WO2016002516A1 - Chemical washing method and chemical washing device - Google Patents

Chemical washing method and chemical washing device Download PDF

Info

Publication number
WO2016002516A1
WO2016002516A1 PCT/JP2015/067439 JP2015067439W WO2016002516A1 WO 2016002516 A1 WO2016002516 A1 WO 2016002516A1 JP 2015067439 W JP2015067439 W JP 2015067439W WO 2016002516 A1 WO2016002516 A1 WO 2016002516A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
chemical
cleaning liquid
hematite
liquid
Prior art date
Application number
PCT/JP2015/067439
Other languages
French (fr)
Japanese (ja)
Inventor
翔 下田
仙市 椿▲崎▼
吉田 茂
宏樹 大久保
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014139043A external-priority patent/JP5721888B1/en
Priority claimed from JP2014139044A external-priority patent/JP6522293B2/en
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to CN201580028213.8A priority Critical patent/CN106414805B/en
Priority to SG11201610066TA priority patent/SG11201610066TA/en
Publication of WO2016002516A1 publication Critical patent/WO2016002516A1/en
Priority to PH12016502379A priority patent/PH12016502379A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/24Cleaning or pickling metallic material with solutions or molten salts with neutral solutions
    • C23G1/26Cleaning or pickling metallic material with solutions or molten salts with neutral solutions using inhibitors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups

Definitions

  • the present invention relates to a chemical cleaning method and a chemical cleaning apparatus for removing hematite adhering to the inner surface of a water-cooled wall tube.
  • a condenser 20 As a boiler water supply system, a condenser 20, a condensate demineralizer 21, a ground steam condenser 22, a low-pressure feed water heater 23, a deaerator 24, a high-pressure feed water heater 25, and a economizer 26 are installed.
  • a steam separator 30, a superheater 31, a turbine 32, and a reheater 33 are installed.
  • As the turbine 32 a high-pressure turbine, an intermediate-pressure turbine, and a low-pressure turbine may be installed.
  • Patent Document 2 discloses a method for removing sludge and the like generated in a steam generator for a nuclear reactor.
  • Patent Document 3 discloses a method for cleaning and removing iron oxide scale from a metal filter used in a thermal power plant or a nuclear power plant. In the method of Patent Document 3, the iron oxide scale is peeled off from the filter and removed by dissolving only the iron at the adhering portion of the iron oxide adhering to the filter.
  • Hematite is a poorly soluble oxide, and conventional acidic cleaning liquids (for example, hydrochloric acid-based and citric acid-based) are difficult to dissolve in the cleaning liquid, and sludge is generated by chemical cleaning.
  • a magnetite layer that is a natural oxide scale is formed on the surface of the pipe or the metal filter disclosed in Patent Document 3. In the method of Patent Document 3, only the magnetite layer is dissolved without dissolving the attached iron oxide scale, and the scale is peeled off. Therefore, if the method disclosed in Patent Document 3 is used, sludge is generated.
  • the water-cooled wall pipe of the once-through boiler 10 in the thermal power generation system 1 has a long and complicated pipe shape, when sludge is generated, it may accumulate in a part of the pipe and close the pipe. For this reason, in the conventional chemical cleaning, it was necessary to remove sludge from the cleaning liquid.
  • a filter is provided in the middle of the portion through which the cleaning liquid passes to collect sludge floating in the cleaning liquid, or a part of the piping of the equipment to be cleaned after chemical cleaning is cut and piped. There is a method of inspecting the inside, removing it by a physical method such as suction cleaning, and then welding the pipe again.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a chemical cleaning method for removing hematite and a chemical cleaning apparatus for carrying out the chemical cleaning method.
  • a cleaning liquid containing a chelating agent, a reducing agent, or a rusting agent that is a mixture of the chelating agent and the reducing agent is supplied to a device to be cleaned having a member to which hematite is attached.
  • a cleaning liquid supply step, and at least a region of the member to which the hematite is adhered is immersed in the cleaning liquid, and an oxidation-reduction potential of the cleaning liquid is maintained at a value at which the hematite is eluted in the cleaning liquid.
  • the chelating agent is one of an aminocarboxylic acid chelating agent, an oxycarboxylic acid chelating agent and an organophosphorus chelating agent
  • the reducing agent is a metal ion, sulfurous acid Salt, oxalic acid, formic acid, ascorbic acid, pyrogallol, hydrazine, or hydrogen
  • the pH of the cleaning solution is within the range of 4-8. That is a chemical cleaning method.
  • a second aspect of the present invention is a chemical cleaning apparatus for chemically cleaning a device to be cleaned having a member to which a hematite scale is attached, the chelating agent, the reducing agent, or the chelating agent and the reducing agent.
  • the chelating agent is any one of an aminocarboxylic acid chelating agent, an oxycarboxylic acid chelating agent and an organophosphorus chelating agent
  • the reducing agent is a metal ion, sulfite, oxalic acid, formic acid
  • a chemical solution supply line for supplying the cleaning solution to the member, a pump installed in the chemical solution supply line, the device to be cleaned, and the chemical solution tank are connected.
  • the chemical liquid discharge line for discharging the cleaning liquid from the member, means for immersing at least the region where the hematite is adhered in the member in the cleaning liquid, and the redox potential of the cleaning liquid being cleaned elutes in the cleaning liquid A chemical cleaning apparatus, wherein the chemical liquid tank, the chemical liquid supply line, and the pump supply the cleaning liquid to the member.
  • the cleaning liquid is supplied only to the equipment to be cleaned, the amount of the cleaning liquid required for the chemical cleaning can be greatly reduced. Furthermore, since a cleaning liquid containing a rust remover is used, even when a device having a stainless steel part is disposed downstream of the device to be cleaned, there is no need to perform water filling or the like to prevent corrosion of the member, Equipment for water filling becomes unnecessary, and the device configuration is simplified. In addition, since no hydrogen is generated during cleaning, chemical cleaning can be performed in parallel with mechanical and electrical work using fire, and inspection and maintenance work for each part can be performed in parallel. Can be shortened. Thus, the use of the chemical cleaning method and the chemical cleaning apparatus of the present invention is advantageous because the cost required for maintenance such as equipment costs and chemical costs can be greatly reduced.
  • the cleaning step is performed while maintaining the value within a range of ⁇ 0.8 V or more and ⁇ 0.4 V or less with respect to a silver-silver chloride electrode.
  • the value may be adjusted by supplying a reducing atmosphere gas to the device to be cleaned.
  • the chemical cleaning apparatus includes a reducing atmosphere adjusting unit that adjusts the oxidation-reduction potential of the cleaning liquid during cleaning to a value in the range of ⁇ 0.8 V or more and ⁇ 0.4 V or less with respect to the silver-silver chloride electrode.
  • the reducing atmosphere adjusting unit may supply reducing atmosphere gas to the cleaning target device.
  • the hematite is dissolved and removed in the cleaning liquid by maintaining the reduced state as the above redox potential.
  • the solid matter such as sludge is hardly generated by the cleaning, and even when a slight amount of solid matter is generated, it can be easily discharged from the cleaning target device together with the cleaning liquid. Further, since no equipment for removing sludge is required, the equipment cost can be reduced.
  • the temperature of the cleaning liquid in the cleaning step is in a range of an ambient temperature around the member and a temperature that is 10 ° C. higher than the ambient temperature.
  • the temperature of the cleaning liquid supplied to the member is in a range of an ambient temperature around the member and a temperature that is 10 ° C. higher than the ambient temperature.
  • the chemical cleaning apparatus further includes a circulation loop that connects the chemical liquid supply line on the upstream side and the chemical liquid supply line on the downstream side across the pump, and a part of the cleaning liquid that has passed through the pump is the circulation loop. It is preferable to be conveyed to the upstream side of the pump via
  • hematite can be removed at a lower temperature than when an acidic cleaning solution is used, and it is not necessary to positively raise the temperature of the cleaning solution, and it is extremely easy to maintain the temperature at the ambient temperature.
  • the temperature of the cleaning liquid is raised to a temperature that is 10 ° C. higher than the environmental temperature, the cleaning power can be further increased.
  • the temperature of the cleaning liquid can be easily raised by using heat generated during pump operation. Since the configuration of the present invention does not actively cool, the temperature of the cleaning liquid can be maintained higher than the environmental temperature for a long time. According to the present invention, it is possible to perform cleaning at a lower temperature than the conventional method using an acidic cleaning liquid. As a result, it is possible to reduce equipment costs and cleaning costs.
  • the region is immersed in the cleaning liquid while the cleaning liquid is left standing.
  • the chemical cleaning apparatus stops the supply of the cleaning liquid to the member and the discharge of the cleaning liquid from the member to allow the cleaning liquid to stand. According to the chemical cleaning method and the chemical cleaning apparatus described above, it is not necessary to install a large circulation path for the cleaning liquid, which is advantageous because the cleaning is performed in a simple process.
  • the chemical cleaning method further includes a water supply step between the cleaning liquid supply step and the cleaning step, wherein a predetermined amount of the cleaning liquid is supplied to the cleaning target device in the cleaning liquid supply step, and in the water supply step A predetermined amount of water is supplied to the device to be cleaned, and the region is immersed in the cleaning liquid.
  • the chemical cleaning apparatus further includes a water supply unit including a water tank that stores water, a water supply line that connects the water tank and the device to be cleaned, and a water pump installed in the water supply line. Prepare.
  • the cleaning liquid layer and the water layer can be separated in the cleaning target device. If the area where hematite is adhered is immersed in the cleaning liquid and the other part is immersed in water, the amount of the cleaning liquid used for chemical cleaning can be greatly reduced.
  • the cleaning liquid may be accommodated in a capsule made of a water-soluble polymer, and the capsule may be supplied to the device to be cleaned.
  • the cleaning liquid may be stored in a capsule made of a water-soluble polymer
  • the chemical liquid tank may store the capsule
  • the capsule may be supplied from the cleaning liquid tank to the device to be cleaned.
  • the cleaning liquid is repeatedly discharged from the member and the discharged cleaning liquid is supplied to the member during the cleaning step, and the cleaning liquid is disposed in the vicinity of the region. Move the liquid level.
  • the cleaning liquid in the member is discharged toward the chemical liquid tank through the chemical liquid discharge line, and the cleaning liquid in the chemical liquid tank is supplied to the member through the chemical liquid supply line.
  • the cleaning power is improved, which is advantageous.
  • the cleaning liquid passes through the member and is discharged from the upstream end of the member, and the discharged cleaning liquid is directly discharged to the downstream end of the member. Circulated.
  • the circulation line includes a circulation line that connects an upstream end and a downstream end of the member, and a circulation pump installed in the circulation line, and the circulation line is used during cleaning. Then, the cleaning liquid discharged from the front downstream end is circulated to the upstream end.
  • This chemical cleaning method and chemical cleaning apparatus also improve the cleaning power because a flow rate is given to the cleaning liquid and the cleaning liquid is stirred in the region where hematite is adhered.
  • the cleaning liquid is heated when passing through the pump and cleaning is performed in a state higher than the environmental temperature around the member, the cleaning power is improved.
  • the chemical cleaning method further includes a measuring step in which the iron concentration in the cleaning solution is measured, and a determination step in which the removal status of the hematite from the member is determined based on the iron concentration.
  • the cleaning liquid is discharged from the cleaning target device during the cleaning process, the iron concentration in the cleaning liquid discharged in the measurement process is measured, and the iron concentration is determined to be equal to or higher than a predetermined concentration in the determination process. In this case, or when it is determined that the amount of change in the concentration gradient is a value within a predetermined range, the cleaning step is terminated.
  • the apparatus while cleaning the cleaning target device while maintaining the redox potential of the cleaning liquid of the cleaning target device at a value at which the hematite is eluted in the cleaning solution, Based on the concentration of iron in the cleaning liquid discharged from the target device, the removal state in which the hematite is eluted from the member is determined, and when the iron concentration is determined to be a predetermined concentration or more, or the amount of change in the concentration gradient is When it is determined that the value is within the predetermined range, the apparatus further includes a determination unit that ends the cleaning of the cleaning target device.
  • the end of the chemical cleaning is determined using the iron concentration in the cleaning liquid once discharged from the cleaning target device during the cleaning. This not only facilitates measurement of the iron concentration, but also improves the measurement accuracy because the cleaning solution is stirred and the iron concentration is made uniform by being discharged from the cleaning target device. According to the present invention, hematite can be reliably removed by chemical cleaning, and the effect of improving maintenance efficiency can be obtained.
  • the cleaning liquid when the cleaning liquid is discharged from the cleaning target device at a predetermined time period in the cleaning step and the iron concentration is determined to be less than the predetermined concentration in the determination step, or the amount of change in the concentration gradient May be returned to the cleaning target device when it is determined that the value is larger than a predetermined range.
  • the determination unit may determine the removal status of the hematite using the iron concentration in the cleaning liquid discharged from the cleaning target device and stored in the chemical tank.
  • the cleaning liquid passes through the member and is discharged from one end of the member, and the discharged cleaning liquid is discharged from the other end of the member.
  • the iron concentration may be measured using a part of the cleaning liquid that is directly circulated to the end portion and discharged in the measurement step.
  • a circulation unit including a circulation line that directly connects one end side end and the other end side end of the member, and a circulation pump installed in the circulation line.
  • the cleaning liquid discharged from the one end side end portion through the circulation line during cleaning is circulated to the other end flow side end portion, an extraction portion is installed in the circulation line, and the determination portion is You may determine the removal condition of the said hematite using the said iron concentration in the said washing
  • the flow rate is given to the cleaning liquid and the cleaning liquid is agitated in the region where hematite adheres, so that the cleaning power is improved.
  • a part of the circulating cleaning liquid can also be used for determining the end of chemical cleaning.
  • an observation step in which the color of the surface to which the hematite is adhered is observed during the cleaning step, and the hematite from the member based on the color
  • a determination step in which the removal status is determined, and the surface to which the hematite is attached is the region or a portion to which the hematite in the test specimen immersed in the cleaning liquid is attached, and the determination step When it is determined that no color derived from the hematite is observed, the cleaning step is terminated.
  • the cleaning target device is cleaned while maintaining the redox potential of the cleaning solution of the cleaning target device at a value at which the hematite elutes in the cleaning solution.
  • a determination unit that determines the removal state in which the hematite elutes on the surface on which the hematite is adhered by observing the color, and terminates the cleaning of the cleaning target device when it is determined that the color derived from the hematite is not observed
  • the surface to which the hematite is attached is the region or the portion to which the hematite is attached in the test body immersed in the cleaning liquid.
  • the amount of cleaning liquid required for chemical cleaning can be significantly reduced, and the maintenance work period can be shortened, so that the maintenance cost can be significantly reduced. Furthermore, according to this aspect, it is possible to determine the end of the chemical cleaning by a simple method of determining the presence or absence of the attached hematite, so that the working efficiency is improved.
  • a measurement step in which ultrasonic measurement or AC electrical property measurement is performed on the surface of the member opposite to the side where the region is formed during the cleaning step.
  • a determination step of determining a removal status of the hematite from the member based on a time change of the measurement value obtained in the measurement step, and the measurement value is equal to or less than a predetermined value in the determination step. Or when it is determined that the amount of change in the change gradient of the measured value is a value within a predetermined range.
  • the measurement is performed on the surface of the member opposite to the surface on which the hematite is formed and performs ultrasonic measurement or AC electrical property measurement on the member. And the time of the measurement value acquired by the measurement unit while cleaning the cleaning target device while maintaining the redox potential of the cleaning solution of the cleaning target device at a value at which the hematite is eluted in the cleaning solution.
  • the removal status of the hematite from the member is determined based on the change, and when it is determined that the measurement value is equal to or less than a predetermined value, or the change amount of the change gradient of the measurement value is within a predetermined range And a determination unit that terminates the cleaning of the device to be cleaned.
  • the measured value is a thickness of the hematite attached to the member obtained by the ultrasonic measurement.
  • the measured value is preferably a reactance obtained by the AC electrical characteristic measurement.
  • the amount of cleaning liquid required for chemical cleaning can be significantly reduced, and the maintenance work period can be shortened, so that the maintenance cost can be significantly reduced.
  • This embodiment has the advantage that it is not necessary to collect the cleaning liquid, and it is possible to quickly determine the end of chemical cleaning by a simple method of determining the presence or absence of the attached hematite.
  • the cleaning liquid in the cleaning step, is discharged from the member in a state where the oxidation-reduction potential of the cleaning liquid is maintained at a value at which the hematite is eluted in the cleaning liquid. And the step of feeding at least a part of the cleaning liquid to the member is repeated, and the height of the liquid surface of the cleaning liquid is moved in the vicinity of the region, and the hematite is moved to the member.
  • a measuring step in which the pressure of the cleaning liquid discharged from the member during the step of discharging is measured, and removal of the hematite from the member based on a change in the pressure obtained in the measuring step A determination step in which a situation is determined, and in the step of supplying, the cleaning liquid is supplied to the member while changing a supply amount at a predetermined frequency, and the determination step.
  • the phase difference between the waveform of the change amount of the cleaning liquid supply and the waveform of the pressure change is equal to or less than a predetermined value, or the change amount of the change gradient of the phase difference is within a predetermined range.
  • the cleaning process is ended.
  • the chemical cleaning apparatus further includes a valve installed in the chemical solution supply line, a pressure measuring unit installed in the chemical solution discharge line, and a determination unit, and the device to be cleaned While cleaning the apparatus to be cleaned while maintaining the oxidation-reduction potential of the cleaning liquid at a value at which the hematite elutes in the cleaning liquid, at least a part of the cleaning liquid in the member is passed through the chemical liquid discharge line.
  • the discharge of the cleaning liquid in the chemical liquid tank and the supply of the cleaning liquid in the chemical liquid tank to the member through the chemical liquid supply line are repeated, and the pump or the valve supplies the cleaning liquid to the member.
  • the supply amount is changed at a predetermined frequency, and the pressure measurement unit adjusts the pressure of the cleaning liquid flowing through the chemical liquid discharge line while cleaning the cleaning target device.
  • the determination unit determines the removal status of the hematite from the member based on the change in the pressure, and the determination unit determines a waveform of the change in the amount of the cleaning liquid to be fed and a waveform of the change in the pressure.
  • phase difference between the pressure difference and the phase difference is determined to be equal to or less than a predetermined value, or when the amount of change in the change gradient of the phase difference is determined to be within a predetermined range, or the waveform of the pressure change
  • the period or amplitude is equal to or less than a predetermined value, or when it is determined that the change amount of the change gradient of the period or the change amount of the change gradient of the amplitude is a value within a predetermined range
  • the flow rate is given to the cleaning liquid in the region where hematite is adhered by moving the liquid level by repeatedly discharging and feeding the cleaning liquid during the cleaning process. Since the cleaning liquid is agitated, the cleaning power is advantageously improved.
  • the coefficient of friction between the cleaning liquid and the member changes depending on the state of hematite adhesion.
  • the inventors vibrate the liquid level of the cleaning liquid in the member, and this vibration state is reflected in the pressure change of the cleaning liquid at the time of discharge. I found.
  • the amount of cleaning liquid used can be reduced as compared with the conventional chemical cleaning method, and the configuration of the chemical cleaning apparatus is simplified, so that the cost required for chemical cleaning can be greatly reduced.
  • the cleaning liquid is not supplied to other equipment and hydrogen is not generated during cleaning, it is possible to perform other operations simultaneously with chemical cleaning. For this reason, this invention has the advantageous effect that a maintenance work period is shortened compared with a prior art.
  • the hematite can be reliably removed from the surface of the member because the removal status of the hematite is monitored using the parameters measured during the cleaning step to determine the timing of the end of the cleaning step.
  • the cleaning liquid used in the chemical cleaning method and the chemical cleaning system of the present invention is an aqueous solution containing a neutral rust remover.
  • the neutral rust remover is a chelating agent, a reducing agent, or a mixed agent of a chelating agent and a reducing agent.
  • Chelating agents include, for example, aminocarboxylic acids such as EDTA, BAPTA, DOTA, EDDS, INN, NTA, DTPA, HEDTA, TTHA, PDTA, DPTA-OH, HIDA, DHEG, GEDTA, CMGA, EDDS, and amino such as salts thereof.
  • Carboxylic acid chelating agents such as citric acid, gluconic acid, hydroxyacetic acid and the like, and salts thereof, organic phosphoric acids such as ATMP, HEDP, NTMP, PBTC, EDTMP and their salts
  • Organic phosphorus chelating agents such as Examples of the reducing agent include various metal ions such as Fe 2+ and Sn 2+ , sulfites such as sodium sulfite, organic compounds such as oxalic acid, formic acid, ascorbic acid, and pyrogallol, hydrazine, and hydrogen.
