WO2020217949A1 - 非燃焼式吸引器 - Google Patents

非燃焼式吸引器 Download PDF

Info

Publication number
WO2020217949A1
WO2020217949A1 PCT/JP2020/015504 JP2020015504W WO2020217949A1 WO 2020217949 A1 WO2020217949 A1 WO 2020217949A1 JP 2020015504 W JP2020015504 W JP 2020015504W WO 2020217949 A1 WO2020217949 A1 WO 2020217949A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
heater
control unit
heating element
combustion type
Prior art date
Application number
PCT/JP2020/015504
Other languages
English (en)
French (fr)
Inventor
典幸 大石
剛志 赤尾
一真 水口
Original Assignee
株式会社村田製作所
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所, 日本たばこ産業株式会社 filed Critical 株式会社村田製作所
Publication of WO2020217949A1 publication Critical patent/WO2020217949A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for

Definitions

  • the present invention relates to a non-combustion type aspirator.
  • Non-combustion type aspirators which are different from cigarettes, are becoming widespread.
  • the heater is generally heated by the electric power of the battery, so it is necessary to control the heater so that it is not overheated.
  • Patent Document 1 below describes a non-combustion type suction device in which the resistance value of a heater is measured and the upper and lower limits of the voltage output from the battery are set according to the resistance value.
  • the non-combustion type suction device described in Patent Document 1 has a problem that the temperature of the heater cannot be detected accurately. Therefore, even when the temperature of the heater is high, the heater is overheated by supplying electric power to the heater, which may lead to malfunction of the non-combustion type suction device and deterioration of flavor and taste.
  • One of the objects of the present invention is to provide a non-combustion type aspirator capable of accurately detecting the temperature of a heater.
  • the present invention With a heating element having a predetermined resistance value, A power source that powers the heating element, With multiple resistors connected in parallel with the heating element, Control unit and The first switch that controls the on / off of the heating element, A second switch connected between the power supply and multiple resistors, It is equipped with a wiring between multiple resistors and a third switch connected between the controls.
  • the control unit is a non-combustion type aspirator configured to perform switch control in which the second switch and the third switch are turned on and the first switch is turned off. ..
  • the temperature of the heater can be detected with high accuracy. Therefore, when the temperature of the heater is high, the power supply to the heater can be stopped. As a result, overheating of the heater can be prevented, so that it is possible to prevent malfunction of the non-combustion type suction device and deterioration of flavor and taste. It should be noted that the contents of the present invention are not limitedly interpreted by the effects exemplified in the present specification.
  • FIG. 1 is an exploded perspective view of the non-combustion type suction device according to the embodiment.
  • FIG. 2 is a graph showing the relationship between the resistance value of the material applied to the heater and the temperature.
  • FIG. 3 is a block diagram for explaining a configuration example of the heater control circuit according to the first embodiment.
  • FIG. 4 is a circuit diagram showing details of the circuit configuration of the heater control circuit according to the first embodiment.
  • FIG. 5 is a circuit diagram showing in more detail the circuit configuration of the heater control circuit according to the first embodiment.
  • FIG. 6 is a flowchart showing a processing flow in the steady sequence according to the first embodiment.
  • FIG. 7 is a flowchart showing a processing flow in the atmospheric pressure difference detection sequence.
  • FIG. 1 is an exploded perspective view of the non-combustion type suction device according to the embodiment.
  • FIG. 2 is a graph showing the relationship between the resistance value of the material applied to the heater and the temperature.
  • FIG. 3 is a block diagram for explaining a configuration example
  • FIG. 8 is a block diagram for explaining a configuration example of the heater control circuit according to the second embodiment.
  • FIG. 9 is a circuit diagram showing details of the circuit configuration of the heater control circuit according to the second embodiment.
  • FIG. 10 is a circuit diagram showing in more detail the circuit configuration of the heater control circuit according to the second embodiment.
  • FIG. 11 is a flowchart showing a processing flow in the steady sequence according to the second embodiment.
  • non-combustion type suction device There are various types of non-combustion type aspirators, such as a method of atomizing a liquid to generate an aerosol and a method of directly heating a cigarette, depending on the difference in the heating target and the like.
  • the present invention is not limited to the non-combustion type suction device of a specific type, but in the present embodiment, the description will be made by exemplifying the non-combustion type suction device of the type called the low temperature heating method.
  • the low-temperature heating method is a method in which a liquid is heated by using electric power supplied from a battery pack, and a user inhales atomized aerosol through a cigarette capsule filled with cigarettes.
  • the present invention is not limited to the low-temperature heating method, and can be applied to other types of non-combustion suction devices.
  • FIG. 1 is an exploded perspective view of the non-combustion type suction device (non-combustion type suction device 1) according to the present embodiment.
  • the non-combustion type suction device 1 roughly includes a cylindrical battery pack 2, a cylindrical cartridge case 3 attached to the battery pack 2, and a suction portion 4 attached to the cartridge case 3.
  • the side of the suction unit 4 may be referred to as the suction side, and the opposite side may be referred to as the tip side.
  • the battery pack 2 has a cylindrical outer case 21.
  • the outer case 21 is made of metal, resin, or the like.
  • a battery cell (battery cell 41 described later) is housed in the outer case 21.
  • the battery cell is, for example, a lithium ion secondary battery.
  • an electric circuit including a microcomputer that collectively controls the battery pack 2, a substrate on which an LED (Light Emitting Diode) chip, etc. are mounted, and a lithium ion secondary It houses a board or the like on which an electric circuit for charging a battery (for example, charging by USB (Universal Serial Bus) connection) is mounted.
  • the microcomputer that collectively controls the battery pack 2 is appropriately abbreviated as a microcomputer (microcomputer 301 described later).
  • a cartomizer is stored inside the cartridge case 3. Further, inside the cartridge case 3, a heater (heaters 61, 61A described later) and a liquid reservoir (not shown) that operate using the electric power supplied from the battery pack 2 are housed.
  • the cartomizer sprays the aerosol generated when the liquid is heated by the heater toward the suction unit 4.
  • a capsule (not shown) filled with cigarettes is housed in the suction unit 4, and the aerosol in which the liquid is atomized goes to the suction side through the capsule. The user sucks the aerosol containing the component derived from the cigarette through the suction unit 4.
  • the non-combustion type suction device 1 is turned on / off by pressing the circular button portion 22 provided on the battery pack 2.
  • a light guide portion 23 made of a light transmitting member such as glass or acrylic is provided around the button portion 22.
  • the emission color of the LED emitted in the outer case 21 is visually recognized by the user of the non-combustion type suction device 1 through the light guide unit 23.
  • the non-combustion type suction device 1 has a barometric pressure sensor (barometric pressure sensor 51 described later).
  • the barometric pressure sensor is housed in the outer case 21.
  • the threshold value for example, 100 Pa or higher
  • the battery pack 2 operates and power is supplied to the heater.
  • FIG. 2 is a graph showing the relationship between the resistance value of the material applied to the heater and the temperature.
  • the vertical axis represents the resistance value and the horizontal axis represents the temperature.
  • line L1 shows the characteristics of nichrome wire. The characteristics of nichrome wire whose resistance value increases as the temperature rises are shown.
  • SUS Stain Less Steel
  • a table showing the relationship between the resistance value of the heater and the temperature is stored as a reference table in a memory (for example, a memory such as a ROM (Read Only Memory) or a RAM (Random Access Memory)) of the microcomputer.
  • a memory for example, a memory such as a ROM (Read Only Memory) or a RAM (Random Access Memory)
  • the microcomputer stores a table or an arithmetic expression that converts an input voltage to itself into a resistance value.
  • the temperature of the heater reaches 250 to 300 ° C, the flavor and taste may deteriorate. Therefore, when the temperature of the heater exceeds a threshold value (for example, 200 ° C.), it is necessary to stop the power supply to the heater in order to prevent the heater from overheating. Therefore, it is required that the temperature of the heater is appropriately acquired and appropriate control according to the temperature is executed.
  • the heater control circuit appropriately acquires the temperature of the heater, and appropriate control according to the temperature is executed. The details of the heater control circuit will be described below.
  • FIG. 3 is a block diagram for explaining a configuration example of the heater control circuit (heater control circuit 30) according to the first embodiment.
  • the solid line shows the flow of electric power
  • the dotted line shows the control signal (voltage) or the communication signal corresponding to the predetermined communication standard.
  • the heater control circuit 30 is mounted on, for example, a substrate housed in the outer case 21.
  • the heater control circuit 30 is connected to the battery cell 41 housed in the outer case 21. Further, the heater control circuit 30 is connected to each of the button portion 22, the atmospheric pressure sensor 51, the heater 61 which is a heating element, and the LED 71 described above.
  • the heater control circuit 30 includes, for example, a microcomputer 301 as a control unit, a DC (Direct Current) / DC converter 302, a regulator (REG) 303, an operational amplifier (AMP) 304, and a FET (Field Effect Transistor) 305A as a first switch. It has a configuration including a FET 305B as a second switch, a FET 305C as a third switch, and a reference resistor R1.
  • the microcomputer 301 comprehensively controls each part of the heater control circuit 30.
  • the microcomputer 301 communicates with, for example, the barometric pressure sensor 51, and periodically acquires the barometric pressure measured by the barometric pressure sensor 51. In between the microcomputer 301 and the pressure sensor 51, for example, a serial communication according to the I 2 C referred communication standard is performed.
  • the microcomputer 301 performs the above-mentioned control based on the atmospheric pressure acquired from the atmospheric pressure sensor 51. Further, an operation signal accompanying the operation of the button unit 22 is input to the microcomputer 301.
  • the microcomputer 301 executes control to turn on / off the non-combustion type suction device 1 in response to an operation signal.
  • the microcomputer 301 controls the light emission / extinguishing of the LED 71 and the light emission color of the LED by supplying a predetermined control signal to the LED 71. Further, the microcomputer 301 executes switch control for appropriately turning on / off each of the FET 305A, the FET 305B, and the FET 305C.
  • on (off) does not necessarily mean switching from the on (off) state to the off (on) state, but also continues the state when the FET is in the on (off) state. It also includes control.
  • the output voltage of the battery cell 41 is supplied to each of the DC / DC converter 302, the regulator 303, and the LED 71.
  • the LED 71 emits light using the electric power supplied from the battery cell 41.
  • the DC / DC converter 302 generates a power supply voltage for heating the heater 61 based on the voltage of the battery cell 41.
  • the power supply voltage generated by the DC / DC converter 302 is supplied to each of the FET 305A and the FET 305B.
  • the power supply voltage generated by the DC / DC converter 302 is, for example, about 3.5V.
  • the regulator 303 generates the power supply voltage of the microcomputer 301 and the power supply voltage of the operational amplifier 304 based on the voltage of the battery cell 41.
  • the power supply voltage generated by the regulator 303 is, for example, about 2.8 V, which is lower than the power supply voltage generated by the DC / DC converter 302.
  • the operational amplifier 304 amplifies the input voltage input from the FET 305C with a predetermined amplification factor (for example, about 100 times).
  • the output voltage from the operational amplifier 304 is supplied to the port for the analog voltage of the microcomputer 301.
  • Each of FET305A, FET305B and FET305C is, for example, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
  • the FET 305A and the FET 305B are P-type MOSFETs.
  • the FET 305C is composed of, for example, two N-type MOSFETs. The on / off of each of the FET 305A, FET 305B and FET 305C is controlled by the microcomputer 301.
  • the FET 305A is connected to the DC / DC converter 302 and the heater 61.
  • the FET 305B is connected to one end side of the DC / DC converter 302 and the reference resistor R1.
  • the FET 305C is connected to the other end side of the reference resistor R1 and the operational amplifier 304.
  • FIG. 4 is a diagram showing the details of the circuit configuration of the heater control circuit 30, and FIG. 5 is a diagram showing the circuit configuration of the heater control circuit 30 in more detail. The details of the circuit configuration of the heater control circuit 30 will be described with reference to FIGS. 4 and 5.
  • the power supply voltage PA in FIGS. 4 and 5 is the power supply voltage generated and output by the DC / DC converter 302.
  • the DC / DC converter 302 is connected to the heater 61 via the FET 305A. Specifically, the DC / DC converter 302 is connected to the source of the FET 305A, and the drain of the FET 305A is connected to the heater 61.
  • the FET 305A When the FET 305A is turned on, the power supply voltage PA as the electric power for operating the heater 61 is supplied to the heater 61.
  • the DC / DC converter 302 operates as a power source for supplying electric power to the heater 61.
  • the output of the battery cell 41 may be directly supplied to the heater 61. In this case, the battery cell 41 operates as a power source.
  • the heater 61 is heated by being supplied with the power supply voltage PA and dissipates heat (turns on). The heater 61 does not operate and cools (turns off) when the power supply voltage PA is not supplied.
  • the FET 305A is a switch that controls the on / off of the heater 61.
  • the DC / DC converter 302 is connected to one end side of the reference resistor R1 via the FET 305B. Specifically, the DC / DC converter 302 is connected to the source of the FET 305B, and the drain of the FET 305B is connected to one end side of the reference resistor R1. The other end side of the reference resistor R1 is connected to one end side of the resistor R2 via the connection point P1. The other end of the resistor R2 is connected to the ground.
  • the connection point P2 between the FET 305A and the heater 61 is connected to the connection point P1 between the reference resistor R1 and the resistor R2.
  • the reference resistor R1 and the resistor R2 correspond to a plurality of resistors connected in parallel with the heater 61. Further, the above-mentioned FET 305B is connected between the DC / DC converter 302 and the reference resistors R1 and R2.
  • the resistance value of the resistor R2 is set to a value very large with respect to the resistance value of the heater 61.
  • the resistance value of the resistor R2 is set to, for example, about 10 k ⁇ .
  • the resistance value of the heater 61 is, for example, about several ⁇ . Actually, the resistance value of the heater 61 includes the resistance value of the heater 61 itself, the conductive resistance of the flexible substrate to which the heater 61 is connected, and the resistance R3 which is the contact resistance of the connector to which the heater 61 is connected. (See FIG. 5). In the present specification, the resistance value of the heater 61 means the resistance value including the resistance R3.
  • the source of the FET 305C is connected to the connection point P1 on the wiring between the reference resistor R1 and the resistor R1. Further, the drain of the FET 305C is connected to the amplification unit 304A.
  • the amplification unit 304A is connected to the microcomputer 301.
  • the amplification unit 304A has a configuration including the operational amplifier 304 described above (see FIG. 5), and amplifies the input voltage.
  • the operation of the heater control circuit 30 described below is performed by the control of the microcomputer 301.
  • the microcomputer 301 executes control based on either a steady-state sequence or a pressure difference detection sequence.
  • the steady-state sequence is a flow of processing performed in a normal state, specifically, when it is determined by the microcomputer 301 that the non-combustion type suction device 1 is not sucked.
  • the atmospheric pressure difference detection sequence it is determined that when a predetermined or greater atmospheric pressure difference is detected based on the atmospheric pressure measured by the atmospheric pressure sensor 51, that is, the non-combustible suction device 1 is sucked by the microcomputer 301. In that case, it is a flow of processing performed interruptively.
  • FIG. 6 is a flowchart showing the flow of processing related to the steady sequence.
  • the steady-state sequence is started, for example, when the button portion 22 is pressed and the power of the non-combustion suction device 1 is turned on. In the initial state (state when the power is turned on), all of FET 305A to FET 305C are turned off.
  • step ST1 the FET 305B is turned on under the control of the microcomputer 301.
  • the FET 305B is turned on, a voltage obtained by dividing the power supply voltage PA is generated at the connection point P1.
  • a voltage obtained by dividing the power supply voltage PA by the reference resistor R1, the resistor R2, and the combined resistance of the heater 61 is generated.
  • the resistance value of the resistor R2 is set to be very large, so that the resistor R2 can be ignored. Therefore, at the connection point P1, a voltage obtained by dividing the power supply voltage PA by the reference resistor R1 and the resistance of the heater 61 is generated. Specifically, a voltage of about several mV is generated at the connection point P1. Then, the process proceeds to step ST2.
  • step ST2 the FET 305C is turned on under the control of the microcomputer 301.
  • the voltage at the connection point P1 is input to the operational amplifier 304 via the FET 305C.
  • the operational amplifier 304 generates a voltage by amplifying the input voltage about 100 times.
  • the voltage generated by the operational amplifier 304 is input to the analog voltage port of the microcomputer 301 as the applied voltage. Then, the process proceeds to step ST3.
  • step ST3 the microcomputer 301 detects the applied voltage input from the operational amplifier 304. Then, the process proceeds to step ST4.
  • step ST4 the microcomputer 301 acquires the reference temperature.
  • the microcomputer 301 determines the resistance value by converting the input voltage into the resistance value using an arithmetic expression or the like. Then, the microcomputer 301 determines the temperature corresponding to the determined resistance value, that is, the temperature of the heater 61 with reference to the reference table shown in FIG.
  • the microcomputer 301 sets the temperature of the heater 61 acquired in the process of step ST4 as a reference temperature, and holds (stores) the reference temperature. In this way, when the resistance value of the heater 61 is determined, the microcomputer 301 turns off the FET 305A (continues the off state) and controls the switches to turn on the FET 305B and the FET 305C. Then, the process proceeds to step ST5.
  • step ST5 the FET 305C is turned off by the control of the microcomputer 301. Then, the process proceeds to step ST6.
  • step ST6 the FET 305B is turned off by the control of the microcomputer 301.
  • a series of processes related to the stationary sequence described above are periodically performed.
  • the reference temperature acquired in the process of step ST4 is updated every time the process of the steady sequence is performed.
  • FIG. 7 is a flowchart showing the flow of processing related to the atmospheric pressure difference detection sequence. Since the content of the processing from step ST11 to step ST13 is the same processing (switch control) as the processing from step ST1 to step ST3 in the steady sequence, duplicate description will be omitted. Then, the process proceeds to step ST14.
  • step ST14 the microcomputer 301 obtains the resistance value of the heater 61 from the input voltage, and acquires the current temperature of the heater 61 with respect to the obtained resistance value. Then, the process proceeds to step ST15.
  • step ST15 the microcomputer 301 compares the reference temperature set in the previous, that is, the latest steady-state sequence processing, with the temperature acquired in step ST14, and determines the temperature change ( ⁇ T) with respect to the reference temperature. Then, the process proceeds to step ST16.
  • step ST16 the FET 305C is turned off by the control of the microcomputer 301. Then, the process proceeds to step ST17.
  • step ST17 the FET 305B is turned off by the control of the microcomputer 301. Then, the process proceeds to step ST18.
  • step ST18 the microcomputer 301 determines whether or not the temperature change ( ⁇ T) determined in step ST15 is equal to or less than a predetermined threshold value. For example, if the reference temperature is 150 ° C., it is determined whether or not the difference with respect to the temperature (for example, 200 ° C.) of the heater 61 that does not deteriorate the flavor, that is, the temperature change ( ⁇ T) is 50 or less. To.
  • a predetermined threshold value For example, if the reference temperature is 150 ° C., it is determined whether or not the difference with respect to the temperature (for example, 200 ° C.) of the heater 61 that does not deteriorate the flavor, that is, the temperature change ( ⁇ T) is 50 or less.
  • control is performed so that the power supply of the heater 61 is not performed in order to prevent the heater 61 from overheating.
  • step ST11 when a pressure difference of a predetermined value or more is detected, the process returns to step ST11, and when a pressure difference of a predetermined value or more is not detected, control related to the steady sequence is performed.
  • the change in temperature ( ⁇ T) is equal to or less than a predetermined value, the process proceeds to step ST19.
  • step ST19 the FET 305A is turned on under the control of the microcomputer 301.
  • the power supply voltage PA is supplied to the heater 61, and the heater 61 is energized and heated. This atomizes the liquid. Power is supplied to the heater 61 for a predetermined period of time. Then, the process proceeds to step ST20.
  • step ST20 the FET 305A is turned off by the control of the microcomputer 301. As a result, the supply of the power supply voltage PA to the heater 61 is stopped. Then, the process returns to step ST11.
  • the atmospheric pressure difference detection sequence is repeated while the atmospheric pressure difference of a predetermined value or more is detected, that is, while the non-combustion suction device 1 is being sucked.
  • a series of processes related to the atmospheric pressure difference detection sequence is performed in, for example, about 15 ms. Assuming that one suction of the non-combustion suction device 1 is about 1 to several seconds, a series of processes related to the atmospheric pressure difference detection sequence will be performed about 100 to 200 times during suction.
  • the heater 61 is gradually heated by repeating a series of processes related to the atmospheric pressure difference detection sequence.
  • the temperature of the heater 61 can be estimated accurately. Therefore, overheating of the heater 61 can be prevented. Further, since the temperature sensor is not required, the cost can be reduced, and the battery pack 2 can be miniaturized because the space for arranging the temperature sensor is not required. Further, in the present embodiment, the FET 305C is provided. The parasitic diode included in the FET 305C can drop the voltage of the power supply voltage PA.
  • the power supply voltage PA (for example, 3.5V) is applied to the operational amplifier 304 when the heater 61 is heated, that is, when the FET 305A is turned on, so that the operating voltage of the operational amplifier 304 (for example, 2.8V) is set.
  • the FET 305C is provided in the present embodiment, such a problem can be avoided.
  • a circuit in which the power supply voltage PA is equal to or higher than the power supply voltage of the operational amplifier 304 can be inexpensively configured.
  • the number of switches of the FET 305C is two in the above-described embodiment, it may be one or three or more.
  • the second embodiment is compatible even if the heaters in the cartridge case 3 are made of different materials, but the non-combustion type suction device 1 operates, in other words, the cartridge case 3 having heaters made of different materials is compatible. It is a form that assumes that sex is ensured.
  • the heaters made of different materials are, for example, the heater 61 made of the above-mentioned nichrome wire and the heater 61A made of SUS. Since the heater 61A composed of SUS has a lower resistance value than the heater 61, the applied voltage can be lowered and power saving can be achieved (see FIG. 2).
  • FIG. 8 is a block diagram for explaining a configuration example of the heater control circuit (heater control circuit 30A) according to the second embodiment.
  • FIG. 9 is a diagram showing details of the circuit configuration of the heater control circuit 30A.
  • FIG. 10 is a diagram showing the circuit configuration of the heater control circuit 30A in more detail.
  • the difference between the heater control circuit 30A and the heater control circuit 30 is that a DC / DC converter 302A is added, and the heater control circuit 30A has a plurality of power sources, a DC / DC converter 302 and a DC / DC converter 302A. It is a point.
  • the DC / DC converter 302A generates a power supply voltage (hereinafter referred to as a power supply voltage PB) for heating the heater 61A based on the voltage of the battery cell 41.
  • the power supply voltage PB is supplied to each of the FET 305A and the FET 305B.
  • the power supply voltage generated by the DC / DC converter 302A is, for example, about 2.5V.
  • the power supply voltage PA and the power supply voltage PB are selectively output.
  • the control for switching between the DC / DC converter 302 and the DC / DC converter 302A is performed by the microcomputer 301.
  • the microcomputer 301 needs to determine whether the heater in the cartridge case 3 connected to the battery pack 2 is the heater 61 or the heater 61A. .. Therefore, the microcomputer 301 determines which heater is used in the control in the steady sequence.
  • FIG. 11 is a flowchart showing the flow of processing related to the steady sequence of the second embodiment.
  • the processing of step ST7 is added.
  • the process of step ST7 is performed following the process of step ST3.
  • step ST3 the microcomputer 301 detects the input voltage as in the first embodiment. Then, the process proceeds to step ST7.
  • the microcomputer 301 determines the type of heater. For example, the microcomputer 301 converts the input voltage into a resistance value. In the initial stage (for example, the stage where the heater is not heated), the resistance value differs depending on the type of the heater, as shown in FIG. For example, the microcomputer 301 determines that the heater type is the heater 61 if the resistance value after conversion is larger than a predetermined threshold value, and determines that the heater type is the heater 61A if the resistance value after conversion is smaller than the predetermined threshold value.
  • the threshold value is set to an appropriate value that can determine the type of heater.
  • the microcomputer 301 selects and switches the DC / DC converter to be operated according to the discrimination result. Specifically, the microcomputer 301 operates the DC / DC converter 302 when it is determined that the type of the heater is the heater 61. Further, when the microcomputer 301 determines that the type of the heater is the heater 61A, the microcomputer 301 operates the DC / DC converter 302A. Since the contents of other processes are the same as those of the first embodiment, duplicated description will be omitted as appropriate. The determination result of the heater is held until, for example, the cartridge case 3 connected to the battery pack 2 is switched. Further, the value of the parameter used in various controls (for example, the threshold value used in the process related to step ST18 of the atmospheric pressure difference detection sequence) may be appropriately changed according to the determination result of the type of the heater. ..
  • the heater control circuit in the above-described embodiment may have another configuration.
  • the heater control circuit may have a known configuration such as a circuit for charging the battery cell or an IC (Integrated Circuit) for protecting the battery cell.
  • a switch other than MOSFET may be used as the switch.
  • the type of MOSFET P type or N type
  • the battery cell a battery other than the lithium ion secondary battery can also be applied.
  • the plurality of power supplies may be three or more. Further, the order of processing in each of the above-mentioned stationary sequence and the atmospheric pressure difference detection sequence may be interchanged within a range that does not deviate from the gist of the present invention, or some processing may be performed in parallel.
  • the plurality of resistors may be three or more resistors, and connection points P1 may be set at appropriate positions between the three or more resistors.
  • embodiments of the present invention include, but are not limited to, control devices used for electronic cigarettes, heat-not-burn tobacco and nebulizers.
  • Embodiments of the present invention may include controls used in various non-combustion aspirators for producing aerosols to be aspirated by the user.
  • the storage unit for storing the liquid may be configured as a tank for accommodating the aerosol source.
  • the aerosol source is, for example, a polyhydric alcohol such as glycerin or propylene glycol, or a liquid such as water.
  • the aerosol source in the reservoir may include a tobacco raw material that releases a flavor component by heating or an extract derived from the tobacco raw material.
  • the aerosol source holding section holds the aerosol source in the storage section.
  • the aerosol source holding portion is composed of a fibrous or porous material, and holds the aerosol source as a liquid in the gaps between the fibers and the pores of the porous material.
  • the non-combustible aspirator is a medical inhaler such as a nebulizer
  • the aerosol source may also contain a drug for the patient to inhale.
  • the reservoir may have a configuration capable of replenishing the consumed aerosol source.
  • the reservoir itself may be configured so that the reservoir itself can be replaced when the aerosol source is consumed.
  • the aerosol source is not limited to a liquid, and may be a solid. When the aerosol source is solid, the reservoir may be a hollow container.
  • the non-combustion aspirator may have an aerosol substrate that is a solid supporting an aerosol source.
  • the aerosol source may be, for example, a polyhydric alcohol such as glycerin or propylene glycol, or a liquid such as water.
  • the aerosol source in the aerosol base material may include a tobacco raw material that releases a flavor component by heating or an extract derived from the tobacco raw material. If the non-combustible aspirator is a medical inhaler such as a nebulizer, the aerosol source may also contain a drug for the patient to inhale.
  • the aerosol substrate may be configured so that the aerosol substrate can be replaced when the aerosol source is consumed.
  • the aerosol source is not limited to liquids, but may be solids.
  • Non-combustible aspirator 2 ... Battery pack, 30, 30A ... Heater control circuit, 41 ... Battery cell, 51 ... Barometric pressure sensor, 61, 61A ... Heater, 302 , 302A ... DC / DC converter, 305A, 305B, 305C ... FET, R1 ... reference resistance, R2 ... resistance

Landscapes

  • Control Of Resistance Heating (AREA)

Abstract

所定の抵抗値を有する加熱要素と、加熱要素に電力を供給する電源と、加熱要素と並列に接続される複数の抵抗と、制御部と、加熱要素のオン/オフを制御する第1スイッチと、電源と複数の抵抗との間に接続される第2スイッチと、複数の抵抗の間の配線と制御部との間に接続される第3スイッチとを備え、加熱要素の抵抗値を測定する際に、制御部は、第2スイッチと第3スイッチとをオンし、第1スイッチをオフするスイッチ制御を実行するように構成された非燃焼式吸引器である。

Description

非燃焼式吸引器
 本発明は、非燃焼式吸引器に関する。
 近年、紙巻たばことは異なり火を使用しないたばこ、所謂、非燃焼式吸引器が普及しつつある。非燃焼式吸引器では、一般に、電池の電力によりヒーターが加熱されることから、ヒーターが加熱され過ぎないように制御する必要がある。下記特許文献1には、ヒーターの抵抗値を測定し、抵抗値に応じて、電池から出力される電圧の上限及び下限が設定されるようにした非燃焼式吸引器が記載されている。
特表2016-531549号公報
 特許文献1に記載の非燃焼式吸引器では、ヒーターの温度を精度良く検出することができないという問題がある。従って、ヒーターの温度が高い場合であってもヒーターに電力が供給されることでヒーターが過熱され、非燃焼式吸引器の誤動作や香喫味の低下等を招来してしまう虞があった。
 本発明は、ヒーターの温度を精度良く検出することができる非燃焼式吸引器を提供することを目的の一つとする。
 上述した課題を解決するために、本発明は、
 所定の抵抗値を有する加熱要素と、
 加熱要素に電力を供給する電源と、
 加熱要素と並列に接続される複数の抵抗と、
 制御部と、
 加熱要素のオン/オフを制御する第1スイッチと、
 電源と複数の抵抗との間に接続される第2スイッチと、
 複数の抵抗の間の配線と制御部との間に接続される第3スイッチとを備え、
 加熱要素の抵抗値を測定する際に、制御部は、第2スイッチと第3スイッチとをオンし、第1スイッチをオフするスイッチ制御を実行するように構成された
 非燃焼式吸引器である。
 本発明の実施の形態によれば、ヒーターの温度を精度良く検出することができる。従って、ヒーターの温度が高い場合にヒーターへの電力供給を停止することができる。これにより、ヒーターの過熱を防止できるので、非燃焼式吸引器の誤動作や香喫味の低下等を防止することができる。なお、本明細書で例示された効果により本発明の内容が限定して解釈されるものではない。
図1は、実施の形態にかかる非燃焼式吸引器の分解斜視図である。 図2は、ヒーターに適用される素材の抵抗値と温度との関係を示したグラフである。 図3は、第1の実施の形態にかかるヒーター制御回路の構成例を説明するためのブロック図である。 図4は、第1の実施の形態にかかるヒーター制御回路の回路構成の詳細を示す回路図である。 図5は、第1の実施の形態にかかるヒーター制御回路の回路構成を更に詳細に示した回路図である。 図6は、第1の実施の形態にかかる定常シーケンスにおける処理の流れを示すフローチャートである。 図7は、気圧差検出時シーケンスにおける処理の流れを示すフローチャートである。 図8は、第2の実施の形態にかかるヒーター制御回路の構成例を説明するためのブロック図である。 図9は、第2の実施の形態にかかるヒーター制御回路の回路構成の詳細を示す回路図である。 図10は、第2の実施の形態にかかるヒーター制御回路の回路構成を更に詳細に示した回路図である。 図11は、第2の実施の形態にかかる定常シーケンスにおける処理の流れを示すフローチャートである。
 以下、本発明の実施の形態等について図面を参照しながら説明する。なお、説明は以下の順序で行う。
<第1の実施の形態>
<第2の実施の形態>
<変形例>
 以下に説明する実施の形態等は本発明の好適な具体例であり、本発明の内容がこれらの実施の形態等に限定されるものではない。
<実施の形態>
[非燃焼式吸引器の全体構成例]
 非燃焼式吸引器は、加熱対象等の違いに応じて、液体を霧化してエアロゾルを発生させる方式やたばこを直接加熱する方式等、種々の方式が存在する。本発明は、特定の方式の非燃焼式吸引器に限定されるものではないが、本実施の形態では、低温加熱方式と呼ばれる方式の非燃焼式吸引器を例にした説明がなされる。低温加熱方式とは、電池パックから供給される電力を使用して液体を加熱し、霧化したエアロゾルをたばこが詰まったたばこカプセルを通じてユーザが吸い込む方式である。勿論、本発明は、低温加熱方式に限られず、他の方式の非燃焼式吸引器に対しても適用することができる。
 図1は、本実施の形態にかかる非燃焼式吸引器(非燃焼式吸引器1)の分解斜視図である。非燃焼式吸引器1は、概略、円筒状の電池パック2と、電池パック2に取り付けられる円筒状のカートリッジケース3と、カートリッジケース3に取り付けられる吸引部4とを有している。なお、以下の説明において、吸引部4の側を吸引側、反対側を先端側と称する場合がある。
 電池パック2は、円筒状の外装ケース21を有している。外装ケース21は、金属、樹脂等から構成されている。外装ケース21内に、電池セル(後述する電池セル41)が収納されている。電池セルは、例えば、リチウムイオン二次電池である。また、外装ケース21内には、電池セルの他にも、電池パック2を統括的に制御するマイクロコンピュータを含む電気回路やLED(Light Emitting Diode)チップ等が実装された基板、リチウムイオン二次電池を充電(例えば、USB(Universal Serial Bus)接続による充電)するための電気回路が実装された基板等が収納されている。電池パック2を統括的に制御するマイクロコンピュータをマイコン(後述するマイコン301)と適宜、略称する。
 カートリッジケース3の内部には、カトマイザーが収納されている。また、カートリッジケース3の内部には、電池パック2から供給される電力を使用して動作するヒーター(後述するヒーター61,61A)及び液リザーバー(不図示)が収納されている。
 カトマイザーは、液体がヒーターにより熱せられることにより発生するエアロゾルを吸引部4側に向かって噴霧するものである。吸引部4には、内部にたばこが詰められたカプセル(不図示)が収納されており、液体が霧化したエアロゾルがカプセルを通じて吸引側に向かう。ユーザは、吸引部4を介して、たばこ由来の成分を含むエアロゾルを吸い込む。
 非燃焼式吸引器1のオン/オフは、電池パック2に設けられている円形状のボタン部22に対する押下操作により行われる。
 ボタン部22の周囲には、ガラスやアクリル等の光透過性部材から成る導光部23が設けられている。かかる導光部23を介して、外装ケース21内で発光したLEDの発光色が非燃焼式吸引器1のユーザにより視認される。
 本実施の形態にかかる非燃焼式吸引器1は、気圧センサー(後述する気圧センサー51)を有している。気圧センサーは、外装ケース21内に収納されている。気圧センサーにより取得された気圧と基準気圧との間に、閾値以上(例えば、100Pa以上)の気圧差が検出された場合、換言すれば、非燃焼式吸引器1が吸われたことが検出された場合に、電池パック2が動作しヒーターへの電力供給が行われる。
[非燃焼式吸引器の使用時における動作例]
 次に、本実施の形態にかかる非燃焼式吸引器1の使用時における動作例について、概略的に説明する。ボタン部22が押されると、気圧センサーにより測定された気圧がマイコンにより取得される。マイコンは、基準気圧と気圧センサーから取得した気圧との間の気圧差が閾値以上であるか否かに応じて非燃焼式吸引器1の吸引の有無を判定する。具体的には、気圧差が所定以上である場合に非燃焼式吸引器1が吸引されたものとマイコンが判定する。マイコンは、ヒーターに対して電池パック2の電力を出力する制御を実行する。
[ヒーターについて]
 ここで、電池パック2の電力により加熱されるヒーターについて、概略的に説明する。第1の実施の形態にかかる非燃焼式吸引器1では、ニクロム線が適用されたヒーターが使用される。図2は、ヒーターに適用される素材の抵抗値と温度との関係を示したグラフである。図2のグラフにおいて、縦軸は抵抗値を示し、横軸は温度を示している。グラフ中、ラインL1がニクロム線の特性を示している。温度が上がるほど抵抗値が上がるニクロム線の特性が示されている。なお、図2では、ヒーターに適用され得る別の素材であるSUS(Stain Less Steel)の特性が、ラインL2により示されている。これについては、第2の実施の形態で説明する。
 かかるヒーターの抵抗値と温度との関係を示すテーブルが、リファレンステーブルとして、マイコンが有するメモリ(例えば、ROM(Read Only Memory)やRAM(Random Access Memory)等のメモリ)に格納されている。また、マイコンは、自身に対する入力電圧を抵抗値に変換するテーブル若しくは演算式等を記憶している。
 なお、ヒーターの温度が250~300℃になると香喫味が低下する虞がある。そこで、ヒーターの温度が閾値(例えば、200℃)を超えた場合にはヒーターの過熱を防止するために、ヒーターへの電力供給を停止する必要がある。このため、ヒーターの温度が適切に取得され、当該温度に応じた適切な制御が実行されることが要求される。本実施の形態では、ヒーター制御回路により、ヒーターの温度が適切に取得され、当該温度に応じた適切な制御が実行される。以下、ヒーター制御回路の詳細について説明する。
[ヒーター制御回路について]
 図3は、第1の実施の形態にかかるヒーター制御回路(ヒーター制御回路30)の構成例を説明するためのブロック図である。図3中、実線は電力の流れを示し、点線は制御信号(電圧)若しくは所定の通信規格に対応する通信信号を示している。ヒーター制御回路30は、例えば、外装ケース21内に収納された基板に実装されている。
 ヒーター制御回路30は、外装ケース21内に収納されている電池セル41と接続されている。また、ヒーター制御回路30は、上述したボタン部22、気圧センサー51、加熱要素であるヒーター61、及び、LED71のそれぞれに対して接続されている。
 ヒーター制御回路30は、例えば、制御部としてのマイコン301、DC(Direct Current)/DCコンバータ302、レギュレータ(REG)303、オペアンプ(AMP)304、第1スイッチとしてのFET(Field Effect Transistor)305A、第2スイッチとしてのFET305B、第3スイッチとしてのFET305C、及び、基準抵抗R1を含む構成を有している。
 マイコン301は、ヒーター制御回路30の各部を統括的に制御する。マイコン301は、例えば、気圧センサー51と通信を行い、気圧センサー51により測定された気圧を周期的に取得する。マイコン301と気圧センサー51との間では、例えば、I2Cと称される通信規格に応じたシリアル通信がなされる。マイコン301は、気圧センサー51から取得した気圧に基づいて、上述した制御を行う。また、マイコン301には、ボタン部22の操作に伴う操作信号が入力される。マイコン301は、操作信号に応じて、非燃焼式吸引器1をオン/オフする制御を実行する。また、マイコン301は、LED71に所定の制御信号を供給することにより、LED71の発光/消灯及びLEDの発光色を制御する。また、マイコン301は、FET305A、FET305B及びFET305Cのそれぞれを適宜、オン/オフするスイッチ制御を実行する。なお、本明細書において、オン(オフ)するとは、必ずしもオン(オフ)の状態からオフ(オン)の状態に切り替えることだけでなく、FETがオン(オフ)状態のときに当該状態を継続する制御も含む意味である。
 電池セル41の出力電圧は、DC/DCコンバータ302、レギュレータ303及びLED71のそれぞれに供給される。LED71は、電池セル41から供給される電力を使用して発光する。
 DC/DCコンバータ302は、電池セル41の電圧に基づいてヒーター61を加熱するための電源電圧を生成する。DC/DCコンバータ302により生成された電源電圧がFET305A及びFET305Bのそれぞれに供給される。DC/DCコンバータ302により生成される電源電圧は、例えば、3.5V程度である。
 レギュレータ303は、電池セル41の電圧に基づいてマイコン301の電源電圧及びオペアンプ304の電源電圧を生成する。レギュレータ303により生成される電源電圧は、例えば、2.8V程度であり、DC/DCコンバータ302により生成される電源電圧より低い電圧である。
 オペアンプ304は、FET305Cから入力される入力電圧を所定の増幅率(例えば、100倍程度)でもって増幅する。オペアンプ304からの出力電圧が、マイコン301のアナログ電圧用のポートに対して供給される。
 FET305A、FET305B及びFET305Cのそれぞれは、例えば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)である。具体的には、FET305A及びFET305Bは、P型のMOSFETである。また、FET305Cは、例えば、2個のN型のMOSFETから構成されるものである。FET305A、FET305B及びFET305Cのそれぞれのオン/オフは、マイコン301により制御される。
 FET305Aは、DC/DCコンバータ302及びヒーター61に接続されている。FET305Bは、DC/DCコンバータ302及び基準抵抗R1の一端側に接続されている。FET305Cは、基準抵抗R1の他端側及びオペアンプ304に接続されている。
 図4は、ヒーター制御回路30の回路構成の詳細を示す図であり、図5は、ヒーター制御回路30の回路構成を更に詳細に示した図である。図4及び図5を参照して、ヒーター制御回路30の回路構成の詳細について説明する。
 図4及び図5における電源電圧PAは、DC/DCコンバータ302により生成され、出力された電源電圧である。DC/DCコンバータ302は、FET305Aを介してヒーター61に接続されている。具体的には、DC/DCコンバータ302が、FET305Aのソースに対して接続され、FET305Aのドレインがヒーター61に接続されている。
 FET305Aがオンすると、ヒーター61が動作するための電力としての電源電圧PAがヒーター61に供給される。このように、本実施の形態では、DC/DCコンバータ302がヒーター61に電力を供給する電源として動作する。なお、電池セル41の出力がヒーター61に直接、供給されても良い。この場合は、電池セル41が電源として動作する。ヒーター61は、電源電圧PAが供給されることで加熱され、放熱する(オンする)。ヒーター61は、電源電圧PAが供給されない場合には動作せずに冷却する(オフする)。このように、FET305Aは、ヒーター61のオン/オフを制御するスイッチである。
 DC/DCコンバータ302は、FET305Bを介して、基準抵抗R1の一端側に接続されている。具体的には、DC/DCコンバータ302が、FET305Bのソースに対して接続され、FET305Bのドレインが基準抵抗R1の一端側に接続されている。基準抵抗R1の他端側が、接続点P1を介して、抵抗R2の一端側に接続されている。抵抗R2の他端側がグランドに接続されている。FET305Aとヒーター61との間の接続点P2が、基準抵抗R1と抵抗R2との間の接続点P1と接続されている。このように、基準抵抗R1及び抵抗R2は、ヒーター61と並列に接続される複数の抵抗に対応している。また、上述したFET305Bは、DC/DCコンバータ302と、基準抵抗R1及び抵抗R2との間に接続されている。なお、抵抗R2の抵抗値は、ヒーター61の抵抗値に対して非常に大きい値に設定される。抵抗R2の抵抗値は、例えば10kΩ程度に設定される。
 ヒーター61の抵抗値は、例えば、数Ω程度である。なお、実際には、ヒーター61の抵抗値は、ヒーター61自身の抵抗値に加え、ヒーター61が接続されるフレキシブル基板の導電抵抗やヒーター61が接続されるコネクタの接触抵抗である抵抗R3を含む(図5参照)。本明細書においてヒーター61の抵抗値と言う場合には、抵抗R3を加味した抵抗値を意味する。
 FET305Cのソースが、基準抵抗R1と抵抗R1との間の配線上の接続点P1に接続されている。また、FET305Cのドレインが増幅部304Aに接続されている。増幅部304Aは、マイコン301に接続されている。増幅部304Aは、上述したオペアンプ304を含む構成(図5参照)であり、入力電圧を増幅するものである。
[ヒーター制御回路の動作例]
 次に、ヒーター制御回路30の動作例について説明する。以下に説明するヒーター制御回路30の動作は、マイコン301の制御によって行われる。マイコン301は、定常シーケンス及び気圧差検出時シーケンスの何れかに基づいた制御を実行する。定常シーケンスは、通常時、具体的には、マイコン301により非燃焼式吸引器1が吸引されていないと判定された場合に行われる処理の流れである。また、気圧差検出時シーケンスは、気圧センサー51により測定された気圧に基づいて所定以上の気圧差が検出された場合、即ち、マイコン301により非燃焼式吸引器1が吸引されていると判定された場合に、割り込み的に行われる処理の流れである。
(定常シーケンスについて)
 図6は、定常シーケンスにかかる処理の流れを示すフローチャートである。定常シーケンスは、例えば、ボタン部22が押下され、非燃焼式吸引器1の電源がオンされたときに開始される。なお、初期状態(電源がオンされた際の状態)では、FET305A~FET305Cの全てがオフされている。
 処理が開始されると、ステップST1では、マイコン301の制御によりFET305Bがオンされる。FET305Bがオンされると、電源電圧PAが分圧された電圧が接続点P1に発生する。接続点P1には、電源電圧PAが、基準抵抗R1と抵抗R2及びヒーター61の合成抵抗とにより分圧された電圧が発生する。ここで、上述したように、本実施の形態では抵抗R2の抵抗値が非常に大きく設定されているため抵抗R2を無視することができる。従って、接続点P1には、電源電圧PAが、基準抵抗R1とヒーター61の抵抗とにより分圧された電圧が発生する。具体的には、接続点P1には、数mV程度の電圧が発生する。そして、処理がステップST2に進む。
 ステップST2では、マイコン301の制御によりFET305Cがオンされる。FET305Cがオンされることにより、接続点P1における電圧がFET305Cを介してオペアンプ304に入力される。オペアンプ304は、入力された電圧を100倍程度増幅することにより電圧を生成する。オペアンプ304により生成された電圧が、印加電圧として、マイコン301のアナログ電圧用のポートに入力される。そして、処理がステップST3に進む。
 ステップST3では、マイコン301が、オペアンプ304から入力される印加電圧を検出する。そして、処理がステップST4に進む。
 ステップST4では、マイコン301が、基準温度を取得する。例えば、マイコン301は、演算式等を用いて入力電圧を抵抗値に変換することにより抵抗値を判定する。そして、マイコン301は、判定した抵抗値に対応する温度、即ち、ヒーター61の温度を図2に示したリファレンステーブルを参照して判定する。マイコン301は、ステップST4にかかる処理で取得したヒーター61の温度を基準温度として設定し、当該基準温度を保持(記憶)する。このように、マイコン301は、ヒーター61の抵抗値を判定するときに、FET305Aをオフし(オフ状態を継続し)、FET305B及びFET305Cをオンするスイッチ制御を行う。そして、処理がステップST5に進む。
 ステップST5では、マイコン301の制御によりFET305Cがオフされる。そして、処理がステップST6に進む。
 ステップST6では、マイコン301の制御によりFET305Bがオフされる。以上、説明した定常シーケンスにかかる一連の処理が周期的に行われる。なお、ステップST4にかかる処理で取得される基準温度は、定常シーケンスにかかる処理が行われる度に更新される。
(気圧差検出時シーケンスについて)
 図7は、気圧差検出時シーケンスにかかる処理の流れを示すフローチャートである。ステップST11~ステップST13までの処理の内容は、定常シーケンスにおけるステップST1~ステップST3までの処理と同じ処理(スイッチ制御)であるので、重複した説明を省略する。そして、処理がステップST14に進む。
 ステップST14では、マイコン301が入力電圧からヒーター61の抵抗値を求め、求めた抵抗値に対するヒーター61の現在の温度を取得する。そして、処理がステップST15に進む。
 ステップST15では、マイコン301が、前回、即ち、最新の定常シーケンスの処理で設定された基準温度とステップST14で取得した温度とを比較し、基準温度に対する温度の変化(ΔT)を判定する。そして、処理がステップST16に進む。
 ステップST16では、マイコン301の制御によりFET305Cがオフされる。そして、処理がステップST17に進む。
 ステップST17では、マイコン301の制御によりFET305Bがオフされる。そして、処理がステップST18に進む。
 ステップST18では、マイコン301が、ステップST15で判定した温度の変化(ΔT)が所定の閾値以下であるか否かが判断される。例えば、基準温度が150℃であれば、香喫味が低下しない程度のヒーター61の温度(例えば、200℃)に対する差分、即ち、温度の変化(ΔT)が50以下であるか否かが判断される。ここで、温度の変化(ΔT)が所定値より大きい場合には、ヒーター61の過熱を防止するためにヒーター61の電力供給を行わないようにする制御がなされる。そして、所定以上の気圧差が検出されている場合には処理がステップST11に戻り、所定以上の気圧差が検出されない場合には、定常シーケンスにかかる制御が行われる。温度の変化(ΔT)が所定値以下である場合には、処理がステップST19に進む。
 ステップST19では、マイコン301の制御によりFET305Aがオンされる。これにより電源電圧PAがヒーター61に供給され、ヒーター61が通電加熱される。これにより液体が霧化する。ヒーター61への電力供給は所定期間、行われる。そして、処理がステップST20に進む。
 ステップST20では、マイコン301の制御によりFET305Aがオフされる。これにより、ヒーター61への電源電圧PAの供給が停止する。そして、処理がステップST11に戻る。
 なお、気圧差検出時シーケンスは、所定以上の気圧差が検出されている間、即ち、非燃焼式吸引器1が吸引されている間、繰り返される。気圧差検出時シーケンスにかかる一連の処理は、例えば15m秒程度で行われる。非燃焼式吸引器1の1回の吸引が1から数秒程度とすると、気圧差検出時シーケンスにかかる一連の処理が100回~200回程度、吸引中に行われることになる。気圧差検出時シーケンスにかかる一連の処理が繰り返し行われることにより、ヒーター61が徐々に温められていく。
 なお、上述した処理において、基準温度に対する変化でなく、ヒーター61の現在の温度が閾値以下であるか否かを判定し、当該判定結果に応じて、ヒーター61への電力供給が制御されても良い。
[実施の形態により得られる効果]
 以上説明した第1の実施の形態によれば、ヒーター61の温度を精度良く推定することができる。従って、ヒーター61の過熱を防止することができる。また、温度センサーを必要としないので、コストを低減でき、且つ、温度センサーを配置するスペースを必要としないので電池パック2を小型化することができる。
 また、本実施の形態では、FET305Cを設けている。FET305Cが有する寄生ダイオードによって、電源電圧PAの電圧をドロップさせることができる。FET305Cが無い構成では、ヒーター61の加熱時、即ち、FET305Aがオンしたときに電源電圧PA(例えば、3.5V)がオペアンプ304にかかるので、オペアンプ304の動作電圧(例えば、2.8V)を超えてしまう虞がある。しかしながら、本実施の形態ではFET305Cを設けているので、かかる問題を回避することができる。このように、本実施の形態では、電源電圧PAがオペアンプ304の電源電圧以上である回路を安価に構成することができる。なお、FET305Cのスイッチ数は、上述した実施の形態では2個としたが、1個でも良いし、3個以上でも良い。
<第2の実施の形態>
 次に、第2の実施の形態について説明する。なお、第2の実施の形態の説明において、上述した説明における同一又は同質の構成については同一の参照符号を付し、重複した説明を適宜、省略する。また、特に断らない限り、第1の実施形態で説明した事項は第2の実施形態に対して適用することができる。
 第2の実施の形態は、カートリッジケース3内のヒーターが異なる素材であっても、非燃焼式吸引器1が動作する、換言すれば、異なる素材のヒーターを有するカートリッジケース3であっても互換性を確保することを想定した形態である。異なる素材のヒーターとは、例えば、上述したニクロム線から構成されるヒーター61と、SUSから構成されるヒーター61Aである。SUSから構成されるヒーター61Aは、ヒーター61に比べて抵抗値が低いので印加する電圧を低くすることができ、省電力を図ることができる(図2参照)。
 第2の実施の形態と第1の実施の形態とが異なる点は、ヒーター制御回路の構成が異なる点である。図8は、第2の実施の形態にかかるヒーター制御回路(ヒーター制御回路30A)の構成例を説明するためのブロック図である。図9は、ヒーター制御回路30Aの回路構成の詳細を示す図である。図10は、ヒーター制御回路30Aの回路構成を更に詳細に示した図である。ヒーター制御回路30Aがヒーター制御回路30と異なる点は、DC/DCコンバータ302Aが追加されており、ヒーター制御回路30Aが、複数の電源であるDC/DCコンバータ302及びDC/DCコンバータ302Aを有している点である。
 DC/DCコンバータ302Aは、電池セル41の電圧に基づいてヒーター61Aを加熱するための電源電圧(以下、電源電圧PBと称する)を生成する。電源電圧PBがFET305A及びFET305Bのそれぞれに供給される。DC/DCコンバータ302Aにより生成される電源電圧は、例えば、2.5V程度である。電源電圧PA及び電源電圧PBが、選択的に出力される。
 DC/DCコンバータ302及びDC/DCコンバータ302Aを切り替える制御は、マイコン301により行われる。マイコン301は、2個のDC/DCコンバータを切り替える制御を行う上で、電池パック2に接続されたカートリッジケース3内のヒーターが、ヒーター61及びヒーター61Aの何れであるかを判別する必要がある。そこで、マイコン301は、定常シーケンスにおける制御の中で、何れのヒーターが使用されているかを判別する。
 図11は、第2の実施の形態の定常シーケンスにかかる処理の流れを示すフローチャートである。第2の実施の形態にかかる定常シーケンスでは、ステップST7の処理が追加されている。ステップST7の処理は、ステップST3の処理に続いて行われる。
 ステップST3では、第1の実施の形態と同様に、マイコン301が入力電圧を検出する。そして、処理がステップST7に進む。
 ステップST7では、マイコン301が、ヒーターの種類を判別する。例えば、マイコン301は、入力電圧を抵抗値に変換する。初期の段階(例えば、ヒーターが加熱されていない段階)では、図2に示す特性のように、ヒーターの種類に応じて抵抗値が異なる。マイコン301は、例えば、変換後の抵抗値が所定の閾値より大きければヒーターの種類がヒーター61と判別し、変換後の抵抗値が所定の閾値より小さければヒーターの種類がヒーター61Aと判別する。閾値は、ヒーターの種類を判別できる適切な値に設定される。
 マイコン301は、判別結果に応じて、動作させるDC/DCコンバータを選択し切り替える。具体的には、マイコン301は、ヒーターの種類がヒーター61であると判別した場合にはDC/DCコンバータ302を動作させる。また、マイコン301は、ヒーターの種類がヒーター61Aであると判別した場合には、DC/DCコンバータ302Aを動作させる。その他の処理の内容は、第1の実施の形態と同様であるので重複した説明を適宜、省略する。なお、ヒーターの判別結果は、例えば、電池パック2に接続されるカートリッジケース3が切り替えられるまで保持される。また、ヒーターの種類の判別結果に応じて、各種の制御で使用されるパラメータの値(例えば、気圧差検出時シーケンスのステップST18にかかる処理で使用される閾値)が適宜、変更されても良い。
 以上、説明した第2の実施の形態によれば、電池パック2に接続され得るヒーターが複数であっても対応することできるヒーター制御回路を実現することができる。
<変形例>
 以上、本発明の実施の形態について具体的に説明したが、本発明の内容は上述した実施の形態に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。以下、変形例について説明する。
 上述した実施の形態におけるヒーター制御回路が他の構成を有していても良い。例えば、ヒーター制御回路が、電池セルを充電するための回路や、電池セルを保護するIC(Integrated Circuit)等、公知の構成を有していても良い。
 スイッチとしてMOSFET以外のスイッチが使用されても良い。また、MOSFETの種類(P型又はN型)は適宜、変更可能である。また、電池セルとしては、リチウムイオン二次電池以外の電池も適用することができる。また、複数の電源は3個以上であっても良い。また、上述した定常シーケンス及び気圧差検出時シーケンスのそれぞれにおける処理の順序が本発明の要旨を逸脱しない範囲で入れ替わっても良いし、一部の処理がパラレルに行われても良い。また、複数の抵抗は、3個以上の抵抗であっても良く、3個以上の抵抗間の適宜な箇所に接続点P1が設定されても良い。
 なお、本発明の実施の形態は、電子たばこ,加熱式たばこ及びネブライザーに用いられる制御装置を含むが、これらに限定されない。本発明の実施形態は、ユーザが吸引するエアロゾルを生成するための様々な非燃焼式吸引器に用いられる制御装置を含み得る。
 上述した実施の形態において液体を貯留する貯留部は、エアロゾル源を収容するタンクとして構成されても良い。この場合、エアロゾル源は、例えば、グリセリンやプロピレングリコールといった多価アルコール、水などの液体である。非燃焼式吸引器が電子たばこである場合、貯留部内のエアロゾル源は、加熱することによって香喫味成分を放出するたばこ原料やたばこ原料由来の抽出物を含んでいても良い。エアロゾル源保持部は、貯留部内のエアロゾル源を保持するものである。例えば、エアロゾル源保持部は、繊維状又は多孔質性の素材から構成され、繊維間の隙間や多孔質材料の細孔に液体としてのエアロゾル源を保持する。前述した繊維状又は多孔質性の素材には、例えばコットンやガラス繊維、またはたばこ原料などを用いることができる。非燃焼式吸引器がネブライザー等の医療用吸入器である場合、エアロゾル源はまた、患者が吸入するための薬剤を含んでも良い。別の例として、貯留部は、消費されたエアロゾル源を補充することができる構成を有しても良い。あるいは、貯留部は、エアロゾル源が消費された際に貯留部自体を交換することができるように構成されても良い。また、エアロゾル源は液体に限られるものではなく、固体でも良い。エアロゾル源が固体の場合の貯留部は、空洞の容器であっても良い。非燃焼式吸引器は、エアロゾル源を担持する固体であるエアロゾル基材を有していても良い。エアロゾル源は、例えば、グリセリンやプロピレングリコールといった多価アルコール、水などの液体であっても良い。エアロゾル基材内のエアロゾル源は、加熱することによって香喫味成分を放出するたばこ原料やたばこ原料由来の抽出物を含んでいても良い。非燃焼式吸引器がネブライザー等の医療用吸入器である場合、エアロゾル源はまた、患者が吸入するための薬剤を含んでも良い。エアロゾル基材は、エアロゾル源が消費された際にエアロゾル基材を交換することができるように構成されても良い。エアロゾル源は液体に限られるものではなく、固体でも良い。
1・・・非燃焼式吸引器、2・・・電池パック、30,30A・・・ヒーター制御回路、41・・・電池セル、51・・・気圧センサー、61,61A・・・ヒーター、302,302A・・・DC/DCコンバータ、305A,305B,305C・・・FET、R1・・・基準抵抗、R2・・・抵抗

Claims (12)

  1.  所定の抵抗値を有する加熱要素と、
     前記加熱要素に電力を供給する電源と、
     前記加熱要素と並列に接続される複数の抵抗と、
     制御部と、
     前記加熱要素のオン/オフを制御する第1スイッチと、
     前記電源と前記複数の抵抗との間に接続される第2スイッチと、
     前記複数の抵抗の間の配線と前記制御部との間に接続される第3スイッチとを備え、
     前記加熱要素の抵抗値を測定する際に、前記制御部は、前記第2スイッチと前記第3スイッチとをオンし、前記第1スイッチをオフするスイッチ制御を実行するように構成された
     非燃焼式吸引器。
  2.  前記制御部は、前記スイッチ制御に応じて前記制御部に前記電源から電圧が印加され、該印加電圧に基づいて、前記加熱要素の前記抵抗値を測定するように構成された
     請求項1に記載の非燃焼式吸引器。
  3.  前記制御部は、前記加熱要素の抵抗値に対応する温度を判定するように構成された
     請求項1または請求項2に記載の非燃焼式吸引器。
  4.  前記制御部は、前記加熱要素の抵抗値と前記温度の関係性を示すリファレンステーブルを用いて温度を判定するように構成された
     請求項3に記載の非燃焼式吸引器。
  5.  気圧センサーをさらに有し、
     前記制御部は、前記気圧センサーにより測定される気圧に基づいて、前記非燃焼式吸引器に対する吸引の有無を判定するように構成された
     請求項1から4までの何れかに記載の非燃焼式吸引器。
  6.  前記制御部において前記吸引が無いと判定された場合に、前記制御部は、前記判定された温度を基準温度として設定するように構成された
     請求項3又は4に記載の非燃焼式吸引器
  7.  前記制御部は、前記スイッチ制御の後に、前記第2スイッチ及び前記第3スイッチをオフするスイッチ制御を実行するように構成された
     請求項1から6に記載の非燃焼式吸引器。
  8.  前記制御部において前記吸引が有ると判定された場合であって、前記判定された温度から前記基準温度を引いたときの差が所定の閾値以下である場合に、前記制御部は、前記第2スイッチ及び前記第3スイッチをオフし、前記第1スイッチをオンするスイッチ制御を実行し、前記加熱要素をオンするように構成された
     請求項6に記載の非燃焼式吸引器。
  9.  前記第3スイッチは、1または複数のN型のMOS-FETにより構成される
     請求項1から8までの何れかに記載の非燃焼式吸引器。
  10.  前記第3スイッチと前記制御部との間にオペアンプが接続されている
     請求項1から9までの何れかに記載の非燃焼式吸引器。
  11.  前記オペアンプの電源電圧は、前記電源の電圧に対して低い
     請求項10に記載の非燃焼式吸引器。
  12.  前記電源は複数の電源により構成され、
     前記制御部は、前記加熱要素の抵抗値に応じて前記複数の電源のうち1つを選択し、選択された前記電源の電力を前記加熱要素に出力するように構成された
     請求項1から11までの何れかに記載の非燃焼式吸引器。
PCT/JP2020/015504 2019-04-24 2020-04-06 非燃焼式吸引器 WO2020217949A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019082856A JP2022120205A (ja) 2019-04-24 2019-04-24 非燃焼式吸引器
JP2019-082856 2019-04-24

Publications (1)

Publication Number Publication Date
WO2020217949A1 true WO2020217949A1 (ja) 2020-10-29

Family

ID=72942252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015504 WO2020217949A1 (ja) 2019-04-24 2020-04-06 非燃焼式吸引器

Country Status (2)

Country Link
JP (1) JP2022120205A (ja)
WO (1) WO2020217949A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239359A1 (ja) 2021-05-10 2022-11-17 日本たばこ産業株式会社 エアロゾル生成装置の電源ユニット

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0313008B2 (ja) * 1985-01-22 1991-02-21 Heateru Ag Uerukutsuoige Unto Harutoshutorifue
WO2017141979A1 (ja) * 2016-02-16 2017-08-24 日本たばこ産業株式会社 非燃焼型香味吸引器、方法、プログラム及び記録媒体
WO2017205692A1 (en) * 2016-05-25 2017-11-30 Pax Labs, Inc. Control of an electronic vaporizer
WO2018024692A1 (en) * 2016-07-31 2018-02-08 Philip Morris Products S.A. Electronic vaping device, battery section, and charger
JP2018526983A (ja) * 2015-07-17 2018-09-20 アール・エイ・アイ・ストラテジック・ホールディングス・インコーポレイテッド 組み立てられた配置におけるエアロゾル送出装置の負荷に基づいた検出

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0313008B2 (ja) * 1985-01-22 1991-02-21 Heateru Ag Uerukutsuoige Unto Harutoshutorifue
JP2018526983A (ja) * 2015-07-17 2018-09-20 アール・エイ・アイ・ストラテジック・ホールディングス・インコーポレイテッド 組み立てられた配置におけるエアロゾル送出装置の負荷に基づいた検出
WO2017141979A1 (ja) * 2016-02-16 2017-08-24 日本たばこ産業株式会社 非燃焼型香味吸引器、方法、プログラム及び記録媒体
WO2017205692A1 (en) * 2016-05-25 2017-11-30 Pax Labs, Inc. Control of an electronic vaporizer
WO2018024692A1 (en) * 2016-07-31 2018-02-08 Philip Morris Products S.A. Electronic vaping device, battery section, and charger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239359A1 (ja) 2021-05-10 2022-11-17 日本たばこ産業株式会社 エアロゾル生成装置の電源ユニット

Also Published As

Publication number Publication date
JP2022120205A (ja) 2022-08-18

Similar Documents

Publication Publication Date Title
US11930561B2 (en) Aerosol provision device
EP3177351B2 (en) Electronic vapour provision system
KR102127247B1 (ko) 전자식 증기 제공 장치
JP6678936B1 (ja) エアロゾル吸引器用の制御装置及びエアロゾル吸引器
US20140334804A1 (en) Atomization control unit and a portable atomizing apparatus having the same
KR102233239B1 (ko) 에어로졸 흡인기, 에어로졸 흡인기용 제어장치, 에어로졸 흡인기의 제어 방법 및 프로그램
RU2738705C1 (ru) Устройство управления для аэрозольного ингалятора и аэрозольный ингалятор
US20230157370A1 (en) Electronic aerosol provision system
TW201528979A (zh) 電子抽菸裝置
US11246339B2 (en) Cantilevered operating button for an electronic vapor provision system
US11963555B2 (en) Controller for inhalation device
WO2020217949A1 (ja) 非燃焼式吸引器
CN113508933A (zh) 气溶胶吸入器和气溶胶吸入器的电源单元
JP6588669B1 (ja) エアロゾル吸引器用の制御装置、制御方法、プログラム、エアロゾル吸引器
JP6869411B1 (ja) 吸引器用コントローラ
JP2021502073A (ja) 蒸気供給システム
JP6813701B2 (ja) エアロゾル吸引器用の制御装置
WO2020217948A1 (ja) 非燃焼式吸引器
US20220361585A1 (en) Electronic aerosol provision system and method
CN114304735B (zh) 用于气雾剂生成装置的电源单元
US20240108077A1 (en) Controller for suction apparatus
US20230240374A1 (en) Electronic vapor provision system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20794566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP