WO2020218027A1 - Signal processing device, method, and program - Google Patents

Signal processing device, method, and program Download PDF

Info

Publication number
WO2020218027A1
WO2020218027A1 PCT/JP2020/016066 JP2020016066W WO2020218027A1 WO 2020218027 A1 WO2020218027 A1 WO 2020218027A1 JP 2020016066 W JP2020016066 W JP 2020016066W WO 2020218027 A1 WO2020218027 A1 WO 2020218027A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
pwm
period
pdm
level
Prior art date
Application number
PCT/JP2020/016066
Other languages
French (fr)
Japanese (ja)
Inventor
宜紀 田森
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2020218027A1 publication Critical patent/WO2020218027A1/en

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K7/00Modulating pulses with a continuously-variable modulating signal
    • H03K7/08Duration or width modulation ; Duty cycle modulation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M5/00Conversion of the form of the representation of individual digits
    • H03M5/02Conversion to or from representation by pulses
    • H03M5/04Conversion to or from representation by pulses the pulses having two levels
    • H03M5/06Code representation, e.g. transition, for a given bit cell depending only on the information in that bit cell
    • H03M5/08Code representation by pulse width
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems

Definitions

  • the present technology relates to signal processing devices and methods, and programs, and particularly to signal processing devices, methods, and programs capable of suppressing deterioration of audio characteristics.
  • DSD Direct Stream Digital
  • audio is digitized by pulse density modulation (PDM (Pulse Density Modulation)), and the resulting PDM signal is treated as an audio signal of a DSD sound source, that is, a DSD signal (direct stream digital signal).
  • PDM Pulse Density Modulation
  • PWM Pulse Width Modulation
  • DSD data is PWM-converted to cancel switching distortion that occurs when the power amplification unit is driven with the original DSD data (for example, patent documents). 1).
  • This technology was made in view of such a situation, and makes it possible to suppress the deterioration of audio characteristics.
  • the signal processing device of one aspect of the present technology is a PWM conversion unit that converts a PDM signal into a PWM signal in which the signal levels at the start and end of the period are higher than the signal level at the center of one period of the carrier frequency. To be equipped.
  • a signal processing method or program of one aspect of the present technology converts a PDM signal into a PWM signal in which the signal levels at the start and end of the period are higher than the signal level at the center of one period of the carrier frequency. including.
  • the PDM signal is converted into a PWM signal in which the signal levels at the start and end of the period are higher than the signal level at the center of one period of the carrier frequency.
  • the DSD sound source format that is, the DSD sound source signal is explained as a PDM signal in the [256Fs, 1bit] format.
  • the clock frequency of the master clock of the system required to generate the PWM signal has some values adopted within a practical range, but 2048Fs (90.3168MHz) will be described below as an example.
  • FIG. 1 is a diagram showing a configuration example of an embodiment of an audio playback system to which the present technology is applied.
  • the audio reproduction system shown in FIG. 1 has a signal processing device 11 and headphones 12.
  • the signal processing device 11 comprises, for example, an acoustic reproduction control device such as a portable player or a smart phone, and is driven by one or a plurality of drives including at least a single-ended drive system based on a PWM signal obtained from a PDM signal as a digital audio source.
  • the headphones 12 are driven by the method. That is, the signal processing device 11 outputs an analog output signal obtained from the PWM signal to the headphones 12.
  • a balanced drive method or the like can be adopted, and it is also possible to drive the headphone 12 by appropriately switching a plurality of drive methods.
  • the signal processing device 11 has a PWM conversion unit 21 and an amplification unit 22.
  • a PDM signal (digital audio source) for reproducing sound such as music is input (supplied) to the PWM conversion unit 21 from a recording unit or the like (not shown).
  • the PWM conversion unit 21 generates a PWM signal, which is a pulse signal, by performing PWM conversion on the input PDM signal according to the supplied master clock, and supplies the obtained PWM signal to the amplification unit 22. ..
  • the amplification unit 22 amplifies the PWM signal supplied from the PWM conversion unit 21 according to the supplied master clock, performs DA (Digital to Analog) conversion, and based on the output signal obtained as a result, the speaker of the headphone 12 That is, the driver 31 is driven.
  • DA Digital to Analog
  • the power amplification unit is realized by the PWM conversion unit 21 and the amplification unit 22.
  • the headphones 12 are driven by the signal processing device 11 and output sound from the built-in driver 31.
  • the reproduction device to which the output signal obtained by the signal processing device 11 is output is not limited to the headphones 12, and may be a normal speaker or the like.
  • amplification unit 22 is configured as shown in FIG. 2, for example.
  • the amplification unit 22 has a gate driver 61, a FET (Field Effect Transistor) 62-1, a FET 62-2, and an LPF (Low Pass Filter) 63.
  • the gate driver 61 drives FET62-1 and FET62-2 in response to the PWM signal supplied from the PWM conversion unit 21.
  • FET62-1 and FET62-2 consist of field effect transistors and are driven under the control of the gate driver 61.
  • the FET62-1 is a high-side FET in which the power supply is connected to the end opposite to the end to which the LPF63 is connected, and the gate of the FET62-1 is connected to the gate driver 61.
  • FET62-2 is a low-side FET in which a ground or negative power supply is connected to the end opposite to the end to which LPF63 is connected, and the gate of FET62-2 is connected to the gate driver 61.
  • FET62 when it is not necessary to distinguish between FET62-1 and FET62-2, they are also simply referred to as FET62.
  • the gate driver 61 when the gate driver 61 performs single-ended drive, the gate driver 61 turns on the FET 62-1 when the PWM signal value is "1", that is, the H level (High level), and the PWM signal value is "0". That is, when it is L level (Low level), FET62-2 is turned on.
  • FET62-1 becomes conductive and the power supply voltage is supplied to LPF63.
  • FET62-2 becomes conductive and LPF63 Is supplied with ground level or negative power supply voltage.
  • the PWM signal is amplified, and the amplified PWM signal, that is, the signal of the waveform corresponding to the PWM signal is supplied to the LPF63.
  • FIG. 3 shows a general PWM conversion performed when the clock frequency of the master clock at the time of PWM conversion is 2048Fs.
  • the period T11 indicates one sampling period of the PDM signal whose sampling frequency is 256 Fs (11.2896 MHz), that is, one cycle of the carrier frequency of the PWM signal.
  • this period is one carrier cycle. It will also be referred to as the period of.
  • the period T12 indicates the period for one clock of the master clock whose clock frequency is 2048Fs (90.3168MHz).
  • one of the values "1" and "0" which is a 1-bit value for each carrier cycle, is output as a sample value of one sample of the PDM signal.
  • the audio waveform of the sound based on the PDM signal is determined by the density of the pulses corresponding to the sample values in the time direction.
  • PWM conversion will be described here as a conversion method of sample values "1" and "0" in one sample.
  • the PWM signal obtained by PWM conversion when the sample value "1" of the PDM signal is input is also referred to as a PWM (+) signal, and when the sample value "0" of the PDM signal is input.
  • the PWM signal obtained by PWM conversion is also referred to as a PWM (-) signal.
  • the resolution that determines the shape of the pulse waveform of the PWM signal (hereinafter, also referred to as the PWM waveform) is referred to as a "slot". This resolution is uniquely determined by the clock frequency of the master clock and the carrier frequency of the PWM signal, that is, the sampling frequency of the PDM signal.
  • the length of the period T12 which is the period of one clock of the master clock, is one slot.
  • the PWM (-) signal indicated by the polygonal line L11 is a pulse signal with a pulse width of two slots centered on the time (position) at the center of the period T11.
  • the PWM (+) signal indicated by the polygonal line L12 is a pulse signal with a pulse width of 6 slots centered on the time (position) at the center of the period T11.
  • the PWM waveforms of the PWM signals indicated by these polygonal lines L11 and L12 are all line-symmetrical with respect to the time at the center of the period T11.
  • the PWM conversion pattern shape which is optimal for single-ended drive of a driver (speaker), is such that each waveform of the PWM (-) signal and PWM (+) signal is centered within one cycle of the carrier frequency of the PWM signal.
  • PWM waveform which is optimal for single-ended drive of a driver (speaker)
  • each waveform of the PWM (-) signal and PWM (+) signal is centered within one cycle of the carrier frequency of the PWM signal.
  • it is known to be line-symmetric (see, for example, Japanese Patent Application Laid-Open No. 2000-68835).
  • the period T11 indicates the period of one cycle of the carrier frequency, and hereinafter, the time (position) at the center of the period of one cycle (one carrier cycle) of the carrier frequency of the PWM signal is also referred to as the cycle center. I will do it.
  • the signal level is H level for a period of 3 slots in each direction from the center of the cycle to the left and right, and the signal level is L level in other periods. It has become.
  • the signal level is H level in each of the left and right directions from the center of the cycle for one slot, and in other periods.
  • the signal level is L level.
  • the PWM waveforms of both the PWM (-) signal and the PWM (+) signal have the periodic center as the center of the pulse and the sudden waveform, that is, the predetermined width centered on the periodic center. It can be seen that the period of is a waveform with H level.
  • both the PWM (+) signal and the PWM (-) signal are PWM waveform signals that are line-symmetric with respect to the center within the period of one cycle of the carrier frequency.
  • the signal level at the start end and the end of the period of one carrier cycle is lower than the signal level near the center of the cycle, and the PDM signal is axisymmetric in the period of one carrier cycle. It is converted into a PWM signal with a PWM waveform.
  • the general PWM conversion method shown in FIG. 3 will also be referred to as a two-sided modulation method.
  • the minimum pulse width of the PWM signal for driving the driver is a very narrow width of 22 [nsec].
  • the PDM signal for reproducing the DSD sound source is a PDM signal that expresses the audio waveform with the pulse density, and the frequency of narrow pulses generated in the PWM signal is high.
  • the driving difficulty when driving the driver by the power amplification unit becomes high, and as a result, the audio characteristics deteriorate (deteriorate). That is, noise and harmonic distortion occur, and the quality of the reproduced sound deteriorates.
  • the sampling frequency of the DSD sound source to be reproduced that is, the PDM signal
  • the clock frequency of the master clock of the system required for generating the PWM signal also tends to be high. Therefore, in such a case, the minimum pulse width of the PWM signal becomes narrower, which further increases the difficulty of driving the driver by the power amplification unit.
  • the waveform of the signal output from the FET should ideally be a rectangular waveform as shown in, for example, the polygonal line WS11 in FIG. Is.
  • the shaded area represents the error between the ideal signal waveform shown on the polygonal line WS11 and the actual signal waveform shown on the curve WS12, and such an error reduces the audio characteristics. cause.
  • the narrower the width of the pulse signal output from the FET that is, the narrower the pulse width of the PWM signal
  • the narrower the pulse width of the PWM signal the greater the influence of the error between the ideal signal waveform and the actual signal waveform, and the deterioration of audio characteristics becomes remarkable. turn into.
  • the input PDM signal is lined at the end of the period of one carrier cycle, that is, the signal level at the start end and the end is higher than the signal level near the center of the cycle, and during the period of one carrier cycle. Converted to a PWM signal with a symmetric PWM waveform. As a result, the frequency of occurrence of narrow pulses in the PWM signal can be reduced, and deterioration of audio characteristics can be suppressed.
  • PWM conversion is performed by the PWM conversion unit 21 as shown in FIG.
  • the PWM conversion unit 21 when the sample value "0" of the PDM signal is supplied to the PWM conversion unit 21, the PWM conversion unit 21 outputs the PWM signal (-) of the waveform shown in the polygonal line L21.
  • the PWM (-) signal indicated by the polygonal line L21 has the L level signal level at the time at the center of the period T11, that is, the signal level for the period of 6 slots centered on the periodic center, and the signal level at the other periods is the H level. It is a pulse signal with a sudden waveform below.
  • the signal level is H level in the period of one cycle of the carrier frequency, that is, the period of one slot immediately after the start of the period T11 which is the period of one carrier cycle. Increase to.
  • the signal level is set to L level in the period of 6 slots, and the signal level is increased to H level in the period of 1 slot immediately before the end of the period T11.
  • the PWM conversion unit 21 outputs the PWM signal (+) of the waveform shown in the polygonal line L22.
  • the PWM (+) signal indicated by the polygonal line L22 has the L level signal level at the time at the center of the period T11, that is, the signal level for two slots centered on the periodic center, and the H level signal level at the other periods. It is a pulse signal with a sudden waveform below.
  • the signal level increases to H level in the period of 3 slots immediately after the start of period T11, and then the signal level increases to L level in the period of 2 slots. Furthermore, the signal level increases to the H level in the period of 3 slots immediately before the end of the period T11.
  • the PWM signal shown on the polygonal line L21 and the polygonal line L22 is line-symmetric with respect to the cycle center within a period of one cycle of the carrier frequency, similar to the PWM signal obtained by the general PWM conversion shown in FIG. It is a signal with a good waveform.
  • the PWM signal obtained by the PWM conversion unit 21 is a PWM signal suitable for single-ended drive.
  • the PWM conversion method shown in FIG. 5 will also be referred to as a double-sided reverse modulation method.
  • the two-sided modulation method shown in FIG. 3 is compared with the two-sided inverse modulation method performed by the PWM conversion unit 21 described with reference to FIG.
  • the signal level of the pulse is increased from the L level to the H level at the center of the cycle, based on the L level within one carrier cycle.
  • the signal level of the pulse at the center of the cycle is based on the H level within one carrier cycle. Is reduced from H level to L level.
  • the modulation factor when converting the PDM signal into the PWM signal is the same. .. That is, it can be seen that the signal level of the output signal does not decrease in any PWM conversion.
  • the modulation factors of the two-sided modulation method and the two-sided inverse modulation method are calculated as follows.
  • the pulse width of the PWM (+) signal is 6 slots out of 8 slots which are one cycle of the carrier frequency, and similarly, the pulse width of the PWM (-) signal is 8 slots which is one cycle of the carrier frequency. Two of them.
  • the S / N ratio (Signal to Noise Ratio) of the audio performance decreases due to the decrease in the signal level during playback of the DSD sound source.
  • the PWM signal obtained by the double-sided reverse modulation method is line-symmetrical in the period of one carrier cycle.
  • the signal levels at the start and end of the period of one carrier cycle are higher than the signal level at the center of the cycle, and the H level at the start of the period of one carrier cycle.
  • the signal may be different from the period (width) to be the H level at the end of the period of one carrier cycle.
  • the PWM signal obtained by the general PWM conversion that is, the two-sided modulation method and the PWM conversion by the PWM conversion unit 21, that is, the PWM obtained by the two-sided reverse modulation method.
  • the horizontal direction that is, the horizontal axis indicates the time axis (time direction)
  • the vertical direction in the drawings indicates the signal level
  • FIG. 6 shows a PDM signal consisting of 12 sample values arranged in succession, that is, a PWM signal when "000101010101" is PWM-converted as a PDM signal.
  • the broken line L31 shows the PWM signal obtained by the general PWM conversion (two-sided modulation method) described with reference to FIG. 3, and the broken line L32 is the PWM conversion unit 21 described with reference to FIG. The PWM signal obtained by the PWM conversion (two-sided reverse modulation method) of.
  • a narrow pulse is generated at the same frequency as the occurrence frequency of the sample value "0" in the PDM signal.
  • the sample value "0" is used when the sample value in the PDM signal changes from “0” to “1” or from “1” to “0". And when the sample value "1" occurs alternately, a narrow pulse with a pulse width of 2 slots does not occur.
  • a pulse is not generated at the center of the cycle in the period of one carrier cycle, and a pulse is generated at the start portion and the end portion of the period of one carrier cycle. Is generated, and these pulses are connected with the pulses generated in the period of one carrier cycle before or after the time.
  • the sample values of the PDM signal are alternately “0” and “1” as sample values such as “0" to “1” or “1” to “0".
  • a narrow pulse with a pulse width of 2 slots will be generated at the timing of the sample value "0".
  • a narrow pulse with a pulse width of 2 slots is generated only when "0" is continuous as the sample value of the PDM signal.
  • the number of times a narrow pulse having a pulse width of 2 slots is generated in the PWM signal shown by the polygonal line L31 is 7 times in the entire section.
  • the number of occurrences of narrow pulses with a pulse width of 2 slots is 2, and it can be seen that the frequency of occurrence of narrow pulses can be significantly reduced as a whole.
  • FIG. 7 shows a PDM signal consisting of 12 sample values arranged in succession, that is, a PWM signal when "000111001100" is PWM-converted as a PDM signal.
  • the broken line L41 shows the PWM signal obtained by the general PWM conversion (two-sided modulation method) described with reference to FIG. 3, and the broken line L42 is the PWM conversion unit 21 described with reference to FIG. The PWM signal obtained by the PWM conversion (two-sided reverse modulation method) of.
  • a narrow pulse with a pulse width of 2 slots is generated every time the sample value "0" of the PDM signal is generated.
  • the two-sided reverse modulation method does not require PCM (Pulse Code Modulation) conversion, and has a pulse width of 2 slots, which is the minimum pulse width, and a pulse width of 6 slots, which is the maximum pulse width. It is possible to obtain a multi-bit (multi-value) representation in which a pulse of 4 and a pulse having a pulse width of 4 slots in the middle appear, in particular, a ternary PWM signal here.
  • PCM Pulse Code Modulation
  • the difficulty of driving the driver 31 by the amplification unit 22 can be reduced, and the power supply fluctuation on the high-side FET 62-1 side can be suppressed.
  • deterioration of the audio characteristics of the output signal input from the amplification unit 22 to the driver 31 can be suppressed. In other words, it is possible to suppress the occurrence of noise and harmonic distortion in the output signal.
  • the width of the pulse appearing as a PWM signal suddenly changes from the width of 2 slots to the width of 6 slots, noise and distortion occur due to power supply fluctuations on the FET62-1 side. , The audio characteristics of the output signal are degraded.
  • a multi-bit (multi-value) PWM signal can be obtained by a two-sided modulation method, for example, when the width of the appearing pulse changes from 2 slots to 4 slots and further to 6 slots.
  • the change of the PWM waveform becomes slower than that of the PWM signal.
  • the transition of the PWM waveform is such that the PWM signal is filtered by an LPF (low-pass filter).
  • the double-sided reverse modulation method can prevent sudden changes in the PWM waveform, so that power supply fluctuations on the high-side FET62-1 side can be suppressed, and as a result, the audio characteristics of the output signal deteriorate. Can be suppressed.
  • the PDM signal is converted into a PWM signal having three pulse-shaped patterns by the two-sided reverse modulation method
  • a pulse-shaped pattern in which the PDM signal has four or more pulse-shaped patterns is described by the two-sided reverse modulation method. It may be converted into a PWM signal having.
  • the audio playback system When the audio playback system is instructed to play music or the like, the audio playback system performs a playback process to play the instructed music or the like.
  • the reproduction process by the audio reproduction system will be described with reference to the flowchart of FIG.
  • the designated PDM signal such as music is read out and input to the PWM conversion unit 21.
  • step S11 the PWM conversion unit 21 performs PWM conversion on the input PDM signal, and supplies the PWM signal obtained as a result to the gate driver 61 of the amplification unit 22.
  • PWM conversion is performed by the double-sided reverse modulation method.
  • step S12 the amplification unit 22 amplifies the PWM signal supplied from the PWM conversion unit 21 and DA-converts the amplified PWM signal.
  • the gate driver 61 amplifies the PWM signal by driving the FET 62 in response to the PWM signal supplied from the PWM conversion unit 21. Further, the LPF 63 performs DA conversion on the signal from the FET 62 by performing a filtering process on the signal supplied from the FET 62.
  • step S13 the LPF 63 of the amplification unit 22 drives the driver 31 provided in the headphones 12 based on the analog output signal obtained by the DA conversion, and causes the driver 31 to play music or the like.
  • the playback process ends.
  • the audio playback system converts the PDM signal into PWM and generates a PWM signal.
  • the PDM signal is treated as a digital audio source, and when the PDM signal is used as it is to drive the power amplification unit, the frequency of narrow pulse generation is performed by performing PWM conversion that lowers the signal level at the center of the cycle. Can be reduced.
  • the driving difficulty of the driver 31 can be lowered, and the deterioration of the audio characteristics of the output signal output from the amplification unit 22 can be suppressed.
  • the PWM conversion unit 21 can obtain a multi-valued PWM signal, that is, a PWM signal with multi-bit expression without performing PCM conversion, the audio characteristics of the output signal output from the amplification unit 22 are deteriorated. It can be further suppressed.
  • the modulation rate in PWM conversion does not decrease, so the signal level of the output signal does not decrease, and the frequency of narrow pulse generation does not require an additional circuit. Can be reduced.
  • the sampling frequency of the PWM signal does not change, so that the information (information amount) of the original DSD sound source itself can be retained. ..
  • one of the two-sided modulation method and the two-sided inverse modulation method may be dynamically selected and switched as appropriate.
  • the audio reproduction system is configured as shown in FIG. 9, for example.
  • the parts corresponding to the case in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the audio reproduction system shown in FIG. 9 has a signal processing device 91 and headphones 12.
  • the signal processing device 91 has a PWM conversion unit 21, an amplification unit 22, and a selection unit 101.
  • the selection unit 101 contains DSD sound source information regarding the PDM signal to be reproduced, power quality information supplied from the amplification unit 22, driver information supplied from the headphones 12, and output signals output from the amplification unit 22 to the headphones 12.
  • the PWM conversion by the PWM conversion unit 21 is controlled based on at least one of them.
  • the selection unit 101 uses either the two-sided modulation method or the two-sided reverse modulation method described above based on the DSD sound source information, the power supply quality information, the driver information, and the output signal.
  • the PWM conversion method is selected, and the PWM conversion unit 21 is controlled so that the PWM conversion is performed by the selected PWM conversion method. In other words, the PWM conversion method is switched.
  • the DSD sound source information is information indicating the sampling rate (sampling frequency) of the PDM signal.
  • sampling rate sampling frequency
  • the selection unit 101 selects the double-sided inverse modulation method as the PWM conversion method, and when the sampling rate is less than the threshold value, the selection unit 101 performs double-sided modulation as the PWM conversion method. Select a method.
  • the power supply quality information is information on the power supply quality on the high-side FET62-1 side of the amplification unit 22, more specifically, for example, information indicating the magnitude of power supply fluctuation.
  • the selection unit 101 reverses both sides as a PWM conversion method.
  • the two-sided modulation method is selected as the PWM conversion method.
  • the driver information is information about the driver 31, for example, an impedance value in the driver 31.
  • the impedance value (resistance value) when driving the driver 31 is high, it is necessary to raise the power supply voltage, that is, the voltage of the output signal in order to output the output signal with a sufficiently large sound pressure. Then, the driving difficulty of the driver 31 becomes high, which causes a decrease in the audio characteristics of the output signal.
  • the selection unit 101 selects the two-sided reverse modulation method as the PWM conversion method, and when the impedance value is less than the threshold value, the two-sided modulation method is used as the PWM conversion method. Select.
  • the selection unit 101 may obtain, for example, the noise level or distortion level of the output signal, that is, the magnitude of noise or distortion as the audio characteristics of the output signal, based on the output signal output from the LPF 63.
  • the selection unit 101 selects the double-sided inverse modulation method as the PWM conversion method, and the magnitude of noise or distortion is less than the threshold value.
  • the two-sided modulation method is selected as the PWM conversion method.
  • a double-sided reverse modulation method is selected as the PWM conversion method. If the conditions are not satisfied, the two-sided modulation method may be selected as the PWM conversion method.
  • the selection unit 101 may be provided in common for the left and right channels. In such a case, for example, when the selection unit 101 selects the two-sided modulation method in one channel, the two-sided reverse modulation method may be selected in the other channel.
  • the selection unit 101 is at least one of the DSD sound source information supplied, the power supply quality information supplied from the amplification unit 22, the driver information supplied from the headphones 12, and the output signal supplied from the amplification unit 22. Based on one of these, the PWM conversion method by the PWM conversion unit 21 is selected, and the selection result is supplied to the PWM conversion unit 21.
  • the headphones 12 are driven by a single end, a two-sided reverse modulation method or a two-sided modulation method is selected as the PWM conversion method.
  • step S42 the PWM conversion unit 21 performs PWM conversion on the input PDM signal by the PWM conversion method indicated by the selection result supplied from the selection unit 101, and the PWM signal obtained as a result is amplified by the amplification unit 22. It is supplied to the gate driver 61 of.
  • step S42 when the two-sided modulation method is selected as the PWM conversion method, PWM conversion is performed as described with reference to FIG. 3, and when the two-sided inverse modulation method is selected as the PWM conversion method, the PWM conversion is performed. PWM conversion is performed as described with reference to FIG.
  • steps S43 and S44 are then performed to end the reproduction process, but these processes are the same as the processes of steps S12 and S13 of FIG. 8, so the description thereof is omitted. To do.
  • the audio playback system selects an appropriate PWM conversion method based on the DSD sound source information, power supply quality information, driver information, and output signal. As a result, sufficient audio characteristics can be obtained.
  • the series of processes described above can be executed by hardware or software.
  • the programs that make up the software are installed on the computer.
  • the computer includes a computer embedded in dedicated hardware and, for example, a general-purpose personal computer capable of executing various functions by installing various programs.
  • FIG. 11 is a block diagram showing a configuration example of computer hardware that executes the above-mentioned series of processes programmatically.
  • a CPU Central Processing Unit
  • ROM ReadOnly Memory
  • RAM RandomAccessMemory
  • An input / output interface 505 is further connected to the bus 504.
  • An input unit 506, an output unit 507, a recording unit 508, a communication unit 509, and a drive 510 are connected to the input / output interface 505.
  • the input unit 506 includes a keyboard, a mouse, a microphone, an image sensor, and the like.
  • the output unit 507 includes a display, a speaker, and the like.
  • the recording unit 508 includes a hard disk, a non-volatile memory, and the like.
  • the communication unit 509 includes a network interface and the like.
  • the drive 510 drives a removable recording medium 511 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • the CPU 501 loads the program recorded in the recording unit 508 into the RAM 503 via the input / output interface 505 and the bus 504 and executes the above-described series. Is processed.
  • the program executed by the computer (CPU501) can be recorded and provided on a removable recording medium 511 as a package medium or the like, for example. Programs can also be provided via wired or wireless transmission media such as local area networks, the Internet, and digital satellite broadcasting.
  • the program can be installed in the recording unit 508 via the input / output interface 505 by mounting the removable recording medium 511 in the drive 510. Further, the program can be received by the communication unit 509 and installed in the recording unit 508 via a wired or wireless transmission medium. In addition, the program can be pre-installed in the ROM 502 or the recording unit 508.
  • the program executed by the computer may be a program that is processed in chronological order in the order described in this specification, or may be a program that is processed in parallel or at a necessary timing such as when a call is made. It may be a program in which processing is performed.
  • the embodiment of the present technology is not limited to the above-described embodiment, and various changes can be made without departing from the gist of the present technology.
  • this technology can have a cloud computing configuration in which one function is shared by a plurality of devices via a network and processed jointly.
  • each step described in the above flowchart can be executed by one device or can be shared and executed by a plurality of devices.
  • one step includes a plurality of processes
  • the plurality of processes included in the one step can be executed by one device or shared by a plurality of devices.
  • this technology can also have the following configurations.
  • a signal processing device including a PWM converter that converts a PDM signal into a PWM signal whose signal levels at the start and end of the period are higher than the signal level at the center of one period of the carrier frequency.
  • the signal processing device according to (1) wherein the waveform of the PWM signal in the period is line symmetric.
  • the PWM conversion unit converts the PDM signal into the PWM signal having a pulse-shaped pattern of 3 or more.
  • the PDM signal is transmitted by the PWM converter. Convert to the PWM signal where the signal levels at the start and end are higher than the signal level at the center.
  • the signal processing apparatus according to (4) further comprising a selection unit for selecting whether to convert a PWM signal whose start end and end signal levels are lower than the central signal level.
  • the selection unit is based on at least one of the output from the amplification unit to the reproduction device, information on the reproduction device, information on power supply quality in the amplification unit, and sampling rate of the PDM signal.
  • the signal processing device A signal processing method for converting a PDM signal into a PWM signal in which the signal levels at the start and end of the period are higher than the signal level at the center of one period of the carrier frequency.
  • 11 signal processing device 12 headphones, 21 PWM conversion unit, 22 amplification unit, 31 driver, 61 gate driver, 62-1, 62-2, 62 FET, 63 LPF, 101 selection unit

Abstract

The present invention relates to a signal processing device, method, and program with which it is possible to suppress deterioration of audio characteristics. The signal processing device comprises a PWM converter that converts a PDM signal to a PWM signal for which the signal level of the start and end of a period of one cycle of a carrier frequency is higher than the signal level at the center of the period. The present invention is applicable to signal processing devices.

Description

信号処理装置および方法、並びにプログラムSignal processing equipment and methods, and programs
 本技術は、信号処理装置および方法、並びにプログラムに関し、特にオーディオ特性の低下を抑制することができるようにした信号処理装置および方法、並びにプログラムに関する。 The present technology relates to signal processing devices and methods, and programs, and particularly to signal processing devices, methods, and programs capable of suppressing deterioration of audio characteristics.
 近年、DSD(Direct Stream Digital)と呼ばれる超高音質フォーマットが提案されている。DSDでは、パルス密度変調(PDM(Pulse Density Modulation))により音声がデジタル化され、その結果得られたPDM信号がDSD音源のオーディオ信号、すなわちDSD信号(ダイレクトストリームデジタル信号)として扱われる。 In recent years, an ultra-high sound quality format called DSD (Direct Stream Digital) has been proposed. In DSD, audio is digitized by pulse density modulation (PDM (Pulse Density Modulation)), and the resulting PDM signal is treated as an audio signal of a DSD sound source, that is, a DSD signal (direct stream digital signal).
 例えばDSD音源の再生時に、PDM信号のままでパワー増幅部によりヘッドホンのドライバを駆動する場合、PDM信号に対してPWM(Pulse Width Modulation)変換が行われ、その結果得られたPWM信号がパワー増幅部により増幅されてドライバに入力される。 For example, when playing back a DSD sound source, when the power amplification unit drives the headphone driver with the PDM signal as it is, PWM (Pulse Width Modulation) conversion is performed on the PDM signal, and the PWM signal obtained as a result is power amplified. It is amplified by the unit and input to the driver.
 また、例えばPWM変換に関する技術として、DSDデータをPWM変換することで、もとのDSDデータのままパワー増幅部を駆動する際に生じるスイッチング歪みをキャンセルする技術が提案されている(例えば、特許文献1参照)。 Further, for example, as a technique related to PWM conversion, a technique has been proposed in which DSD data is PWM-converted to cancel switching distortion that occurs when the power amplification unit is driven with the original DSD data (for example, patent documents). 1).
特開2000-68835号公報Japanese Unexamined Patent Publication No. 2000-68835
 ところで、上述したようにPDM信号に対してPWM変換を行い、得られたPWM信号を増幅してドライバを駆動すると、十分なオーディオ特性が得られないことがあった。 By the way, when PWM conversion is performed on the PDM signal as described above, the obtained PWM signal is amplified and the driver is driven, sufficient audio characteristics may not be obtained.
 すなわち、PDM信号に対してPWM変換を行った場合、PWM信号での狭パルスの発生頻度が高いため、後段のパワー増幅部によるドライバの駆動難易度が上がり、オーディオ特性が悪化(低下)しやすくなってしまう。特に駆動難易度が上がることでノイズや高調波歪みが生じやすくなる。 That is, when PWM conversion is performed on the PDM signal, since the frequency of narrow pulses generated in the PWM signal is high, the difficulty of driving the driver by the power amplification unit in the subsequent stage increases, and the audio characteristics tend to deteriorate (decrease). turn into. In particular, as the driving difficulty increases, noise and harmonic distortion are likely to occur.
 本技術は、このような状況に鑑みてなされたものであり、オーディオ特性の低下を抑制することができるようにするものである。 This technology was made in view of such a situation, and makes it possible to suppress the deterioration of audio characteristics.
 本技術の一側面の信号処理装置は、PDM信号を、キャリア周波数の1周期の期間の中心の信号レベルよりも、前記期間の開始端および終端の信号レベルが高いPWM信号に変換するPWM変換部を備える。 The signal processing device of one aspect of the present technology is a PWM conversion unit that converts a PDM signal into a PWM signal in which the signal levels at the start and end of the period are higher than the signal level at the center of one period of the carrier frequency. To be equipped.
 本技術の一側面の信号処理方法またはプログラムは、PDM信号を、キャリア周波数の1周期の期間の中心の信号レベルよりも、前記期間の開始端および終端の信号レベルが高いPWM信号に変換するステップを含む。 A signal processing method or program of one aspect of the present technology converts a PDM signal into a PWM signal in which the signal levels at the start and end of the period are higher than the signal level at the center of one period of the carrier frequency. including.
 本技術の一側面においては、PDM信号が、キャリア周波数の1周期の期間の中心の信号レベルよりも、前記期間の開始端および終端の信号レベルが高いPWM信号に変換される。 In one aspect of the present technology, the PDM signal is converted into a PWM signal in which the signal levels at the start and end of the period are higher than the signal level at the center of one period of the carrier frequency.
オーディオ再生システムの構成を示す図である。It is a figure which shows the structure of the audio reproduction system. 増幅部の構成を示す図である。It is a figure which shows the structure of the amplification part. 一般的なPWM変換について説明する図である。It is a figure explaining the general PWM conversion. 狭パルスの発生によるオーディオ特性の低下について説明する図である。It is a figure explaining the deterioration of the audio characteristic by the generation of a narrow pulse. 本技術のPWM変換について説明する図である。It is a figure explaining the PWM conversion of this technique. PWM変換の具体例について説明する図である。It is a figure explaining the specific example of PWM conversion. PWM変換の具体例について説明する図である。It is a figure explaining the specific example of PWM conversion. 再生処理を説明するフローチャートである。It is a flowchart explaining the reproduction process. オーディオ再生システムの構成を示す図である。It is a figure which shows the structure of the audio reproduction system. 再生処理を説明するフローチャートである。It is a flowchart explaining the reproduction process. コンピュータの構成例を示す図である。It is a figure which shows the configuration example of a computer.
 以下、図面を参照して、本技術を適用した実施の形態について説明する。 Hereinafter, embodiments to which the present technology is applied will be described with reference to the drawings.
〈第1の実施の形態〉
〈オーディオ再生システムの構成例〉
 本技術は、パワー増幅部でPDM信号(DSD信号)をデジタルオーディオソースとして扱い、PDM信号のままパワー増幅部をシングルエンド駆動方式で駆動する場合に、オーディオ特性の低下を抑制することができるようにするものである。
<First Embodiment>
<Configuration example of audio playback system>
This technology treats the PDM signal (DSD signal) as a digital audio source in the power amplification unit, and when the power amplification unit is driven by the single-ended drive method with the PDM signal as it is, it is possible to suppress the deterioration of audio characteristics. Is what you want.
 例えばDSD音源のフォーマットは、サンプリング周波数の違いによりいくつかの種類が存在するが、以下ではDSD音源のフォーマット、すなわちDSD音源の信号は[256Fs,1bit]の形式のPDM信号であるものとして説明を行う。 For example, there are several types of DSD sound source formats depending on the sampling frequency, but in the following, the DSD sound source format, that is, the DSD sound source signal is explained as a PDM signal in the [256Fs, 1bit] format. Do.
 ここで、「256Fs」はPDM信号のサンプリング周波数を示しており、「1bit」はPDM信号の量子化ビット数、つまりPDM信号の1サンプルが1ビットの情報であることを示している。 Here, "256Fs" indicates the sampling frequency of the PDM signal, and "1 bit" indicates the number of quantization bits of the PDM signal, that is, one sample of the PDM signal is 1-bit information.
 特に、以下においてはDSD音源のPDM信号を扱うため、サンプリング周波数は1×Fs=44.1kHzとする。また、PWM信号の生成に必要なシステムのマスタークロックのクロック周波数は、実用可能な範囲でいくつか採用されている値があるが、以下では2048Fs(90.3168MHz)を例として説明を行う。 In particular, in the following, since the PDM signal of the DSD sound source is handled, the sampling frequency is set to 1 × Fs = 44.1kHz. In addition, the clock frequency of the master clock of the system required to generate the PWM signal has some values adopted within a practical range, but 2048Fs (90.3168MHz) will be described below as an example.
 図1は、本技術を適用したオーディオ再生システムの一実施の形態の構成例を示す図である。 FIG. 1 is a diagram showing a configuration example of an embodiment of an audio playback system to which the present technology is applied.
 図1に示すオーディオ再生システムは、信号処理装置11およびヘッドホン12を有している。 The audio reproduction system shown in FIG. 1 has a signal processing device 11 and headphones 12.
 信号処理装置11は、例えばポータブルプレーヤやスマートホンなどの音響再生制御機器からなり、デジタルオーディオソースとしてのPDM信号から得られたPWM信号に基づいて、少なくともシングルエンド駆動方式を含む1または複数の駆動方式によりヘッドホン12を駆動する。すなわち、信号処理装置11はPWM信号から得られるアナログの出力信号をヘッドホン12に出力する。 The signal processing device 11 comprises, for example, an acoustic reproduction control device such as a portable player or a smart phone, and is driven by one or a plurality of drives including at least a single-ended drive system based on a PWM signal obtained from a PDM signal as a digital audio source. The headphones 12 are driven by the method. That is, the signal processing device 11 outputs an analog output signal obtained from the PWM signal to the headphones 12.
 例えばヘッドホン12の駆動方式として、シングルエンド駆動方式の他、バランス駆動方式なども採用することができ、複数の駆動方式を適宜、切り替えてヘッドホン12を駆動することも可能である。 For example, as the drive method of the headphone 12, in addition to the single-ended drive method, a balanced drive method or the like can be adopted, and it is also possible to drive the headphone 12 by appropriately switching a plurality of drive methods.
 なお、以下では、シングルエンド駆動方式での駆動を単にシングルエンド駆動とも称することとする。また、以下では、特にヘッドホン12をシングルエンド駆動方式で駆動する場合について説明する。 In the following, driving by the single-ended drive system will also be referred to simply as single-ended drive. Further, in the following, a case where the headphones 12 are driven by a single-ended drive system will be described in particular.
 信号処理装置11はPWM変換部21、および増幅部22を有している。 The signal processing device 11 has a PWM conversion unit 21 and an amplification unit 22.
 PWM変換部21には、図示せぬ記録部等から、音楽等の音を再生するためのオーディオ信号(デジタルオーディオソース)であるPDM信号が入力(供給)される。 A PDM signal (digital audio source) for reproducing sound such as music is input (supplied) to the PWM conversion unit 21 from a recording unit or the like (not shown).
 PWM変換部21は、供給されたマスタークロックに従って、入力されたPDM信号に対してPWM変換を行うことで、パルス信号であるPWM信号を生成し、得られたPWM信号を増幅部22に供給する。 The PWM conversion unit 21 generates a PWM signal, which is a pulse signal, by performing PWM conversion on the input PDM signal according to the supplied master clock, and supplies the obtained PWM signal to the amplification unit 22. ..
 増幅部22は、供給されたマスタークロックに従って、PWM変換部21から供給されたPWM信号を増幅させるとともにDA(Digital to Analog)変換し、その結果得られた出力信号に基づいてヘッドホン12のスピーカ、すなわちドライバ31を駆動する。 The amplification unit 22 amplifies the PWM signal supplied from the PWM conversion unit 21 according to the supplied master clock, performs DA (Digital to Analog) conversion, and based on the output signal obtained as a result, the speaker of the headphone 12 That is, the driver 31 is driven.
 信号処理装置11では、PWM変換部21および増幅部22によってパワー増幅部が実現される。 In the signal processing device 11, the power amplification unit is realized by the PWM conversion unit 21 and the amplification unit 22.
 ヘッドホン12は、信号処理装置11により駆動され、内蔵しているドライバ31から音を出力する。 The headphones 12 are driven by the signal processing device 11 and output sound from the built-in driver 31.
 なお、信号処理装置11で得られた出力信号の出力先となる再生装置は、ヘッドホン12に限らず、通常のスピーカなどであってもよい。 The reproduction device to which the output signal obtained by the signal processing device 11 is output is not limited to the headphones 12, and may be a normal speaker or the like.
〈増幅部の構成例〉
 また、増幅部22は、例えば図2に示すように構成される。
<Structure example of amplification unit>
Further, the amplification unit 22 is configured as shown in FIG. 2, for example.
 図2に示す例では、増幅部22はゲートドライバ61、FET(Field Effect Transistor)62-1、FET62-2、およびLPF(Low Pass Filter)63を有している。 In the example shown in FIG. 2, the amplification unit 22 has a gate driver 61, a FET (Field Effect Transistor) 62-1, a FET 62-2, and an LPF (Low Pass Filter) 63.
 ゲートドライバ61は、PWM変換部21から供給されたPWM信号に応じて、FET62-1やFET62-2を駆動する。 The gate driver 61 drives FET62-1 and FET62-2 in response to the PWM signal supplied from the PWM conversion unit 21.
 FET62-1およびFET62-2は、電界効果トランジスタからなり、ゲートドライバ61の制御に従って駆動する。 FET62-1 and FET62-2 consist of field effect transistors and are driven under the control of the gate driver 61.
 ここでは、FET62-1は、LPF63が接続された端とは反対側の端に電源が接続されたハイサイドFETであり、FET62-1のゲートはゲートドライバ61に接続されている。 Here, the FET62-1 is a high-side FET in which the power supply is connected to the end opposite to the end to which the LPF63 is connected, and the gate of the FET62-1 is connected to the gate driver 61.
 同様に、FET62-2は、LPF63が接続された端とは反対側の端にグランドまたは負電源が接続されたローサイドFETであり、FET62-2のゲートはゲートドライバ61に接続されている。 Similarly, FET62-2 is a low-side FET in which a ground or negative power supply is connected to the end opposite to the end to which LPF63 is connected, and the gate of FET62-2 is connected to the gate driver 61.
 なお、以下、FET62-1およびFET62-2を特に区別する必要のない場合、単にFET62とも称することとする。 Hereinafter, when it is not necessary to distinguish between FET62-1 and FET62-2, they are also simply referred to as FET62.
 例えばゲートドライバ61がシングルエンド駆動を行う場合、ゲートドライバ61はPWM信号の値が「1」、つまりHレベル(Highレベル)である場合、FET62-1をオンさせ、PWM信号の値が「0」、つまりLレベル(Lowレベル)である場合、FET62-2をオンさせる。 For example, when the gate driver 61 performs single-ended drive, the gate driver 61 turns on the FET 62-1 when the PWM signal value is "1", that is, the H level (High level), and the PWM signal value is "0". That is, when it is L level (Low level), FET62-2 is turned on.
 例えばFET62-1がオンされたタイミングでは、FET62-1が導通状態となってLPF63に電源電圧が供給され、逆にFET62-2がオンされたタイミングでは、FET62-2が導通状態となってLPF63にグランドレベルまたは負電源電圧が供給される。 For example, at the timing when FET62-1 is turned on, FET62-1 becomes conductive and the power supply voltage is supplied to LPF63. Conversely, when FET62-2 is turned on, FET62-2 becomes conductive and LPF63 Is supplied with ground level or negative power supply voltage.
 これにより、PWM信号が増幅され、LPF63には増幅後のPWM信号、すなわちPWM信号に応じた波形の信号が供給されることになる。 As a result, the PWM signal is amplified, and the amplified PWM signal, that is, the signal of the waveform corresponding to the PWM signal is supplied to the LPF63.
 LPF63は、FET62から供給された信号に対して、低域成分を通過させるフィルタリング処理を行うことでPWM信号をDA変換し、その結果得られた出力信号をドライバ31に供給することで、ドライバ31を駆動させる。 The LPF63 DA-converts the PWM signal by performing a filtering process for passing a low frequency component to the signal supplied from the FET 62, and supplies the output signal obtained as a result to the driver 31 to supply the driver 31. To drive.
〈PWM変換について〉
 ここで、図3乃至図5を参照して、ドライバ31をシングルエンド駆動する場合にPDM信号に対して行われるPWM変換について説明する。なお、図3および図5において、横方向は時間を示している。また、図3および図5において、互いに対応する部分には同一の符号を付してあり、その説明は適宜省略する。
<About PWM conversion>
Here, with reference to FIGS. 3 to 5, the PWM conversion performed on the PDM signal when the driver 31 is driven in a single end will be described. In addition, in FIG. 3 and FIG. 5, the horizontal direction indicates time. Further, in FIGS. 3 and 5, the parts corresponding to each other are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
 図3には、PWM変換時のマスタークロックのクロック周波数が2048Fsである場合に行われる一般的なPWM変換が示されている。 FIG. 3 shows a general PWM conversion performed when the clock frequency of the master clock at the time of PWM conversion is 2048Fs.
 この例においては、期間T11はサンプリング周波数が256Fs(11.2896MHz)であるPDM信号の1サンプリング期間、すなわちPWM信号のキャリア周波数の1周期分の期間を示しており、以下ではこの期間を1キャリア周期の期間とも称することとする。 In this example, the period T11 indicates one sampling period of the PDM signal whose sampling frequency is 256 Fs (11.2896 MHz), that is, one cycle of the carrier frequency of the PWM signal. In the following, this period is one carrier cycle. It will also be referred to as the period of.
 また、この例において期間T12はクロック周波数が2048Fs(90.3168MHz)であるマスタークロックの1クロック分の期間を示している。 Also, in this example, the period T12 indicates the period for one clock of the master clock whose clock frequency is 2048Fs (90.3168MHz).
 サンプリング周波数が256FsであるPDM信号では、1キャリア周期ごとに1ビットの値である「1」と「0」の何れかの値がPDM信号の1サンプルのサンプル値として出力される。PDM信号に基づく音のオーディオ波形は、時間方向におけるサンプル値に対応するパルスの密度により定まる。 For a PDM signal with a sampling frequency of 256 Fs, one of the values "1" and "0", which is a 1-bit value for each carrier cycle, is output as a sample value of one sample of the PDM signal. The audio waveform of the sound based on the PDM signal is determined by the density of the pulses corresponding to the sample values in the time direction.
 なお、ここでは説明を簡単にするために、PWM変換を1サンプル内でのサンプル値「1」と「0」の変換方法として説明することとする。 In addition, for the sake of simplicity, PWM conversion will be described here as a conversion method of sample values "1" and "0" in one sample.
 また、以下では、PDM信号のサンプル値「1」が入力されたときにPWM変換で得られるPWM信号を特にPWM(+)信号とも称し、PDM信号のサンプル値「0」が入力されたときにPWM変換で得られるPWM信号を特にPWM(-)信号とも称することとする。 Further, in the following, the PWM signal obtained by PWM conversion when the sample value "1" of the PDM signal is input is also referred to as a PWM (+) signal, and when the sample value "0" of the PDM signal is input. The PWM signal obtained by PWM conversion is also referred to as a PWM (-) signal.
 さらに、PWM信号のパルスの波形(以下、PWM波形とも称する)の形状が決まる分解能を「スロット」と呼ぶこととする。この分解能は、マスタークロックのクロック周波数と、PWM信号のキャリア周波数、すなわちPDM信号のサンプリング周波数とにより一意に決まるものである。 Furthermore, the resolution that determines the shape of the pulse waveform of the PWM signal (hereinafter, also referred to as the PWM waveform) is referred to as a "slot". This resolution is uniquely determined by the clock frequency of the master clock and the carrier frequency of the PWM signal, that is, the sampling frequency of the PDM signal.
 図3の例では、マスタークロックの1クロック分の期間である期間T12の長さが1スロットとなる。また、PWM信号の1キャリア周期におけるスロット数は、マスタークロックのクロック周波数が2048Fsであり、PDM信号のサンプリング周波数が256Fsであるので8(=2048Fs/256Fs)スロットとなる。 In the example of FIG. 3, the length of the period T12, which is the period of one clock of the master clock, is one slot. Further, the number of slots in one carrier cycle of the PWM signal is 8 (= 2048Fs / 256Fs) because the clock frequency of the master clock is 2048Fs and the sampling frequency of the PDM signal is 256Fs.
 例えばPDM信号のサンプル値「0」がPWM変換されると、その結果として折れ線L11に示す波形のPWM(-)信号が出力される。 For example, when the sample value "0" of the PDM signal is PWM-converted, as a result, the PWM (-) signal of the waveform shown in the polygonal line L11 is output.
 折れ線L11により示されるPWM(-)信号は、期間T11の中心の時刻(位置)を中心とする2スロット分のパルス幅のパルス信号となっている。 The PWM (-) signal indicated by the polygonal line L11 is a pulse signal with a pulse width of two slots centered on the time (position) at the center of the period T11.
 これに対して、PDM信号のサンプル値「1」がPWM変換されると、その結果として折れ線L12に示す波形のPWM(+)信号が出力される。 On the other hand, when the sample value "1" of the PDM signal is PWM-converted, as a result, the PWM (+) signal of the waveform shown in the polygonal line L12 is output.
 折れ線L12により示されるPWM(+)信号は、期間T11の中心の時刻(位置)を中心とする6スロット分のパルス幅のパルス信号となっている。 The PWM (+) signal indicated by the polygonal line L12 is a pulse signal with a pulse width of 6 slots centered on the time (position) at the center of the period T11.
 これらの折れ線L11や折れ線L12により示されるPWM信号のPWM波形は、何れも期間T11の中心の時刻に対して線対称の形状となっている。 The PWM waveforms of the PWM signals indicated by these polygonal lines L11 and L12 are all line-symmetrical with respect to the time at the center of the period T11.
 ドライバ(スピーカ)のシングルエンド駆動に最適なPWM変換のパターン形状(PWM波形)は、PWM(-)信号とPWM(+)信号のそれぞれの波形がPWM信号のキャリア周波数の1周期内で中心に対して線対称であることが知られている(例えば、特開2000-68835号公報参照)。 The PWM conversion pattern shape (PWM waveform), which is optimal for single-ended drive of a driver (speaker), is such that each waveform of the PWM (-) signal and PWM (+) signal is centered within one cycle of the carrier frequency of the PWM signal. On the other hand, it is known to be line-symmetric (see, for example, Japanese Patent Application Laid-Open No. 2000-68835).
 図3の例では、期間T11がキャリア周波数の1周期の期間を示しており、以下ではPWM信号のキャリア周波数の1周期(1キャリア周期)の期間の中心の時刻(位置)を周期中心とも称することとする。 In the example of FIG. 3, the period T11 indicates the period of one cycle of the carrier frequency, and hereinafter, the time (position) at the center of the period of one cycle (one carrier cycle) of the carrier frequency of the PWM signal is also referred to as the cycle center. I will do it.
 いま、図3における期間T11、つまり1キャリア周期に着目する。 Now, pay attention to the period T11 in FIG. 3, that is, one carrier cycle.
 折れ線L12により示されるPWM(+)信号のPWM波形では、周期中心から左右の各方向にそれぞれ3スロット分の期間において信号レベルがHレベルとなっており、それ以外の期間では信号レベルがLレベルとなっている。 In the PWM waveform of the PWM (+) signal indicated by the polygonal line L12, the signal level is H level for a period of 3 slots in each direction from the center of the cycle to the left and right, and the signal level is L level in other periods. It has become.
 これに対して、折れ線L11により示されるPWM(-)信号のPWM波形では、周期中心から左右の各方向にそれぞれ1スロット分の期間において信号レベルがHレベルとなっており、それ以外の期間では信号レベルがLレベルとなっている。 On the other hand, in the PWM waveform of the PWM (-) signal indicated by the polygonal line L11, the signal level is H level in each of the left and right directions from the center of the cycle for one slot, and in other periods. The signal level is L level.
 折れ線L11および折れ線L12から分かるように、PWM(-)信号およびPWM(+)信号の何れのPWM波形も周期中心をパルスの中心とした上に突の波形、つまり周期中心を中心とした所定幅の期間がHレベルとなる波形となっていることが分かる。 As can be seen from the polygonal line L11 and the polygonal line L12, the PWM waveforms of both the PWM (-) signal and the PWM (+) signal have the periodic center as the center of the pulse and the sudden waveform, that is, the predetermined width centered on the periodic center. It can be seen that the period of is a waveform with H level.
 以上のように、一般的なPWM変換では、PWM(+)信号もPWM(-)信号もキャリア周波数の1周期の期間内で中心に対して線対称なPWM波形の信号となっている。 As described above, in general PWM conversion, both the PWM (+) signal and the PWM (-) signal are PWM waveform signals that are line-symmetric with respect to the center within the period of one cycle of the carrier frequency.
 特に、一般的なPWM変換では、PDM信号は、1キャリア周期の期間の開始端と終端の部分の信号レベルが、周期中心近傍における信号レベルよりも低く、かつ1キャリア周期の期間において線対称なPWM波形を有するPWM信号に変換される。 In particular, in general PWM conversion, the signal level at the start end and the end of the period of one carrier cycle is lower than the signal level near the center of the cycle, and the PDM signal is axisymmetric in the period of one carrier cycle. It is converted into a PWM signal with a PWM waveform.
 なお、以下では、図3に示した一般的なPWM変換手法を両側変調手法とも称することとする。 In the following, the general PWM conversion method shown in FIG. 3 will also be referred to as a two-sided modulation method.
 ところで、PWM(-)信号のパルス幅は、2スロット分であるので22(=(1/(2048Fs))×2)[nsec]となっている。 By the way, the pulse width of the PWM (-) signal is 22 (= (1 / (2048Fs)) x 2) [nsec] because it is for 2 slots.
 したがって、この場合にはドライバを駆動するためのPWM信号の最小パルス幅は22[nsec]といった非常に狭い幅となる。 Therefore, in this case, the minimum pulse width of the PWM signal for driving the driver is a very narrow width of 22 [nsec].
 また、DSD音源を再生するためのPDM信号はパルスの密度でオーディオ波形を表現するPDM信号であり、PWM信号における狭パルスの発生頻度は高い。 Also, the PDM signal for reproducing the DSD sound source is a PDM signal that expresses the audio waveform with the pulse density, and the frequency of narrow pulses generated in the PWM signal is high.
 そのため、パワー増幅部によりドライバを駆動する際の駆動難易度が高くなり、結果としてオーディオ特性が低下(悪化)してしまう。すなわち、ノイズや高調波歪みが生じて再生される音の品質が劣化してしまう。 Therefore, the driving difficulty when driving the driver by the power amplification unit becomes high, and as a result, the audio characteristics deteriorate (deteriorate). That is, noise and harmonic distortion occur, and the quality of the reproduced sound deteriorates.
 特に、この場合、シングルエンド駆動方式でドライバを駆動させると、バランス駆動方式(BTL(Balanced Transformer Less))における場合と比較して、オーディオ特性の低下がより顕著である。そのため、シングルエンド駆動方式での駆動を採用することが現実的ではないことも多く、結果としてドライバの駆動方式に制約が生じてしまう。 In particular, in this case, when the driver is driven by the single-ended drive method, the deterioration of the audio characteristics is more remarkable as compared with the case of the balanced drive method (BTL (Balanced Transformer Less)). Therefore, it is often not realistic to adopt the drive by the single-ended drive system, and as a result, the drive system of the driver is restricted.
 また、再生するDSD音源、つまりPDM信号のサンプリング周波数が高い場合、PWM信号の生成に必要なシステムのマスタークロックのクロック周波数も高くなる傾向がある。したがって、そのような場合には、PWM信号の最小パルス幅がより狭くなるため、パワー増幅部によるドライバの駆動難易度がさらに上がることになる。 Also, when the sampling frequency of the DSD sound source to be reproduced, that is, the PDM signal is high, the clock frequency of the master clock of the system required for generating the PWM signal also tends to be high. Therefore, in such a case, the minimum pulse width of the PWM signal becomes narrower, which further increases the difficulty of driving the driver by the power amplification unit.
 ここで、狭パルスの発生がオーディオ特性の低下を引き起こす原因について説明する。 Here, the cause of the occurrence of narrow pulses causing deterioration of audio characteristics will be described.
 例えば、PWM信号に基づいて増幅部を構成するFETが駆動されると、そのFETから出力される信号の波形は、例えば図4の折れ線WS11に示すように矩形状の波形となることが理想的である。 For example, when a FET that constitutes an amplification unit is driven based on a PWM signal, the waveform of the signal output from the FET should ideally be a rectangular waveform as shown in, for example, the polygonal line WS11 in FIG. Is.
 しかしながら、実際にはFETの駆動能力、例えばFETのON抵抗やゲート閾値電圧、ゲート入力電荷量などが原因で、曲線WS12に示すような波形のパルス信号がFETから出力されることになる。 However, in reality, due to the driving ability of the FET, such as the ON resistance of the FET, the gate threshold voltage, and the amount of gate input charge, a pulse signal having a waveform as shown in the curve WS12 is output from the FET.
 この例では、斜線が施された部分が、折れ線WS11に示す理想的な信号の波形と、曲線WS12に示す実際の信号の波形との誤差を表しており、このような誤差がオーディオ特性の低下を引き起こす。 In this example, the shaded area represents the error between the ideal signal waveform shown on the polygonal line WS11 and the actual signal waveform shown on the curve WS12, and such an error reduces the audio characteristics. cause.
 特に、FETから出力されるパルス信号の幅、すなわちPWM信号のパルス幅が狭いほど、理想的な信号の波形と実際の信号の波形との誤差の影響が大きくなり、オーディオ特性の低下が顕著になってしまう。 In particular, the narrower the width of the pulse signal output from the FET, that is, the narrower the pulse width of the PWM signal, the greater the influence of the error between the ideal signal waveform and the actual signal waveform, and the deterioration of audio characteristics becomes remarkable. turn into.
 そこで、本技術では入力されたPDM信号を、1キャリア周期の期間の端、つまり開始端と終端の部分の信号レベルが、周期中心近傍における信号レベルよりも高く、かつ1キャリア周期の期間において線対称なPWM波形を有するPWM信号に変換するようにした。これにより、PWM信号における狭パルスの発生頻度を低減させ、オーディオ特性の低下を抑制することができる。 Therefore, in the present technology, the input PDM signal is lined at the end of the period of one carrier cycle, that is, the signal level at the start end and the end is higher than the signal level near the center of the cycle, and during the period of one carrier cycle. Converted to a PWM signal with a symmetric PWM waveform. As a result, the frequency of occurrence of narrow pulses in the PWM signal can be reduced, and deterioration of audio characteristics can be suppressed.
 具体的には本技術では、PWM変換部21によって図5に示すようにPWM変換が行われる。 Specifically, in this technology, PWM conversion is performed by the PWM conversion unit 21 as shown in FIG.
 すなわち、図5に示す例では、PDM信号のサンプル値「0」がPWM変換部21に供給されると、PWM変換部21は折れ線L21に示す波形のPWM信号(-)を出力する。 That is, in the example shown in FIG. 5, when the sample value "0" of the PDM signal is supplied to the PWM conversion unit 21, the PWM conversion unit 21 outputs the PWM signal (-) of the waveform shown in the polygonal line L21.
 折れ線L21により示されるPWM(-)信号は、期間T11の中心の時刻、つまり周期中心を中心とする6スロット分の期間の信号レベルがLレベルであり、他の期間の信号レベルがHレベルである下に突の波形のパルス信号となっている。 The PWM (-) signal indicated by the polygonal line L21 has the L level signal level at the time at the center of the period T11, that is, the signal level for the period of 6 slots centered on the periodic center, and the signal level at the other periods is the H level. It is a pulse signal with a sudden waveform below.
 換言すれば、折れ線L21により示されるPWM(-)信号では、キャリア周波数の1周期分の期間、すなわち1キャリア周期の期間である期間T11の開始直後の1スロット分の期間では信号レベルがHレベルに増加する。 In other words, in the PWM (-) signal indicated by the polygonal line L21, the signal level is H level in the period of one cycle of the carrier frequency, that is, the period of one slot immediately after the start of the period T11 which is the period of one carrier cycle. Increase to.
 そして、その後、6スロット分の期間では信号レベルがLレベルとされ、さらに期間T11の終了直前の1スロット分の期間では信号レベルがHレベルに増加する。 After that, the signal level is set to L level in the period of 6 slots, and the signal level is increased to H level in the period of 1 slot immediately before the end of the period T11.
 これに対して、PDM信号のサンプル値「1」がPWM変換部21に供給されると、PWM変換部21は折れ線L22に示す波形のPWM信号(+)を出力する。 On the other hand, when the sample value "1" of the PDM signal is supplied to the PWM conversion unit 21, the PWM conversion unit 21 outputs the PWM signal (+) of the waveform shown in the polygonal line L22.
 折れ線L22により示されるPWM(+)信号は、期間T11の中心の時刻、つまり周期中心を中心とする2スロット分の期間の信号レベルがLレベルであり、他の期間の信号レベルがHレベルである下に突の波形のパルス信号となっている。 The PWM (+) signal indicated by the polygonal line L22 has the L level signal level at the time at the center of the period T11, that is, the signal level for two slots centered on the periodic center, and the H level signal level at the other periods. It is a pulse signal with a sudden waveform below.
 換言すれば、折れ線L22により示されるPWM(+)信号では、期間T11の開始直後の3スロット分の期間では信号レベルがHレベルに増加し、その後、2スロット分の期間では信号レベルがLレベルとされ、さらに期間T11の終了直前の3スロット分の期間では信号レベルがHレベルに増加する。 In other words, in the PWM (+) signal indicated by the polygonal line L22, the signal level increases to H level in the period of 3 slots immediately after the start of period T11, and then the signal level increases to L level in the period of 2 slots. Furthermore, the signal level increases to the H level in the period of 3 slots immediately before the end of the period T11.
 このような折れ線L21や折れ線L22に示されるPWM信号は、図3に示した一般的なPWM変換で得られるPWM信号と同様に、キャリア周波数の1周期の期間内で周期中心に対して線対称な波形の信号となっている。 The PWM signal shown on the polygonal line L21 and the polygonal line L22 is line-symmetric with respect to the cycle center within a period of one cycle of the carrier frequency, similar to the PWM signal obtained by the general PWM conversion shown in FIG. It is a signal with a good waveform.
 したがって、図3に示した例と同様に、PWM変換部21で得られるPWM信号は、シングルエンド駆動に適したPWM信号となっていることが分かる。 Therefore, as in the example shown in FIG. 3, it can be seen that the PWM signal obtained by the PWM conversion unit 21 is a PWM signal suitable for single-ended drive.
 以下では、図5に示したPWM変換手法を両側逆変調手法とも称することとする。 In the following, the PWM conversion method shown in FIG. 5 will also be referred to as a double-sided reverse modulation method.
 ここで、図3に示した両側変調手法と、図5を参照して説明した、PWM変換部21により行われる両側逆変調手法とを比較する。 Here, the two-sided modulation method shown in FIG. 3 is compared with the two-sided inverse modulation method performed by the PWM conversion unit 21 described with reference to FIG.
 両側変調手法では、1キャリア周期内において、Lレベルを基準とすると、周期中心でパルスの信号レベルをLレベルからHレベルに増加させている。 In the two-sided modulation method, the signal level of the pulse is increased from the L level to the H level at the center of the cycle, based on the L level within one carrier cycle.
 これに対して、図5に示したように、両側逆変調手法、つまりPWM変換部21により行われるPWM変換では、1キャリア周期内において、Hレベルを基準とすると、周期中心でパルスの信号レベルをHレベルからLレベルに減少させている。 On the other hand, as shown in FIG. 5, in the double-sided reverse modulation method, that is, the PWM conversion performed by the PWM conversion unit 21, the signal level of the pulse at the center of the cycle is based on the H level within one carrier cycle. Is reduced from H level to L level.
 また、両側変調手法と、両側逆変調手法とでは、信号レベルがHレベルとされる期間(スロット数)は同じであるので、PDM信号をPWM信号へと変換する際の変調率は同じである。すなわち、何れのPWM変換でも出力信号の信号レベルが低下しないことが分かる。 Further, since the period (number of slots) at which the signal level is set to H level is the same between the two-sided modulation method and the two-sided reverse modulation method, the modulation factor when converting the PDM signal into the PWM signal is the same. .. That is, it can be seen that the signal level of the output signal does not decrease in any PWM conversion.
 ここで、両側変調手法と、両側逆変調手法との変調率は、以下のように計算される。 Here, the modulation factors of the two-sided modulation method and the two-sided inverse modulation method are calculated as follows.
 すなわち、PWM(+)信号のパルス幅は、キャリア周波数の1周期である8スロットのうちの6スロットであり、同様にPWM(-)信号のパルス幅は、キャリア周波数の1周期である8スロットのうちの2スロットである。 That is, the pulse width of the PWM (+) signal is 6 slots out of 8 slots which are one cycle of the carrier frequency, and similarly, the pulse width of the PWM (-) signal is 8 slots which is one cycle of the carrier frequency. Two of them.
 したがって、それらのPWM(+)信号とPWM(-)信号のパルス幅の差分を求めると、(6/8)-(2/8)=0.5となり、PWM変換の変調率は50%となる。 Therefore, when the difference between the pulse widths of those PWM (+) signals and PWM (-) signals is calculated, (6/8)-(2/8) = 0.5, and the modulation rate of PWM conversion is 50%.
 このような変調率が低下することにより生じる影響としては、例えばDSD音源の再生時の信号レベルの低下によりオーディオ性能のS/N比(Signal to Noise Ratio)が低下することがあげられる。 As an effect caused by such a decrease in the modulation factor, for example, the S / N ratio (Signal to Noise Ratio) of the audio performance decreases due to the decrease in the signal level during playback of the DSD sound source.
 なお、ここでは両側逆変調手法により得られるPWM信号が1キャリア周期の期間において線対称である例について説明したが、PWM信号は必ずしも線対称とされなくてもよい。 Although the example in which the PWM signal obtained by the double-sided reverse modulation method is line-symmetrical in the period of one carrier cycle has been described here, the PWM signal does not necessarily have to be line-symmetrical.
 すなわち、例えば両側逆変調手法により得られるPWM信号は、1キャリア周期の期間の開始端と終端の信号レベルが、周期中心における信号レベルよりも高く、かつ1キャリア周期の期間の開始端におけるHレベルとされる期間(幅)と、1キャリア周期の期間の終端におけるHレベルとされる期間とが異なる信号とされてもよい。 That is, for example, in the PWM signal obtained by the two-sided reverse modulation method, the signal levels at the start and end of the period of one carrier cycle are higher than the signal level at the center of the cycle, and the H level at the start of the period of one carrier cycle. The signal may be different from the period (width) to be the H level at the end of the period of one carrier cycle.
 続いて、図6および図7を参照して、一般的なPWM変換、すなわち両側変調手法で得られたPWM信号と、PWM変換部21でのPWM変換、すなわち両側逆変調手法により得られたPWM信号とを比較した例について説明する。 Subsequently, with reference to FIGS. 6 and 7, the PWM signal obtained by the general PWM conversion, that is, the two-sided modulation method and the PWM conversion by the PWM conversion unit 21, that is, the PWM obtained by the two-sided reverse modulation method. An example of comparing with a signal will be described.
 なお、図6および図7において図中、横方向、つまり横軸は、時間軸(時間方向)を示しており、図中、縦方向は信号レベルを示している。 In FIGS. 6 and 7, the horizontal direction, that is, the horizontal axis indicates the time axis (time direction), and the vertical direction in the drawings indicates the signal level.
 図6は、連続して並べられた12個のサンプル値からなるPDM信号、すなわちPDM信号として「000101010101」がPWM変換されたときのPWM信号を示している。 FIG. 6 shows a PDM signal consisting of 12 sample values arranged in succession, that is, a PWM signal when "000101010101" is PWM-converted as a PDM signal.
 特に、折れ線L31は図3を参照して説明した一般的なPWM変換(両側変調手法)により得られたPWM信号を示しており、折れ線L32は図5を参照して説明したPWM変換部21でのPWM変換(両側逆変調手法)により得られたPWM信号を示している。 In particular, the broken line L31 shows the PWM signal obtained by the general PWM conversion (two-sided modulation method) described with reference to FIG. 3, and the broken line L32 is the PWM conversion unit 21 described with reference to FIG. The PWM signal obtained by the PWM conversion (two-sided reverse modulation method) of.
 ここで、PWM信号の狭パルスの発生頻度に着目する。 Here, pay attention to the frequency of occurrence of narrow pulses of the PWM signal.
 例えば折れ線L31に示すPWM信号では、PDM信号におけるサンプル値「0」が発生するたびに、2スロット分の期間である22[nsec]の幅の狭パルスが発生する。 For example, in the PWM signal shown on the polygonal line L31, every time the sample value "0" in the PDM signal is generated, a narrow pulse with a width of 22 [nsec], which is a period of 2 slots, is generated.
 つまり、折れ線L31に示すPWM信号では、PDM信号におけるサンプル値「0」の発生頻度と同じ頻度で狭パルスが発生する。 That is, in the PWM signal shown by the polygonal line L31, a narrow pulse is generated at the same frequency as the occurrence frequency of the sample value "0" in the PDM signal.
 これに対して、折れ線L32に示すPWM信号では、PDM信号におけるサンプル値が「0」から「1」へと変化する場合や「1」から「0」に変化する場合など、サンプル値「0」とサンプル値が「1」が交互に発生するときには、2スロット分のパルス幅の狭パルスは発生しない。 On the other hand, in the PWM signal shown by the polygonal line L32, the sample value "0" is used when the sample value in the PDM signal changes from "0" to "1" or from "1" to "0". And when the sample value "1" occurs alternately, a narrow pulse with a pulse width of 2 slots does not occur.
 これは、図5を参照して説明したようにPWM変換部21におけるPWM変換では、1キャリア周期の期間における周期中心ではパルスは発生せず、1キャリア周期の期間の開始部分と終了部分でパルスが発生し、それらのパルスが時間的に前または後の1キャリア周期の期間で発生したパルスとつながるためである。 This is because, as described with reference to FIG. 5, in the PWM conversion in the PWM conversion unit 21, a pulse is not generated at the center of the cycle in the period of one carrier cycle, and a pulse is generated at the start portion and the end portion of the period of one carrier cycle. Is generated, and these pulses are connected with the pulses generated in the period of one carrier cycle before or after the time.
 したがって、例えばサンプル値が「0」から「1」へと変化したときには、サンプル値「0」に対応するPWM(-)信号における最後の1スロットの期間のパルスと、その後のサンプル値「1」に対応するPWM(+)信号における最初の3スロットの期間のパルスとがつながって(連結されて)、結果的に4スロット分のパルス幅の1つのパルスが発生することになる。 Therefore, for example, when the sample value changes from "0" to "1", the pulse during the last 1 slot of the PWM (-) signal corresponding to the sample value "0" and the subsequent sample value "1" In the PWM (+) signal corresponding to, the pulses for the period of the first 3 slots are connected (combined), and as a result, one pulse having a pulse width of 4 slots is generated.
 このように、図6に示す例では、PDM信号のサンプル値が「0」から「1」、または「1」から「0」のように、サンプル値として「0」と「1」が交互に発生するときには、一般的なPWM変換を行うとサンプル値「0」のタイミングで2スロット分のパルス幅の狭パルスが発生してしまう。 As described above, in the example shown in FIG. 6, the sample values of the PDM signal are alternately "0" and "1" as sample values such as "0" to "1" or "1" to "0". When it occurs, if general PWM conversion is performed, a narrow pulse with a pulse width of 2 slots will be generated at the timing of the sample value "0".
 これに対して、PWM変換部21におけるPWM変換では、PDM信号のサンプル値として「0」と「1」が交互に発生するときには4スロット分のパルス幅のパルスが発生するので、一般的なPWM変換における場合と比較して、増幅部22によるドライバ31の駆動難易度を低減させることができる。 On the other hand, in the PWM conversion in the PWM conversion unit 21, when "0" and "1" are alternately generated as the sample value of the PDM signal, a pulse having a pulse width of 4 slots is generated, so that a general PWM is used. Compared with the case of conversion, it is possible to reduce the difficulty of driving the driver 31 by the amplification unit 22.
 これにより、増幅部22からドライバ31に入力される出力信号のオーディオ特性の低下を抑制することができる。換言すれば、出力信号でのノイズや高調波歪みの発生を抑制することができる。 As a result, it is possible to suppress deterioration of the audio characteristics of the output signal input from the amplification unit 22 to the driver 31. In other words, it is possible to suppress the occurrence of noise and harmonic distortion in the output signal.
 PWM変換部21におけるPWM変換において、2スロット分のパルス幅の狭パルスが発生するのは、PDM信号のサンプル値として「0」が連続するときだけである。 In the PWM conversion in the PWM conversion unit 21, a narrow pulse with a pulse width of 2 slots is generated only when "0" is continuous as the sample value of the PDM signal.
 図6に示す例では、全区間において、折れ線L31に示すPWM信号における2スロット分のパルス幅の狭パルスの発生回数は7回である。 In the example shown in FIG. 6, the number of times a narrow pulse having a pulse width of 2 slots is generated in the PWM signal shown by the polygonal line L31 is 7 times in the entire section.
 これに対して、折れ線L32に示すPWM信号における2スロット分のパルス幅の狭パルスの発生回数は2回であり、全体として狭パルスの発生頻度を大幅に低減できていることが分かる。 On the other hand, in the PWM signal shown by the polygonal line L32, the number of occurrences of narrow pulses with a pulse width of 2 slots is 2, and it can be seen that the frequency of occurrence of narrow pulses can be significantly reduced as a whole.
 また、図7は、連続して並べられた12個のサンプル値からなるPDM信号、すなわちPDM信号として「000111001100」がPWM変換されたときのPWM信号を示している。 Further, FIG. 7 shows a PDM signal consisting of 12 sample values arranged in succession, that is, a PWM signal when "000111001100" is PWM-converted as a PDM signal.
 特に、折れ線L41は図3を参照して説明した一般的なPWM変換(両側変調手法)により得られたPWM信号を示しており、折れ線L42は図5を参照して説明したPWM変換部21でのPWM変換(両側逆変調手法)により得られたPWM信号を示している。 In particular, the broken line L41 shows the PWM signal obtained by the general PWM conversion (two-sided modulation method) described with reference to FIG. 3, and the broken line L42 is the PWM conversion unit 21 described with reference to FIG. The PWM signal obtained by the PWM conversion (two-sided reverse modulation method) of.
 ここで、図6における場合と同様にPWM信号の狭パルスの発生頻度に着目する。 Here, pay attention to the frequency of occurrence of narrow pulses of the PWM signal as in the case of FIG.
 例えば折れ線L41に示すPWM信号では、PDM信号のサンプル値「0」が発生するたびに、2スロット分のパルス幅の狭パルスが発生する。 For example, in the PWM signal shown by the polygonal line L41, a narrow pulse with a pulse width of 2 slots is generated every time the sample value "0" of the PDM signal is generated.
 特に、折れ線L41に示すPWM信号では、2スロット分のパルス幅のパルスと、6スロット分のパルス幅のパルスとの2パターン(2種類)のパルスが発生する。 In particular, in the PWM signal shown by the folding line L41, two patterns (two types) of pulses, a pulse width of 2 slots and a pulse width of 6 slots, are generated.
 一方、折れ線L42に示すPWM信号では、PDM信号のサンプル値が「0」、「1」、「1」と変化する場合、または「1」、「0」、「0」と変化する場合のように、「0」から「1」、または「1」から「0」にサンプル値が変化(遷移)するときに限り、図6における例と同様に4スロット分のパルス幅のパルスが発生している。 On the other hand, in the PWM signal shown by the folding line L42, it seems that the sample value of the PDM signal changes to "0", "1", "1", or changes to "1", "0", "0". Only when the sample value changes (transitions) from "0" to "1" or from "1" to "0", a pulse with a pulse width of 4 slots is generated as in the example in FIG. There is.
 特に、折れ線L42に示すPWM信号では、全体として2スロット分のパルス幅のパルスと、4スロット分のパルス幅のパルスと、6スロット分のパルス幅のパルスとの3パターン(3種類)のパルス幅、つまり3パターンの波形のパルスが発生していることが分かる。 In particular, in the PWM signal shown by the folding line L42, there are three patterns (three types) of pulses having a pulse width of 2 slots, a pulse width of 4 slots, and a pulse width of 6 slots as a whole. It can be seen that the width, that is, the pulse of the waveform of three patterns is generated.
 したがって図7の例においては、一般的なPWM変換(両側変調手法)では2種類のパルスが出現するが、PWM変換部21によるPWM変換(両側逆変調手法)では、両側変調手法における場合よりも1種類多い3種類のパルス幅(波形)のパルスが出現することになる。 Therefore, in the example of FIG. 7, two types of pulses appear in the general PWM conversion (two-sided modulation method), but in the PWM conversion (two-sided reverse modulation method) by the PWM conversion unit 21, the two-sided modulation method is used. Pulses with three types of pulse widths (waveforms), one type more, will appear.
 すなわち、両側逆変調手法では、PWM波形が両側変調手法で出現する2スロット分のパルス幅のパルスと、6スロット分のパルス幅のパルスだけでなく、それらのパルスの中間状態である4スロット分のパルス幅のパルスも出現することが分かる。 That is, in the two-sided reverse modulation method, not only the pulse width of 2 slots in which the PWM waveform appears in the two-sided modulation method and the pulse width of 6 slots, but also the pulse width of 4 slots, which is an intermediate state between the pulses. It can be seen that a pulse with a pulse width of is also appearing.
 換言すれば、両側逆変調手法では、PCM(Pulse Code Modulation)変換を必要とすることなく、最小パルス幅となる2スロット分のパルス幅のパルスと、最大パルス幅となる6スロット分のパルス幅のパルスと、それらの中間の4スロット分のパルス幅のパルスとが出現するマルチビット(多値)表現、特にここでは3値のPWM信号を得ることができる。 In other words, the two-sided reverse modulation method does not require PCM (Pulse Code Modulation) conversion, and has a pulse width of 2 slots, which is the minimum pulse width, and a pulse width of 6 slots, which is the maximum pulse width. It is possible to obtain a multi-bit (multi-value) representation in which a pulse of 4 and a pulse having a pulse width of 4 slots in the middle appear, in particular, a ternary PWM signal here.
 これにより、増幅部22によるドライバ31の駆動難易度を低減させるとともに、ハイサイドのFET62-1側における電源変動を抑制することができる。その結果、増幅部22からドライバ31に入力される出力信号のオーディオ特性の低下を抑制することができる。換言すれば、出力信号でのノイズや高調波歪みの発生を抑制することができる。 As a result, the difficulty of driving the driver 31 by the amplification unit 22 can be reduced, and the power supply fluctuation on the high-side FET 62-1 side can be suppressed. As a result, deterioration of the audio characteristics of the output signal input from the amplification unit 22 to the driver 31 can be suppressed. In other words, it is possible to suppress the occurrence of noise and harmonic distortion in the output signal.
 例えばPWM信号として出現するパルスの幅が2スロット分の幅から6スロット分の幅へと急激に変化するなど、PWM波形が急激に変化すると、FET62-1側における電源変動によってノイズや歪みが生じ、出力信号のオーディオ特性が低下してしまう。 For example, when the PWM waveform suddenly changes, for example, the width of the pulse appearing as a PWM signal suddenly changes from the width of 2 slots to the width of 6 slots, noise and distortion occur due to power supply fluctuations on the FET62-1 side. , The audio characteristics of the output signal are degraded.
 これに対して、マルチビット(多値)のPWM信号では、例えば出現するパルスの幅が2スロット分から4スロット分、さらには6スロット分の幅へと変化する場合など、両側変調手法で得られるPWM信号と比較してPWM波形の変化が緩やかになる。この場合、PWM信号に対してLPF(ローパスフィルタ)によるフィルタリング処理を施したようなPWM波形の遷移となる。 On the other hand, a multi-bit (multi-value) PWM signal can be obtained by a two-sided modulation method, for example, when the width of the appearing pulse changes from 2 slots to 4 slots and further to 6 slots. The change of the PWM waveform becomes slower than that of the PWM signal. In this case, the transition of the PWM waveform is such that the PWM signal is filtered by an LPF (low-pass filter).
 このように両側逆変調手法では、PWM波形の急激な変化を防止することができるので、ハイサイドのFET62-1側における電源変動を抑制することができ、その結果、出力信号のオーディオ特性の低下を抑制することができる。 In this way, the double-sided reverse modulation method can prevent sudden changes in the PWM waveform, so that power supply fluctuations on the high-side FET62-1 side can be suppressed, and as a result, the audio characteristics of the output signal deteriorate. Can be suppressed.
 なお、ここでは両側逆変調手法により、PDM信号が3つのパルス形状のパターンを有するPWM信号に変換される例について説明するが、両側逆変調手法により、PDM信号が4以上のパルス形状のパターンを有するPWM信号に変換されるようにしてもよい。 Here, an example in which the PDM signal is converted into a PWM signal having three pulse-shaped patterns by the two-sided reverse modulation method will be described, but a pulse-shaped pattern in which the PDM signal has four or more pulse-shaped patterns is described by the two-sided reverse modulation method. It may be converted into a PWM signal having.
〈再生処理の説明〉
 次に、図1に示したオーディオ再生システムの動作について説明する。
<Explanation of playback process>
Next, the operation of the audio reproduction system shown in FIG. 1 will be described.
 オーディオ再生システムは、音楽等の再生が指示されると、再生処理を行って指示された音楽等を再生する。以下、図8のフローチャートを参照して、オーディオ再生システムによる再生処理について説明する。 When the audio playback system is instructed to play music or the like, the audio playback system performs a playback process to play the instructed music or the like. Hereinafter, the reproduction process by the audio reproduction system will be described with reference to the flowchart of FIG.
 再生処理が開始されると、指定された音楽等のPDM信号が読み出されてPWM変換部21へと入力される。 When the playback process is started, the designated PDM signal such as music is read out and input to the PWM conversion unit 21.
 ステップS11においてPWM変換部21は、入力されたPDM信号に対してPWM変換を行い、その結果得られたPWM信号を増幅部22のゲートドライバ61に供給する。例えばステップS11では、図5を参照して説明したように、両側逆変調手法によりPWM変換が行われる。 In step S11, the PWM conversion unit 21 performs PWM conversion on the input PDM signal, and supplies the PWM signal obtained as a result to the gate driver 61 of the amplification unit 22. For example, in step S11, as described with reference to FIG. 5, PWM conversion is performed by the double-sided reverse modulation method.
 ステップS12において増幅部22は、PWM変換部21から供給されたPWM信号を増幅させるとともに、増幅後のPWM信号をDA変換する。 In step S12, the amplification unit 22 amplifies the PWM signal supplied from the PWM conversion unit 21 and DA-converts the amplified PWM signal.
 すなわち、ゲートドライバ61は、PWM変換部21から供給されたPWM信号に応じてFET62を駆動させることによりPWM信号を増幅させる。また、LPF63はFET62から供給された信号に対してフィルタリング処理を行うことで、FET62からの信号をDA変換する。 That is, the gate driver 61 amplifies the PWM signal by driving the FET 62 in response to the PWM signal supplied from the PWM conversion unit 21. Further, the LPF 63 performs DA conversion on the signal from the FET 62 by performing a filtering process on the signal supplied from the FET 62.
 ステップS13において増幅部22のLPF63は、DA変換により得られたアナログの出力信号に基づいてヘッドホン12に設けられたドライバ31を駆動し、ドライバ31に音楽等を再生させる。音楽等が再生されると、再生処理は終了する。 In step S13, the LPF 63 of the amplification unit 22 drives the driver 31 provided in the headphones 12 based on the analog output signal obtained by the DA conversion, and causes the driver 31 to play music or the like. When the music or the like is played, the playback process ends.
 以上のようにしてオーディオ再生システムは、PDM信号をPWM変換してPWM信号を生成する。 As described above, the audio playback system converts the PDM signal into PWM and generates a PWM signal.
 オーディオ再生システムでは、PDM信号をデジタルオーディオソースとして扱い、PDM信号をそのまま用いてパワー増幅部を駆動する場合に、周期中心において信号レベルがより低くなるPWM変換を行うことで、狭パルスの発生頻度を低減させることができる。 In the audio playback system, the PDM signal is treated as a digital audio source, and when the PDM signal is used as it is to drive the power amplification unit, the frequency of narrow pulse generation is performed by performing PWM conversion that lowers the signal level at the center of the cycle. Can be reduced.
 これにより、ドライバ31の駆動難易度を低くすることができ、増幅部22から出力される出力信号のオーディオ特性の低下を抑制することができる。 As a result, the driving difficulty of the driver 31 can be lowered, and the deterioration of the audio characteristics of the output signal output from the amplification unit 22 can be suppressed.
 しかも、PWM変換部21では、PCM変換を行うことなく、多値のPWM信号、つまりマルチビット表現のPWM信号を得ることができるので、増幅部22から出力される出力信号のオーディオ特性の低下をさらに抑制することができる。 Moreover, since the PWM conversion unit 21 can obtain a multi-valued PWM signal, that is, a PWM signal with multi-bit expression without performing PCM conversion, the audio characteristics of the output signal output from the amplification unit 22 are deteriorated. It can be further suppressed.
 また、本技術を適用したオーディオ再生システムでは、PWM変換での変調率が低下することもないので出力信号の信号レベルの低下も発生せず、追加の回路も必要とせずに狭パルスの発生頻度を低減させることができる。 In addition, in the audio reproduction system to which this technology is applied, the modulation rate in PWM conversion does not decrease, so the signal level of the output signal does not decrease, and the frequency of narrow pulse generation does not require an additional circuit. Can be reduced.
 その他、PWM変換部21において行われる両側逆変調手法によるPWM変換では、PWM信号(PDM信号)のサンプリング周波数が変化しないので、もとのDSD音源自体の情報(情報量)を保持することができる。 In addition, in the PWM conversion by the double-sided reverse modulation method performed in the PWM conversion unit 21, the sampling frequency of the PWM signal (PDM signal) does not change, so that the information (information amount) of the original DSD sound source itself can be retained. ..
 さらに、一般的なPWM変換を行う場合、シングルエンド駆動方式を採用することができないことが多いが、本技術を適用したオーディオ再生システムでは、バランス駆動方式だけでなくシングルエンド駆動方式も採用することができるようになる。 Furthermore, when performing general PWM conversion, it is often not possible to adopt a single-ended drive system, but in audio playback systems to which this technology is applied, not only a balanced drive system but also a single-ended drive system should be adopted. Will be able to.
〈第2の実施の形態〉
〈オーディオ再生システムの構成例〉
 なお、以上においては、シングルエンド駆動を行う場合には必ず両側逆変調手法によりPWM変換を行う例について説明した。しかし、場合によっては両側変調手法でも十分なオーディオ特性の出力信号を得ることができることもある。また、両側逆変調手法と両側変調手法とを適宜切り替えた方がよいこともある。
<Second Embodiment>
<Configuration example of audio playback system>
In the above, an example in which PWM conversion is always performed by the double-sided reverse modulation method when performing single-ended drive has been described. However, in some cases, it may be possible to obtain an output signal having sufficient audio characteristics even with a two-sided modulation method. In addition, it may be better to switch between the two-sided reverse modulation method and the two-sided modulation method as appropriate.
 例えばヘッドホン12の左右のチャンネルごとにPWM変換部21および増幅部22が設けられており、それらの増幅部22の電源システムが共通となっている場合について考える。 For example, consider a case where a PWM conversion unit 21 and an amplification unit 22 are provided for each of the left and right channels of the headphones 12, and the power supply system of the amplification units 22 is common.
 この場合、一方のチャンネルでは両側変調手法でPWM変換を行い、他方のチャンネルでは両側逆変調手法でPWM変換を行うと、それぞれのチャンネルでオーディオ特性が向上する。これは、左右の各チャンネルで異なる手法のPWM変換を行うと、PWMパルスのエッジの発生タイミングが左右のチャンネルでずれることから、電源変動の相互影響を抑制することができるからである。 In this case, if one channel is PWM-converted by the two-sided modulation method and the other channel is PWM-converted by the two-sided inverse modulation method, the audio characteristics of each channel are improved. This is because if PWM conversion is performed by a different method for each of the left and right channels, the timing of PWM pulse edge generation shifts between the left and right channels, so that the mutual influence of power supply fluctuations can be suppressed.
 そこで、適宜、両側変調手法と両側逆変調手法の何れかを動的に選択して切り替えるようにしてもよい。そのような場合、オーディオ再生システムは、例えば図9に示すように構成される。なお、図9において図1における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。 Therefore, one of the two-sided modulation method and the two-sided inverse modulation method may be dynamically selected and switched as appropriate. In such a case, the audio reproduction system is configured as shown in FIG. 9, for example. In FIG. 9, the parts corresponding to the case in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
 図9に示すオーディオ再生システムは、信号処理装置91およびヘッドホン12を有している。 The audio reproduction system shown in FIG. 9 has a signal processing device 91 and headphones 12.
 また、信号処理装置91は、PWM変換部21、増幅部22、および選択部101を有している。 Further, the signal processing device 91 has a PWM conversion unit 21, an amplification unit 22, and a selection unit 101.
 選択部101は、再生対象となるPDM信号に関するDSD音源情報、増幅部22から供給される電源品質情報、ヘッドホン12から供給されるドライバ情報、および増幅部22からヘッドホン12に出力される出力信号のうちの少なくとも何れか1つに基づいて、PWM変換部21によるPWM変換を制御する。 The selection unit 101 contains DSD sound source information regarding the PDM signal to be reproduced, power quality information supplied from the amplification unit 22, driver information supplied from the headphones 12, and output signals output from the amplification unit 22 to the headphones 12. The PWM conversion by the PWM conversion unit 21 is controlled based on at least one of them.
 具体的には、例えばヘッドホン12がシングルエンド駆動される場合、選択部101はDSD音源情報や電源品質情報、ドライバ情報、出力信号に基づいて、上述した両側変調手法と両側逆変調手法の何れかのPWM変換手法を選択し、選択したPWM変換手法によりPWM変換が行われるようにPWM変換部21を制御する。換言すれば、PWM変換手法の切り替えが行われる。 Specifically, for example, when the headphones 12 are driven by a single end, the selection unit 101 uses either the two-sided modulation method or the two-sided reverse modulation method described above based on the DSD sound source information, the power supply quality information, the driver information, and the output signal. The PWM conversion method is selected, and the PWM conversion unit 21 is controlled so that the PWM conversion is performed by the selected PWM conversion method. In other words, the PWM conversion method is switched.
 例えばDSD音源情報は、PDM信号のサンプリングレート(サンプリング周波数)を示す情報などとされる。PDM信号のサンプリングレートが高いほど、PWM信号のパルス幅が狭くなるため、出力信号のオーディオ特性の低下要因となる。 For example, the DSD sound source information is information indicating the sampling rate (sampling frequency) of the PDM signal. The higher the sampling rate of the PDM signal, the narrower the pulse width of the PWM signal, which causes a decrease in the audio characteristics of the output signal.
 そこで、例えば選択部101は、DSD音源情報により示されるサンプリングレートが閾値以上である場合、PWM変換手法として両側逆変調手法を選択し、サンプリングレートが閾値未満である場合、PWM変換手法として両側変調手法を選択する。 Therefore, for example, when the sampling rate indicated by the DSD sound source information is equal to or higher than the threshold value, the selection unit 101 selects the double-sided inverse modulation method as the PWM conversion method, and when the sampling rate is less than the threshold value, the selection unit 101 performs double-sided modulation as the PWM conversion method. Select a method.
 また、電源品質情報は、増幅部22のハイサイドのFET62-1側における電源品質に関する情報、より具体的には、例えば電源変動の大きさを示す情報などとされる。 Further, the power supply quality information is information on the power supply quality on the high-side FET62-1 side of the amplification unit 22, more specifically, for example, information indicating the magnitude of power supply fluctuation.
 FET62-1側の電源変動が大きいと出力信号のオーディオ特性が低下するので、例えば選択部101は、電源品質情報により示される電源変動の大きさが閾値以上である場合、PWM変換手法として両側逆変調手法を選択し、電源変動の大きさが閾値未満である場合、PWM変換手法として両側変調手法を選択する。 If the power supply fluctuation on the FET62-1 side is large, the audio characteristics of the output signal deteriorate. Therefore, for example, when the magnitude of the power supply fluctuation indicated by the power supply quality information is equal to or larger than the threshold value, the selection unit 101 reverses both sides as a PWM conversion method. When the modulation method is selected and the magnitude of the power supply fluctuation is less than the threshold value, the two-sided modulation method is selected as the PWM conversion method.
 さらに、ドライバ情報は、ドライバ31に関する情報であり、例えばドライバ31におけるインピーダンス値などとされる。 Further, the driver information is information about the driver 31, for example, an impedance value in the driver 31.
 ドライバ31駆動時におけるインピーダンス値(抵抗値)が高いと、十分大きい音圧で出力信号を出力するためには電源電圧、すなわち出力信号の電圧を上げる必要がある。そうすると、ドライバ31の駆動難易度が高くなり、出力信号のオーディオ特性の低下要因となる。 If the impedance value (resistance value) when driving the driver 31 is high, it is necessary to raise the power supply voltage, that is, the voltage of the output signal in order to output the output signal with a sufficiently large sound pressure. Then, the driving difficulty of the driver 31 becomes high, which causes a decrease in the audio characteristics of the output signal.
 そこで、例えば選択部101は、ドライバ情報により示されるインピーダンス値が閾値以上である場合、PWM変換手法として両側逆変調手法を選択し、インピーダンス値が閾値未満である場合、PWM変換手法として両側変調手法を選択する。 Therefore, for example, when the impedance value indicated by the driver information is equal to or greater than the threshold value, the selection unit 101 selects the two-sided reverse modulation method as the PWM conversion method, and when the impedance value is less than the threshold value, the two-sided modulation method is used as the PWM conversion method. Select.
 その他、選択部101は、LPF63から出力された出力信号に基づいて、例えば出力信号のノイズレベルや歪みレベル、すなわちノイズや歪みの大きさを出力信号のオーディオ特性として求めるようにしてもよい。 In addition, the selection unit 101 may obtain, for example, the noise level or distortion level of the output signal, that is, the magnitude of noise or distortion as the audio characteristics of the output signal, based on the output signal output from the LPF 63.
 この場合、例えば選択部101は、オーディオ特性としてのノイズや歪みの大きさが閾値以上である場合にはPWM変換手法として両側逆変調手法を選択し、ノイズや歪みの大きさが閾値未満である場合には、PWM変換手法として両側変調手法を選択する。 In this case, for example, when the magnitude of noise or distortion as an audio characteristic is equal to or greater than the threshold value, the selection unit 101 selects the double-sided inverse modulation method as the PWM conversion method, and the magnitude of noise or distortion is less than the threshold value. In this case, the two-sided modulation method is selected as the PWM conversion method.
 なお、DSD音源情報や電源品質情報、ドライバ情報、出力信号のうちの任意のものを複数組み合わせて、それらの組み合わせについて、所定の条件が満たされる場合にPWM変換手法として両側逆変調手法を選択し、条件が満たされない場合には、PWM変換手法として両側変調手法を選択するようにしてもよい。 It should be noted that a plurality of arbitrary combinations of DSD sound source information, power supply quality information, driver information, and output signals are combined, and when a predetermined condition is satisfied for those combinations, a double-sided reverse modulation method is selected as the PWM conversion method. If the conditions are not satisfied, the two-sided modulation method may be selected as the PWM conversion method.
 また、例えばヘッドホン12の左右のチャンネルごとにPWM変換部21および増幅部22が設けられてる場合、選択部101は左右のチャンネルで共通に設けられていてもよい。そのような場合、例えば選択部101が一方のチャンネルにおいて両側変調手法を選択したときには、他方のチャンネルにおいて両側逆変調手法を選択するようにしてもよい。 Further, for example, when the PWM conversion unit 21 and the amplification unit 22 are provided for each of the left and right channels of the headphones 12, the selection unit 101 may be provided in common for the left and right channels. In such a case, for example, when the selection unit 101 selects the two-sided modulation method in one channel, the two-sided reverse modulation method may be selected in the other channel.
〈再生処理の説明〉
 次に、図9に示したオーディオ再生システムの動作について説明する。
<Explanation of playback process>
Next, the operation of the audio reproduction system shown in FIG. 9 will be described.
 すなわち、以下、図10のフローチャートを参照して、オーディオ再生システムによる再生処理について説明する。 That is, the reproduction process by the audio reproduction system will be described below with reference to the flowchart of FIG.
 ステップS41において選択部101は、供給されたDSD音源情報、増幅部22から供給された電源品質情報、ヘッドホン12から供給されたドライバ情報、および増幅部22から供給された出力信号のうちの少なくとも何れか1つに基づいて、PWM変換部21によるPWM変換手法を選択し、その選択結果をPWM変換部21に供給する。 In step S41, the selection unit 101 is at least one of the DSD sound source information supplied, the power supply quality information supplied from the amplification unit 22, the driver information supplied from the headphones 12, and the output signal supplied from the amplification unit 22. Based on one of these, the PWM conversion method by the PWM conversion unit 21 is selected, and the selection result is supplied to the PWM conversion unit 21.
 ここでは、ヘッドホン12がシングルエンド駆動されるので、PWM変換手法として、両側逆変調手法または両側変調手法が選択される。 Here, since the headphones 12 are driven by a single end, a two-sided reverse modulation method or a two-sided modulation method is selected as the PWM conversion method.
 ステップS42においてPWM変換部21は、入力されたPDM信号に対して、選択部101から供給された選択結果により示されるPWM変換手法によりPWM変換を行い、その結果得られたPWM信号を増幅部22のゲートドライバ61に供給する。 In step S42, the PWM conversion unit 21 performs PWM conversion on the input PDM signal by the PWM conversion method indicated by the selection result supplied from the selection unit 101, and the PWM signal obtained as a result is amplified by the amplification unit 22. It is supplied to the gate driver 61 of.
 例えばステップS42では、PWM変換手法として両側変調手法が選択された場合には図3を参照して説明したようにPWM変換が行われ、PWM変換手法として両側逆変調手法が選択された場合には図5を参照して説明したようにPWM変換が行われる。 For example, in step S42, when the two-sided modulation method is selected as the PWM conversion method, PWM conversion is performed as described with reference to FIG. 3, and when the two-sided inverse modulation method is selected as the PWM conversion method, the PWM conversion is performed. PWM conversion is performed as described with reference to FIG.
 PWM変換が行われると、その後、ステップS43およびステップS44の処理が行われて再生処理は終了するが、これらの処理は図8のステップS12およびステップS13の処理と同様であるのでその説明は省略する。 When the PWM conversion is performed, the processes of steps S43 and S44 are then performed to end the reproduction process, but these processes are the same as the processes of steps S12 and S13 of FIG. 8, so the description thereof is omitted. To do.
 以上のようにしてオーディオ再生システムは、DSD音源情報や電源品質情報、ドライバ情報、出力信号に基づいて適切なPWM変換手法を選択する。これにより十分なオーディオ特性を得ることができる。 As described above, the audio playback system selects an appropriate PWM conversion method based on the DSD sound source information, power supply quality information, driver information, and output signal. As a result, sufficient audio characteristics can be obtained.
〈コンピュータの構成例〉
 ところで、上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウェアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどが含まれる。
<Computer configuration example>
By the way, the series of processes described above can be executed by hardware or software. When a series of processes are executed by software, the programs that make up the software are installed on the computer. Here, the computer includes a computer embedded in dedicated hardware and, for example, a general-purpose personal computer capable of executing various functions by installing various programs.
 図11は、上述した一連の処理をプログラムにより実行するコンピュータのハードウェアの構成例を示すブロック図である。 FIG. 11 is a block diagram showing a configuration example of computer hardware that executes the above-mentioned series of processes programmatically.
 コンピュータにおいて、CPU(Central Processing Unit)501,ROM(Read Only Memory)502,RAM(Random Access Memory)503は、バス504により相互に接続されている。 In a computer, a CPU (Central Processing Unit) 501, a ROM (ReadOnly Memory) 502, and a RAM (RandomAccessMemory) 503 are connected to each other by a bus 504.
 バス504には、さらに、入出力インターフェース505が接続されている。入出力インターフェース505には、入力部506、出力部507、記録部508、通信部509、及びドライブ510が接続されている。 An input / output interface 505 is further connected to the bus 504. An input unit 506, an output unit 507, a recording unit 508, a communication unit 509, and a drive 510 are connected to the input / output interface 505.
 入力部506は、キーボード、マウス、マイクロホン、撮像素子などよりなる。出力部507は、ディスプレイ、スピーカなどよりなる。記録部508は、ハードディスクや不揮発性のメモリなどよりなる。通信部509は、ネットワークインターフェースなどよりなる。ドライブ510は、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリなどのリムーバブル記録媒体511を駆動する。 The input unit 506 includes a keyboard, a mouse, a microphone, an image sensor, and the like. The output unit 507 includes a display, a speaker, and the like. The recording unit 508 includes a hard disk, a non-volatile memory, and the like. The communication unit 509 includes a network interface and the like. The drive 510 drives a removable recording medium 511 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
 以上のように構成されるコンピュータでは、CPU501が、例えば、記録部508に記録されているプログラムを、入出力インターフェース505及びバス504を介して、RAM503にロードして実行することにより、上述した一連の処理が行われる。 In the computer configured as described above, the CPU 501 loads the program recorded in the recording unit 508 into the RAM 503 via the input / output interface 505 and the bus 504 and executes the above-described series. Is processed.
 コンピュータ(CPU501)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブル記録媒体511に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。 The program executed by the computer (CPU501) can be recorded and provided on a removable recording medium 511 as a package medium or the like, for example. Programs can also be provided via wired or wireless transmission media such as local area networks, the Internet, and digital satellite broadcasting.
 コンピュータでは、プログラムは、リムーバブル記録媒体511をドライブ510に装着することにより、入出力インターフェース505を介して、記録部508にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部509で受信し、記録部508にインストールすることができる。その他、プログラムは、ROM502や記録部508に、あらかじめインストールしておくことができる。 In the computer, the program can be installed in the recording unit 508 via the input / output interface 505 by mounting the removable recording medium 511 in the drive 510. Further, the program can be received by the communication unit 509 and installed in the recording unit 508 via a wired or wireless transmission medium. In addition, the program can be pre-installed in the ROM 502 or the recording unit 508.
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。 The program executed by the computer may be a program that is processed in chronological order in the order described in this specification, or may be a program that is processed in parallel or at a necessary timing such as when a call is made. It may be a program in which processing is performed.
 また、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。 Further, the embodiment of the present technology is not limited to the above-described embodiment, and various changes can be made without departing from the gist of the present technology.
 例えば、本技術は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。 For example, this technology can have a cloud computing configuration in which one function is shared by a plurality of devices via a network and processed jointly.
 また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。 Further, each step described in the above flowchart can be executed by one device or can be shared and executed by a plurality of devices.
 さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。 Further, when one step includes a plurality of processes, the plurality of processes included in the one step can be executed by one device or shared by a plurality of devices.
 さらに、本技術は、以下の構成とすることも可能である。 Furthermore, this technology can also have the following configurations.
(1)
 PDM信号を、キャリア周波数の1周期の期間の中心の信号レベルよりも、前記期間の開始端および終端の信号レベルが高いPWM信号に変換するPWM変換部を備える
 信号処理装置。
(2)
 前記期間における前記PWM信号の波形は線対称である
 (1)に記載の信号処理装置。
(3)
 前記PWM変換部は、前記PDM信号を3以上のパルス形状のパターンを有する前記PWM信号に変換する
 (1)または(2)に記載の信号処理装置。
(4)
 前記PWM信号を増幅させるとともに、増幅後の前記PWM信号に基づいて、シングルエンド駆動方式により再生装置を駆動する増幅部をさらに備える
 (1)乃至(3)の何れか一項に記載の信号処理装置。
(5)
 前記PWM変換部において前記PDM信号を、
  前記中心の信号レベルよりも前記開始端および前記終端の信号レベルが高い前記PWM信号に変換するか、
 または
  前記中心の信号レベルよりも前記開始端および前記終端の信号レベルが低いPWM信号に変換するか
 を選択する選択部をさらに備える
 (4)に記載の信号処理装置。
(6)
 前記選択部は、前記増幅部から前記再生装置への出力、前記再生装置に関する情報、前記増幅部における電源品質に関する情報、および前記PDM信号のサンプリングレートのうちの少なくとも何れか1つに基づいて前記選択を行う
 (5)に記載の信号処理装置。
(7)
 信号処理装置が、
 PDM信号を、キャリア周波数の1周期の期間の中心の信号レベルよりも、前記期間の開始端および終端の信号レベルが高いPWM信号に変換する
 信号処理方法。
(8)
 PDM信号を、キャリア周波数の1周期の期間の中心の信号レベルよりも、前記期間の開始端および終端の信号レベルが高いPWM信号に変換する
 ステップを含む処理をコンピュータに実行させるプログラム。
(1)
A signal processing device including a PWM converter that converts a PDM signal into a PWM signal whose signal levels at the start and end of the period are higher than the signal level at the center of one period of the carrier frequency.
(2)
The signal processing device according to (1), wherein the waveform of the PWM signal in the period is line symmetric.
(3)
The signal processing device according to (1) or (2), wherein the PWM conversion unit converts the PDM signal into the PWM signal having a pulse-shaped pattern of 3 or more.
(4)
The signal processing according to any one of (1) to (3), further comprising an amplification unit that amplifies the PWM signal and further drives a playback device by a single-ended drive method based on the amplified PWM signal. apparatus.
(5)
The PDM signal is transmitted by the PWM converter.
Convert to the PWM signal where the signal levels at the start and end are higher than the signal level at the center.
Alternatively, the signal processing apparatus according to (4), further comprising a selection unit for selecting whether to convert a PWM signal whose start end and end signal levels are lower than the central signal level.
(6)
The selection unit is based on at least one of the output from the amplification unit to the reproduction device, information on the reproduction device, information on power supply quality in the amplification unit, and sampling rate of the PDM signal. The signal processing apparatus according to (5).
(7)
The signal processing device
A signal processing method for converting a PDM signal into a PWM signal in which the signal levels at the start and end of the period are higher than the signal level at the center of one period of the carrier frequency.
(8)
A program that causes a computer to perform a process that includes a step of converting a PDM signal into a PWM signal whose signal levels at the start and end of the period are higher than the signal level at the center of one period of the carrier frequency.
 11 信号処理装置, 12 ヘッドホン, 21 PWM変換部, 22 増幅部, 31 ドライバ, 61 ゲートドライバ, 62-1,62-2,62 FET, 63 LPF, 101 選択部 11 signal processing device, 12 headphones, 21 PWM conversion unit, 22 amplification unit, 31 driver, 61 gate driver, 62-1, 62-2, 62 FET, 63 LPF, 101 selection unit

Claims (8)

  1.  PDM信号を、キャリア周波数の1周期の期間の中心の信号レベルよりも、前記期間の開始端および終端の信号レベルが高いPWM信号に変換するPWM変換部を備える
     信号処理装置。
    A signal processing device including a PWM converter that converts a PDM signal into a PWM signal whose signal levels at the start and end of the period are higher than the signal level at the center of one period of the carrier frequency.
  2.  前記期間における前記PWM信号の波形は線対称である
     請求項1に記載の信号処理装置。
    The signal processing device according to claim 1, wherein the waveform of the PWM signal during the period is line symmetric.
  3.  前記PWM変換部は、前記PDM信号を3以上のパルス形状のパターンを有する前記PWM信号に変換する
     請求項1に記載の信号処理装置。
    The signal processing device according to claim 1, wherein the PWM conversion unit converts the PDM signal into the PWM signal having a pulse-shaped pattern of 3 or more.
  4.  前記PWM信号を増幅させるとともに、増幅後の前記PWM信号に基づいて、シングルエンド駆動方式により再生装置を駆動する増幅部をさらに備える
     請求項1に記載の信号処理装置。
    The signal processing device according to claim 1, further comprising an amplification unit that amplifies the PWM signal and further drives a reproduction device by a single-ended drive method based on the amplified PWM signal.
  5.  前記PWM変換部において前記PDM信号を、
      前記中心の信号レベルよりも前記開始端および前記終端の信号レベルが高い前記PWM信号に変換するか、
     または
      前記中心の信号レベルよりも前記開始端および前記終端の信号レベルが低いPWM信号に変換するか
     を選択する選択部をさらに備える
     請求項4に記載の信号処理装置。
    The PDM signal is transmitted by the PWM converter.
    Convert to the PWM signal where the signal levels at the start and end are higher than the signal level at the center.
    The signal processing apparatus according to claim 4, further comprising a selection unit for selecting whether to convert a PWM signal whose start end and end signal levels are lower than the central signal level.
  6.  前記選択部は、前記増幅部から前記再生装置への出力、前記再生装置に関する情報、前記増幅部における電源品質に関する情報、および前記PDM信号のサンプリングレートのうちの少なくとも何れか1つに基づいて前記選択を行う
     請求項5に記載の信号処理装置。
    The selection unit is based on at least one of the output from the amplification unit to the reproduction device, information on the reproduction device, information on power supply quality in the amplification unit, and sampling rate of the PDM signal. The signal processing apparatus according to claim 5, wherein the selection is performed.
  7.  信号処理装置が、
     PDM信号を、キャリア周波数の1周期の期間の中心の信号レベルよりも、前記期間の開始端および終端の信号レベルが高いPWM信号に変換する
     信号処理方法。
    The signal processing device
    A signal processing method for converting a PDM signal into a PWM signal in which the signal levels at the start and end of the period are higher than the signal level at the center of one period of the carrier frequency.
  8.  PDM信号を、キャリア周波数の1周期の期間の中心の信号レベルよりも、前記期間の開始端および終端の信号レベルが高いPWM信号に変換する
     ステップを含む処理をコンピュータに実行させるプログラム。
    A program that causes a computer to perform a process that includes a step of converting a PDM signal into a PWM signal whose signal levels at the start and end of the period are higher than the signal level at the center of one period of the carrier frequency.
PCT/JP2020/016066 2019-04-24 2020-04-10 Signal processing device, method, and program WO2020218027A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-082840 2019-04-24
JP2019082840 2019-04-24

Publications (1)

Publication Number Publication Date
WO2020218027A1 true WO2020218027A1 (en) 2020-10-29

Family

ID=72942594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016066 WO2020218027A1 (en) 2019-04-24 2020-04-10 Signal processing device, method, and program

Country Status (1)

Country Link
WO (1) WO2020218027A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003110376A (en) * 2001-09-28 2003-04-11 Sony Corp Signal amplifier
JP2007142996A (en) * 2005-11-22 2007-06-07 Seiko Epson Corp Audio mixing apparatus
JP2016063299A (en) * 2014-09-16 2016-04-25 ローム株式会社 Audio amplifier, electronic apparatus, and audio signal reproduction method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003110376A (en) * 2001-09-28 2003-04-11 Sony Corp Signal amplifier
JP2007142996A (en) * 2005-11-22 2007-06-07 Seiko Epson Corp Audio mixing apparatus
JP2016063299A (en) * 2014-09-16 2016-04-25 ローム株式会社 Audio amplifier, electronic apparatus, and audio signal reproduction method

Similar Documents

Publication Publication Date Title
JP2008191659A (en) Speech emphasis method and speech reproduction system
KR100750127B1 (en) Apparatus and method for controlling audio volume in D class amplifier
US7528650B2 (en) Multi-channel digital amplifier, signal processing method thereof, and audio reproducing system having the same
JP2004194054A (en) Output filter of delta-sigma modulator and digital signal processor provided with output filter
US11107485B2 (en) Converting a single-bit audio stream to a stream of symbols with a constant edge rate
KR100565103B1 (en) Method of pulse width modulation in a switching amplifier, and apparatus thereof
WO2020218027A1 (en) Signal processing device, method, and program
JP2014509485A (en) Audio signal output method and audio signal output apparatus using the same
JP2006211523A (en) Digital switching circuit
JP4728943B2 (en) Audio processing circuit, activation method thereof, and electronic device using the same
CN110651430B (en) Digital PWM modulator
US10680640B2 (en) Power-saving current-mode digital-to-analog converter (DAC)
WO2020203330A1 (en) Signal processing device and method, and program
US7443235B2 (en) Audio system and processing method of storing and reproducing digital pulse width modulation signal
US10509624B2 (en) Single-bit volume control
WO2019111703A1 (en) Signal processing device, signal processing method and program
JP2005286774A (en) Transmission signal generating device
JP4043430B2 (en) Audio playback apparatus and audio playback method
JP6235182B1 (en) Audio playback device
JP4688225B2 (en) Power amplifier
JP6293951B1 (en) Audio playback device
JP3724910B2 (en) Audio recording / reproducing apparatus, audio recording apparatus, and audio reproducing apparatus
JP4044451B2 (en) Information playback device
JP4831129B2 (en) Playback apparatus and playback method
JP2000306336A (en) Waveform equalization apparatus, optimization method for waveform equalization apparatus, and data reproducing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP