WO2020218164A1 - Water-absorbent resin particles and water-absorbent sheet - Google Patents

Water-absorbent resin particles and water-absorbent sheet Download PDF

Info

Publication number
WO2020218164A1
WO2020218164A1 PCT/JP2020/016757 JP2020016757W WO2020218164A1 WO 2020218164 A1 WO2020218164 A1 WO 2020218164A1 JP 2020016757 W JP2020016757 W JP 2020016757W WO 2020218164 A1 WO2020218164 A1 WO 2020218164A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
absorbent resin
resin particles
absorbent
mass
Prior art date
Application number
PCT/JP2020/016757
Other languages
French (fr)
Japanese (ja)
Inventor
志保 岡澤
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to JP2021516061A priority Critical patent/JP7091556B2/en
Publication of WO2020218164A1 publication Critical patent/WO2020218164A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin

Definitions

  • the present invention relates to water-absorbent resin particles and an absorbent sheet.
  • Patent Document 1 proposes a water-absorbing sheet structure having an absorbing layer in which the proportion of hydrophilic fibers such as pulp is extremely small.
  • the permeation rate of the liquid by the absorbent article tends to decrease (the permeation time increases).
  • one aspect of the present invention provides water-absorbent resin particles capable of increasing the permeation rate of a liquid by an absorbent article having an absorbent layer containing a high proportion of water-absorbent resin particles.
  • One aspect of the present invention is that the variation in the coefficient of friction is measured by a method including the following steps (1), (2), (3), (4), (5) and (6) in this order.
  • the present invention relates to water-absorbent resin particles having a coefficient of 0.08 or more.
  • An adhesive tape having a rectangular adhesive surface of 5 ⁇ 15 cm is placed on the horizontal plane of the workbench with the adhesive surface facing up.
  • (2) 0.02 g of water-absorbent resin particles per 1 cm 2 are attached to the entire adhesive surface.
  • a roller having a mass of 4.0 kg, a diameter of 10.5 cm, and a width of 6.0 cm is placed on the water-absorbent resin particles adhering to the adhesive surface, and then the roller is reciprocated once between the two short sides of the adhesive surface.
  • the friction coefficient of the surface of the tissue paper is continuously along a straight line of 20 mm or more. Measure.
  • Another aspect of the present invention relates to a water absorbing sheet provided with an absorbing layer containing the above water absorbing resin particles.
  • the permeation rate of a liquid by an absorbent article having an absorbent layer containing a high proportion of water-absorbent resin particles can be increased without embossing.
  • Water-soluble means that it exhibits a solubility in water of 5% by mass or more at 25 ° C.
  • the materials exemplified in the present specification may be used alone or in combination of two or more.
  • the content of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
  • the variation of the coefficient is 0.08 or more.
  • An adhesive tape having a rectangular adhesive surface of 5 ⁇ 15 cm is placed on the horizontal plane of the workbench with the adhesive surface facing up.
  • (2) 0.02 g of water-absorbent resin particles per 1 cm 2 are attached to the entire adhesive surface.
  • a roller having a mass of 4.0 kg, a diameter of 10.5 cm, and a width of 6.0 cm is placed on the water-absorbent resin particles adhering to the adhesive surface, and then the roller is reciprocated once between the two short sides of the adhesive surface.
  • the reasonably large variation in the coefficient of friction measured by the above method corresponds to the fact that when a thin resin layer is formed of water-absorbent resin particles, the surface irregularities are relatively large.
  • the water-absorbent resin particles forming the resin layer having a surface having large irregularities contribute to the improvement of the permeation rate of the absorbent article having the absorbent layer containing the water-absorbent resin particles in a high proportion. be able to.
  • the present inventors presume that the surface area of the absorbing layer containing a high proportion of water-absorbent resin particles is increased, and as a result, the permeation rate is improved.
  • the roller that applies a load to the water-absorbent resin particles adhering to the adhesive surface is cylindrical and may be a stainless steel roller.
  • the tissue paper placed on the water-absorbent resin particles in the above method is placed on the adhesive surface to which the water-absorbent resin particles are not attached, and the friction coefficient of the surface of the tissue paper is measured in the same state as above.
  • the average friction coefficient MIU may be 0.21 ⁇ 0.10, and the variation MMD of the friction coefficient may be 0.028 ⁇ 0.02.
  • the mass per unit area of the tissue paper may be 16 ⁇ 2 g / m 2 .
  • the thickness of the tissue paper may be 0.12 ⁇ 0.02 mm.
  • the probe may have, for example, 10 piano wires having a diameter of 0.5 mm, and these piano wires may be aligned in a certain direction.
  • the load applied to the tissue paper by the probe with the piano wire as a contact is appropriately adjusted for proper measurement.
  • This load may be, for example, 50 gf.
  • the moving speed of the probe may be, for example, 10 mm / sec.
  • the moving distance of the probe (the length of the portion where the friction coefficient is measured) may be 20 mm or more, and may be 30 mm or less.
  • a friction tester manufactured by Kato Tech Co., Ltd., KES-SE-STP (trade name) can be used.
  • the fluctuation of the friction coefficient measured by the above method may be 0.09 or more or 0.10 or more from the viewpoint of the absorption performance of the absorbent article. From the viewpoint of the feel of the absorbent article, the fluctuation of the coefficient of friction may be 0.19 or less, or 0.18 or less.
  • the average coefficient of friction measured by the above method may be 0.30 or more, 0.50 or less, or 0.40 or less.
  • the water retention amount when the water-absorbent resin particles absorb the physiological saline (hereinafter, may be simply referred to as "water retention amount”) may be 35 g / g or more. As a result, it is easy to secure a sufficient amount of water retention of the absorbent article even in a thin absorbent layer having a small amount of water-absorbent resin particles. From the same viewpoint, the water retention amount may be 38 g / g or more, or 40 g / g or more. The water retention amount may be 55 g / g or less, or 50 g / g or less.
  • the water absorption amount of the water-absorbent resin particles is measured by the method described in Examples described later.
  • the amount of water absorption when the physiological saline is absorbed under a load of 2.07 kPa of the water-absorbent resin particles (hereinafter, may be simply referred to as "the amount of water absorption under load”) may be 15 mL / g or more.
  • the amount of water absorption under load When the amount of water absorption under load is large, high water absorption capacity can be maintained even under the load of the wearer of the absorbent article.
  • the amount of water absorption of the water-absorbent resin particles under load may be 18 mL / g or more, 20 mL / g or more, 25 mL / g or more, or 30 mL / g or more, 50 mL / g or less, or 45 mL / g. It may be less than or equal to g.
  • the amount of water absorption under load is measured by the method described in Examples described later.
  • the shape of the water-absorbent resin particles may be, for example, substantially spherical, crushed, or granular.
  • the water-absorbent resin particles according to the present embodiment may be in a form in which fine particles (primary particles) are aggregated (secondary particles) in addition to a form in which each is composed of a single particle.
  • the medium particle size of the water-absorbent resin particles may be 250 to 850 ⁇ m, 300 to 700 ⁇ m, 350 to 650 ⁇ m, 400 to 600 ⁇ m, or 450 to 550 ⁇ m.
  • the water-absorbent resin particles may have a desired particle size distribution at the time of being obtained by the production method described later, but the particle size distribution may be adjusted by performing an operation such as particle size adjustment using classification by a sieve. Good.
  • the water-absorbent resin particles can include, for example, a crosslinked polymer formed by polymerizing a monomer containing an ethylenically unsaturated monomer.
  • the crosslinked polymer has a monomer unit derived from an ethylenically unsaturated monomer.
  • the water-absorbent resin particles can be produced by a method including a step of polymerizing a monomer containing an ethylenically unsaturated monomer.
  • the polymerization method include a reverse phase suspension polymerization method, an aqueous solution polymerization method, a bulk polymerization method, and a precipitation polymerization method. From the viewpoint of ensuring good water absorption characteristics of the obtained water-absorbent resin particles and facilitating control of the polymerization reaction, a reverse phase suspension polymerization method or an aqueous solution polymerization method may be applied. In the following, a reverse phase suspension polymerization method will be described as an example as a method for polymerizing an ethylenically unsaturated monomer.
  • the ethylenically unsaturated monomer may be water-soluble.
  • water-soluble ethylenically unsaturated monomers include (meth) acrylic acid and its salts, 2- (meth) acrylamide-2-methylpropanesulfonic acid and its salts, (meth) acrylamide, N, N-dimethyl.
  • the ethylenically unsaturated monomer has an amino group, the amino group may be quaternized.
  • the ethylenically unsaturated monomer may be used alone or in combination of two or more.
  • Functional groups such as the carboxyl group and amino group of the above-mentioned monomers can function as functional groups capable of cross-linking in the surface cross-linking step described later.
  • the ethylenically unsaturated monomer is at least one selected from the group consisting of (meth) acrylic acid and salts thereof, acrylamide, methacrylamide, and N, N-dimethylacrylamide. It may contain a compound of the species.
  • the ethylenically unsaturated monomer may contain (meth) acrylic acid and a salt thereof, and at least one compound selected from the group consisting of acrylamide.
  • the ethylenically unsaturated monomer may contain at least one compound selected from the group consisting of (meth) acrylic acid and salts thereof.
  • the ethylenically unsaturated monomer can be used in the polymerization reaction as an aqueous solution.
  • concentration of the ethylenically unsaturated monomer in the aqueous solution containing the ethylenically unsaturated monomer (hereinafter, simply referred to as "monomer aqueous solution") is 20% by mass or more and the saturation concentration or less, 25 to 70% by mass, or 30. It may be up to 55% by mass.
  • Examples of the water used in the aqueous solution include tap water, distilled water, ion-exchanged water and the like.
  • a monomer other than the above-mentioned ethylenically unsaturated monomer may be used.
  • Such a monomer can be used, for example, by being mixed with an aqueous solution containing the above-mentioned ethylenically unsaturated monomer.
  • the amount of the ethylenically unsaturated monomer used is the total amount of the monomers (the total amount of the monomers for obtaining the water-absorbent resin particles. For example, the total amount of the monomers giving the structural unit of the crosslinked polymer. The same shall apply hereinafter).
  • the ratio of (meth) acrylic acid and its salt may be 70 to 100 mol%, 80 to 100 mol%, 90 to 100 mol%, 95 to 100 mol%, or 100 mol%.
  • the ratio of (meth) acrylic acid and its salt may be 70 to 100 mol%, 80 to 100 mol%, 90 to 100 mol%, 95 to 100 mol%, or 100 mol% with respect to the total amount of the monomer. It may be. "Ratio of (meth) acrylic acid and its salt” means the ratio of the total amount of (meth) acrylic acid and its salt.
  • the acid group may be neutralized with an alkaline neutralizer, and then the monomer solution may be used in the polymerization reaction.
  • the degree of neutralization of an ethylenically unsaturated monomer by an alkaline neutralizing agent increases the osmotic pressure of the obtained water-absorbent resin particles and further enhances the water absorption characteristics (water absorption amount, etc.). It may be 10-100 mol%, 50-90 mol%, or 60-80 mol% of the acidic group in the body.
  • alkaline neutralizing agent examples include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogencarbonate, potassium hydroxide and potassium carbonate; ammonia and the like.
  • the alkaline neutralizer may be used alone or in combination of two or more.
  • the alkaline neutralizer may be used in the form of an aqueous solution to simplify the neutralization operation. Neutralization of the acid group of the ethylenically unsaturated monomer can be performed, for example, by adding an aqueous solution of sodium hydroxide, potassium hydroxide or the like to the above-mentioned monomer aqueous solution and mixing them.
  • the monomer aqueous solution is dispersed in a hydrocarbon dispersion medium in the presence of a surfactant, and the ethylenically unsaturated monomer is polymerized using a radical polymerization initiator or the like.
  • a radical polymerization initiator a water-soluble radical polymerization initiator can be used.
  • Nonionic surfactants include sorbitan fatty acid ester, polyglycerin fatty acid ester, sucrose fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene glycerin fatty acid ester, sorbitol fatty acid ester, polyoxyethylene sorbitol fatty acid ester, and polyoxyethylene.
  • Alkyl ether polyoxyethylene alkyl phenyl ether, polyoxyethylene castor oil, polyoxyethylene hydrogenated castor oil, alkylallyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene polyoxypropylene block copolymer, polyoxyethylene polyoxypropyl alkyl ether, Examples thereof include polyethylene glycol fatty acid ester.
  • Anionic surfactants include fatty acid salts, alkylbenzene sulfonates, alkylmethyl taurates, polyoxyethylene alkylphenyl ether sulfates, polyoxyethylene alkyl ether sulfonates, and polyoxyethylene alkyl ether phosphates. , And the phosphate ester of polyoxyethylene alkyl allyl ether and the like.
  • the surfactant may be used alone or in combination of two or more.
  • the surfactant is a sorbitan fatty acid ester. It may contain at least one compound selected from the group consisting of polyglycerin fatty acid ester and sucrose fatty acid ester. From the viewpoint of easily improving the water absorption characteristics of the obtained water-absorbent resin particles, the surfactant may contain a sucrose fatty acid ester (for example, sucrose stearic acid ester).
  • the amount of the surfactant may be 0.05 to 10 parts by mass, 0.08 to 5 parts by mass, or 0.1 to 3 parts by mass with respect to 100 parts by mass of the monomer aqueous solution.
  • a polymer-based dispersant may be used in combination with the above-mentioned surfactant.
  • the polymer dispersant include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, maleic anhydride-modified EPDM (ethylene / propylene / diene / terpolymer), and maleic anhydride.
  • the polymer-based dispersant may be used alone or in combination of two or more.
  • the polymer-based dispersant includes maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, and maleic anhydride / ethylene copolymer.
  • Maleic anhydride / propylene copolymer, maleic anhydride / ethylene / propylene copolymer, polyethylene, polypropylene, ethylene / propylene copolymer, oxidized polyethylene, oxidized polypropylene, and oxidized ethylene / propylene copolymer It may be at least one selected from the group consisting of.
  • the amount of the polymer-based dispersant may be 0.05 to 10 parts by mass, 0.08 to 5 parts by mass, or 0.1 to 3 parts by mass with respect to 100 parts by mass of the monomer aqueous solution.
  • the hydrocarbon dispersion medium may contain at least one compound selected from the group consisting of chain aliphatic hydrocarbons having 6 to 8 carbon atoms and alicyclic hydrocarbons having 6 to 8 carbon atoms.
  • a chain aliphatic hydrocarbon such as n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane, n-octane; cyclohexane , Methylcyclohexane, cyclopentane, methylcyclopentane, trans-1,2-dimethylcyclopentane, cis-1,3-dimethylcyclopentane, trans-1,3-dimethylcyclopentane and other alicyclic hydrocarbons; benzene, Examples include aromatic hydrocarbons such as toluene and xylene.
  • the hydrocarbon dispersion medium may be used alone
  • the hydrocarbon dispersion medium may contain at least one selected from the group consisting of n-heptane and cyclohexane.
  • n-heptane and cyclohexane from the same viewpoint, as the mixture of the above-mentioned hydrocarbon dispersion medium, for example, a commercially available exol heptane (manufactured by ExxonMobil: containing 75 to 85% of n-heptane and isomeric hydrocarbons) may be used. Good.
  • the amount of the hydrocarbon dispersion medium is 30 to 1000 parts by mass, 40 to 500 parts by mass, or 50 parts by mass with respect to 100 parts by mass of the monomer aqueous solution from the viewpoint of appropriately removing the heat of polymerization and easily controlling the polymerization temperature. It may be up to 300 parts by mass. When the amount of the hydrocarbon dispersion medium is 30 parts by mass or more, the polymerization temperature tends to be easily controlled. When the amount of the hydrocarbon dispersion medium is 1000 parts by mass or less, the productivity of polymerization tends to be improved, which is economical.
  • the radical polymerization initiator may be water-soluble.
  • water-soluble radical polymerization initiators are persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate; methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, and t-butyl cumylper.
  • Peroxides such as oxides, t-butylperoxyacetate, t-butylperoxyisobutyrate, t-butylperoxypivalate, hydrogen peroxide; 2,2'-azobis (2-amidinopropane) dihydrochloride , 2,2'-azobis [2- (N-phenylamidino) propane] dihydrochloride, 2,2'-azobis [2- (N-allylamidino) propane] dihydrochloride, 2,2'-azobis [ 2- (2-Imidazolin-2-yl) propane] 2 hydrochloride, 2,2'-azobis ⁇ 2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane ⁇ 2 hydrochloride, 2,2'-azobis ⁇ 2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide ⁇ , 2,2'-azobis [2-methyl-N- (2-hydroxy) Ethyl) -propion
  • the radical polymerization initiator may be used alone or in combination of two or more.
  • the radical polymerization initiators are potassium persulfate, ammonium persulfate, sodium persulfate, 2,2'-azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis [2- (2-imidazolin-2-yl). ) Propane] 2 hydrochloride and 2,2'-azobis ⁇ 2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane ⁇ 2 hydrochloride at least selected from the group. There may be.
  • the amount of the radical polymerization initiator may be 0.00005 to 0.01 mol per 1 mol of the ethylenically unsaturated monomer.
  • the amount of the radical polymerization initiator used is 0.00005 mol or more, the polymerization reaction does not require a long time and is efficient.
  • the amount of the radical polymerization initiator is 0.01 mol or less, it is easy to suppress the occurrence of a rapid polymerization reaction.
  • the exemplified radical polymerization initiator can also be used as a redox polymerization initiator in combination with a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
  • a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
  • the aqueous monomer solution may contain a chain transfer agent.
  • chain transfer agent include hypophosphates, thiols, thiolic acids, secondary alcohols, amines and the like.
  • the monomer aqueous solution used for polymerization may contain a thickener.
  • the thickener include hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, carboxymethyl cellulose, polyacrylic acid, polyethylene glycol, polyacrylamide, polyethyleneimine, dextrin, sodium alginate, polyvinyl alcohol, polyvinylpyrrolidone, polyethylene oxide and the like. If the stirring speed at the time of polymerization is the same, the higher the viscosity of the aqueous monomer solution, the larger the medium particle size of the obtained particles tends to be.
  • Cross-linking occurs by self-cross-linking during polymerization, but cross-linking may be performed by further using an internal cross-linking agent.
  • an internal cross-linking agent When an internal cross-linking agent is used, it is easy to control the water absorption characteristics of the water-absorbent resin particles.
  • the internal cross-linking agent is usually added to the reaction solution during the polymerization reaction.
  • the internal cross-linking agent examples include di or tri (meth) acrylic acid esters of polyols such as ethylene glycol, propylene glycol, trimethylpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol and polyglycerin; Unsaturated polyesters obtained by reacting polyols with unsaturated acids (maleic acid, fumaric acid, etc.); bis (meth) acrylamides such as N, N'-methylenebis (meth) acrylamide; polyepoxides and (meth) Di or tri (meth) acrylic acid esters obtained by reacting with acrylic acid; di (meth) obtained by reacting polyisocyanate (tolylene diisocyanate, hexamethylene diisocyanate, etc.) with hydroxyethyl (meth) acrylate.
  • polyols such as ethylene glycol, propylene glycol, trimethylpropane, glycerin, polyoxyethylene glycol, polyoxypropylene
  • Acrylic acid carbamil esters compounds having two or more polymerizable unsaturated groups such as allylated starch, allylated cellulose, diallyl phthalate, N, N', N "-triallyl isocyanurate, divinylbenzene; Poly such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, polyglycerol polyglycidyl ether, etc.
  • Poly such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene
  • Glycidyl compounds such as epichlorohydrin, epibromhydrin, ⁇ -methylepichlorohydrin; 2 reactive functional groups such as isocyanate compounds (2,4-tolylene diisocyanate, hexamethylene diisocyanate, etc.) Examples thereof include compounds having more than one.
  • the internal cross-linking agent may be used alone or in combination of two or more.
  • the internal cross-linking agent may be a polyglycidyl compound or diglycidyl. It may be an ether compound.
  • the internal cross-linking agent comprises at least one selected from the group consisting of (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether. It may be.
  • the amount of the internal cross-linking agent is 0 per mol of the ethylenically unsaturated monomer from the viewpoint that the water-soluble property is suppressed by appropriately cross-linking the obtained polymer and a sufficient amount of water absorption can be easily obtained. It may be mmol or more, 0.01 mmol or more, 0.015 mmol or more, 0.020 mmol or more, or 0.1 mol or less.
  • Reversed phase suspension polymerization can be carried out in an aqueous system in oil by heating with stirring in a state where the phases are mixed.
  • a monomer aqueous solution containing an ethylenically unsaturated monomer is used as a hydrocarbon dispersion medium in the presence of a surfactant (and, if necessary, a polymer-based dispersant). Disperse in.
  • a surfactant and, if necessary, a polymer-based dispersant.
  • the timing of adding the surfactant, the polymer-based dispersant, etc. may be either before or after the addition of the monomer aqueous solution.
  • the monomer aqueous solution is dispersed in the hydrocarbon dispersion medium in which the polymer-based dispersant is dispersed, and then the surfactant is further dispersed. It may be allowed to carry out polymerization.
  • Reverse phase suspension polymerization can be carried out in one stage or in multiple stages of two or more stages. Reversed phase suspension polymerization may be carried out in two or three stages from the viewpoint of increasing productivity.
  • an ethylenically unsaturated monomer is added to the reaction mixture obtained in the first step polymerization reaction after the first step reverse phase suspension polymerization is carried out. It may be added and mixed, and the reverse phase suspension polymerization of the second and subsequent steps may be carried out in the same manner as in the first step.
  • the above-mentioned radical polymerization initiator is used in the reverse phase suspension polymerization in each stage of the second and subsequent stages.
  • the ethylenically unsaturated monomer to be added Based on the amount of the ethylenically unsaturated monomer to be added, it may be added within the range of the molar ratio of each component to the above-mentioned ethylenically unsaturated monomer to carry out reverse phase suspension polymerization.
  • an internal cross-linking agent In the reverse phase suspension polymerization in each stage after the second stage, an internal cross-linking agent may be used if necessary.
  • an internal cross-linking agent When an internal cross-linking agent is used, it is added within the range of the molar ratio of each component to the above-mentioned ethylenically unsaturated monomer based on the amount of the ethylenically unsaturated monomer provided in each stage, and the suspension is reversed. Muddy polymerization may be carried out.
  • the temperature of the polymerization reaction varies depending on the radical polymerization initiator used, but by advancing the polymerization rapidly and shortening the polymerization time, the efficiency is improved and the heat of polymerization is easily removed to carry out the reaction smoothly. From the viewpoint, it may be 20 to 150 ° C. or 40 to 120 ° C.
  • the reaction time is usually 0.5-4 hours.
  • the completion of the polymerization reaction can be confirmed, for example, by stopping the temperature rise in the reaction system. As a result, the polymer of the ethylenically unsaturated monomer is usually obtained in the state of a hydrogel-like polymer.
  • cross-linking may be performed after polymerization by adding a cross-linking agent to the obtained hydrogel polymer and heating it.
  • a cross-linking agent to the obtained hydrogel polymer and heating it.
  • cross-linking agent for performing post-polymerization cross-linking examples include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; Compounds having two or more epoxy groups such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether; epichlorohydrin, epibromhydrin, ⁇ -methylepicrolhydrin, etc.
  • polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane
  • glycerin polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin
  • Compounds having two or more epoxy groups such as (poly) ethylene glycol
  • Haloepoxy compounds compounds having two or more isocyanate groups such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; oxazoline compounds such as 1,2-ethylenebisoxazoline; carbonate compounds such as ethylenecarbonate; bis [N , N-di ( ⁇ -hydroxyethyl)] hydroxyalkylamide compounds such as adipamide can be mentioned.
  • Cross-linking agents for post-polymerization cross-linking are (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, and polyglycerol polyglycidyl ether. It may be a polyglycidyl compound such as. These cross-linking agents may be used alone or in combination of two or more.
  • the amount of the cross-linking agent used for post-polymerization cross-linking is 1 mol of the water-soluble ethylenically unsaturated monomer from the viewpoint of appropriately cross-linking the obtained hydrogel-like polymer to exhibit suitable water absorption characteristics. It may be 0 to 0.03 mol, 0 to 0.01 mol, or 0.00001 to 0.005 mol.
  • the cross-linking agent for post-polymerization cross-linking is added to the reaction solution after the polymerization reaction of the ethylenically unsaturated monomer.
  • a cross-linking agent for post-polymerization cross-linking may be added after the multi-stage polymerization.
  • the cross-linking agent for post-polymerization cross-linking is From the viewpoint of water content (described later), it may be added in the region of [water content immediately after polymerization ⁇ 3% by mass].
  • drying to remove water gives polymer particles containing a polymer of ethylenically unsaturated monomers.
  • the drying method include (a) a method of removing water by co-boiling distillation in a state where the hydrogel polymer is dispersed in a hydrocarbon dispersion medium, and (b) taking out the hydrogel polymer by decantation and reducing the pressure. Examples thereof include a method of drying, and (c) a method of filtering the hydrogel polymer by a filter and drying under reduced pressure.
  • the particle size of the water-absorbent resin particles can be adjusted by adjusting the rotation speed of the stirrer during the polymerization reaction, or by adding a flocculant into the system after the polymerization reaction or in the early stage of drying. By adding a flocculant, the particle size of the obtained water-absorbent resin particles can be increased.
  • an inorganic flocculant can be used as the flocculant.
  • the inorganic flocculant for example, powdered inorganic flocculant
  • the aggregating agent may be at least one selected from the group consisting of silica, aluminum oxide, talc and kaolin.
  • a coagulant is previously dispersed in a hydrocarbon dispersion medium of the same type as that used in the polymerization or water, and then this is placed in a hydrocarbon dispersion medium containing a hydrogel polymer under stirring. May be mixed with.
  • the amount of the flocculant is 0.001 to 1 part by mass, 0.005 to 0.5 part by mass, or 0.01 to 0.2 with respect to 100 parts by mass of the ethylenically unsaturated monomer used for the polymerization. It may be a mass part. When the amount of the flocculant is within these ranges, it is easy to obtain water-absorbent resin particles having a desired particle size distribution.
  • the polymerization reaction can be carried out using various stirrers having stirring blades.
  • a flat plate blade As the stirring blade, a flat plate blade, a lattice blade, a paddle blade, a propeller blade, an anchor blade, a turbine blade, a Faudler blade, a ribbon blade, a full zone blade, a max blend blade and the like can be used.
  • the flat plate blade has a shaft (stirring shaft) and a flat plate portion (stirring portion) arranged around the shaft. Further, the flat plate portion may have a slit or the like.
  • the uniformity of cross-linking of the polymer in the formed polymer particles tends to be high.
  • the water-absorbent resin particles containing the polymer particles having high cross-linking uniformity tend to easily form a resin layer showing a moderately large variation in friction coefficient MMD.
  • the surface portion of the hydrogel polymer may be crosslinked (surface crosslinked) using a crosslinking agent in any of the drying steps and subsequent steps.
  • a crosslinking agent By performing surface cross-linking, it is easy to control the water absorption characteristics of the water-absorbent resin particles.
  • the water content of the surface-crosslinked hydrogel polymer may be 5 to 50% by mass, 10 to 40% by mass, or 15 to 35% by mass.
  • the water content of the hydrogel polymer calculated by adding the water content used according to.
  • Ws The amount of solids calculated from the amount of materials such as ethylenically unsaturated monomers, cross-linking agents, and initiators that make up the hydrogel polymer.
  • cross-linking agents include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; (poly) ethylene glycol diglycidyl.
  • Polyglycidyl compounds such as ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, trimethylpropan triglycidyl ether (poly) propylene glycol polyglycidyl ether, (poly) glycerol polyglycidyl ether; epichlorohydrin , Epibrom hydrin, ⁇ -methyl epichlorohydrin and other haloepoxy compounds; 2,4-tolylene diisocyanate, hexamethylene diisocyanate and other isocyanate compounds; 3-methyl-3-oxetane methanol, 3-ethyl-3-oxetane Oxetane compounds such as methanol, 3-butyl-3-oxetane methanol, 3-methyl-3-oxetaneethanol, 3-ethyl-3-oxetaneethanol, 3-butyl-3-oxet
  • the surface cross-linking agent may be used alone or in combination of two or more.
  • the surface cross-linking agent may be a polyglycidyl compound, and may be (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, and It may contain at least one selected from the group consisting of polyglycerol polyglycidyl ether.
  • the amount of the surface cross-linking agent is 0.00001 to 0.02 mol, 0.00005 to 0.01 mol, or 0.0001 to 0.005 with respect to 1 mol of the ethylenically unsaturated monomer used for the polymerization. It may be a mole.
  • the amount of the surface cross-linking agent is 0.00001 mol or more, the cross-linking density on the surface portion of the water-absorbent resin particles is sufficiently increased, and the gel strength of the water-absorbent resin particles can be easily increased.
  • the amount of the surface cross-linking agent is 0.02 mol or less, it is easy to increase the water absorption amount of the water-absorbent resin particles.
  • the water-absorbent resin particles according to the present embodiment may be composed of only polymer particles, but various additional particles selected from, for example, a gel stabilizer, a metal chelating agent, a fluidity improver (lubricant), and the like. Ingredients can be further included. Additional components may be placed inside the polymer particles, on the surface of the polymer particles, or both. The additional component may be a fluidity improver (lubricant).
  • the fluidity improver may contain inorganic particles. Examples of the inorganic particles include silica particles such as amorphous silica.
  • the water-absorbent resin particles may contain a plurality of inorganic particles arranged on the surface of the polymer particles. For example, by mixing the polymer particles and the inorganic particles, the inorganic particles can be arranged on the surface of the polymer particles.
  • the inorganic particles may be silica particles such as amorphous silica.
  • the ratio of the amount of the inorganic particles to the mass of the polymer particles is 0.2% by mass or more, 0.5% by mass or more, 1 It may be 0.0% by mass or more, 1.5% by mass or more, 5.0% by mass or less, or 3.5% by mass or less.
  • the inorganic particles here usually have a minute size as compared with the size of the polymer particles.
  • the average particle size of the inorganic particles may be 0.1 to 50 ⁇ m, 0.5 to 30 ⁇ m, or 1 to 20 ⁇ m.
  • the average particle size here can be a value measured by a dynamic light scattering method or a laser diffraction / scattering method.
  • FIG. 1 is a cross-sectional view showing an example of a water absorption sheet.
  • the water absorbing sheet 50 shown in FIG. 1 has an absorbing layer 10 and two core wrap sheets 20a and 20b.
  • the core wrap sheets 20a and 20b are arranged on both sides of the absorption layer 10.
  • the absorbent layer 10 is arranged inside the core wrap sheets 20a and 20b.
  • the absorbent layer 10 is held in shape by being sandwiched between the two core wrap sheets 20a and 20b.
  • the core wrap sheets 20a and 20b may be two sheets, one folded sheet, or one bag body.
  • the water absorbing sheet 50 may further have an adhesive 21 interposed between the core wrap sheet 20a and the absorbing layer 10.
  • FIG. 2 is a plan view showing an example of an adhesive pattern formed on the core wrap sheet.
  • the adhesive 21 shown in FIG. 2 forms a pattern composed of a plurality of linear portions arranged at intervals on the core wrap sheet 20a.
  • the pattern of the adhesive 21 is not limited to this.
  • An adhesive layer may be interposed between the core wrap sheets 20a and 20b on both sides and the absorption layer 10.
  • the adhesive 21 is not particularly limited, and may be, for example, a hot melt adhesive.
  • the absorption layer 10 has the water-absorbent resin particles 10a according to the above-described embodiment and the fiber layer 10b containing a fibrous material.
  • the absorption layer 10 does not have to have the fiber layer 10b.
  • the content of the water-absorbent resin particles in the absorption layer may be 70 to 100% by mass, 80 to 100% by mass, or 90 to 100% by mass based on the mass of the absorption layer 10.
  • the thickness of the absorption layer 10 is not particularly limited, but may be, for example, 20 mm or less, 15 mm or less, 10 mm or less, 5 mm or less, 4 mm or less, or 3 mm or less in a dry state, and is 0.1 mm or more or 0.3 mm or less. It may be the above.
  • the mass per unit area of the absorption layer 10 may be 1000 g / m 2 or less, 800 g / m 2 or less, 600 g / m 2 or less, or 100 g / m 2 or more.
  • the fibrous material constituting the fiber layer 10b can be, for example, a cellulosic fiber, a synthetic fiber, or a combination thereof.
  • cellulosic fibers include crushed wood pulp, cotton, cotton linters, rayon and cellulosic acetate.
  • synthetic fibers include polyamide fibers, polyester fibers, and polyolefin fibers.
  • the fibrous material may be hydrophilic fibers (for example, pulp).
  • the average fiber length of the fibrous material is usually 0.1 to 10 mm and may be 0.5 to 5 mm.
  • the absorption layer 10 may further contain an inorganic powder (for example, amorphous silica), a deodorant, an antibacterial agent, a fragrance, and the like.
  • an inorganic powder for example, amorphous silica
  • the absorption layer 10 may contain inorganic powder in addition to the inorganic particles in the water-absorbent resin particles 10a.
  • the core wrap sheets 20a and 20b may be, for example, a non-woven fabric.
  • the two core wrap sheets 20a and 20b can be the same or different non-woven fabrics.
  • the non-woven fabric may be a non-woven fabric composed of short fibers (that is, staples) (short-fiber non-woven fabric) or a non-woven fabric composed of long fibers (that is, filaments) (long-fiber non-woven fabric). Staples are not limited to this, but generally may have a fiber length of several hundred mm or less.
  • the core wrap sheets 20a and 20b are laminated including a thermal bond non-woven fabric, an air-through non-woven fabric, a resin bond non-woven fabric, a spunbond non-woven fabric, a melt blow non-woven fabric, an air-laid non-woven fabric, a spunlace non-woven fabric, a point bond non-woven fabric, or two or more kinds of non-woven fabrics selected from these. It can be a body.
  • the non-woven fabric used as the core wrap sheets 20a and 20b can be a non-woven fabric formed of synthetic fibers, natural fibers, or a combination thereof.
  • synthetic fibers include polyolefins such as polyethylene (PE) and polypropylene (PP), polyesters such as polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT) and polyethylene naphthalate (PEN), polyamides such as nylon, and Examples thereof include fibers containing a synthetic resin selected from rayon.
  • Examples of natural fibers include fibers containing cotton, silk, hemp, or pulp (cellulose).
  • the fibers forming the non-woven fabric may be polyolefin fibers, polyester fibers or a combination thereof.
  • the core wrap sheets 20a and 20b may be tissue paper.
  • the water-absorbent sheet 50 is sandwiched between, for example, the water-absorbent resin particles 10a or a mixture containing the water-absorbent resin particles 10a and the fibrous material and the core wrap sheets 20a and 20b, and the formed structure is heated as necessary. It can be obtained by the method of pressurizing. If necessary, the adhesive 21 is arranged between the core wrap sheets 20a and 20b and the water-absorbent resin particles 10a or a mixture containing the same.
  • the water absorption sheet 50 is used, for example, for producing various absorbent articles.
  • absorbent articles include diapers (eg paper diapers), toilet training pants, incontinence pads, sanitary materials (sanitary napkins, tampons, etc.), sweat pads, pet sheets, toilet components, and animal waste treatment materials. Can be mentioned.
  • FIG. 3 is a cross-sectional view showing an example of an absorbent article.
  • the absorbent article 100 shown in FIG. 3 includes a water absorbing sheet 50, a liquid permeable sheet 30, and a liquid impermeable sheet 40.
  • the water absorbing sheet 50 is sandwiched between the liquid permeable sheet 30 and the liquid impermeable sheet 40.
  • the liquid permeable sheet 30 is arranged at the position of the outermost layer on the side where the liquid to be absorbed enters.
  • the liquid permeable sheet 30 is arranged on the outside of the core wrap sheet 20b in contact with the core wrap sheet 20b.
  • the liquid permeable sheet 40 is arranged at the position of the outermost layer on the side opposite to the liquid permeable sheet 30 in the absorbent article 100.
  • the liquid impermeable sheet 40 is arranged on the outside of the core wrap sheet 20a in contact with the core wrap sheet 20a.
  • the liquid permeable sheet 30 and the liquid permeable sheet 40 have a main surface wider than the main surface of the water absorbing sheet 50, and the outer edges of the liquid permeable sheet 30 and the liquid permeable sheet 40 are an absorbent layer.
  • the magnitude relationship between the absorbent layer 10, the core wrap sheets 20a and 20b, the liquid permeable sheet 30, and the liquid permeable sheet 40 is not particularly limited, and is appropriately adjusted according to the use of the absorbent article and the like. ..
  • the liquid permeable sheet 30 may be a non-woven fabric.
  • the non-woven fabric used as the liquid permeable sheet 30 may have appropriate hydrophilicity from the viewpoint of the liquid absorption performance of the absorbent article. From this point of view, the liquid permeable sheet 30 is obtained by the pulp and paper test method No. A non-woven fabric having a hydrophilicity of 5 to 200 measured according to the measuring method of 68 (2000) may be used. The hydrophilicity of the non-woven fabric may be 10 to 150. Pulp and paper test method No. For details of 68, for example, WO2011 / 086843 can be referred to.
  • the non-woven fabric having hydrophilicity may be formed of fibers showing appropriate hydrophilicity such as rayon fiber, or obtained by hydrophilizing a hydrophobic chemical fiber such as polyolefin fiber or polyester fiber. It may be formed of rayon fibers.
  • a method for obtaining a non-woven fabric containing hydrophobic chemical fibers that have been hydrophobized for example, a method for obtaining a non-woven fabric by a spunbond method using a mixture of hydrophobic chemical fibers and a hydrophilic agent, hydrophobic chemistry.
  • Examples thereof include a method of accommodating a hydrophilic agent when producing a spunbonded nonwoven fabric from fibers, and a method of impregnating a spunbonded nonwoven fabric obtained by using a hydrophobic chemical fiber with a hydrophilic agent.
  • the hydrophilizing agent include anionic surfactants such as aliphatic sulfonates and higher alcohol sulfates, cationic surfactants such as quaternary ammonium salts, polyethylene glycol fatty acid esters, polyglycerin fatty acid esters, and sorbitan fatty acids.
  • Nonionic surfactants such as esters, silicone-based surfactants such as polyoxyalkylene-modified silicones, and stain-releasing agents made of polyester-based, polyamide-based, acrylic-based, and urethane-based resins are used.
  • the amount of texture (mass per unit area) of the non-woven fabric used as the liquid permeable sheet 30 is from the viewpoint of imparting good liquid permeability, flexibility, strength and cushioning property to the absorbent article, and the liquid of the absorbent article. From the viewpoint of increasing the permeation rate, it may be 5 to 200 g / m 2 , 8 to 150 g / m 2 , or 10 to 100 g / m 2 .
  • the thickness of the liquid permeable sheet 30 may be 20 to 1400 ⁇ m, 50 to 1200 ⁇ m, or 80 to 1000 ⁇ m.
  • the liquid impermeable sheet 40 prevents the liquid absorbed by the absorbing layer 10 from leaking to the outside from the liquid impermeable sheet 40 side.
  • the liquid impermeable sheet 40 may be a resin sheet or a non-woven fabric.
  • the resin sheet may be a sheet made of a synthetic resin such as polyethylene, polypropylene, or polyvinyl chloride.
  • the non-woven fabric may be a spunbond / meltblow / spunbond (SMS) non-woven fabric in which a water-resistant melt-blow non-woven fabric is sandwiched between high-strength spunbond non-woven fabrics.
  • SMS spunbond / meltblow / spunbond
  • the liquid impermeable sheet 40 may be a composite sheet of a resin sheet and a non-woven fabric (for example, a spunbonded non-woven fabric or a spunlaced non-woven fabric).
  • the liquid impermeable sheet 40 may have breathability from the viewpoint that stuffiness at the time of wearing is reduced and discomfort given to the wearer can be reduced.
  • a sheet of low density polyethylene (LDPE) resin can be used as the liquid impermeable sheet 40 having breathability.
  • the basis weight (mass per unit area) of the liquid impermeable sheet 40 may be 10 to 50 g / m 2 .
  • the absorbent article 100 can be manufactured, for example, by a method including arranging the water absorbing sheet 50 between the liquid permeable sheet 30 and the liquid impermeable sheet 40. A laminate in which the liquid permeable sheet 40, the water absorbing sheet 50, and the liquid permeable sheet 30 are laminated in this order is pressurized as necessary. Alternatively, the liquid permeable sheet 30, the core wrap sheet 20b, the water-absorbent resin particles 10a, or the mixture containing the water-absorbent resin particles 10a and the fibrous material, and the core wrap sheet 20a and the liquid impermeable sheet 40 are used. The absorbent article 100 can also be obtained by arranging in this order and pressurizing the formed structure while heating if necessary.
  • Example 1 First stage polymerization reaction> A round-bottomed cylindrical separable flask having an inner diameter of 11 cm and an internal volume of 2 L equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirrer was prepared. A stirring blade 200 whose outline is shown in FIG. 4 was attached to the stirring machine.
  • the stirring blade 200 includes a shaft 200a and a flat plate portion 200b.
  • the flat plate portion 200b is welded to the shaft 200a and has a curved tip.
  • the flat plate portion 200b is formed with four slits S extending along the axial direction of the shaft 200a.
  • the four slits S are arranged in the width direction of the flat plate portion 200b, the width of the two inner slits S is 1 cm, and the width of the two outer slits S is 0.5 cm.
  • the length of the flat plate portion 200b is about 10 cm, and the width of the flat plate portion 200b is about 6 cm.
  • n-heptane 293 g of n-heptane and 0.736 g of a dispersant (maleic anhydride-modified ethylene / propylene copolymer, manufactured by Mitsui Chemicals, Inc., high wax 1105A) were mixed.
  • the dispersant was dissolved in n-heptane by heating the mixture in the separable flask to 80 ° C. while stirring with a stirrer. The formed reaction solution was cooled to 50 ° C.
  • the first-stage monomer aqueous solution was added to the reaction solution in the separable flask described above, and the reaction solution was stirred for 10 minutes.
  • a surfactant solution containing 6.62 g of n-heptane and 0.736 g of sucrose stearic acid ester (HLB: 3, Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370) was added to the reaction solution, and the mixture was stirred.
  • the inside of the system was sufficiently replaced with nitrogen while stirring the reaction solution at a blade rotation speed of 425 rpm.
  • the polymerization reaction was allowed to proceed over 60 minutes while heating the separable flask in a water bath at 70 ° C. By this polymerization reaction, a first-stage polymerization slurry liquid containing a hydrogel-like polymer was obtained.
  • the first-stage polymerized slurry liquid in the separable flask was cooled to 22 ° C. while stirring at a stirring blade rotation speed of 650 rpm.
  • the whole amount of the second-stage monomer aqueous solution was added thereto, and then the inside of the system was replaced with nitrogen over 30 minutes.
  • the second-stage polymerization reaction was allowed to proceed over 60 minutes.
  • n-heptane was distilled off by heating at 125 ° C. to obtain a dried product of polymer particles.
  • the obtained polymer particles were passed through a sieve having an opening of 850 ⁇ m.
  • 0.2% by mass of amorphous silica Oriental Silicas Corporation, Toxile NP-S
  • 0.2% by mass of amorphous silica Oriental Silicas Corporation, Toxile NP-S
  • the medium particle size of the water-absorbent resin particles was 470 ⁇ m.
  • Example 2 The radical polymerization initiator used in the preparation of the aqueous solution in the first stage was changed to 0.0648 g (0.272 mmol) of sodium persulfate, and the amount of ethylene glycol diglycidyl ether added as an internal cross-linking agent was 0. It was changed to 010 g (0.057 mmol), the rotation speed of the stirrer at the time of nitrogen substitution was changed to 350 rpm in the preparation of the first stage polymerized slurry liquid, and the radical used in the preparation of the second stage aqueous liquid liquid.
  • Example 2 The same as in Example 1 except that the polymerization initiator was changed to 0.0907 g (0.381 mmol) of sodium persulfate and the amount of water extracted to the outside of the system by azeotropic distillation was changed to 271.0 g. 215.8 g of water-absorbent resin particles were obtained.
  • the medium particle size of the water-absorbent resin particles was 470 ⁇ m.
  • Example 3 The radical polymerization initiator used in the preparation of the aqueous solution in the first stage was changed to 0.0648 g (0.272 mmol) of sodium persulfate, and the amount of ethylene glycol diglycidyl ether added as an internal cross-linking agent was 0. The change to 010 g (0.057 mmol), the radical polymerization initiator used in the second stage aqueous solution preparation was changed to 0.0907 g (0.381 mmol) of sodium persulfate, and the second polymerization.
  • the polymerization slurry solution of the first stage was cooled to 25 ° C., the entire amount of the monomer aqueous solution of the second stage was added, and the amount of water extracted to the outside of the system by co-boiling distillation was 256.
  • 230.2 g of water-absorbent resin particles were obtained in the same manner as in Example 1 except that the amount was changed to 5.5 g.
  • the medium particle size of the water-absorbent resin particles was 358 ⁇ m.
  • Comparative Example 1 The stirring blade was changed to one with a 4-blade inclined paddle blade with a blade diameter of 5 cm in two stages, and the radical polymerization initiator used in the preparation of the aqueous liquid in the first stage was 2,2'-azobis (2-amidino). Changed to 0.092 g (0.339 mmol) of propane) dihydrochloride and 0.018 g (0.068 mmol) of potassium persulfate, and rotation of the stirrer at the time of nitrogen substitution in the preparation of the polymerization slurry solution in the first stage.
  • the number was changed to 550 rpm, and the radical polymerization initiator used in the second stage aqueous solution preparation was 0.129 g (0.475 mmol) of 2,2'-azobis (2-amidinopropane) dihydrochloride.
  • the inside of the separable flask system was cooled to 25 ° C., and the stirrer rotation speed at that time was changed to 1000 rpm.
  • 228.6 g of water-absorbent resin particles were obtained in the same manner as in Example 1 except that the amount of water extracted to the outside of the system by the radical polymerization was changed to 215.8 g.
  • the medium particle size of the water-absorbent resin particles was 339 ⁇ m.
  • the rotation speed of the stirrer at the time of nitrogen substitution was changed to 400 rpm, and after the first-stage polymerization reaction, co-boiling without performing the second-stage polymerization reaction. Except that the amount of water extracted to the outside of the system by distillation was changed to 109 g, and the amount of ethylene glycol diglycidyl ether aqueous solution having a concentration of 2% by mass as a surface cross-linking agent was changed to 9.20 g (1.056 mmol). In the same manner as in Example 1, 90.0 g of water-absorbent resin particles were obtained. The medium particle size of the water-absorbent resin particles was 395 ⁇ m.
  • the water retention amount (room temperature, 25 ° C ⁇ 2 ° C) of the physiological saline of the water-absorbent resin particles was measured by the following procedure.
  • a cotton bag (Membroad No. 60, width 100 mm x length 200 mm) weighing 2.0 g of water-absorbent resin particles was placed in a 500 mL beaker.
  • the measuring device Y is composed of a burette unit 71, a conduit 72, a measuring table 73, and a measuring unit 74 placed on the measuring table 73.
  • the burette portion 71 has a burette 71a extending in the vertical direction, a rubber stopper 71b arranged at the upper end of the burette 71a, a cock 71c arranged at the lower end of the burette 71a, and one end extending into the burette 71a in the vicinity of the cock 71c. It has an air introduction pipe 71d and a cock 71e arranged on the other end side of the air introduction pipe 71d.
  • the conduit 72 is attached between the burette portion 71 and the measuring table 73.
  • the inner diameter of the conduit 72 is 6 mm.
  • a hole having a diameter of 2 mm is formed in the central portion of the measuring table 73, and the conduit 72 is connected to the hole.
  • the measuring unit 74 has a cylinder 74a (made of acrylic resin (plexiglass)), a nylon mesh 74b adhered to the bottom of the cylinder 74a, and a weight 74c.
  • the inner diameter of the cylinder 74a is 20 mm.
  • the opening of the nylon mesh 74b is 75 ⁇ m (200 mesh).
  • the water-absorbent resin particles 75 to be measured are uniformly sprinkled on the nylon mesh 74b.
  • the diameter of the weight 74c is 19 mm, and the mass of the weight 74c is 59.8 g.
  • the weight 74c is placed on the water-absorbent resin particles 75, and a load of 2.07 kPa can be applied to the water-absorbent resin particles 75.
  • the weight 74c was placed and the measurement was started. Since the same volume of air as the physiological saline absorbed by the water-absorbent resin particles 75 is quickly and smoothly supplied to the inside of the burette 71a from the air introduction pipe, the water level of the physiological saline inside the burette 71a is reduced. However, the amount of physiological saline absorbed by the water-absorbent resin particles 75 is obtained.
  • the scale of the burette 71a is engraved from top to bottom in 0 mL to 0.5 mL increments.
  • FIG. 6 is a cross-sectional view showing the produced simple water absorption sheet.
  • Place the adhesive tape 25 (Biolan tape (trade name) manufactured by Diatex Co., Ltd.) having a rectangular adhesive surface 25S of 5 x 15 cm on the horizontal surface of the workbench with the adhesive surface 25S facing up. It was. 1.5 g of water-absorbent resin particles were uniformly sprayed over the entire adhesive surface 25S.
  • a 4.0 kg roller (stainless steel, diameter 10.5 cm, width 6.0 cm) is placed on the end of the resin layer 10A of the water-absorbent resin particles adhered to the adhesive surface 25 by spraying along the short side, and the roller is adhered.
  • tissue paper 27 (mass per unit area: 16 g / m 2 ) covering the entire resin layer 10A was placed on the resin layer 10A of the water-absorbent resin particles to prepare a sample for evaluating the friction coefficient.
  • the evaluation sample was prepared so that the standard deviation of the mass of the water-absorbent resin particles sprayed on each region (5 ⁇ 3.75 cm) when divided into four equal parts in the longitudinal direction was 0.05 or less. did.
  • a probe of a friction tester (KES-SE-STP (trade name) manufactured by Kato Tech Co., Ltd.) was used as a resin layer 10A of water-absorbent resin particles of tissue paper.
  • the friction coefficient of the surface was continuously measured over a predetermined operating distance by reciprocating in a straight line while pressing against the surface 27S on the opposite side.
  • the measurement conditions are as follows.
  • the operating distance is the distance the probe has moved on the surface of the tissue paper. From this measurement, a curve showing the relationship between the friction coefficient ⁇ and the moving distance x of the sensor was obtained.
  • ⁇ Contact Piano wire ⁇ Sens: H ⁇ Movement speed: 10 mm / sec ⁇ Load: 50 gf ⁇ Operating distance: 26.67 mm
  • the average friction coefficient (MIU) and the fluctuation of the friction coefficient (MMD) were calculated by the following formulas.
  • is the coefficient of friction at each measurement point
  • x is the distance traveled by the sensor to each measurement point. The same measurement was performed 5 times, and the average value of 3 values excluding the maximum value and the minimum value among the obtained measured values was obtained.
  • the average value is shown in Table 1.
  • the pattern of application was a spiral stripe. These were overlapped so that the ends of the spunbonded non-woven fabric and the air-through non-woven fabric were aligned with the surface of the spunbonded non-woven fabric to which the hot melt adhesive was attached and the surface of the air-through non-woven fabric to which the water-absorbent resin particles were sprayed on the inside.
  • the whole is sandwiched between release papers and pressed at a pressure of 0.1 MPa while heating at 110 ° C. using a laminating machine to obtain a spunbonded non-woven fabric, a hot melt adhesive, an absorbent layer composed of water-absorbent resin particles, and an absorbent layer.
  • An evaluation water-absorbing sheet having the same structure as that of FIG. 1 was obtained in which the air-through nonwoven fabric was arranged in this order.
  • Water-absorbent resin particles were placed in the uppermost sieve and classified according to JIS Z 8815 (1994) using a low-tap shaker (manufactured by Iida Seisakusho Co., Ltd.). After classification, the mass of the water-absorbent resin particles remaining on each sieve was calculated as a mass percentage with respect to the total amount, and the particle size distribution was obtained. By integrating the mass percentages of the water-absorbent resin particles remaining on the sieve in order from the larger particle size with respect to this particle size distribution, the opening of the sieve and the integrated value of the mass percentages of the water-absorbent resin particles remaining on the sieve are integrated. The relationship with is plotted on a logarithmic probability paper. By connecting the plots on the probability paper with a straight line, the particle size corresponding to the cumulative mass percentage of 50% by mass was defined as the medium particle size.
  • Table 1 shows the evaluation results. Fluctuations in the coefficient of friction Absorbent articles with water-absorbent sheets made with water-absorbent resin particles with a specific MMD showed improved permeation rates.

Abstract

These water-absorbent resin particles have a fluctuation in friction coefficient of 0.08 or more which is determined by a method including the following steps (4) and (5). (4) A tissue paper is placed on water-absorbent resin particles attached to an adhesive surface to cover all the water-absorbent resin particles. (5) The friction coefficient of the tissue paper surface is continuously determined along a straight line of 20 mm or longer by moving a probe having a piano wire as a contactor while pressing the probe against the surface opposite to the water-absorbent resin particles of the tissue paper.

Description

吸水性樹脂粒子、及び吸水シートWater-absorbent resin particles and water-absorbent sheet
 本発明は、吸水性樹脂粒子、及び吸収シートに関する。 The present invention relates to water-absorbent resin particles and an absorbent sheet.
 尿等の水を主成分とする液体を吸収するための吸収性物品は、一般に、吸水性樹脂粒子及び親水性繊維を含む吸収体を有することが多い。吸収性物品の更なる薄型化を実現するために、比較的嵩だかい親水性繊維の割合を少なくすることが検討されている。例えば、特許文献1は、パルプ等の親水性繊維の割合が極めて少ない吸収層を有する吸水シート構成体を提案している。 Absorbent articles for absorbing water-based liquids such as urine generally often have an absorber containing water-absorbent resin particles and hydrophilic fibers. In order to realize further thinning of the absorbent article, it is considered to reduce the proportion of relatively bulky hydrophilic fibers. For example, Patent Document 1 proposes a water-absorbing sheet structure having an absorbing layer in which the proportion of hydrophilic fibers such as pulp is extremely small.
特開2014-045914号公報Japanese Unexamined Patent Publication No. 2014-045914
 吸収層における吸水性樹脂粒子の量に対する親水性繊維の量の割合が少ないと、吸収性物品による液体の浸透速度が低下する(浸透する時間が増大する)傾向がある。 If the ratio of the amount of hydrophilic fibers to the amount of water-absorbent resin particles in the absorbent layer is small, the permeation rate of the liquid by the absorbent article tends to decrease (the permeation time increases).
 そこで、本発明の一側面は、吸水性樹脂粒子を高い割合で含む吸収層を有する吸収性物品による液体の浸透速度を高めることが可能な吸水性樹脂粒子を提供する。 Therefore, one aspect of the present invention provides water-absorbent resin particles capable of increasing the permeation rate of a liquid by an absorbent article having an absorbent layer containing a high proportion of water-absorbent resin particles.
 本発明の一側面は、以下の(1)、(2)、(3)、(4)、(5)及び(6)の工程をこの順で含む方法により測定される、摩擦係数の変動が0.08以上である、吸水性樹脂粒子に関する。
(1)5×15cmの長方形の粘着面を有する粘着テープを、その粘着面が上になる向きで作業台の水平面上に配置する。
(2)粘着面全体に1cm当たり0.02gの吸水性樹脂粒子を付着させる。
(3)粘着面に付着した吸水性樹脂粒子に、質量4.0kg、直径10.5cm、幅6.0cmのローラーを載せ、次いでローラーを粘着面の2つの短辺の間で1往復させる。
(4)粘着面に付着した吸水性樹脂粒子の上に、該吸水性樹脂粒子の全体が覆われるようにティッシュペーパーを載せる。
(5)ピアノ線を接触子として有するプローブを吸水性樹脂粒子とは反対側のティッシュペーパーの表面に押し当てながら移動させることにより、ティッシュペーパーの表面の摩擦係数を20mm以上の直線に沿って連続的に測定する。
(6)摩擦係数μとプローブの移動距離xとの関係を表す曲線から、下記式により、摩擦係数の変動を算出する。これら式中、MIUは平均摩擦係数であり、MMDは摩擦係数の変動である。
Figure JPOXMLDOC01-appb-M000002
One aspect of the present invention is that the variation in the coefficient of friction is measured by a method including the following steps (1), (2), (3), (4), (5) and (6) in this order. The present invention relates to water-absorbent resin particles having a coefficient of 0.08 or more.
(1) An adhesive tape having a rectangular adhesive surface of 5 × 15 cm is placed on the horizontal plane of the workbench with the adhesive surface facing up.
(2) 0.02 g of water-absorbent resin particles per 1 cm 2 are attached to the entire adhesive surface.
(3) A roller having a mass of 4.0 kg, a diameter of 10.5 cm, and a width of 6.0 cm is placed on the water-absorbent resin particles adhering to the adhesive surface, and then the roller is reciprocated once between the two short sides of the adhesive surface.
(4) Place the tissue paper on the water-absorbent resin particles adhering to the adhesive surface so that the entire water-absorbent resin particles are covered.
(5) By moving the probe having the piano wire as a contact while pressing it against the surface of the tissue paper on the opposite side of the water-absorbent resin particles, the friction coefficient of the surface of the tissue paper is continuously along a straight line of 20 mm or more. Measure.
(6) From the curve representing the relationship between the friction coefficient μ and the moving distance x of the probe, the fluctuation of the friction coefficient is calculated by the following formula. In these equations, MIU is the average coefficient of friction and MMD is the variation of the coefficient of friction.
Figure JPOXMLDOC01-appb-M000002
 本発明の別の一側面は、上記吸水性樹脂粒子を含む吸収層を備える、吸水シートに関する。 Another aspect of the present invention relates to a water absorbing sheet provided with an absorbing layer containing the above water absorbing resin particles.
 本発明によれば、吸水性樹脂粒子を高い割合で含む吸収層を有する吸収性物品による液体の浸透速度を、エンボス加工を施さなくても高めることができる。 According to the present invention, the permeation rate of a liquid by an absorbent article having an absorbent layer containing a high proportion of water-absorbent resin particles can be increased without embossing.
吸水シートの一例を示す断面図である。It is sectional drawing which shows an example of the water absorption sheet. コアラップシート上に形成された接着剤のパターンの一例を示す平面図である。It is a top view which shows an example of the pattern of the adhesive formed on the core wrap sheet. 吸収性物品の一例を示す断面図である。It is sectional drawing which shows an example of an absorbent article. 攪拌翼(平板部にスリットを有する平板翼)の一例を示す平面図である。It is a top view which shows an example of a stirring blade (a flat plate blade which has a slit in a flat plate part). 荷重下吸水量を測定する方法を示す模式図である。It is a schematic diagram which shows the method of measuring the water absorption under load. 摩擦係数を測定するための簡易吸水シートの一例を示す断面図である。It is sectional drawing which shows an example of the simple water absorption sheet for measuring a friction coefficient.
 以下、本発明のいくつかの実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, some embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
 本明細書において、「アクリル」及び「メタクリル」を合わせて「(メタ)アクリル」と表記する。「アクリレート」及び「メタクリレート」も同様に「(メタ)アクリレート」と表記する。「(ポリ)」とは、「ポリ」の接頭語がある場合及びない場合の双方を意味するものとする。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。「水溶性」とは、25℃において水に5質量%以上の溶解性を示すことをいう。本明細書に例示する材料は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 In this specification, "acrylic" and "methacryl" are collectively referred to as "(meth) acrylic". Similarly, "acrylate" and "methacrylate" are also referred to as "(meth) acrylate". "(Poly)" shall mean both with and without the "poly" prefix. In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value of the numerical range of one step can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another step. In the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples. “A or B” may include either A or B, or both. "Water-soluble" means that it exhibits a solubility in water of 5% by mass or more at 25 ° C. The materials exemplified in the present specification may be used alone or in combination of two or more. The content of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
 一実施形態に係る吸水性樹脂粒子を用いて以下の(1)、(2)、(3)、(4)、(5)及び(6)の工程をこの順で含む方法により測定される摩擦係数の変動は、0.08以上である。
(1)5×15cmの長方形の粘着面を有する粘着テープを、その粘着面が上になる向きで作業台の水平面上に配置する。
(2)粘着面全体に1cm当たり0.02gの吸水性樹脂粒子を付着させる。
(3)粘着面に付着した吸水性樹脂粒子に、質量4.0kg、直径10.5cm、幅6.0cmのローラーを載せ、次いでローラーを粘着面の2つの短辺の間で1往復させる。
(4)粘着面に付着した吸水性樹脂粒子の上に、該吸水性樹脂粒子の全体が覆われるようにティッシュペーパーを載せる。
(5)ピアノ線を接触子として有するプローブを、ティッシュペーパーの吸水性樹脂粒子とは反対側の表面に押し当てながら移動させることにより、ティッシュペーパーの表面の摩擦係数を20mm以上の直線に沿って連続的に測定する。
(6)摩擦係数μとプローブの移動距離xとの関係を表す曲線から、下記式により、摩擦係数の変動を算出する。これら式中、MIUは平均摩擦係数であり、MMDは摩擦係数の変動である。
Figure JPOXMLDOC01-appb-M000003
Friction measured by a method including the following steps (1), (2), (3), (4), (5) and (6) using the water-absorbent resin particles according to the embodiment in this order. The variation of the coefficient is 0.08 or more.
(1) An adhesive tape having a rectangular adhesive surface of 5 × 15 cm is placed on the horizontal plane of the workbench with the adhesive surface facing up.
(2) 0.02 g of water-absorbent resin particles per 1 cm 2 are attached to the entire adhesive surface.
(3) A roller having a mass of 4.0 kg, a diameter of 10.5 cm, and a width of 6.0 cm is placed on the water-absorbent resin particles adhering to the adhesive surface, and then the roller is reciprocated once between the two short sides of the adhesive surface.
(4) Place the tissue paper on the water-absorbent resin particles adhering to the adhesive surface so that the entire water-absorbent resin particles are covered.
(5) By moving the probe having the piano wire as a contact while pressing it against the surface of the tissue paper opposite to the water-absorbent resin particles, the friction coefficient of the surface of the tissue paper is set along a straight line of 20 mm or more. Measure continuously.
(6) From the curve representing the relationship between the friction coefficient μ and the moving distance x of the probe, the fluctuation of the friction coefficient is calculated by the following formula. In these equations, MIU is the average coefficient of friction and MMD is the variation of the coefficient of friction.
Figure JPOXMLDOC01-appb-M000003
 上記方法により測定される摩擦係数の変動が適度に大きいことは、吸水性樹脂粒子で薄い樹脂層が形成されたときに、その表面の凹凸が比較的大きいことに対応する。本発明者らの知見によれば、凹凸の大きい表面を有する樹脂層を形成する吸水性樹脂粒子は、吸水性樹脂粒子を高い割合で含む吸収層を有する吸収性物品の浸透速度向上に寄与することができる。吸水性樹脂粒子を高い割合で含む吸収層の表面積が大きくなり、その結果、浸透速度が向上したと本発明者らは推定している。 The reasonably large variation in the coefficient of friction measured by the above method corresponds to the fact that when a thin resin layer is formed of water-absorbent resin particles, the surface irregularities are relatively large. According to the findings of the present inventors, the water-absorbent resin particles forming the resin layer having a surface having large irregularities contribute to the improvement of the permeation rate of the absorbent article having the absorbent layer containing the water-absorbent resin particles in a high proportion. be able to. The present inventors presume that the surface area of the absorbing layer containing a high proportion of water-absorbent resin particles is increased, and as a result, the permeation rate is improved.
 粘着面に付着した吸水性樹脂粒子に荷重を与えるローラーは、円柱状であり、ステンレス製のローラーであってもよい。 The roller that applies a load to the water-absorbent resin particles adhering to the adhesive surface is cylindrical and may be a stainless steel roller.
 上記方法において吸水性樹脂粒子の上に載せられるティッシュペーパーを、吸水性樹脂粒子が付着していない粘着面に載せ、その状態で上記と同様の方法でティッシュペーパー表面の摩擦係数を測定したときに、平均摩擦係数MIUが0.21±0.10で、摩擦係数の変動MMDが0.028±0.02であってもよい。ティッシュペーパーの単位面積当たりの質量は、16±2g/mであってもよい。ティッシュペーパーの厚みは、0.12±0.02mmであってもよい。 When the tissue paper placed on the water-absorbent resin particles in the above method is placed on the adhesive surface to which the water-absorbent resin particles are not attached, and the friction coefficient of the surface of the tissue paper is measured in the same state as above. The average friction coefficient MIU may be 0.21 ± 0.10, and the variation MMD of the friction coefficient may be 0.028 ± 0.02. The mass per unit area of the tissue paper may be 16 ± 2 g / m 2 . The thickness of the tissue paper may be 0.12 ± 0.02 mm.
 プローブは、例えば、直径0.5mmの10本のピアノ線を有し、これらピアノ線が一定の方向に引き揃えられていてもよい。ピアノ線を接触子として有するプローブによってティッシュペーパーに印加される荷重は、測定が適切に行われるように適宜調整される。この荷重は例えば50gfであってもよい。プローブの移動速度は、例えば10mm/秒であってもよい。プローブの移動距離(摩擦係数が測定される部分の長さ)は、20mm以上であればよく、30mm以下であってもよい。プローブを備える測定装置として、例えば、カトーテック社製の摩擦感テスター、KES-SE-STP(商品名)を用いることができる。 The probe may have, for example, 10 piano wires having a diameter of 0.5 mm, and these piano wires may be aligned in a certain direction. The load applied to the tissue paper by the probe with the piano wire as a contact is appropriately adjusted for proper measurement. This load may be, for example, 50 gf. The moving speed of the probe may be, for example, 10 mm / sec. The moving distance of the probe (the length of the portion where the friction coefficient is measured) may be 20 mm or more, and may be 30 mm or less. As the measuring device provided with the probe, for example, a friction tester manufactured by Kato Tech Co., Ltd., KES-SE-STP (trade name) can be used.
 上記方法により測定される摩擦係数の変動は、吸収性物品の吸収性能の観点から、0.09以上、又は0.10以上であってもよい。吸収性物品の肌触りの観点から、摩擦係数の変動が0.19以下、又は0.18以下であってもよい。上記方法により測定される平均摩擦係数は、0.30以上であってもよく、0.50以下、又は0.40以下であってもよい。 The fluctuation of the friction coefficient measured by the above method may be 0.09 or more or 0.10 or more from the viewpoint of the absorption performance of the absorbent article. From the viewpoint of the feel of the absorbent article, the fluctuation of the coefficient of friction may be 0.19 or less, or 0.18 or less. The average coefficient of friction measured by the above method may be 0.30 or more, 0.50 or less, or 0.40 or less.
 吸水性樹脂粒子が生理食塩水を吸収したときの保水量(以下、単に「保水量」ということがある。)は、35g/g以上であってもよい。これにより、吸水性樹脂粒子の量が少ない薄い吸収層であっても、吸収性物品の十分な保水量を確保し易い。同様の観点から、保水量が38g/g以上、又は40g/g以上であってもよい。保水量は、55g/g以下、又は50g/g以下であってもよい。吸水性樹脂粒子の吸水量は、後述する実施例に記載の方法により測定される。 The water retention amount when the water-absorbent resin particles absorb the physiological saline (hereinafter, may be simply referred to as "water retention amount") may be 35 g / g or more. As a result, it is easy to secure a sufficient amount of water retention of the absorbent article even in a thin absorbent layer having a small amount of water-absorbent resin particles. From the same viewpoint, the water retention amount may be 38 g / g or more, or 40 g / g or more. The water retention amount may be 55 g / g or less, or 50 g / g or less. The water absorption amount of the water-absorbent resin particles is measured by the method described in Examples described later.
 吸水性樹脂粒子の2.07kPaの荷重下で生理食塩水を吸収したときの吸水量(以下、単に「荷重下吸水量」ということがある。)が、15mL/g以上であってもよい。荷重下吸水量が大きいと、吸収性物品の装着者の荷重を受けた状態でも、高い吸水能力を維持することができる。同様の観点から、吸水性樹脂粒子の荷重下吸水量が、18mL/g以上、20mL/g以上、25mL/g以上、又は30mL/g以上であってもよく、50mL/g以下、又は45mL/g以下であってもよい。荷重下吸水量は、後述する実施例に記載の方法により測定される。 The amount of water absorption when the physiological saline is absorbed under a load of 2.07 kPa of the water-absorbent resin particles (hereinafter, may be simply referred to as "the amount of water absorption under load") may be 15 mL / g or more. When the amount of water absorption under load is large, high water absorption capacity can be maintained even under the load of the wearer of the absorbent article. From the same viewpoint, the amount of water absorption of the water-absorbent resin particles under load may be 18 mL / g or more, 20 mL / g or more, 25 mL / g or more, or 30 mL / g or more, 50 mL / g or less, or 45 mL / g. It may be less than or equal to g. The amount of water absorption under load is measured by the method described in Examples described later.
 吸水性樹脂粒子の形状は、例えば略球状、破砕状、又は顆粒状であってもよい。本実施形態に係る吸水性樹脂粒子は、各々が単一の粒子からなる形態のほかに、微細な粒子(一次粒子)が凝集した形態(二次粒子)であってもよい。吸水性樹脂粒子の中位粒子径は、250~850μm、300~700μm、350~650μm、400~600μm、又は、450~550μmであってよい。吸水性樹脂粒子は、後述する製造方法により得られた時点で所望の粒度分布を有していてよいが、篩による分級を用いた粒度調整等の操作を行うことにより粒度分布を調整してもよい。 The shape of the water-absorbent resin particles may be, for example, substantially spherical, crushed, or granular. The water-absorbent resin particles according to the present embodiment may be in a form in which fine particles (primary particles) are aggregated (secondary particles) in addition to a form in which each is composed of a single particle. The medium particle size of the water-absorbent resin particles may be 250 to 850 μm, 300 to 700 μm, 350 to 650 μm, 400 to 600 μm, or 450 to 550 μm. The water-absorbent resin particles may have a desired particle size distribution at the time of being obtained by the production method described later, but the particle size distribution may be adjusted by performing an operation such as particle size adjustment using classification by a sieve. Good.
 吸水性樹脂粒子は、例えば、エチレン性不飽和単量体を含む単量体の重合により形成された架橋重合体を含むことができる。架橋重合体は、エチレン性不飽和単量体に由来する単量体単位を有する。 The water-absorbent resin particles can include, for example, a crosslinked polymer formed by polymerizing a monomer containing an ethylenically unsaturated monomer. The crosslinked polymer has a monomer unit derived from an ethylenically unsaturated monomer.
 吸水性樹脂粒子は、エチレン性不飽和単量体を含む単量体を重合させる工程を含む方法により、製造することができる。重合方法としては、逆相懸濁重合法、水溶液重合法、バルク重合法、沈殿重合法等が挙げられる。得られる吸水性樹脂粒子の良好な吸水特性の確保、及び、重合反応の制御が容易である観点から、逆相懸濁重合法又は水溶液重合法を適用してもよい。以下においては、エチレン性不飽和単量体を重合させる方法として、逆相懸濁重合法を例にとって説明する。 The water-absorbent resin particles can be produced by a method including a step of polymerizing a monomer containing an ethylenically unsaturated monomer. Examples of the polymerization method include a reverse phase suspension polymerization method, an aqueous solution polymerization method, a bulk polymerization method, and a precipitation polymerization method. From the viewpoint of ensuring good water absorption characteristics of the obtained water-absorbent resin particles and facilitating control of the polymerization reaction, a reverse phase suspension polymerization method or an aqueous solution polymerization method may be applied. In the following, a reverse phase suspension polymerization method will be described as an example as a method for polymerizing an ethylenically unsaturated monomer.
 エチレン性不飽和単量体は水溶性であってもよい。水溶性エチレン性不飽和単量体の例としては、(メタ)アクリル酸及びその塩、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸及びその塩、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリルアミド等が挙げられる。エチレン性不飽和単量体がアミノ基を有する場合、当該アミノ基は4級化されていてもよい。エチレン性不飽和単量体は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。上述の単量体のカルボキシル基、アミノ基等の官能基は、後述する表面架橋の工程において架橋が可能な官能基として機能し得る。 The ethylenically unsaturated monomer may be water-soluble. Examples of water-soluble ethylenically unsaturated monomers include (meth) acrylic acid and its salts, 2- (meth) acrylamide-2-methylpropanesulfonic acid and its salts, (meth) acrylamide, N, N-dimethyl. (Meta) acrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, polyethylene glycol mono (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-diethylaminopropyl (meth) Examples thereof include acrylate and diethylaminopropyl (meth) acrylamide. When the ethylenically unsaturated monomer has an amino group, the amino group may be quaternized. The ethylenically unsaturated monomer may be used alone or in combination of two or more. Functional groups such as the carboxyl group and amino group of the above-mentioned monomers can function as functional groups capable of cross-linking in the surface cross-linking step described later.
 工業的に入手が容易である観点から、エチレン性不飽和単量体は、(メタ)アクリル酸及びその塩、アクリルアミド、メタクリルアミド、並びに、N,N-ジメチルアクリルアミドからなる群より選ばれる少なくとも1種の化合物を含んでいてもよい。エチレン性不飽和単量体が、(メタ)アクリル酸及びその塩、並びに、アクリルアミドからなる群より選ばれる少なくとも1種の化合物を含んでいてもよい。吸水特性を更に高める観点から、エチレン性不飽和単量体は、(メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも1種の化合物を含んでもよい。 From the viewpoint of industrial availability, the ethylenically unsaturated monomer is at least one selected from the group consisting of (meth) acrylic acid and salts thereof, acrylamide, methacrylamide, and N, N-dimethylacrylamide. It may contain a compound of the species. The ethylenically unsaturated monomer may contain (meth) acrylic acid and a salt thereof, and at least one compound selected from the group consisting of acrylamide. From the viewpoint of further enhancing the water absorption property, the ethylenically unsaturated monomer may contain at least one compound selected from the group consisting of (meth) acrylic acid and salts thereof.
 エチレン性不飽和単量体は、水溶液として重合反応に用いることができる。エチレン性不飽和単量体を含む水溶液(以下、単に「単量体水溶液」という)におけるエチレン性不飽和単量体の濃度は、20質量%以上飽和濃度以下、25~70質量%、又は30~55質量%であってもよい。水溶液において使用される水としては、水道水、蒸留水、イオン交換水等が挙げられる。 The ethylenically unsaturated monomer can be used in the polymerization reaction as an aqueous solution. The concentration of the ethylenically unsaturated monomer in the aqueous solution containing the ethylenically unsaturated monomer (hereinafter, simply referred to as "monomer aqueous solution") is 20% by mass or more and the saturation concentration or less, 25 to 70% by mass, or 30. It may be up to 55% by mass. Examples of the water used in the aqueous solution include tap water, distilled water, ion-exchanged water and the like.
 吸水性樹脂粒子を得るための単量体として、上述のエチレン性不飽和単量体以外の単量体が使用されてもよい。このような単量体は、例えば、上述のエチレン性不飽和単量体を含む水溶液に混合して用いることができる。エチレン性不飽和単量体の使用量は、単量体全量(吸水性樹脂粒子を得るための単量体全量。例えば、架橋重合体の構造単位を与える単量体の全量。以下同様。)に対して70~100モル%であってよく、80~100モル%、90~100モル%、95~100モル%、又は100モル%であってもよい。(メタ)アクリル酸及びその塩の割合が単量体全量に対して70~100モル%であってよく、80~100モル%、90~100モル%、95~100モル%、又は100モル%であってもよい。「(メタ)アクリル酸及びその塩の割合」は、(メタ)アクリル酸及びその塩の合計量の割合を意味する。 As the monomer for obtaining the water-absorbent resin particles, a monomer other than the above-mentioned ethylenically unsaturated monomer may be used. Such a monomer can be used, for example, by being mixed with an aqueous solution containing the above-mentioned ethylenically unsaturated monomer. The amount of the ethylenically unsaturated monomer used is the total amount of the monomers (the total amount of the monomers for obtaining the water-absorbent resin particles. For example, the total amount of the monomers giving the structural unit of the crosslinked polymer. The same shall apply hereinafter). It may be 70 to 100 mol%, 80 to 100 mol%, 90 to 100 mol%, 95 to 100 mol%, or 100 mol%. The ratio of (meth) acrylic acid and its salt may be 70 to 100 mol%, 80 to 100 mol%, 90 to 100 mol%, 95 to 100 mol%, or 100 mol% with respect to the total amount of the monomer. It may be. "Ratio of (meth) acrylic acid and its salt" means the ratio of the total amount of (meth) acrylic acid and its salt.
 エチレン性不飽和単量体が酸基を有する場合、その酸基をアルカリ性中和剤によって中和してから、単量体溶液を重合反応に用いてもよい。エチレン性不飽和単量体における、アルカリ性中和剤による中和度は、得られる吸水性樹脂粒子の浸透圧を高くし、吸水特性(吸水量等)を更に高める観点から、エチレン性不飽和単量体中の酸性基の10~100モル%、50~90モル%、又は60~80モル%であってもよい。アルカリ性中和剤としては、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム等のアルカリ金属塩;アンモニアなどが挙げられる。アルカリ性中和剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。アルカリ性中和剤は、中和操作を簡便にするために水溶液の状態で用いられてもよい。エチレン性不飽和単量体の酸基の中和は、例えば、水酸化ナトリウム、水酸化カリウム等の水溶液を上述の単量体水溶液に滴下して混合することにより行うことができる。 When the ethylenically unsaturated monomer has an acid group, the acid group may be neutralized with an alkaline neutralizer, and then the monomer solution may be used in the polymerization reaction. The degree of neutralization of an ethylenically unsaturated monomer by an alkaline neutralizing agent increases the osmotic pressure of the obtained water-absorbent resin particles and further enhances the water absorption characteristics (water absorption amount, etc.). It may be 10-100 mol%, 50-90 mol%, or 60-80 mol% of the acidic group in the body. Examples of the alkaline neutralizing agent include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogencarbonate, potassium hydroxide and potassium carbonate; ammonia and the like. The alkaline neutralizer may be used alone or in combination of two or more. The alkaline neutralizer may be used in the form of an aqueous solution to simplify the neutralization operation. Neutralization of the acid group of the ethylenically unsaturated monomer can be performed, for example, by adding an aqueous solution of sodium hydroxide, potassium hydroxide or the like to the above-mentioned monomer aqueous solution and mixing them.
 逆相懸濁重合法においては、界面活性剤の存在下、炭化水素分散媒中で単量体水溶液を分散し、ラジカル重合開始剤等を用いてエチレン性不飽和単量体の重合を行うことができる。ラジカル重合開始剤としては、水溶性ラジカル重合開始剤を用いることができる。 In the reverse phase suspension polymerization method, the monomer aqueous solution is dispersed in a hydrocarbon dispersion medium in the presence of a surfactant, and the ethylenically unsaturated monomer is polymerized using a radical polymerization initiator or the like. Can be done. As the radical polymerization initiator, a water-soluble radical polymerization initiator can be used.
 界面活性剤としては、ノニオン系界面活性剤、アニオン系界面活性剤等が挙げられる。ノニオン系界面活性剤としては、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピルアルキルエーテル、ポリエチレングリコール脂肪酸エステル等が挙げられる。アニオン系界面活性剤としては、脂肪酸塩、アルキルベンゼンスルホン酸塩、アルキルメチルタウリン酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンアルキルエーテルスルホン酸塩、ポリオキシエチレンアルキルエーテルのリン酸エステル、及びポリオキシエチレンアルキルアリルエーテルのリン酸エステル等が挙げられる。界面活性剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。 Examples of the surfactant include nonionic surfactants and anionic surfactants. Nonionic surfactants include sorbitan fatty acid ester, polyglycerin fatty acid ester, sucrose fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene glycerin fatty acid ester, sorbitol fatty acid ester, polyoxyethylene sorbitol fatty acid ester, and polyoxyethylene. Alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene castor oil, polyoxyethylene hydrogenated castor oil, alkylallyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene polyoxypropylene block copolymer, polyoxyethylene polyoxypropyl alkyl ether, Examples thereof include polyethylene glycol fatty acid ester. Anionic surfactants include fatty acid salts, alkylbenzene sulfonates, alkylmethyl taurates, polyoxyethylene alkylphenyl ether sulfates, polyoxyethylene alkyl ether sulfonates, and polyoxyethylene alkyl ether phosphates. , And the phosphate ester of polyoxyethylene alkyl allyl ether and the like. The surfactant may be used alone or in combination of two or more.
 W/O型逆相懸濁の状態が良好であり、好適な粒子径を有する吸水性樹脂粒子が得られやすく、工業的に入手が容易である観点から、界面活性剤は、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル及びショ糖脂肪酸エステルからなる群より選ばれる少なくとも1種の化合物を含んでもよい。得られる吸水性樹脂粒子の吸水特性が向上しやすい観点から、界面活性剤は、ショ糖脂肪酸エステル(例えばショ糖ステアリン酸エステル)を含んでもよい。 From the viewpoint that the W / O type reverse phase suspension is in a good state, water-absorbent resin particles having a suitable particle size can be easily obtained, and industrially available, the surfactant is a sorbitan fatty acid ester. It may contain at least one compound selected from the group consisting of polyglycerin fatty acid ester and sucrose fatty acid ester. From the viewpoint of easily improving the water absorption characteristics of the obtained water-absorbent resin particles, the surfactant may contain a sucrose fatty acid ester (for example, sucrose stearic acid ester).
 界面活性剤の量は、単量体水溶液100質量部に対して、0.05~10質量部、0.08~5質量部、又は0.1~3質量部であってもよい。 The amount of the surfactant may be 0.05 to 10 parts by mass, 0.08 to 5 parts by mass, or 0.1 to 3 parts by mass with respect to 100 parts by mass of the monomer aqueous solution.
 逆相懸濁重合では、上述の界面活性剤と共に高分子系分散剤を併せて用いてもよい。高分子系分散剤としては、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸変性EPDM(エチレン・プロピレン・ジエン・ターポリマー)、無水マレイン酸変性ポリブタジエン、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、無水マレイン酸・ブタジエン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、酸化型エチレン・プロピレン共重合体、エチレン・アクリル酸共重合体、エチルセルロース、エチルヒドロキシエチルセルロース等が挙げられる。高分子系分散剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。高分子系分散剤は、単量体の分散安定性に優れる観点から、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、及び、酸化型エチレン・プロピレン共重合体からなる群より選ばれる少なくとも一種であってもよい。 In reverse phase suspension polymerization, a polymer-based dispersant may be used in combination with the above-mentioned surfactant. Examples of the polymer dispersant include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, maleic anhydride-modified EPDM (ethylene / propylene / diene / terpolymer), and maleic anhydride. Modified polybutadiene, maleic anhydride / ethylene copolymer, maleic anhydride / propylene copolymer, maleic anhydride / ethylene / propylene copolymer, maleic anhydride / butadiene copolymer, polyethylene, polypropylene, ethylene / propylene copolymer Examples thereof include coalescence, oxidized polyethylene, oxidized polypropylene, oxidized ethylene / propylene copolymer, ethylene / acrylic acid copolymer, ethyl cellulose, ethyl hydroxyethyl cellulose and the like. The polymer-based dispersant may be used alone or in combination of two or more. From the viewpoint of excellent dispersion stability of the monomer, the polymer-based dispersant includes maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, and maleic anhydride / ethylene copolymer. , Maleic anhydride / propylene copolymer, maleic anhydride / ethylene / propylene copolymer, polyethylene, polypropylene, ethylene / propylene copolymer, oxidized polyethylene, oxidized polypropylene, and oxidized ethylene / propylene copolymer It may be at least one selected from the group consisting of.
 高分子系分散剤の量は、単量体水溶液100質量部に対して、0.05~10質量部、0.08~5質量部、又は0.1~3質量部であってもよい。 The amount of the polymer-based dispersant may be 0.05 to 10 parts by mass, 0.08 to 5 parts by mass, or 0.1 to 3 parts by mass with respect to 100 parts by mass of the monomer aqueous solution.
 炭化水素分散媒は、炭素数6~8の鎖状脂肪族炭化水素、及び、炭素数6~8の脂環式炭化水素からなる群より選ばれる少なくとも1種の化合物を含んでいてもよい。炭化水素分散媒としては、n-ヘキサン、n-ヘプタン、2-メチルヘキサン、3-メチルヘキサン、2,3-ジメチルペンタン、3-エチルペンタン、n-オクタン等の鎖状脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン、シクロペンタン、メチルシクロペンタン、trans-1,2-ジメチルシクロペンタン、cis-1,3-ジメチルシクロペンタン、trans-1,3-ジメチルシクロペンタン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素などが挙げられる。炭化水素分散媒は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。 The hydrocarbon dispersion medium may contain at least one compound selected from the group consisting of chain aliphatic hydrocarbons having 6 to 8 carbon atoms and alicyclic hydrocarbons having 6 to 8 carbon atoms. As the hydrocarbon dispersion medium, a chain aliphatic hydrocarbon such as n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane, n-octane; cyclohexane , Methylcyclohexane, cyclopentane, methylcyclopentane, trans-1,2-dimethylcyclopentane, cis-1,3-dimethylcyclopentane, trans-1,3-dimethylcyclopentane and other alicyclic hydrocarbons; benzene, Examples include aromatic hydrocarbons such as toluene and xylene. The hydrocarbon dispersion medium may be used alone or in combination of two or more.
 工業的に入手が容易であり、かつ、品質が安定している観点から、炭化水素分散媒は、n-ヘプタン及びシクロヘキサンからなる群より選ばれる少なくとも一種を含んでいてもよい。同様の観点から、上述の炭化水素分散媒の混合物としては、例えば、市販されているエクソールヘプタン(エクソンモービル社製:n-ヘプタン及び異性体の炭化水素75~85%含有)を用いてもよい。 From the viewpoint of being industrially easily available and having stable quality, the hydrocarbon dispersion medium may contain at least one selected from the group consisting of n-heptane and cyclohexane. From the same viewpoint, as the mixture of the above-mentioned hydrocarbon dispersion medium, for example, a commercially available exol heptane (manufactured by ExxonMobil: containing 75 to 85% of n-heptane and isomeric hydrocarbons) may be used. Good.
 炭化水素分散媒の量は、重合熱を適度に除去し、重合温度を制御しやすい観点から、単量体水溶液100質量部に対して、30~1000質量部、40~500質量部、又は50~300質量部であってもよい。炭化水素分散媒の量が30質量部以上であることにより、重合温度の制御が容易である傾向がある。炭化水素分散媒の量が1000質量部以下であることにより、重合の生産性が向上する傾向があり、経済的である。 The amount of the hydrocarbon dispersion medium is 30 to 1000 parts by mass, 40 to 500 parts by mass, or 50 parts by mass with respect to 100 parts by mass of the monomer aqueous solution from the viewpoint of appropriately removing the heat of polymerization and easily controlling the polymerization temperature. It may be up to 300 parts by mass. When the amount of the hydrocarbon dispersion medium is 30 parts by mass or more, the polymerization temperature tends to be easily controlled. When the amount of the hydrocarbon dispersion medium is 1000 parts by mass or less, the productivity of polymerization tends to be improved, which is economical.
 ラジカル重合開始剤は水溶性であってもよい。水溶性ラジカル重合開始剤の例としては、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩;メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート、過酸化水素等の過酸化物;2,2’-アゾビス(2-アミジノプロパン)2塩酸塩、2,2’-アゾビス[2-(N-フェニルアミジノ)プロパン]2塩酸塩、2,2’-アゾビス[2-(N-アリルアミジノ)プロパン]2塩酸塩、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]2塩酸塩、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}2塩酸塩、2,2’-アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド}、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド]、4,4’-アゾビス(4-シアノ吉草酸)等のアゾ化合物が挙げられる。ラジカル重合開始剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。ラジカル重合開始剤は、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]2塩酸塩、及び、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}2塩酸塩からなる群より選ばれる少なくとも一種であってもよい。 The radical polymerization initiator may be water-soluble. Examples of water-soluble radical polymerization initiators are persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate; methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, and t-butyl cumylper. Peroxides such as oxides, t-butylperoxyacetate, t-butylperoxyisobutyrate, t-butylperoxypivalate, hydrogen peroxide; 2,2'-azobis (2-amidinopropane) dihydrochloride , 2,2'-azobis [2- (N-phenylamidino) propane] dihydrochloride, 2,2'-azobis [2- (N-allylamidino) propane] dihydrochloride, 2,2'-azobis [ 2- (2-Imidazolin-2-yl) propane] 2 hydrochloride, 2,2'-azobis {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane} 2 hydrochloride, 2,2'-azobis {2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide}, 2,2'-azobis [2-methyl-N- (2-hydroxy) Ethyl) -propionamide], azo compounds such as 4,4'-azobis (4-cyanovaleric acid) can be mentioned. The radical polymerization initiator may be used alone or in combination of two or more. The radical polymerization initiators are potassium persulfate, ammonium persulfate, sodium persulfate, 2,2'-azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis [2- (2-imidazolin-2-yl). ) Propane] 2 hydrochloride and 2,2'-azobis {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane} 2 hydrochloride at least selected from the group. There may be.
 ラジカル重合開始剤の量は、エチレン性不飽和単量体1モルに対して0.00005~0.01モルであってよい。ラジカル重合開始剤の使用量が0.00005モル以上であると、重合反応に長時間を要さず、効率的である。ラジカル重合開始剤の量が0.01モル以下であると、急激な重合反応が起こることを抑制しやすい。 The amount of the radical polymerization initiator may be 0.00005 to 0.01 mol per 1 mol of the ethylenically unsaturated monomer. When the amount of the radical polymerization initiator used is 0.00005 mol or more, the polymerization reaction does not require a long time and is efficient. When the amount of the radical polymerization initiator is 0.01 mol or less, it is easy to suppress the occurrence of a rapid polymerization reaction.
 例示されたラジカル重合開始剤は、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第一鉄、L-アスコルビン酸等の還元剤と併用して、レドックス重合開始剤として用いることもできる。 The exemplified radical polymerization initiator can also be used as a redox polymerization initiator in combination with a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
 重合反応の際、単量体水溶液は、連鎖移動剤を含んでいてもよい。連鎖移動剤としては、次亜リン酸塩類、チオール類、チオール酸類、第2級アルコール類、アミン類等が挙げられる。 At the time of the polymerization reaction, the aqueous monomer solution may contain a chain transfer agent. Examples of the chain transfer agent include hypophosphates, thiols, thiolic acids, secondary alcohols, amines and the like.
 吸水性樹脂粒子の粒子径を制御するために、重合に用いる単量体水溶液は、増粘剤を含んでいてもよい。増粘剤としては、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、カルボキシメチルセルロース、ポリアクリル酸、ポリエチレングリコール、ポリアクリルアミド、ポリエチレンイミン、デキストリン、アルギン酸ナトリウム、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキサイド等が挙げられる。重合時の攪拌速度が同じであれば、単量体水溶液の粘度が高いほど、得られる粒子の中位粒子径は大きくなる傾向にある。 In order to control the particle size of the water-absorbent resin particles, the monomer aqueous solution used for polymerization may contain a thickener. Examples of the thickener include hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, carboxymethyl cellulose, polyacrylic acid, polyethylene glycol, polyacrylamide, polyethyleneimine, dextrin, sodium alginate, polyvinyl alcohol, polyvinylpyrrolidone, polyethylene oxide and the like. If the stirring speed at the time of polymerization is the same, the higher the viscosity of the aqueous monomer solution, the larger the medium particle size of the obtained particles tends to be.
 重合の際に自己架橋による架橋が生じるが、更に内部架橋剤を用いることで架橋を施してもよい。内部架橋剤を用いると、吸水性樹脂粒子の吸水特性を制御しやすい。内部架橋剤は、通常、重合反応の際に反応液に添加される。内部架橋剤としては、例えば、エチレングリコール、プロピレングリコール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類のジ又はトリ(メタ)アクリル酸エステル類;上述のポリオール類と不飽和酸(マレイン酸、フマール酸等)とを反応させて得られる不飽和ポリエステル類;N,N’-メチレンビス(メタ)アクリルアミド等のビス(メタ)アクリルアミド類;ポリエポキシドと(メタ)アクリル酸とを反応させて得られるジ又はトリ(メタ)アクリル酸エステル類;ポリイソシアネート(トリレンジイソシアネート、ヘキサメチレンジイソシアネート等)と(メタ)アクリル酸ヒドロキシエチルとを反応させて得られるジ(メタ)アクリル酸カルバミルエステル類;アリル化澱粉、アリル化セルロース、ジアリルフタレート、N,N’,N”-トリアリルイソシアヌレート、ジビニルベンゼン等の,重合性不飽和基を2個以上有する化合物;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロロヒドリン、エピブロムヒドリン、α-メチルエピクロロヒドリン等のハロエポキシ化合物;イソシアネート化合物(2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等)などの、反応性官能基を2個以上有する化合物が挙げられる。内部架橋剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。内部架橋剤としては、ポリグリシジル化合物であってもよく、ジグリシジルエーテル化合物であってもよい。内部架橋剤が、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、及び、(ポリ)グリセリンジグリシジルエーテルからなる群より選ばれる少なくとも一種を含んでもよい。 Cross-linking occurs by self-cross-linking during polymerization, but cross-linking may be performed by further using an internal cross-linking agent. When an internal cross-linking agent is used, it is easy to control the water absorption characteristics of the water-absorbent resin particles. The internal cross-linking agent is usually added to the reaction solution during the polymerization reaction. Examples of the internal cross-linking agent include di or tri (meth) acrylic acid esters of polyols such as ethylene glycol, propylene glycol, trimethylpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol and polyglycerin; Unsaturated polyesters obtained by reacting polyols with unsaturated acids (maleic acid, fumaric acid, etc.); bis (meth) acrylamides such as N, N'-methylenebis (meth) acrylamide; polyepoxides and (meth) Di or tri (meth) acrylic acid esters obtained by reacting with acrylic acid; di (meth) obtained by reacting polyisocyanate (tolylene diisocyanate, hexamethylene diisocyanate, etc.) with hydroxyethyl (meth) acrylate. ) Acrylic acid carbamil esters; compounds having two or more polymerizable unsaturated groups such as allylated starch, allylated cellulose, diallyl phthalate, N, N', N "-triallyl isocyanurate, divinylbenzene; Poly such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, polyglycerol polyglycidyl ether, etc. Glycidyl compounds; haloepoxy compounds such as epichlorohydrin, epibromhydrin, α-methylepichlorohydrin; 2 reactive functional groups such as isocyanate compounds (2,4-tolylene diisocyanate, hexamethylene diisocyanate, etc.) Examples thereof include compounds having more than one. The internal cross-linking agent may be used alone or in combination of two or more. The internal cross-linking agent may be a polyglycidyl compound or diglycidyl. It may be an ether compound. The internal cross-linking agent comprises at least one selected from the group consisting of (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether. It may be.
 内部架橋剤の量は、得られる重合体が適度に架橋されることにより水溶性の性質が抑制され、充分な吸水量が得られやすい観点から、エチレン性不飽和単量体1モル当たり、0ミリモル以上、0.01ミリモル以上、0.015ミリモル以上、又は0.020ミリモル以上であってもよく、0.1モル以下であってもよい。 The amount of the internal cross-linking agent is 0 per mol of the ethylenically unsaturated monomer from the viewpoint that the water-soluble property is suppressed by appropriately cross-linking the obtained polymer and a sufficient amount of water absorption can be easily obtained. It may be mmol or more, 0.01 mmol or more, 0.015 mmol or more, 0.020 mmol or more, or 0.1 mol or less.
 エチレン性不飽和単量体、ラジカル重合開始剤、必要に応じて内部架橋剤等を含む水相と、炭化水素系分散剤と必要に応じて界面活性剤、高分子系分散剤等を含む油相を混合した状態において攪拌下で加熱し、油中水系において逆相懸濁重合を行うことができる。 An aqueous phase containing an ethylenically unsaturated monomer, a radical polymerization initiator, an internal cross-linking agent, etc., if necessary, and an oil containing a hydrocarbon-based dispersant, a surfactant, a polymer-based dispersant, etc., if necessary. Reversed phase suspension polymerization can be carried out in an aqueous system in oil by heating with stirring in a state where the phases are mixed.
 逆相懸濁重合を行う際には、界面活性剤(必要に応じて更に、高分子系分散剤)の存在下で、エチレン性不飽和単量体を含む単量体水溶液を炭化水素分散媒に分散させる。このとき、重合反応を開始する前であれば、界面活性剤、高分子系分散剤等の添加時期は、単量体水溶液の添加の前後どちらであってもよい。 When performing reverse phase suspension polymerization, a monomer aqueous solution containing an ethylenically unsaturated monomer is used as a hydrocarbon dispersion medium in the presence of a surfactant (and, if necessary, a polymer-based dispersant). Disperse in. At this time, before the start of the polymerization reaction, the timing of adding the surfactant, the polymer-based dispersant, etc. may be either before or after the addition of the monomer aqueous solution.
 得られる吸水性樹脂に残存する炭化水素分散媒の量を低減しやすい観点から、高分子系分散剤を分散させた炭化水素分散媒に単量体水溶液を分散させた後に界面活性剤を更に分散させてから重合を行ってもよい。 From the viewpoint of easily reducing the amount of the hydrocarbon dispersion medium remaining in the obtained water-absorbent resin, the monomer aqueous solution is dispersed in the hydrocarbon dispersion medium in which the polymer-based dispersant is dispersed, and then the surfactant is further dispersed. It may be allowed to carry out polymerization.
 逆相懸濁重合は、1段、又は、2段以上の多段で行うことができる。逆相懸濁重合は、生産性を高める観点から、2段又は3段で行ってもよい。 Reverse phase suspension polymerization can be carried out in one stage or in multiple stages of two or more stages. Reversed phase suspension polymerization may be carried out in two or three stages from the viewpoint of increasing productivity.
 2段以上の多段で逆相懸濁重合を行う場合、1段目の逆相懸濁重合を行った後、1段目の重合反応で得られた反応混合物にエチレン性不飽和単量体を添加して混合し、1段目と同様の方法で2段目以降の逆相懸濁重合を行えばよい。2段目以降の各段における逆相懸濁重合では、エチレン性不飽和単量体の他に、上述のラジカル重合開始剤を、2段目以降の各段における逆相懸濁重合の際に添加するエチレン性不飽和単量体の量を基準として、上述のエチレン性不飽和単量体に対する各成分のモル比の範囲内で添加して逆相懸濁重合を行ってもよい。2段目以降の各段における逆相懸濁重合では、必要に応じて内部架橋剤を用いてもよい。内部架橋剤を用いる場合は、各段に供するエチレン性不飽和単量体の量を基準として、上述のエチレン性不飽和単量体に対する各成分のモル比の範囲内で添加して逆相懸濁重合を行ってもよい。 When reverse phase suspension polymerization is carried out in two or more stages, an ethylenically unsaturated monomer is added to the reaction mixture obtained in the first step polymerization reaction after the first step reverse phase suspension polymerization is carried out. It may be added and mixed, and the reverse phase suspension polymerization of the second and subsequent steps may be carried out in the same manner as in the first step. In the reverse phase suspension polymerization in each stage of the second and subsequent stages, in addition to the ethylenically unsaturated monomer, the above-mentioned radical polymerization initiator is used in the reverse phase suspension polymerization in each stage of the second and subsequent stages. Based on the amount of the ethylenically unsaturated monomer to be added, it may be added within the range of the molar ratio of each component to the above-mentioned ethylenically unsaturated monomer to carry out reverse phase suspension polymerization. In the reverse phase suspension polymerization in each stage after the second stage, an internal cross-linking agent may be used if necessary. When an internal cross-linking agent is used, it is added within the range of the molar ratio of each component to the above-mentioned ethylenically unsaturated monomer based on the amount of the ethylenically unsaturated monomer provided in each stage, and the suspension is reversed. Muddy polymerization may be carried out.
 重合反応の温度は、使用するラジカル重合開始剤によって異なるが、重合を迅速に進行させ、重合時間を短くすることにより、経済性を高めると共に、容易に重合熱を除去して円滑に反応を行う観点から、20~150℃、又は40~120℃であってもよい。反応時間は、通常、0.5~4時間である。重合反応の終了は、例えば、反応系内の温度上昇の停止により確認することができる。これにより、エチレン性不飽和単量体の重合体は、通常、含水ゲル状重合体の状態で得られる。 The temperature of the polymerization reaction varies depending on the radical polymerization initiator used, but by advancing the polymerization rapidly and shortening the polymerization time, the efficiency is improved and the heat of polymerization is easily removed to carry out the reaction smoothly. From the viewpoint, it may be 20 to 150 ° C. or 40 to 120 ° C. The reaction time is usually 0.5-4 hours. The completion of the polymerization reaction can be confirmed, for example, by stopping the temperature rise in the reaction system. As a result, the polymer of the ethylenically unsaturated monomer is usually obtained in the state of a hydrogel-like polymer.
 重合後、得られた含水ゲル状重合体に架橋剤を添加して加熱することで、重合後架橋を施してもよい。重合後架橋を行なうことで含水ゲル状重合体の架橋度を高め、それにより吸水性樹脂粒子の吸水特性を更に向上させることができる。 After polymerization, cross-linking may be performed after polymerization by adding a cross-linking agent to the obtained hydrogel polymer and heating it. By performing cross-linking after polymerization, the degree of cross-linking of the hydrogel polymer can be increased, whereby the water-absorbing characteristics of the water-absorbent resin particles can be further improved.
 重合後架橋を行うための架橋剤としては、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、及び(ポリ)グリセリンジグリシジルエーテル等の2個以上のエポキシ基を有する化合物;エピクロルヒドリン、エピブロムヒドリン、及びα-メチルエピクロルヒドリン等のハロエポキシ化合物;2,4-トリレンジイソシアネート、及びヘキサメチレンジイソシアネート等の2個以上のイソシアネート基を有する化合物;1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;エチレンカーボネート等のカーボネート化合物;ビス[N,N-ジ(β-ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物等が挙げられる。重合後架橋のための架橋剤が、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、及びポリグリセロールポリグリシジルエーテル等のポリグリシジル化合物であってもよい。これらの架橋剤は、単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。 Examples of the cross-linking agent for performing post-polymerization cross-linking include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; Compounds having two or more epoxy groups such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether; epichlorohydrin, epibromhydrin, α-methylepicrolhydrin, etc. Haloepoxy compounds; compounds having two or more isocyanate groups such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; oxazoline compounds such as 1,2-ethylenebisoxazoline; carbonate compounds such as ethylenecarbonate; bis [N , N-di (β-hydroxyethyl)] hydroxyalkylamide compounds such as adipamide can be mentioned. Cross-linking agents for post-polymerization cross-linking are (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, and polyglycerol polyglycidyl ether. It may be a polyglycidyl compound such as. These cross-linking agents may be used alone or in combination of two or more.
 重合後架橋に用いられる架橋剤の量は、得られる含水ゲル状重合体が適度に架橋されることにより好適な吸水特性を示すようにする観点から、水溶性エチレン性不飽和単量体1モル当たり、0~0.03モル、0~0.01モル、又は0.00001~0.005モルであってもよい。 The amount of the cross-linking agent used for post-polymerization cross-linking is 1 mol of the water-soluble ethylenically unsaturated monomer from the viewpoint of appropriately cross-linking the obtained hydrogel-like polymer to exhibit suitable water absorption characteristics. It may be 0 to 0.03 mol, 0 to 0.01 mol, or 0.00001 to 0.005 mol.
 重合後架橋のための架橋剤は、エチレン性不飽和単量体の重合反応後に反応液に添加される。多段重合の場合、多段重合後に重合後架橋のための架橋剤を添加してもよい。重合時および重合後の発熱、工程遅延による滞留、架橋剤添加時の系の開放、及び架橋剤添加に伴う水の添加等による水分の変動を考慮して、重合後架橋のための架橋剤は、含水率(後述)の観点から、[重合直後の含水率±3質量%]の領域で添加してもよい。 The cross-linking agent for post-polymerization cross-linking is added to the reaction solution after the polymerization reaction of the ethylenically unsaturated monomer. In the case of multi-stage polymerization, a cross-linking agent for post-polymerization cross-linking may be added after the multi-stage polymerization. Considering the fluctuation of water content due to heat generation during and after polymerization, retention due to process delay, opening of the system when adding a cross-linking agent, and addition of water due to addition of a cross-linking agent, the cross-linking agent for post-polymerization cross-linking is From the viewpoint of water content (described later), it may be added in the region of [water content immediately after polymerization ± 3% by mass].
 引き続き、得られた含水ゲル状重合体から水分が除去される。水分を除去する乾燥により、エチレン性不飽和単量体の重合体を含む重合体粒子が得られる。乾燥方法としては、例えば、(a)含水ゲル状重合体が炭化水素分散媒に分散した状態で共沸蒸留により水分を除去する方法、(b)デカンテーションにより含水ゲル状重合体を取り出し、減圧乾燥する方法、(c)フィルターにより含水ゲル状重合体をろ別し、減圧乾燥する方法等が挙げられる。 Subsequently, water is removed from the obtained hydrogel polymer. Drying to remove water gives polymer particles containing a polymer of ethylenically unsaturated monomers. Examples of the drying method include (a) a method of removing water by co-boiling distillation in a state where the hydrogel polymer is dispersed in a hydrocarbon dispersion medium, and (b) taking out the hydrogel polymer by decantation and reducing the pressure. Examples thereof include a method of drying, and (c) a method of filtering the hydrogel polymer by a filter and drying under reduced pressure.
 重合反応時の攪拌機の回転数を調整することによって、あるいは、重合反応後又は乾燥の初期において凝集剤を系内に添加することによって吸水性樹脂粒子の粒子径を調整することができる。凝集剤を添加することにより、得られる吸水性樹脂粒子の粒子径を大きくすることができる。凝集剤としては、無機凝集剤を用いることができる。無機凝集剤(例えば粉末状無機凝集剤)としては、シリカ、ゼオライト、ベントナイト、酸化アルミニウム、タルク、二酸化チタン、カオリン、クレイ、ハイドロタルサイト等が挙げられる。凝集効果に優れる観点から、凝集剤が、シリカ、酸化アルミニウム、タルク及びカオリンからなる群より選ばれる少なくとも一種であってもよい。 The particle size of the water-absorbent resin particles can be adjusted by adjusting the rotation speed of the stirrer during the polymerization reaction, or by adding a flocculant into the system after the polymerization reaction or in the early stage of drying. By adding a flocculant, the particle size of the obtained water-absorbent resin particles can be increased. As the flocculant, an inorganic flocculant can be used. Examples of the inorganic flocculant (for example, powdered inorganic flocculant) include silica, zeolite, bentonite, aluminum oxide, talc, titanium dioxide, kaolin, clay, hydrotalcite and the like. From the viewpoint of excellent aggregating effect, the aggregating agent may be at least one selected from the group consisting of silica, aluminum oxide, talc and kaolin.
 逆相懸濁重合において、重合で用いられるものと同種の炭化水素分散媒又は水に凝集剤を予め分散させてから、これを、攪拌下で、含水ゲル状重合体を含む炭化水素分散媒中に混合してもよい。 In reverse phase suspension polymerization, a coagulant is previously dispersed in a hydrocarbon dispersion medium of the same type as that used in the polymerization or water, and then this is placed in a hydrocarbon dispersion medium containing a hydrogel polymer under stirring. May be mixed with.
 凝集剤の量は、重合に使用するエチレン性不飽和単量体100質量部に対して、0.001~1質量部、0.005~0.5質量部、又は0.01~0.2質量部であってもよい。凝集剤の量がこれら範囲内であることによって、目的とする粒度分布を有する吸水性樹脂粒子が得られやすい。 The amount of the flocculant is 0.001 to 1 part by mass, 0.005 to 0.5 part by mass, or 0.01 to 0.2 with respect to 100 parts by mass of the ethylenically unsaturated monomer used for the polymerization. It may be a mass part. When the amount of the flocculant is within these ranges, it is easy to obtain water-absorbent resin particles having a desired particle size distribution.
 重合反応は、攪拌翼を有する各種攪拌機を用いて行うことができる。攪拌翼としては、平板翼、格子翼、パドル翼、プロペラ翼、アンカー翼、タービン翼、ファウドラー翼、リボン翼、フルゾーン翼、マックスブレンド翼等を用いることができる。平板翼は、軸(攪拌軸)と、軸の周囲に配置された平板部(攪拌部)とを有している。さらに、平板部は、スリット等を有していてもよい。攪拌翼として平板翼を用いると、形成される重合体粒子における重合体の架橋の均一性が高くなる傾向がある。架橋の均一性が高い重合体粒子を含む吸水性樹脂粒子は、適度に大きい摩擦係数の変動MMDを示す樹脂層を形成し易い傾向がある。 The polymerization reaction can be carried out using various stirrers having stirring blades. As the stirring blade, a flat plate blade, a lattice blade, a paddle blade, a propeller blade, an anchor blade, a turbine blade, a Faudler blade, a ribbon blade, a full zone blade, a max blend blade and the like can be used. The flat plate blade has a shaft (stirring shaft) and a flat plate portion (stirring portion) arranged around the shaft. Further, the flat plate portion may have a slit or the like. When a flat plate blade is used as the stirring blade, the uniformity of cross-linking of the polymer in the formed polymer particles tends to be high. The water-absorbent resin particles containing the polymer particles having high cross-linking uniformity tend to easily form a resin layer showing a moderately large variation in friction coefficient MMD.
 吸水性樹脂粒子の製造においては、乾燥工程又はそれ以降のいずれかの工程において、架橋剤を用いて含水ゲル状重合体の表面部分の架橋(表面架橋)が行われてもよい。表面架橋を行うことで、吸水性樹脂粒子の吸水特性を制御しやすい。表面架橋される含水ゲル状重合体の含水率が、5~50質量%、10~40質量%、又は15~35質量%であってもよい。含水ゲル状重合体の含水率(質量%)は、次の式で算出される。
含水率=[Ww/(Ww+Ws)]×100
 Ww:全重合工程の重合前の単量体水溶液に含まれる水分量から、乾燥工程により系外部に排出された水分量を差し引いた量に、凝集剤、表面架橋剤等を混合する際に必要に応じて用いられる水分量を加えることで算出される含水ゲル状重合体の水分量。
In the production of the water-absorbent resin particles, the surface portion of the hydrogel polymer may be crosslinked (surface crosslinked) using a crosslinking agent in any of the drying steps and subsequent steps. By performing surface cross-linking, it is easy to control the water absorption characteristics of the water-absorbent resin particles. The water content of the surface-crosslinked hydrogel polymer may be 5 to 50% by mass, 10 to 40% by mass, or 15 to 35% by mass. The water content (mass%) of the water-containing gel polymer is calculated by the following formula.
Moisture content = [Ww / (Ww + Ws)] x 100
Ww: Necessary when mixing a flocculant, a surface cross-linking agent, etc. to the amount obtained by subtracting the amount of water discharged to the outside of the system by the drying step from the amount of water contained in the monomer aqueous solution before polymerization in the entire polymerization step. The water content of the hydrogel polymer calculated by adding the water content used according to.
 Ws:含水ゲル状重合体を構成するエチレン性不飽和単量体、架橋剤、開始剤等の材料の仕込量から算出される固形分量。 Ws: The amount of solids calculated from the amount of materials such as ethylenically unsaturated monomers, cross-linking agents, and initiators that make up the hydrogel polymer.
 表面架橋を行うための架橋剤(表面架橋剤)としては、例えば、反応性官能基を2個以上有する化合物を挙げることができる。架橋剤の例としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル(ポリ)プロピレングリコールポリグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロロヒドリン、エピブロムヒドリン、α-メチルエピクロロヒドリン等のハロエポキシ化合物;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル-3-オキセタンエタノール等のオキセタン化合物;1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;エチレンカーボネート等のカーボネート化合物;ビス[N,N-ジ(β-ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物が挙げられる。表面架橋剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。表面架橋剤は、ポリグリシジル化合物であってもよく、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、及び、ポリグリセロールポリグリシジルエーテルからなる群より選ばれる少なくとも一種を含んでもよい。 Examples of the cross-linking agent (surface cross-linking agent) for performing surface cross-linking include compounds having two or more reactive functional groups. Examples of cross-linking agents include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; (poly) ethylene glycol diglycidyl. Polyglycidyl compounds such as ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, trimethylpropan triglycidyl ether (poly) propylene glycol polyglycidyl ether, (poly) glycerol polyglycidyl ether; epichlorohydrin , Epibrom hydrin, α-methyl epichlorohydrin and other haloepoxy compounds; 2,4-tolylene diisocyanate, hexamethylene diisocyanate and other isocyanate compounds; 3-methyl-3-oxetane methanol, 3-ethyl-3-oxetane Oxetane compounds such as methanol, 3-butyl-3-oxetane methanol, 3-methyl-3-oxetaneethanol, 3-ethyl-3-oxetaneethanol, 3-butyl-3-oxetaneethanol; 1,2-ethylenebisoxazoline and the like. Oxazoline compounds; carbonate compounds such as ethylene carbonate; hydroxyalkylamide compounds such as bis [N, N-di (β-hydroxyethyl)] adipamide can be mentioned. The surface cross-linking agent may be used alone or in combination of two or more. The surface cross-linking agent may be a polyglycidyl compound, and may be (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, and It may contain at least one selected from the group consisting of polyglycerol polyglycidyl ether.
 表面架橋剤の量は、重合に使用するエチレン性不飽和単量体1モルに対して、0.00001~0.02モル、0.00005~0.01モル、又は0.0001~0.005モルであってもよい。表面架橋剤の量が0.00001モル以上であると、吸水性樹脂粒子の表面部分における架橋密度が充分に高められ、吸水性樹脂粒子のゲル強度を高めやすい。表面架橋剤の量が0.02モル以下であると、吸水性樹脂粒子の吸水量を高めやすい。 The amount of the surface cross-linking agent is 0.00001 to 0.02 mol, 0.00005 to 0.01 mol, or 0.0001 to 0.005 with respect to 1 mol of the ethylenically unsaturated monomer used for the polymerization. It may be a mole. When the amount of the surface cross-linking agent is 0.00001 mol or more, the cross-linking density on the surface portion of the water-absorbent resin particles is sufficiently increased, and the gel strength of the water-absorbent resin particles can be easily increased. When the amount of the surface cross-linking agent is 0.02 mol or less, it is easy to increase the water absorption amount of the water-absorbent resin particles.
 表面架橋後、水及び炭化水素分散媒を留去することにより、表面架橋された吸水性樹脂粒子の乾燥品である重合体粒子を得ることができる。 After surface cross-linking, water and a hydrocarbon dispersion medium are distilled off to obtain polymer particles which are dried products of surface-cross-linked water-absorbent resin particles.
 本実施形態に係る吸水性樹脂粒子は、重合体粒子のみから構成されていてもよいが、例えば、ゲル安定剤、金属キレート剤、及び流動性向上剤(滑剤)等から選ばれる各種の追加の成分を更に含むことができる。追加の成分は、重合体粒子の内部、重合体粒子の表面上、又はそれらの両方に配置され得る。追加の成分は、流動性向上剤(滑剤)であってもよい。流動性向上剤は無機粒子を含んでいてもよい。無機粒子としては、例えば、非晶質シリカ等のシリカ粒子が挙げられる。 The water-absorbent resin particles according to the present embodiment may be composed of only polymer particles, but various additional particles selected from, for example, a gel stabilizer, a metal chelating agent, a fluidity improver (lubricant), and the like. Ingredients can be further included. Additional components may be placed inside the polymer particles, on the surface of the polymer particles, or both. The additional component may be a fluidity improver (lubricant). The fluidity improver may contain inorganic particles. Examples of the inorganic particles include silica particles such as amorphous silica.
 吸水性樹脂粒子は、重合体粒子の表面上に配置された複数の無機粒子を含んでいてもよい。例えば、重合体粒子と無機粒子とを混合することにより、重合体粒子の表面上に無機粒子を配置することができる。この無機粒子は、非晶質シリカ等のシリカ粒子であってもよい。吸水性樹脂粒子が重合体粒子の表面上に配置された無機粒子を含む場合、重合体粒子の質量に対する無機粒子の量の割合は、0.2質量%以上、0.5質量%以上、1.0質量%以上、又は1.5質量%以上であってもよく、5.0質量%以下、又は3.5質量%以下であってもよい。ここでの無機粒子は、通常、重合体粒子の大きさと比較して微小な大きさを有する。例えば、無機粒子の平均粒子径が、0.1~50μm、0.5~30μm、又は1~20μmであってもよい。ここでの平均粒子径は、動的光散乱法、又はレーザー回折・散乱法によって測定される値であることができる。 The water-absorbent resin particles may contain a plurality of inorganic particles arranged on the surface of the polymer particles. For example, by mixing the polymer particles and the inorganic particles, the inorganic particles can be arranged on the surface of the polymer particles. The inorganic particles may be silica particles such as amorphous silica. When the water-absorbent resin particles include inorganic particles arranged on the surface of the polymer particles, the ratio of the amount of the inorganic particles to the mass of the polymer particles is 0.2% by mass or more, 0.5% by mass or more, 1 It may be 0.0% by mass or more, 1.5% by mass or more, 5.0% by mass or less, or 3.5% by mass or less. The inorganic particles here usually have a minute size as compared with the size of the polymer particles. For example, the average particle size of the inorganic particles may be 0.1 to 50 μm, 0.5 to 30 μm, or 1 to 20 μm. The average particle size here can be a value measured by a dynamic light scattering method or a laser diffraction / scattering method.
 図1は、吸水シートの一例を示す断面図である。図1に示す吸水シート50は、吸収層10と、2枚のコアラップシート20a,20bとを有する。コアラップシート20a,20bは、吸収層10の両側に配置されている。言い換えると、吸収層10は、コアラップシート20a,20bの内側に配置されている。吸収層10は、2枚のコアラップシート20a,20bの間に挟まれることにより、保形されている。コアラップシート20a,20bは、2枚のシートであってもよいし、折り返された1枚のシート、又は1枚の袋体であってもよい。 FIG. 1 is a cross-sectional view showing an example of a water absorption sheet. The water absorbing sheet 50 shown in FIG. 1 has an absorbing layer 10 and two core wrap sheets 20a and 20b. The core wrap sheets 20a and 20b are arranged on both sides of the absorption layer 10. In other words, the absorbent layer 10 is arranged inside the core wrap sheets 20a and 20b. The absorbent layer 10 is held in shape by being sandwiched between the two core wrap sheets 20a and 20b. The core wrap sheets 20a and 20b may be two sheets, one folded sheet, or one bag body.
 吸水シート50は、コアラップシート20aと吸収層10との間に介在する接着剤21を更に有していてもよい。図2は、コアラップシート上に形成された接着剤のパターンの一例を示す平面図である。図2に示される接着剤21は、コアラップシート20a上で間隔を空けながら配列された複数の線状部分から構成されるパターンを形成している。ただし、接着剤21のパターンはこれに限定されない。両側のコアラップシート20a,20bと吸収層10との間に接着層が介在してもよい。接着剤21は特に限定されず、例えばホットメルト接着剤であってもよい。 The water absorbing sheet 50 may further have an adhesive 21 interposed between the core wrap sheet 20a and the absorbing layer 10. FIG. 2 is a plan view showing an example of an adhesive pattern formed on the core wrap sheet. The adhesive 21 shown in FIG. 2 forms a pattern composed of a plurality of linear portions arranged at intervals on the core wrap sheet 20a. However, the pattern of the adhesive 21 is not limited to this. An adhesive layer may be interposed between the core wrap sheets 20a and 20b on both sides and the absorption layer 10. The adhesive 21 is not particularly limited, and may be, for example, a hot melt adhesive.
 吸収層10は、上述の実施形態に係る吸水性樹脂粒子10aと、繊維状物を含む繊維層10bとを有する。吸収層10は、繊維層10bを有していなくてもよい。吸収層における吸水性樹脂粒子の含有量は、吸収層10の質量を基準として、70~100質量%、80~100質量%、又は90~100質量%であってもよい。 The absorption layer 10 has the water-absorbent resin particles 10a according to the above-described embodiment and the fiber layer 10b containing a fibrous material. The absorption layer 10 does not have to have the fiber layer 10b. The content of the water-absorbent resin particles in the absorption layer may be 70 to 100% by mass, 80 to 100% by mass, or 90 to 100% by mass based on the mass of the absorption layer 10.
 吸収層10の厚さは、特に限定されないが、乾燥状態で、例えば20mm以下、15mm以下、10mm以下、5mm以下、4mm以下、又は3mm以下であってよく、0.1mm以上、又は0.3mm以上であってもよい。吸収層10の単位面積当たりの質量は、1000g/m以下、800g/m以下、又は600g/m以下であってもよく、100g/m以上であってもよい。 The thickness of the absorption layer 10 is not particularly limited, but may be, for example, 20 mm or less, 15 mm or less, 10 mm or less, 5 mm or less, 4 mm or less, or 3 mm or less in a dry state, and is 0.1 mm or more or 0.3 mm or less. It may be the above. The mass per unit area of the absorption layer 10 may be 1000 g / m 2 or less, 800 g / m 2 or less, 600 g / m 2 or less, or 100 g / m 2 or more.
 繊維層10bを構成する繊維状物は、例えば、セルロース系繊維、合成繊維、又はこれらの組み合わせであることができる。セルロース系繊維の例としては、粉砕された木材パルプ、コットン、コットンリンター、レーヨン、セルロースアセテートが挙げられる。合成繊維の例としては、ポリアミド繊維、ポリエステル繊維、及びポリオレフィン繊維が挙げられる。繊維状物が親水性繊維(例えばパルプ)であってもよい。繊維状物の平均繊維長は、通常、0.1~10mmであり、0.5~5mmであってよい。 The fibrous material constituting the fiber layer 10b can be, for example, a cellulosic fiber, a synthetic fiber, or a combination thereof. Examples of cellulosic fibers include crushed wood pulp, cotton, cotton linters, rayon and cellulosic acetate. Examples of synthetic fibers include polyamide fibers, polyester fibers, and polyolefin fibers. The fibrous material may be hydrophilic fibers (for example, pulp). The average fiber length of the fibrous material is usually 0.1 to 10 mm and may be 0.5 to 5 mm.
 吸収層10(又は繊維層10b)は、無機粉末(例えば非晶質シリカ)、消臭剤、抗菌剤、香料等を更に含んでもよい。吸水性樹脂粒子10aが無機粒子を含む場合、吸収層10は吸水性樹脂粒子10a中の無機粒子とは別に無機粉末を含んでいてもよい。 The absorption layer 10 (or fiber layer 10b) may further contain an inorganic powder (for example, amorphous silica), a deodorant, an antibacterial agent, a fragrance, and the like. When the water-absorbent resin particles 10a contain inorganic particles, the absorption layer 10 may contain inorganic powder in addition to the inorganic particles in the water-absorbent resin particles 10a.
 コアラップシート20a,20bは、例えば不織布であってもよい。2枚のコアラップシート20a,20bが、同一又は異なる不織布であることができる。不織布は、短繊維(すなわちステープル)で構成される不織布(短繊維不織布)であってもよく、長繊維(すなわちフィラメント)で構成される不織布(長繊維不織布)であってもよい。ステープルは、これに限定されないが、一般的には数百mm以下の繊維長を有していてよい。 The core wrap sheets 20a and 20b may be, for example, a non-woven fabric. The two core wrap sheets 20a and 20b can be the same or different non-woven fabrics. The non-woven fabric may be a non-woven fabric composed of short fibers (that is, staples) (short-fiber non-woven fabric) or a non-woven fabric composed of long fibers (that is, filaments) (long-fiber non-woven fabric). Staples are not limited to this, but generally may have a fiber length of several hundred mm or less.
 コアラップシート20a,20bは、サーマルボンド不織布、エアスルー不織布、レジンボンド不織布、スパンボンド不織布、メルトブロー不織布、エアレイド不織布、スパンレース不織布、ポイントボンド不織布、又はこれらから選ばれる2種以上の不織布を含む積層体であってよい。 The core wrap sheets 20a and 20b are laminated including a thermal bond non-woven fabric, an air-through non-woven fabric, a resin bond non-woven fabric, a spunbond non-woven fabric, a melt blow non-woven fabric, an air-laid non-woven fabric, a spunlace non-woven fabric, a point bond non-woven fabric, or two or more kinds of non-woven fabrics selected from these. It can be a body.
 コアラップシート20a,20bとして用いられる不織布は、合成繊維、天然繊維、又はこれらの組み合わせによって形成された不織布であることができる。合成繊維の例としては、ポリエチレン(PE)及びポリプロピレン(PP)等のポリオレフィン、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)及びポリエチレンナフタレート(PEN)等のポリエステル、ナイロン等のポリアミド、並びにレーヨンから選ばれる合成樹脂を含む繊維が挙げられる。天然繊維の例としては、綿、絹、麻、又はパルプ(セルロース)を含む繊維が挙げられる。不織布を形成する繊維が、ポリオレフィン繊維、ポリエステル繊維又はこれらの組み合わせであってよい。コアラップシート20a,20bがティッシュペーパーであってもよい。 The non-woven fabric used as the core wrap sheets 20a and 20b can be a non-woven fabric formed of synthetic fibers, natural fibers, or a combination thereof. Examples of synthetic fibers include polyolefins such as polyethylene (PE) and polypropylene (PP), polyesters such as polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT) and polyethylene naphthalate (PEN), polyamides such as nylon, and Examples thereof include fibers containing a synthetic resin selected from rayon. Examples of natural fibers include fibers containing cotton, silk, hemp, or pulp (cellulose). The fibers forming the non-woven fabric may be polyolefin fibers, polyester fibers or a combination thereof. The core wrap sheets 20a and 20b may be tissue paper.
 吸水シート50は、例えば、吸水性樹脂粒子10a、又は吸水性樹脂粒子10aと繊維状物とを含む混合物とコアラップシート20a,20bの間に挟み、形成された構造体を必要により加熱しながら加圧する方法により、得ることができる。必要により、コアラップシート20a,20bと、吸水性樹脂粒子10a、又はこれを含む混合物との間に接着剤21が配置される。 The water-absorbent sheet 50 is sandwiched between, for example, the water-absorbent resin particles 10a or a mixture containing the water-absorbent resin particles 10a and the fibrous material and the core wrap sheets 20a and 20b, and the formed structure is heated as necessary. It can be obtained by the method of pressurizing. If necessary, the adhesive 21 is arranged between the core wrap sheets 20a and 20b and the water-absorbent resin particles 10a or a mixture containing the same.
 吸水シート50は、例えば各種の吸収性物品を製造するために用いられる。吸収性物品の例としては、おむつ(例えば紙おむつ)、トイレトレーニングパンツ、失禁パッド、衛生材料(生理用ナプキン、タンポン等)、汗取りパッド、ペットシート、簡易トイレ用部材、及び動物排泄物処理材が挙げられる。 The water absorption sheet 50 is used, for example, for producing various absorbent articles. Examples of absorbent articles include diapers (eg paper diapers), toilet training pants, incontinence pads, sanitary materials (sanitary napkins, tampons, etc.), sweat pads, pet sheets, toilet components, and animal waste treatment materials. Can be mentioned.
 図3は、吸収性物品の一例を示す断面図である。図3に示す吸収性物品100は、吸水シート50と、液体透過性シート30と、液体不透過性シート40とを備える。言い換えると、吸水シート50が、液体透過性シート30と液体不透過性シート40との間に挟まれている。 FIG. 3 is a cross-sectional view showing an example of an absorbent article. The absorbent article 100 shown in FIG. 3 includes a water absorbing sheet 50, a liquid permeable sheet 30, and a liquid impermeable sheet 40. In other words, the water absorbing sheet 50 is sandwiched between the liquid permeable sheet 30 and the liquid impermeable sheet 40.
 液体透過性シート30は、吸収対象の液が浸入する側の最外層の位置に配置されている。液体透過性シート30は、コアラップシート20bに接した状態でコアラップシート20bの外側に配置されている。液体不透過性シート40は、吸収性物品100において液体透過性シート30とは反対側の最外層の位置に配置されている。液体不透過性シート40は、コアラップシート20aに接した状態でコアラップシート20aの外側に配置されている。液体透過性シート30及び液体不透過性シート40は、吸水シート50の主面よりも広い主面を有しており、液体透過性シート30及び液体不透過性シート40の外縁部は、吸収層10及びコアラップシート20a,20bの周囲に延在している。ただし、吸収層10、コアラップシート20a,20b、液体透過性シート30、及び、液体不透過性シート40の大小関係は、特に限定されず、吸収性物品の用途等に応じて適宜調整される。 The liquid permeable sheet 30 is arranged at the position of the outermost layer on the side where the liquid to be absorbed enters. The liquid permeable sheet 30 is arranged on the outside of the core wrap sheet 20b in contact with the core wrap sheet 20b. The liquid permeable sheet 40 is arranged at the position of the outermost layer on the side opposite to the liquid permeable sheet 30 in the absorbent article 100. The liquid impermeable sheet 40 is arranged on the outside of the core wrap sheet 20a in contact with the core wrap sheet 20a. The liquid permeable sheet 30 and the liquid permeable sheet 40 have a main surface wider than the main surface of the water absorbing sheet 50, and the outer edges of the liquid permeable sheet 30 and the liquid permeable sheet 40 are an absorbent layer. It extends around 10 and the core wrap sheets 20a and 20b. However, the magnitude relationship between the absorbent layer 10, the core wrap sheets 20a and 20b, the liquid permeable sheet 30, and the liquid permeable sheet 40 is not particularly limited, and is appropriately adjusted according to the use of the absorbent article and the like. ..
 液体透過性シート30は、不織布であってもよい。液体透過性シート30として用いられる不織布は、吸収性物品の液体吸収性能の観点から、適度な親水性を有していてもよい。その観点から、液体透過性シート30は、紙パルプ技術協会による紙パルプ試験方法No.68(2000)の測定方法に従って測定される親水度が5~200の不織布であってもよい。不織布の親水度は、10~150であってもよい。紙パルプ試験方法No.68の詳細については、例えばWO2011/086843号を参照することができる。 The liquid permeable sheet 30 may be a non-woven fabric. The non-woven fabric used as the liquid permeable sheet 30 may have appropriate hydrophilicity from the viewpoint of the liquid absorption performance of the absorbent article. From this point of view, the liquid permeable sheet 30 is obtained by the pulp and paper test method No. A non-woven fabric having a hydrophilicity of 5 to 200 measured according to the measuring method of 68 (2000) may be used. The hydrophilicity of the non-woven fabric may be 10 to 150. Pulp and paper test method No. For details of 68, for example, WO2011 / 086843 can be referred to.
 親水性を有する不織布は、例えば、レーヨン繊維のように適度な親水度を示す繊維によって形成されたものでもよいし、ポリオレフィン繊維、ポリエステル繊維のような疎水性の化学繊維を親水化処理して得た繊維によって形成されたものであってもよい。親水化処理された疎水性の化学繊維を含む不織布を得る方法としては、例えば、疎水性の化学繊維に親水化剤を混合したものを用いてスパンボンド法にて不織布を得る方法、疎水性化学繊維でスパンボンド不織布を作製する際に親水化剤を同伴させる方法、疎水性の化学繊維を用いて得たスパンボンド不織布に親水化剤を含浸させる方法が挙げられる。親水化剤としては、脂肪族スルホン酸塩、高級アルコール硫酸エステル塩等のアニオン系界面活性剤、第4級アンモニウム塩等のカチオン系界面活性剤、ポリエチレングリコール脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル等のノニオン系界面活性剤、ポリオキシアルキレン変性シリコーン等のシリコーン系界面活性剤、及びポリエステル系、ポリアミド系、アクリル系、ウレタン系の樹脂からなるステイン・リリース剤等が用いられる。 The non-woven fabric having hydrophilicity may be formed of fibers showing appropriate hydrophilicity such as rayon fiber, or obtained by hydrophilizing a hydrophobic chemical fiber such as polyolefin fiber or polyester fiber. It may be formed of rayon fibers. As a method for obtaining a non-woven fabric containing hydrophobic chemical fibers that have been hydrophobized, for example, a method for obtaining a non-woven fabric by a spunbond method using a mixture of hydrophobic chemical fibers and a hydrophilic agent, hydrophobic chemistry. Examples thereof include a method of accommodating a hydrophilic agent when producing a spunbonded nonwoven fabric from fibers, and a method of impregnating a spunbonded nonwoven fabric obtained by using a hydrophobic chemical fiber with a hydrophilic agent. Examples of the hydrophilizing agent include anionic surfactants such as aliphatic sulfonates and higher alcohol sulfates, cationic surfactants such as quaternary ammonium salts, polyethylene glycol fatty acid esters, polyglycerin fatty acid esters, and sorbitan fatty acids. Nonionic surfactants such as esters, silicone-based surfactants such as polyoxyalkylene-modified silicones, and stain-releasing agents made of polyester-based, polyamide-based, acrylic-based, and urethane-based resins are used.
 液体透過性シート30として用いられる不織布の目付量(単位面積当たりの質量)は、吸収性物品に、良好な液体浸透性、柔軟性、強度及びクッション性を付与できる観点、及び吸収性物品の液体浸透速度を速める観点から、5~200g/m、8~150g/m、又は10~100g/mであってもよい。液体透過性シート30の厚さは、20~1400μm、50~1200μm、又は80~1000μmであってもよい。 The amount of texture (mass per unit area) of the non-woven fabric used as the liquid permeable sheet 30 is from the viewpoint of imparting good liquid permeability, flexibility, strength and cushioning property to the absorbent article, and the liquid of the absorbent article. From the viewpoint of increasing the permeation rate, it may be 5 to 200 g / m 2 , 8 to 150 g / m 2 , or 10 to 100 g / m 2 . The thickness of the liquid permeable sheet 30 may be 20 to 1400 μm, 50 to 1200 μm, or 80 to 1000 μm.
 液体不透過性シート40は、吸収層10に吸収された液体が液体不透過性シート40側から外部へ漏れ出すのを防止する。液体不透過性シート40は、樹脂シート、又は不織布であってもよい。樹脂シートは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等の合成樹脂からなるシートであってもよい。不織布は、耐水性のメルトブロー不織布を高強度のスパンボンド不織布で挟んだスパンボンド/メルトブロー/スパンボンド(SMS)不織布であってもよい。液体不透過性シート40が、樹脂シートと不織布(例えば、スパンボンド不織布、スパンレース不織布)との複合シートであってもよい。液体不透過性シート40は、装着時のムレが低減されて、着用者に与える不快感を軽減することができる等の観点から、通気性を有していてもよい。通気性を有する液体不透過性シート40として、例えば低密度ポリエチレン(LDPE)樹脂のシートを用いることができる。 The liquid impermeable sheet 40 prevents the liquid absorbed by the absorbing layer 10 from leaking to the outside from the liquid impermeable sheet 40 side. The liquid impermeable sheet 40 may be a resin sheet or a non-woven fabric. The resin sheet may be a sheet made of a synthetic resin such as polyethylene, polypropylene, or polyvinyl chloride. The non-woven fabric may be a spunbond / meltblow / spunbond (SMS) non-woven fabric in which a water-resistant melt-blow non-woven fabric is sandwiched between high-strength spunbond non-woven fabrics. The liquid impermeable sheet 40 may be a composite sheet of a resin sheet and a non-woven fabric (for example, a spunbonded non-woven fabric or a spunlaced non-woven fabric). The liquid impermeable sheet 40 may have breathability from the viewpoint that stuffiness at the time of wearing is reduced and discomfort given to the wearer can be reduced. As the liquid impermeable sheet 40 having breathability, for example, a sheet of low density polyethylene (LDPE) resin can be used.
 吸収性物品の着用感を損なわないよう、柔軟性を確保する観点から、液体不透過性シート40の目付量(単位面積当たりの質量)が10~50g/mであってもよい。 From the viewpoint of ensuring flexibility so as not to impair the wearing feeling of the absorbent article, the basis weight (mass per unit area) of the liquid impermeable sheet 40 may be 10 to 50 g / m 2 .
 吸収性物品100は、例えば、吸水シート50を液体透過性シート30及び液体不透過性シート40の間に配置することを含む方法により、製造することができる。液体不透過性シート40、吸水シート50及び液体透過性シート30の順に積層された積層体が、必要により加圧される。あるいは、液体透過性シート30と、コアラップシート20bと、吸水性樹脂粒子10a、又は吸水性樹脂粒子10aと繊維状物とを含む混合物と、コアラップシート20aと液体不透過性シート40とをこの順に配置し、形成された構造体を必要により加熱しながら加圧する方法により、吸収性物品100を得ることもできる。 The absorbent article 100 can be manufactured, for example, by a method including arranging the water absorbing sheet 50 between the liquid permeable sheet 30 and the liquid impermeable sheet 40. A laminate in which the liquid permeable sheet 40, the water absorbing sheet 50, and the liquid permeable sheet 30 are laminated in this order is pressurized as necessary. Alternatively, the liquid permeable sheet 30, the core wrap sheet 20b, the water-absorbent resin particles 10a, or the mixture containing the water-absorbent resin particles 10a and the fibrous material, and the core wrap sheet 20a and the liquid impermeable sheet 40 are used. The absorbent article 100 can also be obtained by arranging in this order and pressurizing the formed structure while heating if necessary.
 以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
1.吸水性樹脂粒子の作製
実施例1
<第1段目の重合反応>
 還流冷却器、滴下ロート、窒素ガス導入管、及び攪拌機を備えた内径11cm、内容積2Lの丸底円筒型セパラブルフラスコを準備した。攪拌機に、図4に概形を示す攪拌翼200を取り付けた。攪拌翼200は、軸200a及び平板部200bを備えている。平板部200bは、軸200aに溶接されると共に、湾曲した先端を有している。平板部200bには、軸200aの軸方向に沿って延びる4つのスリットSが形成されている。4つのスリットSは平板部200bの幅方向に配列されており、内側の二つのスリットSの幅は1cmであり、外側二つのスリットSの幅は0.5cmである。平板部200bの長さは約10cmであり、平板部200bの幅は約6cmである。
1. 1. Preparation of water-absorbent resin particles Example 1
<First stage polymerization reaction>
A round-bottomed cylindrical separable flask having an inner diameter of 11 cm and an internal volume of 2 L equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirrer was prepared. A stirring blade 200 whose outline is shown in FIG. 4 was attached to the stirring machine. The stirring blade 200 includes a shaft 200a and a flat plate portion 200b. The flat plate portion 200b is welded to the shaft 200a and has a curved tip. The flat plate portion 200b is formed with four slits S extending along the axial direction of the shaft 200a. The four slits S are arranged in the width direction of the flat plate portion 200b, the width of the two inner slits S is 1 cm, and the width of the two outer slits S is 0.5 cm. The length of the flat plate portion 200b is about 10 cm, and the width of the flat plate portion 200b is about 6 cm.
 準備したセパラブルフラスコ内でn-ヘプタン293g、及び分散剤(無水マレイン酸変性エチレン・プロピレン共重合体、三井化学株式会社製、ハイワックス1105A)0.736gを混合した。セパラブルフラスコ内の混合物を、攪拌機で攪拌しつつ、80℃まで昇温することにより、分散剤をn-ヘプタンに溶解させた。形成された反応液を50℃まで冷却した。 In the prepared separable flask, 293 g of n-heptane and 0.736 g of a dispersant (maleic anhydride-modified ethylene / propylene copolymer, manufactured by Mitsui Chemicals, Inc., high wax 1105A) were mixed. The dispersant was dissolved in n-heptane by heating the mixture in the separable flask to 80 ° C. while stirring with a stirrer. The formed reaction solution was cooled to 50 ° C.
 内容積300mLのビーカーに、濃度80.5質量%のアクリル酸水溶液92.0g(1.03モル)を入れた。外部より冷却しつつ、アクリル酸水溶液に濃度20.9質量%の水酸化ナトリウム水溶液147.7gを滴下し、それにより75モル%のアクリル酸を中和した。中和後のアクリル酸水溶液に、増粘剤としてヒドロキシルエチルセルロース0.092g(住友精化株式会社、HECAW-15F)、水溶性ラジカル重合開始剤として2,2’-アゾビス(2-アミジノプロパン)2塩酸塩0.092g(0.339ミリモル)、及び過硫酸ナトリウム0.0162g(0.068ミリモル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.0046g(0.026ミリモル)を加えてこれらを溶解させて、第1段目の単量体水溶液を調製した。 92.0 g (1.03 mol) of an acrylic acid aqueous solution having a concentration of 80.5 mass% was placed in a beaker having an internal volume of 300 mL. While cooling from the outside, 147.7 g of an aqueous sodium hydroxide solution having a concentration of 20.9% by mass was added dropwise to the aqueous acrylic acid solution, thereby neutralizing 75 mol% of acrylic acid. 0.092 g of hydroxylethyl cellulose (Sumitomo Seika Co., Ltd., HECAW-15F) as a thickener and 2,2'-azobis (2-amidinopropane) 2 as a water-soluble radical polymerization initiator in the neutralized acrylic acid aqueous solution. Dissolve these by adding 0.092 g (0.339 mmol) of hydrochloride, 0.0162 g (0.068 mmol) of sodium persulfate, and 0.0046 g (0.026 mmol) of ethylene glycol diglycidyl ether as an internal cross-linking agent. The first-stage monomer aqueous solution was prepared.
 第1段目の単量体水溶液を、上述のセパラブルフラスコ内の反応液に添加し、反応液を10分間攪拌した。次いで、n-ヘプタン6.62g及びショ糖ステアリン酸エステル(HLB:3、三菱化学フーズ株式会社、リョートーシュガーエステルS-370)0.736gを含む界面活性剤溶液を反応液に添加し、攪拌翼の回転数を425rpmとして反応液を攪拌しながら、系内を窒素で十分に置換した。その後、セパラブルフラスコを70℃の水浴中で加熱しながら、60分間かけて重合反応を進行させた。この重合反応により、含水ゲル状重合体を含む第1段目の重合スラリー液を得た。 The first-stage monomer aqueous solution was added to the reaction solution in the separable flask described above, and the reaction solution was stirred for 10 minutes. Next, a surfactant solution containing 6.62 g of n-heptane and 0.736 g of sucrose stearic acid ester (HLB: 3, Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370) was added to the reaction solution, and the mixture was stirred. The inside of the system was sufficiently replaced with nitrogen while stirring the reaction solution at a blade rotation speed of 425 rpm. Then, the polymerization reaction was allowed to proceed over 60 minutes while heating the separable flask in a water bath at 70 ° C. By this polymerization reaction, a first-stage polymerization slurry liquid containing a hydrogel-like polymer was obtained.
<第2段目の重合反応>
 内容積500mLのビーカーに、濃度80.5質量%のアクリル酸水溶液128.8g(1.44モル)を入れた。ビーカーを外部より冷却しつつ、アクリル酸水溶液に対して濃度27質量%の水酸化ナトリウム水溶液159.0gを滴下し、それにより75モル%のアクリル酸を中和した。次いで、アクリル酸水溶液に、水溶性ラジカル重合開始剤として2,2’-アゾビス(2-アミジノプロパン)2塩酸塩0.129g(0.475ミリモル)及び過硫酸ナトリウム0.0226g(0.095ミリモル)と、内部架橋剤としてエチレングリコールジグリシジルエーテル0.0116g(0.067ミリモル)とを加えてこれらを溶解し、第2段目の単量体水溶液を調製した。
<Second stage polymerization reaction>
128.8 g (1.44 mol) of an aqueous acrylic acid solution having a concentration of 80.5 mass% was placed in a beaker having an internal volume of 500 mL. While cooling the beaker from the outside, 159.0 g of a sodium hydroxide aqueous solution having a concentration of 27% by mass was added dropwise to the acrylic acid aqueous solution, thereby neutralizing 75 mol% of acrylic acid. Next, in an aqueous acrylic acid solution, 0.129 g (0.475 mmol) of 2,2'-azobis (2-amidinopropane) dihydrochloride salt and 0.0226 g (0.095 mmol) of sodium persulfate as a water-soluble radical polymerization initiator. ) And 0.0116 g (0.067 mmol) of ethylene glycol diglycidyl ether as an internal cross-linking agent were added to dissolve them to prepare a second-stage monomer aqueous solution.
 セパラブルフラスコ内の第1段目の重合スラリー液を、攪拌翼の回転数を650rpmとして攪拌しながら22℃に冷却した。そこに、第2段目の単量体水溶液の全量を添加し、続いて系内を窒素で30分間かけて置換した。その後、セパラブルフラスコを70℃の水浴中で加熱しながら、60分かけて第2段目の重合反応を進行させた。 The first-stage polymerized slurry liquid in the separable flask was cooled to 22 ° C. while stirring at a stirring blade rotation speed of 650 rpm. The whole amount of the second-stage monomer aqueous solution was added thereto, and then the inside of the system was replaced with nitrogen over 30 minutes. Then, while heating the separable flask in a water bath at 70 ° C., the second-stage polymerization reaction was allowed to proceed over 60 minutes.
 第2段目の重合反応後の反応液に、45質量%のジエチレントリアミン5酢酸5ナトリウム水溶液0.589gを攪拌下で添加した。その後、125℃の油浴にセパラブルフラスコを浸漬し、n-ヘプタンと水との共沸蒸留により、229.2gの水を系外へ抜き出した。その後、反応液に表面架橋剤として濃度2質量%のエチレングリコールジグリシジルエーテル水溶液4.42g(0.507ミリモル)を添加し、反応液を83℃で2時間保持することにより、表面架橋剤による架橋反応を進行させた。 0.589 g of a 45% by mass diethylenetriamine-5 sodium acetate aqueous solution was added to the reaction solution after the second stage polymerization reaction under stirring. Then, a separable flask was immersed in an oil bath at 125 ° C., and 229.2 g of water was extracted from the system by azeotropic distillation of n-heptane and water. Then, 4.42 g (0.507 mmol) of an ethylene glycol diglycidyl ether aqueous solution having a concentration of 2% by mass was added to the reaction solution as a surface cross-linking agent, and the reaction solution was held at 83 ° C. for 2 hours to obtain a surface cross-linking agent. The cross-linking reaction was allowed to proceed.
 表面架橋剤による架橋反応後の反応液から、125℃での加熱によりn-ヘプタンを留去して、重合体粒子の乾燥品を得た。得られた重合体粒子に目開き850μmの篩に通過させた。その後、重合体粒子の質量に対して0.2質量%の非晶質シリカ(オリエンタルシリカズコーポレーション、トクシールNP-S)を重合体粒子と混合し、非晶質シリカを含む吸水性樹脂粒子214.9gを得た。吸水性樹脂粒子の中位粒子径は470μmであった。 From the reaction solution after the cross-linking reaction with the surface cross-linking agent, n-heptane was distilled off by heating at 125 ° C. to obtain a dried product of polymer particles. The obtained polymer particles were passed through a sieve having an opening of 850 μm. Then, 0.2% by mass of amorphous silica (Oriental Silicas Corporation, Toxile NP-S) with respect to the mass of the polymer particles was mixed with the polymer particles, and the water-absorbent resin particles 214 containing the amorphous silica 9.9 g was obtained. The medium particle size of the water-absorbent resin particles was 470 μm.
実施例2
 第1段目の水性液の調製において使用するラジカル重合開始剤を過硫酸ナトリウム0.0648g(0.272ミリモル)に変更したこと、内部架橋剤としてのエチレングリコールジグリシジルエーテルの添加量を0.010g(0.057ミリモル)に変更したこと、第1段目重合スラリー液の調製において窒素置換時の攪拌機の回転数を350rpmに変更したこと、第2段目の水性液調製において、使用するラジカル重合開始剤を過硫酸ナトリウム0.0907g(0.381ミリモル)に変更したこと、並びに、共沸蒸留により系外へ抜き出す水の量を271.0gに変更したこと以外は実施例1と同様にして、215.8gの吸水性樹脂粒子を得た。吸水性樹脂粒子の中位粒子径は470μmであった。
Example 2
The radical polymerization initiator used in the preparation of the aqueous solution in the first stage was changed to 0.0648 g (0.272 mmol) of sodium persulfate, and the amount of ethylene glycol diglycidyl ether added as an internal cross-linking agent was 0. It was changed to 010 g (0.057 mmol), the rotation speed of the stirrer at the time of nitrogen substitution was changed to 350 rpm in the preparation of the first stage polymerized slurry liquid, and the radical used in the preparation of the second stage aqueous liquid liquid. The same as in Example 1 except that the polymerization initiator was changed to 0.0907 g (0.381 mmol) of sodium persulfate and the amount of water extracted to the outside of the system by azeotropic distillation was changed to 271.0 g. 215.8 g of water-absorbent resin particles were obtained. The medium particle size of the water-absorbent resin particles was 470 μm.
実施例3
 第1段目の水性液の調製において使用するラジカル重合開始剤を過硫酸ナトリウム0.0648g(0.272ミリモル)に変更したこと、内部架橋剤としてのエチレングリコールジグリシジルエーテルの添加量を0.010g(0.057ミリモル)に変更したこと、第2段目の水性液調製において、使用するラジカル重合開始剤を過硫酸ナトリウム0.0907g(0.381ミリモル)に変更したこと、第2の重合反応において、第1段目の重合スラリー液を25℃に冷却して、第2段目の単量体水溶液の全量を添加したこと、並びに、共沸蒸留により系外へ抜き出す水の量を256.5gに変更したこと以外は実施例1と同様にして、230.2gの吸水性樹脂粒子を得た。吸水性樹脂粒子の中位粒子径は358μmであった。
Example 3
The radical polymerization initiator used in the preparation of the aqueous solution in the first stage was changed to 0.0648 g (0.272 mmol) of sodium persulfate, and the amount of ethylene glycol diglycidyl ether added as an internal cross-linking agent was 0. The change to 010 g (0.057 mmol), the radical polymerization initiator used in the second stage aqueous solution preparation was changed to 0.0907 g (0.381 mmol) of sodium persulfate, and the second polymerization. In the reaction, the polymerization slurry solution of the first stage was cooled to 25 ° C., the entire amount of the monomer aqueous solution of the second stage was added, and the amount of water extracted to the outside of the system by co-boiling distillation was 256. 230.2 g of water-absorbent resin particles were obtained in the same manner as in Example 1 except that the amount was changed to 5.5 g. The medium particle size of the water-absorbent resin particles was 358 μm.
比較例1
 攪拌翼を翼径5cmの4枚傾斜パドル翼を2段で有するものに変更したこと、第1段目の水性液調製において、使用するラジカル重合開始剤を2,2’-アゾビス(2-アミジノプロパン)2塩酸塩0.092g(0.339ミリモル)及び過硫酸カリウム0.018g(0.068ミリモル)に変更したこと、第1段目の重合スラリー液の調製において窒素置換時の攪拌機の回転数を550rpmに変更したこと、第2段目の水性液調製において、使用するラジカル重合開始剤を2,2’-アゾビス(2-アミジノプロパン)2塩酸塩0.129g(0.475ミリモル)及び過硫酸カリウム0.026g(0.095ミリモル)に変更したこと、第2段目の水性液の調製後に、セパラブルフラスコ系内を25℃に冷却し、その際の攪拌機回転数を1000rpmに変更したこと、並びに、共沸蒸留により系外へ抜き出す水の量を215.8gに変更したこと以外は実施例1と同様にして、228.6gの吸水性樹脂粒子を得た。吸水性樹脂粒子の中位粒子径は339μmであった。
Comparative Example 1
The stirring blade was changed to one with a 4-blade inclined paddle blade with a blade diameter of 5 cm in two stages, and the radical polymerization initiator used in the preparation of the aqueous liquid in the first stage was 2,2'-azobis (2-amidino). Changed to 0.092 g (0.339 mmol) of propane) dihydrochloride and 0.018 g (0.068 mmol) of potassium persulfate, and rotation of the stirrer at the time of nitrogen substitution in the preparation of the polymerization slurry solution in the first stage. The number was changed to 550 rpm, and the radical polymerization initiator used in the second stage aqueous solution preparation was 0.129 g (0.475 mmol) of 2,2'-azobis (2-amidinopropane) dihydrochloride. After changing to 0.026 g (0.095 mmol) of potassium persulfate and preparing the aqueous solution in the second stage, the inside of the separable flask system was cooled to 25 ° C., and the stirrer rotation speed at that time was changed to 1000 rpm. 228.6 g of water-absorbent resin particles were obtained in the same manner as in Example 1 except that the amount of water extracted to the outside of the system by the radical polymerization was changed to 215.8 g. The medium particle size of the water-absorbent resin particles was 339 μm.
比較例2
 攪拌翼を翼径5cmの4枚傾斜パドル翼を2段で有するものに変更したこと、第1段目の水性液調製において、使用するラジカル重合開始剤を2,2’-アゾビス(2-アミジノプロパン)2塩酸塩0.110g(0.407ミリモル)に変更したこと、内部架橋のための架橋剤を添加しなかったこと、使用する増粘剤をヒドロキシルエチルセルロース1.38gに変更したこと、第1段目の重合スラリー液の調製において窒素置換時の攪拌機の回転数を400rpmに変更したこと、並びに、第1段目の重合反応の後、2段目の重合反応を行うことなく、共沸蒸留により系外へ抜き出す水の量を109gに変更したこと、表面架橋剤としての濃度2質量%のエチレングリコールジグリシジルエーテル水溶液の量を9.20g(1.056ミリモル)に変更したこと以外は実施例1と同様にして、90.0gの吸水性樹脂粒子を得た。吸水性樹脂粒子の中位粒子径は395μmであった。
Comparative Example 2
The stirring blade was changed to one with a 4-piece inclined paddle blade with a blade diameter of 5 cm in two stages, and the radical polymerization initiator used in the preparation of the aqueous liquid in the first stage was 2,2'-azobis (2-amidino). Propane) dihydrochloride 0.110 g (0.407 mmol) was changed, no cross-linking agent was added for internal cross-linking, and the thickener used was changed to 1.38 g of hydroxylethyl cellulose. In the preparation of the first-stage polymerization slurry liquid, the rotation speed of the stirrer at the time of nitrogen substitution was changed to 400 rpm, and after the first-stage polymerization reaction, co-boiling without performing the second-stage polymerization reaction. Except that the amount of water extracted to the outside of the system by distillation was changed to 109 g, and the amount of ethylene glycol diglycidyl ether aqueous solution having a concentration of 2% by mass as a surface cross-linking agent was changed to 9.20 g (1.056 mmol). In the same manner as in Example 1, 90.0 g of water-absorbent resin particles were obtained. The medium particle size of the water-absorbent resin particles was 395 μm.
2.評価
2-1.保水量
 吸水性樹脂粒子の生理食塩水の保水量(室温、25℃±2℃)を下記手順で測定した。吸水性樹脂粒子2.0gを量り取った綿袋(メンブロード60番、横100mm×縦200mm)を500mL容のビーカー内に設置した。吸水性樹脂粒子の入った綿袋中に0.9質量%塩化ナトリウム水溶液(生理食塩水)500gをママコができないように一度に注ぎ込み、綿袋の上部を輪ゴムで縛り、30分静置させることで吸水性樹脂粒子を膨潤させた。30分経過後の綿袋を、遠心力が167Gとなるよう設定した脱水機(株式会社コクサン製、品番:H-122)を用いて1分間脱水し、脱水後の膨潤ゲルを含んだ綿袋の質量Wa(g)を測定した。吸水性樹脂粒子を添加せずに同様の操作を行い、綿袋の湿潤時の空質量Wb(g)を測定した。以下の式から保水量を算出した。
保水量(g/g)=[Wa-Wb]/2.0
2. Evaluation 2-1. Water retention amount The water retention amount (room temperature, 25 ° C ± 2 ° C) of the physiological saline of the water-absorbent resin particles was measured by the following procedure. A cotton bag (Membroad No. 60, width 100 mm x length 200 mm) weighing 2.0 g of water-absorbent resin particles was placed in a 500 mL beaker. Pour 500 g of 0.9 mass% sodium chloride aqueous solution (physiological saline) into a cotton bag containing water-absorbent resin particles at a time so that mamaco cannot be formed, tie the upper part of the cotton bag with a rubber ring, and let it stand for 30 minutes. The water-absorbent resin particles were swollen with. After 30 minutes, the cotton bag is dehydrated for 1 minute using a dehydrator (manufactured by Kokusan Co., Ltd., product number: H-122) set to have a centrifugal force of 167 G, and the cotton bag containing the swelling gel after dehydration. The mass Wa (g) of was measured. The same operation was performed without adding the water-absorbent resin particles, and the empty mass Wb (g) of the cotton bag when wet was measured. The amount of water retained was calculated from the following formula.
Water retention (g / g) = [Wa-Wb] /2.0
2-2.荷重下吸水量
 吸水性樹脂粒子の2.07kPaの荷重下での生理食塩水に対する吸水量を、温度25℃±2℃、湿度50±10%の環境下で、図5に示す測定装置Yを用いて測定した。測定装置Yは、ビュレット部71、導管72、測定台73、及び、測定台73上に置かれた測定部74から構成される。ビュレット部71は、鉛直方向に伸びるビュレット71aと、ビュレット71aの上端に配置されたゴム栓71bと、ビュレット71aの下端に配置されたコック71cと、コック71cの近傍において一端がビュレット71a内に伸びる空気導入管71dと、空気導入管71dの他端側に配置されたコック71eとを有している。導管72は、ビュレット部71と測定台73との間に取り付けられている。導管72の内径は6mmである。測定台73の中央部には、直径2mmの穴があいており、導管72が連結されている。測定部74は、円筒74a(アクリル樹脂(プレキシグラス)製)と、円筒74aの底部に接着されたナイロンメッシュ74bと、重り74cとを有している。円筒74aの内径は20mmである。ナイロンメッシュ74bの目開きは75μm(200メッシュ)である。そして、測定時にはナイロンメッシュ74b上に測定対象の吸水性樹脂粒子75が均一に撒布される。重り74cの直径は19mmであり、重り74cの質量は59.8gである。重り74cは、吸水性樹脂粒子75上に置かれ、吸水性樹脂粒子75に対して2.07kPaの荷重を加えることができる。
2-2. Amount of water absorption under load The amount of water absorption of water-absorbent resin particles with respect to physiological saline under a load of 2.07 kPa was measured with the measuring device Y shown in FIG. 5 under an environment of a temperature of 25 ° C. ± 2 ° C. and a humidity of 50 ± 10%. Measured using. The measuring device Y is composed of a burette unit 71, a conduit 72, a measuring table 73, and a measuring unit 74 placed on the measuring table 73. The burette portion 71 has a burette 71a extending in the vertical direction, a rubber stopper 71b arranged at the upper end of the burette 71a, a cock 71c arranged at the lower end of the burette 71a, and one end extending into the burette 71a in the vicinity of the cock 71c. It has an air introduction pipe 71d and a cock 71e arranged on the other end side of the air introduction pipe 71d. The conduit 72 is attached between the burette portion 71 and the measuring table 73. The inner diameter of the conduit 72 is 6 mm. A hole having a diameter of 2 mm is formed in the central portion of the measuring table 73, and the conduit 72 is connected to the hole. The measuring unit 74 has a cylinder 74a (made of acrylic resin (plexiglass)), a nylon mesh 74b adhered to the bottom of the cylinder 74a, and a weight 74c. The inner diameter of the cylinder 74a is 20 mm. The opening of the nylon mesh 74b is 75 μm (200 mesh). Then, at the time of measurement, the water-absorbent resin particles 75 to be measured are uniformly sprinkled on the nylon mesh 74b. The diameter of the weight 74c is 19 mm, and the mass of the weight 74c is 59.8 g. The weight 74c is placed on the water-absorbent resin particles 75, and a load of 2.07 kPa can be applied to the water-absorbent resin particles 75.
 測定装置Yの円筒74aの中に0.100gの吸水性樹脂粒子75を入れた後、重り74cを載せて測定を開始した。吸水性樹脂粒子75が吸水した生理食塩水と同容積の空気が、空気導入管より、速やかにかつスムーズにビュレット71aの内部に供給されるため、ビュレット71aの内部の生理食塩水の水位の減量が、吸水性樹脂粒子75が吸水した生理食塩水量となる。ビュレット71aの目盛は、上から下方向に0mLから0.5mL刻みで刻印されている。生理食塩水の水位として、吸水開始前のビュレット71aの目盛りVaと、吸水開始から60分後のビュレット71aの目盛りVbとを読み取り、下記式より荷重下吸水量(2.07kPaの荷重下での生理食塩水に対する吸水量)を算出した。
荷重下吸水量[mL/g]=(Vb-Va)/0.1
After 0.100 g of the water-absorbent resin particles 75 were placed in the cylinder 74a of the measuring device Y, the weight 74c was placed and the measurement was started. Since the same volume of air as the physiological saline absorbed by the water-absorbent resin particles 75 is quickly and smoothly supplied to the inside of the burette 71a from the air introduction pipe, the water level of the physiological saline inside the burette 71a is reduced. However, the amount of physiological saline absorbed by the water-absorbent resin particles 75 is obtained. The scale of the burette 71a is engraved from top to bottom in 0 mL to 0.5 mL increments. As the water level of the physiological saline, the scale Va of the burette 71a before the start of water absorption and the scale Vb of the burette 71a 60 minutes after the start of water absorption are read, and the amount of water absorption under load (under a load of 2.07 kPa) is read from the following formula. The amount of water absorbed with respect to physiological saline) was calculated.
Water absorption under load [mL / g] = (Vb-Va) /0.1
2-3.摩擦係数
 摩擦係数を測定するための簡易吸水シートを作製した。図6は、作製した簡易吸水シートを示す断面図である。作業台の水平面の上に、5×15cmの長方形の粘着面25Sを有する粘着テープ25(ダイヤテックス株式会社製、バイオランテープ(商品名))を、その粘着面25Sが上になる向きで置いた。粘着面25S全体にわたって、吸水性樹脂粒子1.5gを均一に散布した。散布により粘着面25に付着した吸水性樹脂粒子の樹脂層10Aの短辺に沿う端部に、4.0kgのローラー(ステンレス製、直径10.5cm、幅6.0cm)を載せ、ローラーを粘着面25Sの2つの短辺の間で1往復させた。次いで、吸水性樹脂粒子の樹脂層10Aの上に、樹脂層10A全体を覆うティッシュペーパー27(単位面積当たりの質量:16g/m)を載せ、摩擦係数の評価サンプルとした。なお、該評価サンプルは、長手方向に4等分に分割した際の各領域(5×3.75cm)に散布された吸水性樹脂粒子の質量の標準偏差が0.05以下となるように作製した。
2-3. Friction coefficient A simple water absorption sheet for measuring the friction coefficient was prepared. FIG. 6 is a cross-sectional view showing the produced simple water absorption sheet. Place the adhesive tape 25 (Biolan tape (trade name) manufactured by Diatex Co., Ltd.) having a rectangular adhesive surface 25S of 5 x 15 cm on the horizontal surface of the workbench with the adhesive surface 25S facing up. It was. 1.5 g of water-absorbent resin particles were uniformly sprayed over the entire adhesive surface 25S. A 4.0 kg roller (stainless steel, diameter 10.5 cm, width 6.0 cm) is placed on the end of the resin layer 10A of the water-absorbent resin particles adhered to the adhesive surface 25 by spraying along the short side, and the roller is adhered. One round trip was made between the two short sides of the surface 25S. Next, a tissue paper 27 (mass per unit area: 16 g / m 2 ) covering the entire resin layer 10A was placed on the resin layer 10A of the water-absorbent resin particles to prepare a sample for evaluating the friction coefficient. The evaluation sample was prepared so that the standard deviation of the mass of the water-absorbent resin particles sprayed on each region (5 × 3.75 cm) when divided into four equal parts in the longitudinal direction was 0.05 or less. did.
 温度25±2℃、湿度50±10%の環境下で、摩擦感テスター(カトーテック社製、KES-SE-STP(商品名))のプローブを、ティッシュペーパーの吸水性樹脂粒子の樹脂層10Aとは反対側の表面27Sに押し当てながら、直線状に往復させることにより、表面の摩擦係数を所定の動作距離にわたって連続的に測定した。測定条件は以下のとおりである。動作距離は、ティッシュペーパーの表面をプローブが移動した距離である。この測定により、摩擦係数μとセンサの移動距離xとの関係を示す曲線を得た。
・接触子:ピアノ線
・Sens:H
・移動速度:10mm/秒
・荷重:50gf
・動作距離:26.67mm
In an environment with a temperature of 25 ± 2 ° C. and a humidity of 50 ± 10%, a probe of a friction tester (KES-SE-STP (trade name) manufactured by Kato Tech Co., Ltd.) was used as a resin layer 10A of water-absorbent resin particles of tissue paper. The friction coefficient of the surface was continuously measured over a predetermined operating distance by reciprocating in a straight line while pressing against the surface 27S on the opposite side. The measurement conditions are as follows. The operating distance is the distance the probe has moved on the surface of the tissue paper. From this measurement, a curve showing the relationship between the friction coefficient μ and the moving distance x of the sensor was obtained.
・ Contact: Piano wire ・ Sens: H
・ Movement speed: 10 mm / sec ・ Load: 50 gf
・ Operating distance: 26.67 mm
 得られた曲線から、下記式により平均摩擦係数(MIU)、及び摩擦係数の変動(MMD)を求めた。これら式中、μは各測定点における摩擦係数で、xは各測定点までのセンサの移動距離である。同様の測定を5回行い、得られた測定値のうち最大値及び最小値を除く3個の値の平均値を求めた。この平均値を表1に示した。試験に用いたティッシュペーパーを直接粘着面に載せ、その状態で上記と同様の方法でティッシュペーパー表面の摩擦係数を測定したところ、MIUは0.21で、MMDは0.028であった。
Figure JPOXMLDOC01-appb-M000004
From the obtained curve, the average friction coefficient (MIU) and the fluctuation of the friction coefficient (MMD) were calculated by the following formulas. In these equations, μ is the coefficient of friction at each measurement point, and x is the distance traveled by the sensor to each measurement point. The same measurement was performed 5 times, and the average value of 3 values excluding the maximum value and the minimum value among the obtained measured values was obtained. The average value is shown in Table 1. When the tissue paper used in the test was placed directly on the adhesive surface and the friction coefficient on the surface of the tissue paper was measured in the same state as above, MIU was 0.21 and MMD was 0.028.
Figure JPOXMLDOC01-appb-M000004
2-4.吸水シートの浸透速度
評価用吸水シートの作製
 ロールから巻き出した目付量30g/mのエアスルー不織布を、41cm×14cmのサイズに裁断した。エアスルー不織布のロールで外側であった表面上に、気流型混合装置(有限会社オーテック社製、パッドフォーマー)を用いて吸水性樹脂粒子12gを均一に分散させた。41cm×14cmのサイズを有する目付量13g/mのスパンボンド不織布の表面に、ホットメルト塗工機によって、0.5gのホットメルト接着剤を1mm間隔で12本の直線に沿って塗布した。塗布のパターンは、スパイラルストライプであった。スパンボンド不織布のホットメルト接着剤が付着した面、及びエアスルー不織布の吸水性樹脂粒子が散布された面を内側にして、スパンボンド不織布とエアスルー不織布の端部が揃うようにこれらを重ね合わせた。次いで全体を剥離紙で挟み、ラミネート機を用いて、110℃に加熱しながら0.1MPaの圧力でプレスすることにより、スパンボンド不織布、ホットメルト接着剤、吸水性樹脂粒子からなる吸収層、及びエアスルー不織布の順に配置された、図1と同様の構成を有する評価用吸水シートを得た。
2-4. Preparation of Water Absorption Sheet for Evaluation of Permeation Rate of Water Absorption Sheet An air-through non-woven fabric having a basis weight of 30 g / m 2 unwound from a roll was cut into a size of 41 cm × 14 cm. 12 g of water-absorbent resin particles were uniformly dispersed on the outer surface of the roll of the air-through non-woven fabric using an air flow type mixing device (Padformer manufactured by Otec Co., Ltd.). 0.5 g of hot melt adhesive was applied along 12 straight lines at 1 mm intervals on the surface of a spunbonded non-woven fabric having a size of 41 cm × 14 cm and having a grain size of 13 g / m 2 by a hot melt coating machine. The pattern of application was a spiral stripe. These were overlapped so that the ends of the spunbonded non-woven fabric and the air-through non-woven fabric were aligned with the surface of the spunbonded non-woven fabric to which the hot melt adhesive was attached and the surface of the air-through non-woven fabric to which the water-absorbent resin particles were sprayed on the inside. Next, the whole is sandwiched between release papers and pressed at a pressure of 0.1 MPa while heating at 110 ° C. using a laminating machine to obtain a spunbonded non-woven fabric, a hot melt adhesive, an absorbent layer composed of water-absorbent resin particles, and an absorbent layer. An evaluation water-absorbing sheet having the same structure as that of FIG. 1 was obtained in which the air-through nonwoven fabric was arranged in this order.
2-5.浸透速度
 温度25±2℃、湿度50±10%の環境下で、評価用吸収シートを、エアスルー不織布が上側に位置する向きで、作業台の水平面上に置いた。容量100mLの液体収容部及び液体収容部の底部から伸びた内径3cmの投入口を有する液投入用のシリンダーを準備し、これを、投入口の先端が評価用吸収性物品の中央部に接した状態で保持した。シリンダーの液体収容部に25±1℃の50mLの人工尿を一気に投入し、投入口の先端から人工尿を吸水シートに吸収させた。ストップウォッチを用いて、人工尿を投入した時点から人工尿がシリンダー内から完全に消失するまでの時間を測定した。この時間を1回目の浸透速度(秒)とした。同様の操作を、30分間隔で更に2回行い、2回目及び3回目の浸透時間(秒)を測定した。人工尿は以下の成分を混合して調製した。
・イオン交換水:5919.6g
・NaCl:60.0g
・CaCl2・H2O:1.8g
・MgCl2・6H2O:3.6g
・食用青色1号(着色用):0.15g
・トリトン X-100(1%):15.0g
2-5. Penetration rate In an environment with a temperature of 25 ± 2 ° C. and a humidity of 50 ± 10%, the evaluation absorbent sheet was placed on the horizontal surface of the workbench with the air-through non-woven fabric facing upward. A liquid container having a capacity of 100 mL and a cylinder for liquid injection having an inner diameter of 3 cm extending from the bottom of the liquid container were prepared, and the tip of the input port was in contact with the central portion of the absorbent article for evaluation. It was held in a state. 50 mL of artificial urine at 25 ± 1 ° C. was poured into the liquid storage portion of the cylinder at once, and the artificial urine was absorbed by the water absorption sheet from the tip of the inlet. Using a stopwatch, the time from the time when the artificial urine was added until the artificial urine completely disappeared from the cylinder was measured. This time was defined as the first permeation rate (seconds). The same operation was performed twice more at intervals of 30 minutes, and the second and third permeation times (seconds) were measured. Artificial urine was prepared by mixing the following components.
-Ion-exchanged water: 5919.6 g
・ NaCl: 60.0 g
・ CaCl2 ・ H2O: 1.8g
-MgCl2.6H2O: 3.6g
・ Edible blue No. 1 (for coloring): 0.15 g
-Triton X-100 (1%): 15.0 g
2-6.中位粒子径
 吸水性樹脂粒子50gを中位粒子径測定用に用いた。測定は温度25±2℃、湿度50±10%の環境下で行なわれた。JIS標準篩を上から、目開き850μmの篩、目開き500μmの篩、目開き425μmの篩、目開き300μmの篩、目開き250μmの篩、目開き180μmの篩、目開き150μmの篩、及び受け皿の順に組み合わせた。最上部の篩に、吸水性樹脂粒子を入れ、ロータップ式振とう器(株式会社飯田製作所製)を用いてJIS Z 8815(1994)に準じて分級した。分級後、各篩上に残った吸水性樹脂粒子の質量を全量に対する質量百分率として算出し粒度分布を求めた。この粒度分布に関して粒子径の大きい方から順に、篩上に残った吸水性樹脂粒子の質量百分率を積算することにより、篩の目開きと篩上に残った吸水性樹脂粒子の質量百分率の積算値との関係を対数確率紙にプロットした。確率紙上のプロットを直線で結ぶことにより、積算質量百分率50質量%に相当する粒子径を中位粒子径とした。
2-6. Medium particle size 50 g of water-absorbent resin particles were used for measuring the medium particle size. The measurement was performed in an environment with a temperature of 25 ± 2 ° C. and a humidity of 50 ± 10%. From the top, JIS standard sieves have a mesh size of 850 μm, a mesh size of 500 μm, a mesh size of 425 μm, a mesh size of 300 μm, a mesh size of 250 μm, a mesh size of 180 μm, a mesh size of 150 μm, and a sieve. Combined in the order of the saucer. Water-absorbent resin particles were placed in the uppermost sieve and classified according to JIS Z 8815 (1994) using a low-tap shaker (manufactured by Iida Seisakusho Co., Ltd.). After classification, the mass of the water-absorbent resin particles remaining on each sieve was calculated as a mass percentage with respect to the total amount, and the particle size distribution was obtained. By integrating the mass percentages of the water-absorbent resin particles remaining on the sieve in order from the larger particle size with respect to this particle size distribution, the opening of the sieve and the integrated value of the mass percentages of the water-absorbent resin particles remaining on the sieve are integrated. The relationship with is plotted on a logarithmic probability paper. By connecting the plots on the probability paper with a straight line, the particle size corresponding to the cumulative mass percentage of 50% by mass was defined as the medium particle size.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1に評価結果が示される。摩擦係数の変動MMDが特定の数値である吸水性樹脂粒子を用いて作製された吸水シートを有する吸収性物品は、改善された浸透速度を示した。 Table 1 shows the evaluation results. Fluctuations in the coefficient of friction Absorbent articles with water-absorbent sheets made with water-absorbent resin particles with a specific MMD showed improved permeation rates.
 10…吸収層、10a…吸水性樹脂粒子、10b…繊維層、20a…コアラップシート、20b…コアラップシート、21…接着剤、30…液体透過性シート、40…液体不透過性シート、50…吸水シート、71…ビュレット部、71a…ビュレット、71b…ゴム栓、71c…コック、71d…空気導入管、71e…コック、72…導管、73…測定台、74…測定部、74a…円筒、74b…ナイロンメッシュ、74c…重り、75…吸水性樹脂粒子、100…吸収性物品、200…攪拌翼、200a…軸、200b…平板部、S…スリット。 10 ... Absorbent layer, 10a ... Water-absorbent resin particles, 10b ... Fiber layer, 20a ... Core wrap sheet, 20b ... Core wrap sheet, 21 ... Adhesive, 30 ... Liquid permeable sheet, 40 ... Liquid impermeable sheet, 50 ... water absorption sheet, 71 ... burette part, 71a ... burette, 71b ... rubber stopper, 71c ... cock, 71d ... air introduction pipe, 71e ... cock, 72 ... conduit, 73 ... measuring table, 74 ... measuring part, 74a ... cylinder, 74b ... Nylon mesh, 74c ... Weight, 75 ... Water-absorbent resin particles, 100 ... Absorbent article, 200 ... Stirring blade, 200a ... Shaft, 200b ... Flat plate, S ... Slit.

Claims (6)

  1.  以下の(1)、(2)、(3)、(4)、(5)及び(6)の工程をこの順で含む方法により測定される、摩擦係数の変動が0.08以上である、吸水性樹脂粒子。
    (1)5×15cmの長方形の粘着面を有する粘着テープを、その粘着面が上になる向きで作業台の水平面上に配置する。
    (2)粘着面全体に1cm当たり0.02gの吸水性樹脂粒子を付着させる。
    (3)粘着面に付着した吸水性樹脂粒子に、質量4.0kg、直径10.5cm、幅6.0cmのローラーを載せ、次いでローラーを粘着面の2つの短辺の間で1往復させる。
    (4)粘着面に付着した吸水性樹脂粒子の上に、該吸水性樹脂粒子の全体が覆われるようにティッシュペーパーを載せる。
    (5)ピアノ線を接触子として有するプローブを、ティッシュペーパーの吸水性樹脂粒子とは反対側の表面に押し当てながら移動させることにより、ティッシュペーパーの表面の摩擦係数を20mm以上の直線に沿って連続的に測定する。
    (6)摩擦係数μとプローブの移動距離xとの関係を表す曲線から、下記式により、摩擦係数の変動を算出する。これら式中、MIUは平均摩擦係数であり、MMDは摩擦係数の変動である。
    Figure JPOXMLDOC01-appb-M000001
    The variation of the coefficient of friction is 0.08 or more, which is measured by a method including the following steps (1), (2), (3), (4), (5) and (6) in this order. Water-absorbent resin particles.
    (1) An adhesive tape having a rectangular adhesive surface of 5 × 15 cm is placed on the horizontal plane of the workbench with the adhesive surface facing up.
    (2) 0.02 g of water-absorbent resin particles per 1 cm 2 are attached to the entire adhesive surface.
    (3) A roller having a mass of 4.0 kg, a diameter of 10.5 cm, and a width of 6.0 cm is placed on the water-absorbent resin particles adhering to the adhesive surface, and then the roller is reciprocated once between the two short sides of the adhesive surface.
    (4) Place the tissue paper on the water-absorbent resin particles adhering to the adhesive surface so that the entire water-absorbent resin particles are covered.
    (5) By moving the probe having the piano wire as a contact while pressing it against the surface of the tissue paper opposite to the water-absorbent resin particles, the friction coefficient of the surface of the tissue paper is set along a straight line of 20 mm or more. Measure continuously.
    (6) From the curve representing the relationship between the friction coefficient μ and the moving distance x of the probe, the fluctuation of the friction coefficient is calculated by the following formula. In these equations, MIU is the average coefficient of friction and MMD is the variation of the coefficient of friction.
    Figure JPOXMLDOC01-appb-M000001
  2.  当該吸水性樹脂粒子が生理食塩水を吸収したときの保水量が35g/g以上である、請求項1に記載の吸水性樹脂粒子。 The water-absorbent resin particle according to claim 1, wherein the water-absorbent resin particle has a water retention amount of 35 g / g or more when it absorbs physiological saline.
  3.  当該吸水性樹脂粒子が2.07kPaの荷重下で生理食塩水を吸収したときの吸水量が15mL/g以上である、請求項1に記載の吸水性樹脂粒子。 The water-absorbent resin particle according to claim 1, wherein the water-absorbent resin particle has a water absorption amount of 15 mL / g or more when it absorbs physiological saline under a load of 2.07 kPa.
  4.  請求項1~3のいずれか一項に記載の吸水性樹脂粒子を含む吸収層を備える、吸水シート。 A water-absorbing sheet comprising an absorbing layer containing the water-absorbing resin particles according to any one of claims 1 to 3.
  5.  前記吸水性樹脂粒子の含有量が、前記吸収層の質量を基準として70~100質量%である、請求項4に記載の吸水シート。 The water-absorbent sheet according to claim 4, wherein the content of the water-absorbent resin particles is 70 to 100% by mass based on the mass of the absorption layer.
  6.  当該吸水シートがコアラップシートを更に備え、該コアラップシートの内側に前記吸収層が配置されている、請求項4又は5に記載の吸水シート。 The water absorbing sheet according to claim 4 or 5, wherein the water absorbing sheet further includes a core wrap sheet, and the absorbing layer is arranged inside the core wrap sheet.
PCT/JP2020/016757 2019-04-23 2020-04-16 Water-absorbent resin particles and water-absorbent sheet WO2020218164A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021516061A JP7091556B2 (en) 2019-04-23 2020-04-16 Water-absorbent resin particles and water-absorbent sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-082037 2019-04-23
JP2019082037 2019-04-23

Publications (1)

Publication Number Publication Date
WO2020218164A1 true WO2020218164A1 (en) 2020-10-29

Family

ID=72942654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016757 WO2020218164A1 (en) 2019-04-23 2020-04-16 Water-absorbent resin particles and water-absorbent sheet

Country Status (2)

Country Link
JP (1) JP7091556B2 (en)
WO (1) WO2020218164A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088552A (en) * 2001-09-19 2003-03-25 Sumitomo Seika Chem Co Ltd Absorber and absorptive article using it
WO2010004894A1 (en) * 2008-07-11 2010-01-14 住友精化株式会社 Water-absorbent sheet composition
JP2010273972A (en) * 2009-05-29 2010-12-09 Daio Paper Corp Absorbent article
WO2011117997A1 (en) * 2010-03-25 2011-09-29 住友精化株式会社 Water-absorbing sheet structure

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725917A (en) * 1993-07-09 1995-01-27 Idemitsu Petrochem Co Ltd Production of water-absorbing resin powder
JP3970818B2 (en) 1994-10-26 2007-09-05 株式会社日本触媒 Granulated particles of water absorbent resin, absorbent article containing the same, and method for producing granulated particles of water absorbent resin
JP3335843B2 (en) * 1995-09-01 2002-10-21 株式会社日本触媒 Absorbent composition and absorber, and absorbent article including absorber
JP3387717B2 (en) * 1995-12-06 2003-03-17 三菱化学株式会社 Manufacturing method of super absorbent resin
JP2000198805A (en) 1998-11-06 2000-07-18 Mitsubishi Chemicals Corp Water-absorbing complex and its production
JP4380873B2 (en) 1999-02-15 2009-12-09 株式会社日本触媒 Water absorbent resin powder and use thereof
JP2002284803A (en) 2001-03-27 2002-10-03 Mitsubishi Chemicals Corp Method of manufacturing highly water absorptive resin and highly water absorptive resin
JP4615853B2 (en) 2002-12-26 2011-01-19 株式会社日本触媒 Water absorbent resin composition
SG187519A1 (en) 2004-08-06 2013-02-28 Nippon Catalytic Chem Ind Particulate water-absorbing agent with water-absorbing resin as main component, method for production of the same, and absorbing article
EP2399944B2 (en) 2009-02-17 2019-08-07 Nippon Shokubai Co., Ltd. Polyacrylic acid-based water-absorbing resin powder and method for producing the same
KR102073446B1 (en) 2012-09-10 2020-02-05 스미토모 세이카 가부시키가이샤 Water-absorbing resin, water-absorbing body, and water-absorbing product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088552A (en) * 2001-09-19 2003-03-25 Sumitomo Seika Chem Co Ltd Absorber and absorptive article using it
WO2010004894A1 (en) * 2008-07-11 2010-01-14 住友精化株式会社 Water-absorbent sheet composition
JP2010273972A (en) * 2009-05-29 2010-12-09 Daio Paper Corp Absorbent article
WO2011117997A1 (en) * 2010-03-25 2011-09-29 住友精化株式会社 Water-absorbing sheet structure

Also Published As

Publication number Publication date
JPWO2020218164A1 (en) 2020-10-29
JP7091556B2 (en) 2022-06-27

Similar Documents

Publication Publication Date Title
JP5893117B2 (en) Water absorbent resin and absorbent article
KR102592021B1 (en) absorbent article
WO2020184388A1 (en) Water-absorbing resin particles, water-absorbing article, method for producing water-absorbing resin particles, and method for increasing absorbed amount of absorber under pressure
WO2020184394A1 (en) Water absorbent resin particle, absorber, absorbent article, method for measuring permeation retention rate of water absorbent resin particle, and method for producing water absorbent resin particle
WO2021006178A1 (en) Particulate water-absorbent resin composition
WO2021075508A1 (en) Absorbent article and auxiliary sheet
WO2020184398A1 (en) Water absorbing resin particles and method for producing same, absorbent body, and absorbent article
WO2020184386A1 (en) Water absorbing resin particles, absorbent article, method for manufacturing water absorbing resin particles, method for facilitating permeation of physiological saline solution into absorbent body
WO2020184387A1 (en) Water absorbing resin particles and method for producing same, absorbent body, and absorbent article
US20220055014A1 (en) Water absorbent resin particles, absorbent, absorbent article and liquid suction power measurement method
EP3896095A1 (en) Water-absorbent resin particles, absorbent body, and absorbent article
WO2021039715A1 (en) Water-absorbing sheet and absorbent article
US20220219140A1 (en) Water-absorbent resin particles
WO2020218164A1 (en) Water-absorbent resin particles and water-absorbent sheet
WO2021132266A1 (en) Absorbent resin particles, absorber, absorbent sheet, absorbent article, and method for producing absorbent resin particles
JP6991389B2 (en) Water-absorbent resin particles and their manufacturing method
WO2020184391A1 (en) Absorbent body, absorbent article and method for adjusting permeation speed
WO2020218158A1 (en) Water absorbent resin particles
WO2020184393A1 (en) Water absorbent resin particles, absorber and absorbent article
JP7470496B2 (en) Particulate water-absorbent resin composition
US20220008894A1 (en) Water absorbent resin, absorbent body, absorbent article, and production method for water absorbent resin
WO2021039714A1 (en) Absorbent article and auxiliary sheet
WO2021039713A1 (en) Absorbent article and auxiliary sheet
JP6889811B2 (en) A method for producing water-absorbent resin particles, an absorbent article, a water-absorbent resin particle, and a method for suppressing liquid leakage of the absorbent article.
JP6775050B2 (en) Absorbent article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795551

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021516061

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795551

Country of ref document: EP

Kind code of ref document: A1