufficiently replaced with nitrogen while stirring at a rotation speed of a stirrer of 500 rpm. Then, the flask was immersed in a water bath at 70 ° C. for heating, and polymerization was carried out for 60 minutes to obtain a first-stage polymerization slurry liquid.
 内容積500mLのビーカーに水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液128.8g(1.44モル)を入れ、外部より冷却しつつ、27質量%の水酸化ナトリウム水溶液159.0gを滴下することにより75モル%の中和を行った。その後、水溶性ラジカル重合開始剤として過硫酸カリウム0.090g(0.333ミリモル)、及び内部架橋剤としてエチレングリコールジグリシジルエーテル0.0116g(0.067ミリモル)を該ビーカーに加えて溶解し、第2段目の単量体水溶液を調製した。 128.8 g (1.44 mol) of an 80.5 mass% acrylic acid aqueous solution as a water-soluble ethylenically unsaturated monomer was placed in a beaker having an internal volume of 500 mL, and 27 mass% sodium hydroxide was cooled from the outside. Neutralization of 75 mol% was carried out by dropping 159.0 g of the aqueous solution. Then, 0.090 g (0.333 mmol) of potassium persulfate as a water-soluble radical polymerization initiator and 0.0116 g (0.067 mmol) of ethylene glycol diglycidyl ether as an internal cross-linking agent were added to the beaker to dissolve them. A second-stage monomer aqueous solution was prepared.
 撹拌機の回転数を1000rpmとして撹拌しながら、上記フラスコ系内を25℃に冷却した後、上記第2段目の単量体水溶液の全量を、第1段目の重合スラリー液に添加した。その後、系内を窒素で30分間置換し、再度フラスコを70℃の水浴に浸漬して加温し、重合反応を60分間行うことによって、含水ゲル状重合体を含むスラリーを得た。 After cooling the inside of the flask system to 25 ° C. while stirring at a stirring speed of 1000 rpm, the entire amount of the monomer aqueous solution in the second stage was added to the polymerized slurry solution in the first stage. Then, the inside of the system was replaced with nitrogen for 30 minutes, the flask was again immersed in a water bath at 70 ° C. for heating, and the polymerization reaction was carried out for 60 minutes to obtain a slurry containing a hydrogel polymer.
 上記スラリーを含むフラスコを125℃に設定した油浴に浸漬し、n-ヘプタンと水との共沸蒸留により、n-ヘプタンを還流しながら248.2gの水を系外へ抜き出した。その後、上記フラスコに表面架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液4.42g(0.507ミリモル)を添加し、83℃で2時間保持した。 The flask containing the above slurry was immersed in an oil bath set at 125 ° C., and 248.2 g of water was extracted from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. Then, 4.42 g (0.507 mmol) of a 2% by mass ethylene glycol diglycidyl ether aqueous solution was added to the flask as a surface cross-linking agent, and the flask was kept at 83 ° C. for 2 hours.
 その後、n-ヘプタン及び水を125℃の油浴で加熱して蒸発させて乾燥させることによって、重合体粒子の乾燥品を得た。この重合体粒子を目開き850μmの篩に通過させ、重合体粒子の質量に対して0.2質量%の非晶質シリカ(オリエンタルシリカズコーポレーション、トクシールNP-S)を重合体粒子と混合し、真球状の一次粒子が凝集した形状である吸水性樹脂粒子Iを230.8g得た。吸水性樹脂粒子Iの中位粒子径は363μmであった。 Then, n-heptane and water were heated in an oil bath at 125 ° C. to evaporate and dry to obtain a dried product of polymer particles. The polymer particles are passed through a sieve having an opening of 850 μm, and 0.2% by mass of amorphous silica (Oriental Silicas Corporation, Toxile NP-S) with respect to the mass of the polymer particles is mixed with the polymer particles. , 230.8 g of water-absorbent resin particles I having a shape in which spherical primary particles were aggregated were obtained. The medium particle size of the water-absorbent resin particles I was 363 μm.
<形状別凹凸度>
 実施例1の吸水性樹脂粒子について、レーザー顕微鏡(株式会社キーエンス製、VK-X150)を用いて下記方法により形状別の凹凸度を測定した。実施例1で得られた吸水性樹脂粒子Aを更に分級し、中位粒子径が300~355μmの範囲内である粒子を形状別凹凸度測定サンプルとした。測定サンプルは、吸水前の乾燥状態のものであり、湿度40%で保存してあったものを用いた。形状解析レーザー顕微鏡の照明について、観察アプリケーションを「明視野」、形状測定を「暗視野」に設定した。レンズの倍率は20倍に設定した。レーザーカラー共焦点画像にてサンプルの3D画像を撮影した。
<Roughness by shape>
With respect to the water-absorbent resin particles of Example 1, the degree of unevenness for each shape was measured by the following method using a laser microscope (manufactured by KEYENCE CORPORATION, VK-X150). The water-absorbent resin particles A obtained in Example 1 were further classified, and particles having a medium particle diameter in the range of 300 to 355 μm were used as shape-specific unevenness measurement samples. The measurement sample was in a dry state before water absorption and was stored at a humidity of 40%. For the illumination of the shape analysis laser microscope, the observation application was set to "bright field" and the shape measurement was set to "dark field". The magnification of the lens was set to 20 times. A 3D image of the sample was taken with a laser color confocal image.
 取得した吸水性樹脂粒子の画像上に、直径31.8~33.4μmの範囲の円形のプロファイル線(円周約100~105μm)を設定した。粒子表面の凹凸はこのプロファイル線に沿って測定される。一粒子中の、球面状部分を5カ所、不定形状部分を5カ所測定した。球面状部分の測定の際は、プロファイル線が1つの球体の球面状部分からはみ出ないように設定し、球体同士の境界は含まないようにした。不定形状部分の測定の際は、プロファイル線が球面状部分を含まないよう不定形状部分のみに設定した。 A circular profile line (circumference of about 100 to 105 μm) having a diameter in the range of 31.8 to 33.4 μm was set on the acquired image of the water-absorbent resin particles. The unevenness of the particle surface is measured along this profile line. In one particle, spherical parts were measured at 5 points and irregularly shaped parts were measured at 5 places. When measuring the spherical portion, the profile line was set so as not to protrude from the spherical portion of one sphere, and the boundary between the spheres was not included. When measuring the irregularly shaped portion, only the irregularly shaped portion was set so that the profile line did not include the spherical portion.
 プロファイル線に沿って計測された粒子の凹凸を示す波形曲線の全長のうち90%以上を抜き取り、該抜き取り部分における最大高さ粗さRzを測定した。具体的には、該抜き取り部分における波形曲線の平均線を引き、波形曲線の抜き取り部分のうち、平均線を基準にして最も高い山頂の標高と、最も低い谷底の標高の絶対値の合計を最大高さ粗さRzとして求めた。なお、平均線は、平均線及び平均線を上回る波形曲線で囲まれた面積と、平均線及び平均線を下回る波形曲線で囲まれた面積とが均等となるように自動的に設定される。球面状部及び不定形部それぞれについて、5カ所の測定値の平均を形状別凹凸度として求めた。結果を表1に示す。 90% or more of the total length of the waveform curve showing the unevenness of the particles measured along the profile line was extracted, and the maximum height roughness Rz at the extracted portion was measured. Specifically, the average line of the waveform curve in the extracted portion is drawn, and the sum of the absolute values of the highest peak elevation and the lowest valley bottom elevation of the extracted portion of the waveform curve is maximized with reference to the average line. It was calculated as height roughness Rz. The average line is automatically set so that the area surrounded by the average line and the waveform curve above the average line and the area surrounded by the average line and the waveform curve below the average line are equal. For each of the spherical part and the irregular shape part, the average of the measured values at five places was obtained as the degree of unevenness for each shape. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1の吸水性樹脂粒子のうち、真球状部分は形状別凹凸度が1μm以上20μm以下、不定形状部分は形状別凹凸度が20μm超200μm以下の範囲であった。なお、実施例2~4の吸水性樹脂粒子についても、真球状部分及び不定形状部分はそれぞれ実施例1の吸水性樹脂粒子と実質的に同じ形状を有するため、形状別凹凸度は実施例1と実質的に同じ値を示す。 Among the water-absorbent resin particles of Example 1, the spherical portion had a shape-specific unevenness of 1 μm or more and 20 μm or less, and the irregular shape portion had a shape-specific unevenness of more than 20 μm and 200 μm or less. As for the water-absorbent resin particles of Examples 2 to 4, since the spherical portion and the irregularly shaped portion each have substantially the same shape as the water-absorbent resin particles of Example 1, the degree of unevenness for each shape is determined in Example 1. Shows substantially the same value as.
 用いたレーザー顕微鏡の詳細は以下のとおりである。
株式会社キーエンス製、VK-X150(下記機能付き)
 観察画像:超高精細カラーCCD画像、16bitレーザーカラー共焦点画像、共焦点+NDフィルタ光学系、C-レーザ微分干渉画像
 測定用レーザー光源:波長:赤色半導体レーザ658nm、最大出力:0.95mW、クラス:クラス2(JISC6802)
 マイクロスコープ機能:オートフォーカス機能、深度合成機能、寸法測定機能、自動エッジ検出機能、HDR機能
 解析機能:形状解析機能、プロファイル・段差・角度体積・表面積・R・粗さ(JIS・ISO)・膜厚(線・面)、ティーチング機能、自動計測機能、比較解析機能、テンプレート機能
 ソフトウェア:オートフォーカスソフトウェア、ピクセルシフトソフトウェア、自動上下限設定ソフトウェア
The details of the laser microscope used are as follows.
Made by KEYENCE CORPORATION, VK-X150 (with the following functions)
Observation image: Ultra-high-definition color CCD image, 16-bit laser color cofocal image, cofocal + ND filter optical system, C-laser differential interference image Measurement laser light source: Wavelength: Red semiconductor laser 658 nm, maximum output: 0.95 mW, class : Class 2 (JISC6802)
Microscope function: Autofocus function, Depth synthesis function, Dimension measurement function, Automatic edge detection function, HDR function Analysis function: Shape analysis function, Profile / Step / Angle volume / Surface surface / R / Roughness (JIS / ISO) / Film Thickness (line / surface), teaching function, automatic measurement function, comparative analysis function, template function Software: Autofocus software, pixel shift software, automatic upper / lower limit setting software
<粒子の平均凹凸度>
 実施例1、3、4、比較例2、4の吸水性樹脂粒子について、デジタルマイクロスコープ(株式会社キーエンス製、VHX-5000)を用いて、下記方法により粒子の平均凹凸度を測定した。
<Average unevenness of particles>
With respect to the water-absorbent resin particles of Examples 1, 3 and 4, and Comparative Examples 2 and 4, the average unevenness of the particles was measured by the following method using a digital microscope (manufactured by KEYENCE CORPORATION, VHX-5000).
 実施例又は比較例の吸水性樹脂粒子を更に分級し、中位粒子径が300~355μmの範囲内である粒子を凹凸度測定サンプルとした。測定サンプルは、使用前の乾燥状態のものであり、湿度40%で保存してあったものを用いた。デジタルマイクロスコープの設定を、落射照明:10、リング照明、VH-Z20Rレンズの倍率:200倍に設定した。上記デジタルマイクロスコープのプログラムとして「クイック合成&3D」を用いて深度合成を行い、吸水性樹脂粒子の表面の3D画像を撮影した。取得した吸水性樹脂粒子の画像上に、直径270~320μmの範囲の円形のプロファイル線(円周約850~1000μm)を設定した。設定時には、円形のプロファイル線の中心を吸水性樹脂粒子の中心部に合わせ、かつプロファイル線が吸水性樹脂粒子からはみ出ないようにした。 The water-absorbent resin particles of the examples or comparative examples were further classified, and the particles having a medium particle size in the range of 300 to 355 μm were used as the unevenness measurement sample. The measurement sample was in a dry state before use and was stored at a humidity of 40%. The settings of the digital microscope were set to epi-illumination: 10, ring illumination, and VH-Z20R lens magnification: 200 times. Depth synthesis was performed using "quick synthesis & 3D" as the program of the above digital microscope, and a 3D image of the surface of the water-absorbent resin particles was taken. A circular profile line (circumference of about 850 to 1000 μm) having a diameter in the range of 270 to 320 μm was set on the acquired image of the water-absorbent resin particles. At the time of setting, the center of the circular profile line was aligned with the center of the water-absorbent resin particles, and the profile line was prevented from protruding from the water-absorbent resin particles.
 プロファイル線に沿って計測された粒子の凹凸を示す波形曲線の全長のうち90%以上を抜き取り、該抜き取り部分における波形曲線の平均線を引いた。平均線は、平均線及び平均線を上回る波形曲線で囲まれた面積と、平均線及び平均線を下回る波形曲線で囲まれた面積とがほぼ均等(0.95≦一方÷他方≦1.05)となるように引いた。図6は波形曲線及び平均線を示すグラフの例である。グラフ中の矢頭で示される線は平均線である。縦方向の破線は、波形曲線の抜き取り箇所の範囲を示す線である。平均線は、波形曲線と縦方向の破線とが交わる点を結ぶように引かれる。平均線が上記面積条件を満たすような位置で、波形曲線の抜き取り箇所が設定される。 90% or more of the total length of the waveform curve showing the unevenness of the particles measured along the profile line was extracted, and the average line of the waveform curve in the extracted portion was drawn. In the average line, the area surrounded by the average line and the waveform curve above the average line and the area surrounded by the average line and the waveform curve below the average line are almost equal (0.95 ≤ one ÷ other ≤ 1.05). ). FIG. 6 is an example of a graph showing a waveform curve and an average line. The line indicated by the arrowhead in the graph is the average line. The broken line in the vertical direction is a line indicating the range of the sampling points of the waveform curve. The average line is drawn so as to connect the points where the waveform curve and the vertical broken line intersect. The sampling point of the waveform curve is set at a position where the average line satisfies the above area condition.
 波形曲線の抜き取り部分のうち、平均線を基準にして最も高い山頂の標高と、最も低い谷底の標高の絶対値の合計を凹凸度とした。12サンプルについて凹凸度を測定し、そのうちの最大値及び最小値を除く10点の平均値を、粒子の平均凹凸度とした。 Of the extracted parts of the waveform curve, the sum of the absolute values of the highest peak elevation and the lowest valley bottom elevation based on the average line was taken as the degree of unevenness. The degree of unevenness was measured for 12 samples, and the average value of 10 points excluding the maximum value and the minimum value was taken as the average degree of unevenness of the particles.
 用いたデジタルマイクロスコープの詳細は以下のとおりである。
・株式会社キーエンス製、VHX-5000(下記機能付き)
  映像エンジン(23型IPSフルHD液晶内蔵)、ライブ深度合成機能、リアルタイム超解像HDR機能、撮影設定再現機能、超高速画像連結機能
・50フレームCMOSカメラ(ハイスペックマルチスキャンカメラヘッド(VHX-5100))
・TRIPLE’Rレンズ(超小型高性能ZレンズTR[20~200](VH-Z20T)、VH-Z20T用レンズジョイント(VHX-J20T))
・フリーアングル観察スタンド(X・Y・Z電動ステージ(VHX-S550))
・3D形状測定ソフト(VHX-H4M)
The details of the digital microscope used are as follows.
・ VHX-5000 manufactured by KEYENCE CORPORATION (with the following functions)
Video engine (23-inch IPS full HD LCD built-in), live depth composition function, real-time super-resolution HDR function, shooting setting reproduction function, ultra-high-speed image connection function, 50-frame CMOS camera (high-spec multi-scan camera head (VHX-5100)) )))
TRIPLE'R lens (ultra-compact high-performance Z lens TR [20-200] (VH-Z20T), lens joint for VH-Z20T (VHX-J20T))
・ Free-angle observation stand (XYZ electric stage (VHX-S550))
・ 3D shape measurement software (VHX-H4M)
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<吸水性樹脂粒子の評価>
 上記実施例及び比較例の吸水性樹脂粒子又はその混合物について、平均粒子径、生理食塩水保水量、荷重下吸水量、吸水速度、及び無加圧DWを測定した。
<Evaluation of water-absorbent resin particles>
For the water-absorbent resin particles of the above Examples and Comparative Examples or a mixture thereof, the average particle size, the amount of physiological saline water retained, the amount of water absorbed under load, the water absorption rate, and the non-pressurized DW were measured.
[中位粒子径]
 粒子の中位粒子径は下記手順により室温(25±2℃)、湿度50±10%の環境下で測定した。連続全自動音波振動式ふるい分け測定器(ロボットシフター RPS-205、株式会社セイシン企業製)を用いて、JIS規格の850μm、600μm、500μm、425μm、300μm、250μm及び180μmの篩、並びに受け皿を用いて、吸水性樹脂粒子5gの粒度分布を測定した。この粒度分布に関して粒子径の大きい方から順に篩上を積算することにより、篩の目開きと篩上に残った粒子の質量百分率の積算値との関係を対数確率紙にプロットした。確率紙上のプロットを直線で結ぶことにより、積算質量百分率50質量%に相当する粒子径を中位粒子径として得た。
[Medium particle size]
The medium particle size of the particles was measured in an environment of room temperature (25 ± 2 ° C.) and humidity of 50 ± 10% according to the following procedure. Using a continuous fully automatic sonic vibration type sieving measuring instrument (Robot Shifter RPS-205, manufactured by Seishin Enterprise Co., Ltd.), using JIS standard 850 μm, 600 μm, 500 μm, 425 μm, 300 μm, 250 μm and 180 μm sieves, and a saucer. , The particle size distribution of 5 g of water-absorbent resin particles was measured. The relationship between the mesh size of the sieve and the integrated value of the mass percentage of the particles remaining on the sieve was plotted on a logarithmic probability paper by integrating on the sieve in order from the one having the largest particle size with respect to this particle size distribution. By connecting the plots on the probability paper with a straight line, the particle size corresponding to the cumulative mass percentage of 50% by mass was obtained as the medium particle size.
[保水量]
 吸水性樹脂粒子の生理食塩水の保水量(室温、25±2℃)を下記手順で測定した。まず、吸水性樹脂粒子2.0gを量り取った綿袋(メンブロード60番、横100mm×縦200mm)を内容積500mLのビーカー内に設置した。吸水性樹脂粒子の入った綿袋内に生理食塩水500gを、ママコができないように一度に注ぎ込んだ後、綿袋の上部を輪ゴムで縛り、30分静置させることで吸水性樹脂粒子を膨潤させた。30分経過後の綿袋を、遠心力が167Gとなるように設定した脱水機(株式会社コクサン製、品番:H-122)を用いて1分間脱水した後、脱水後の膨潤ゲルを含んだ綿袋の質量Wa[g]を測定した。吸水性樹脂粒子を添加せずに同様の操作を行い、綿袋の湿潤時の空質量Wb[g]を測定し、下記式から吸水性樹脂粒子の生理食塩水の保水量を算出した。結果を表3に示す。
  保水量[g/g]=(Wa-Wb)/2.0
[Water retention]
The water retention amount (room temperature, 25 ± 2 ° C.) of the physiological saline of the water-absorbent resin particles was measured by the following procedure. First, a cotton bag (Membroad No. 60, width 100 mm × length 200 mm) weighing 2.0 g of water-absorbent resin particles was placed in a beaker having an internal volume of 500 mL. After pouring 500 g of physiological saline into a cotton bag containing water-absorbent resin particles at a time so that mamako cannot be made, tie the upper part of the cotton bag with a rubber band and let it stand for 30 minutes to swell the water-absorbent resin particles. I let you. After 30 minutes, the cotton bag was dehydrated for 1 minute using a dehydrator (manufactured by Kokusan Co., Ltd., product number: H-122) set to have a centrifugal force of 167 G, and then contained a swollen gel after dehydration. The mass Wa [g] of the cotton bag was measured. The same operation was performed without adding the water-absorbent resin particles, the empty mass Wb [g] of the cotton bag when wet was measured, and the water retention amount of the physiological saline of the water-absorbent resin particles was calculated from the following formula. The results are shown in Table 3.
Water retention [g / g] = (Wa-Wb) /2.0
[荷重下の吸水量]
 吸水性樹脂粒子の荷重下の生理食塩水の吸水量(室温、25℃±2℃)を、図7に示す測定装置Yを用いて測定した。測定装置Yは、ビュレット部61、導管62、測定台63、及び、測定台63上に置かれた測定部64から構成される。ビュレット部61は、鉛直方向に伸びるビュレット61aと、ビュレット61aの上端に配置されたゴム栓61bと、ビュレット61aの下端に配置されたコック61cと、コック61cの近傍において一端がビュレット61a内に伸びる空気導入管61dと、空気導入管61dの他端側に配置されたコック61eとを有している。導管62は、ビュレット部61と測定台63との間に取り付けられている。導管62の内径は6mmである。測定台63の中央部には、直径2mmの穴があいており、導管62が連結されている。測定部64は、円筒64a(アクリル樹脂製)と、円筒64aの底部に接着されたナイロンメッシュ64bと、重り64cとを有している。円筒64aの内径は20mmである。ナイロンメッシュ64bの目開きは75μm(200メッシュ)である。そして、測定時にはナイロンメッシュ64b上に測定対象の吸水性樹脂粒子65が均一に撒布される。重り64cの直径は19mmであり、重り64cの質量は119.6gである。重り64cは、吸水性樹脂粒子65上に置かれ、吸水性樹脂粒子65に対して4.14kPaの荷重を加えることができる。
[Water absorption under load]
The amount of water absorption (room temperature, 25 ° C. ± 2 ° C.) of the physiological saline under the load of the water-absorbent resin particles was measured using the measuring device Y shown in FIG. 7. The measuring device Y is composed of a burette unit 61, a conduit 62, a measuring table 63, and a measuring unit 64 placed on the measuring table 63. The burette portion 61 has a burette 61a extending in the vertical direction, a rubber stopper 61b arranged at the upper end of the burette 61a, a cock 61c arranged at the lower end of the burette 61a, and one end extending into the burette 61a in the vicinity of the cock 61c. It has an air introduction pipe 61d and a cock 61e arranged on the other end side of the air introduction pipe 61d. The conduit 62 is attached between the burette portion 61 and the measuring table 63. The inner diameter of the conduit 62 is 6 mm. A hole having a diameter of 2 mm is formed in the central portion of the measuring table 63, and the conduit 62 is connected to the hole. The measuring unit 64 has a cylinder 64a (made of acrylic resin), a nylon mesh 64b adhered to the bottom of the cylinder 64a, and a weight 64c. The inner diameter of the cylinder 64a is 20 mm. The opening of the nylon mesh 64b is 75 μm (200 mesh). Then, at the time of measurement, the water-absorbent resin particles 65 to be measured are uniformly sprinkled on the nylon mesh 64b. The diameter of the weight 64c is 19 mm, and the mass of the weight 64c is 119.6 g. The weight 64c is placed on the water-absorbent resin particles 65, and a load of 4.14 kPa can be applied to the water-absorbent resin particles 65.
 測定装置Yの円筒64aの中に0.100gの吸水性樹脂粒子65を入れた後、重り64cを載せて測定を開始した。吸水性樹脂粒子65が吸水した生理食塩水と同容積の空気が、空気導入管より、速やかにかつスムーズにビュレット61aの内部に供給されるため、ビュレット61aの内部の生理食塩水の水位の減量が、吸水性樹脂粒子65が吸水した生理食塩水量となる。ビュレット61aの目盛は、上から下方向に0mLから0.5mL刻みで刻印されており、生理食塩水の水位として、吸水開始前のビュレット61aの目盛りVaと、吸水開始から60分後のビュレット61aの目盛りVbとを読み取り、下記式より荷重下の吸水量を算出した。結果を表3に示す。
  荷重下の吸水量[mL/g]=(Vb-Va)/0.1
