WO2020217666A1 - Chemical cleaning method and chemical cleaning apparatus - Google Patents

Chemical cleaning method and chemical cleaning apparatus Download PDF

Info

Publication number
WO2020217666A1
WO2020217666A1 PCT/JP2020/006251 JP2020006251W WO2020217666A1 WO 2020217666 A1 WO2020217666 A1 WO 2020217666A1 JP 2020006251 W JP2020006251 W JP 2020006251W WO 2020217666 A1 WO2020217666 A1 WO 2020217666A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
mass
water
concentration
neutral
Prior art date
Application number
PCT/JP2020/006251
Other languages
French (fr)
Japanese (ja)
Inventor
貴行 和田
陽一 真保
瑞希 大塚
薫 江川
良典 野口
篤斉 植田
聖也 服部
真 石川
Original Assignee
三菱パワー株式会社
共栄社化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱パワー株式会社, 共栄社化学株式会社 filed Critical 三菱パワー株式会社
Publication of WO2020217666A1 publication Critical patent/WO2020217666A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • B08B9/032Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/32Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G3/00Apparatus for cleaning or pickling metallic material
    • C23G3/04Apparatus for cleaning or pickling metallic material for cleaning pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G9/00Cleaning by flushing or washing, e.g. with chemical solvents

Definitions

  • This disclosure relates to a chemical cleaning method and a chemical cleaning device.
  • a scale mainly composed of iron oxide adheres to the inner surface thereof by operation.
  • the boiler can suffer damage such as increased differential pressure, reduced plant efficiency, damage accidents due to overheating and corrosion, and blasting due to overheating of the metal temperature due to heat transfer inhibition. There is sex.
  • the transition of the amount of scale adhesion such as iron oxide is investigated by maintenance and inspection, and chemical cleaning is carried out to remove the scale such as iron oxide on a regular basis.
  • Acidic and high temperature cleaning has the following problems. (1) There is a potential risk that hydrogen gas will be generated due to corrosion of the material to be cleaned (metal base material), and the vicinity of the workplace during cleaning work will be a strictly prohibited area for fire. Therefore, parallel work with other works that may cause fire cannot be performed. (2) For high temperature (80 ° C. to 90 ° C.) treatment, a temperature raising means for raising the temperature of the acidic cleaning liquid is required. (3) As water supply management, a scale mainly composed of hematite (Fe 2 O 3 ) is generated by water treatment such as oxygen treatment. Hematite has the property of being difficult to dissolve in acidic cleaning solutions.
  • the scale mainly composed of hematite is collected as sludge from the system to be cleaned by circulating an acidic cleaning solution.
  • an acidic cleaning solution there is a portion where the flow of the acidic cleaning liquid stays, and sludge remains in the system at this portion. Therefore, it is necessary to carry out an additional step of physical cleaning by jet water flow or the like.
  • the boiler is started with sludge remaining in the system, there is a possibility of inducing trouble (blasting, etc.) due to local heating or the like at the sludge residual site.
  • Patent Document 1 discloses a dissolution-removal composition containing a dissolution-removal agent that dissolves and removes rust and scale, and a sulfur-based reducing agent.
  • the dissolution-removal composition of Patent Document 1 is a neutral cleaning solution, and can dissolve and remove scales mainly composed of hematite at room temperature.
  • the scale solubility is enhanced by the sulfur-based reducing agent, and the metal ions dissolved in the cleaning solution are removed by acting with the dissolving and removing agent.
  • the material to be cleaned (hereinafter referred to as a metal base material or simply a base material) is used by using the dissolution removal composition described in Patent Document 1. The presence of residues was confirmed on the surface of the metal base material in the system after the chemical cleaning described).
  • the residue was a metal sulfide (mainly FeS 2 and MoS 2 ). It is considered that this metal sulfide reacts with sulfur contained in the dissolution removal composition and precipitates during the corrosion process of the metal base material. From this, it is expected that the generation state of the residue will change depending on the amount of the dissolution-removal composition used (concentration and absolute amount of the dissolution-removal composition, washing time, etc.). For example, in cleaning the evaporation tube of a boiler with a large amount of scale adhesion, a sulfur-based reducing agent is used to improve scale solubility. In such a cleaning target, a residue may be generated on the surface of the metal base material after cleaning.
  • a metal sulfide mainly FeS 2 and MoS 2
  • the present disclosure has been made in view of such circumstances, and provides a chemical cleaning method and a chemical cleaning apparatus capable of removing residues that may be generated in chemical cleaning using a neutral cleaning liquid containing sulfur.
  • the purpose is to do.
  • the chemical cleaning method and the chemical cleaning apparatus of the present disclosure employ the following means.
  • the present disclosure is a chemical cleaning method for cleaning equipment in which a metal base material is used as a constituent member, and the cleaning target is a neutral cleaning liquid containing a main agent that dissolves a scale containing a metal oxide and a sulfur element.
  • the oxidation treatment step of supplying an oxidizing agent into the cleaning target after the neutral cleaning step, and the pH showing basicity in the cleaning target after the oxidation treatment step.
  • a dissolution treatment step of supplying an oxide solution having a pH adjusted to 2.5 or more and 7 or less using an adjusting agent is included, and the oxide solution has a chelating agent, an organic acid having a chelating action, and a chelating action.
  • a chemical cleaning method containing a solubilizer selected from organic acid salts.
  • the above neutral cleaning solution can dissolve and remove scales containing metal oxides.
  • the oxidizing agent supplied in the oxidation treatment step oxidizes the metal sulfide generated on the surface of the metal base material to be cleaned to obtain a metal treatment product.
  • the pH is adjusted to 2.5 or more, 7 or less, preferably 3.0 or more and 5.0 or less, and more preferably 3.5 or more and 4.3 or less by a pH adjusting agent that contains a dissolving agent having a chelating action and exhibits basicity.
  • the metal base material is, for example, alloy steel or the like, and may be low alloy steel.
  • the pH adjuster showing basicity is, for example, aqueous ammonia.
  • aqueous ammonia as the pH adjuster exhibiting basicity.
  • Ammonia water is easily available and can improve the removal rate of residues as compared with other basic pH adjusters (for example, potassium hydroxide).
  • other basic pH adjusters for example, potassium hydroxide.
  • citric acid or tartaric acid as the dissolving agent.
  • Citric acid and tartaric acid are easily available, and the risk of damaging the metal base material can be reduced by adjusting the pH using a pH adjuster showing basicity.
  • Hydrogen peroxide is easily available and does not damage the metal base material. Hydrogen peroxide does not contain dissimilar element species such as metal elements, and is finally decomposed into harmless water and oxygen, so that it has high environmental affinity and convenience of wastewater treatment.
  • the first water washing step further comprises a first water washing step of supplying, circulating, and blowing water into the cleaning target between the neutral washing step and the oxidation treatment step.
  • the first circulating water the component concentration derived from the neutral cleaning solution was measured, and when the measured component concentration derived from the neutral cleaning solution became equal to or less than the reference value, the end of the first water washing step was determined. It is desirable to carry out the water blow according to the determination. When the concentration of the component derived from the neutral cleaning liquid of the first circulating water exceeds the reference value, it is desirable to additionally carry out the same water washing step as the first water washing step.
  • the neutral cleaning liquid By supplying, circulating, and blowing water in the first water washing process, the neutral cleaning liquid can be washed out from the cleaning target.
  • the concentration of the component derived from the neutral cleaning solution of the first circulating water By measuring the concentration of the component derived from the neutral cleaning solution of the first circulating water and determining the end of the first water washing step based on the measured value, the amount of the component derived from the neutral cleaning solution remaining in the cleaning target can be controlled. The less the component derived from the neutral cleaning solution remaining, the higher the removal rate of the residue.
  • the residual allowable concentration of the component concentration derived from the neutral cleaning liquid is 0.2% by mass, preferably 0.1% by mass, and more preferably 0.05% by mass.
  • the removal rate of the residue can be 80% or more.
  • the concentration of the component derived from the neutral cleaning liquid is 0.1% by mass or less, the removal rate of the residue can be 90% or more.
  • the concentration of the component derived from the neutral cleaning liquid is 0.05% by mass or less, the removal rate of the residue can be 100%.
  • a second water washing step of supplying, circulating, and blowing water into the washing target is further included between the oxidation treatment step and the dissolution treatment step, in the second water washing step.
  • the oxidant concentration of the second circulating water is measured, and when the measured oxidant concentration becomes equal to or less than the reference value, the end of the second water washing step is determined, and the water is blown according to the determination. Is desirable. When the oxidant concentration of the second circulating water exceeds the reference value, it is desirable to additionally carry out the same water washing step as the second water washing step.
  • the oxidizing agent By supplying, circulating, and blowing water in the second washing step, the oxidizing agent can be washed out from the cleaning target.
  • the amount of the oxidant remaining in the cleaning target can be controlled. The less oxidant remains, the higher the rate of residue removal.
  • the reference value of the oxidizing agent concentration is 0.4% by mass, preferably 0.2% by mass, and more preferably 0.1% by mass.
  • the residue removal rate can be 80% or more.
  • the residue removal rate can be 90% or more.
  • the removal rate of the residue can be 100%.
  • the present disclosure is a chemical cleaning device for cleaning a cleaning target portion of equipment in which a metal base material is used as a constituent member, and supplies a neutral cleaning liquid containing a sulfur element to the cleaning target portion.
  • a metal base material is used as a constituent member
  • a neutral cleaning liquid containing a sulfur element to the cleaning target portion.
  • 2.5 or more and 7.0 or less containing an oxidizing agent supply part that supplies an oxidizing agent to the cleaning target part, a pH adjusting agent that exhibits basicity, and a dissolving agent having a chelating action in the cleaning target part.
  • the oxide solution supply unit that supplies the oxide solution, the water supply unit that supplies water to the cleaning target site, the circulation flow path that circulates the fluid supplied to the cleaning target site, and the cleaning.
  • a concentration measuring unit connected to the blow flow path for discharging the fluid supplied to the target site and the circulation flow path for measuring the concentration of components derived from the neutral cleaning liquid and / or the concentration of the oxidizing agent in the fluid.
  • / or a control unit connected to the cleaning target portion and / or controlling the discharge of the fluid supplied to the cleaning target portion, and the control unit is measured by the concentration measuring unit.
  • the determination unit which determines that the fluid supplied to the cleaning target site is discharged when the component concentration and / or the oxidizing agent concentration derived from the obtained neutral cleaning solution becomes equal to or less than the reference value, and according to the determination.
  • a chemical cleaning apparatus including a transmission unit that transmits a discharge signal so as to discharge the fluid supplied to the cleaning target portion.
  • a residue that may be generated in a chemical cleaning using a neutral cleaning solution containing sulfur is oxidized with an oxidizing agent and then treated with a dissolving agent having a chelating action to remove the residue.
  • a possible chemical cleaning method can be presented.
  • the chemical cleaning method and the chemical cleaning device according to the present disclosure target equipment for which the material to be cleaned is used as a component, for example, a boiler of a power plant.
  • the metal base material of the material to be cleaned is, for example, alloy steel or the like, and may be low alloy steel.
  • FIG. 1 shows a process diagram of the chemical cleaning method according to the present embodiment.
  • FIG. 2 shows an example of the temperature transition in each process.
  • the horizontal axis represents time and the vertical axis represents the temperature (° C.) in the system to be cleaned.
  • the chemical cleaning method according to the present embodiment includes steps 1 ⁇ S1 >> to step 9 ⁇ S9 >> in order.
  • ⁇ S1 Temporary system (cleaning and storage device) connection
  • a temporary system for supplying fluid into the cleaning target is connected.
  • a fluid such as a cleaning liquid is injected into the cleaning target from the temporary system.
  • ⁇ S2 Neutral cleaning Water is filled in the cleaning target, and the water is circulated in the cleaning target at room temperature (15 ° C to 55 ° C, preferably 30 ° C to 50 ° C, more preferably 35 ° C to 45 ° C). .. While circulating the water, a neutral cleaning solution is injected from the temporary system to fill the cleaning target with the neutral cleaning solution, and the circulation is continued.
  • the neutral cleaning is not limited to circulating the neutral cleaning liquid, and may be static cleaning (swing blow). When the neutral cleaning is completed, the neutral cleaning liquid in the cleaning target is blown.
  • the pH of the neutral cleaning solution is 5.0 to 8.0.
  • the neutral cleaning solution contains (A) a main agent and (B) a sulfur-based compound.
  • the neutral cleaning solution may further contain at least one of (C) a reducing organic acid, (D) an amphoteric surfactant and a nonionic surfactant.
  • the main agent has a dissolving ability for scales containing metal oxides such as rust.
  • the base agent may include at least one selected from chelating agents and organic acids.
  • the chelating agent should be selected as a component in which the iron complex and iron salt produced by the dissolution reaction of the scale show reducing properties.
  • Chelating agents are aminocarboxylic acids and their salts or phosphonic acids and their salts.
  • aminocarboxylic acids include nitrilotriacetic acid, ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid, and triethylenetetraminehexacetic acid.
  • phosphonic acids include phosphonic acid, aminotris (methylenephosphonic acid), 1-hydroxyethane-1,1-diphosphonic acid (HEDP), ethylenediaminetetrax (methylenephosphonic acid), hexamethylenediaminetetrax (methylenephosphonic acid), Diethylenetetraminepentakis (methylenephosphonic acid), 2-phosphonobutane-1,2,4-tricarboxylic acid and the like.
  • these chelating agents one type may be used alone, or two or more types may be used in combination.
  • Organic acids include, for example, dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimeric acid, suberic acid, azelaic acid, decane-1,10-dicarboxylic acid, and salts of dicarboxylic acids.
  • dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimeric acid, suberic acid, azelaic acid, decane-1,10-dicarboxylic acid, and salts of dicarboxylic acids.
  • the blending amount of the main agent is 0.1% by mass or more and 40% by mass or less, preferably 0.5, based on the total mass of the neutral cleaning liquid from the viewpoint of removing scale containing metal oxides and suppressing corrosion of the metal base material. It is by mass% or more and 20% by mass or less, more preferably 1% by mass or more and 10% by mass or less. If it is less than 0.1% by mass, the scale solubility becomes insufficient. If it exceeds 40% by mass, the corrosion resistance becomes insufficient.
  • the main agent may contain hydroxides of various alkali metals such as potassium hydroxide.
  • the main agent may contain inorganic acids such as hydrochloric acid, sulfuric acid and salts thereof, and inorganic acid salts.
  • the sulfur-based compound is at least (B-1) a reducing agent containing a sulfur element (sulfur-based reducing agent) and (B-2) a corrosion inhibitor containing a sulfur element (sulfur-based corrosion inhibitor). Includes one.
  • Sulfur-based reducing agent has a scale component reducing property.
  • Sulfur-based reducing agents include thiourea compounds, thiourea dioxide compounds, thioglycolates, dithionates, sulfites, hydrogen sulfites, pyrosulfates, thiosulfates, thionates and polythionic acids. Can be mentioned. One of these reducing agents may be used alone, or two or more thereof may be used in combination. Sulfur-based reducing agents promote the dissolution of scale components by their reducing action. In addition, the sulfur element contained in the reducing agent is adsorbed on the metal to strengthen the protective film.
  • Thiourea compounds are thiourea, guanylthiourea and the like.
  • the thiourea dioxide compound is thiourea dioxide or the like.
  • the thioglycolate is sodium thioglycolate, potassium thioglycolate, ammonium thioglycolate and the like.
  • the dithionate salt is sodium dithionite or the like.
  • Sulfites include sodium sulfite, potassium sulfite, calcium sulfite, zinc sulfite, ammonium sulfite and the like.
  • the hydrogen sulfite salt is sodium hydrogen sulfite, potassium hydrogen sulfite, ammonium hydrogen sulfite and the like.
  • the pyrosulfite is sodium pyrosulfite, potassium pyrosulfite, ammonium pyrosulfite and the like.
  • the thiosulfate is sodium thiosulfate, potassium thiosulfate, ammonium thiosulfate and the like.
  • the thionate is sodium thionate, potassium thioate, ammonium thioate and the like.
  • the polythionic acid salt is sodium trithionate, sodium tetrathionate and the like.
  • the blending amount of the sulfur-based reducing agent is 0.0025 parts by mass or more and 1000 parts by mass or less, preferably 0.05 parts by mass or more and 20 parts by mass or less, and more preferably 0.2 parts by mass or more with respect to 100 parts by mass of the main agent. It is 8 parts by mass or less.
  • the blending amount of the sulfur-based reducing agent is 0.01% by mass or more and 1% by mass or less, preferably 0.01% by mass or more and 0.1% by mass or less, more preferably 0.% by mass, based on the total mass of the neutral cleaning liquid. It is 02% by mass or more and 0.08% by mass or less. If it is less than 0.01% by mass, the scale solubility becomes insufficient. If it exceeds 1% by mass, the anticorrosion property becomes insufficient.
  • (B-2) Sulfur-based corrosion inhibitor
  • an alkali metal salt (NaS-, KS-, LiS-) of a mercaptan group (HS-), a thiocyanate group (-SCN) or a mercaptan group is used.
  • sulfur organic compounds having As a sulfur-based corrosion inhibitor, it is advisable to select a sulfur organic compound having strong adsorption to iron as a measure against galvanic corrosion. Examples of such sulfur organic compounds include 2,5-dithioacetic acid-1,3,4-thiathiolazole, 2-thioacetic acid-5-mercapto-1,3,4-thiadiazole, and 2,5-dimercapto-1,3.
  • the blending amount of the sulfur-based corrosion inhibitor is 0.0025 parts by mass or more and 1000 parts by mass or less, preferably 0.05 parts by mass or more and 20 parts by mass or less, and more preferably 0.25 parts by mass with respect to 100 parts by mass of the main agent. It is 5 parts by mass or less.
  • the blending amount of the sulfur-based corrosion inhibitor is 0.001% by mass or more and 1% by mass or less, preferably 0.005% by mass or more and 0.1% by mass or less, more preferably 0, based on the total mass of the neutral cleaning liquid. It is 0.01% by mass or more and 0.05% by mass or less. If it is less than 0.001% by mass, the anticorrosion property becomes insufficient.
  • (C) Reducing Organic Acid For the reducing organic acid, it is advisable to select a component having excellent oxygen removal property and sustainability.
  • organic acids include ascorbic acid and elsorbic acid.
  • the amount of the reducing organic acid to be blended is 0.025 parts by mass or more and 8000 parts by mass or less, preferably 0. It is 5 parts by mass or more and 1000 parts by mass or less, more preferably 5 parts by mass or more and 300 parts by mass or less.
  • the blending amount of the reducing organic acid is 0.01% by mass or more and 8% by mass or less, preferably 0.1% by mass or more and 5% by mass or less, more preferably 0.5% by mass, based on the total mass of the neutral cleaning liquid. % Or more and 3% by mass or less. If it is less than 0.01% by mass, the scale solubility becomes insufficient. If it exceeds 8% by mass, the anticorrosion property becomes insufficient.
  • amphoteric Surfactant examples include 2-alkyl-N-carboxymethyl-N-hydroxyethyl imidazolinium betaine and 2-alkyl. Examples include -N-carboxyethyl-N-hydroxyethyl imidazolinium betaine and alkali metal salts of ⁇ -alkylaminocarboxylic acid (eg, sodium ⁇ -alkylaminopropionate).
  • amphoteric surfactant one type may be used alone, or two or more types may be used in combination.
  • amphoteric surfactant has a carboxylic acid group and a nitrogen atom, these substituents adsorb the amphoteric surfactant on the surface of the metal base material, while making it difficult to adsorb on the surface of rust and scale. As a result, the rust and scale dissolution removal performance can be further improved, and the corrosion resistance of the metal base material can be further improved.
  • the amount of the amphoteric surfactant to be blended is 0.01 parts by mass or more and 1000 parts by mass or less, preferably 0.05 parts by mass or more and 750 parts by mass or less, and more preferably 0.1 parts by mass or more with respect to 100 parts by mass of the main agent. It is 500 parts by mass or less.
  • the blending amount of the amphoteric surfactant is 0.001% by mass or more and 10% by mass or less, preferably 0.005% by mass or more and 5% by mass or less, more preferably 0.01% by mass, based on the total mass of the neutral cleaning liquid. % Or more and 2% by mass or less.
  • Nonionic Surfactant examples include polyoxyalkylene glycol fatty acid esters, polyalkylene glycol fatty acid esters and polyoxyalkylene alkyl ethers.
  • the nonionic surfactant one type may be used alone, or two or more types may be used in combination.
  • the nonionic surfactants are polyethylene glycol monooleic acid ester, polyethylene glycol monolauric acid ester and polyethylene glycol monostearic acid ester. Is desirable.
  • the blending amount of the nonionic surfactant is 0.01 part by mass or more and 500 parts by mass or less, preferably 0.05 part by mass or more and 400 parts by mass or less, and more preferably 0.1 part by mass with respect to 100 parts by mass of the main agent. More than 300 parts by mass or less.
  • the blending amount of the nonionic surfactant is 0.001% by mass or more and 10% by mass or less, preferably 0.005% by mass or more and 5% by mass or less, more preferably 0.01, based on the total mass of the neutral cleaning liquid. It is mass% or more and 2 mass% or less.
  • the concentrations of the chelating agent, the reducing agent and the corrosion inhibitor are appropriately adjusted so that the desired cleaning capacity and cleaning time can be obtained.
  • ⁇ S4 Oxidation treatment Water is filled in the cleaning target, and the water is heated to about 50 ° C. and circulated. While circulating the water, the oxidant solution is injected from the temporary system, the inside of the cleaning target is filled with the oxidant solution, and the circulation is continued. In order to set the oxidation treatment time to, for example, about 1 hour or less, it is preferable to raise the temperature to about 50 ° C. When the oxidation treatment is completed, the oxidizing agent solution is blown from the cleaning target.
  • the oxidizing agent solution is an aqueous solution containing an oxidizing agent such as peroxide, permanganate, hypochlorous acid, chloric acid, chloric acid or perchloric acid.
  • the oxidizing agent solution is preferably a hydrogen peroxide solution.
  • the use of hydrogen peroxide solution is environmentally friendly because it does not damage the base material, is convenient for wastewater treatment, is easily available, does not contain dissimilar element species such as metal elements, and is finally decomposed into harmless water and oxygen. It has the advantage of high sex.
  • the concentration of hydrogen peroxide in the oxidizing agent solution is preferably 0.3% by mass or more and 2% by mass or less, preferably 0.5% by mass or more and 2% by mass or less.
  • ⁇ S5 Flushing (second flushing) After blowing the oxidant solution, water is filled in the cleaning target, the oxidant solution remaining in the cleaning target is replaced with the water, and the water is circulated and the water is blown.
  • the second washing with water may be carried out at a temperature (40 ° C. to 50 ° C.) similar to that of the oxidation treatment. By setting the temperature to the same level, the temperature of the base metal is maintained and smooth processing is performed in the next process.
  • ⁇ S6 Dissolution treatment Water is filled in the cleaning target, and the water is circulated in the cleaning target at 40 ° C to 50 ° C. While circulating the water, the oxide solution is injected from the temporary system to fill the cleaning target with the oxide solution, and the oxidation-treated product is dissolved.
  • the oxide solution is an aqueous solution containing a dissolving agent capable of dissolving a metal oxide.
  • the solubilizer is selected from a chelating agent, an organic acid having a chelating action, and an organic acid salt having a chelating action. More specifically, examples of the solubilizer include citric acid, 1-hydroxyethane-1,1-diphosphonic acid (HEDP), ethylenediaminetetraacetic acid (EDTA), tartaric acid and the like.
  • HEDP 1-hydroxyethane-1,1-diphosphonic acid
  • EDTA ethylenediaminetetraacetic acid
  • tartaric acid As the dissolving agent, it is preferable to use citric acid or tartaric acid, which are easily available and do not damage the base material.
  • the concentration of citric acid in the oxide solution is preferably 0.5% by mass or more and 3.0% by mass or less, preferably 1.5% by mass or more and 2.5% by mass or less.
  • the pH of the oxide solution is pH 2.5 or more and pH 7.0 or less, preferably pH 3.0 or more and pH 5.0 or less, and more preferably pH 3.5 or more and 4.3 or less.
  • the pH of the oxide solution is adjusted with a pH adjuster showing basicity (hereinafter referred to as aqueous ammonia).
  • ⁇ S7 Anti-corrosion pretreatment
  • the oxide solution is circulated and ammonia water is further supplied to the cleaning target to perform the neutralization treatment.
  • the supplied ammonia water is circulated and the temperature is raised to 90 ° C. ⁇ 5 ° C.
  • the pH of the ammonia water circulated in the neutralization treatment is 9.0 or more and 11.0 or less, preferably 9.5 or more and 10.5 or less.
  • Ammonia water may be replaced with a solution containing an ammonia-based compound.
  • Ammonia-based compounds are, for example, volatile amines selected from 2-amino-2-methyl-1-propanol, monoethanolamine, monoisopropanolamine, cyclohexylamine, diethylethanolamine, morpholine, 3-methoxypropylamine, and ammonia. It is a compound.
  • ⁇ S8 Rust prevention treatment While circulating the ammonia water, hydrazine is injected into the object to be cleaned to form a rust prevention film. After the rust prevention treatment is completed, blow hydrazine water.
  • the cleaning of S2 to S6 may be performed only once or may be performed a plurality of times.
  • the present embodiment is different from the first embodiment in that in ⁇ S3 >> water washing (first water washing step), the completion of water washing is determined based on the concentration of the component derived from the neutral washing liquid in the blown water.
  • first water washing step water washing
  • the steps common to the first embodiment will not be described.
  • the concentration of the component derived from the neutral washing solution of the washing water (first circulating water) circulating in the washing target was measured by washing with water of ⁇ S3 >>, and the concentration of the component became equal to or less than the reference value. Is determined to be the end of washing with water.
  • the reference value is 0.2% by mass, preferably 0.1% by mass, and more preferably 0.05% by mass from the viewpoint of the allowable residual chemical concentration in the oxidation treatment agent in the next step.
  • the components derived from the neutral cleaning solution include aminocarboxylic acids such as nitrilotriacetic acid, ethylenediaminetetraacetic acid (EDTA), diethylenetriaminetetraacetic acid, and triethylenetetraminehexacetic acid, and phosphonic acids such as phosphonic acid and aminotris (methylene). Phosphonate), 1-hydroxyethane-1,1-diphosphonic acid (HEDP), ethylenediaminetetrax (methylenephosphonic acid), hexamethylenediaminetetrax (methylenephosphonic acid), diethylenetetraminepentakis (methylenephosphonic acid), and 2- Phosphonobtan-1,2,4-tricarboxylic acid and the like.
  • aminocarboxylic acids such as nitrilotriacetic acid, ethylenediaminetetraacetic acid (EDTA), diethylenetriaminetetraacetic acid, and triethylenetetraminehexacetic acid
  • phosphonic acids such as
  • the concentration of components derived from the neutral cleaning solution can be determined by measuring the concentration (P) by the molybdenum blue absorptiometry after thermal decomposition by the potassium peroxobis sulfate method, or by inductively coupled plasma emission spectrometry (ICP-AES). ) It can be measured by a method of measuring the concentration, a method of detecting components by ion chromatography and capillary electrophoresis, or the like. The measurement of the component concentration may be carried out continuously or intermittently.
  • the oxidant concentration of the water-washed water (second circulating water) circulating in the washing target is measured by the water-washing of ⁇ S5 >>, and the washing is completed when the oxidant concentration becomes equal to or less than the reference value. Is determined.
  • the reference value is 0.4% by mass, preferably 0.1% by mass, from the viewpoint of the allowable residual chemical concentration for the dissolution treatment in the next step.
  • the hydrogen peroxide concentration can be measured by the 4-aminoantipyrine colorimetric method (Kyoritsu Rikagaku Kenkyusho, hydrogen peroxide pack test) or the like.
  • the measurement of the oxidant concentration may be carried out continuously or intermittently.
  • This embodiment may be implemented in combination with the second embodiment.
  • a neutral cleaning solution containing a main agent and a sulfur-based compound (sulfur-based reducing agent and / or sulfur-based corrosion inhibitor) is used, so that hydrogen is less likely to be generated (conditions ().
  • Scales such as rust can be dissolved and removed at pH 5.0 to 8.0).
  • Table 1 shows the results of cleaning the boiler tube of the actual machine according to ⁇ S1 >> to ⁇ S9 >> of the first embodiment, and after the cleaning is completed, SEM observation of the surface of the base material to confirm the amount of decrease in the residue component (Mo). Is shown.
  • the neutral cleaning solution was 3% by mass of ethylenediaminetetraacetic acid (EDTA), 0.03% by mass of a sulfur-based reducing agent, a 0.5% by mass aqueous solution of an amphoteric surfactant, and a 0.5% by mass aqueous solution of a nonionic surfactant (pH 6. 0) was used.
  • oxidizing agent solution hydrogen peroxide solution (2.0% by mass) or potassium permanganate water (0.05% by mass) was used.
  • oxide solution 2.0% by mass of citric acid adjusted to pH 4.0 out of pH 3.0 to 5.0, which is a preferable range with aqueous ammonia, was used.
  • the residue is a metal sulfide (FeS 2 , MoS 2, etc.).
  • Oxidizing agents oxidize metal sulfides to metal oxides and ionize sulfur. It is considered that the ionized sulfur (sulfur compound) is removed together with the blow water after the rust prevention treatment.
  • the metal oxide can be dissolved and removed by the oxide solution.
  • Table 2 shows the results of cleaning the boiler tube of the actual machine according to ⁇ S1 >> to ⁇ S9 >> of the first embodiment by changing the dissolving agent.
  • the surface of the base metal after cleaning was observed by SEM to confirm the amount of residue component (Mo) reduction.
  • the neutral cleaning solution was 3% by mass of ethylenediaminetetraacetic acid (EDTA), 0.03% by mass of a sulfur-based reducing agent, a 0.5% by mass aqueous solution of an amphoteric surfactant, and a 0.5% by mass aqueous solution of a nonionic surfactant (pH 6. 0) was used.
  • Hydrogen peroxide solution (2.0% by mass) was used as the oxidizing agent solution.
  • citric acid ethylenediaminetetraacetic acid (EDTA), 1-hydroxyetidronic acid-1,1-diphosphonic acid (HEDP), acetic acid and tartaric acid were used.
  • the dissolving agent concentration of the oxide solution was 2.0% by mass. All oxide lysates were adjusted to pH 4.0 with aqueous ammonia.
  • FIG. 3 show the results of cleaning the boiler tube of the actual machine according to ⁇ S1 >> to ⁇ S9 >> of the first embodiment by adjusting the pH of the oxide solution.
  • the surface of the base metal after cleaning was observed by SEM to confirm the amount of residue component (Mo) reduction.
  • the horizontal axis represents the pH of the oxide solution
  • the vertical axis represents the residue removal rate (%).
  • the neutral cleaning solution is ethylenediaminetetraacetic acid (EDTA) 3% by mass, sulfur-based reducing agent 0.03% by mass, amphoteric surfactant 0.5% by mass aqueous solution, nonionic surfactant 0.5% by mass aqueous solution (pH 6. 0) was used.
  • EDTA ethylenediaminetetraacetic acid
  • sulfur-based reducing agent 0.03% by mass
  • amphoteric surfactant 0.5% by mass aqueous solution
  • nonionic surfactant 0.5% by mass aqueous solution (pH 6. 0) was used.
  • a 2.0% by mass hydrogen peroxide solution was used as the oxidizing agent solution.
  • 2.0% by mass citric acid was used as the solubilizer.
  • the pH of the oxide solution was adjusted from 2.5 to 8.0 with aqueous ammonia.
  • 80% or more of the residue is at pH 2.5 or more and 7.0 or less, 90% or more at pH 3.0 or more and 5.0 or less, and 100% at pH 3.5 or more and 4.3 or less. I was able to remove it.
  • the pH of the oxide solution is preferably 3 or more.
  • the pH of the oxide solution is preferably 2.5 or more and 7.0 or less, preferably 3.0 or more and 5.0 or less, and more preferably 3.5 or more and 4.3 or less.
  • Table 4 shows the results of cleaning the boiler tube of the actual machine according to ⁇ S1 >> to ⁇ S9 >> of the first embodiment by changing the pH adjusting solution for adjusting the pH of the oxide solution.
  • the surface of the base metal after cleaning was observed by SEM to confirm the amount of residue component (Mo) reduction.
  • the neutral cleaning solution was 3% by mass of ethylenediaminetetraacetic acid (EDTA), 0.03% by mass of a sulfur-based reducing agent, a 0.5% by mass aqueous solution of an amphoteric surfactant, and a 0.5% by mass aqueous solution of a nonionic surfactant (pH 6. 0) was used.
  • a 2.0% by mass hydrogen peroxide solution was used as the oxidizing agent solution.
  • Citric acid was used as the solubilizer.
  • Ammonia water, triethanolamine, potassium hydroxide and 2-amino-2-methyl-1-propanol were used as the pH adjusting solution.
  • the dissolving agent concentration of the oxide solution was 2.0% by mass, and the pH was 4.0.
  • Tables 5 and 4 show the results of cleaning the boiler tube of the actual machine according to ⁇ S1 >> to ⁇ S9 >> of the second embodiment.
  • the removal rate of the residue the surface of the base material after washing was observed by SEM, and the amount of decrease in the residue component (Mo) was confirmed.
  • the horizontal axis is the component concentration (mass%) derived from the neutral cleaning liquid in the first circulating water, and the vertical axis is the residue removal rate (%).
  • the neutral cleaning solution is ethylenediaminetetraacetic acid (EDTA) 3% by mass, sulfur-based reducing agent 0.03% by mass, amphoteric surfactant 0.5% by mass aqueous solution, nonionic surfactant 0.5% by mass aqueous solution (pH 6. 0) was used.
  • EDTA ethylenediaminetetraacetic acid
  • sulfur-based reducing agent 0.03% by mass
  • amphoteric surfactant 0.5% by mass aqueous solution
  • nonionic surfactant 0.5% by mass aqueous solution (pH 6. 0) was used.
  • a 2.0% by mass hydrogen peroxide solution was used as the oxidizing agent solution.
  • As the oxide solution 2.0% by mass citric acid adjusted to pH 4.0 with aqueous ammonia was used.
  • the component concentration derived from the neutral cleaning solution in the first circulating water is 80% or more when 0.2% by mass or less, 90% or more when 0.10% by mass or less, and 0.05% by mass or less. Was able to remove 100% of the residue.
  • the concentration of components derived from the neutral cleaning solution of the first circulating water is low. According to Table 5 and FIG. 4, until the component concentration derived from the neutral cleaning liquid in the first circulating water is 0.2% by mass or less, preferably 0.1% by mass or less, and more preferably 0.05% by mass or less. By washing with water, the residue can be removed more reliably.
  • Table 6 and FIG. 5 show the results of cleaning the boiler tube of the actual machine according to ⁇ S1 >> to ⁇ S9 >> of the third embodiment.
  • the removal rate of the residue the surface of the base metal after cleaning was observed by SEM, and the amount of decrease in the residue component (Mo) was confirmed.
  • the horizontal axis represents the oxidant concentration (mass%) in the second circulating water, and the vertical axis represents the residue removal rate (%).
  • the neutral cleaning solution is ethylenediaminetetraacetic acid (EDTA) 3% by mass, sulfur-based reducing agent 0.03% by mass, amphoteric surfactant 0.5% by mass aqueous solution, nonionic surfactant 0.5% by mass aqueous solution (pH 6. 0) was used.
  • EDTA ethylenediaminetetraacetic acid
  • sulfur-based reducing agent 0.03% by mass
  • amphoteric surfactant 0.5% by mass aqueous solution
  • nonionic surfactant 0.5% by mass aqueous solution (pH 6. 0) was used.
  • a 2.0% by mass hydrogen peroxide solution was used as the oxidizing agent solution.
  • As the oxide solution 2.0% by mass citric acid adjusted to pH 4.0 with aqueous ammonia was used.
  • the oxidant concentration in the second circulating water is 80% or more when 0.4% by mass or less, 90% or more when 0.2% by mass or less, and 100% when 0.1% by mass or less.
  • the residue could be removed.
  • the concentration of the oxidizing agent in the second circulating water is low. According to Table 6 and FIG. 5, by washing with water until the concentration of the oxidizing agent in the second circulating water is 0.4% by mass or less, preferably 0.2% by mass or less, and more preferably 0.1% by mass or less. , The residue can be removed more reliably.
  • Table 7 shows the results of cleaning the boiler tube of the actual machine according to ⁇ S1 >> to ⁇ S9 >> of the first embodiment.
  • the surface of the base material after cleaning was observed by SEM, the amount of decrease in the residue component (Mo) was confirmed, and a residue removal rate of 80% or more was regarded as a good judgment.
  • the neutral cleaning solution is ethylenediaminetetraacetic acid (EDTA) 3% by mass, sulfur-based reducing agent 0.03% by mass, amphoteric surfactant 0.5% by mass aqueous solution, nonionic surfactant 0.5% by mass aqueous solution (pH 6. 0) was used. Neutral washing was performed at 40 ° C. A 2.0% by mass or 1.0% by mass hydrogen peroxide solution was used as the oxidizing agent solution. As the oxide solution, 0.5% by mass, 1% by mass or 2.0% by mass of citric acid was used. Ammonia water was used as the pH adjusting solution, and the oxide solution was adjusted to pH 4.0.
  • EDTA ethylenediaminetetraacetic acid
  • the hydrogen peroxide concentration is too high, there is a concern that the chemical solution cost will increase. If the citric acid concentration is high, the treatment can be performed in a short time, but there is a concern that the chemical solution cost will increase. Therefore, it is preferable that the hydrogen peroxide concentration and the citric acid solution concentration are not too high.
  • the chemical cleaning method according to the first to third embodiments is a once-through boiler equipped with an economizer 1, a fireplace wall tube 2 (evaporation tube), and an air-water separator 3, and in particular, a scale as shown in FIG. It is suitable for cleaning the part where the scale easily adheres (for example, the furnace wall tube where the scale easily adheres due to the temperature and pressure conditions).
  • a temporary system (chemical cleaning device) 4 is connected so that the cleaning liquid is supplied to the furnace wall tube.
  • the chemical cleaning device 4 is connected to the inlet of the economizer 1 and the drain discharge portion of the steam separator.
  • the chemical cleaning apparatus includes a neutral cleaning liquid supply unit, an oxidant supply unit, an oxide solution supply unit, a water supply unit, a blow flow path, a concentration measurement unit, and a control unit.
  • FIG. 7 illustrates a schematic diagram of the chemical cleaning apparatus 10.
  • the chemical cleaning device 10 is connected to the cleaning target portion 11.
  • the neutral cleaning liquid supply unit is a device provided with a neutral cleaning liquid tank 12 and supplying a neutral cleaning liquid containing a sulfur element to the cleaning target portion 11.
  • the oxidant supply unit is a device provided with an oxidant tank 13 and supplying the oxidant to the cleaning target portion 11.
  • the oxide solution supply unit is provided with an oxide solution tank 14, and an oxide solution having a pH of 2.5 or more and 7 or less containing a pH adjuster showing basicity and a dissolving agent having a chelating action is provided at the cleaning target site 11. It is a device to supply.
  • the neutral cleaning liquid tank 12, the oxidant tank 13, and the oxide solution tank 14 are connected in parallel to the cleaning target portion 11 via the connecting pipe 16 and the circulation flow path 17.
  • a pump 18 for feeding the solution stored in the tank into the circulation channel 17, and the valve V 4 is provided from the valve V 1.
  • the valve V 1 is arranged between the neutral cleaning liquid tank 12 and the pump 18.
  • the valve V 2 is arranged between the oxidant tank 13 and the pump 18.
  • the valve V 3 is arranged between the oxide solution tank 14 and the pump 18.
  • the valve V 4 is arranged between the pump 18 and the circulation flow path 17.
  • one end of the circulation flow path 17 is connected to the fluid inlet of the cleaning target part 11 and the other end of the circulation flow path 17 is the cleaning target part 11 so that the fluid can be circulated in the cleaning target part 11. It is connected to the fluid outlet.
  • a pump 19 for circulating a fluid and valves V 5 and 6 arranged so as to sandwich the pump 19 are provided in the middle of the circulation flow path 17.
  • the water supply unit is a device including a water tank 15 for storing water and supplying water to a part to be cleaned.
  • the water tank 15 is connected in the middle of the circulation flow path 17 via the connection pipe 20.
  • a valve V 7 is provided in the middle of the connecting pipe 20.
  • the connection pipe 20 is connected to the circulation flow path 17 on the upstream side of the connection portion of the connection pipe 16, but the connection position of the water tank 15 is not limited to this.
  • the blow flow path 21 can discharge the fluid supplied to the cleaning target portion 11 to the drain tank 22.
  • the blow flow path 21 is a first flow path 21a connected to a connecting pipe (not shown) connected to the fluid inlet of the cleaning target portion, and a second flow path 21a connected to both ends of the circulation flow path 17.
  • the flow path 21b and the third flow path 21c merge in the middle.
  • the valve V 8 is disposed in the middle of the first flow path 21a.
  • a valve V 9 is arranged in the middle of the second flow path.
  • a valve V 10 is arranged in the middle of the third flow path.
  • the concentration measuring unit 23 is connected to the circulation flow path 17 so that the concentration of the component derived from the neutral cleaning liquid and / or the concentration of the oxidizing agent in the fluid in the cleaning target portion 11 and the circulation flow path 17 can be measured.
  • the concentration of the component derived from the neutral cleaning solution and / or the concentration of the oxidizing agent can be determined by, for example, measuring the phosphorus (P) concentration by the molybdenum blue absorptiometry after thermal decomposition by the potassium peroxo2 sulfate method or inductively coupled plasma emission.
  • the concentration measuring unit 23 is connected to the circulation flow path 17 on the upstream side of the circulation pump 19 of the circulation flow path 17, but the connection position of the concentration measuring unit 23 is not limited to this. ..
  • the control unit 24 is connected to the circulation flow path 17 via the concentration measuring unit 23, and at least controls the opening and closing of the valve V 10 from the valve V 8 to water or the inside of the circulation flow path 17 including the cleaning target portion 11.
  • a sex cleaning solution or an oxidizing agent can be discharged.
  • the functions of the control unit 24 is not limited to this, for example, the valve V 1 may be controlled to open and close the valve V 7. That is, the control unit 24 supplies water by the water supply unit and the neutral cleaning liquid by the neutral cleaning liquid supply unit, in addition to discharging the water or the neutral cleaning liquid or the oxidizing agent in the circulation flow path 17 including the cleaning target portion 11.
  • the supply of the oxidant, the supply of the oxidant by the oxidant supply unit, and the supply of the oxide solution by the oxide solution supply unit may be controlled.
  • the control unit 24 is composed of, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a computer-readable storage medium, and the like.
  • a series of processes for realizing various functions are stored in a storage medium or the like in the form of a program, and the CPU reads this program into a RAM or the like to execute information processing / arithmetic processing.
  • the program is installed in a ROM or other storage medium in advance, is provided in a state of being stored in a computer-readable storage medium, or is distributed via a wired or wireless communication means. Etc. may be applied.
  • Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
  • FIG. 8 illustrates a configuration diagram of the control unit 24.
  • the control unit 24 includes a determination unit 25 and a transmission unit 26.
  • the determination unit 25 receives the measurement result of the concentration measurement unit 23.
  • the determination unit 25 compares the received measurement result of the concentration measurement unit 23 with the reference value stored in advance, and when the measurement result is equal to or less than the reference value, the circulation flow path 17 including the cleaning target portion 11 Judge that water or neutral cleaning solution or oxidizing agent is discharged.
  • Transmission unit 26 receives the determination result of the determination unit 25 sends the discharge portion so as to open the V 10 from the valve V 8 open signal (discharging signal) to (unillustrated drive unit V 10 from the valve V 8). Upon receiving the open signal, the drive unit opens valves V 8 to V 10 .
  • the concentration measuring unit 23 measures the concentration of the component derived from the neutral cleaning liquid, and when the measured value is equal to or less than the reference value, the transmitting unit 26 further opens the valve V 2 and the valve V 4 so that the oxidant supply unit ( valve V 2, and sends the open signal to the driving unit (not shown) of the valve V 4).
  • the drive unit which receives the open signal to open the valve V 2 and valve V 4.
  • the concentration of the oxidizing agent was measured by the concentration measuring unit 23, when the measured value is equal to or less than the reference value, the transmission unit 26 is further valve V 3, oxide solution supplying unit so as to open the valve V 4 (valve V 3, Send open signal to the driving unit) not shown of the valve V 4.
  • the drive unit which receives the open signal to open the valve V 3 and valve V 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Emergency Medicine (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Detergent Compositions (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning In General (AREA)

Abstract

The purpose of the present invention is to provide a chemical cleaning method which makes it possible to remove residues generated in chemical cleaning using a sulfur-containing neutral cleaning agent. The chemical cleaning method according to the present disclosure is to clean equipment, as a cleaning target, using a metal matrix as a structural member. The method comprises a neutral cleaning step (S2) of cleaning an inside of the cleaning target by a main agent that dissolves scales containing a metal oxide, and a neutral cleaning agent containing a sulfur element, an oxidizing treatment step (S4) of, after the neutral cleaning step (S2), supplying an oxidizing agent to the inside of the cleaning target, and a dissolving treatment step (S6) of, after the oxidizing treatment step (S4), supplying an oxide solution to the inside of the cleaning target, the oxide solution being regulated using a pH regulator showing basicity to have a pH of 2.5-7.0. The oxide solution contains a chelating agent, an organic acid having a chelating effect, and a solubilizer selected from organic acid salts having a chelating effect.

Description

化学洗浄方法および化学洗浄装置Chemical cleaning method and chemical cleaning equipment
 本開示は、化学洗浄方法および化学洗浄装置に関するものである。 This disclosure relates to a chemical cleaning method and a chemical cleaning device.
 火力発電プラント等の蒸発管(以下、ボイラ)では、運転によりその内面に酸化鉄(Fe,Fe等)を主とするスケールが付着する。長期運転によりスケールが成長すると、ボイラには、差圧上昇、プラント効率の低下、過熱および腐食による損傷事故、伝熱阻害によりメタル温度が過昇することに起因した噴破などの損傷が生じる可能性がある。 In an evaporation pipe (hereinafter referred to as a boiler) of a thermal power plant or the like, a scale mainly composed of iron oxide (Fe 2 O 3 , Fe 3 O 4, etc.) adheres to the inner surface thereof by operation. As the scale grows due to long-term operation, the boiler can suffer damage such as increased differential pressure, reduced plant efficiency, damage accidents due to overheating and corrosion, and blasting due to overheating of the metal temperature due to heat transfer inhibition. There is sex.
 このようなトラブルの発生を未然に防止するため、保守点検にて酸化鉄等のスケール付着量の推移を調査し、定期的に酸化鉄等のスケールを除去する化学洗浄が実施されている。 In order to prevent the occurrence of such troubles, the transition of the amount of scale adhesion such as iron oxide is investigated by maintenance and inspection, and chemical cleaning is carried out to remove the scale such as iron oxide on a regular basis.
 従来の一般的なボイラ化学洗浄では、塩酸,有機酸等の酸液(以下、酸性洗浄液)を用い、80℃から90℃に昇温して洗浄する方法が採用されている(酸性・高温洗浄)。 In the conventional general boiler chemical cleaning, a method of cleaning by raising the temperature from 80 ° C. to 90 ° C. using an acid solution such as hydrochloric acid or organic acid (hereinafter referred to as an acidic cleaning solution) is adopted (acidic / high temperature cleaning). ).
 酸性・高温洗浄では以下の課題がある。
(1)洗浄対象材(金属母材)腐食に伴い水素ガスが発生する潜在リスクがあり、洗浄作業中の作業場近傍は、火気厳禁区域となる。そのため、火気発生のおそれのある他の工事との並行作業ができない。
(2)高温(80℃から90℃)処置のため、酸性洗浄液を昇温する昇温手段が必要となる。
(3)給水管理として酸素処理等の水処理でヘマタイト(Fe)を主とするスケールが生成される。ヘマタイトは酸性洗浄液に対して溶解しにくい性質がある。そのため、ヘマタイトを主とするスケールは、酸性洗浄液を循環させることで、洗浄対象となる系統内よりスラッジとして回収している。しかしながら、このとき酸性洗浄液の流れが滞留する部分があり、該部分でスラッジが系統内に残留してしまうためジェット水流等による物理洗浄の追加工程を実施する必要がある。
(4)系統内にスラッジが残留した状態でボイラを起動させた場合は、スラッジ残留部位において局所加熱等によるトラブル(噴破等)誘発の可能性がある。
Acidic and high temperature cleaning has the following problems.
(1) There is a potential risk that hydrogen gas will be generated due to corrosion of the material to be cleaned (metal base material), and the vicinity of the workplace during cleaning work will be a strictly prohibited area for fire. Therefore, parallel work with other works that may cause fire cannot be performed.
(2) For high temperature (80 ° C. to 90 ° C.) treatment, a temperature raising means for raising the temperature of the acidic cleaning liquid is required.
(3) As water supply management, a scale mainly composed of hematite (Fe 2 O 3 ) is generated by water treatment such as oxygen treatment. Hematite has the property of being difficult to dissolve in acidic cleaning solutions. Therefore, the scale mainly composed of hematite is collected as sludge from the system to be cleaned by circulating an acidic cleaning solution. However, at this time, there is a portion where the flow of the acidic cleaning liquid stays, and sludge remains in the system at this portion. Therefore, it is necessary to carry out an additional step of physical cleaning by jet water flow or the like.
(4) If the boiler is started with sludge remaining in the system, there is a possibility of inducing trouble (blasting, etc.) due to local heating or the like at the sludge residual site.
 以上の背景により、近年では、常温で水素を発生させない安全安心な化学洗浄技術の開発が行われている(特許文献1)。特許文献1は、錆およびスケールを溶解除去する溶解除去剤と、硫黄系還元剤と、を含む溶解除去組成物を開示している。特許文献1の溶解除去組成物は中性洗浄液であり、常温でヘマタイトを主とするスケールを溶解除去できる。該中性洗浄液を用いた洗浄では、硫黄系還元剤によりスケール溶解性を高め、洗浄液中に溶解した金属イオンを溶解除去剤と作用させて除去する。 Due to the above background, in recent years, safe and secure chemical cleaning technology that does not generate hydrogen at room temperature has been developed (Patent Document 1). Patent Document 1 discloses a dissolution-removal composition containing a dissolution-removal agent that dissolves and removes rust and scale, and a sulfur-based reducing agent. The dissolution-removal composition of Patent Document 1 is a neutral cleaning solution, and can dissolve and remove scales mainly composed of hematite at room temperature. In the cleaning using the neutral cleaning solution, the scale solubility is enhanced by the sulfur-based reducing agent, and the metal ions dissolved in the cleaning solution are removed by acting with the dissolving and removing agent.
特開2015-105411号公報JP-A-2015-105411
 中性の洗浄液を用いた化学洗浄について本願発明者らが検討しているなかで、特許文献1に記載の溶解除去組成物を用いて洗浄対象材(以下、金属母材、もしくは単に母材と記載する)の化学洗浄を実施した後の系統内の金属母材表面に、残渣物の存在が確認された。 While the inventors of the present application are studying chemical cleaning using a neutral cleaning solution, the material to be cleaned (hereinafter referred to as a metal base material or simply a base material) is used by using the dissolution removal composition described in Patent Document 1. The presence of residues was confirmed on the surface of the metal base material in the system after the chemical cleaning described).
 分析の結果、残渣物は、金属硫化物で(主としてFeS,MoS)であることが分かった。この金属硫化物は、金属母材の腐食過程で、溶解除去組成物に含まれる硫黄と反応し析出していると考えられる。このことから、溶解除去組成物の使用量(溶解除去組成物濃度および絶対量、洗浄時間等)に応じて、残渣物の発生状況は変化することが予想される。例えば、スケール付着量が多いボイラの蒸発管の洗浄では、スケール溶解性を高めるために硫黄系還元剤が使用される。このような洗浄対象では、洗浄後の金属母材表面に残渣物が生成される可能性がある。 As a result of the analysis, it was found that the residue was a metal sulfide (mainly FeS 2 and MoS 2 ). It is considered that this metal sulfide reacts with sulfur contained in the dissolution removal composition and precipitates during the corrosion process of the metal base material. From this, it is expected that the generation state of the residue will change depending on the amount of the dissolution-removal composition used (concentration and absolute amount of the dissolution-removal composition, washing time, etc.). For example, in cleaning the evaporation tube of a boiler with a large amount of scale adhesion, a sulfur-based reducing agent is used to improve scale solubility. In such a cleaning target, a residue may be generated on the surface of the metal base material after cleaning.
 洗浄後の金属母材表面に残渣物が残留したままボイラを起動した場合、残渣物から硫化物イオンが発生し、金属母材腐食の不具合をきたす可能性が考えられる。残渣物の存在は、目視によるスケールの洗浄(除去)終了判定を阻害する可能性がある。 If the boiler is started with the residue remaining on the surface of the metal base material after cleaning, sulfide ions may be generated from the residue, causing a problem of corrosion of the metal base material. The presence of the residue may interfere with the visual determination of the end of cleaning (removal) of the scale.
 よって、残渣物は、ボイラ起動前に除去しておくことが望ましい。 Therefore, it is desirable to remove the residue before starting the boiler.
 本開示は、このような事情に鑑みてなされたものであって、硫黄を含む中性洗浄液を用いた化学洗浄において発生する可能性がある残渣物を除去できる化学洗浄方法および化学洗浄装置を提供することを目的とする。 The present disclosure has been made in view of such circumstances, and provides a chemical cleaning method and a chemical cleaning apparatus capable of removing residues that may be generated in chemical cleaning using a neutral cleaning liquid containing sulfur. The purpose is to do.
 上記課題を解決するために、本開示の化学洗浄方法および化学洗浄装置は以下の手段を採用する。 In order to solve the above problems, the chemical cleaning method and the chemical cleaning apparatus of the present disclosure employ the following means.
 本開示は、金属母材が構成部材に用いられた設備を洗浄対象とする化学洗浄方法であって、金属酸化物を含むスケールを溶解する主剤と硫黄元素とを含む中性洗浄液により前記洗浄対象内を洗浄する中性洗浄工程と、前記中性洗浄工程の後、前記洗浄対象内に酸化剤を供給する酸化処理工程と、前記酸化処理工程の後、前記洗浄対象内に塩基性を示すpH調整剤を用いてpHを2.5以上7以下に調整した酸化物溶解液を供給する溶解処理工程を含み、前記酸化物溶解液は、キレート剤、キレート作用を有する有機酸、キレート作用を有する有機酸塩から選択される溶解剤を含む化学洗浄方法を提供する。 The present disclosure is a chemical cleaning method for cleaning equipment in which a metal base material is used as a constituent member, and the cleaning target is a neutral cleaning liquid containing a main agent that dissolves a scale containing a metal oxide and a sulfur element. After the neutral cleaning step of cleaning the inside, the oxidation treatment step of supplying an oxidizing agent into the cleaning target after the neutral cleaning step, and the pH showing basicity in the cleaning target after the oxidation treatment step. A dissolution treatment step of supplying an oxide solution having a pH adjusted to 2.5 or more and 7 or less using an adjusting agent is included, and the oxide solution has a chelating agent, an organic acid having a chelating action, and a chelating action. Provided is a chemical cleaning method containing a solubilizer selected from organic acid salts.
 上記中性洗浄液は金属酸化物を含むスケールを溶解除去できる。酸化処理工程で供給した酸化剤は、洗浄対象の金属母材表面に生じた金属硫化物を酸化させ、金属処理物とする。キレート作用を有する溶解剤を含み、塩基性を示すpH調整剤によりpHを2.5以上、7以下、好ましくは3.0以上5.0以下、さらに好ましくは3.5以上4.3以下に調整した酸化物溶解液を洗浄対象内に供給することで、金属母材表面の金属処理物を溶解し、除去できる。なお、金属母材は、例えば合金鋼などであり、低合金鋼であってもよい。なお、塩基性を示すpH調整剤は、例えばアンモニア水などである。 The above neutral cleaning solution can dissolve and remove scales containing metal oxides. The oxidizing agent supplied in the oxidation treatment step oxidizes the metal sulfide generated on the surface of the metal base material to be cleaned to obtain a metal treatment product. The pH is adjusted to 2.5 or more, 7 or less, preferably 3.0 or more and 5.0 or less, and more preferably 3.5 or more and 4.3 or less by a pH adjusting agent that contains a dissolving agent having a chelating action and exhibits basicity. By supplying the prepared oxide solution to the cleaning target, the metal-treated product on the surface of the metal base material can be dissolved and removed. The metal base material is, for example, alloy steel or the like, and may be low alloy steel. The pH adjuster showing basicity is, for example, aqueous ammonia.
 本開示の一態様では、前記塩基性を示すpH調整剤としてアンモニア水を選択することが好ましい。 In one aspect of the present disclosure, it is preferable to select aqueous ammonia as the pH adjuster exhibiting basicity.
 アンモニア水は、入手がしやすく、また、他の塩基性を示すpH調整剤(例えば、水酸化カリウムなど)と比較して残渣物の除去率を向上できる。 Ammonia water is easily available and can improve the removal rate of residues as compared with other basic pH adjusters (for example, potassium hydroxide).
 本開示の一態様では、前記溶解剤としてクエン酸、若しくは酒石酸を選択することが好ましい。 In one aspect of the present disclosure, it is preferable to select citric acid or tartaric acid as the dissolving agent.
 クエン酸および酒石酸は、入手がしやすく、塩基性を示すpH調整剤を用いてpHを調整することにより金属母材を傷める恐れを低減できる。 Citric acid and tartaric acid are easily available, and the risk of damaging the metal base material can be reduced by adjusting the pH using a pH adjuster showing basicity.
 本開示の一態様では、前記酸化剤として、過酸化水素を選択することが好ましい。 In one aspect of the present disclosure, it is preferable to select hydrogen peroxide as the oxidizing agent.
 過酸化水素は、入手がしやすく、金属母材を傷める恐れもない。過酸化水素は、金属元素などの異種元素種を含まず、最終的に無害な水と酸素に分解するため、環境親和性が高く、排水処理の利便性も高い。 Hydrogen peroxide is easily available and does not damage the metal base material. Hydrogen peroxide does not contain dissimilar element species such as metal elements, and is finally decomposed into harmless water and oxygen, so that it has high environmental affinity and convenience of wastewater treatment.
 本開示の一態様では、前記中性洗浄工程と前記酸化処理工程との間に、前記洗浄対象内に水を供給し、循環し、ブローする第1水洗工程をさらに含み、前記第1水洗工程において、第1循環水の前記中性洗浄液由来の成分濃度を測定し、測定した前記中性洗浄液由来の成分濃度が基準値以下になったことをもって前記第1水洗工程の終了を判定し、該判定に従い、前記水のブローを実施することが望ましい。前記第1循環水の前記中性洗浄液由来の成分濃度が基準値を超える場合は、前記第1水洗工程と同様の水洗工程を追加で実施することが望ましい。 In one aspect of the present disclosure, the first water washing step further comprises a first water washing step of supplying, circulating, and blowing water into the cleaning target between the neutral washing step and the oxidation treatment step. In the first circulating water, the component concentration derived from the neutral cleaning solution was measured, and when the measured component concentration derived from the neutral cleaning solution became equal to or less than the reference value, the end of the first water washing step was determined. It is desirable to carry out the water blow according to the determination. When the concentration of the component derived from the neutral cleaning liquid of the first circulating water exceeds the reference value, it is desirable to additionally carry out the same water washing step as the first water washing step.
 第1水洗工程において水を供給し、循環し、ブローすることで、洗浄対象内から中性洗浄液を洗いだすことができる。第1循環水の中性洗浄液由来の成分濃度を測定し、その測定値に基づいて第1水洗工程の終了を判定することで、洗浄対象内に残存する中性洗浄液由来成分量をコントロールできる。残存する中性洗浄液由来成分が少ないほど、残渣物の除去率は高くなる。 By supplying, circulating, and blowing water in the first water washing process, the neutral cleaning liquid can be washed out from the cleaning target. By measuring the concentration of the component derived from the neutral cleaning solution of the first circulating water and determining the end of the first water washing step based on the measured value, the amount of the component derived from the neutral cleaning solution remaining in the cleaning target can be controlled. The less the component derived from the neutral cleaning solution remaining, the higher the removal rate of the residue.
 本開示の一態様において、前記中性洗浄液由来の成分濃度の残留許容濃度は、0.2質量%、好ましくは0.1質量%、さらに好ましくは0.05質量%である。 In one aspect of the present disclosure, the residual allowable concentration of the component concentration derived from the neutral cleaning liquid is 0.2% by mass, preferably 0.1% by mass, and more preferably 0.05% by mass.
 中性洗浄液由来の成分濃度を0.2質量%以下とすると、残渣物の除去率を80%以上にできる。中性洗浄液由来の成分濃度を0.1質量%以下とすると、残渣物の除去率を90%以上にできる。中性洗浄液由来の成分濃度を0.05質量%以下とすると、残渣物の除去率を100%にできる。 When the component concentration derived from the neutral cleaning liquid is 0.2% by mass or less, the removal rate of the residue can be 80% or more. When the concentration of the component derived from the neutral cleaning liquid is 0.1% by mass or less, the removal rate of the residue can be 90% or more. When the concentration of the component derived from the neutral cleaning liquid is 0.05% by mass or less, the removal rate of the residue can be 100%.
 本開示の一態様では、前記酸化処理工程と前記溶解処理工程との間に、前記洗浄対象内に水を供給し、循環し、ブローする第2水洗工程をさらに含み、前記第2水洗工程において、第2循環水の酸化剤濃度を測定し、測定した前記酸化剤濃度が基準値以下になったことをもって前記第2水洗工程の終了を判定し、該判定に従い、前記水のブローを実施することが望ましい。前記第2循環水の前記酸化剤濃度が基準値を超える場合は、前記第2水洗工程と同様の水洗工程を追加で実施することが望ましい。 In one aspect of the present disclosure, a second water washing step of supplying, circulating, and blowing water into the washing target is further included between the oxidation treatment step and the dissolution treatment step, in the second water washing step. , The oxidant concentration of the second circulating water is measured, and when the measured oxidant concentration becomes equal to or less than the reference value, the end of the second water washing step is determined, and the water is blown according to the determination. Is desirable. When the oxidant concentration of the second circulating water exceeds the reference value, it is desirable to additionally carry out the same water washing step as the second water washing step.
 第2水洗工程において水を供給し、循環し、ブローすることで、洗浄対象内から酸化剤を洗いだすことができる。第2循環水の酸化剤濃度を測定し、その測定値に基づいて第2水洗工程の終了を判定することで、洗浄対象内に残存する酸化剤量をコントロールできる。残存する酸化剤が少ないほど、残渣物の除去率は高くなる。 By supplying, circulating, and blowing water in the second washing step, the oxidizing agent can be washed out from the cleaning target. By measuring the oxidant concentration of the second circulating water and determining the end of the second washing step based on the measured value, the amount of the oxidant remaining in the cleaning target can be controlled. The less oxidant remains, the higher the rate of residue removal.
 本開示の一態様において、前記酸化剤濃度の基準値は、0.4質量%、好ましくは0.2質量%、さらに好ましくは0.1質量%である。 In one aspect of the present disclosure, the reference value of the oxidizing agent concentration is 0.4% by mass, preferably 0.2% by mass, and more preferably 0.1% by mass.
 酸化剤濃度を0.4質量%以下とすると、残渣物の除去率を80%以上にできる。酸化剤濃度を0.2質量%以下とすると、残渣物の除去率を90%以上にできる。酸化剤濃度を0.1質量%以下とすると、残渣物の除去率を100%にできる。 When the oxidant concentration is 0.4% by mass or less, the residue removal rate can be 80% or more. When the oxidant concentration is 0.2% by mass or less, the residue removal rate can be 90% or more. When the oxidant concentration is 0.1% by mass or less, the removal rate of the residue can be 100%.
 本開示は、金属母材が構成部材に用いられた設備の洗浄対象部位を洗浄するための化学洗浄装置であって、前記洗浄対象部位に硫黄元素を含む中性洗浄液を供給する中性洗浄液供給部と、前記洗浄対象部位に、酸化剤を供給する酸化剤供給部と、前記洗浄対象部位に、塩基性を示すpH調整剤およびキレート作用を有する溶解剤を含む2.5以上7.0以下の酸化物溶解液を供給する酸化物溶解液供給部と、前記洗浄対象部位に、水を供給する水供給部と、前記洗浄対象部位に供給された流体を循環する循環流路と、前記洗浄対象部位に供給された流体を排出するブロー流路と、前記循環流路に接続され、前記流体中の前記中性洗浄液に由来する成分濃度および/または前記酸化剤の濃度を測定する濃度測定部と、前記洗浄対象部位および/または前記循環流路に接続され、前記洗浄対象部位に供給された流体の排出を制御する制御部と、を備え、前記制御部は、前記濃度測定部の測定により得られた前記中性洗浄液に由来する成分濃度および/または前記酸化剤濃度が基準値以下になったことをもって前記洗浄対象部位に供給された流体の排出と判定する判定部と、前記判定に従い、前記洗浄対象部位に供給された流体を排出するよう排出信号を送信する送信部と、を備える化学洗浄装置を提供する。 The present disclosure is a chemical cleaning device for cleaning a cleaning target portion of equipment in which a metal base material is used as a constituent member, and supplies a neutral cleaning liquid containing a sulfur element to the cleaning target portion. 2.5 or more and 7.0 or less containing an oxidizing agent supply part that supplies an oxidizing agent to the cleaning target part, a pH adjusting agent that exhibits basicity, and a dissolving agent having a chelating action in the cleaning target part. The oxide solution supply unit that supplies the oxide solution, the water supply unit that supplies water to the cleaning target site, the circulation flow path that circulates the fluid supplied to the cleaning target site, and the cleaning. A concentration measuring unit connected to the blow flow path for discharging the fluid supplied to the target site and the circulation flow path for measuring the concentration of components derived from the neutral cleaning liquid and / or the concentration of the oxidizing agent in the fluid. And / or a control unit connected to the cleaning target portion and / or controlling the discharge of the fluid supplied to the cleaning target portion, and the control unit is measured by the concentration measuring unit. According to the determination unit, which determines that the fluid supplied to the cleaning target site is discharged when the component concentration and / or the oxidizing agent concentration derived from the obtained neutral cleaning solution becomes equal to or less than the reference value, and according to the determination. Provided is a chemical cleaning apparatus including a transmission unit that transmits a discharge signal so as to discharge the fluid supplied to the cleaning target portion.
 本開示によれば、硫黄を含む中性洗浄液を用いた化学洗浄において発生する可能性がある残渣物を酸化剤で酸化させた後、キレート作用を有する溶解剤で処理することで残渣物を除去できる化学洗浄方法を提示することができる。 According to the present disclosure, a residue that may be generated in a chemical cleaning using a neutral cleaning solution containing sulfur is oxidized with an oxidizing agent and then treated with a dissolving agent having a chelating action to remove the residue. A possible chemical cleaning method can be presented.
第1実施形態に係る化学洗浄方法の工程図である。It is a process drawing of the chemical cleaning method which concerns on 1st Embodiment. 図1の各工程における温度推移の一例を示す図である。It is a figure which shows an example of the temperature transition in each process of FIG. 酸化物溶解液のpHと残渣物の除去率との関係を示す図である。It is a figure which shows the relationship between the pH of an oxide solution and the removal rate of a residue. 中性洗浄液由来の成分濃度と残渣物の除去率との関係を示す図である。It is a figure which shows the relationship between the component concentration derived from a neutral cleaning liquid, and the removal rate of a residue. 酸化剤濃度と残渣物の除去率との関係を示す図である。It is a figure which shows the relationship between the oxidant concentration and the removal rate of a residue. 化学洗浄装置の配置例を示す模式図である。It is a schematic diagram which shows the arrangement example of a chemical cleaning apparatus. 化学洗浄装置の一例を示す模式図である。It is a schematic diagram which shows an example of a chemical cleaning apparatus. 制御部の構成図である。It is a block diagram of a control part.
 本開示に係る化学洗浄方法および化学洗浄装置は、洗浄対象材が構成部材として用いられた設備、例えば発電プラントのボイラ等を洗浄対象とする。洗浄対象材の金属母材は、例えば、合金鋼などであり、低合金鋼であってもよい。 The chemical cleaning method and the chemical cleaning device according to the present disclosure target equipment for which the material to be cleaned is used as a component, for example, a boiler of a power plant. The metal base material of the material to be cleaned is, for example, alloy steel or the like, and may be low alloy steel.
〔第1実施形態〕
 図1に、本実施形態に係る化学洗浄方法の工程図を示す。図2に、各工程における温度推移の一例を示す。図2において、横軸は時間、縦軸は洗浄対象の系統内温度(℃)である。本実施形態に係る化学洗浄方法は、ステップ1《S1》からステップ9《S9》を順に含む。
[First Embodiment]
FIG. 1 shows a process diagram of the chemical cleaning method according to the present embodiment. FIG. 2 shows an example of the temperature transition in each process. In FIG. 2, the horizontal axis represents time and the vertical axis represents the temperature (° C.) in the system to be cleaned. The chemical cleaning method according to the present embodiment includes steps 1 << S1 >> to step 9 << S9 >> in order.
《S1》仮設系統(洗浄保管装置)接続
 まず、洗浄対象内に流体を供給するための仮設系統を接続する。以降、洗浄液等の流体は仮設系統から洗浄対象内に注入される。
<< S1 >> Temporary system (cleaning and storage device) connection First, a temporary system for supplying fluid into the cleaning target is connected. After that, a fluid such as a cleaning liquid is injected into the cleaning target from the temporary system.
《S2》中性洗浄
 洗浄対象内に水を張り、該水を常温(15℃から55℃、好ましくは30℃から50℃、さらに好ましくは35℃から45℃程度)で洗浄対象内に循環させる。該水を循環させながら、仮設系統から中性洗浄液を注入して洗浄対象内を中性洗浄液で満たし、循環を継続する。中性洗浄は、中性洗浄液を循環させることに限定されず、静置洗浄(スウィングブロー)としてもよい。中性洗浄終了の際は、洗浄対象内の中性洗浄液をブローする。
<< S2 >> Neutral cleaning Water is filled in the cleaning target, and the water is circulated in the cleaning target at room temperature (15 ° C to 55 ° C, preferably 30 ° C to 50 ° C, more preferably 35 ° C to 45 ° C). .. While circulating the water, a neutral cleaning solution is injected from the temporary system to fill the cleaning target with the neutral cleaning solution, and the circulation is continued. The neutral cleaning is not limited to circulating the neutral cleaning liquid, and may be static cleaning (swing blow). When the neutral cleaning is completed, the neutral cleaning liquid in the cleaning target is blown.
 中性洗浄液のpHは、5.0から8.0である。中性洗浄液は、(A)主剤、(B)硫黄系化合物を含む。中性洗浄液は、さらに(C)還元性有機酸、(D)両性界面活性剤および非イオン界面活性剤の少なくとも一方を含んでもよい。 The pH of the neutral cleaning solution is 5.0 to 8.0. The neutral cleaning solution contains (A) a main agent and (B) a sulfur-based compound. The neutral cleaning solution may further contain at least one of (C) a reducing organic acid, (D) an amphoteric surfactant and a nonionic surfactant.
(A)主剤
 主剤は、錆などの金属酸化物を含むスケールに対する溶解能を有する。主剤は、キレート剤および有機酸から選択される少なくとも1種を含みうる。
(A) Main agent The main agent has a dissolving ability for scales containing metal oxides such as rust. The base agent may include at least one selected from chelating agents and organic acids.
 キレート剤は、スケールの溶解反応で生じる鉄錯体、鉄塩が還元性を示す成分として選定するとよい。キレート剤は、アミノカルボン酸類およびそれらの塩あるいはホスホン酸類およびそれらの塩である。 The chelating agent should be selected as a component in which the iron complex and iron salt produced by the dissolution reaction of the scale show reducing properties. Chelating agents are aminocarboxylic acids and their salts or phosphonic acids and their salts.
 例えば、アミノカルボン酸類は、ニトリロ三酢酸、エチレンジアミン四酢酸(EDTA)、ジエチレントリアミン五酢酸、およびトリエチレンテトラミン六酢酸等である。 For example, aminocarboxylic acids include nitrilotriacetic acid, ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid, and triethylenetetraminehexacetic acid.
 例えば、ホスホン酸類は、ホスホン酸、アミノトリス(メチレンホスホン酸)、1-ヒドロキシエタン-1,1-ジホスホン酸(HEDP)、エチレンジアミンテトラキス(メチレンホスホン酸)、ヘキサメチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレンテトラミンペンタキス(メチレンホスホン酸)、および2-ホスホノブタン-1,2,4-トリカルボン酸等である。これらのキレート剤としては、1種を単独で用いてもよく、2種以上を併用してもよい。 For example, phosphonic acids include phosphonic acid, aminotris (methylenephosphonic acid), 1-hydroxyethane-1,1-diphosphonic acid (HEDP), ethylenediaminetetrax (methylenephosphonic acid), hexamethylenediaminetetrax (methylenephosphonic acid), Diethylenetetraminepentakis (methylenephosphonic acid), 2-phosphonobutane-1,2,4-tricarboxylic acid and the like. As these chelating agents, one type may be used alone, or two or more types may be used in combination.
 有機酸は、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、デカン-1,10-ジカルボン酸などのジカルボン酸、および、ジカルボン酸の塩、ジグリコール酸、チオジグリコール酸、オキサル酢酸、オキシジコハク酸、カルボキシメチルオキシコハク酸、カルボキシメチルタルトロン酸、およびこれらの塩、リンゴ酸、酒石酸、クエン酸、イタコン酸、メチルコハク酸、3-メチルグルタル酸、2,2-ジメチルマロン酸、マレイン酸、フマール酸、1,2,3-プロパントリカルボン酸、アコニット酸、3-ブテン-1,2,3-トリカルボン酸、ブタン-1,2,3,4-テトラカルボン酸、エタンテトラカルボン酸、エテンテトラカルボン酸、n-アルケニルアコニット酸、1,2,3,4-シクロペンタンテトラカルボン酸、フタル酸、トリメシン酸、ヘミメリット酸、ピロメリット酸、ベンゼンヘキサカルボン酸、テトラヒドロフラン-1,2,3,4-テトラカルボン酸、テトラヒドロフラン-2,2,5,5-テトラカルボン酸、およびこれらの塩等である。これらの有機酸としては、1種を単独で用いてもよく、2種以上を併用してもよい。 Organic acids include, for example, dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimeric acid, suberic acid, azelaic acid, decane-1,10-dicarboxylic acid, and salts of dicarboxylic acids. Diglycolic acid, thiodiglycolic acid, oxalacetic acid, oxydisuccinic acid, carboxymethyloxysuccinic acid, carboxymethyltaltronic acid, and salts thereof, malic acid, tartaric acid, citric acid, itaconic acid, methylsuccinic acid, 3-methylglutal Acid, 2,2-dimethylmalonic acid, maleic acid, fumaric acid, 1,2,3-propanetricarboxylic acid, aconitic acid, 3-butene-1,2,3-tricarboxylic acid, butane-1,2,3 4-Tetracarboxylic acid, ethanetetracarboxylic acid, ethenetetracarboxylic acid, n-alkenylaconytic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, phthalic acid, trimesic acid, hemimeric acid, pyromellitic acid, Benzenehexacarboxylic acid, tetrahydrofuran-1,2,3,4-tetracarboxylic acid, tetrahydrofuran-2,2,5,5-tetracarboxylic acid, salts thereof and the like. As these organic acids, one type may be used alone, or two or more types may be used in combination.
 主剤の配合量は、金属酸化物を含むスケール除去および金属母材の腐食抑制の観点から、中性洗浄液の全質量に対して、0.1質量%以上40質量%以下、好ましくは0.5質量%以上20質量%以下、より好ましくは1質量%以上10質量%以下である。0.1質量%未満ではスケール溶解性が不十分となる。40質量%を超えると防食性が不十分となる。 The blending amount of the main agent is 0.1% by mass or more and 40% by mass or less, preferably 0.5, based on the total mass of the neutral cleaning liquid from the viewpoint of removing scale containing metal oxides and suppressing corrosion of the metal base material. It is by mass% or more and 20% by mass or less, more preferably 1% by mass or more and 10% by mass or less. If it is less than 0.1% by mass, the scale solubility becomes insufficient. If it exceeds 40% by mass, the corrosion resistance becomes insufficient.
 なお、主剤は、水酸化カリウム等の各種アルカリ金属の水酸化物を含んでもよい。主剤は、塩酸、硫酸およびそれらの塩等の無機酸、無機酸塩を含んでもよい。 The main agent may contain hydroxides of various alkali metals such as potassium hydroxide. The main agent may contain inorganic acids such as hydrochloric acid, sulfuric acid and salts thereof, and inorganic acid salts.
(B)硫黄系化合物
 硫黄系化合物は、(B-1)硫黄元素を含む還元剤(硫黄系還元剤)および(B-2)硫黄元素を含む腐食抑制剤(硫黄系腐食抑制剤)の少なくとも1種を含む。
(B) Sulfur-based compound The sulfur-based compound is at least (B-1) a reducing agent containing a sulfur element (sulfur-based reducing agent) and (B-2) a corrosion inhibitor containing a sulfur element (sulfur-based corrosion inhibitor). Includes one.
(B-1)硫黄系還元剤
 硫黄系還元剤は、スケール成分還元性を有する。硫黄系還元剤としては、チオ尿素系化合物、二酸化チオ尿素系化合物、チオグリコール酸塩、亜ジチオン酸塩、亜硫酸塩、亜硫酸水素塩、ピロ亜硫酸塩、チオ硫酸塩、チオン酸塩およびポリチオン酸塩が挙げられる。これらの還元剤は、1種を単独で用いてよく、2種以上を併用してもよい。硫黄系還元剤は、その還元作用によってスケール成分の溶解を促す。また、該還元剤に含まれる硫黄元素が金属に吸着し保護皮膜を強化する。
(B-1) Sulfur-based reducing agent The sulfur-based reducing agent has a scale component reducing property. Sulfur-based reducing agents include thiourea compounds, thiourea dioxide compounds, thioglycolates, dithionates, sulfites, hydrogen sulfites, pyrosulfates, thiosulfates, thionates and polythionic acids. Can be mentioned. One of these reducing agents may be used alone, or two or more thereof may be used in combination. Sulfur-based reducing agents promote the dissolution of scale components by their reducing action. In addition, the sulfur element contained in the reducing agent is adsorbed on the metal to strengthen the protective film.
 チオ尿素系化合物は、チオ尿素、グアニルチオ尿素等である。二酸化チオ尿素系化合物は、二酸化チオ尿素等である。チオグリコール酸塩は、チオグリコール酸ナトリウム、チオグリコール酸カリウム、チオグリコール酸アンモニウム等である。亜ジチオン酸塩は、亜ジチオン酸ナトリウム等である。亜硫酸塩は、亜硫酸ナトリウム、亜硫酸カリウム、亜硫酸カルシウム、亜硫酸亜鉛、亜硫酸アンモニウム等である。亜硫酸水素塩は、亜硫酸水素ナトリウム、亜硫酸水素カリウム、亜硫酸水素アンモニウム等である。ピロ亜硫酸塩は、ピロ亜硫酸ナトリウム、ピロ亜硫酸カリウム、ピロ亜硫酸アンモニウム等である。チオ硫酸塩は、チオ硫酸ナトリウム、チオ硫酸カリウム、チオ硫酸アンモニウム等である。チオン酸塩は、チオン酸ナトリウム、チオン酸カリウム、チオン酸アンモニウム等である。ポリチオン酸塩は、三チオン酸ナトリウム、四チオン酸ナトリウム等である。 Thiourea compounds are thiourea, guanylthiourea and the like. The thiourea dioxide compound is thiourea dioxide or the like. The thioglycolate is sodium thioglycolate, potassium thioglycolate, ammonium thioglycolate and the like. The dithionate salt is sodium dithionite or the like. Sulfites include sodium sulfite, potassium sulfite, calcium sulfite, zinc sulfite, ammonium sulfite and the like. The hydrogen sulfite salt is sodium hydrogen sulfite, potassium hydrogen sulfite, ammonium hydrogen sulfite and the like. The pyrosulfite is sodium pyrosulfite, potassium pyrosulfite, ammonium pyrosulfite and the like. The thiosulfate is sodium thiosulfate, potassium thiosulfate, ammonium thiosulfate and the like. The thionate is sodium thionate, potassium thioate, ammonium thioate and the like. The polythionic acid salt is sodium trithionate, sodium tetrathionate and the like.
 硫黄系還元剤の配合量は、主剤100質量部に対して、0.0025質量部以上1000質量部以下、好ましくは0.05質量部以上20質量部以下、より好ましくは0.2質量部以上8質量部以下である。 The blending amount of the sulfur-based reducing agent is 0.0025 parts by mass or more and 1000 parts by mass or less, preferably 0.05 parts by mass or more and 20 parts by mass or less, and more preferably 0.2 parts by mass or more with respect to 100 parts by mass of the main agent. It is 8 parts by mass or less.
 硫黄系還元剤の配合量は、中性洗浄液の全質量に対して、0.01質量%以上1質量%以下、好ましくは0.01質量%以上0.1質量%以下、より好ましくは0.02質量%以上0.08質量%以下である。0.01質量%未満ではスケール溶解性が不十分となる。1質量%を超えると、防食性が不十分となる。 The blending amount of the sulfur-based reducing agent is 0.01% by mass or more and 1% by mass or less, preferably 0.01% by mass or more and 0.1% by mass or less, more preferably 0.% by mass, based on the total mass of the neutral cleaning liquid. It is 02% by mass or more and 0.08% by mass or less. If it is less than 0.01% by mass, the scale solubility becomes insufficient. If it exceeds 1% by mass, the anticorrosion property becomes insufficient.
(B-2)硫黄系腐食抑制剤
 硫黄系腐食抑制剤としては、メルカプタン基(HS-)、チオシアン酸基(-SCN)またはメルカプタン基のアルカリ金属塩(NaS-,KS-,LiS-)を有する硫黄有機化合物が挙げられる。硫黄系腐食抑制剤としては、ガルバニック腐食対策として、鉄への吸着性の強い硫黄有機化合物を選定するとよい。そのような硫黄有機化合物としては、2,5-ジチオ酢酸-1,3,4-チアジアゾール、2-チオ酢酸-5-メルカプト-1,3,4-チアジアゾール、2,5-ジメルカプト-1,3,4-チアジアゾール、メルカプトベンゾチアゾール、メルカプトベンゾイミダゾール、2,4,6-トリメルカプト-S-トリアジン、2-ジブチルアミノ-4,6-ジメルカプト-S-トリアジン、2-アニリノ-4,6-ジメルカプト-S-トリアジン、3-メルカプト-1-プロパンスルホン酸、1-チオグリセロール、2-アミノチオフェノール、4-アミノチオフェノール、チオ安息香酸、グリセロール-モノチオグリコレート、β-メルカプトプロピオン酸、β-メルカプト酢酸、β-メルカプトマレイン酸、β-メルカプトリンゴ酸、P-ヒドロキシチオフェノール、チオサリチル酸、チオテレフタル酸、2-メルカプトエタノール、メルカプトフェノール、チオ酢酸、α-メルカプトトルエン、チオシアン酸ナトリウム、チオシアン酸カリウム、チオシアン酸リチウム、チオシアン酸アンモニウム、ジメチルジチオカルバミン酸ナトリウム、ジエチルジチオカルバミン酸ナトリウム等が挙げられる。上記硫黄有機化合物は、金属面への吸着力が高い。
(B-2) Sulfur-based corrosion inhibitor As the sulfur-based corrosion inhibitor, an alkali metal salt (NaS-, KS-, LiS-) of a mercaptan group (HS-), a thiocyanate group (-SCN) or a mercaptan group is used. Examples thereof include sulfur organic compounds having. As a sulfur-based corrosion inhibitor, it is advisable to select a sulfur organic compound having strong adsorption to iron as a measure against galvanic corrosion. Examples of such sulfur organic compounds include 2,5-dithioacetic acid-1,3,4-thiathiolazole, 2-thioacetic acid-5-mercapto-1,3,4-thiadiazole, and 2,5-dimercapto-1,3. , 4-Thiadiol, mercaptobenzothiazole, mercaptobenzoimidazole, 2,4,6-trimercapto-S-triazine, 2-dibutylamino-4,6-dimercapto-S-triazine, 2-anilino-4,6-dimercapto -S-triazine, 3-mercapto-1-propanesulfonic acid, 1-thioglycerol, 2-aminothiophenol, 4-aminothiophenol, thiobenzoic acid, glycerol-monothioglycolate, β-mercaptopropionic acid, β -Mercaptoacetic acid, β-mercaptomaleic acid, β-mercaptoethanol, P-hydroxythiophenol, thiosalicylic acid, thioterephthalic acid, 2-mercaptoethanol, mercaptophenol, thioacetic acid, α-mercaptoethanol, sodium thiosianate, thiocyan Examples thereof include potassium acid acid, lithium thiocyanate, ammonium thiocyanate, sodium dimethyldithiocarbamate, sodium diethyldithiocarbamate and the like. The sulfur organic compound has a high adsorption power to a metal surface.
 硫黄系腐食抑制剤の配合量は、主剤100質量部に対して、0.0025質量部以上1000質量部以下、好ましくは0.05質量部以上20質量部以下、より好ましくは0.25質量部以上5質量部以下である。 The blending amount of the sulfur-based corrosion inhibitor is 0.0025 parts by mass or more and 1000 parts by mass or less, preferably 0.05 parts by mass or more and 20 parts by mass or less, and more preferably 0.25 parts by mass with respect to 100 parts by mass of the main agent. It is 5 parts by mass or less.
 硫黄系腐食抑制剤の配合量は、中性洗浄液の全質量に対して、0.001質量%以上1質量%以下、好ましくは0.005質量%以上0.1質量%以下、より好ましくは0.01質量%以上0.05質量%以下である。0.001質量%未満だと防食性が不十分となる。 The blending amount of the sulfur-based corrosion inhibitor is 0.001% by mass or more and 1% by mass or less, preferably 0.005% by mass or more and 0.1% by mass or less, more preferably 0, based on the total mass of the neutral cleaning liquid. It is 0.01% by mass or more and 0.05% by mass or less. If it is less than 0.001% by mass, the anticorrosion property becomes insufficient.
(C)還元性有機酸
 還元性有機酸は、酸素除去性および持続性に優れる成分を選定するとよい。そのような有機酸としては、アスコルビン酸およびエルソルビン酸等が挙げられる。
(C) Reducing Organic Acid For the reducing organic acid, it is advisable to select a component having excellent oxygen removal property and sustainability. Examples of such organic acids include ascorbic acid and elsorbic acid.
 還元性有機酸の配合量は、金属酸化物を含むスケール除去および金属母材の腐食抑制の観点から、主剤100質量部に対して、0.025質量部以上8000質量部以下、好ましくは0.5質量部以上1000質量部以下、より好ましくは5質量部以上300質量部以下である。 From the viewpoint of removing scale containing metal oxides and suppressing corrosion of the metal base material, the amount of the reducing organic acid to be blended is 0.025 parts by mass or more and 8000 parts by mass or less, preferably 0. It is 5 parts by mass or more and 1000 parts by mass or less, more preferably 5 parts by mass or more and 300 parts by mass or less.
 還元性有機酸の配合量は、中性洗浄液の全質量に対して、0.01質量%以上8質量%以下、好ましくは0.1質量%以上5質量%以下、より好ましくは0.5質量%以上3質量%以下である。0.01%質量%未満ではスケール溶解性が不十分となる。8質量%を超えると、防食性が不十分となる。 The blending amount of the reducing organic acid is 0.01% by mass or more and 8% by mass or less, preferably 0.1% by mass or more and 5% by mass or less, more preferably 0.5% by mass, based on the total mass of the neutral cleaning liquid. % Or more and 3% by mass or less. If it is less than 0.01% by mass, the scale solubility becomes insufficient. If it exceeds 8% by mass, the anticorrosion property becomes insufficient.
(D)両性界面活性剤および非イオン界面活性剤
(D-1)両性界面活性剤
 両性界面活性剤としては、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン、2-アルキル-N-カルボキシエチル-N-ヒドロキシエチルイミダゾリニウムベタイン、およびβ-アルキルアミノカルボン酸のアルカリ金属塩(例えば、β-アルキルアミノプロピオン酸ナトリウム)が挙げられる。両性界面活性剤としては、1種を単独で用いてもよく、2種以上を併用してもよい。上記両性界面活性剤はカルボン酸基および窒素原子を有するので、これらの置換基により両性界面活性剤が金属母材の表面に吸着する一方、錆およびスケールの表面には、吸着しにくくなる。それにより、錆およびスケール溶解除去性能がより向上すると共に、金属母材の防食性をより一層高めることが可能になる。
(D) Amphoteric Surfactant and Nonionic Surfactant (D-1) Amphoteric Surfactant Examples of the amphoteric surfactant include 2-alkyl-N-carboxymethyl-N-hydroxyethyl imidazolinium betaine and 2-alkyl. Examples include -N-carboxyethyl-N-hydroxyethyl imidazolinium betaine and alkali metal salts of β-alkylaminocarboxylic acid (eg, sodium β-alkylaminopropionate). As the amphoteric surfactant, one type may be used alone, or two or more types may be used in combination. Since the amphoteric surfactant has a carboxylic acid group and a nitrogen atom, these substituents adsorb the amphoteric surfactant on the surface of the metal base material, while making it difficult to adsorb on the surface of rust and scale. As a result, the rust and scale dissolution removal performance can be further improved, and the corrosion resistance of the metal base material can be further improved.
 両性界面活性剤の配合量は、主剤100質量部に対して、0.01質量部以上1000質量部以下、好ましくは0.05質量部以上750質量部以下、より好ましくは0.1質量部以上500質量部以下である。 The amount of the amphoteric surfactant to be blended is 0.01 parts by mass or more and 1000 parts by mass or less, preferably 0.05 parts by mass or more and 750 parts by mass or less, and more preferably 0.1 parts by mass or more with respect to 100 parts by mass of the main agent. It is 500 parts by mass or less.
 両性界面活性剤の配合量は、中性洗浄液の全質量に対して、0.001質量%以上10質量%以下、好ましくは0.005質量%以上5質量%以下、より好ましくは0.01質量%以上2質量%以下である。 The blending amount of the amphoteric surfactant is 0.001% by mass or more and 10% by mass or less, preferably 0.005% by mass or more and 5% by mass or less, more preferably 0.01% by mass, based on the total mass of the neutral cleaning liquid. % Or more and 2% by mass or less.
(D-2)非イオン界面活性剤
 非イオン界面活性剤としては、ポリオキシアルキレングリコール脂肪酸エステル類、ポリアルキレングリコール脂肪酸エステル類およびポリオキシアルキレンアルキルエーテル類が挙げられる。非イオン界面活性剤としては、1種を単独で用いてもよく、2種以上を併用してもよい。例えば、金属酸化物を含むスケールの除去および金属母材の腐食抑制の観点から、非イオン界面活性剤は、ポリエチレングリコールモノオレイン酸エステル、ポリエチレングリコールモノラウリン酸エステルおよびポリエチレングリコールモノステアリン酸エステルであることが望ましい。
(D-2) Nonionic Surfactant Examples of the nonionic surfactant include polyoxyalkylene glycol fatty acid esters, polyalkylene glycol fatty acid esters and polyoxyalkylene alkyl ethers. As the nonionic surfactant, one type may be used alone, or two or more types may be used in combination. For example, from the viewpoint of removing scale containing metal oxides and suppressing corrosion of the metal base material, the nonionic surfactants are polyethylene glycol monooleic acid ester, polyethylene glycol monolauric acid ester and polyethylene glycol monostearic acid ester. Is desirable.
 非イオン界面活性剤の配合量は、主剤100質量部に対して、0.01質量部以上500質量部以下、好ましくは0.05質量部以上400質量部以下、より好ましくは0.1質量部以上300質量部以下である。 The blending amount of the nonionic surfactant is 0.01 part by mass or more and 500 parts by mass or less, preferably 0.05 part by mass or more and 400 parts by mass or less, and more preferably 0.1 part by mass with respect to 100 parts by mass of the main agent. More than 300 parts by mass or less.
 非イオン界面活性剤の配合量は、中性洗浄液の全質量に対して、0.001質量%以上10質量%以下、好ましくは0.005質量%以上5質量%以下、より好ましくは0.01質量%以上2質量%以下である。 The blending amount of the nonionic surfactant is 0.001% by mass or more and 10% by mass or less, preferably 0.005% by mass or more and 5% by mass or less, more preferably 0.01, based on the total mass of the neutral cleaning liquid. It is mass% or more and 2 mass% or less.
 中性の洗浄液は、所望の洗浄能力および洗浄時間が得られるように、キレート剤、還元剤および腐食抑制剤の濃度が適切に調整されている。 In the neutral cleaning liquid, the concentrations of the chelating agent, the reducing agent and the corrosion inhibitor are appropriately adjusted so that the desired cleaning capacity and cleaning time can be obtained.
《S3》水洗(第1水洗)
 中性洗浄が終了したら、中性洗浄液をブローする。その後、洗浄対象内に水を張り、洗浄対象内に残る中性洗浄液を該水に置換し、循環すると共に、第1水洗が終了したら該水をブローする。
<< S3 >> Washing with water (first washing with water)
When the neutral cleaning is completed, blow the neutral cleaning solution. After that, water is filled in the cleaning target, the neutral cleaning liquid remaining in the cleaning target is replaced with the water, and the water is circulated, and when the first water washing is completed, the water is blown.
《S4》酸化処理
 洗浄対象内に水を張り、該水を加熱により50℃程度まで昇温させ、循環させる。該水を循環させながら、仮設系統から酸化剤液を注入し、洗浄対象内を酸化剤液で満たし、循環を継続する。酸化処理の時間を、例えば1時間以内程度にするためには、50℃程度までの温度の上昇が好ましい。酸化処理終了の際は、洗浄対象内から酸化剤液をブローする。
<< S4 >> Oxidation treatment Water is filled in the cleaning target, and the water is heated to about 50 ° C. and circulated. While circulating the water, the oxidant solution is injected from the temporary system, the inside of the cleaning target is filled with the oxidant solution, and the circulation is continued. In order to set the oxidation treatment time to, for example, about 1 hour or less, it is preferable to raise the temperature to about 50 ° C. When the oxidation treatment is completed, the oxidizing agent solution is blown from the cleaning target.
 酸化剤液は、過酸化物、過マンガン酸塩、次亜塩素酸、亜塩素酸、塩素酸または過塩素酸等の酸化剤を含む水溶液である。酸化剤液は、過酸化水素水であることが好ましい。過酸化水素水の使用は、母材を傷めない、排水処理の利便性、入手容易性、金属元素などの異種元素種を含まない、最終的に無害な水と酸素に分解されるため環境親和性が高いとの利点を有する。酸化剤液における過酸化水素の濃度は、0.3質量%以上2質量%以下、好ましくは0.5質量%以上2質量%以下にするとよい。 The oxidizing agent solution is an aqueous solution containing an oxidizing agent such as peroxide, permanganate, hypochlorous acid, chloric acid, chloric acid or perchloric acid. The oxidizing agent solution is preferably a hydrogen peroxide solution. The use of hydrogen peroxide solution is environmentally friendly because it does not damage the base material, is convenient for wastewater treatment, is easily available, does not contain dissimilar element species such as metal elements, and is finally decomposed into harmless water and oxygen. It has the advantage of high sex. The concentration of hydrogen peroxide in the oxidizing agent solution is preferably 0.3% by mass or more and 2% by mass or less, preferably 0.5% by mass or more and 2% by mass or less.
《S5》水洗(第2水洗)
 酸化剤液をブローした後は、洗浄対象内に水を張り、洗浄対象内に残る酸化剤液を該水に置換し、循環すると共に、該水をブローする。第2水洗は、酸化処理と同程度の温度(40℃から50℃)で実施しても良い。同程度の温度とすることで、母材の温度を維持して、次工程での円滑な処理を行う。
<< S5 >> Flushing (second flushing)
After blowing the oxidant solution, water is filled in the cleaning target, the oxidant solution remaining in the cleaning target is replaced with the water, and the water is circulated and the water is blown. The second washing with water may be carried out at a temperature (40 ° C. to 50 ° C.) similar to that of the oxidation treatment. By setting the temperature to the same level, the temperature of the base metal is maintained and smooth processing is performed in the next process.
《S6》溶解処理
 洗浄対象内に水を張り、該水を40℃から50℃で洗浄対象内に循環させる。該水を循環させながら、仮設系統から酸化物溶解液を注入して洗浄対象内を酸化物溶解液で満たして、酸化処理物の溶解処理を行う。
<< S6 >> Dissolution treatment Water is filled in the cleaning target, and the water is circulated in the cleaning target at 40 ° C to 50 ° C. While circulating the water, the oxide solution is injected from the temporary system to fill the cleaning target with the oxide solution, and the oxidation-treated product is dissolved.
 酸化物溶解液は、金属酸化物を溶解可能な溶解剤を含む水溶液である。溶解剤はキレート剤、キレート作用を有する有機酸、キレート作用を有する有機酸塩から選択される。より具体的には、溶解剤として、クエン酸、1-ヒドロキシエタン-1,1-ジホスホン酸(HEDP)、エチレンジアミン四酢酸(EDTA)、酒石酸等が挙げられる。溶解剤には、入手が容易であり、母材を傷めないクエン酸または酒石酸を用いるのが好ましい。酸化物溶解液におけるクエン酸の濃度は、0.5質量%以上3.0質量%以下、好ましくは 1.5質量%以上2.5質量%以下にするとよい。 The oxide solution is an aqueous solution containing a dissolving agent capable of dissolving a metal oxide. The solubilizer is selected from a chelating agent, an organic acid having a chelating action, and an organic acid salt having a chelating action. More specifically, examples of the solubilizer include citric acid, 1-hydroxyethane-1,1-diphosphonic acid (HEDP), ethylenediaminetetraacetic acid (EDTA), tartaric acid and the like. As the dissolving agent, it is preferable to use citric acid or tartaric acid, which are easily available and do not damage the base material. The concentration of citric acid in the oxide solution is preferably 0.5% by mass or more and 3.0% by mass or less, preferably 1.5% by mass or more and 2.5% by mass or less.
 酸化物溶解液のpHは、pH2.5以上pH7.0以下、好ましくはpH3.0以上pH5.0以下、さらに好ましくはpH3.5以上4.3以下である。酸化物溶解液のpHは、塩基性を示すpH調整剤(以下、アンモニア水と記載する)によって調整する。 The pH of the oxide solution is pH 2.5 or more and pH 7.0 or less, preferably pH 3.0 or more and pH 5.0 or less, and more preferably pH 3.5 or more and 4.3 or less. The pH of the oxide solution is adjusted with a pH adjuster showing basicity (hereinafter referred to as aqueous ammonia).
《S7》防錆前処理
 酸化処理物の溶解処理が終了したら、該酸化物溶解液を循環させながら、洗浄対象内にさらにアンモニア水を供給して、中和処理を行う。供給したアンモニア水を循環させると共に、90℃±5℃まで昇温させる。
<< S7 >> Anti-corrosion pretreatment After the dissolution treatment of the oxidized product is completed, the oxide solution is circulated and ammonia water is further supplied to the cleaning target to perform the neutralization treatment. The supplied ammonia water is circulated and the temperature is raised to 90 ° C. ± 5 ° C.
 中和処理で循環するアンモニア水は、pHが9.0以上11.0以下、好ましくはpH9.5以上10.5以下とする。アンモニア水は、アンモニア系化合物を含む溶液に替えてもよい。アンモニア系化合物は、例えば、2-アミノ-2-メチル-1-プロパノール、モノエタノールアミン、モノイソプロパノールアミン、シクロヘキシルアミン、ジエチルエタノールアミン、モルホリン、3-メトキシプロピルアミン、およびアンモニアから選ばれる揮発性アミン化合物である。 The pH of the ammonia water circulated in the neutralization treatment is 9.0 or more and 11.0 or less, preferably 9.5 or more and 10.5 or less. Ammonia water may be replaced with a solution containing an ammonia-based compound. Ammonia-based compounds are, for example, volatile amines selected from 2-amino-2-methyl-1-propanol, monoethanolamine, monoisopropanolamine, cyclohexylamine, diethylethanolamine, morpholine, 3-methoxypropylamine, and ammonia. It is a compound.
《S8》防錆処理
 該アンモニア水を循環させながら、洗浄対象内に、ヒドラジンを注入して防錆皮膜を形成させる。防錆処理が終了したら、ヒドラジン水をブローする。
<< S8 >> Rust prevention treatment While circulating the ammonia water, hydrazine is injected into the object to be cleaned to form a rust prevention film. After the rust prevention treatment is completed, blow hydrazine water.
《S9》仮設系統解体
 上記S8の後、仮設系統を解体する。
<< S9 >> Dismantling the temporary system After the above S8, the temporary system is dismantled.
 上記S2からS6の洗浄は、1回のみ実施しても良いし、複数回実施しても良い。 The cleaning of S2 to S6 may be performed only once or may be performed a plurality of times.
 洗浄対象となる機器が常設の洗浄系統を備えている場合、上記S1およびS9は省略される。 If the equipment to be cleaned has a permanent cleaning system, the above S1 and S9 are omitted.
〔第2実施形態〕
 本実施形態は、《S3》水洗(第1水洗工程)において、ブローされた水中の中性洗浄液由来成分濃度に基づき、水洗終了を判定する点が第1実施形態と異なる。本実施形態では、第1実施形態と共通の工程は説明を省略する。
[Second Embodiment]
The present embodiment is different from the first embodiment in that in << S3 >> water washing (first water washing step), the completion of water washing is determined based on the concentration of the component derived from the neutral washing liquid in the blown water. In the present embodiment, the steps common to the first embodiment will not be described.
 本実施形態では、《S3》の水洗にて洗浄対象内を循環中の水洗水(第1循環水)の中性洗浄液由来成分の濃度を測定し、該成分濃度が基準値以下になったことをもって水洗終了と判定する。基準値は、次工程の酸化処理剤への許容残留薬液濃度の観点から、0.2質量%、好ましくは0.1質量%、さらに好ましくは0.05質量%である。 In the present embodiment, the concentration of the component derived from the neutral washing solution of the washing water (first circulating water) circulating in the washing target was measured by washing with water of << S3 >>, and the concentration of the component became equal to or less than the reference value. Is determined to be the end of washing with water. The reference value is 0.2% by mass, preferably 0.1% by mass, and more preferably 0.05% by mass from the viewpoint of the allowable residual chemical concentration in the oxidation treatment agent in the next step.
 中性洗浄液由来の成分とは、アミノカルボン酸類は、ニトリロ三酢酸、エチレンジアミン四酢酸(EDTA)、ジエチレントリアミン五酢酸、およびトリエチレンテトラミン六酢酸等であり、ホスホン酸類は、ホスホン酸、アミノトリス(メチレンホスホン酸)、1-ヒドロキシエタン-1,1-ジホスホン酸(HEDP)、エチレンジアミンテトラキス(メチレンホスホン酸)、ヘキサメチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレンテトラミンペンタキス(メチレンホスホン酸)、および2-ホスホノブタン-1,2,4-トリカルボン酸等である。中性洗浄液由来の成分濃度は、ペルオキソ2硫酸カリウム法での加熱分解後モリブデンブルー吸光光度法により(P)濃度を測定する方法、誘導結合プラズマ発光分光分析法(ICP-AES)によりリン(P)濃度を測定する方法、イオンクロマト法およびキャピラリー電気泳動法により成分を検出する方法等で測定できる。該成分濃度の測定は、連続的または間欠的に実施すればよい。 The components derived from the neutral cleaning solution include aminocarboxylic acids such as nitrilotriacetic acid, ethylenediaminetetraacetic acid (EDTA), diethylenetriaminetetraacetic acid, and triethylenetetraminehexacetic acid, and phosphonic acids such as phosphonic acid and aminotris (methylene). Phosphonate), 1-hydroxyethane-1,1-diphosphonic acid (HEDP), ethylenediaminetetrax (methylenephosphonic acid), hexamethylenediaminetetrax (methylenephosphonic acid), diethylenetetraminepentakis (methylenephosphonic acid), and 2- Phosphonobtan-1,2,4-tricarboxylic acid and the like. The concentration of components derived from the neutral cleaning solution can be determined by measuring the concentration (P) by the molybdenum blue absorptiometry after thermal decomposition by the potassium peroxobis sulfate method, or by inductively coupled plasma emission spectrometry (ICP-AES). ) It can be measured by a method of measuring the concentration, a method of detecting components by ion chromatography and capillary electrophoresis, or the like. The measurement of the component concentration may be carried out continuously or intermittently.
〔第3実施形態〕
 本実施形態は、《S5》水洗(第2水洗工程)において、ブローされた水中の酸化剤濃度に基づき、水洗終了を判定する点が第1実施形態と異なる。本実施形態では、第1実施形態と共通の工程は説明を省略する。
[Third Embodiment]
This embodiment is different from the first embodiment in that in << S5 >> water washing (second water washing step), the completion of water washing is determined based on the concentration of the oxidizing agent in the blown water. In the present embodiment, the steps common to the first embodiment will not be described.
 本実施形態では、《S5》の水洗にて洗浄対象内を循環中の水洗水(第2循環水)の酸化剤濃度を測定し、該酸化剤濃度が基準値以下になったことをもって水洗終了と判定する。基準値は、次工程の溶解処理への許容残留薬液濃度の観点から、0.4質量%、好ましくは0.1質量%である。 In the present embodiment, the oxidant concentration of the water-washed water (second circulating water) circulating in the washing target is measured by the water-washing of << S5 >>, and the washing is completed when the oxidant concentration becomes equal to or less than the reference value. Is determined. The reference value is 0.4% by mass, preferably 0.1% by mass, from the viewpoint of the allowable residual chemical concentration for the dissolution treatment in the next step.
 酸化剤が過酸化水素である場合、過酸化水素濃度は、4-アミノアンチピリン比色法(共立理化学研究所 過酸化水素用パックテスト)等で測定できる。酸化剤濃度の測定は、連続的または間欠的に実施すればよい。 When the oxidizing agent is hydrogen peroxide, the hydrogen peroxide concentration can be measured by the 4-aminoantipyrine colorimetric method (Kyoritsu Rikagaku Kenkyusho, hydrogen peroxide pack test) or the like. The measurement of the oxidant concentration may be carried out continuously or intermittently.
 本実施形態は、第2実施形態と組み合わせて実施されてもよい。 This embodiment may be implemented in combination with the second embodiment.
 以下に、上記第1から第3実施形態の作用効果について説明する。
 第1から第3実施形態に係る化学洗浄方法では、主剤と硫黄系化合物(硫黄系還元剤および/または硫黄系腐食抑制剤)を含む中性洗浄液を用いることで、水素の発生しにくい条件(pH5.0から8.0)にて錆などのスケールを溶解除去できる。
The effects of the first to third embodiments will be described below.
In the chemical cleaning methods according to the first to third embodiments, a neutral cleaning solution containing a main agent and a sulfur-based compound (sulfur-based reducing agent and / or sulfur-based corrosion inhibitor) is used, so that hydrogen is less likely to be generated (conditions (). Scales such as rust can be dissolved and removed at pH 5.0 to 8.0).
 硫黄元素を含む中性洗浄液による洗浄後、母材表面に残渣物(金属硫化物)が生成されたとしても、酸化処理工程で酸化剤を供給した後、スケール作用を有する酸化物溶解液(pH2.5から7.0)で処理することで、該残渣物を除去できる。 Even if a residue (metal sulfide) is generated on the surface of the base metal after cleaning with a neutral cleaning solution containing sulfur elements, an oxide solution (pH 2) having a scale action is applied after the oxidizing agent is supplied in the oxidation treatment step. The residue can be removed by treating with 0.5 to 7.0).
(酸化剤)
 表1に、第1実施形態の《S1》から《S9》に従い実機のボイラチューブを洗浄し、洗浄終了後、母材表面をSEM観察し,残渣物成分(Mo)の減少量を確認した結果を示す。中性洗浄液は、エチレンジアミン四酢酸(EDTA)3質量%、硫黄系還元剤 0.03質量%、両性界面活性剤0.5質量%水溶液、非イオン界面活性剤0.5質量%水溶液(pH6.0)を用いた。酸化剤液としては、過酸化水素水(2.0質量%)または過マンガン酸カリウム水(0.05質量%)を用いた。酸化物溶解液としては、アンモニア水で好ましい範囲のpH3.0から5.0のうちのpH4.0に調整したクエン酸2.0質量%を用いた。
(Oxidant)
Table 1 shows the results of cleaning the boiler tube of the actual machine according to << S1 >> to << S9 >> of the first embodiment, and after the cleaning is completed, SEM observation of the surface of the base material to confirm the amount of decrease in the residue component (Mo). Is shown. The neutral cleaning solution was 3% by mass of ethylenediaminetetraacetic acid (EDTA), 0.03% by mass of a sulfur-based reducing agent, a 0.5% by mass aqueous solution of an amphoteric surfactant, and a 0.5% by mass aqueous solution of a nonionic surfactant (pH 6. 0) was used. As the oxidizing agent solution, hydrogen peroxide solution (2.0% by mass) or potassium permanganate water (0.05% by mass) was used. As the oxide solution, 2.0% by mass of citric acid adjusted to pH 4.0 out of pH 3.0 to 5.0, which is a preferable range with aqueous ammonia, was used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 過酸化水素および過マンガン酸カリウムのどちらを酸化剤として使用した場合でも、残渣物を80%以上除去できた。これにより残渣物を酸化剤で除去可能であることが確認された。 Regardless of whether hydrogen peroxide or potassium permanganate was used as the oxidizing agent, 80% or more of the residue could be removed. This confirmed that the residue could be removed with an oxidizing agent.
 残渣物は、金属硫化物(FeS,MoS等)である。酸化剤は、金属硫化物を酸化させて金属酸化物にすると共に、硫黄をイオン化させる。イオン化した硫黄(硫黄化合物)は、防錆処理後のブロー水と共に除去されると考えられる。金属酸化物は酸化物溶解液により溶解除去できる。 The residue is a metal sulfide (FeS 2 , MoS 2, etc.). Oxidizing agents oxidize metal sulfides to metal oxides and ionize sulfur. It is considered that the ionized sulfur (sulfur compound) is removed together with the blow water after the rust prevention treatment. The metal oxide can be dissolved and removed by the oxide solution.
 酸化剤として過酸化水素を用いた場合に想定される反応式を式(1)、式(2)に示す。
  3FeS+28H→Fe+6SO 2-+28HO・・・(1)
  2MoS+22H→2MoO+4SO 2-+22HO・・・(2)
The reaction formulas assumed when hydrogen peroxide is used as the oxidizing agent are shown in the formulas (1) and (2).
3FeS 2 + 28H 2 O 2 → Fe 3 O 4 + 6SO 4 2- + 28H 2 O ··· (1)
2MoS 2 + 22H 2 O 2 → 2MoO 3 + 4SO 4 2- + 22H 2 O ... (2)
(溶解剤)
 表2に、溶解剤を替えて第1実施形態の《S1》から《S9》に従い実機のボイラチューブを洗浄した結果を示す。洗浄後の母材表面をSEM観察し、残渣物成分(Mo)減少量を確認した。中性洗浄液は、エチレンジアミン四酢酸(EDTA)3質量%、硫黄系還元剤0.03質量%、両性界面活性剤0.5質量%水溶液、非イオン界面活性剤0.5質量%水溶液(pH6.0)を用いた。酸化剤液には過酸化水素水(2.0質量%)を用いた。溶解剤には、クエン酸、エチレンジアミン四酢酸(EDTA)、1-ヒドロキシエチリデン-1,1-ジホスホン酸(HEDP)、酢酸および酒石酸を用いた。酸化物溶解液の溶解剤濃度はすべて2.0質量%とした。すべての酸化物溶解液は、アンモニア水にてpH4.0に調整した。
(Dissolving agent)
Table 2 shows the results of cleaning the boiler tube of the actual machine according to << S1 >> to << S9 >> of the first embodiment by changing the dissolving agent. The surface of the base metal after cleaning was observed by SEM to confirm the amount of residue component (Mo) reduction. The neutral cleaning solution was 3% by mass of ethylenediaminetetraacetic acid (EDTA), 0.03% by mass of a sulfur-based reducing agent, a 0.5% by mass aqueous solution of an amphoteric surfactant, and a 0.5% by mass aqueous solution of a nonionic surfactant (pH 6. 0) was used. Hydrogen peroxide solution (2.0% by mass) was used as the oxidizing agent solution. As the solubilizer, citric acid, ethylenediaminetetraacetic acid (EDTA), 1-hydroxyetidronic acid-1,1-diphosphonic acid (HEDP), acetic acid and tartaric acid were used. The dissolving agent concentration of the oxide solution was 2.0% by mass. All oxide lysates were adjusted to pH 4.0 with aqueous ammonia.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2によれば、酢酸以外の溶解剤を用いることで、残渣物を80%以上除去できることが確認された。 According to Table 2, it was confirmed that 80% or more of the residue could be removed by using a dissolving agent other than acetic acid.
(酸化物溶解液のpH)
 表3および図3に、酸化物溶解液のpHをふって第1実施形態の《S1》から《S9》に従い実機のボイラチューブを洗浄した結果を示す。洗浄後の母材表面をSEM観察し、残渣物成分(Mo)減少量を確認した。図3において、横軸は酸化物溶解液のpH、縦軸は残渣物の除去率(%)である。
(PH of oxide solution)
Table 3 and FIG. 3 show the results of cleaning the boiler tube of the actual machine according to << S1 >> to << S9 >> of the first embodiment by adjusting the pH of the oxide solution. The surface of the base metal after cleaning was observed by SEM to confirm the amount of residue component (Mo) reduction. In FIG. 3, the horizontal axis represents the pH of the oxide solution, and the vertical axis represents the residue removal rate (%).
 中性洗浄液は、エチレンジアミン四酢酸(EDTA)3質量%、硫黄系還元剤 0.03質量%、両性界面活性剤0.5質量%水溶液、非イオン界面活性剤0.5質量%水溶液(pH6.0)を用いた。酸化剤液には2.0質量%過酸化水素水を用いた。溶解剤には、2.0質量%クエン酸を用いた。酸化物溶解液のpHはアンモニア水により2.5から8.0に調整した。 The neutral cleaning solution is ethylenediaminetetraacetic acid (EDTA) 3% by mass, sulfur-based reducing agent 0.03% by mass, amphoteric surfactant 0.5% by mass aqueous solution, nonionic surfactant 0.5% by mass aqueous solution (pH 6. 0) was used. A 2.0% by mass hydrogen peroxide solution was used as the oxidizing agent solution. 2.0% by mass citric acid was used as the solubilizer. The pH of the oxide solution was adjusted from 2.5 to 8.0 with aqueous ammonia.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3および図3によれば、pH2.5以上7.0以下で80%以上、pH3.0以上5.0以下で90%以上、pH3.5以上4.3以下で100%の残渣物を除去できた。 According to Table 3 and FIG. 3, 80% or more of the residue is at pH 2.5 or more and 7.0 or less, 90% or more at pH 3.0 or more and 5.0 or less, and 100% at pH 3.5 or more and 4.3 or less. I was able to remove it.
 pHが3を下回ると水素が発生する懸念がある。そのため、水素が発生しにくい条件で処理を行うには、酸化物溶解液のpHが3以上であることが好ましい。pHが7.0を超えると残渣物の除去率が80%を下回る。よって、酸化物溶解液のpHは、2.5以上、7.0以下、好ましくは3.0以上5.0以下、さらに好ましくは3.5以上4.3以下するとよい。 There is a concern that hydrogen will be generated when the pH falls below 3. Therefore, in order to carry out the treatment under conditions where hydrogen is unlikely to be generated, the pH of the oxide solution is preferably 3 or more. When the pH exceeds 7.0, the residue removal rate falls below 80%. Therefore, the pH of the oxide solution is preferably 2.5 or more and 7.0 or less, preferably 3.0 or more and 5.0 or less, and more preferably 3.5 or more and 4.3 or less.
(pH調整液)
 表4に、酸化物溶解液のpHを調整するpH調整液を替えて第1実施形態の《S1》から《S9》に従い実機のボイラチューブを洗浄した結果を示す。洗浄後の母材表面をSEM観察し、残渣物成分(Mo)減少量を確認した。中性洗浄液は、エチレンジアミン四酢酸(EDTA)3質量%、硫黄系還元剤 0.03質量%、両性界面活性剤0.5質量%水溶液、非イオン界面活性剤0.5質量%水溶液(pH6.0)を用いた。酸化剤液には2.0質量%過酸化水素水を用いた。溶解剤には、クエン酸を用いた。pH調整液には、アンモニア水、トリエタノールアミン、水酸化カリウムおよび2-アミノ-2-メチル-1-プロパノールを用いた。酸化物溶解液の溶解剤濃度は2.0質量%、pHは4.0とした。
(PH regulator)
Table 4 shows the results of cleaning the boiler tube of the actual machine according to << S1 >> to << S9 >> of the first embodiment by changing the pH adjusting solution for adjusting the pH of the oxide solution. The surface of the base metal after cleaning was observed by SEM to confirm the amount of residue component (Mo) reduction. The neutral cleaning solution was 3% by mass of ethylenediaminetetraacetic acid (EDTA), 0.03% by mass of a sulfur-based reducing agent, a 0.5% by mass aqueous solution of an amphoteric surfactant, and a 0.5% by mass aqueous solution of a nonionic surfactant (pH 6. 0) was used. A 2.0% by mass hydrogen peroxide solution was used as the oxidizing agent solution. Citric acid was used as the solubilizer. Ammonia water, triethanolamine, potassium hydroxide and 2-amino-2-methyl-1-propanol were used as the pH adjusting solution. The dissolving agent concentration of the oxide solution was 2.0% by mass, and the pH was 4.0.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4によれば、酸化物溶解液のpH調整液にはアンモニア水が好適であることが確認された。 According to Table 4, it was confirmed that aqueous ammonia is suitable as the pH adjusting solution for the oxide solution.
(中性洗浄液由来成分残留による影響)
 表5および図4に、第2実施形態の《S1》から《S9》に従い実機のボイラチューブを洗浄した結果を示す。残渣物の除去率は、洗浄後の母材表面をSEM観察し、残渣物成分(Mo)減少量を確認した。図4において、横軸は第1循環水中の中性洗浄液由来の成分濃度(質量%)、縦軸は残渣物の除去率(%)である。
(Effect of residual components derived from neutral cleaning solution)
Tables 5 and 4 show the results of cleaning the boiler tube of the actual machine according to << S1 >> to << S9 >> of the second embodiment. As for the removal rate of the residue, the surface of the base material after washing was observed by SEM, and the amount of decrease in the residue component (Mo) was confirmed. In FIG. 4, the horizontal axis is the component concentration (mass%) derived from the neutral cleaning liquid in the first circulating water, and the vertical axis is the residue removal rate (%).
 中性洗浄液は、エチレンジアミン四酢酸(EDTA)3質量%、硫黄系還元剤 0.03質量%、両性界面活性剤0.5質量%水溶液、非イオン界面活性剤0.5質量%水溶液(pH6.0)を用いた。酸化剤液には2.0質量%過酸化水素水を用いた。酸化物溶解液にはアンモニア水でpH4.0に調整した2.0質量%クエン酸を用いた。 The neutral cleaning solution is ethylenediaminetetraacetic acid (EDTA) 3% by mass, sulfur-based reducing agent 0.03% by mass, amphoteric surfactant 0.5% by mass aqueous solution, nonionic surfactant 0.5% by mass aqueous solution (pH 6. 0) was used. A 2.0% by mass hydrogen peroxide solution was used as the oxidizing agent solution. As the oxide solution, 2.0% by mass citric acid adjusted to pH 4.0 with aqueous ammonia was used.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5および図4によれば、第1循環水中の中性洗浄液由来の成分濃度が0.2質量%以下で80%以上、0.10質量%以下で90%以上、0.05質量%以下で100%の残渣物を除去できた。 According to Table 5 and FIG. 4, the component concentration derived from the neutral cleaning solution in the first circulating water is 80% or more when 0.2% by mass or less, 90% or more when 0.10% by mass or less, and 0.05% by mass or less. Was able to remove 100% of the residue.
 第1循環水に中性洗浄液由来の成分が多く含まれる、すなわち、洗浄対象内に中性洗浄液由来の成分が多く残留すると、後に供給される酸化剤の作用阻害、または母材の腐食が懸念される。よって、第1循環水の中性洗浄液由来の成分濃度は低い方が望ましい。表5および図4によれば、第1循環水中の中性洗浄液由来の成分濃度を0.2質量%以下、好ましくは0.1質量%以下、さらに好ましくは0.05質量%以下にするまで水洗することで、より確実に残渣物を除去できる。 If the first circulating water contains a large amount of components derived from the neutral cleaning solution, that is, if a large amount of components derived from the neutral cleaning solution remain in the cleaning target, there is a concern that the action of the oxidizing agent supplied later may be hindered or the base material may be corroded. Will be done. Therefore, it is desirable that the concentration of components derived from the neutral cleaning solution of the first circulating water is low. According to Table 5 and FIG. 4, until the component concentration derived from the neutral cleaning liquid in the first circulating water is 0.2% by mass or less, preferably 0.1% by mass or less, and more preferably 0.05% by mass or less. By washing with water, the residue can be removed more reliably.
(酸化剤残留による影響)
 表6および図5に、第3実施形態の《S1》から《S9》に従い実機のボイラチューブを洗浄した結果を示す。残渣物の除去率は、洗浄後の母材表面をSEM観察し,残渣物成分(Mo)減少量を確認した。図5において、横軸は第2循環水中の酸化剤濃度(質量%)、縦軸は残渣物の除去率(%)である。
(Effect of residual oxidant)
Table 6 and FIG. 5 show the results of cleaning the boiler tube of the actual machine according to << S1 >> to << S9 >> of the third embodiment. As for the removal rate of the residue, the surface of the base metal after cleaning was observed by SEM, and the amount of decrease in the residue component (Mo) was confirmed. In FIG. 5, the horizontal axis represents the oxidant concentration (mass%) in the second circulating water, and the vertical axis represents the residue removal rate (%).
 中性洗浄液は、エチレンジアミン四酢酸(EDTA)3質量%、硫黄系還元剤 0.03質量%、両性界面活性剤0.5質量%水溶液、非イオン界面活性剤0.5質量%水溶液(pH6.0)を用いた。酸化剤液には2.0質量%過酸化水素水を用いた。酸化物溶解液にはアンモニア水でpH4.0に調整した2.0質量%クエン酸を用いた。 The neutral cleaning solution is ethylenediaminetetraacetic acid (EDTA) 3% by mass, sulfur-based reducing agent 0.03% by mass, amphoteric surfactant 0.5% by mass aqueous solution, nonionic surfactant 0.5% by mass aqueous solution (pH 6. 0) was used. A 2.0% by mass hydrogen peroxide solution was used as the oxidizing agent solution. As the oxide solution, 2.0% by mass citric acid adjusted to pH 4.0 with aqueous ammonia was used.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6および図5によれば、第2循環水中の酸化剤濃度が0.4質量%以下で80%以上、0.2質量%以下で90%以上、0.1質量%以下で100%の残渣物を除去できた。 According to Table 6 and FIG. 5, the oxidant concentration in the second circulating water is 80% or more when 0.4% by mass or less, 90% or more when 0.2% by mass or less, and 100% when 0.1% by mass or less. The residue could be removed.
 第2循環水に酸化剤が多く含まれる、すなわち、洗浄対象内に酸化剤が多く残留すると、後に供給される酸化物溶解液の作用阻害または母材の腐食等が懸念される。よって、第2循環水の酸化剤濃度は低い方が望ましい。表6および図5によれば、第2循環水中の酸化剤濃度を0.4質量%以下、好ましくは0.2質量%以下、さらに好ましくは0.1質量%以下にするまで水洗することで、より確実に残渣物を除去できる。 If the second circulating water contains a large amount of oxidant, that is, if a large amount of oxidant remains in the cleaning target, there is a concern that the action of the oxide solution supplied later may be hindered or the base material may be corroded. Therefore, it is desirable that the concentration of the oxidizing agent in the second circulating water is low. According to Table 6 and FIG. 5, by washing with water until the concentration of the oxidizing agent in the second circulating water is 0.4% by mass or less, preferably 0.2% by mass or less, and more preferably 0.1% by mass or less. , The residue can be removed more reliably.
(処理条件)
 表7に、第1実施形態の《S1》から《S9》に従い実機のボイラチューブを洗浄した結果を示す。判定は、洗浄後の母材表面をSEM観察し、残渣物成分(Mo)減少量を確認し、残渣物の除去率80%以上を良判定とした。
(Processing conditions)
Table 7 shows the results of cleaning the boiler tube of the actual machine according to << S1 >> to << S9 >> of the first embodiment. For the judgment, the surface of the base material after cleaning was observed by SEM, the amount of decrease in the residue component (Mo) was confirmed, and a residue removal rate of 80% or more was regarded as a good judgment.
 中性洗浄液は、エチレンジアミン四酢酸(EDTA)3質量%、硫黄系還元剤 0.03質量%、両性界面活性剤0.5質量%水溶液、非イオン界面活性剤0.5質量%水溶液(pH6.0)を用いた。中性洗浄は、40℃で実施した。酸化剤液には2.0質量%または1.0質量%の過酸化水素水を用いた。酸化物溶解液には、0.5質量%、1質量%または2.0質量%のクエン酸を用いた。pH調整液としてアンモニア水を用い、酸化物溶解液をpH4.0に調整した。 The neutral cleaning solution is ethylenediaminetetraacetic acid (EDTA) 3% by mass, sulfur-based reducing agent 0.03% by mass, amphoteric surfactant 0.5% by mass aqueous solution, nonionic surfactant 0.5% by mass aqueous solution (pH 6. 0) was used. Neutral washing was performed at 40 ° C. A 2.0% by mass or 1.0% by mass hydrogen peroxide solution was used as the oxidizing agent solution. As the oxide solution, 0.5% by mass, 1% by mass or 2.0% by mass of citric acid was used. Ammonia water was used as the pH adjusting solution, and the oxide solution was adjusted to pH 4.0.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7のNo.10によれば、40℃で中性洗浄を実施した後、2.0質量%過酸化水素(H)水および2.0質量%クエン酸溶液を用い、それぞれ50℃で酸化処理および溶解処理を実施することで、各工程1時間以内で残渣物を除去できた。 No. in Table 7 According to No. 10, after performing a neutral wash at 40 ° C., oxidation treatment and oxidation treatment at 50 ° C. using 2.0 mass% hydrogen peroxide (H 2 O 2 ) water and 2.0 mass% citric acid solution, respectively. By carrying out the dissolution treatment, the residue could be removed within 1 hour in each step.
 表7のNo.2,3,5,9によれば、過酸化水素(H)濃度およびクエン酸濃度を低くした場合、または、処理温度を50℃より低くした場合であっても、各工程の処理時間を延ばすことで残渣物を除去可能であることが確認された。 No. in Table 7 According to 2 , 3, 5, and 9, the treatment of each step is performed even when the hydrogen peroxide (H 2 O 2 ) concentration and the citric acid concentration are lowered, or the treatment temperature is lowered below 50 ° C. It was confirmed that the residue can be removed by extending the time.
 過酸化水素濃度を高くしすぎると、薬液コストの増加が懸念される。クエン酸濃度が高ければ短時間での処理が可能であるが、薬液コストの増加が懸念される。よって、過酸化水素濃度およびクエン酸溶液濃度は高くしすぎないことが好ましい。 If the hydrogen peroxide concentration is too high, there is a concern that the chemical solution cost will increase. If the citric acid concentration is high, the treatment can be performed in a short time, but there is a concern that the chemical solution cost will increase. Therefore, it is preferable that the hydrogen peroxide concentration and the citric acid solution concentration are not too high.
 上記第1から第3実施形態に係る化学洗浄方法は、節炭器1、火炉壁管2(蒸発管)および気水分離器3を備えた貫流ボイラ、特に、図6に示すように、スケールが付着しやすい部位(例えば、温度、圧力条件からスケールが付着しやすい火炉壁管)の洗浄に好適である。図6では、火炉壁管に洗浄液が供給されるように仮設系統(化学洗浄装置)4が接続されている。
 例えば、化学洗浄装置4は、節炭器1の入口および気水分離器のドレン排出部に接続されている。
The chemical cleaning method according to the first to third embodiments is a once-through boiler equipped with an economizer 1, a fireplace wall tube 2 (evaporation tube), and an air-water separator 3, and in particular, a scale as shown in FIG. It is suitable for cleaning the part where the scale easily adheres (for example, the furnace wall tube where the scale easily adheres due to the temperature and pressure conditions). In FIG. 6, a temporary system (chemical cleaning device) 4 is connected so that the cleaning liquid is supplied to the furnace wall tube.
For example, the chemical cleaning device 4 is connected to the inlet of the economizer 1 and the drain discharge portion of the steam separator.
 次に、上記実施形態に係る化学洗浄方法を実施できる仮設系統(化学洗浄装置)の構成について説明する。
 本実施形態に係る化学洗浄装置は、中性洗浄液供給部、酸化剤供給部、酸化物溶解液供給部、水供給部、ブロー流路、濃度測定部および制御部を備えている。
Next, the configuration of a temporary system (chemical cleaning device) capable of carrying out the chemical cleaning method according to the above embodiment will be described.
The chemical cleaning apparatus according to the present embodiment includes a neutral cleaning liquid supply unit, an oxidant supply unit, an oxide solution supply unit, a water supply unit, a blow flow path, a concentration measurement unit, and a control unit.
 図7に、化学洗浄装置10の模式図を例示する。化学洗浄装置10は、洗浄対象部位11に接続されている。 FIG. 7 illustrates a schematic diagram of the chemical cleaning apparatus 10. The chemical cleaning device 10 is connected to the cleaning target portion 11.
 中性洗浄液供給部は、中性洗浄液タンク12を備え、洗浄対象部位11に硫黄元素を含む中性洗浄液を供給する装置である。酸化剤供給部は、酸化剤タンク13を備え、洗浄対象部位11に酸化剤を供給する装置である。酸化物溶解液供給部は、酸化物溶解液タンク14を備え、洗浄対象部位11に塩基性を示すpH調整剤およびキレート作用を有する溶解剤を含むpH2.5以上7以下の酸化物溶解液を供給する装置である。 The neutral cleaning liquid supply unit is a device provided with a neutral cleaning liquid tank 12 and supplying a neutral cleaning liquid containing a sulfur element to the cleaning target portion 11. The oxidant supply unit is a device provided with an oxidant tank 13 and supplying the oxidant to the cleaning target portion 11. The oxide solution supply unit is provided with an oxide solution tank 14, and an oxide solution having a pH of 2.5 or more and 7 or less containing a pH adjuster showing basicity and a dissolving agent having a chelating action is provided at the cleaning target site 11. It is a device to supply.
 図7において、中性洗浄液タンク12、酸化剤タンク13および酸化物溶解液タンク14は、接続配管16および循環流路17を介して洗浄対象部位11に並列に接続されている。 In FIG. 7, the neutral cleaning liquid tank 12, the oxidant tank 13, and the oxide solution tank 14 are connected in parallel to the cleaning target portion 11 via the connecting pipe 16 and the circulation flow path 17.
 接続配管16の途中には、各タンクに貯留された溶液を循環流路17へと送り出すポンプ18と、バルブVからバルブVとが設けられている。バルブVは、中性洗浄液タンク12とポンプ18との間に配置されている。バルブVは、酸化剤タンク13とポンプ18との間に配置されている。バルブVは、酸化物溶解液タンク14とポンプ18との間に配置されている。バルブV、ポンプ18と循環流路17との間に配置されている。 In the middle of the connection pipe 16, a pump 18 for feeding the solution stored in the tank into the circulation channel 17, and the valve V 4 is provided from the valve V 1. The valve V 1 is arranged between the neutral cleaning liquid tank 12 and the pump 18. The valve V 2 is arranged between the oxidant tank 13 and the pump 18. The valve V 3 is arranged between the oxide solution tank 14 and the pump 18. The valve V 4 is arranged between the pump 18 and the circulation flow path 17.
 循環流路17は、該洗浄対象部位11内に流体を循環可能に、循環流路17の一端が洗浄対象部位11の流体入口に接続され、循環流路17の他端が洗浄対象部位11の流体出口に接続されている。循環流路17の途中には流体を循環させるポンプ19と、ポンプ19を挟むよう配置されたバルブVおよびバルブVが設けられている。 In the circulation flow path 17, one end of the circulation flow path 17 is connected to the fluid inlet of the cleaning target part 11 and the other end of the circulation flow path 17 is the cleaning target part 11 so that the fluid can be circulated in the cleaning target part 11. It is connected to the fluid outlet. A pump 19 for circulating a fluid and valves V 5 and 6 arranged so as to sandwich the pump 19 are provided in the middle of the circulation flow path 17.
 水供給部は、水を貯留する水タンク15を備え、洗浄対象部位に水を供給する装置である。水タンク15は、接続配管20を介して循環流路17の途中に接続されている。接続配管20の途中にはバルブVが設けられている。図7において、接続配管20は接続配管16の接続部分よりも上流側で循環流路17に接続されているが、水タンク15の接続位置はこれに限定されるものではない。 The water supply unit is a device including a water tank 15 for storing water and supplying water to a part to be cleaned. The water tank 15 is connected in the middle of the circulation flow path 17 via the connection pipe 20. A valve V 7 is provided in the middle of the connecting pipe 20. In FIG. 7, the connection pipe 20 is connected to the circulation flow path 17 on the upstream side of the connection portion of the connection pipe 16, but the connection position of the water tank 15 is not limited to this.
 ブロー流路21は、洗浄対象部位11に供給された流体を排水タンク22に排出できる。図7においてブロー流路21は、洗浄対象部位の流体入口に接続される連絡管(図示せず)に接続された第1流路21aと、循環流路17の両端側に接続された第2流路21bおよび第3流路21cが途中で合流する構成である。第1流路21aの途中にはバルブVが配置されている。第2流路の途中にはバルブVが配置されている。第3流路の途中にはバルブV10が配置されている。 The blow flow path 21 can discharge the fluid supplied to the cleaning target portion 11 to the drain tank 22. In FIG. 7, the blow flow path 21 is a first flow path 21a connected to a connecting pipe (not shown) connected to the fluid inlet of the cleaning target portion, and a second flow path 21a connected to both ends of the circulation flow path 17. The flow path 21b and the third flow path 21c merge in the middle. In the middle of the first flow path 21a is disposed the valve V 8 is. A valve V 9 is arranged in the middle of the second flow path. A valve V 10 is arranged in the middle of the third flow path.
 濃度測定部23は、洗浄対象部位11および循環流路17中の流体中の中性洗浄液に由来する成分濃度および/または酸化剤の濃度を測定可能に、循環流路17に接続されている。中性洗浄液に由来する成分濃度および/または酸化剤の濃度は、例えば、ペルオキソ2硫酸カリウム法での加熱分解後モリブデンブルー吸光光度法によりリン(P)濃度を測定することや、誘導結合プラズマ発光分光分析法(ICP-AES)によりリン(P)濃度を測定することや、イオンクロマト法やキャピラリー電気泳動法により成分を検出すること等で測定できる。酸化剤が過酸化水素であれば4-アミノアンチピリン比色法(例えば、共立理化学研究所 過酸化水素用パックテストなど)を用いて濃度を測定できる。図7において、濃度測定部23は循環流路17の循環させるポンプ19よりも上流側で循環流路17に接続されているが、濃度測定部23の接続位置はこれに限定されるものではない。 The concentration measuring unit 23 is connected to the circulation flow path 17 so that the concentration of the component derived from the neutral cleaning liquid and / or the concentration of the oxidizing agent in the fluid in the cleaning target portion 11 and the circulation flow path 17 can be measured. The concentration of the component derived from the neutral cleaning solution and / or the concentration of the oxidizing agent can be determined by, for example, measuring the phosphorus (P) concentration by the molybdenum blue absorptiometry after thermal decomposition by the potassium peroxo2 sulfate method or inductively coupled plasma emission. It can be measured by measuring the phosphorus (P) concentration by spectroscopic analysis (ICP-AES), detecting the component by ion chromatography or capillary electrophoresis, and the like. If the oxidizing agent is hydrogen peroxide, the concentration can be measured using the 4-aminoantipyrine colorimetric method (for example, Kyoritsu Institute of Physical and Chemical Research, hydrogen peroxide pack test, etc.). In FIG. 7, the concentration measuring unit 23 is connected to the circulation flow path 17 on the upstream side of the circulation pump 19 of the circulation flow path 17, but the connection position of the concentration measuring unit 23 is not limited to this. ..
 制御部24は、濃度測定部23を介して循環流路17に接続され、少なくとも、バルブVからバルブV10の開閉を制御して、洗浄対象部位11を含む循環流路17の水または中性洗浄液または酸化剤を排出できる。なお、制御部24の機能はこれに限定されるものではなく、例えばバルブVからバルブVの開閉を制御できてもよい。すなわち、制御部24は、洗浄対象部位11を含む循環流路17の水または中性洗浄液または酸化剤の排出の他に、水供給部による水の供給と、中性洗浄液供給部による中性洗浄液の供給と、酸化剤供給部による酸化剤の供給と、酸化物溶解液供給部による酸化物溶解液の供給を制御できてもよい。 The control unit 24 is connected to the circulation flow path 17 via the concentration measuring unit 23, and at least controls the opening and closing of the valve V 10 from the valve V 8 to water or the inside of the circulation flow path 17 including the cleaning target portion 11. A sex cleaning solution or an oxidizing agent can be discharged. The functions of the control unit 24 is not limited to this, for example, the valve V 1 may be controlled to open and close the valve V 7. That is, the control unit 24 supplies water by the water supply unit and the neutral cleaning liquid by the neutral cleaning liquid supply unit, in addition to discharging the water or the neutral cleaning liquid or the oxidizing agent in the circulation flow path 17 including the cleaning target portion 11. The supply of the oxidant, the supply of the oxidant by the oxidant supply unit, and the supply of the oxide solution by the oxide solution supply unit may be controlled.
 制御部24は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、およびコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線または無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。 The control unit 24 is composed of, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a computer-readable storage medium, and the like. As an example, a series of processes for realizing various functions are stored in a storage medium or the like in the form of a program, and the CPU reads this program into a RAM or the like to execute information processing / arithmetic processing. As a result, various functions are realized. The program is installed in a ROM or other storage medium in advance, is provided in a state of being stored in a computer-readable storage medium, or is distributed via a wired or wireless communication means. Etc. may be applied. Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
 図8に制御部24の構成図を例示する。制御部24は、判定部25および送信部26を備えている。判定部25は、濃度測定部23の測定結果を受信する。判定部25は、受信した濃度測定部23の測定結果を、予め格納されていた基準値と照らし合わせ、測定結果が基準値以下になっている場合に洗浄対象部位11を含む循環流路17の水または中性洗浄液または酸化剤を排出と判定する。送信部26は、判定部25の判定結果を受信し、バルブVからV10を開けるよう排出部(バルブVからV10の図示しない駆動部)に開信号(排出信号)を送る。開信号を受けた該駆動部は、バルブVからV10を開ける。 FIG. 8 illustrates a configuration diagram of the control unit 24. The control unit 24 includes a determination unit 25 and a transmission unit 26. The determination unit 25 receives the measurement result of the concentration measurement unit 23. The determination unit 25 compares the received measurement result of the concentration measurement unit 23 with the reference value stored in advance, and when the measurement result is equal to or less than the reference value, the circulation flow path 17 including the cleaning target portion 11 Judge that water or neutral cleaning solution or oxidizing agent is discharged. Transmission unit 26 receives the determination result of the determination unit 25 sends the discharge portion so as to open the V 10 from the valve V 8 open signal (discharging signal) to (unillustrated drive unit V 10 from the valve V 8). Upon receiving the open signal, the drive unit opens valves V 8 to V 10 .
 濃度測定部23で中性洗浄液に由来する成分の濃度を測定し、測定値が基準値以下となった場合、送信部26はさらに、バルブV,バルブVを開けるよう酸化剤供給部(バルブV,バルブVの図示しない駆動部)に開信号を送る。開信号を受けた該駆動部は、バルブVおよびバルブVを開ける。 The concentration measuring unit 23 measures the concentration of the component derived from the neutral cleaning liquid, and when the measured value is equal to or less than the reference value, the transmitting unit 26 further opens the valve V 2 and the valve V 4 so that the oxidant supply unit ( valve V 2, and sends the open signal to the driving unit (not shown) of the valve V 4). The drive unit which receives the open signal to open the valve V 2 and valve V 4.
 濃度測定部23で酸化剤の濃度を測定し、測定値が基準値以下となった場合、送信部26はさらにバルブV,バルブVを開けるよう酸化物溶解液供給部(バルブV,バルブVの図示しない駆動部)に開信号を送る。開信号を受けた該駆動部は、バルブVおよびバルブVを開ける。 The concentration of the oxidizing agent was measured by the concentration measuring unit 23, when the measured value is equal to or less than the reference value, the transmission unit 26 is further valve V 3, oxide solution supplying unit so as to open the valve V 4 (valve V 3, Send open signal to the driving unit) not shown of the valve V 4. The drive unit which receives the open signal to open the valve V 3 and valve V 4.
本開示は、上述の実施形態のみに限定されるものではなく、発明の要旨を逸脱しない範囲において、種々変形実施が可能である。 The present disclosure is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the invention.
1 節炭器
2 火炉壁管
3 気水分離器
4,10 仮設系統(化学洗浄装置)
11 洗浄対象部位
12 中性洗浄液タンク
13 酸化剤タンク
14 酸化物溶解液タンク
15 水タンク
16,20 接続配管
17 循環流路
18,19 ポンプ
21 ブロー流路
21a 第1流路
21b 第2流路
21c 第3流路
22 排水タンク
23 濃度測定部
24 制御部
25 判定部
26 送信部
 
 
1 Economizer 2 Fireplace wall pipe 3 Brackish water separator 4,10 Temporary system (chemical cleaning equipment)
11 Part to be cleaned 12 Neutral cleaning liquid tank 13 Oxidizing agent tank 14 Oxide solution tank 15 Water tank 16, 20 Connection piping 17 Circulation flow path 18, 19 Pump 21 Blow flow path 21a First flow path 21b Second flow path 21c 3rd flow path 22 Drainage tank 23 Concentration measurement unit 24 Control unit 25 Judgment unit 26 Transmission unit

Claims (11)

  1.  金属母材が構成部材に用いられた設備を洗浄対象とする化学洗浄方法であって、
     金属酸化物を含むスケールを溶解する主剤と硫黄元素を含む中性洗浄液により前記洗浄対象内を洗浄する中性洗浄工程と、
     前記中性洗浄工程の後、前記洗浄対象内に酸化剤を供給する酸化処理工程と、
     前記酸化処理工程の後、前記洗浄対象内に塩基性を示すpH調整剤を用いてpHを2.5以上7以下に調整した酸化物溶解液を供給する溶解処理工程を含み、
     前記酸化物溶解液は、キレート剤、キレート作用を有する有機酸、キレート作用を有する有機酸塩から選択される溶解剤を含む化学洗浄方法。
    A chemical cleaning method that targets equipment that uses a metal base material as a component.
    A neutral cleaning step of cleaning the inside of the cleaning target with a neutral cleaning solution containing a main agent that dissolves scales containing metal oxides and sulfur elements.
    After the neutral cleaning step, an oxidation treatment step of supplying an oxidizing agent into the cleaning target, and
    After the oxidation treatment step, a dissolution treatment step of supplying an oxide solution whose pH has been adjusted to 2.5 or more and 7 or less by using a pH adjusting agent showing basicity in the cleaning target is included.
    The chemical cleaning method containing a solubilizer selected from a chelating agent, an organic acid having a chelating action, and an organic acid salt having a chelating action.
  2.  前記塩基性を示すpH調整剤としてアンモニア水を選択する請求項1に記載の化学洗浄方法。 The chemical cleaning method according to claim 1, wherein ammonia water is selected as the pH adjuster exhibiting basicity.
  3.  前記溶解剤としてクエン酸または、酒石酸を選択する請求項1または請求項2に記載の化学洗浄方法。 The chemical cleaning method according to claim 1 or 2, wherein citric acid or tartaric acid is selected as the dissolving agent.
  4.  前記酸化剤として、過酸化水素を選択する請求項1から請求項3のいずれかに記載の化学洗浄方法。 The chemical cleaning method according to any one of claims 1 to 3, wherein hydrogen peroxide is selected as the oxidizing agent.
  5.  前記酸化物溶解液のpHを3.0以上5.0以下に調整する請求項1から請求項4のいずれかに記載の化学洗浄方法。 The chemical cleaning method according to any one of claims 1 to 4, wherein the pH of the oxide solution is adjusted to 3.0 or more and 5.0 or less.
  6.  前記酸化物溶解液のpHを3.5以上4.3以下に調整する請求項1から請求項4のいずれかに記載の化学洗浄方法。 The chemical cleaning method according to any one of claims 1 to 4, wherein the pH of the oxide solution is adjusted to 3.5 or more and 4.3 or less.
  7.  前記中性洗浄工程と前記酸化処理工程との間に、前記洗浄対象内に水を供給し、循環し、ブローする第1水洗工程をさらに含み、前記第1水洗工程において、
     第1循環水の前記中性洗浄液由来の成分濃度を測定し、
     測定した前記中性洗浄液由来の成分濃度が基準値以下になったことをもって前記第1水洗工程の終了を判定し、
     該判定に従い、前記水をブローする請求項1から請求項6のいずれかに記載の化学洗浄方法。
    In the first water washing step, a first water washing step of supplying, circulating, and blowing water into the cleaning target is further included between the neutral washing step and the oxidation treatment step.
    The concentration of the component derived from the neutral cleaning solution of the first circulating water was measured, and
    The end of the first water washing step is determined when the measured component concentration derived from the neutral cleaning liquid becomes equal to or less than the reference value.
    The chemical cleaning method according to any one of claims 1 to 6, wherein the water is blown according to the determination.
  8.  前記中性洗浄液由来の成分濃度の基準値は、0.2質量%である請求項7に記載の化学洗浄方法。 The chemical cleaning method according to claim 7, wherein the reference value of the component concentration derived from the neutral cleaning liquid is 0.2% by mass.
  9.  前記酸化処理工程と前記溶解処理工程との間に、前記洗浄対象内に水を供給し、循環し、ブローする第2水洗工程をさらに含み、前記第2水洗工程において、
     第2循環水の酸化剤濃度を測定し、
     測定した前記酸化剤濃度が基準値以下になったことをもって前記第2水洗工程の終了を判定し、
     該判定に従い、前記水をブローする請求項1から請求項8のいずれかに記載の化学洗浄方法。
    In the second water washing step, a second water washing step of supplying, circulating, and blowing water into the washing target is further included between the oxidation treatment step and the dissolution treatment step.
    Measure the oxidant concentration in the second circulating water and
    When the measured oxidant concentration becomes equal to or less than the reference value, the end of the second washing step is determined.
    The chemical cleaning method according to any one of claims 1 to 8, wherein the water is blown according to the determination.
  10.  前記酸化剤濃度の基準値は、0.4質量%である請求項9に記載の化学洗浄方法。 The chemical cleaning method according to claim 9, wherein the reference value of the oxidizing agent concentration is 0.4% by mass.
  11.  金属母材が構成部材に用いられた設備の洗浄対象部位を洗浄するための化学洗浄装置であって、
     前記洗浄対象部位に硫黄元素を含む中性洗浄液を供給する中性洗浄液供給部と、
     前記洗浄対象部位に、酸化剤を供給する酸化剤供給部と、
     前記洗浄対象部位に、塩基性を示すpH調整剤およびキレート作用を有する溶解剤を含むpH2.5以上7.0以下の酸化物溶解液を供給する酸化物溶解液供給部と、
     前記洗浄対象部位に、水を供給する水供給部と、
     前記洗浄対象部位に供給された流体を循環する循環流路と、
     前記洗浄対象部位に供給された流体を排出するブロー流路と、
     前記循環流路に接続され、前記流体中の前記中性洗浄液に由来する成分濃度および/または前記酸化剤の濃度を測定する濃度測定部と、
     前記洗浄対象部位および/または前記循環流路に接続され、前記洗浄対象部位に供給された流体の排出を制御する制御部と、
    を備え、前記制御部は、
     前記濃度測定部の測定により得られた前記中性洗浄液に由来する成分濃度および/または前記酸化剤の濃度が基準値以下になったことをもって前記洗浄対象部位に供給された流体の排出と判定する判定部と、
     前記判定に従い、前記洗浄対象部位に供給された流体を排出するよう排出信号を送信する送信部と、を備える化学洗浄装置。
     
    A chemical cleaning device for cleaning the parts to be cleaned of equipment in which a metal base material is used as a component.
    A neutral cleaning liquid supply unit that supplies a neutral cleaning liquid containing a sulfur element to the cleaning target site,
    An oxidant supply unit that supplies an oxidant to the cleaning target site,
    An oxide solution supply unit that supplies an oxide solution having a pH of 2.5 or more and 7.0 or less, which contains a pH adjuster showing basicity and a dissolving agent having a chelating action, to the site to be cleaned.
    A water supply unit that supplies water to the cleaning target site,
    A circulation flow path that circulates the fluid supplied to the cleaning target site,
    A blow flow path for discharging the fluid supplied to the cleaning target site, and
    A concentration measuring unit connected to the circulation flow path and measuring the concentration of a component derived from the neutral cleaning solution and / or the concentration of the oxidizing agent in the fluid.
    A control unit connected to the cleaning target portion and / or the circulation flow path and controlling the discharge of the fluid supplied to the cleaning target portion.
    The control unit is provided with
    When the concentration of the component derived from the neutral cleaning liquid and / or the concentration of the oxidizing agent obtained by the measurement of the concentration measuring unit becomes equal to or less than the reference value, it is determined that the fluid supplied to the cleaning target site is discharged. Judgment unit and
    A chemical cleaning device including a transmission unit that transmits a discharge signal so as to discharge the fluid supplied to the cleaning target portion according to the determination.
PCT/JP2020/006251 2019-04-26 2020-02-18 Chemical cleaning method and chemical cleaning apparatus WO2020217666A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-085920 2019-04-26
JP2019085920A JP6914987B2 (en) 2019-04-26 2019-04-26 Chemical cleaning method and chemical cleaning equipment

Publications (1)

Publication Number Publication Date
WO2020217666A1 true WO2020217666A1 (en) 2020-10-29

Family

ID=72942399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006251 WO2020217666A1 (en) 2019-04-26 2020-02-18 Chemical cleaning method and chemical cleaning apparatus

Country Status (3)

Country Link
JP (1) JP6914987B2 (en)
TW (1) TWI744801B (en)
WO (1) WO2020217666A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022119501A1 (en) * 2020-12-01 2022-06-09 Singapore Polytechnic Method for high and selective extraction of silver
CN116867741A (en) * 2021-02-12 2023-10-10 花王株式会社 Reducing agent composition for ferric oxide and/or ferric hydroxide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159388A (en) * 1987-12-16 1989-06-22 Mitsubishi Heavy Ind Ltd Method for chemically cleaning slightly soluble scale
CN102703917A (en) * 2012-06-04 2012-10-03 李东日 Rust removing detergent
CN104975300A (en) * 2015-07-01 2015-10-14 威海翔宇环保科技股份有限公司 Low corrosiveness cleaning agent used for boilers
WO2016002516A1 (en) * 2014-07-04 2016-01-07 三菱日立パワーシステムズ株式会社 Chemical washing method and chemical washing device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102494328B (en) * 2011-12-13 2013-04-10 长沙市中蓝清洗技术有限公司 Boiler cleaning process
CN102418104A (en) * 2011-12-13 2012-04-18 长沙市中蓝清洗技术有限公司 Chemical for cleaning boiler, using method and cleaning device thereof
CN107747728A (en) * 2017-10-24 2018-03-02 广州市金润环保科技有限公司 A kind of cleaning method of boiler

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159388A (en) * 1987-12-16 1989-06-22 Mitsubishi Heavy Ind Ltd Method for chemically cleaning slightly soluble scale
CN102703917A (en) * 2012-06-04 2012-10-03 李东日 Rust removing detergent
WO2016002516A1 (en) * 2014-07-04 2016-01-07 三菱日立パワーシステムズ株式会社 Chemical washing method and chemical washing device
CN104975300A (en) * 2015-07-01 2015-10-14 威海翔宇环保科技股份有限公司 Low corrosiveness cleaning agent used for boilers

Also Published As

Publication number Publication date
TW202045773A (en) 2020-12-16
JP6914987B2 (en) 2021-08-04
TWI744801B (en) 2021-11-01
JP2020180359A (en) 2020-11-05

Similar Documents

Publication Publication Date Title
WO2020217666A1 (en) Chemical cleaning method and chemical cleaning apparatus
US10174429B2 (en) Corrosion control for water systems using tin corrosion inhibitor with a hydroxycarboxylic acid
WO2020110687A1 (en) Dissolution and removal composition and cleaning method
BR112015032305B1 (en) METHOD OF REMOVING CORROSION FROM A CORROSIBLE METALLIC SURFACE
WO2015156220A1 (en) Method for preventing corrosion in closed cooling water system, corrosion preventing agent for closed cooling water system, and corrosion prevention system
KR20090119928A (en) Method for removing deposits containing magnetite and copper from containers in industrial and power plants
JP5531413B2 (en) Boiler water treatment agent, water treatment method, and stabilization method during storage or distribution of boiler water treatment agent
JP5970884B2 (en) Anticorrosion method
JP2012241259A (en) System for chemical cleaning within boiler unit
JP5891630B2 (en) Boiler water scale removal method
JP5277895B2 (en) Acid deposit removal agent and method for removing acid deposit
KR100368827B1 (en) Deodorization method from blast furnace slag dry pit using sodium hydroxide
JP4654392B2 (en) Boiler water treatment system and blow water management method using the same
JP4704835B2 (en) Pitting corrosion inhibitor and pitting corrosion prevention method in water system
JP6156494B2 (en) Water treatment method for steam generating equipment
JP5909956B2 (en) Method for inhibiting economizer corrosion in boilers
JPS62129697A (en) Anticorrosion and antidirt control method for copper-alloy-made condenser tubes
JP2024078999A (en) Chemical cleaning method and chemical composition for rinsing boiler heat transfer tubes
JP3838610B2 (en) Water-based anticorrosive and anticorrosion method
JP7247794B2 (en) Treatment method for circulating cooling water system
US5194223A (en) Methods for inhibiting the corrosion of iron-containing and copper-containing metals in boiler feedwater systems
US20230383415A1 (en) Corrosion control for water systems using passivators and a hydroxycarboxylic acid
JP6819720B2 (en) Water system pretreatment method
WO2020137496A1 (en) Method and apparatus for cleaning and maintaining boiler plant
JP2003047991A (en) Boiler water treatment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20794020

Country of ref document: EP

Kind code of ref document: A1