After 0.100 g of the water-absorbent resin particles 65 were placed in the cylinder 64a of the measuring device Y, the weight 64c was placed and the measurement was started. Since the same volume of air as the physiological saline absorbed by the water-absorbent resin particles 65 is quickly and smoothly supplied to the inside of the burette 61a from the air introduction pipe, the water level of the physiological saline inside the burette 61a is reduced. However, the amount of physiological saline absorbed by the water-absorbent resin particles 65 is obtained. The scale of the burette 61a is engraved from top to bottom in increments of 0 mL to 0.5 mL, and the scale Va of the burette 61a before the start of water absorption and the burette 61a 60 minutes after the start of water absorption are used as the water level of the physiological saline. The scale Vb of was read, and the amount of water absorption under load was calculated from the following formula. The results are shown in Table 3.
Water absorption under load [mL / g] = (Vb-Va) /0.1
[吸水速度]
 吸水性樹脂粒子の生理食塩水の吸水速度をVortex法に基づき下記手順で測定した。まず、恒温水槽にて25±0.2℃の温度に調整した0.9質量%塩化ナトリウム水溶液(生理食塩水)50±0.1gを内容積100mLのビーカーに量りとった。次に、マグネチックスターラーバー(8mmφ×30mm、リング無し)を用いて回転数600rpmで撹拌することにより渦を発生させた。吸水性樹脂粒子2.0±0.002gを塩化ナトリウム水溶液中に一度に添加した。吸水性樹脂粒子の添加後から、液面の渦が収束する時点までの時間[秒]を測定し、当該時間を吸水性樹脂粒子の吸水速度として得た。結果を表3に示す。
[Water absorption rate]
The water absorption rate of the physiological saline of the water-absorbent resin particles was measured by the following procedure based on the Vortex method. First, 50 ± 0.1 g of a 0.9 mass% sodium chloride aqueous solution (physiological saline) adjusted to a temperature of 25 ± 0.2 ° C. in a constant temperature water tank was weighed in a beaker having an internal volume of 100 mL. Next, a vortex was generated by stirring at a rotation speed of 600 rpm using a magnetic stirrer bar (8 mmφ × 30 mm, without ring). 2.0 ± 0.002 g of water-absorbent resin particles were added to the aqueous sodium chloride solution at one time. The time [seconds] from the addition of the water-absorbent resin particles to the time when the vortex on the liquid surface converged was measured, and the time was obtained as the water absorption rate of the water-absorbent resin particles. The results are shown in Table 3.
[無加圧DW]
 吸水性樹脂粒子の無加圧DWは、図8に示す測定装置Zを用いて測定した。測定は1種類の吸水性樹脂粒子に関して5回実施し、最低値と最高値とを除いた3点の測定値の平均値を求めた。
[Unpressurized DW]
The non-pressurized DW of the water-absorbent resin particles was measured using the measuring device Z shown in FIG. The measurement was carried out 5 times for one type of water-absorbent resin particles, and the average value of the measured values at three points excluding the minimum value and the maximum value was obtained.
 測定装置Zは、ビュレット部71、導管72、平板状の測定台73、ナイロンメッシュ74、架台75、及び、クランプ76を有する。ビュレット部71は、目盛が記載されたビュレット71aと、ビュレット71aの上部の開口を密栓するゴム栓71bと、ビュレット71aの下部の先端に連結されたコック71cと、ビュレット71aの下部に連結された空気導入管71d及びコック71eとを有する。ビュレット部71はクランプ76で固定されている。測定台73は、その中央部に形成された直径2mmの貫通孔73aを有しており、高さが可変の架台75によって支持されている。測定台73の貫通孔73aとビュレット部71のコック71cとが導管72によって連結されている。導管72の内径は6mmである。 The measuring device Z has a burette portion 71, a conduit 72, a flat plate-shaped measuring table 73, a nylon mesh 74, a pedestal 75, and a clamp 76. The burette portion 71 was connected to a burette 71a on which a scale was written, a rubber stopper 71b for sealing the opening at the upper part of the burette 71a, a cock 71c connected to the tip of the lower part of the burette 71a, and a lower part of the burette 71a. It has an air introduction pipe 71d and a cock 71e. The burette portion 71 is fixed by a clamp 76. The measuring table 73 has a through hole 73a having a diameter of 2 mm formed in the central portion thereof, and is supported by a frame 75 having a variable height. The through hole 73a of the measuring table 73 and the cock 71c of the burette portion 71 are connected by a conduit 72. The inner diameter of the conduit 72 is 6 mm.
 測定は温度25℃、湿度60±10%の環境下で行った。まずビュレット部71のコック71cとコック71eを閉め、25℃に調節された生理食塩水77をビュレット71a上部の開口からビュレット71aに入れた。ゴム栓71bでビュレット71aの開口の密栓した後、コック71c及びコック71eを開けた。気泡が入らないように導管72内部を生理食塩水77で満たした。貫通孔73a内に到達した生理食塩水77の水面の高さが、測定台73の上面の高さと同じになるように、測定台73の高さを調整した。調整後、ビュレット71a内の生理食塩水77の水面の高さをビュレット71aの目盛で読み取り、その位置をゼロ点(0秒時点の読み値)とした。 The measurement was performed in an environment with a temperature of 25 ° C and a humidity of 60 ± 10%. First, the cock 71c and the cock 71e of the burette portion 71 were closed, and the physiological saline 77 adjusted to 25 ° C. was put into the burette 71a through the opening at the upper part of the burette 71a. After sealing the opening of the burette 71a with the rubber stopper 71b, the cock 71c and the cock 71e were opened. The inside of the conduit 72 was filled with saline 77 to prevent air bubbles from entering. The height of the measuring table 73 was adjusted so that the height of the water surface of the physiological saline 77 that reached the inside of the through hole 73a was the same as the height of the upper surface of the measuring table 73. After the adjustment, the height of the water surface of the physiological saline 77 in the burette 71a was read by the scale of the burette 71a, and the position was set as the zero point (reading value at 0 seconds).
 測定台73上の貫通孔73aの近傍にてナイロンメッシュ74(100mm×100mm、250メッシュ、厚さ:約50μm)を敷き、その中央部に、内径30mm、高さ20mmのシリンダーを置いた。このシリンダーに1.00gの吸水性樹脂粒子78を均一に散布した。その後、シリンダーを注意深く取り除き、ナイロンメッシュ74の中央部に吸水性樹脂粒子78が円状に分散されたサンプルを得た。次いで、吸水性樹脂粒子78が載置されたナイロンメッシュ74を、その中心が貫通孔73aの位置になるように、吸水性樹脂粒子78が散逸しない程度にすばやく移動させて、測定を開始した。空気導入管71dからビュレット71a内に気泡が最初に導入された時点を吸水開始(0秒)とした。 A nylon mesh 74 (100 mm × 100 mm, 250 mesh, thickness: about 50 μm) was laid in the vicinity of the through hole 73a on the measuring table 73, and a cylinder having an inner diameter of 30 mm and a height of 20 mm was placed in the center thereof. 1.00 g of water-absorbent resin particles 78 were uniformly sprayed on this cylinder. Then, the cylinder was carefully removed to obtain a sample in which the water-absorbent resin particles 78 were dispersed in a circle in the central portion of the nylon mesh 74. Next, the nylon mesh 74 on which the water-absorbent resin particles 78 were placed was quickly moved so that the center thereof was at the position of the through hole 73a so that the water-absorbent resin particles 78 did not dissipate, and the measurement was started. The time when air bubbles were first introduced into the burette 71a from the air introduction pipe 71d was defined as the start of water absorption (0 seconds).
 ビュレット71a内の生理食塩水77の減少量(すなわち、吸水性樹脂粒子78が吸水した生理食塩水77の量)を0.1mL単位で順次読み取り、吸水性樹脂粒子78の吸水開始から起算して10分後の生理食塩水77の減量分Wc[g]を読み取った。Wcから、下記式により無加圧DWの10分値を求めた。無加圧DWは、吸水性樹脂粒子78の1.00g当たりの吸水量である。
  無加圧DW値[mL/g]=Wc/1.00
The decrease amount of the physiological saline 77 in the burette 71a (that is, the amount of the physiological saline 77 absorbed by the water-absorbent resin particles 78) is sequentially read in units of 0.1 mL, and calculated from the start of water absorption of the water-absorbent resin particles 78. After 10 minutes, the weight loss Wc [g] of the physiological saline 77 was read. From Wc, the 10-minute value of non-pressurized DW was calculated by the following formula. The non-pressurized DW is the amount of water absorbed per 1.00 g of the water-absorbent resin particles 78.
Unpressurized DW value [mL / g] = Wc / 1.00
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<評価用吸水シートの作製>
[評価実施例1]
 目付量40g/mのエアレイド不織布(KNH、品番6190516-1A01)を40cm×12cmのサイズに2枚分裁断し、それぞれエアレイド不織布1、2とした。エアレイド不織布1にホットメルト塗工機(株式会社ハリーズ、ポンプ:Marshal150、テーブル:XA-DT、タンク設定温度:150℃、ホース内設定温度:165℃、ガンヘッド設定温度:170℃)でホットメルト接着剤(ヘンケルジャパン株式会社、ME-765E)を0.16g塗布した。ホットメルト接着剤の塗布パターンは、図2に示すとおり、10mm間隔で12本のスパイラルストライプとした。エアレイド不織布1のホットメルト接着剤を塗布した側の40cm×12cmの範囲に、気流型混合装置(有限会社オーテック社製、パッドフォーマー)を用いて、実施例1で得られた吸水性樹脂粒子A7.2gを均一に散布した。
<Preparation of water absorption sheet for evaluation>
[Evaluation Example 1]
Two air-laid non-woven fabrics (KNH, product number 6190516-1A01) having a basis weight of 40 g / m 2 were cut into two pieces having a size of 40 cm × 12 cm to obtain air-laid non-woven fabrics 1 and 2, respectively. Hot-melt adhesive to air-laid non-woven fabric 1 with a hot-melt coating machine (Henkel Japan Ltd., pump: Marshal150, table: XA-DT, tank set temperature: 150 ° C, hose set temperature: 165 ° C, gun head set temperature: 170 ° C). 0.16 g of the agent (Henkel Japan Ltd., ME-765E) was applied. As shown in FIG. 2, the application pattern of the hot melt adhesive was 12 spiral stripes at 10 mm intervals. Water-absorbent resin particles obtained in Example 1 using an air-flow type mixing device (Padformer manufactured by Otec Co., Ltd.) in an area of 40 cm × 12 cm on the side coated with the hot melt adhesive of the air-laid nonwoven fabric 1. A7.2 g was evenly sprayed.
 エアレイド不織布2に、ホットメルト塗工機を用いて上記と同様にホットメルト接着剤を0.16g塗布した。エアレイド不織布1の吸水性樹脂粒子Aが散布された面を、エアレイド不織布2のホットメルト接着剤が塗布された面と向かい合わせにして両端を揃えて重ねることにより積層体を得た。該積層体を剥離紙で挟み、ラミネート機(株式会社ハシマ、Straight Linear Fussing Press、型式HP-600LFS)を用いて、110℃、0.1MPaの条件にてプレスして張り合わせることにより、吸水シートを作製した。 0.16 g of hot melt adhesive was applied to the air-laid non-woven fabric 2 using a hot melt coating machine in the same manner as described above. A laminate was obtained by stacking the surfaces of the air-laid nonwoven fabric 1 on which the water-absorbent resin particles A were sprayed so as to face the surfaces of the air-laid nonwoven fabric 2 to which the hot melt adhesive was applied, with both ends aligned. A water-absorbing sheet is formed by sandwiching the laminate with release paper and pressing it together under the conditions of 110 ° C. and 0.1 MPa using a laminating machine (Hashima Co., Ltd., Straight Liner Fusion Press, model HP-600LFS). Was produced.
[評価実施例2~4]
 吸水性樹脂粒子Aを実施例2、3、4にて製造した吸水性樹脂粒子B、C、Dに変更したこと以外は評価実施例1と同様にして、評価実施例2、3、4の吸水シートをそれぞれ作製した。
[Evaluation Examples 2 to 4]
Evaluation Examples 2, 3 and 4 are the same as those in Evaluation Example 1 except that the water-absorbent resin particles A are changed to the water-absorbent resin particles B, C and D produced in Examples 2, 3 and 4. Water absorption sheets were prepared respectively.
[評価比較例1]
(吸水性樹脂粒子の混合)
 容量1Lのステンレス鋼製混合容器内に、比較例1で製造した吸水性樹脂粒子E50g及び吸水性樹脂粒子F50gを入れ、クロスロータリー混合機(明和工業株式会社、CM-3型)で30分間混合することにより吸水性樹脂粒子の混合物を得た。該混合物の中位粒子径は123μmであった。
[Evaluation Comparison Example 1]
(Mixing of water-absorbent resin particles)
50 g of the water-absorbent resin particles E and 50 g of the water-absorbent resin particles manufactured in Comparative Example 1 are placed in a stainless steel mixing container having a capacity of 1 L, and mixed with a cross rotary mixer (Meiwa Kogyo Co., Ltd., CM-3 type) for 30 minutes. A mixture of water-absorbent resin particles was obtained. The medium particle size of the mixture was 123 μm.
(吸水シートの作製)
 吸水性樹脂粒子Aを上記吸水性樹脂粒子の混合物に変更したこと以外は評価実施例1と同様にして吸水シートを作製した。
(Making a water absorption sheet)
A water-absorbent sheet was produced in the same manner as in Evaluation Example 1 except that the water-absorbent resin particles A were changed to the mixture of the water-absorbent resin particles.
[評価比較例2]
 吸水性樹脂粒子E及びFを、比較例2で製造した吸水性樹脂粒子G及びHに変更したこと以外は評価比較例1と同様にして、吸水シートを作製した。吸水性樹脂粒子G及びHの混合物の中位粒子径は366μmであった。
[Evaluation Comparison Example 2]
A water-absorbent sheet was produced in the same manner as in Evaluation Comparative Example 1 except that the water-absorbent resin particles E and F were changed to the water-absorbent resin particles G and H produced in Comparative Example 2. The medium particle size of the mixture of the water-absorbent resin particles G and H was 366 μm.
[評価比較例3]
 目付量35g/mのスパンレース不織布(株式会社クラレ製、70%レーヨン、20%PET、10%PP/PE)を40×12cmのサイズに裁断した。裁断したスパンレース不織布に、評価実施例1と同様にして、ホットメルト接着剤の塗布、及び、比較例2で製造した吸水性樹脂粒子H1.44gの散布を行った。
[Evaluation Comparison Example 3]
A spunlace non-woven fabric having a basis weight of 35 g / m 2 (manufactured by Kuraray Co., Ltd., 70% rayon, 20% PET, 10% PP / PE) was cut into a size of 40 × 12 cm. The cut spunlace non-woven fabric was coated with a hot melt adhesive and sprayed with 1.44 g of the water-absorbent resin particles H produced in Comparative Example 2 in the same manner as in Evaluation Example 1.
 目付量17g/mのスパンボンド不織布(東レ社製 LIVSEN)を40cm×12cmのサイズに2枚分裁断し、それぞれスパンボンド不織布1、2とした。スパンボンド不織布1に、ホットメルト塗工機を用いて評価実施例1と同様にホットメルト接着剤を0.16g塗布した。スパンボンド不織布1のホットメルトが付着した面を、スパンレース不織布の吸水性樹脂粒子Hが散布された面と向かい合わせにして両端を揃えて合わせ、剥離紙で挟み、上下反転させた。その後、剥離紙を取り除いた。 Two spunbonded non-woven fabrics (LIVSEN manufactured by Toray Industries, Inc.) having a basis weight of 17 g / m 2 were cut into two pieces having a size of 40 cm × 12 cm to obtain spunbonded nonwoven fabrics 1 and 2, respectively. 0.16 g of a hot melt adhesive was applied to the spunbonded nonwoven fabric 1 using a hot melt coating machine in the same manner as in Evaluation Example 1. The surface of the spunbonded nonwoven fabric 1 to which the hot melt was attached was faced with the surface of the spunlaced nonwoven fabric on which the water-absorbent resin particles H were sprayed, and both ends were aligned, sandwiched between release papers, and turned upside down. Then, the release paper was removed.
 スパンレース不織布の吸水性樹脂粒子Hを散布した面とは逆の面に対し、ホットメルト塗工機を用いて上記と同様にホットメルト接着剤を0.16g塗布した。気流型混合装置を用い、スパンレース不織布の、直前にホットメルト接着剤を塗布した側の40cm×12cmの範囲に対して、比較例4で製造した吸水性樹脂粒子Iを5.76g均一に散布させた。 0.16 g of hot melt adhesive was applied to the surface of the spunlace non-woven fabric opposite to the surface on which the water-absorbent resin particles H were sprayed, in the same manner as above, using a hot melt coating machine. Using an airflow type mixer, 5.76 g of the water-absorbent resin particles I produced in Comparative Example 4 were uniformly sprayed over a 40 cm × 12 cm area of the spunlace non-woven fabric on the side to which the hot melt adhesive was applied immediately before. I let you.
 スパンボンド不織布2にホットメルト塗工機を用いて上記と同様にホットメルト接着剤を0.16g塗布した。スパンレース不織布の吸水性樹脂粒子Iが散布された面を、スパンボンド不織布2のホットメルト接着剤が塗布された面と向かい合わせにして両端を揃えて合わせることにより積層体を得た。該積層対を剥離紙で挟み、評価実施例1と同様にラミネート機を110℃、0.1MPaの条件にてプレスして張り合わせることにより、吸水シートを作製した。 0.16 g of hot melt adhesive was applied to the spunbonded non-woven fabric 2 using a hot melt coating machine in the same manner as above. A laminate was obtained by aligning both ends of the spunlaced nonwoven fabric with the surface on which the water-absorbent resin particles I were sprayed facing the surface of the spunbonded nonwoven fabric 2 coated with the hot melt adhesive. A water-absorbent sheet was prepared by sandwiching the laminated pair with a release paper and pressing the laminating machine under the conditions of 110 ° C. and 0.1 MPa in the same manner as in Evaluation Example 1 to bond them together.
<吸水シート評価>
[人工尿の調製]
 塩化ナトリウム、塩化カルシウム及び硫酸マグネシウムを下記の濃度でイオン交換水に溶解させた。得られた溶液に更に下記濃度の青色1号を配合することにより、人工尿(試験液)を調製した。下記の濃度は、人工尿の全質量を基準とする濃度である。
(人工尿組成)
NaCl:0.780質量%
CaCl:0.022質量%
MgSO:0.038質量%
青色一号:0.002質量%
<Evaluation of water absorption sheet>
[Preparation of artificial urine]
Sodium chloride, calcium chloride and magnesium sulfate were dissolved in ion-exchanged water at the following concentrations. Artificial urine (test solution) was prepared by further adding Blue No. 1 having the following concentration to the obtained solution. The following concentrations are based on the total mass of artificial urine.
(Artificial urine composition)
NaCl: 0.780% by mass
CaCl 2 : 0.022% by mass
0054 4 : 0.038% by mass
Blue No. 1: 0.002% by mass
[勾配吸収試験]
 図9は、吸水シートの液体漏れ性を評価する方法を示す模式図である。平坦な主面を有する長さ45cmの支持板1(ここではアクリル樹脂板。以下「傾斜面S1」ともいう。)を、水平面S0に対して45±2度に傾斜した状態で架台81によって固定した。温度25±2℃の室内において、固定された支持板1の傾斜面S1上に、試験用の吸水シート50を、その長手方向が支持板1の長手方向に沿う向きで貼り付けた。次いで、吸水シート50の中央から8cm上方の位置に向けて、吸水シート50の鉛直上方に配置された滴下ロート82から、25±1℃に調整した試験液(人工尿)を滴下した。1回あたり80mLの試験液を、8mL/秒の速度で滴下した。滴下ロート82の先端と吸水シート50との距離は10±1mmであった。1回目の試験液投入開始から10分間隔で、同様の条件で試験液を繰り返し投入し、試験液は漏れが観測されるまで投入した。
[Gradient absorption test]
FIG. 9 is a schematic view showing a method for evaluating the liquid leakage property of the water absorption sheet. A support plate 1 having a flat main surface and a length of 45 cm (here, an acrylic resin plate; hereinafter also referred to as an “inclined surface S1”) is fixed by a gantry 81 in a state of being inclined at 45 ± 2 degrees with respect to the horizontal plane S0. did. In a room having a temperature of 25 ± 2 ° C., a water absorption sheet 50 for testing was attached on the inclined surface S1 of the fixed support plate 1 so that the longitudinal direction thereof was along the longitudinal direction of the support plate 1. Next, a test solution (artificial urine) adjusted to 25 ± 1 ° C. was dropped from the dropping funnel 82 arranged vertically above the water absorption sheet 50 toward a position 8 cm above the center of the water absorption sheet 50. 80 mL of the test solution was added dropwise at a rate of 8 mL / sec. The distance between the tip of the dropping funnel 82 and the water absorbing sheet 50 was 10 ± 1 mm. The test solution was repeatedly added under the same conditions at intervals of 10 minutes from the start of the first addition of the test solution, and the test solution was added until leakage was observed.
 吸水シート50に吸収されなかった試験液が支持板1の下部から漏れ出た場合、漏れ出た試験液を支持板1の下方に配置された金属製トレイ84内に回収した。回収された試験液の重量(g)を天秤83によって測定し、その値を漏れ量として記録した。試験液の全投入量から漏れ量を差し引くことにより、漏れが発生するまでの吸収量を算出した。この数値が大きいほど、着用時における液体の漏れが発生し難いと判断される。結果を表4に示す。 When the test liquid that was not absorbed by the water absorption sheet 50 leaked from the lower part of the support plate 1, the leaked test liquid was collected in the metal tray 84 arranged below the support plate 1. The weight (g) of the recovered test solution was measured with a balance 83, and the value was recorded as the amount of leakage. By subtracting the leakage amount from the total input amount of the test solution, the absorption amount until the leakage occurred was calculated. It is judged that the larger this value is, the less likely it is that liquid will leak when worn. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例で得られた吸水性樹脂粒子を用いた評価実施例の吸水シートは、人工尿3回投入時の合計漏れ量が少なく、単層構造の吸水シートであっても十分に漏れが抑制されることが確認された。一方、比較例1又は2の吸水性樹脂粒子を用いた評価比較例1及び2の吸水シートは、漏れ量が多かった。また、比較例3及び4の吸水性樹脂粒子を二層構造で用いた評価比較例3の吸水シートも、漏れ量が多かった。 Evaluation using the water-absorbent resin particles obtained in the example The water-absorbent sheet of the example has a small total leakage amount when artificial urine is added three times, and even a single-layer structure water-absorbent sheet sufficiently suppresses leakage. It was confirmed that On the other hand, the water-absorbing sheets of Evaluation Comparative Examples 1 and 2 using the water-absorbent resin particles of Comparative Example 1 or 2 had a large amount of leakage. In addition, the water-absorbing sheet of Evaluation Comparative Example 3 in which the water-absorbent resin particles of Comparative Examples 3 and 4 were used in a two-layer structure also had a large amount of leakage.
 1…支持板、10…吸収体、10a…吸水性樹脂粒子、10b…繊維層、20a…コアラップシート、20b…コアラップシート、21…接着剤、30…液体透過性シート、40…液体不透過性シート、50…吸水シート、61,71…ビュレット部、61a,71a…ビュレット、61b,71b…ゴム栓、61c,71c,71e…コック、61d,71d…空気導入管、61e…コック、62,72…導管、63,73…測定台、64…測定部、64a…円筒、64b,74…ナイロンメッシュ、64c…重り、73a…貫通孔、75…架台、76…クランプ、77…生理食塩水、81…架台、82…滴下ロート、83…天秤、84…金属製トレイ、100…吸収性物品、200…撹拌翼、200a…軸、200b…平板部、S…スリット、S…水平面、S…傾斜面、Y,Z…測定装置。 1 ... Support plate, 10 ... Absorbent, 10a ... Water-absorbent resin particles, 10b ... Fiber layer, 20a ... Core wrap sheet, 20b ... Core wrap sheet, 21 ... Adhesive, 30 ... Liquid permeable sheet, 40 ... Liquid impervious Permeable sheet, 50 ... water absorption sheet, 61, 71 ... burette part, 61a, 71a ... burette, 61b, 71b ... rubber stopper, 61c, 71c, 71e ... cock, 61d, 71d ... air introduction pipe, 61e ... cock, 62 , 72 ... Conduit, 63, 73 ... Measuring table, 64 ... Measuring unit, 64a ... Cylindrical, 64b, 74 ... Nylon mesh, 64c ... Weight, 73a ... Through hole, 75 ... Stand, 76 ... Clamp, 77 ... Physiological saline , 81 ... gantry, 82 ... dripping funnel, 83 ... balance, 84 ... metal tray, 100 ... absorbent article, 200 ... stirring blade, 200a ... shaft, 200b ... flat plate, S ... slit, S 0 ... horizontal plane, S 1 ... Inclined surface, Y, Z ... Measuring device.

Claims (14)

  1.  一粒子の表面に2種以上の異なる形状の部分を有する吸水性樹脂粒子。 Water-absorbent resin particles having two or more differently shaped parts on the surface of one particle.
  2.  一粒子の表面の少なくとも一部に球面状の部分及び不定形状の部分を有する、請求項1に記載の吸水性樹脂粒子。 The water-absorbent resin particle according to claim 1, which has a spherical portion and an irregularly shaped portion on at least a part of the surface of one particle.
  3.  一粒子の表面の少なくとも一部に、レーザー顕微鏡によって測定される凹凸度が1μm以上20μm以下である部分と、凹凸度が20μm超200μm以下である部分とを有する、請求項1又は2に記載の吸水性樹脂粒子。 The first or second claim, wherein at least a part of the surface of one particle has a portion having an unevenness of 1 μm or more and 20 μm or less and a portion having an unevenness of more than 20 μm and 200 μm or less as measured by a laser microscope. Water-absorbent resin particles.
  4.  一次粒子が凝集した形状を有する、請求項1~3のいずれか一項に記載の吸水性樹脂粒子。 The water-absorbent resin particle according to any one of claims 1 to 3, which has a shape in which the primary particles are aggregated.
  5.  一次粒子が凝集した形状の吸水性樹脂粒子であって、デジタルマイクロスコープによって測定される粒子の平均凹凸度が120~180μmである、吸水性樹脂粒子。 Water-absorbent resin particles in which the primary particles are aggregated, and the average unevenness of the particles measured by a digital microscope is 120 to 180 μm.
  6.  中位粒子径が300~600μmであり、かつVortex法による吸水速度が5~20秒である、請求項1~5のいずれか一項に記載の吸水性樹脂粒子。 The water-absorbent resin particle according to any one of claims 1 to 5, wherein the medium particle size is 300 to 600 μm, and the water absorption rate by the Vortex method is 5 to 20 seconds.
  7.  生理食塩水保水量が20~60g/gであり、かつ4.14kPaにおける荷重下吸水量が10ml/g以上である、請求項1~6のいずれか一項に記載の吸水性樹脂粒子。 The water-absorbent resin particles according to any one of claims 1 to 6, wherein the saline water retention amount is 20 to 60 g / g, and the water absorption amount under load at 4.14 kPa is 10 ml / g or more.
  8.  請求項1~7のいずれか一項に記載の吸水性樹脂粒子を含む吸収体。 An absorber containing the water-absorbent resin particles according to any one of claims 1 to 7.
  9.  請求項8に記載の吸収体を備える吸水シート。 A water absorption sheet comprising the absorber according to claim 8.
  10.  コアラップシートを更に備え、該コアラップシートの内側に前記吸収体が配置されている、請求項9に記載の吸水シート。 The water-absorbing sheet according to claim 9, further comprising a core wrap sheet and having the absorber arranged inside the core wrap sheet.
  11.  請求項9又は10に記載の吸水シートを備える、吸収性物品。 An absorbent article comprising the water-absorbing sheet according to claim 9 or 10.
  12.  一次粒子を凝集させて造粒することを含む吸水性樹脂粒子の製造方法であって、該一次粒子の形状が2種以上である、方法。 A method for producing water-absorbent resin particles, which comprises aggregating and granulating primary particles, wherein the primary particles have two or more types of shapes.
  13.  前記一次粒子が、球状粒子及び不定形状粒子を含む、請求項12に記載の方法。 The method according to claim 12, wherein the primary particles include spherical particles and irregularly shaped particles.
  14.  球状粒子及び不定形状粒子の混合比が70:30~20:80である、請求項13に記載の方法。 The method according to claim 13, wherein the mixing ratio of the spherical particles and the irregularly shaped particles is 70:30 to 20:80.
PCT/JP2020/048009 2019-12-23 2020-12-22 Absorbent resin particles, absorber, absorbent sheet, absorbent article, and method for producing absorbent resin particles WO2021132266A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021567493A JPWO2021132266A1 (en) 2019-12-23 2020-12-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019231612 2019-12-23
JP2019-231612 2019-12-23

Publications (1)

Publication Number Publication Date
WO2021132266A1 true WO2021132266A1 (en) 2021-07-01

Family

ID=76575931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048009 WO2021132266A1 (en) 2019-12-23 2020-12-22 Absorbent resin particles, absorber, absorbent sheet, absorbent article, and method for producing absorbent resin particles

Country Status (2)

Country Link
JP (1) JPWO2021132266A1 (en)
WO (1) WO2021132266A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4190843A4 (en) * 2020-12-18 2024-02-21 Lg Chemical Ltd Super absorbent polymer and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140194A (en) * 1997-06-23 1999-05-25 Nippon Shokubai Co Ltd Water-absorbing resin composition and its production
WO2004083284A1 (en) * 2003-03-17 2004-09-30 Sumitomo Seika Chemicals Co., Ltd. Process for production of water-absorbing resin particles
JP2004339678A (en) * 2003-04-24 2004-12-02 Mitsubishi Chemicals Corp Method for producing water-absorbing resin composite material and deposited material of the same
JP2006057075A (en) * 2004-03-29 2006-03-02 Nippon Shokubai Co Ltd Particulate water absorbent having irregularly crushed form
JP2006063508A (en) * 2004-07-30 2006-03-09 Mitsubishi Chemicals Corp Water absorbing resin composite material, method for producing the same, water absorbing resin sheet and water absorbing article
JP2008237430A (en) * 2007-03-27 2008-10-09 Asahi Kasei Chemicals Corp Absorbent complex with ultra-high speed absorbing capability
WO2012033025A1 (en) * 2010-09-06 2012-03-15 住友精化株式会社 Water absorbent resin and method for producing same
JP2017217464A (en) * 2016-06-03 2017-12-14 花王株式会社 Absorbent article
WO2019074099A1 (en) * 2017-10-12 2019-04-18 住友精化株式会社 Water-absorbent resin and absorbent article
JP2019518821A (en) * 2017-01-24 2019-07-04 エルジー・ケム・リミテッド Method of manufacturing super absorbent resin

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140194A (en) * 1997-06-23 1999-05-25 Nippon Shokubai Co Ltd Water-absorbing resin composition and its production
WO2004083284A1 (en) * 2003-03-17 2004-09-30 Sumitomo Seika Chemicals Co., Ltd. Process for production of water-absorbing resin particles
JP2004339678A (en) * 2003-04-24 2004-12-02 Mitsubishi Chemicals Corp Method for producing water-absorbing resin composite material and deposited material of the same
JP2006057075A (en) * 2004-03-29 2006-03-02 Nippon Shokubai Co Ltd Particulate water absorbent having irregularly crushed form
JP2006063508A (en) * 2004-07-30 2006-03-09 Mitsubishi Chemicals Corp Water absorbing resin composite material, method for producing the same, water absorbing resin sheet and water absorbing article
JP2008237430A (en) * 2007-03-27 2008-10-09 Asahi Kasei Chemicals Corp Absorbent complex with ultra-high speed absorbing capability
WO2012033025A1 (en) * 2010-09-06 2012-03-15 住友精化株式会社 Water absorbent resin and method for producing same
JP2017217464A (en) * 2016-06-03 2017-12-14 花王株式会社 Absorbent article
JP2019518821A (en) * 2017-01-24 2019-07-04 エルジー・ケム・リミテッド Method of manufacturing super absorbent resin
WO2019074099A1 (en) * 2017-10-12 2019-04-18 住友精化株式会社 Water-absorbent resin and absorbent article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4190843A4 (en) * 2020-12-18 2024-02-21 Lg Chemical Ltd Super absorbent polymer and preparation method thereof

Also Published As

Publication number Publication date
JPWO2021132266A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
WO2019189445A1 (en) Absorbent article
WO2018159802A1 (en) Water-absorbing resin, and absorbent article
JP6828222B1 (en) A method for producing water-absorbent resin particles, an absorbent article, a method for producing water-absorbent resin particles, and a method for increasing the amount of absorption of the absorber under pressure.
KR20210101251A (en) Absorbent resin particles, absorbent body and absorbent article
WO2021132266A1 (en) Absorbent resin particles, absorber, absorbent sheet, absorbent article, and method for producing absorbent resin particles
WO2020184386A1 (en) Water absorbing resin particles, absorbent article, method for manufacturing water absorbing resin particles, method for facilitating permeation of physiological saline solution into absorbent body
WO2020184398A1 (en) Water absorbing resin particles and method for producing same, absorbent body, and absorbent article
WO2020122218A1 (en) Water-absorbing resin particles, absorbent, and absorbent article
CN113166307A (en) Water-absorbent resin particles, absorbent body, and absorbent article
WO2021039715A1 (en) Water-absorbing sheet and absorbent article
US20220219140A1 (en) Water-absorbent resin particles
JP7194197B2 (en) Absorbent bodies and absorbent articles
WO2020218168A1 (en) Water-absorbent resin particles, absorbent body, and absorbent article
JP7441179B2 (en) Absorbent bodies and absorbent articles
WO2020122214A1 (en) Water absorbent resin particles and absorbent article
JP6710303B1 (en) Absorbent article and manufacturing method thereof
JP6775051B2 (en) Absorbent article
JP6775050B2 (en) Absorbent article
JP6889811B2 (en) A method for producing water-absorbent resin particles, an absorbent article, a water-absorbent resin particle, and a method for suppressing liquid leakage of the absorbent article.
WO2021039714A1 (en) Absorbent article and auxiliary sheet
JP7091556B2 (en) Water-absorbent resin particles and water-absorbent sheet
JP2020121090A (en) Water absorption resin particle, absorber, and absorbent article
JP6752320B2 (en) Absorbent article and its manufacturing method
WO2021039713A1 (en) Absorbent article and auxiliary sheet
WO2023189672A1 (en) Water absorbent resin particles and absorbent article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906342

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567493

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906342

Country of ref document: EP

Kind code of ref document: A1