  • the cleaning liquid containing a neutral rust remover has a pH of 4 to 8, and preferably a pH of 5 to 7.
  • a corrosion inhibitor may be added to the neutral rust remover.
  • the concentrations of the chelating agent, the reducing agent, and the corrosion inhibitor are appropriately adjusted so that a desired cleaning power and cleaning time can be obtained.
  • the cleaning liquid may or may not contain an antifoaming agent for preventing foaming.
  • an antifoaming agent for preventing foaming.
  • a known antifoaming agent can be used.
  • thermal power generation system a thermal power generation system
  • present invention is not limited to a thermal power generation system, and can be applied to other devices to which hematite adheres.
  • FIG. 1 is a schematic view for explaining a chemical cleaning apparatus according to the first embodiment.
  • FIG. 1 shows a case where a chemical cleaning apparatus 100 is installed in the thermal power generation system 1 during maintenance.
  • the configuration of the thermal power generation system 1 is the same as that shown in FIG.
  • hematite which is a powdery scale, adheres to the inside of the heat transfer pipe such as the water-cooled wall pipe of the once-through boiler 10, and the heat conductivity of the heat transfer pipe is lowered. Therefore, the once-through boiler 10 is a cleaning target device in order to recover the heat transfer performance.
  • the chemical cleaning apparatus 100 includes a chemical tank 101, a chemical supply line 102 that connects the chemical tank 101 and the once-through boiler 10, a chemical discharge line 103 that connects the chemical tank 101 and the once-through boiler 10, and a control. Part 104.
  • the chemical tank 101 contains the above-described cleaning liquid.
  • the control unit 104 is a computer, for example. Control unit 104 includes a determination unit.
  • FIG. 2 is an example of a once-through boiler.
  • 2A is a schematic view of the once-through boiler
  • FIG. 2B is an enlarged view of a portion surrounded by a circle A in FIG. 2A.
  • the once-through boiler 10a shown in FIG. 2A includes a combustion chamber 11a surrounded by a wall surface 12a and a plurality of water-cooled wall tubes.
  • the water-cooled wall tube 13a of the once-through boiler 10a has a straight tube extending along the wall surface 12a in a direction perpendicular to the cross section of the combustion chamber 11a.
  • a plurality of water-cooled wall tubes 13a are arranged in the horizontal direction along the wall surface 12a.
  • the lower header 14a is installed in the lower part of the combustion chamber 11a, and the lower ends of the plurality of water-cooled wall tubes 13a are connected to the lower header 14a.
  • An upper header is installed in the upper part of the combustion chamber 11a, and the upper ends of the plurality of water-cooled wall tubes 13a are connected to the upper header 15a.
  • FIG. 3 shows another example of the once-through boiler.
  • 3A is a schematic view of a once-through boiler
  • FIG. 3B is an enlarged view of a portion surrounded by a circle B in FIG. 3A.
  • 3 is different from the once-through boiler 10a of FIG. 2 in the shape of the water-cooled wall tube.
  • a plurality of water-cooled wall tubes 13b are disposed along the wall surface 12b in a spiral shape below the combustion chamber 11b.
  • the water-cooled wall pipe 13b branches into a plurality of pipes at a midway position in the vertical direction of the combustion chamber 11b (branch portion 16).
  • the branched water-cooled wall tube 13b is straight and extends upward in the vertical direction along the wall surface 12b with respect to the cross section of the combustion chamber 11a.
  • the lower header 14b is installed in the lower part of the combustion chamber 11b, and the lower ends of the plurality of water-cooled wall tubes 13b are connected to the lower header 14b.
  • An upper header is installed in the upper part of the combustion chamber 11b, and the upper ends of the plurality of water-cooled wall tubes 13b are connected to the upper header 15b.
  • the chemical solution supply line 102 and the chemical solution discharge line 103 are connected to the lower headers 14a, 14b of the once-through boiler 10 (10a, 10b).
  • the chemical solution supply line 102 is provided with a pump 105 and a valve V1.
  • a valve V ⁇ b> 2 is installed in the chemical solution discharge line 103.
  • the pump 105 and the valves V1 and V2 communicate with the control unit 104.
  • hematite adheres depends on how the water-cooled wall pipe is installed. Hematite tends to adhere to a place where the flow rate of boiler feed water changes in the water-cooled wall pipe. For example, in the once-through boiler 10a of FIG. 2, hematite adheres more to the inner surface of the water-cooled wall tube 13a located below the combustion chamber 11a than the other parts. In the once-through boiler 10b of FIG. 3, hematite adheres more to the inner surface of the water-cooled wall tube 13b of the branch portion 16 than to the other portions.
  • the chemical cleaning apparatus 100 of the first embodiment further includes a reducing atmosphere adjusting unit.
  • the reducing atmosphere adjustment unit is the reducing atmosphere gas supply unit 110.
  • the reducing atmosphere gas supply unit 110 in FIG. 1 includes a reducing atmosphere gas storage unit 111 and an air supply line 112.
  • the chemical cleaning apparatus 100 includes an exhaust line 113. Valves V3 and V4 are installed in the air supply line 112 and the exhaust line 113, respectively.
  • the air supply line 112 and the exhaust line 113 are connected to the upper headers 15a and 15b of the once-through boiler 10 (10a and 10b).
  • the valves V3 and V4 are connected to the control unit 104.
  • the reducing atmosphere gas storage unit 111 is a cylinder that stores the reducing atmosphere gas.
  • the reducing atmosphere gas is a gas for adjusting the cleaning liquid to a reduced state.
  • the reducing atmosphere gas is nitrogen, argon, steam, carbon dioxide, combustion exhaust gas, or the like.
  • the purity of the reducing atmosphere gas does not have to be a high-purity gas, and any gas can be used as long as the oxidation-reduction potential of the cleaning liquid during the cleaning process described later can be maintained within a predetermined range.
  • nitrogen is used as the reducing atmosphere gas
  • a nitrogen injection facility that is already installed in the thermal power generation system 1 can be used as the reducing atmosphere gas supply unit 110, or a nitrogen injection facility may be temporarily or newly installed.
  • Steam or combustion exhaust gas as the reducing atmosphere gas can be steam or combustion exhaust gas generated in a boiler of another adjacent thermal power generation system.
  • a chemical cleaning method for cleaning and removing hematite attached in the once-through boiler using the chemical cleaning apparatus 100 of the first embodiment will be described below.
  • the chemical cleaning method of the present embodiment is performed, for example, during a periodic inspection of the thermal power generation system, during a process of constructing a scaffold in the furnace and a process of constructing equipment other than the equipment to be cleaned (the once-through boiler 10).
  • a valve installed in a pipe connecting the once-through boiler 10 and the economizer 26 is closed.
  • the control unit 104 opens the valves V2 and V3.
  • a reducing atmosphere gas (such as nitrogen gas) is supplied from the reducing atmosphere gas storage unit 111 to the water-cooled wall pipes 13a and 13b of the once-through boiler 10 via the air supply line 112. Air in the water-cooled wall tubes 13 a and 13 b is discharged out of the system through the chemical solution discharge line 103. By this step, the air in the water-cooled wall tubes 13 a and 13 b in the once-through boiler 10 is discharged through the chemical solution discharge line 103. By the gas supply process, the water-cooled wall tubes 13a and 13b are filled with the reducing atmosphere gas. After a sufficient time for gas replacement has elapsed, the control unit 104 closes the valves V2 and V3.
  • the control unit 104 activates the pump 105 and opens the valve V1.
  • the control unit 104 opens the valve V4.
  • the cleaning liquid in the chemical liquid tank 101 is fed to the once-through boiler 10 via the chemical liquid supply line 102.
  • the inner surfaces of the water-cooled wall pipes 13a and 13b are immersed in the cleaning liquid, and the purge gas in the water-cooled wall pipes 13a and 13b such as nitrogen having a volume corresponding to the supplied cleaning liquid is discharged out of the system through the exhaust line 113.
  • the control unit 104 supplies the cleaning liquid so that the liquid level 18 of the cleaning liquid is located above the region 17 where hematite is attached more than the other parts.
  • the cleaning liquid is filled with the upper ends of the plurality of water-cooled wall tubes 13a and 13b (connection portions with the upper headers 15a and 15b) as the upper limit.
  • the cleaning liquid does not reach the downstream steam separator 30 beyond the once-through boiler 10. That is, in the present embodiment, the cleaning liquid is supplied only to the once-through boiler 10 that is the cleaning target device.
  • a region of the hematite adhering region, in particular, the region 17 where hematite adheres more than the other part is specified in advance, so that the hematite adhering region can be immersed from each size of the water-cooled wall tubes 13a and 13b. Necessary amount can be determined.
  • the control unit 104 stores the required amount of cleaning liquid, and supplies a predetermined amount of cleaning liquid according to the required amount of steam to the once-through boiler 10 in the cleaning liquid supply process.
  • ⁇ Washing process> When the region to which hematite is attached is immersed in the cleaning liquid, the control unit 104 stops the pump 105 and closes the valves V1 and V4. In a state where the cleaning liquid is allowed to stand, the hematite is immersed in the cleaning liquid and the cleaning process is performed.
  • the soaking time depends on the amount of hematite generated, but is, for example, 24 hours or longer. During this cleaning process, the pressure in the water-cooled wall tubes 13a and 13b hardly changes and is constant.
  • the temperature of the cleaning liquid during the cleaning process is approximately the same as the environmental temperature around the water-cooled wall tubes 13a and 13b.
  • the ambient temperature around the water-cooled wall tubes 13a and 13b is about 20 to 40 ° C. Since the environmental temperature is close to the outside air temperature and does not change greatly during the cleaning process, the cleaning liquid temperature is also maintained at substantially the same level as the environmental temperature.
  • the cleaning liquid in the cleaning process is maintained in a reduced state.
  • the oxidation-reduction potential of the cleaning liquid during the cleaning step can be measured using, for example, an oxidation-reduction potentiometer in the middle of the chemical solution discharge line 103, and the oxidation-reduction potential is based on a silver-silver chloride electrode reference. It is maintained at 0.8V or more and ⁇ 0.4V or less. According to the pH-potential diagram, by setting the oxidation-reduction potential to ⁇ 0.4 V or less, the iron oxide dissolution reaction efficiency is increased and hematite is dissolved in the cleaning solution.
  • Fe 0 occurs as the redox potential decreases.
  • the oxidation-reduction potential is less than ⁇ 0.8 V, Fe 0 is generated, sludge is precipitated, and iron adheres to the water-cooled wall tubes 13a and 13b.
  • the reducing atmosphere gas is refilled so as to maintain the oxidation-reduction potential of the cleaning liquid.
  • the valves V2 and V3 are opened.
  • the reducing atmosphere gas is supplied from the reducing atmosphere gas storage unit 111 to the once-through boiler 10, and the cleaning liquid is supplied to the chemical liquid tank 101 via the chemical liquid discharge line 103.
  • the valves V2 and V3 are closed, the valves V1 and V4 are opened, and the pump 105 is started, so that the cleaning liquid in the chemical tank 101 is supplied to the once-through boiler 10.
  • valves V3 and V4 are opened while the valves V1 and V2 are closed, and the reducing atmosphere gas is supplied from the reducing atmosphere gas storage unit 111 to the once-through boiler 10 to be refilled with the reducing atmosphere gas.
  • the above-described reducing agent may be added to the cleaning liquid.
  • the cleaning liquid is returned to the chemical liquid tank 101 in the same manner as described above, and after the reducing agent is added in the chemical liquid tank 101, the cleaning liquid is supplied to the once-through boiler 10.
  • the maintenance of the oxidation-reduction potential may be automated based on an instruction from the control unit 104 that monitors the oxidation-reduction potential, or an operator may manually detect and maintain the oxidation-reduction potential.
  • FIG. 5 and 6 show the results of verifying the effect of the chemical cleaning method of the present embodiment using a water-cooled wall tube collected from an actual machine.
  • a water-cooled wall tube with hematite attached was collected from the actual machine and immersed (soaked) in the above-described cleaning solution (pH 5 to 7) while maintaining at 25 ° C.
  • the components of the cleaning liquid are appropriately selected between 3 to 5% by weight of the chelating agent and 1.5 to 2.5% by weight of the reducing agent.
  • the inner surface of the water-cooled wall tube before immersion in the cleaning solution was red, and an autooxidation scale (magnetite (Fe 3 O 4 )) and hematite were confirmed in the SEM photograph (FIG. 5).
  • the inner surface of the water-cooled wall tube after the chemical cleaning was black, and only the self-oxidation scale was confirmed in the SEM photograph (FIG. 6).
  • a cleaning solution (pH 5 to 7) to which hematite powder was added was placed in a container, and the upper portion of the cleaning solution was purged with nitrogen and sealed.
  • the oxidation-reduction potential during the test period was in the range of -0.8 V to -0.4 V based on the silver-silver chloride electrode.
  • the components of the cleaning liquid are appropriately selected between 3 to 5% by weight of the chelating agent and 1.5 to 2.5% by weight of the reducing agent.
  • the washing liquid changed from opaque reddish brown to almost transparent. This means that hematite was dissolved in the cleaning liquid by soaking.
  • the end of the cleaning step is based on one of (1) the iron concentration in the cleaning liquid, (2) the color change of the hematite adhering portion, and (3) the analysis result of the internal state from the outside of the water-cooled wall tube. Determined.
  • valves V2 and V3 are opened at predetermined time intervals.
  • the reducing atmosphere gas is supplied from the reducing atmosphere gas storage unit 111 to the water-cooled wall pipes 13a and 13b of the once-through boiler 10 through the air supply line 112, and the cleaning liquid in the water-cooled wall pipes 13a and 13b is transferred to the lower headers 14a and 14b.
  • ⁇ Measurement process> A part of the cleaning liquid collected in the chemical liquid tank 101 is collected. Using the collected cleaning liquid, the iron concentration in the cleaning liquid is measured by the quantitative analysis defined in JIS B8224. The iron concentration acquired at a predetermined time period is input to the determination unit of the control unit 104.
  • the numerical value of the iron concentration in the cleaning liquid increases with time, and when hematite is completely removed from the water-cooled wall tubes 13a and 13b, the concentration is saturated to a substantially constant value.
  • a determination part determines the condition where hematite elutes and is removed from the time change of iron concentration.
  • the iron concentration obtained by the basic test or simulation may be stored in the determination unit as a predetermined concentration (determination reference concentration) indicating that hematite has been removed.
  • determination unit determines that the iron concentration measured in the measurement step is equal to or higher than the determination reference concentration
  • the determination unit terminates the cleaning step in the control unit 104, assuming that hematite is eluted and removed. The discharge process is carried out.
  • the removal of hematite may be determined from the amount of change in iron concentration.
  • the change (concentration gradient) per unit time of the difference between the measurement value of the iron concentration measured in the measurement process and the previous measurement value is gradually reduced. From this, the change amount of the concentration gradient is stored in the determination unit as a determination criterion, and when the determination unit determines that the change amount of the concentration gradient is within a predetermined range, hematite is eluted and removed.
  • the determination unit causes the control unit 104 to end the cleaning process and to perform a discharge process described later.
  • the iron concentration C t at the time T t is measured in the measurement process and input to the determination unit.
  • Determination unit includes a iron concentration C t-1 in the previous (time T t-1), the iron concentration C t-2 is also stored in the time before last (time T t-2).
  • the determination unit acquires the concentration gradient ⁇ C t acquired this time and the change amount ⁇ d t of the concentration gradient ⁇ C t ⁇ 1 acquired last time.
  • Determination unit determines if the acquired [Delta] d t is in the range of pre-stored criteria, reaching the criteria and. For example, the criterion is ⁇ 20%. In the case where hematite precipitates in the cleaning target device 10 is relatively uniform, the determination accuracy can be improved by setting the determination criterion to ⁇ 10%.
  • the determination unit causes the control unit 104 to perform a cleaning process. Let it continue.
  • the control unit 104 supplies the cleaning liquid in the chemical liquid tank 101 to the once-through boiler 10 again in the same process as the cleaning liquid supply process.
  • the oxidation-reduction potential of the cleaning liquid is measured simultaneously with the measurement of the iron concentration in the measurement step. By doing so, the components of the cleaning liquid may be adjusted.
  • the determination is made by observing the color change of either (A) the test piece to which hematite has adhered or (B) the water-cooled wall tube.
  • test piece to which hematite is adhered is prepared. As shown in FIG. 7, the test piece is a water-cooled wall tube cut in two along the axial direction, and hematite is attached to the inner wall surface.
  • This test piece (cutting test piece 120) has hematite of the same level as that of the once-through boiler 10 (device to be cleaned) being cleaned.
  • a test piece is produced by cutting a water-cooled wall tube collected from the same position during previous maintenance, or a water-cooled wall tube collected from another plant operated under similar conditions.
  • the test piece may be a plate material (plate-like test piece) made of the same material as the water-cooled wall tube, and hematite of the same degree as the water-cooled wall tube may be attached to one surface. Further, the test piece may be a water-cooled wall tube (cylindrical test piece that is not cut along the axial direction like the cut test piece) collected as described above.
  • the surface of the test piece to which hematite is attached is immersed in the cleaning liquid during the cleaning process.
  • a plurality of cut test pieces or plate-like test pieces are immersed in the cleaning liquid stored in the chemical tank 101.
  • the reducing atmosphere gas can be supplied into the chemical liquid tank 101, and while the test piece is immersed, the cleaning liquid in the chemical liquid tank 101 has an oxidation-reduction potential equivalent to that of the water-cooled wall tubes 13a and 13b. It is preferable to adjust.
  • a transparent plate (for example, acrylic) 121 is disposed on the cut surface of the cutting test piece 120, and one end surface of the cutting test piece 120 is a plate material (not shown in FIG. 8).
  • the surface having hematite attached is immersed in the cleaning liquid by injecting the cleaning liquid containing the same concentration of the rust removing agent as the cleaning liquid supplied to the once-through boiler 10 into the space 122 formed by the arrangement of Is done.
  • the injection of the cleaning liquid is preferably performed substantially simultaneously with the start of the cleaning process.
  • the oxidation-reduction potential of the cleaning liquid injected into the cutting specimen 120 is adjusted to the oxidation-reduction potential equivalent to that of the water-cooled wall tubes 13a, 13b by the reducing atmosphere gas.
  • a bypass portion 130 is installed on the upstream side of the valve V ⁇ b> 1 of the chemical solution supply line 102, and a cylindrical test piece 132 is connected to a midway position of the bypass pipe 131 of the bypass portion 130.
  • the reducing atmosphere gas is supplied so as to reach the bypass portion 130, and the cleaning liquid in the cylindrical test piece 132 is immersed in the water-cooled wall tube 13a, while the cylindrical test piece 132 is immersed. It is preferable to adjust to an oxidation-reduction potential equivalent to 13b.
  • ⁇ Observation process> During the cleaning process, one of the test pieces immersed in the cleaning liquid in the chemical liquid tank 101 is taken out from the cleaning liquid at predetermined time intervals. The color of the surface of the removed specimen on which hematite is adhered is observed. The observation is performed by an operator's visual observation or using a CCD camera. In the case of visual observation, the operator inputs the determination result of the color change to the determination unit. In the case of observation by a CCD camera, measurement data is transmitted to the determination unit.
  • the inner wall surface of the cylindrical test piece 132 is observed using a CCD camera at a predetermined time period. Specifically, an observation hole is drilled in the cylindrical test piece 132, and a viewport is inserted into the observation hole so that reflected light from the observation site can enter the CCD camera, and the inner wall surface is immersed in the cleaning liquid. Is observed. The measurement data is transmitted to the determination unit.
  • Hematite is approximately red, but as the removal of hematite proceeds, the underlying natural oxide layer (magnetite: approximately black) or the underlying metal layer (approximately silver) is exposed, and the color changes.
  • the determination unit determines that hematite is removed when no color derived from hematite is observed.
  • the determination unit causes the control unit 104 to end the cleaning process and to perform a discharge process described later.
  • the determination unit causes the control unit 104 to continue the cleaning process when a color derived from hematite is observed.
  • the determination unit separates the RGB components of the measurement data signal and extracts only the R component or extracts the R component and the B component.
  • the determination unit determines a state in which hematite is eluted and removed from the time change of the R component or the time change of the ratio between the R component and the B component (R component / B component).
  • the determination unit determines the ratio of the R component value to the initial value (R component measurement value / R component initial value) or the ratio of the R component / B component value to the initial value ((R component / B component measurement). Value) / (R component / B component initial value)) is stored. This criterion is specifically a value within the range of 1/5 to 1/10. Since the measured values of the R component or the R component / B component differ depending on the precipitation state of hematite, it is preferable to determine the determination criteria in the basic test.
  • the determination unit determines that hematite-derived color is not observed when the ratio of the R component value to the initial value or the ratio of the R component / B component value to the initial value is equal to or less than the determination criterion.
  • the determination unit determines that hematite is eluted and removed, and causes the control unit 104 to end the cleaning process and to perform a discharge process described later.
  • valves V2 and V3 are opened at a predetermined time period.
  • the reducing atmosphere gas is supplied from the reducing atmosphere gas storage unit 111 to the water-cooled wall pipes 13a and 13b of the once-through boiler 10 through the air supply line 112, and the cleaning liquid in the water-cooled wall pipes 13a and 13b is transferred to the lower headers 14a and 14b.
  • observation process An observation hole is drilled in the vicinity of the region 17 where the hematite adheres to the water-cooled wall tubes 13a and 13b.
  • the observation hole is formed on the surface of the water-cooled wall pipes 13a and 13b opposite to the fuel chambers 11a and 11b.
  • a view port for the CCD camera is inserted into the observation hole, and the inner wall surface is observed.
  • the determination unit determines the hematite removal status from the color derived from hematite, and causes the control unit 104 to continue or end the cleaning process.
  • observation holes formed in the surfaces of the water-cooled wall tubes 13a and 13b in order to make a determination using a CCD camera are restored by filling them with welding after the chemical cleaning is completed.
  • an ultrasonic probe is attached to the outside of the water-cooled wall tube in the area where hematite adheres.
  • the region where hematite adheres is specified by collecting the water-cooled wall tube and observing the inner wall surface during the previous maintenance. Alternatively, it is specified by measuring the wall thickness of the water-cooled wall tube to which hematite is adhered by scanning the probe in the direction of water flow outside the water-cooled wall tube before chemical cleaning.
  • Ultrasonic measurement of a water-cooled wall tube is performed at predetermined time intervals during the cleaning process.
  • the measurement value (the thickness of the water-cooled wall tube) acquired in the measurement process is transmitted to the determination unit.
  • ⁇ Judgment process> When hematite is eluted and removal proceeds, the measured value decreases, and when hematite is completely removed, the ultrasonic measured value becomes constant as the wall thickness of the water-cooled wall tube without adhesion of hematite.
  • the determination unit determines the removal status of hematite from the time change of the measurement value by the ultrasonic wave.
  • the determination unit determines that the wall thickness measured in the measurement process is equal to or less than the determination criterion, the determination unit terminates the cleaning process in the control unit 104 as hematite is eluted and removed, which will be described later.
  • the discharge process is carried out.
  • hematite removal may be determined from the amount of change in the measured thickness value.
  • the difference between the wall thickness value obtained in the measurement process and the wall thickness value obtained in the previous measurement process is gradually reduced.
  • the change amount of the wall thickness change gradient which is the inclination of the wall thickness change per unit time, is stored in the determination unit as a determination criterion, and the determination unit sets the change amount of the wall thickness change gradient to a value within a predetermined range. If it is determined that the hematite is eluted and removed, the determination unit causes the control unit 104 to end the cleaning process and to perform a discharge process described later.
  • the determination unit is a control unit In 104, the cleaning process is continued.
  • an electrical characteristic evaluation device 140 is installed outside the water-cooled wall tube in the area where hematite is adhered as shown in FIG.
  • Two terminals 141 are installed apart from each other in the axial direction of the water-cooled wall tube 13 (13a, 13b), and an LCR meter 142 is installed between the terminals 141.
  • the distance between the tips of the terminals 141 is set to about 1 m to 5 m so that it can be easily distinguished from the DC electric resistance of the water-cooled wall tube 13 (13a, 13b).
  • a network analyzer may be installed.
  • FIG. 11 is a circuit diagram when the electrical property evaluation apparatus 140 is installed as shown in FIG.
  • the water-cooled wall tube 13 and the cleaning liquid inside the water-cooled wall tube are represented as resistors R1 and R3, respectively.
  • the region 17 to which hematite is attached is represented by resistors R2a and R2b and capacitor capacitances C1 and C2.
  • Hematite (oxide) is a resistance component. As hematite removal progresses, the capacitance of the hematite (C1 and C2) decreases, so the reactance of the circuit decreases.
  • the LCR meter 141 measures the reactance of the water-cooled wall tube 13 at a predetermined time interval. The reactance value acquired in the measurement process is transmitted to the determination unit.
  • the determination unit determines a removal state in which hematite is eluted from the change in reactance with time.
  • ⁇ Reactance of the water-cooled wall tube which indicates that the attached hematite has sufficiently eluted, can be predicted by basic tests and simulations.
  • the reactance obtained by the basic test or the simulation is stored in the determination unit as a determination criterion indicating that hematite has been removed.
  • the determination unit determines that the reactance measured in the measurement process is equal to or less than the determination criterion, the determination unit terminates the cleaning process in the control unit 104, assuming that hematite is eluted and removed, and will be described later.
  • the discharge process is carried out.
  • hematite removal may be determined from the amount of change in the reactance measurement.
  • the difference between the reactance obtained in the measurement process and the reactance obtained in the previous measurement process is gradually reduced.
  • the amount of change in reactance change gradient per unit time is stored in the determination unit as a criterion, and hematite is eluted and removed when the determination unit determines that the amount of change in reactance change gradient is within a specified range.
  • the determination unit causes the control unit 104 to finish the cleaning process and to perform a discharge process described later.
  • the determination unit When it is determined that the reactance measured in the measurement process does not reach the determination criterion, or when it is determined that the change amount of the reactance change gradient is larger than the predetermined range, the determination unit performs cleaning to the control unit 104. Continue the process.
  • the control unit 104 opens the valve V2.
  • the cleaning liquid in the water-cooled wall pipes 13a and 13b is fed from the lower headers 14a and 14b to the chemical liquid tank 101 via the chemical liquid discharge line 103 and collected. Thereby, the chemical cleaning method of this embodiment is completed. If the rust remover remains in the recovered cleaning solution, the cleaning component (the concentration of the rust remover) may be readjusted and reused for the next chemical cleaning.
  • the cleaning liquid containing the neutral rust remover since the cleaning liquid containing the neutral rust remover is used, the inner surfaces of the water-cooled wall tubes 13a and 13b immersed in the cleaning liquid corrode even if the cleaning process is carried out in the soaking state. Hematite can be dissolved in the cleaning solution without doing so. As described with reference to FIGS. 5 and 6, in this embodiment, since it is not a method of separating and removing hematite by eluting a magnetite layer which is a natural oxide scale, generation of sludge is suppressed.
  • the thermal power generation system 1 since the pipe shape of the water-cooled wall pipe of the once-through boiler 10 is long and complicated, when sludge is generated, the sludge may accumulate in the middle of the pipe and block the inside of the pipe. If hematite is dissolved in the cleaning liquid and removed from the water-cooled wall tubes 13a and 13b as in the present embodiment, the hematite eluted with the discharge of the cleaning liquid after chemical cleaning can be discharged. Therefore, for example, in the thermal power generation system 1 adopting the present embodiment, a facility for removing sludge such as a filter is unnecessary, and a process such as another cleaning for removing sludge is also unnecessary.
  • FIG. 12 is a schematic view illustrating a chemical cleaning apparatus according to the second embodiment.
  • the chemical solution supply line 202 and the chemical solution discharge line 203 are connected to the lower headers 14a and 14b of the once-through boiler 10 as in the first embodiment.
  • the chemical solution supply line 202 and the chemical solution discharge line 203 are connected to the chemical solution tank 201.
  • An exhaust line 213 is connected to the upper headers 15a and 15b of the once-through boiler.
  • the chemical cleaning apparatus 200 includes a reducing atmosphere gas supply unit 210 as a reducing atmosphere adjustment unit on the downstream side of the pump 205 of the chemical solution supply line 202.
  • the reducing atmosphere gas supply unit 210 is connected to the control unit 204.
  • the reducing atmosphere gas supply unit 210 of the second embodiment is a microbubble generator.
  • a microbubble generator is an apparatus that injects bubbles into a liquid.
  • the gas injected into the liquid (cleaning liquid) as bubbles is the reducing atmosphere gas listed in the first embodiment.
  • a reducing atmosphere gas storage section and an air supply line connected to the once-through boiler 10 may be installed as in FIG.
  • a chemical cleaning method using the chemical cleaning apparatus 200 of the second embodiment will be described below. Also in the present embodiment, when the chemical cleaning method is performed, a valve installed in a pipe connecting the once-through boiler 10 and the economizer 26 is closed.
  • the control unit 204 closes the valve V2.
  • the control unit 204 activates the pump 205 and the reducing atmosphere gas supply unit 210 and opens the valve V1.
  • the cleaning liquid in the chemical tank 201 is conveyed to the reducing atmosphere gas supply unit 210 via the chemical supply line 202.
  • the reducing atmosphere gas supply unit 210 injects bubbles of the reducing atmosphere gas into the cleaning liquid.
  • the cleaning liquid containing bubbles is supplied to the water-cooled wall tubes 13a and 13b of the once-through boiler 10 via the chemical liquid supply line 202.
  • Bubbles in the cleaning liquid are discharged from the cleaning liquid in the water-cooled wall pipes 13a and 13b and stored in the upper space of the cleaning liquid supplied in the water-cooled wall pipes 13a and 13b.
  • the control unit 204 opens the valve V4, and the air in the water-cooled wall tubes 13a and 13b is discharged outside the system through the exhaust line 213. In this way, the inside of the water-cooled wall pipes 13a and 13b is replaced from the purge gas atmosphere to the reducing atmosphere gas.
  • an independent gas supply step is not required as in the first embodiment, and the gas replacement in the water-cooled wall tubes 13a and 13b is performed together with the cleaning liquid supply step.
  • ⁇ Washing process> When at least a region to which hematite has adhered (particularly region 17 to which hematite has adhered more than the other portion) is immersed in the cleaning liquid, the control unit 204 stops the pump 205 and the reducing atmosphere gas supply unit 210 and switches the valves V1 and V4. Close. In the state where the cleaning liquid is allowed to stand, the hematite is soaked and cleaned. Also in this embodiment, the cleaning liquid in the water-cooled wall tubes 13a and 13b is at the same level as the ambient temperature around the water-cooled wall tubes 13a and 13b, and the oxidation-reduction potential is ⁇ 0.8 V or more on the basis of the silver-silver chloride electrode. It is maintained at 0.4V or less.
  • the end of the cleaning step is the same as in the first embodiment, (1) the iron concentration in the cleaning liquid, (2) the color change of the hematite adhering portion, (3) the analysis of the internal state from the outside of the water-cooled wall tube It is determined based on one of the results.
  • the determination unit determines that hematite is eluted and removed in the determination process, the determination unit causes the control unit 104 to end the cleaning process and to perform the discharge process.
  • the cleaning liquid is foamed by supplying the cleaning liquid to the water-cooled wall tubes 13a and 13b, and bubbles are generated in the region where hematite is generated. A sticky cleaning solution adheres. Detergency is improved by increasing the contact time between hematite and the foam-like cleaning liquid. Moreover, the usage-amount of a cleaning liquid reduces by making a cleaning liquid into foam.
  • FIG. 13 is a schematic view illustrating a chemical cleaning apparatus according to the third embodiment.
  • the chemical liquid supply line 302 and the chemical liquid discharge line 303 are connected to the lower headers 14a and 14b of the once-through boiler 10 as in the first embodiment.
  • the chemical solution supply line 302 and the chemical solution discharge line 303 are connected to the chemical solution tank 301.
  • the chemical cleaning apparatus 300 includes a reducing atmosphere adjusting agent supply unit 310 as a reducing atmosphere adjusting unit.
  • the reducing atmosphere adjusting agent supply unit 310 includes a reducing atmosphere adjusting agent storage unit 311 and a reducing atmosphere adjusting agent supply line 312.
  • the reducing atmosphere adjusting agent storage unit 311 stores the reducing atmosphere adjusting agent.
  • the reducing atmosphere adjusting agent is, for example, hydrazine, L-ascorbic acid, sulfur-based reducing agent and the like.
  • the reducing atmosphere adjusting agent supply unit 310 is connected to the chemical solution supply line 302 on the downstream side of the pump 305.
  • a valve V5 is installed in the reducing atmosphere adjusting agent supply line 312. The valve V5 is connected to the control unit 304.
  • a reducing atmosphere gas storage unit, an air supply line, and an exhaust line connected to the once-through boiler 10 may be installed as in FIG.
  • a chemical cleaning method for cleaning and removing hematite adhering to the once-through boiler using the chemical cleaning apparatus 300 of the third embodiment will be described below.
  • a valve installed in a pipe connecting the once-through boiler 10 and the economizer 26 is closed.
  • the control unit 304 closes the valve V2.
  • the control unit 304 activates the pump 305 and opens the valves V1 and V5. While the cleaning liquid in the chemical liquid tank 301 passes through the chemical liquid supply line 302, the reducing atmosphere adjusting agent is introduced into the cleaning liquid from the reducing atmosphere adjusting agent supply unit 310.
  • the cleaning liquid charged with the reducing atmosphere adjusting agent is fed to the water-cooled wall tubes 13 a and 13 b of the once-through boiler 10.
  • ⁇ Washing process> When at least the region to which hematite is attached is immersed in the cleaning liquid, the control unit 304 stops the pump 305 and closes the valves V1 and V5. In the state where the cleaning liquid is allowed to stand, the hematite is soaked and cleaned.
  • the cleaning liquid in the water-cooled wall tubes 13a and 13b is at the same level as the ambient temperature around the water-cooled wall tubes 13a and 13b.
  • the oxidation-reduction potential of the cleaning liquid is maintained at ⁇ 0.8 V or more and ⁇ 0.4 V or less with respect to the silver-silver chloride electrode.
  • the control unit 304 adjusts the opening of the valve V5 in order to obtain a reducing atmosphere adjusting agent input amount that provides a steam oxidation-reduction potential.
  • the end of the cleaning step is the same as in the first embodiment, (1) the iron concentration in the cleaning liquid, (2) the color change of the hematite adhering portion, (3) the analysis of the internal state from the outside of the water-cooled wall tube It is determined based on one of the results.
  • the determination unit determines that hematite is eluted and removed in the determination process, the determination unit causes the control unit 104 to end the cleaning process and to perform the discharge process.
  • the oxidation-reduction potential fluctuates greatly due to the dissolution of hematite.
  • the oxidation-reduction potential can be easily adjusted within the range of ⁇ 0.8 to ⁇ 0.4V.
  • FIG. 14 is a schematic view illustrating a chemical cleaning apparatus according to the fourth embodiment.
  • the chemical cleaning apparatus 400 according to the fourth embodiment is a chemical tank 401, a chemical supply line 402, a chemical discharge line 403, a control unit 404, a pump 405, and a reducing atmosphere gas supply unit 410.
  • a reducing atmosphere gas storage unit 411 As a reducing atmosphere gas storage unit 411, an air supply line 412, and an exhaust line 413.
  • a circulation loop 406 is installed across the pump 405 of the chemical solution supply line 402.
  • a circulation loop can also be provided for the chemical cleaning apparatuses of the second embodiment and the third embodiment.
  • the temperature of the cleaning liquid rises by passing through the pump 405 in the cleaning liquid supply process. Part of the cleaning liquid that has passed through the pump 405 flows into the circulation loop 406 and is conveyed to the chemical liquid sharing line upstream of the pump 405. By doing so, the heated cleaning liquid is supplied to the water-cooled wall tubes 13a and 13b of the once-through boiler 10, and the temperature is higher than that of the first to third embodiments (specifically, the water-cooled wall tube).
  • the cleaning step is performed at a temperature higher than the ambient temperature around 13a and 13b and less than or equal to ambient temperature + 10 ° C.
  • the temperature of the cleaning liquid can be increased with a simple configuration without installing a temperature increasing facility. Further, since the temperature difference between the environmental temperature and the cleaning liquid temperature is small, the configuration of the present embodiment can maintain the temperature of the cleaning liquid higher than the environmental temperature for a long time. As a result, the cleaning power can be further increased.
  • the end of the cleaning process is determined by the same method as in the first embodiment.
  • FIG. 15 is a schematic view illustrating a chemical cleaning apparatus according to the fifth embodiment. Similar to the chemical cleaning apparatus of the first embodiment, the chemical cleaning apparatus 500 according to the fifth embodiment is a chemical tank 501, a chemical supply line 502, a chemical discharge line 503, a control unit 504, a pump 505, and a reducing atmosphere gas supply unit 510. As a reducing atmosphere gas storage section 511, an air supply line 512, and an exhaust line 513.
  • the chemical cleaning apparatus 500 further includes a water supply unit 520.
  • the water supply unit 520 includes a water tank 521 and a water supply line 522.
  • the water tank 521 contains water therein.
  • a water supply pump 523 and a valve V6 are installed in the water supply line 522.
  • the water supply line 522 is connected to the lower headers 14a and 14b.
  • a chemical cleaning method for cleaning and removing hematite adhered in the once-through boiler using the chemical cleaning apparatus 500 of the fifth embodiment will be described below.
  • a valve installed in a pipe connecting the once-through boiler 10 and the economizer 26 is closed.
  • the reducing atmosphere gas is supplied from the reducing atmosphere gas storage unit 511 through the air supply line 512 into the water-cooled wall tubes 13a and 13b, and the water-cooled wall tubes 13a and 13b are reduced in the reducing atmosphere gas. Filled with.
  • the control unit 504 activates the pump 505 and opens the valves V1 and V4.
  • the cleaning liquid in the chemical liquid tank 501 is supplied to the once-through boiler 10 via the chemical liquid supply line 502.
  • the control unit 504 stops the pump 505 and closes the valve V1.
  • the control unit 504 activates the water-filled pump 523 and opens the valve V6.
  • the water in the water tank 521 is supplied to the water-cooled wall pipes 13 a and 13 b of the once-through boiler 10 through the water supply line 522.
  • the water cooling wall is in a state where the cleaning liquid layer is on the upper side in the vertical direction, the water layer is on the lower side in the vertical direction, and the cleaning liquid layer and the water layer are at least partially separated.
  • the water level in the pipes 13a and 13b rises.
  • the control unit 504 supplies a predetermined amount of cleaning liquid and water respectively to the chemical solution so that the region 17 where hematite adheres more than the other portions in the water-cooled wall tubes 13a and 13b is immersed in the cleaning liquid layer.
  • the water is supplied from the tank 501 and the water tank 521 to the water-cooled wall pipes 13a and 13b.
  • ⁇ Washing process> When the region 17 where hematite adheres more than the other part is immersed in the cleaning liquid, the control unit 504 stops the water-filled pump 523 and closes the valves V4 and V6. The hematite is soaked and washed in a state where the washing liquid is left still. Also in the present embodiment, the temperature of the cleaning liquid during the cleaning process is approximately the same as the ambient temperature around the water-cooled wall tubes 13a and 13b, and the oxidation-reduction potential of the cleaning liquid during the cleaning process is ⁇ 0.8 V or more and ⁇ 0.4 V or less. (Silver-silver chloride electrode standard).
  • the end of the cleaning process is determined based on either (2) color change of the hematite adhering portion described in the first embodiment, or (3) the analysis result of the internal state from the outside of the water-cooled wall tube. .
  • the determination unit determines that hematite is eluted and removed in the determination step, the determination unit causes the control unit 104 to end the cleaning step and cause the discharge step to be performed.
  • the cleaning liquid in the water-cooled wall tubes 13a and 13b is supplied to the chemical liquid tank 501 in the same process as in the first embodiment. Thereby, the chemical cleaning method of this embodiment is completed.
  • the cleaning liquid collected in the chemical tank 501 has a reduced rust remover concentration. Therefore, a new cleaning liquid is added and the cleaning liquid is reused, or the cleaning liquid is discharged from the chemical liquid tank 501 and discarded.
  • the region 17 where hematite adheres more than the other part is immersed in the cleaning liquid and concentratedly removed, the amount of the cleaning liquid to be used can be greatly reduced. Cleaning costs can be reduced.
  • the chemical cleaning apparatus of the sixth embodiment has the same configuration as that of the first embodiment except that the cleaning liquid contains microcapsules.
  • a microcapsule is one in which the above-described cleaning liquid is packaged in a water-soluble capsule.
  • the capsule material of the microcapsule is a water-soluble polymer such as dextrin, processed starch, gelatin, gum arabic, sodium alginate, and carrageenan.
  • the size of the microcapsule is, for example, about 0.5 mm to 2 mm in diameter.
  • the microcapsules are produced by, for example, a spray drying method, a spray cooling method, or the like.
  • a microcapsule supply unit is installed on the upstream side of the pump 105 of the chemical solution supply line 102.
  • the microcapsule supply unit has a tank that accommodates the microcapsules.
  • the microcapsules are stored in a tank in a state of being dispersed in a transport liquid (for example, water).
  • the gas supply process, the cleaning liquid supply process, the cleaning process, and the discharge process are performed in the same manner as in the first embodiment.
  • the cleaning liquid supply process of the sixth embodiment in the cleaning liquid in which the transport liquid including the microcapsules circulates through the chemical liquid supply line 102 by the activation of the pump installed in the flow path connecting the microcapsule supply unit and the chemical liquid supply line 102.
  • the cleaning liquid containing the microcapsules is supplied to the water-cooled wall tubes 13a and 13b.
  • the microcapsules move upward in the water-cooled wall tubes 13a and 13b and accumulate near the liquid surface.
  • the cleaning liquid is released, and a foam-like cleaning liquid layer is formed in the vicinity of the liquid surface.
  • the dispersion concentration of the microcapsules (amount of cleaning liquid) and the liquid surface height (amount of transport liquid supplied by the control unit 104) are set so that the region 17 where hematite adheres more than the other part is immersed in the cleaning liquid layer. Adjust as appropriate.
  • the region where hematite is generated more than the other part can be easily immersed in the cleaning liquid, the amount of the cleaning liquid to be used can be further greatly reduced, and the cleaning cost is further increased. It is possible to reduce.
  • the sixth embodiment can also be applied to the chemical cleaning methods and chemical cleaning apparatuses of the second to fifth embodiments.
  • a chemical cleaning method according to the seventh embodiment will be described using the chemical cleaning apparatus 100 of FIG.
  • the gas supply process, the cleaning liquid supply process, and the discharge process are performed in the same manner as in the first embodiment except for the cleaning process.
  • the control unit 104 stops the pump 105 and closes the valves V1 and V4.
  • the control unit 104 opens the valve V2. Since the cleaning liquid is fed back to the chemical liquid tank 101 via the chemical liquid discharge line 103 by opening the valve V2, the liquid level of the cleaning liquid in the water-cooled wall pipes 13a and 13b is lowered. Next, the control unit 104 closes the valve V2 and opens the valve V1 to start the pump 105. Thereby, the cleaning liquid in the chemical liquid tank 101 is supplied to the water-cooled wall pipes 13a and 13b of the once-through boiler 10 through the chemical liquid supply line 102, and the liquid level of the cleaning liquid in the water-cooled wall pipes 13a and 13b rises. The control unit 104 performs the discharge and supply of the cleaning liquid at a predetermined cycle.
  • the discharge amount of the cleaning liquid here may be a part or all of the cleaning liquid. If the discharge amount of the cleaning liquid is changed, the change amount of the liquid level can be changed.
  • the discharge amount of the cleaning liquid that is, the amount of change in the liquid level is preferably set appropriately in consideration of the size of the region where hematite adheres more than the other part, the cleaning efficiency, and the like.
  • the control unit 104 discharges and feeds a predetermined amount of cleaning liquid according to the liquid level change amount. Moreover, the period which repeats discharge
  • the cleaning liquid is agitated in the vicinity of the liquid surface in the water-cooled wall tubes 13a and 13b, and a flow rate is given to the cleaning liquid.
  • the cleaning power is improved, and the cleaning efficiency of hematite is increased.
  • the end of the cleaning process is the same as in the first embodiment in (1) the iron concentration in the cleaning liquid, (2) the color change of the hematite adhering portion, and (3) the internal state from the outside of the water-cooled wall tube.
  • the determination is made based on one of the analysis results.
  • the determination unit determines that hematite is removed in the determination step, the determination unit causes the control unit 104 to end the cleaning step and cause the discharge step to be performed.
  • (4) the end of the cleaning process may be determined based on the pressure change.
  • (4) Determination Based on Pressure Change In the determination based on the pressure change signal, as shown in FIG. 16, a pressure gauge 150 is installed in the middle of the chemical liquid discharge line 103.
  • the rotational speed of the pump 105 or the opening of the valve V1 is increased or decreased at a predetermined frequency.
  • the feed amount of the cleaning liquid increases and decreases at a predetermined frequency, so that the liquid level of the cleaning liquid vibrates in the water-cooled wall tubes 13a and 13b.
  • the pressure gauge 150 measures the pressure of the cleaning liquid passing through the chemical liquid discharge line 103. The pressure value is transmitted to the determination unit.
  • Step 4-A As illustrated in FIG. 17, the determination unit acquires the waveform of the feeding amount during the feeding process and the waveform of the change in the pressure value acquired in the measurement process. The determination unit compares the waveform of the supply amount with the waveform of the pressure change to determine the removal state in which hematite is eluted.
  • the difference (phase difference, shown in FIG. 17) between the phase of the waveform of the feeding amount and the phase of the waveform of the pressure change when the attached hematite is sufficiently eluted is predicted by basic tests and simulations. be able to.
  • the phase difference obtained by the basic test or simulation is stored in the determination unit as a determination criterion indicating that hematite has been removed.
  • the determination unit determines that the phase difference measured in the measurement process is equal to or less than the determination reference, the determination unit causes the control unit 104 to finish the cleaning process and discharge the hematite, assuming that the hematite is eluted and removed. Let the process run.
  • hematite removal may be determined from the amount of change in phase difference.
  • the change amount of the phase difference change gradient which is the slope of the change in phase difference per unit time, is stored in the determination unit as a determination criterion, and the determination unit determines that the change amount of the phase difference change gradient has become a value within a predetermined range.
  • the determination unit causes the control unit 104 to finish the cleaning process and to perform a discharge process described later.
  • the determination unit When it is determined that the phase difference is larger than the criterion, or when it is determined that the change amount of the phase difference change gradient is larger than the predetermined range, the determination unit causes the control unit 104 to continue the cleaning process.
  • Step 4-B The determination unit acquires a waveform of a change in pressure value acquired in the measurement process, and determines a hematite removal status from a change over time such as a period and an amplitude of the waveform.
  • the period and amplitude of the pressure waveform when adhering hematite is sufficiently eluted can be predicted by basic tests and simulations.
  • the period or amplitude obtained by the basic test or simulation is stored in the determination unit as a determination criterion indicating that hematite has been removed.
  • the determination unit causes the control unit 104 to end the cleaning process and perform the discharge process, assuming that hematite is eluted and removed.
  • the removal of hematite may be determined from the amount of change in period or amplitude. If hematite is sufficiently eluted, the difference between the period or amplitude change obtained by the measurement process and the period or amplitude change obtained last time is gradually reduced.
  • the change amount of the periodic change gradient or the amplitude change gradient which is the inclination of the periodic change or amplitude change per unit time, is stored as a determination criterion in the determination unit, and the determination unit determines whether the change amount of the periodic change gradient or the change amount of the amplitude change gradient is If it is determined that the value is within the predetermined range, the determination unit causes the control unit 104 to end the cleaning process and to perform a discharge process described later, assuming that hematite is eluted and removed.
  • the determination criterion is ⁇ 20%.
  • the determination accuracy can be improved by setting the determination criterion to ⁇ 10%.
  • the determination unit cleans the control unit 104. Continue the process.
  • FIG. 18 is a schematic view illustrating a chemical cleaning apparatus according to the eighth embodiment. Similar to the chemical cleaning apparatus of the first embodiment, the chemical cleaning apparatus 600 according to the eighth embodiment is a chemical liquid tank 601, a chemical liquid supply line 602, a chemical liquid discharge line 603, a control unit 604, a pump 605, and a reducing atmosphere gas supply unit 610. As a reducing atmosphere gas storage section 611, an air supply line 612, and an exhaust line 613.
  • the chemical cleaning apparatus 600 further includes a pump 606 in the chemical solution discharge line 603.
  • the chemical liquid discharge line 603 may be provided with a pressure gauge that measures the pressure of the cleaning liquid flowing through the chemical liquid discharge line 603.
  • a chemical cleaning method according to the eighth embodiment will be described with reference to FIG. In the chemical cleaning method of the eighth embodiment, the gas supply process, the cleaning liquid supply process, and the discharge process are performed in the same manner as in the first embodiment except for the cleaning process.
  • the control unit 604 stops the pump 605 of the chemical liquid supply line 602 and closes the valves V1 and V4.
  • Control unit 604 opens valves V2 and V3 and operates pump 606.
  • the valve V3 is opened, the reducing atmosphere gas is supplied from the reducing atmosphere gas storage unit 111 to the water-cooled wall pipes 13a and 13b of the once-through boiler 10 through the supply line 112, and the gas pressure in the space above the cleaning liquid level increases. To do.
  • the valve V2 is opened and the pump 606 is activated, the cleaning liquid in the water-cooled wall pipes 13a and 13b is supplied to the chemical liquid tank 601 through the chemical liquid discharge line 603, and the liquid level of the cleaning liquid in the water-cooled wall pipes 13a and 13b. Decreases.
  • control unit 604 closes the valves V2 and V3 and opens the valves V1 and V4.
  • the control unit stops the pump 606 and starts the pump 605.
  • the cleaning liquid in the chemical liquid tank 601 is supplied to the water-cooled wall pipes 13a and 13b of the once-through boiler 10 via the chemical liquid supply line 602, and the liquid level of the cleaning liquid in the water-cooled wall pipes 13a and 13b rises.
  • the flow rate when the cleaning liquid is discharged is higher than that in the seventh embodiment, and the liquid level in the water-cooled wall tubes 13a and 13b The cleaning liquid is easily stirred. For this reason, a cleaning power improves rather than 7th Embodiment and the cleaning efficiency of hematite rises.
  • the end of the cleaning process is the same as in the seventh embodiment in (1) iron concentration in the cleaning liquid, (2) color change of the hematite adhering portion, (3) internal state from the outside of the water-cooled wall tube.
  • the determination is made based on one of the analysis result and (4) pressure change signal.
  • the determination unit determines that hematite is removed in the determination step, the determination unit causes the control unit 104 to end the cleaning step and cause the discharge step to be performed.
  • the chemical cleaning apparatus and chemical cleaning method of the present embodiment can also be applied to the case where a pump is installed in the chemical solution discharge line as compared with the second to fourth embodiments.
  • FIG. 19 is a schematic view for explaining a chemical cleaning apparatus according to the ninth embodiment.
  • the chemical cleaning apparatus 700 according to the ninth embodiment is a chemical tank 701, a chemical supply line 702, a chemical discharge line 703, a control unit 704, a pump 705, and a reducing atmosphere gas supply unit 710.
  • a reducing atmosphere gas storage unit 711 As a reducing atmosphere gas storage unit 711, an air supply line 712, and an exhaust line 713.
  • the chemical cleaning apparatus 700 further includes a circulation line 720.
  • a similar circulation line can be installed for the chemical cleaning apparatuses of the second to fourth embodiments.
  • the circulation line 720 is connected to the lower headers 14a and 14b as one end side of the once-through boiler and to the upper headers 15a and 15b as the other end side.
  • a circulation pump 721 is installed in the middle of the circulation line 720.
  • the circulation line 720 and the circulation pump 721 may be temporarily installed.
  • An extraction portion 722 is installed on the downstream side of the circulation pump 721.
  • the circulation direction of the cleaning liquid is not particularly limited. In the configuration of FIG. 19, the cleaning liquid is circulated through the water-cooled wall pipes 13a and 13b from the bottom to the top. However, the cleaning liquid may be circulated from the top to the bottom.
  • the temperature of the cleaning liquid is close to the environmental temperature, and the circulating flow rate may be a small flow rate that circulates at least once during the cleaning process. Therefore, the discharge pressure of the circulation pump 721 may be low.
  • a chemical cleaning method using the chemical cleaning apparatus 700 of the ninth embodiment will be described below.
  • the gas supply process and the discharge process are performed in the same manner as in the first embodiment.
  • the control unit 704 activates the pump 705 and opens the valves V1 and V4.
  • the cleaning liquid in the chemical liquid tank 701 is supplied to the once-through boiler 10 via the chemical liquid supply line 702.
  • the cleaning liquid is supplied to all of the lower header, the water-cooled wall tube, the upper header, and the circulation line 720 in the once-through boiler 10.
  • the control unit 704 stores an amount of cleaning liquid that can immerse all of the lower header, the water-cooled wall tube, the upper header, and the circulation line 720, and supplies a predetermined amount of cleaning liquid to the once-through boiler 10 in the cleaning liquid supply process.
  • the valve installed in the pipe connecting the once-through boiler 10 and the steam separator 30 is closed.
  • the cleaning liquid can be prevented from flowing into the steam separator 30 which is a device adjacent on the downstream side of the once-through boiler 10.
  • ⁇ Washing process> When a predetermined amount of cleaning liquid is supplied to the once-through boiler 10, the control unit 704 stops the pump 705 and closes the valves V1 and V4. Next, the control unit 704 activates the circulation pump 721. When the circulation pump 721 is activated, the cleaning liquid passes through the lower headers 14a and 14b, the water-cooled wall tubes 13a and 13b, the upper headers 15a and 15a, and the circulation line 720. That is, in the present embodiment, the cleaning liquid is circulated without flowing into other equipment (the economizer 26 and the steam separator 30) adjacent to the once-through boiler 10. Circulation is performed at a flow rate that allows the cleaning liquid to circulate between the once-through boiler 10 and the circulation line 720 at least once during the cleaning process.
  • the temperature of the cleaning liquid is raised when passing through the circulation pump 721. For this reason, for example, as compared with the case where the cleaning liquid is allowed to stand during the cleaning process as in the first embodiment (specifically, higher than the environmental temperature around the water-cooled wall tubes 13a and 13b, the environmental temperature + 10 ° C.
  • the cleaning step is performed in the following).
  • the flow path of the cleaning liquid (the lower headers 14a and 14b, the water-cooled wall pipes 13a and 13b, the upper headers 15a and 15b, and the circulation line 720) constitutes a closed space.
  • the potential is maintained at ⁇ 0.8 V or more and ⁇ 0.4 V or less (silver-silver chloride electrode standard).
  • the end of the cleaning step is the same as in the first embodiment, (1) the iron concentration in the cleaning liquid, (2) the color change of the hematite adhering portion, (3) the analysis of the internal state from the outside of the water-cooled wall tube As a result, (4) it is determined based on one of the pressure changes.
  • the iron concentration may be measured by collecting the cleaning liquid in the chemical tank 701 as in the first embodiment. Alternatively, a part of the cleaning liquid that passes through the circulation line 720 may be collected from the extraction unit 722 and used for iron concentration measurement.
  • a pressure gauge is installed in the circulation line 720 as in the seventh embodiment.
  • the operation of increasing or decreasing the rotation speed of the circulation pump 721 at a predetermined frequency is performed, and using the pressure value measured by the pressure gauge installed in the circulation line 720, the same idea as described in the seventh embodiment,
  • the determination unit determines a removal situation in which hematite is eluted.
  • the determination unit determines that hematite has been removed in the determination step
  • the determination unit causes the control unit 104 to end the cleaning step and cause the discharge step to be performed.
  • a flow rate is given to the cleaning liquid, the cleaning liquid is stirred, and further, the cleaning liquid is heated during the cleaning process. Therefore, the cleaning power is improved as compared with the first embodiment in which no circulation line is provided, and hematite The cleaning efficiency increases.

Abstract

Provided are a chemical washing method and a chemical washing device for removing hematite. A washing liquid containing a rust removal agent, which is a chelating agent, a reducing agent, or a mixture of a chelating agent and a reducing agent, is fed, through a chemical liquid feed line (102), directly to an apparatus (10) to be washed having a member on which hematite is adhered. Chemical washing is performed by immersing at least the region to which the hematite is adhered in the washing solution and maintaining the oxidation-reduction potential of the washing liquid at the value at which hematite is eluted into the washing liquid, and as a result, the hematite is eluted from the member and removed.

Description

化学洗浄方法及び化学洗浄装置Chemical cleaning method and chemical cleaning apparatus
 本発明は、水冷壁管内面などに付着するヘマタイトを除去するための化学洗浄方法及び化学洗浄装置に関する。 The present invention relates to a chemical cleaning method and a chemical cleaning apparatus for removing hematite adhering to the inner surface of a water-cooled wall tube.
 図20に例示される火力発電システム1は貫流ボイラ10を備える。ボイラの給水系統として復水器20、復水脱塩装置21、グランド蒸気復水器22、低圧給水加熱器23、脱気器24、高圧給水加熱器25、及び、節炭器26が設置される。ボイラの蒸気系統として気水分離器30、過熱器31、タービン32、及び、再熱器33が設置される。タービン32としては、高圧タービン、中圧タービンと低圧タービンとが設置されていても良い。 A thermal power generation system 1 illustrated in FIG. As a boiler water supply system, a condenser 20, a condensate demineralizer 21, a ground steam condenser 22, a low-pressure feed water heater 23, a deaerator 24, a high-pressure feed water heater 25, and a economizer 26 are installed. The As the steam system of the boiler, a steam separator 30, a superheater 31, a turbine 32, and a reheater 33 are installed. As the turbine 32, a high-pressure turbine, an intermediate-pressure turbine, and a low-pressure turbine may be installed.
 ボイラ給水系統に酸素処理が適用される火力発電システム1では、貫流ボイラ10の水冷壁管のメタル温度が上昇する事象が発生し、水冷壁管破損によるボイラ給水の漏洩の発生が問題となっている。水冷壁管のメタル温度上昇は、低圧給水加熱器ドレン系統27または給水系統の配管から鉄が溶出してヘマタイト(Fe)が生成し、ヘマタイトが水冷壁管内面に付着・堆積して熱伝導が悪くなることが原因である。 In the thermal power generation system 1 in which oxygen treatment is applied to the boiler feedwater system, an event occurs in which the metal temperature of the water-cooled wall pipe of the once-through boiler 10 increases, and the leakage of boiler feedwater due to breakage of the water-cooled wall pipe becomes a problem. Yes. The metal temperature rise of the water-cooled wall pipe is caused by the elution of iron from the low pressure feed water heater drain system 27 or the pipe of the feed water system to produce hematite (Fe 2 O 3 ), and hematite adheres to and accumulates on the inner surface of the water-cooled wall pipe. This is due to poor heat conduction.
 上述の水冷壁管の漏洩不適合を予防するために、定期的に水冷壁管の化学洗浄を実施し、管内面に堆積したヘマタイト等の鉄系酸化物からなるスケールを除去することが行われている。従来の化学洗浄では、節炭器26~気水分離器30の間で循環路を設置し、循環路内に60~80℃程度に加熱された酸性の洗浄液(塩酸など)を流通させることにより、水冷壁管内側の洗浄が実施される(例えば特許文献1参照)。 In order to prevent the above-mentioned non-conformity of the water-cooled wall tube, chemical cleaning of the water-cooled wall tube is periodically performed to remove scales composed of iron-based oxides such as hematite deposited on the inner surface of the tube. Yes. In conventional chemical cleaning, a circulation path is installed between the economizer 26 and the steam separator 30, and an acidic cleaning solution (hydrochloric acid, etc.) heated to about 60 to 80 ° C. is circulated in the circulation path. Then, the inside of the water-cooled wall pipe is cleaned (see, for example, Patent Document 1).
 特許文献2は、原子炉用蒸気発生器内に発生したスラッジ等を除去する方法を開示する。特許文献3は、火力発電プラントや原子力発電プラントなどに用いられる金属製フィルタから酸化鉄スケールを洗浄除去するための方法を開示する。特許文献3の方法では、フィルタに付着した鉄酸化物のうち、付着部分の鉄のみを溶解させることによって、鉄酸化物スケールをフィルタから剥離させて除去している。 Patent Document 2 discloses a method for removing sludge and the like generated in a steam generator for a nuclear reactor. Patent Document 3 discloses a method for cleaning and removing iron oxide scale from a metal filter used in a thermal power plant or a nuclear power plant. In the method of Patent Document 3, the iron oxide scale is peeled off from the filter and removed by dissolving only the iron at the adhering portion of the iron oxide adhering to the filter.
特開平8-105602号公報JP-A-8-105602 特表2004-535546号公報JP-T-2004-535546 特開2013-71111号公報JP2013-71111A
 特許文献1のように従来の化学洗浄では、設置した循環路内が洗浄液で満たされる必要があった。また、酸性の洗浄液を使用することにより洗浄中に水素ガスが発生するので、化学洗浄は火気を用いる機械・電気工事と並行して作業することができなかった。このように、化学洗浄を実施している間は、洗浄液に浸漬されている機器だけでなく他の機器でもメンテナンス作業を行うことができず、メンテナンスを効率良く行うことができないという問題があった。 As in Patent Document 1, in the conventional chemical cleaning, the installed circulation path needs to be filled with the cleaning liquid. Moreover, since hydrogen gas is generated during cleaning by using an acidic cleaning liquid, chemical cleaning cannot be performed in parallel with mechanical and electrical work using fire. Thus, during the chemical cleaning, there is a problem that the maintenance work cannot be performed not only on the equipment immersed in the cleaning liquid but also on other equipment, and the maintenance cannot be performed efficiently. .
 従来の化学洗浄方法では、鉄系酸化物からなるスケールを除去するために速い流速で洗浄液を流通させる必要があった。また、十分な流量を得るためには大径の配管に接続する必要があるが、貫流ボイラ10の上流側配管及び下流側配管は小径配管であり、化学洗浄装置を接続するには不適切である。このため、具体的に特許文献1に示すように節炭器26の上流側配管と、気水分離器30内の配管に循環路を接続するしかなく、装置上の制約があった。 In the conventional chemical cleaning method, it was necessary to circulate the cleaning liquid at a high flow rate in order to remove the scale composed of the iron-based oxide. Moreover, in order to obtain a sufficient flow rate, it is necessary to connect to a large-diameter pipe, but the upstream pipe and the downstream pipe of the once-through boiler 10 are small-diameter pipes and are not suitable for connecting a chemical cleaning device. is there. For this reason, as specifically shown in Patent Document 1, there is no choice but to connect a circulation path to the upstream side pipe of the economizer 26 and the pipe in the steam separator 30, and there are restrictions on the apparatus.
 ヘマタイトは難溶性酸化物であり、従来の酸性の洗浄液(例えば塩酸系やクエン酸系)では、洗浄液中に溶解しにくく、化学洗浄によりスラッジが発生する。
 また、配管や特許文献3の金属製フィルタの表面に、自然酸化スケールであるマグネタイト層が形成されている。特許文献3の方法では付着した鉄酸化物スケールを全て溶解させることなくマグネタイト層だけを溶解させてスケールを剥離させることになる。従って、特許文献3に開示される方法を用いれば、スラッジが発生する。
Hematite is a poorly soluble oxide, and conventional acidic cleaning liquids (for example, hydrochloric acid-based and citric acid-based) are difficult to dissolve in the cleaning liquid, and sludge is generated by chemical cleaning.
In addition, a magnetite layer that is a natural oxide scale is formed on the surface of the pipe or the metal filter disclosed in Patent Document 3. In the method of Patent Document 3, only the magnetite layer is dissolved without dissolving the attached iron oxide scale, and the scale is peeled off. Therefore, if the method disclosed in Patent Document 3 is used, sludge is generated.
 火力発電システム1中の貫流ボイラ10の水冷壁管などは配管形状が長く複雑なために、スラッジが発生すると配管の途中の一部に集積して配管内を閉塞する場合がある。
 このため、従来の化学洗浄では洗浄液からスラッジを除去する必要があった。スラッジを除去する方法としては、洗浄液が通過する部分の途中にフィルタを設けて洗浄液中に浮遊するスラッジを捕集する方法や、化学洗浄後に洗浄対象機器の配管等の一部を切断して管内部を点検して、吸引清掃など物理的方法により除去してから再度配管を溶接する方法などがある。
Since the water-cooled wall pipe of the once-through boiler 10 in the thermal power generation system 1 has a long and complicated pipe shape, when sludge is generated, it may accumulate in a part of the pipe and close the pipe.
For this reason, in the conventional chemical cleaning, it was necessary to remove sludge from the cleaning liquid. As a method for removing sludge, a filter is provided in the middle of the portion through which the cleaning liquid passes to collect sludge floating in the cleaning liquid, or a part of the piping of the equipment to be cleaned after chemical cleaning is cut and piped. There is a method of inspecting the inside, removing it by a physical method such as suction cleaning, and then welding the pipe again.
 また、酸性の洗浄液を用いた従来の化学洗浄では、上述のように洗浄液を加熱する必要があり、洗浄液を加熱する昇温設備を別途設置する必要があった。また、酸性の洗浄液に浸漬された機器内を洗浄後に中和しなければならず、多量の中和水が必要とされていた。 Further, in the conventional chemical cleaning using an acidic cleaning liquid, it is necessary to heat the cleaning liquid as described above, and it is necessary to separately install a temperature raising equipment for heating the cleaning liquid. Moreover, the inside of the apparatus immersed in the acidic cleaning liquid has to be neutralized after cleaning, and a large amount of neutralized water is required.
 図20に示す火力発電システムのように、気水分離器30の下流側にステンレス製の部品を有する過熱器31がある場合、ステンレス製部品が塩酸などの酸性の洗浄液に接触すると腐食する恐れがある。このため、従来の化学洗浄では、洗浄対象となる機器の下流側に隣接する非洗浄系統内に水を張り加圧して、洗浄液の侵入を防止する必要があり、水張・加圧用のポンプが設置されていた。 As in the thermal power generation system shown in FIG. 20, when there is a superheater 31 having stainless steel parts on the downstream side of the steam / water separator 30, there is a risk of corrosion when the stainless steel parts come into contact with an acidic cleaning liquid such as hydrochloric acid. is there. For this reason, in conventional chemical cleaning, it is necessary to pressurize and pressurize water in the non-cleaning system adjacent to the downstream side of the equipment to be cleaned to prevent intrusion of the cleaning liquid. It was installed.
 このように、従来の化学洗浄を行う場合には、多量の洗浄液と水張用及び中和用の水とが必要な上、大掛かりな設備とその設置工事が必要であり、工期が長期に亘るため、メンテナンスコストが高いことが問題となっていた。 As described above, when performing conventional chemical cleaning, a large amount of cleaning liquid and water for water filling and neutralization are required, and a large-scale facility and its installation work are required, and the construction period is long. Therefore, the high maintenance cost has been a problem.
 本発明は上記事情に鑑みなされたものであり、ヘマタイトを除去する化学洗浄方法、及び、当該化学洗浄方法を実施するための化学洗浄装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a chemical cleaning method for removing hematite and a chemical cleaning apparatus for carrying out the chemical cleaning method.
 本発明の第1の態様は、キレート剤、還元剤、または、前記キレート剤と前記還元剤との混合物である除錆剤を含む洗浄液が、ヘマタイトが付着した部材を有する洗浄対象機器に供給される洗浄液供給工程と、前記部材中の少なくとも前記ヘマタイトが付着した領域が前記洗浄液に浸漬され、前記洗浄液の酸化還元電位が前記洗浄液に前記ヘマタイトが溶出する値に維持されて、前記ヘマタイトが前記部材から除去される洗浄工程とを有し、前記キレート剤が、アミノカルボン酸系キレート剤、オキシカルボン酸系キレート剤及び有機リン系キレート剤のいずれかであり、前記還元剤が、金属イオン、亜硫酸塩、シュウ酸、蟻酸、アスコルビン酸、ピロガロール、ヒドラジン、水素のいずれかであり、前記洗浄液のpHが4~8の範囲内である化学洗浄方法である。 In the first aspect of the present invention, a cleaning liquid containing a chelating agent, a reducing agent, or a rusting agent that is a mixture of the chelating agent and the reducing agent is supplied to a device to be cleaned having a member to which hematite is attached. A cleaning liquid supply step, and at least a region of the member to which the hematite is adhered is immersed in the cleaning liquid, and an oxidation-reduction potential of the cleaning liquid is maintained at a value at which the hematite is eluted in the cleaning liquid. The chelating agent is one of an aminocarboxylic acid chelating agent, an oxycarboxylic acid chelating agent and an organophosphorus chelating agent, and the reducing agent is a metal ion, sulfurous acid Salt, oxalic acid, formic acid, ascorbic acid, pyrogallol, hydrazine, or hydrogen, and the pH of the cleaning solution is within the range of 4-8. That is a chemical cleaning method.
 本発明の第2の態様は、ヘマタイトスケールが付着した部材を有する洗浄対象機器を化学洗浄するための化学洗浄装置であって、キレート剤、還元剤、または、前記キレート剤と前記還元剤との混合物であり、前記キレート剤が、アミノカルボン酸系キレート剤、オキシカルボン酸系キレート剤及び有機リン系キレート剤のいずれかであり、前記還元剤が、金属イオン、亜硫酸塩、シュウ酸、蟻酸、アスコルビン酸、ピロガロール、ヒドラジン、水素のいずれかである除錆剤を含み、pHが4~8の範囲内である洗浄液を収容する薬液タンクと、前記洗浄対象機器と前記薬液タンクとを連結し、前記部材に前記洗浄液を供給する薬液供給ラインと、前記薬液供給ラインに設置されるポンプと、前記洗浄対象機器と前記薬液タンクとを連結し、前記洗浄液を前記部材から排出する薬液排出ラインと、前記部材中の少なくとも前記ヘマタイトが付着した領域を前記洗浄液に浸漬させる手段と、洗浄中の前記洗浄液の酸化還元電位を前記洗浄液に前記ヘマタイトが溶出する値に維持する手段とを備え、前記薬液タンク、前記薬液供給ライン及び前記ポンプが、前記部材に前記洗浄液を供給する手段である化学洗浄装置。 A second aspect of the present invention is a chemical cleaning apparatus for chemically cleaning a device to be cleaned having a member to which a hematite scale is attached, the chelating agent, the reducing agent, or the chelating agent and the reducing agent. The chelating agent is any one of an aminocarboxylic acid chelating agent, an oxycarboxylic acid chelating agent and an organophosphorus chelating agent, and the reducing agent is a metal ion, sulfite, oxalic acid, formic acid, A chemical solution tank containing a rust remover that is any one of ascorbic acid, pyrogallol, hydrazine, and hydrogen, containing a cleaning solution having a pH in the range of 4 to 8, and the device to be cleaned and the chemical solution tank, A chemical solution supply line for supplying the cleaning solution to the member, a pump installed in the chemical solution supply line, the device to be cleaned, and the chemical solution tank are connected. The chemical liquid discharge line for discharging the cleaning liquid from the member, means for immersing at least the region where the hematite is adhered in the member in the cleaning liquid, and the redox potential of the cleaning liquid being cleaned elutes in the cleaning liquid A chemical cleaning apparatus, wherein the chemical liquid tank, the chemical liquid supply line, and the pump supply the cleaning liquid to the member.
 上記態様の化学洗浄方法及び化学洗浄装置では、洗浄対象機器のみに洗浄液を送給するので、化学洗浄に要する洗浄液量を大幅に削減することができる。
 更に、除錆剤を含む洗浄液を用いるため、洗浄対象機器の下流側にステンレス製部品を有する機器が配置される場合でも、部材の腐食を防止するための水張等を実施する必要が無く、水張のための設備が不要となり、装置構成が簡略化する。また、洗浄時に水素が発生しないので火気を用いる機械工事や電気工事と並行して化学洗浄を実施することができるとともに、各部の点検やメンテナンス作業を並行して実施することができることから、メンテナンス工期を短縮することができる。
 このように本発明の化学洗浄方法及び化学洗浄装置を用いれば、設備費や薬品代などのメンテナンスに要するコストを大幅に削減することができるので有利である。
In the chemical cleaning method and the chemical cleaning apparatus of the above aspect, since the cleaning liquid is supplied only to the equipment to be cleaned, the amount of the cleaning liquid required for the chemical cleaning can be greatly reduced.
Furthermore, since a cleaning liquid containing a rust remover is used, even when a device having a stainless steel part is disposed downstream of the device to be cleaned, there is no need to perform water filling or the like to prevent corrosion of the member, Equipment for water filling becomes unnecessary, and the device configuration is simplified. In addition, since no hydrogen is generated during cleaning, chemical cleaning can be performed in parallel with mechanical and electrical work using fire, and inspection and maintenance work for each part can be performed in parallel. Can be shortened.
Thus, the use of the chemical cleaning method and the chemical cleaning apparatus of the present invention is advantageous because the cost required for maintenance such as equipment costs and chemical costs can be greatly reduced.
 上記化学洗浄方法において、前記値が銀-塩化銀電極基準で-0.8V以上-0.4V以下の範囲内に維持されて前記洗浄工程が実施される。
 上記化学洗浄方法において、前記洗浄対象機器に還元雰囲気ガスが供給されることによって前記値が調整されても良い。
In the chemical cleaning method, the cleaning step is performed while maintaining the value within a range of −0.8 V or more and −0.4 V or less with respect to a silver-silver chloride electrode.
In the chemical cleaning method, the value may be adjusted by supplying a reducing atmosphere gas to the device to be cleaned.
 上記化学洗浄装置は、洗浄中の前記洗浄液の酸化還元電位を、銀-塩化銀電極基準で-0.8V以上-0.4V以下の範囲内の値に調整する還元雰囲気調整部を備える。
 上記化学洗浄装置において、前記還元雰囲気調整部が、前記洗浄対象器に還元雰囲気ガスを供給しても良い。
The chemical cleaning apparatus includes a reducing atmosphere adjusting unit that adjusts the oxidation-reduction potential of the cleaning liquid during cleaning to a value in the range of −0.8 V or more and −0.4 V or less with respect to the silver-silver chloride electrode.
In the chemical cleaning apparatus, the reducing atmosphere adjusting unit may supply reducing atmosphere gas to the cleaning target device.
 上記の酸化還元電位として還元状態を維持することによりヘマタイトが洗浄液中に溶解して除去される。洗浄によりスラッジなどの固形物がほとんど発生することなく、また若干の固形物の発生があった場合でも、洗浄対象機器から洗浄液とともに容易に排出することができる。また、スラッジを除去する設備が不要であるので、設備費を削減することが可能である。 The hematite is dissolved and removed in the cleaning liquid by maintaining the reduced state as the above redox potential. The solid matter such as sludge is hardly generated by the cleaning, and even when a slight amount of solid matter is generated, it can be easily discharged from the cleaning target device together with the cleaning liquid. Further, since no equipment for removing sludge is required, the equipment cost can be reduced.
 上記化学洗浄方法において、前記洗浄工程中の前記洗浄液の温度が、前記部材の周辺の環境温度以上前記環境温度よりも10℃高い温度以下の範囲内であることが好ましい。 In the chemical cleaning method, it is preferable that the temperature of the cleaning liquid in the cleaning step is in a range of an ambient temperature around the member and a temperature that is 10 ° C. higher than the ambient temperature.
 上記化学洗浄装置において、前記部材に供給された前記洗浄液の温度が、前記部材の周辺の環境温度以上前記環境温度よりも10℃高い温度以下の範囲内であることが好ましい。
 上記化学洗浄装置は、前記ポンプを挟んで上流側の前記薬液供給ラインと下流側の前記薬液供給ラインとを連結する循環ループを更に備え、前記ポンプを通過した前記洗浄液の一部が前記循環ループを介して前記ポンプの上流側に搬送されることが好ましい。
In the chemical cleaning apparatus, it is preferable that the temperature of the cleaning liquid supplied to the member is in a range of an ambient temperature around the member and a temperature that is 10 ° C. higher than the ambient temperature.
The chemical cleaning apparatus further includes a circulation loop that connects the chemical liquid supply line on the upstream side and the chemical liquid supply line on the downstream side across the pump, and a part of the cleaning liquid that has passed through the pump is the circulation loop. It is preferable to be conveyed to the upstream side of the pump via
 本発明に依れば酸性の洗浄液を使用した場合よりも低温でヘマタイトの除去が可能であり、洗浄液を積極的に昇温させる必要が無く、環境温度のままの温度維持は極めて容易である。
 洗浄液を環境温度より10℃高い温度以下に昇温すれば、更に洗浄力を高めることも可能である。例えばポンプ運転時に発生する熱を利用して、洗浄液を容易に昇温することができる。本発明の構成は積極的な冷却がないので長時間に亘り洗浄液の温度を環境温度よりも高く維持することが可能である。
 本発明に依れば酸性洗浄液を用いた従来法よりも低温で洗浄を行うことができる結果、設備費及び洗浄コストを削減することが可能である。
According to the present invention, hematite can be removed at a lower temperature than when an acidic cleaning solution is used, and it is not necessary to positively raise the temperature of the cleaning solution, and it is extremely easy to maintain the temperature at the ambient temperature.
If the temperature of the cleaning liquid is raised to a temperature that is 10 ° C. higher than the environmental temperature, the cleaning power can be further increased. For example, the temperature of the cleaning liquid can be easily raised by using heat generated during pump operation. Since the configuration of the present invention does not actively cool, the temperature of the cleaning liquid can be maintained higher than the environmental temperature for a long time.
According to the present invention, it is possible to perform cleaning at a lower temperature than the conventional method using an acidic cleaning liquid. As a result, it is possible to reduce equipment costs and cleaning costs.
 上記化学洗浄方法において、前記洗浄液が静置した状態で領域が前記洗浄液に浸漬される。
 上記化学洗浄装置は、洗浄中に、前記部材への前記洗浄液の供給及び前記部材からの前記洗浄液の排出を停止して、前記洗浄液を静置させる。
 上記化学洗浄方法及び化学洗浄装置に依れば、洗浄液の大掛かりな循環路などの設置が不要となり、簡易な工程で洗浄を実施することになるので有利である。
In the chemical cleaning method, the region is immersed in the cleaning liquid while the cleaning liquid is left standing.
During the cleaning, the chemical cleaning apparatus stops the supply of the cleaning liquid to the member and the discharge of the cleaning liquid from the member to allow the cleaning liquid to stand.
According to the chemical cleaning method and the chemical cleaning apparatus described above, it is not necessary to install a large circulation path for the cleaning liquid, which is advantageous because the cleaning is performed in a simple process.
 上記化学洗浄方法において、前記洗浄液送給工程と前記洗浄工程との間に水供給工程を更に含み、前記洗浄液供給工程において所定量の前記洗浄液が前記洗浄対象機器に供給され、前記水供給工程において所定量の水が前記洗浄対象機器に供給されて、前記領域が前記洗浄液に浸漬される。
 上記化学洗浄装置は、水を収容する水タンクと、前記水タンクと前記洗浄対象機器とを連結する水供給ラインと、前記水供給ラインに設置される水張ポンプとを備える水供給部を更に備える。
The chemical cleaning method further includes a water supply step between the cleaning liquid supply step and the cleaning step, wherein a predetermined amount of the cleaning liquid is supplied to the cleaning target device in the cleaning liquid supply step, and in the water supply step A predetermined amount of water is supplied to the device to be cleaned, and the region is immersed in the cleaning liquid.
The chemical cleaning apparatus further includes a water supply unit including a water tank that stores water, a water supply line that connects the water tank and the device to be cleaned, and a water pump installed in the water supply line. Prepare.
 本化学洗浄方法及び化学洗浄装置に依れば、洗浄対象機器内で洗浄液の層と水の層とが分離した状態とすることができる。ヘマタイトが付着した領域が洗浄液に浸漬され、その他の部分は水に浸漬されるようにすれば、化学洗浄に使用する洗浄液の量を大幅に削減することが可能である。 According to this chemical cleaning method and chemical cleaning apparatus, the cleaning liquid layer and the water layer can be separated in the cleaning target device. If the area where hematite is adhered is immersed in the cleaning liquid and the other part is immersed in water, the amount of the cleaning liquid used for chemical cleaning can be greatly reduced.
 上記化学洗浄方法において、前記洗浄液が水溶性高分子からなるカプセル内に収容され、前記カプセルが前記洗浄対象機器に供給されても良い。 In the chemical cleaning method, the cleaning liquid may be accommodated in a capsule made of a water-soluble polymer, and the capsule may be supplied to the device to be cleaned.
 上記化学洗浄装置において、前記洗浄液が水溶性高分子からなるカプセル内に収容され、前記薬液タンクが前記カプセルを収容し、前記カプセルが前記洗浄液タンクから前記洗浄対象機器に供給されても良い。 In the chemical cleaning apparatus, the cleaning liquid may be stored in a capsule made of a water-soluble polymer, the chemical liquid tank may store the capsule, and the capsule may be supplied from the cleaning liquid tank to the device to be cleaned.
 本化学洗浄方法及び化学洗浄装置によって、例えば、特にヘマタイトが多く発生した領域を洗浄液に容易に浸漬することができるので、使用する洗浄液の量を大幅に削減することが可能となる。 </ RTI> By this chemical cleaning method and chemical cleaning apparatus, for example, an area where a lot of hematite is generated can be easily immersed in the cleaning liquid, so that the amount of the cleaning liquid to be used can be greatly reduced.
 上記化学洗浄方法において、前記洗浄工程中に、前記洗浄液が前記部材から排出される工程と、排出された前記洗浄液が前記部材に送給される工程とを繰り返して、前記領域の近傍で前記洗浄液の液面の高さを移動させる。 In the chemical cleaning method, the cleaning liquid is repeatedly discharged from the member and the discharged cleaning liquid is supplied to the member during the cleaning step, and the cleaning liquid is disposed in the vicinity of the region. Move the liquid level.
 上記化学洗浄装置において、洗浄中に、前記薬液排出ラインを通じて前記部材内の洗浄液を前記薬液タンクに向かって排出させることと、前記薬液供給ラインを通じて前記薬液タンク中の前記洗浄液を前記部材に送給させることとを繰り返させる。 In the chemical cleaning apparatus, during cleaning, the cleaning liquid in the member is discharged toward the chemical liquid tank through the chemical liquid discharge line, and the cleaning liquid in the chemical liquid tank is supplied to the member through the chemical liquid supply line. To repeat.
 本化学洗浄方法及び化学洗浄装置に依れば、ヘマタイトが付着した領域で洗浄液に流速が与えられるとともに洗浄液が撹拌されるので、洗浄力が向上するので有利である。 According to the present chemical cleaning method and chemical cleaning apparatus, since the flow rate is given to the cleaning liquid in the region where hematite adheres and the cleaning liquid is stirred, the cleaning power is improved, which is advantageous.
 上記化学洗浄方法において、前記洗浄工程中に、前記洗浄液が前記部材に通過して前記部材の上流側端部から排出され、排出された前記洗浄液が、前記部材の下流側端部に直接的に循環される。 In the above chemical cleaning method, during the cleaning step, the cleaning liquid passes through the member and is discharged from the upstream end of the member, and the discharged cleaning liquid is directly discharged to the downstream end of the member. Circulated.
 上記化学洗浄装置において、前記部材の上流側端部と下流側端部とを連絡する循環ラインと、前記循環ラインに設置される循環ポンプとを備える循環部を有し、洗浄中に前記循環ラインを通じて、前下流側端部から排出された前記洗浄液を前記上流側端部に循環させる。 In the chemical cleaning apparatus, the circulation line includes a circulation line that connects an upstream end and a downstream end of the member, and a circulation pump installed in the circulation line, and the circulation line is used during cleaning. Then, the cleaning liquid discharged from the front downstream end is circulated to the upstream end.
 本化学洗浄方法及び化学洗浄装置によっても、ヘマタイトが付着した領域で洗浄液に流速が与えられるとともに洗浄液が撹拌されるので、洗浄力が向上する。また、ポンプを通過する際に洗浄液が加温され、部材の周辺の環境温度よりも高い状態で洗浄が実施されるため、洗浄力が向上する。 This chemical cleaning method and chemical cleaning apparatus also improve the cleaning power because a flow rate is given to the cleaning liquid and the cleaning liquid is stirred in the region where hematite is adhered. In addition, since the cleaning liquid is heated when passing through the pump and cleaning is performed in a state higher than the environmental temperature around the member, the cleaning power is improved.
 第1の態様に係る化学洗浄方法において、前記洗浄液中の鉄濃度が計測される計測工程と、前記鉄濃度に基づいて前記部材からの前記ヘマタイトの除去状況が判定される判定工程とを更に有し、前記洗浄工程中に前記洗浄液が前記洗浄対象機器から排出され、前記計測工程で排出された前記洗浄液中の鉄濃度が計測され、前記判定工程において前記鉄濃度が所定濃度以上と判定された場合、または、濃度勾配の変化量が所定範囲内の値であると判定された場合に、前記洗浄工程が終了される。 The chemical cleaning method according to the first aspect further includes a measuring step in which the iron concentration in the cleaning solution is measured, and a determination step in which the removal status of the hematite from the member is determined based on the iron concentration. The cleaning liquid is discharged from the cleaning target device during the cleaning process, the iron concentration in the cleaning liquid discharged in the measurement process is measured, and the iron concentration is determined to be equal to or higher than a predetermined concentration in the determination process. In this case, or when it is determined that the amount of change in the concentration gradient is a value within a predetermined range, the cleaning step is terminated.
 第2の態様に係る化学洗浄装置において、前記洗浄対象機器の前記洗浄液の酸化還元電位を前記洗浄液に前記ヘマタイトが溶出する値に維持して前記洗浄対象機器を洗浄している間に、前記洗浄対象機器から排出された前記洗浄液中の鉄濃度に基づいて前記部材からの前記ヘマタイトが溶出する除去状況を判定し、前記鉄濃度が所定濃度以上と判定した場合、または、濃度勾配の変化量が所定範囲内の値であると判定した場合に前記洗浄対象機器の洗浄を終了させる判定部を更に備える。 In the chemical cleaning apparatus according to the second aspect, while cleaning the cleaning target device while maintaining the redox potential of the cleaning liquid of the cleaning target device at a value at which the hematite is eluted in the cleaning solution, Based on the concentration of iron in the cleaning liquid discharged from the target device, the removal state in which the hematite is eluted from the member is determined, and when the iron concentration is determined to be a predetermined concentration or more, or the amount of change in the concentration gradient is When it is determined that the value is within the predetermined range, the apparatus further includes a determination unit that ends the cleaning of the cleaning target device.
 部材中にヘマタイトが偏在して付着している場合には、部材を洗浄液に浸漬している間は洗浄液中の鉄濃度に分布が発生する。洗浄対象機器の構造上、鉄濃度を計測するために部材中のヘマタイトが付着している領域近傍のみから洗浄液を採取することは極めて困難である。
 そこで上記態様の化学洗浄方法及び化学洗浄装置では、洗浄中に洗浄対象機器から一旦排出された洗浄液中の鉄濃度を用いて化学洗浄の終了を判定している。こうすることによって鉄濃度の計測が容易になるばかりでなく、洗浄対象機器から排出されることによって洗浄液が撹拌され鉄濃度が均一化するので、計測精度が向上する。本発明に依れば、確実に化学洗浄によりヘマタイトを除去することができ、メンテナンス効率が向上するという効果を得ることができる。
In the case where hematite is unevenly distributed in the member, distribution occurs in the iron concentration in the cleaning liquid while the member is immersed in the cleaning liquid. Due to the structure of the equipment to be cleaned, it is extremely difficult to collect the cleaning liquid only from the vicinity of the region where hematite in the member is attached in order to measure the iron concentration.
Therefore, in the chemical cleaning method and the chemical cleaning apparatus of the above aspect, the end of the chemical cleaning is determined using the iron concentration in the cleaning liquid once discharged from the cleaning target device during the cleaning. This not only facilitates measurement of the iron concentration, but also improves the measurement accuracy because the cleaning solution is stirred and the iron concentration is made uniform by being discharged from the cleaning target device. According to the present invention, hematite can be reliably removed by chemical cleaning, and the effect of improving maintenance efficiency can be obtained.
 上記化学洗浄方法では、前記洗浄工程において所定の時間周期で前記洗浄液が前記洗浄対象機器から排出され、前記判定工程において前記鉄濃度が所定濃度未満と判定された場合、または、濃度勾配の変化量が所定範囲内よりも大きい値であると判定された場合に、前記洗浄液が前記洗浄対象機器に戻されても良い。 In the chemical cleaning method, when the cleaning liquid is discharged from the cleaning target device at a predetermined time period in the cleaning step and the iron concentration is determined to be less than the predetermined concentration in the determination step, or the amount of change in the concentration gradient May be returned to the cleaning target device when it is determined that the value is larger than a predetermined range.
 上記化学洗浄装置において、前記判定部が、前記洗浄対象機器から排出され前記薬液タンクに貯留された前記洗浄液中の前記鉄濃度を用いて前記ヘマタイトの除去状況を判定しても良い。 In the chemical cleaning apparatus, the determination unit may determine the removal status of the hematite using the iron concentration in the cleaning liquid discharged from the cleaning target device and stored in the chemical tank.
 上記態様に依れば、簡易な工程及び装置構成で洗浄対象機器の洗浄や洗浄液の撹拌を実施することができる。 According to the above aspect, it is possible to perform cleaning of the cleaning target device and stirring of the cleaning liquid with a simple process and apparatus configuration.
 第1の態様に係る化学洗浄方法において、前記洗浄工程中に、前記洗浄液が前記部材に通過して前記部材の一端側端部から排出され、排出された前記洗浄液が、前記部材の他端側端部に直接的に循環され、前記計測工程において前記排出された前記洗浄液の一部を用いて前記鉄濃度が計測されても良い。 In the chemical cleaning method according to the first aspect, during the cleaning step, the cleaning liquid passes through the member and is discharged from one end of the member, and the discharged cleaning liquid is discharged from the other end of the member. The iron concentration may be measured using a part of the cleaning liquid that is directly circulated to the end portion and discharged in the measurement step.
 第2の態様に係る化学洗浄装置において、前記部材の一端側端部と他端側端部とを直接的に連絡する循環ラインと、前記循環ラインに設置される循環ポンプとを備える循環部を有し、洗浄中に前記循環ラインを通じて、前記一端側端部から排出された前記洗浄液を前記他端流側端部に循環させ、前記循環ラインに抜出し部が設置され、前記判定部が、前記抜出し部から採取された前記洗浄液中の前記鉄濃度を用いて前記ヘマタイトの除去状況を判定しても良い。 In the chemical cleaning apparatus according to the second aspect, a circulation unit including a circulation line that directly connects one end side end and the other end side end of the member, and a circulation pump installed in the circulation line. The cleaning liquid discharged from the one end side end portion through the circulation line during cleaning is circulated to the other end flow side end portion, an extraction portion is installed in the circulation line, and the determination portion is You may determine the removal condition of the said hematite using the said iron concentration in the said washing | cleaning liquid extract | collected from the extraction part.
 本化学洗浄方法及び化学洗浄装置では、ヘマタイトが付着した領域で洗浄液に流速が与えられるとともに洗浄液が撹拌されるので、洗浄力が向上する。また、循環される洗浄液の一部は化学洗浄の終了判定にも利用可能である。 In this chemical cleaning method and chemical cleaning apparatus, the flow rate is given to the cleaning liquid and the cleaning liquid is agitated in the region where hematite adheres, so that the cleaning power is improved. A part of the circulating cleaning liquid can also be used for determining the end of chemical cleaning.
 本発明の第1の態様に係る化学洗浄方法において、前記洗浄工程中に、前記ヘマタイトが付着している面の色が観測される観測工程と、前記色に基づいて前記部材からの前記ヘマタイトの除去状況が判定される判定工程とを更に有し、前記ヘマタイトが付着している面が、前記領域、または、前記洗浄液に浸漬された試験体における前記ヘマタイトが付着した部分であり、前記判定工程において前記ヘマタイトに由来する色が観測されないと判定された場合に、前記洗浄工程が終了される。 In the chemical cleaning method according to the first aspect of the present invention, an observation step in which the color of the surface to which the hematite is adhered is observed during the cleaning step, and the hematite from the member based on the color A determination step in which the removal status is determined, and the surface to which the hematite is attached is the region or a portion to which the hematite in the test specimen immersed in the cleaning liquid is attached, and the determination step When it is determined that no color derived from the hematite is observed, the cleaning step is terminated.
 本発明の第2の態様に係る化学洗浄装置において、前記洗浄対象機器の前記洗浄液の酸化還元電位を前記洗浄液に前記ヘマタイトが溶出する値に維持して前記洗浄対象機器を洗浄している間に、前記ヘマタイトが付着している面で前記ヘマタイトが溶出する除去状況を色の観測で判定し、前記ヘマタイトに由来する色が観測されないと判定した場合に前記洗浄対象機器の洗浄を終了させる判定部を更に備え、前記ヘマタイトが付着している面が、前記領域、または、前記洗浄液に浸漬された試験体における前記ヘマタイトが付着した部分である。 In the chemical cleaning apparatus according to the second aspect of the present invention, the cleaning target device is cleaned while maintaining the redox potential of the cleaning solution of the cleaning target device at a value at which the hematite elutes in the cleaning solution. A determination unit that determines the removal state in which the hematite elutes on the surface on which the hematite is adhered by observing the color, and terminates the cleaning of the cleaning target device when it is determined that the color derived from the hematite is not observed The surface to which the hematite is attached is the region or the portion to which the hematite is attached in the test body immersed in the cleaning liquid.
 本態様の化学洗浄方法及び化学洗浄装置においても、化学洗浄に要する洗浄液量を大幅に削減できるとともに、メンテナンス工期を短縮することができるため、メンテナンスコストの大幅な削減を実現することができる。
 更に本態様に依れば、付着したヘマタイトの残量有無を判断するという簡易な方法により化学洗浄の終了を判定することができるので作業効率が向上するという効果を奏する。
Also in the chemical cleaning method and the chemical cleaning apparatus of this aspect, the amount of cleaning liquid required for chemical cleaning can be significantly reduced, and the maintenance work period can be shortened, so that the maintenance cost can be significantly reduced.
Furthermore, according to this aspect, it is possible to determine the end of the chemical cleaning by a simple method of determining the presence or absence of the attached hematite, so that the working efficiency is improved.
 本発明の第1の態様に係る化学洗浄方法において、前記洗浄工程中に、前記部材の前記領域が形成された側と反対側の面で超音波計測または交流電気特性計測が実施される計測工程と、前記計測工程で得た計測値の時間変化に基づいて前記部材からの前記ヘマタイトの除去状況が判定される判定工程とを更に有し、前記判定工程において前記計測値が所定値以下であると判定された場合、または、前記計測値の変化勾配の変化量が所定範囲内の値であると判定された場合に、前記洗浄工程が終了される。 In the chemical cleaning method according to the first aspect of the present invention, a measurement step in which ultrasonic measurement or AC electrical property measurement is performed on the surface of the member opposite to the side where the region is formed during the cleaning step. And a determination step of determining a removal status of the hematite from the member based on a time change of the measurement value obtained in the measurement step, and the measurement value is equal to or less than a predetermined value in the determination step. Or when it is determined that the amount of change in the change gradient of the measured value is a value within a predetermined range.
 本発明の第2の態様に係る化学洗浄装置において、前記部材の前記ヘマタイトが形成された面と反対側の面に設置され、前記部材に対して超音波計測または交流電気特性計測を実施する計測部と、前記洗浄対象機器の前記洗浄液の酸化還元電位を前記洗浄液に前記ヘマタイトが溶出する値に維持して前記洗浄対象機器を洗浄している間に、前記計測部が取得した計測値の時間変化に基づいて前記部材からの前記ヘマタイトの除去状況を判定し、前記計測値が所定値以下であると判定した場合、または、前記計測値の変化勾配の変化量が所定範囲内の値であると判定した場合に前記洗浄対象機器の洗浄を終了させる判定部と、を更に備える。 In the chemical cleaning apparatus according to the second aspect of the present invention, the measurement is performed on the surface of the member opposite to the surface on which the hematite is formed and performs ultrasonic measurement or AC electrical property measurement on the member. And the time of the measurement value acquired by the measurement unit while cleaning the cleaning target device while maintaining the redox potential of the cleaning solution of the cleaning target device at a value at which the hematite is eluted in the cleaning solution. The removal status of the hematite from the member is determined based on the change, and when it is determined that the measurement value is equal to or less than a predetermined value, or the change amount of the change gradient of the measurement value is within a predetermined range And a determination unit that terminates the cleaning of the device to be cleaned.
 上記化学洗浄方法及び上記化学洗浄装置において、前記計測値が前記超音波計測で得られる前記部材に付着した前記ヘマタイトの厚さであるであることが好ましい。 In the chemical cleaning method and the chemical cleaning apparatus, it is preferable that the measured value is a thickness of the hematite attached to the member obtained by the ultrasonic measurement.
 あるいは、上記化学洗浄方法及び上記化学洗浄装置において、前記計測値が前記交流電気特性計測で得られるリアクタンスであることが好ましい。 Alternatively, in the chemical cleaning method and the chemical cleaning apparatus, the measured value is preferably a reactance obtained by the AC electrical characteristic measurement.
 本態様の化学洗浄方法及び化学洗浄装置においても、化学洗浄に要する洗浄液量を大幅に削減できるとともに、メンテナンス工期を短縮することができるため、メンテナンスコストの大幅な削減を実現することができる。
 また本態様では、ヘマタイト付着面と反対側の面から超音波計測または交流電気特性計測を実施することにより取得した計測値がヘマタイトの付着状況に対応して変化することに着目した。本態様は洗浄液を採取する必要がなく、付着したヘマタイトの残量有無を判断するという簡易な方法で迅速に化学洗浄の終了を判定することが可能であるという利点を有する。
Also in the chemical cleaning method and the chemical cleaning apparatus of this aspect, the amount of cleaning liquid required for chemical cleaning can be significantly reduced, and the maintenance work period can be shortened, so that the maintenance cost can be significantly reduced.
Further, in this embodiment, attention is paid to the fact that the measurement value obtained by performing ultrasonic measurement or AC electrical characteristic measurement from the surface opposite to the hematite adhesion surface changes corresponding to the hematite adhesion state. This embodiment has the advantage that it is not necessary to collect the cleaning liquid, and it is possible to quickly determine the end of chemical cleaning by a simple method of determining the presence or absence of the attached hematite.
 本発明の第1の態様に係る化学洗浄方法では、前記洗浄工程において、前記洗浄液の酸化還元電位が前記洗浄液に前記ヘマタイトが溶出する値に維持された状態で、前記洗浄液が前記部材から排出される工程と、前記洗浄液の少なくとも一部が前記部材に対して送給される工程とが繰り返されて、前記領域の近傍で前記洗浄液の液面の高さが移動されながら、前記ヘマタイトが前記部材から除去され、前記排出される工程中に前記部材から排出された前記洗浄液の圧力が計測される計測工程と、前記計測工程で得た前記圧力の変化に基づいて前記部材からの前記ヘマタイトの除去状況が判定される判定工程とが行われ、前記送給される工程において、前記洗浄液が所定の周波数で送給量が変化されながら前記部材に送給され、前記判定工程において、前記洗浄液の送給量の変化の波形と前記圧力の変化の波形との位相差が所定値以下であると判定された場合、または、前記位相差の変化勾配の変化量が所定範囲内の値であると判定された場合、または、前記圧力の変化の波形の周期若しくは振幅が所定値以下であると判定された場合、または、前記周期の変化勾配の変化量若しくは前記振幅の変化勾配の変化量が所定範囲内の値であると判定された場合に、前記洗浄工程が終了される。 In the chemical cleaning method according to the first aspect of the present invention, in the cleaning step, the cleaning liquid is discharged from the member in a state where the oxidation-reduction potential of the cleaning liquid is maintained at a value at which the hematite is eluted in the cleaning liquid. And the step of feeding at least a part of the cleaning liquid to the member is repeated, and the height of the liquid surface of the cleaning liquid is moved in the vicinity of the region, and the hematite is moved to the member. A measuring step in which the pressure of the cleaning liquid discharged from the member during the step of discharging is measured, and removal of the hematite from the member based on a change in the pressure obtained in the measuring step A determination step in which a situation is determined, and in the step of supplying, the cleaning liquid is supplied to the member while changing a supply amount at a predetermined frequency, and the determination step In this case, when it is determined that the phase difference between the waveform of the change amount of the cleaning liquid supply and the waveform of the pressure change is equal to or less than a predetermined value, or the change amount of the change gradient of the phase difference is within a predetermined range. Or when the period or amplitude of the waveform of the pressure change is determined to be less than or equal to a predetermined value, or the amount of change in the change gradient of the period or the change in the amplitude When it is determined that the change amount of the gradient is a value within the predetermined range, the cleaning process is ended.
 本発明の第2の態様に係る化学洗浄装置では、前記薬液供給ラインに設置されるバルブと、前記薬液排出ラインに設置される圧力計測部と、判定部とを更に有し、前記洗浄対象機器の前記洗浄液の酸化還元電位を前記洗浄液に前記ヘマタイトが溶出する値に維持して前記洗浄対象機器を洗浄している間に、前記薬液排出ラインを通じて前記部材内の洗浄液の少なくとも一部を前記薬液タンクに向かって排出させることと、前記薬液タンク中の前記洗浄液を前記薬液供給ラインを通じて前記部材に送給させることとを繰り返させ、前記ポンプまたは前記バルブが、前記部材に送給する前記洗浄液の送給量を所定の周波数で変化させ、前記圧力計測部が、前記洗浄対象機器を洗浄している間に前記薬液排出ラインを流通する前記洗浄液の圧力を計測し、前記判定部が、前記圧力の変化に基づいて前記部材からの前記ヘマタイトの除去状況を判定し、前記判定部が、前記洗浄液の送給量の変化の波形と前記圧力の変化の波形との位相差が所定値以下であると判定された場合、または、前記位相差の変化勾配の変化量が所定範囲内の値であると判定された場合、または、前記圧力の変化の波形の周期若しくは振幅が所定値以下であると判定された場合、または、前記周期の変化勾配の変化量若しくは前記振幅の変化勾配の変化量が所定範囲内の値であると判定された場合に、前記洗浄対象機器の洗浄を終了させる。 The chemical cleaning apparatus according to the second aspect of the present invention further includes a valve installed in the chemical solution supply line, a pressure measuring unit installed in the chemical solution discharge line, and a determination unit, and the device to be cleaned While cleaning the apparatus to be cleaned while maintaining the oxidation-reduction potential of the cleaning liquid at a value at which the hematite elutes in the cleaning liquid, at least a part of the cleaning liquid in the member is passed through the chemical liquid discharge line. The discharge of the cleaning liquid in the chemical liquid tank and the supply of the cleaning liquid in the chemical liquid tank to the member through the chemical liquid supply line are repeated, and the pump or the valve supplies the cleaning liquid to the member. The supply amount is changed at a predetermined frequency, and the pressure measurement unit adjusts the pressure of the cleaning liquid flowing through the chemical liquid discharge line while cleaning the cleaning target device. The determination unit determines the removal status of the hematite from the member based on the change in the pressure, and the determination unit determines a waveform of the change in the amount of the cleaning liquid to be fed and a waveform of the change in the pressure. When the phase difference between the pressure difference and the phase difference is determined to be equal to or less than a predetermined value, or when the amount of change in the change gradient of the phase difference is determined to be within a predetermined range, or the waveform of the pressure change When it is determined that the period or amplitude is equal to or less than a predetermined value, or when it is determined that the change amount of the change gradient of the period or the change amount of the change gradient of the amplitude is a value within a predetermined range, Finish cleaning the equipment to be cleaned.
 上記態様に係る化学洗浄方法及び化学洗浄装置に依れば、洗浄工程中に洗浄液の排出と送給とを繰り返して液面を移動させることによりヘマタイトが付着した領域で洗浄液に流速が与えられるとともに洗浄液が撹拌されるので、洗浄力が向上するので有利である。 According to the chemical cleaning method and the chemical cleaning apparatus according to the above aspect, the flow rate is given to the cleaning liquid in the region where hematite is adhered by moving the liquid level by repeatedly discharging and feeding the cleaning liquid during the cleaning process. Since the cleaning liquid is agitated, the cleaning power is advantageously improved.
 ヘマタイトの付着状態により、洗浄液と部材との摩擦係数が変化する。本発明者らは、洗浄液の送給時に所定の周波数で送給量を変化させると部材内で洗浄液の液面が振動するが、この振動状況が排出時の洗浄液の圧力変化に反映されることを見出した。本態様のように、周波数と圧力変化との位相差や圧力変化の波形に基づいてヘマタイトの除去を容易に判定することが可能となる。 摩擦 The coefficient of friction between the cleaning liquid and the member changes depending on the state of hematite adhesion. When the supply amount is changed at a predetermined frequency when the cleaning liquid is supplied, the inventors vibrate the liquid level of the cleaning liquid in the member, and this vibration state is reflected in the pressure change of the cleaning liquid at the time of discharge. I found. As in this aspect, it is possible to easily determine the removal of hematite based on the phase difference between the frequency and the pressure change and the waveform of the pressure change.
 本発明に依れば、従来の化学洗浄方法よりも洗浄液の使用量を削減できるとともに化学洗浄装置の装置構成が簡略化するので、化学洗浄に要するコストを大幅に削減することが可能である。
 また、本発明では他の機器に洗浄液が送給されず、洗浄時に水素が発生しないため、化学洗浄と同時に他の作業を行うことが可能である。このため本発明は、従来技術と比較してメンテナンス工期が短縮するという有利な効果を奏する。
 更に本発明は、洗浄工程中に計測されるパラメータを用いてヘマタイトの除去状況をモニタリングして洗浄工程終了のタイミングを判定しているので、ヘマタイトを部材表面から確実に除去できる。
According to the present invention, the amount of cleaning liquid used can be reduced as compared with the conventional chemical cleaning method, and the configuration of the chemical cleaning apparatus is simplified, so that the cost required for chemical cleaning can be greatly reduced.
Further, in the present invention, since the cleaning liquid is not supplied to other equipment and hydrogen is not generated during cleaning, it is possible to perform other operations simultaneously with chemical cleaning. For this reason, this invention has the advantageous effect that a maintenance work period is shortened compared with a prior art.
Furthermore, according to the present invention, the hematite can be reliably removed from the surface of the member because the removal status of the hematite is monitored using the parameters measured during the cleaning step to determine the timing of the end of the cleaning step.
第1実施形態に係る化学洗浄装置を説明する概略図である。It is the schematic explaining the chemical cleaning apparatus which concerns on 1st Embodiment. 貫流ボイラの一例の概略図である。It is the schematic of an example of a once-through boiler. 貫流ボイラの一例の概略図である。It is the schematic of an example of a once-through boiler. 第1実施形態の化学洗浄方法を説明する概略図である。It is the schematic explaining the chemical cleaning method of 1st Embodiment. 洗浄液浸漬前の水冷壁管断面のSEM写真である。It is a SEM photograph of the cross section of the water-cooled wall tube before immersion of the cleaning liquid. 化学洗浄後の水冷壁管断面のSEM写真である。It is a SEM photograph of the cross section of the water-cooled wall pipe after chemical cleaning. 色変化に基づく洗浄工程の終了判定に用いられる試験片の概略図である。It is the schematic of the test piece used for the completion | finish determination of the washing | cleaning process based on a color change. 色変化に基づく洗浄工程の終了判定方法を説明する図である。It is a figure explaining the completion | finish determination method of the washing | cleaning process based on a color change. 色変化に基づく洗浄工程の終了判定方法を実施するための化学洗浄装置を説明する概略図である。It is the schematic explaining the chemical cleaning apparatus for enforcing the completion | finish determination method of the washing | cleaning process based on a color change. 交流電気特性の計測方法を説明する図である。It is a figure explaining the measuring method of an alternating current electrical property. 図10に示す交流電気特性計測の回路図である。It is a circuit diagram of the alternating current electrical property measurement shown in FIG. 第2実施形態に係る化学洗浄装置を説明する概略図である。It is the schematic explaining the chemical cleaning apparatus which concerns on 2nd Embodiment. 第3実施形態に係る化学洗浄装置を説明する概略図である。It is the schematic explaining the chemical cleaning apparatus which concerns on 3rd Embodiment. 第4実施形態に係る化学洗浄装置を説明する概略図である。It is the schematic explaining the chemical cleaning apparatus which concerns on 4th Embodiment. 第5実施形態に係る化学洗浄装置を説明する概略図である。It is the schematic explaining the chemical cleaning apparatus which concerns on 5th Embodiment. 圧力変化に基づく洗浄工程の終了判定を実施するための化学洗浄装置を説明する概略図である。It is the schematic explaining the chemical cleaning apparatus for implementing completion | finish determination of the washing | cleaning process based on a pressure change. 圧力変化に基づく洗浄工程の終了判定を説明する図である。It is a figure explaining completion | finish determination of the washing | cleaning process based on a pressure change. 第8実施形態に係る化学洗浄装置を説明する概略図である。It is the schematic explaining the chemical cleaning apparatus which concerns on 8th Embodiment. 第9実施形態に係る化学洗浄装置を説明する概略図である。It is the schematic explaining the chemical cleaning apparatus which concerns on 9th Embodiment. 火力発電システムの概略図である。It is the schematic of a thermal power generation system.
 本発明の化学洗浄方法及び化学洗浄システムで使用される洗浄液は、中性の除錆剤を含む水溶液である。
 中性の除錆剤は、キレート剤、還元剤、またはキレート剤と還元剤の混合剤である。キレート剤は、例えばEDTA、BAPTA、DOTA、EDDS、INN、NTA、DTPA、HEDTA、TTHA、PDTA、DPTA-OH、HIDA、DHEG、GEDTA、CMGA、EDDSなどのアミノカルボン酸やこれらの塩などのアミノカルボン酸系キレート剤、クエン酸、グルコン酸、ヒドロキシ酢酸などのオキシカルボン酸やこれらの塩などのオキシカルボン酸系キレート剤、ATMP、HEDP、NTMP、PBTC、EDTMP等の有機リン酸やこれらの塩などの有機リン系キレート剤である。還元剤は、例えば、Fe2+、Sn2+などの各種金属イオン、亜硫酸ナトリウムなどの亜硫酸塩、シュウ酸、蟻酸、アスコルビン酸、ピロガロールなどの有機化合物、ヒドラジン、水素などである。中性の除錆剤を含む洗浄液は、pHが4~8であり、好ましくはpHが5~7である。
The cleaning liquid used in the chemical cleaning method and the chemical cleaning system of the present invention is an aqueous solution containing a neutral rust remover.
The neutral rust remover is a chelating agent, a reducing agent, or a mixed agent of a chelating agent and a reducing agent. Chelating agents include, for example, aminocarboxylic acids such as EDTA, BAPTA, DOTA, EDDS, INN, NTA, DTPA, HEDTA, TTHA, PDTA, DPTA-OH, HIDA, DHEG, GEDTA, CMGA, EDDS, and amino such as salts thereof. Carboxylic acid chelating agents, oxycarboxylic acid chelating agents such as citric acid, gluconic acid, hydroxyacetic acid and the like, and salts thereof, organic phosphoric acids such as ATMP, HEDP, NTMP, PBTC, EDTMP and their salts Organic phosphorus chelating agents such as Examples of the reducing agent include various metal ions such as Fe 2+ and Sn 2+ , sulfites such as sodium sulfite, organic compounds such as oxalic acid, formic acid, ascorbic acid, and pyrogallol, hydrazine, and hydrogen. The cleaning liquid containing a neutral rust remover has a pH of 4 to 8, and preferably a pH of 5 to 7.
 中性の除錆剤には腐食抑制剤が添加されていても良い。洗浄液は、所望の洗浄力及び洗浄時間が得られるように、キレート剤、還元剤及び腐食抑制剤の濃度が適切に調整されている。 腐 食 A corrosion inhibitor may be added to the neutral rust remover. In the cleaning liquid, the concentrations of the chelating agent, the reducing agent, and the corrosion inhibitor are appropriately adjusted so that a desired cleaning power and cleaning time can be obtained.
 また洗浄液は、発泡を防止するための消泡剤を含んでいても良いし、含まなくても良い。本実施形態では公知の消泡剤を使用することができる。 The cleaning liquid may or may not contain an antifoaming agent for preventing foaming. In this embodiment, a known antifoaming agent can be used.
 以下では火力発電システムを例に挙げて本発明の化学洗浄方法及び化学洗浄装置の実施形態を説明する。但し、本発明は火力発電システムに限定されず、ヘマタイトが付着する他の機器に対しても適用可能である。 Hereinafter, embodiments of the chemical cleaning method and the chemical cleaning apparatus of the present invention will be described by taking a thermal power generation system as an example. However, the present invention is not limited to a thermal power generation system, and can be applied to other devices to which hematite adheres.
[第1実施形態]
 図1は第1実施形態に係る化学洗浄装置を説明する概略図である。図1は、メンテナンス時において火力発電システム1に化学洗浄装置100が設置された場合を示す。火力発電システム1の構成は図20と同じである。火力発電システム1では、貫流ボイラ10の水冷壁管などの伝熱配管内部に粉状スケールであるヘマタイトが付着して伝熱配管の熱伝導率が低下している。従って、伝熱性能の回復のために、貫流ボイラ10が洗浄対象機器となっている。
[First Embodiment]
FIG. 1 is a schematic view for explaining a chemical cleaning apparatus according to the first embodiment. FIG. 1 shows a case where a chemical cleaning apparatus 100 is installed in the thermal power generation system 1 during maintenance. The configuration of the thermal power generation system 1 is the same as that shown in FIG. In the thermal power generation system 1, hematite, which is a powdery scale, adheres to the inside of the heat transfer pipe such as the water-cooled wall pipe of the once-through boiler 10, and the heat conductivity of the heat transfer pipe is lowered. Therefore, the once-through boiler 10 is a cleaning target device in order to recover the heat transfer performance.
 第1実施形態の化学洗浄装置100は、薬液タンク101、薬液タンク101と貫流ボイラ10とを連結する薬液供給ライン102、薬液タンク101と貫流ボイラ10とを連結する薬液排出ライン103、及び、制御部104を有する。薬液タンク101は上述の洗浄液を収容する。制御部104は例えばコンピュータである。制御部104は、判定部を含む。 The chemical cleaning apparatus 100 according to the first embodiment includes a chemical tank 101, a chemical supply line 102 that connects the chemical tank 101 and the once-through boiler 10, a chemical discharge line 103 that connects the chemical tank 101 and the once-through boiler 10, and a control. Part 104. The chemical tank 101 contains the above-described cleaning liquid. The control unit 104 is a computer, for example. Control unit 104 includes a determination unit.
 図2は貫流ボイラの一例である。図2(a)は貫流ボイラの概略図であり、図2(b)は、図2(a)において丸印Aで囲まれた部分の拡大図である。図2(a)の貫流ボイラ10aは、壁面12aで囲まれた燃焼室11aと、複数の水冷壁管とにより構成される。貫流ボイラ10aの水冷壁管13aは直線状の管が壁面12aに沿って燃焼室11a横断面に対して垂直方向に延在する。複数の水冷壁管13aが壁面12aに沿って水平方向に配列されている。燃焼室11aの下部に下部管寄せ14aが設置され、複数の水冷壁管13aの下端部が下部管寄せ14aに接続する。燃焼室11aの上部に上部管寄せが設置され、複数の水冷壁管13aの上端部が上部管寄せ15aに接続する。 Fig. 2 is an example of a once-through boiler. 2A is a schematic view of the once-through boiler, and FIG. 2B is an enlarged view of a portion surrounded by a circle A in FIG. 2A. The once-through boiler 10a shown in FIG. 2A includes a combustion chamber 11a surrounded by a wall surface 12a and a plurality of water-cooled wall tubes. The water-cooled wall tube 13a of the once-through boiler 10a has a straight tube extending along the wall surface 12a in a direction perpendicular to the cross section of the combustion chamber 11a. A plurality of water-cooled wall tubes 13a are arranged in the horizontal direction along the wall surface 12a. The lower header 14a is installed in the lower part of the combustion chamber 11a, and the lower ends of the plurality of water-cooled wall tubes 13a are connected to the lower header 14a. An upper header is installed in the upper part of the combustion chamber 11a, and the upper ends of the plurality of water-cooled wall tubes 13a are connected to the upper header 15a.
 図3は貫流ボイラの別の例である。図3(a)は貫流ボイラの概略図であり、図3(b)は、図3(a)において丸印Bで囲まれた部分の拡大図である。図3の貫流ボイラ10bは、水冷壁管の形状が図2の貫流ボイラ10aと異なる。貫流ボイラ10bにおいて、燃焼室11bの下側では複数の水冷壁管13bがスパイラル状に壁面12bに沿って配設される。燃焼室11bの垂直方向途中位置(分岐部16)で水冷壁管13bが複数の管に分岐する。分岐後の水冷壁管13bは直線状であり、壁面12bに沿って燃焼室11a横断面に対して垂直方向上方に延びる。
 燃焼室11bの下部に下部管寄せ14bが設置され、複数の水冷壁管13bの下端部が下部管寄せ14bに接続する。燃焼室11bの上部に上部管寄せが設置され、複数の水冷壁管13bの上端部が上部管寄せ15bに接続する。
FIG. 3 shows another example of the once-through boiler. 3A is a schematic view of a once-through boiler, and FIG. 3B is an enlarged view of a portion surrounded by a circle B in FIG. 3A. 3 is different from the once-through boiler 10a of FIG. 2 in the shape of the water-cooled wall tube. In the once-through boiler 10b, a plurality of water-cooled wall tubes 13b are disposed along the wall surface 12b in a spiral shape below the combustion chamber 11b. The water-cooled wall pipe 13b branches into a plurality of pipes at a midway position in the vertical direction of the combustion chamber 11b (branch portion 16). The branched water-cooled wall tube 13b is straight and extends upward in the vertical direction along the wall surface 12b with respect to the cross section of the combustion chamber 11a.
The lower header 14b is installed in the lower part of the combustion chamber 11b, and the lower ends of the plurality of water-cooled wall tubes 13b are connected to the lower header 14b. An upper header is installed in the upper part of the combustion chamber 11b, and the upper ends of the plurality of water-cooled wall tubes 13b are connected to the upper header 15b.
 第1実施形態の化学洗浄装置100では、貫流ボイラ10(10a,10b)の下部管寄せ14a,14bに薬液供給ライン102及び薬液排出ライン103が接続する。
 薬液供給ライン102には、ポンプ105及びバルブV1が設置される。薬液排出ライン103にはバルブV2が設置される。ポンプ105、バルブV1,V2は制御部104に連絡する。
In the chemical cleaning apparatus 100 of the first embodiment, the chemical solution supply line 102 and the chemical solution discharge line 103 are connected to the lower headers 14a, 14b of the once-through boiler 10 (10a, 10b).
The chemical solution supply line 102 is provided with a pump 105 and a valve V1. A valve V <b> 2 is installed in the chemical solution discharge line 103. The pump 105 and the valves V1 and V2 communicate with the control unit 104.
 水冷壁管の配設方法によりヘマタイトが付着する場所が異なる。ヘマタイトは水冷壁管内でボイラ給水の流速が変化する場所に付着し易い傾向がある。例えば図2の貫流ボイラ10aでは燃焼室11a下方に位置する水冷壁管13a内面に、他部よりもヘマタイトが多く付着する。図3の貫流ボイラ10bでは分岐部16の水冷壁管13b内面に、他部よりもヘマタイトが多く付着する。 The place where hematite adheres depends on how the water-cooled wall pipe is installed. Hematite tends to adhere to a place where the flow rate of boiler feed water changes in the water-cooled wall pipe. For example, in the once-through boiler 10a of FIG. 2, hematite adheres more to the inner surface of the water-cooled wall tube 13a located below the combustion chamber 11a than the other parts. In the once-through boiler 10b of FIG. 3, hematite adheres more to the inner surface of the water-cooled wall tube 13b of the branch portion 16 than to the other portions.
 第1実施形態の化学洗浄装置100は更に還元雰囲気調整部を備える。第1実施形態の化学洗浄装置100において還元雰囲気調整部は還元雰囲気ガス供給部110である。図1における還元雰囲気ガス供給部110は、還元雰囲気ガス貯留部111、給気ライン112を備える。化学洗浄装置100は排気ライン113を備える。給気ライン112及び排気ライン113には、各々バルブV3,V4が設置される。給気ライン112及び排気ライン113は、貫流ボイラ10(10a,10b)の上部管寄せ15a,15bに接続する。バルブV3,V4は制御部104に接続する。 The chemical cleaning apparatus 100 of the first embodiment further includes a reducing atmosphere adjusting unit. In the chemical cleaning apparatus 100 of the first embodiment, the reducing atmosphere adjustment unit is the reducing atmosphere gas supply unit 110. The reducing atmosphere gas supply unit 110 in FIG. 1 includes a reducing atmosphere gas storage unit 111 and an air supply line 112. The chemical cleaning apparatus 100 includes an exhaust line 113. Valves V3 and V4 are installed in the air supply line 112 and the exhaust line 113, respectively. The air supply line 112 and the exhaust line 113 are connected to the upper headers 15a and 15b of the once-through boiler 10 (10a and 10b). The valves V3 and V4 are connected to the control unit 104.
 還元雰囲気ガス貯留部111は還元雰囲気ガスを収容するボンベである。還元雰囲気ガスは洗浄液を還元状態に調整するためのガスである。具体的に、還元雰囲気ガスは窒素、アルゴン、蒸気、二酸化炭素、燃焼排ガスなどである。還元雰囲気ガスの純度は高純度ガスである必要はなく、後述する洗浄工程中の洗浄液の酸化還元電位を所定範囲に維持できるものであれば良い。還元雰囲気ガスとして窒素を用いる場合は、還元雰囲気ガス供給部110として火力発電システム1に既設される窒素注入設備が利用可能であるし、窒素注入設備を仮設または新設しても良い。還元雰囲気ガスとしての蒸気や燃焼排ガスは、隣接した別の火力発電システムのボイラで発生する蒸気や燃焼排ガスとすることができる。 The reducing atmosphere gas storage unit 111 is a cylinder that stores the reducing atmosphere gas. The reducing atmosphere gas is a gas for adjusting the cleaning liquid to a reduced state. Specifically, the reducing atmosphere gas is nitrogen, argon, steam, carbon dioxide, combustion exhaust gas, or the like. The purity of the reducing atmosphere gas does not have to be a high-purity gas, and any gas can be used as long as the oxidation-reduction potential of the cleaning liquid during the cleaning process described later can be maintained within a predetermined range. When nitrogen is used as the reducing atmosphere gas, a nitrogen injection facility that is already installed in the thermal power generation system 1 can be used as the reducing atmosphere gas supply unit 110, or a nitrogen injection facility may be temporarily or newly installed. Steam or combustion exhaust gas as the reducing atmosphere gas can be steam or combustion exhaust gas generated in a boiler of another adjacent thermal power generation system.
 第1実施形態の化学洗浄装置100を用いて貫流ボイラ内に付着したヘマタイトを洗浄除去する化学洗浄方法を以下で説明する。
 本実施形態の化学洗浄方法は例えば、火力発電システムの定期点検時において、炉内足場を架設する工程や洗浄対象機器(貫流ボイラ10)以外の機器を工事する工程の期間中に実施される。
 本実施形態の化学洗浄方法を実施するに当たり、貫流ボイラ10と節炭器26とを連結する配管に設置されるバルブは閉鎖される。
A chemical cleaning method for cleaning and removing hematite attached in the once-through boiler using the chemical cleaning apparatus 100 of the first embodiment will be described below.
The chemical cleaning method of the present embodiment is performed, for example, during a periodic inspection of the thermal power generation system, during a process of constructing a scaffold in the furnace and a process of constructing equipment other than the equipment to be cleaned (the once-through boiler 10).
In carrying out the chemical cleaning method of the present embodiment, a valve installed in a pipe connecting the once-through boiler 10 and the economizer 26 is closed.
<ガス供給工程>
 制御部104はバルブV2,V3を開放する。還元雰囲気ガス(窒素ガスなど)が、還元雰囲気ガス貯留部111から給気ライン112を介して貫流ボイラ10の水冷壁管13a,13bに送給される。水冷壁管13a,13b内の空気が薬液排出ライン103を介して系外に排出される。この工程により、貫流ボイラ10内の水冷壁管13a,13b内の空気が薬液排出ライン103を介して排出される。ガス供給工程により、水冷壁管13a,13b内が還元雰囲気ガスで充填される。
 ガスの置換に十分な時間が経過した後、制御部104はバルブV2,V3を閉鎖する。
<Gas supply process>
The control unit 104 opens the valves V2 and V3. A reducing atmosphere gas (such as nitrogen gas) is supplied from the reducing atmosphere gas storage unit 111 to the water-cooled wall pipes 13a and 13b of the once-through boiler 10 via the air supply line 112. Air in the water-cooled wall tubes 13 a and 13 b is discharged out of the system through the chemical solution discharge line 103. By this step, the air in the water-cooled wall tubes 13 a and 13 b in the once-through boiler 10 is discharged through the chemical solution discharge line 103. By the gas supply process, the water-cooled wall tubes 13a and 13b are filled with the reducing atmosphere gas.
After a sufficient time for gas replacement has elapsed, the control unit 104 closes the valves V2 and V3.
<洗浄液供給工程>
 制御部104はポンプ105を起動させるとともにバルブV1を開放する。制御部104はバルブV4を開放する。薬液タンク101内の洗浄液が薬液供給ライン102を介して貫流ボイラ10に送給される。これにより、水冷壁管13a,13b内面が洗浄液に浸漬し、供給された洗浄液に相当する体積の窒素など水冷壁管13a,13b内のパージガスが排気ライン113を介して系外に排出される。
<Cleaning liquid supply process>
The control unit 104 activates the pump 105 and opens the valve V1. The control unit 104 opens the valve V4. The cleaning liquid in the chemical liquid tank 101 is fed to the once-through boiler 10 via the chemical liquid supply line 102. As a result, the inner surfaces of the water-cooled wall pipes 13a and 13b are immersed in the cleaning liquid, and the purge gas in the water-cooled wall pipes 13a and 13b such as nitrogen having a volume corresponding to the supplied cleaning liquid is discharged out of the system through the exhaust line 113.
 本実施形態では貫流ボイラ10と節炭器26とを連結する配管のバルブが閉鎖されているため、薬液供給ライン102から下部管寄せ14a,14bに供給された洗浄液が節炭器26に流入することはない。 In this embodiment, since the valve of the pipe connecting the once-through boiler 10 and the economizer 26 is closed, the cleaning liquid supplied from the chemical liquid supply line 102 to the lower headers 14a and 14b flows into the economizer 26. There is nothing.
 本実施形態では、少なくとも水冷壁管13a,13b内面のヘマタイトが付着した領域が洗浄液に浸漬される。特に水冷壁管13a,13b内面で、他の部分よりもヘマタイトが多量に付着した領域は必ず洗浄液に浸漬される。例えば、図4に示すように、他部よりもヘマタイトが多く付着した領域17の上方に洗浄液の液面18が位置するように、制御部104が洗浄液を供給する。化学洗浄のコストを考慮すると、洗浄液は複数の水冷壁管13a,13bの上端部(上部管寄せ15a,15bとの接続部)を上限として充填される。本実施形態では洗浄液が貫流ボイラ10を超えて下流側の気水分離器30には到達しない。すなわち、本実施形態では洗浄液は洗浄対象機器である貫流ボイラ10のみに供給される。 In this embodiment, at least the area where hematite adheres on the inner surfaces of the water-cooled wall tubes 13a and 13b is immersed in the cleaning liquid. In particular, on the inner surfaces of the water-cooled wall tubes 13a and 13b, a region where hematite is attached in a larger amount than other portions is always immersed in the cleaning liquid. For example, as shown in FIG. 4, the control unit 104 supplies the cleaning liquid so that the liquid level 18 of the cleaning liquid is located above the region 17 where hematite is attached more than the other parts. Considering the cost of chemical cleaning, the cleaning liquid is filled with the upper ends of the plurality of water-cooled wall tubes 13a and 13b (connection portions with the upper headers 15a and 15b) as the upper limit. In this embodiment, the cleaning liquid does not reach the downstream steam separator 30 beyond the once-through boiler 10. That is, in the present embodiment, the cleaning liquid is supplied only to the once-through boiler 10 that is the cleaning target device.
 ヘマタイトが付着する領域、特に、他部よりもヘマタイトが多く付着する領域17の場所が予め特定されることにより、水冷壁管13a,13bの各サイズからヘマタイト付着領域を浸漬することができる洗浄液の必要量が決定できる。制御部104は洗浄液の必要量を格納しており、洗浄液供給工程で蒸気必要量に応じた所定量の洗浄液を貫流ボイラ10に送給する。 A region of the hematite adhering region, in particular, the region 17 where hematite adheres more than the other part is specified in advance, so that the hematite adhering region can be immersed from each size of the water-cooled wall tubes 13a and 13b. Necessary amount can be determined. The control unit 104 stores the required amount of cleaning liquid, and supplies a predetermined amount of cleaning liquid according to the required amount of steam to the once-through boiler 10 in the cleaning liquid supply process.
<洗浄工程>
 ヘマタイトが付着した領域が洗浄液に浸漬されると、制御部104はポンプ105を停止するとともにバルブV1,V4を閉鎖する。洗浄液が静置された状態で、ヘマタイトが洗浄液に漬け置きされて洗浄工程が実施される。
 漬け置き時間(洗浄時間)はヘマタイトの発生量にも依るが、例えば24時間以上である。この洗浄工程中は、水冷壁管13a,13b内の圧力はほとんど変化することがなく、一定である。
<Washing process>
When the region to which hematite is attached is immersed in the cleaning liquid, the control unit 104 stops the pump 105 and closes the valves V1 and V4. In a state where the cleaning liquid is allowed to stand, the hematite is immersed in the cleaning liquid and the cleaning process is performed.
The soaking time (cleaning time) depends on the amount of hematite generated, but is, for example, 24 hours or longer. During this cleaning process, the pressure in the water-cooled wall tubes 13a and 13b hardly changes and is constant.
 本実施形態では洗浄工程中に洗浄液が静置されるので、洗浄工程中の洗浄液温度は水冷壁管13a,13bの周辺の環境温度と同程度になる。例えば、水冷壁管13a,13bの周辺の環境温度は20~40℃程度である。環境温度は外気温度に近く、洗浄工程中は大きく変化することはないので、洗浄液温度も環境温度とほぼ同程度に維持される。 In this embodiment, since the cleaning liquid is allowed to stand during the cleaning process, the temperature of the cleaning liquid during the cleaning process is approximately the same as the environmental temperature around the water-cooled wall tubes 13a and 13b. For example, the ambient temperature around the water-cooled wall tubes 13a and 13b is about 20 to 40 ° C. Since the environmental temperature is close to the outside air temperature and does not change greatly during the cleaning process, the cleaning liquid temperature is also maintained at substantially the same level as the environmental temperature.
 ガス供給工程によって水冷壁管13a,13b内部の空間に還元雰囲気ガスが充填されているため、洗浄工程中の洗浄液は還元状態に維持される。具体的に、洗浄工程中の洗浄液の酸化還元電位は、例えば薬液排出ライン103の途中で、酸化還元電位計を用いて計測することができ、その酸化還元電位は銀-塩化銀電極基準で-0.8V以上-0.4V以下に維持される。pH-電位線図によると、酸化還元電位を-0.4V以下とすることで鉄酸化物の溶解反応効率を高まりヘマタイトが洗浄液中に溶解する。一方、酸化還元電位が低くなる程Feが生じる。酸化還元電位が-0.8V未満になるとFeが生じ、スラッジが沈殿したり水冷壁管13a,13bに鉄が付着する。 Since the reducing atmosphere gas is filled in the space inside the water-cooled wall pipes 13a and 13b by the gas supply process, the cleaning liquid in the cleaning process is maintained in a reduced state. Specifically, the oxidation-reduction potential of the cleaning liquid during the cleaning step can be measured using, for example, an oxidation-reduction potentiometer in the middle of the chemical solution discharge line 103, and the oxidation-reduction potential is based on a silver-silver chloride electrode reference. It is maintained at 0.8V or more and −0.4V or less. According to the pH-potential diagram, by setting the oxidation-reduction potential to −0.4 V or less, the iron oxide dissolution reaction efficiency is increased and hematite is dissolved in the cleaning solution. On the other hand, Fe 0 occurs as the redox potential decreases. When the oxidation-reduction potential is less than −0.8 V, Fe 0 is generated, sludge is precipitated, and iron adheres to the water-cooled wall tubes 13a and 13b.
 酸化還元電位が所定範囲から外れた場合、洗浄液の酸化還元電位を維持するように、還元雰囲気ガスを再充填する。具体的に、バルブV2,V3が開放される。これにより、還元雰囲気ガス貯留部111から還元雰囲気ガスが貫流ボイラ10に供給されて洗浄液が薬液排出ライン103を介して薬液タンク101に送給される。その後、バルブV2,V3が閉鎖され、バルブV1,V4が開放されるとともにポンプ105が起動することにより、薬液タンク101中の洗浄液が貫流ボイラ10に送給される。あるいは、バルブV1,V2が閉鎖された状態でバルブV3,V4が開放されて、還元雰囲気ガス貯留部111から還元雰囲気ガスが貫流ボイラ10に供給されて、還元雰囲気ガスが再充填される。
 酸化還元電位が所定値から外れた場合に、洗浄液中に上述の還元剤を追加してもよい。具体的に、上記と同様に薬液タンク101に洗浄液を戻し、薬液タンク101内で還元剤が添加された後に、洗浄液が貫流ボイラ10に送給される。
 酸化還元電位の維持は、酸化還元電位をモニタリングする制御部104からの指示に基づいて自動化されていても良いし、作業員が酸化還元電位の検出と維持とを手動で実施しても良い。
When the oxidation-reduction potential deviates from the predetermined range, the reducing atmosphere gas is refilled so as to maintain the oxidation-reduction potential of the cleaning liquid. Specifically, the valves V2 and V3 are opened. Thereby, the reducing atmosphere gas is supplied from the reducing atmosphere gas storage unit 111 to the once-through boiler 10, and the cleaning liquid is supplied to the chemical liquid tank 101 via the chemical liquid discharge line 103. Thereafter, the valves V2 and V3 are closed, the valves V1 and V4 are opened, and the pump 105 is started, so that the cleaning liquid in the chemical tank 101 is supplied to the once-through boiler 10. Alternatively, the valves V3 and V4 are opened while the valves V1 and V2 are closed, and the reducing atmosphere gas is supplied from the reducing atmosphere gas storage unit 111 to the once-through boiler 10 to be refilled with the reducing atmosphere gas.
When the oxidation-reduction potential deviates from a predetermined value, the above-described reducing agent may be added to the cleaning liquid. Specifically, the cleaning liquid is returned to the chemical liquid tank 101 in the same manner as described above, and after the reducing agent is added in the chemical liquid tank 101, the cleaning liquid is supplied to the once-through boiler 10.
The maintenance of the oxidation-reduction potential may be automated based on an instruction from the control unit 104 that monitors the oxidation-reduction potential, or an operator may manually detect and maintain the oxidation-reduction potential.
 図5,6は、実機から採取した水冷壁管で本実施形態の化学洗浄方法の効果を検証した結果である。ヘマタイトが付着した水冷壁管を実機から採取し、上述の洗浄液(pH5~7)に25℃に維持しながら浸漬(漬け置き)した。洗浄液の成分はキレート剤が3~5重量%、還元剤が1.5~2.5重量%の間で適宜条件を選定している。
 洗浄液浸漬前の水冷壁管内面は赤色であり、SEM写真(図5)では自己酸化スケール(マグネタイト(Fe))とヘマタイトとが確認された。一方、化学洗浄後の水冷壁管内面は黒色であり、SEM写真(図6)では自己酸化スケールのみが確認できた。
5 and 6 show the results of verifying the effect of the chemical cleaning method of the present embodiment using a water-cooled wall tube collected from an actual machine. A water-cooled wall tube with hematite attached was collected from the actual machine and immersed (soaked) in the above-described cleaning solution (pH 5 to 7) while maintaining at 25 ° C. The components of the cleaning liquid are appropriately selected between 3 to 5% by weight of the chelating agent and 1.5 to 2.5% by weight of the reducing agent.
The inner surface of the water-cooled wall tube before immersion in the cleaning solution was red, and an autooxidation scale (magnetite (Fe 3 O 4 )) and hematite were confirmed in the SEM photograph (FIG. 5). On the other hand, the inner surface of the water-cooled wall tube after the chemical cleaning was black, and only the self-oxidation scale was confirmed in the SEM photograph (FIG. 6).
 ヘマタイトを用いて洗浄液の洗浄効果を検証した。ヘマタイト粉末を添加した洗浄液(pH5~7)を容器に入れ、洗浄液の上方を窒素パージしてから密封した。試験期間中の酸化還元電位は、銀-塩化銀電極基準で-0.8V~-0.4Vの範囲内にあった。洗浄液の成分はキレート剤が3~5重量%、還元剤が1.5~2.5重量%の間で適宜条件を選定している。洗浄液を8時間静置しながら25℃に保持させた結果、洗浄液が不透明な赤茶色からほぼ透明に変化した。このことは、漬け置きによって洗浄液にヘマタイトが溶解したことを意味する。 Verified the cleaning effect of the cleaning liquid using hematite. A cleaning solution (pH 5 to 7) to which hematite powder was added was placed in a container, and the upper portion of the cleaning solution was purged with nitrogen and sealed. The oxidation-reduction potential during the test period was in the range of -0.8 V to -0.4 V based on the silver-silver chloride electrode. The components of the cleaning liquid are appropriately selected between 3 to 5% by weight of the chelating agent and 1.5 to 2.5% by weight of the reducing agent. As a result of keeping the washing liquid at 25 ° C. while standing for 8 hours, the washing liquid changed from opaque reddish brown to almost transparent. This means that hematite was dissolved in the cleaning liquid by soaking.
 本実施形態において、洗浄工程の終了は(1)洗浄液中の鉄濃度、(2)ヘマタイト付着部分の色変化、(3)水冷壁管外側からの内部状態の分析結果、のいずれかに基づいて判定される。 In this embodiment, the end of the cleaning step is based on one of (1) the iron concentration in the cleaning liquid, (2) the color change of the hematite adhering portion, and (3) the analysis result of the internal state from the outside of the water-cooled wall tube. Determined.
(1)洗浄液中の鉄濃度に基づく判定
 洗浄工程において、所定の時間周期でバルブV2,V3が開放される。還元雰囲気ガスが、還元雰囲気ガス貯留部111から給気ライン112を介して貫流ボイラ10の水冷壁管13a,13bに送給され、水冷壁管13a,13b内の洗浄液が下部管寄せ14a,14bから薬液排出ライン103を介して薬液タンク101に送給される。全ての洗浄液が薬液タンク101に収容されると、バルブV2,V3が閉鎖される。
(1) Determination based on iron concentration in cleaning liquid In the cleaning process, valves V2 and V3 are opened at predetermined time intervals. The reducing atmosphere gas is supplied from the reducing atmosphere gas storage unit 111 to the water-cooled wall pipes 13a and 13b of the once-through boiler 10 through the air supply line 112, and the cleaning liquid in the water-cooled wall pipes 13a and 13b is transferred to the lower headers 14a and 14b. To the chemical liquid tank 101 through the chemical liquid discharge line 103. When all the cleaning liquid is stored in the chemical tank 101, the valves V2 and V3 are closed.
<計測工程>
 薬液タンク101に回収された洗浄液の一部が採取される。採取された洗浄液を用いて、JIS B8224にて規定される定量分析により、洗浄液中の鉄濃度が計測される。所定の時間周期で取得された鉄濃度が、制御部104の判定部に入力される。
<Measurement process>
A part of the cleaning liquid collected in the chemical liquid tank 101 is collected. Using the collected cleaning liquid, the iron concentration in the cleaning liquid is measured by the quantitative analysis defined in JIS B8224. The iron concentration acquired at a predetermined time period is input to the determination unit of the control unit 104.
<判定工程>
 洗浄液中の鉄濃度の数値は時間とともに増加し、ヘマタイトが完全に水冷壁管13a,13bから除去されると濃度は略一定値へと飽和することとなる。判定部は、鉄濃度の時間変化からヘマタイトが溶出して除去される状況を判定する。
<Judgment process>
The numerical value of the iron concentration in the cleaning liquid increases with time, and when hematite is completely removed from the water-cooled wall tubes 13a and 13b, the concentration is saturated to a substantially constant value. A determination part determines the condition where hematite elutes and is removed from the time change of iron concentration.
 基礎試験やシミュレーションにより付着したヘマタイトが十分に溶出したことを示す鉄濃度を予想することができる。基礎試験またはシミュレーションで得られた鉄濃度が、ヘマタイトが除去されたことを示す所定濃度(判定基準濃度)として、判定部に格納されていても良い。この場合、判定部が計測工程で計測された鉄濃度が判定基準濃度以上と判定した場合に、ヘマタイトが溶出して除去されたとして、判定部は制御部104に洗浄工程を終了させ、後述の排出工程を実施させる。 It is possible to predict the iron concentration indicating that the hematite adhering to the base is sufficiently eluted by basic tests and simulations. The iron concentration obtained by the basic test or simulation may be stored in the determination unit as a predetermined concentration (determination reference concentration) indicating that hematite has been removed. In this case, when the determination unit determines that the iron concentration measured in the measurement step is equal to or higher than the determination reference concentration, the determination unit terminates the cleaning step in the control unit 104, assuming that hematite is eluted and removed. The discharge process is carried out.
 あるいは、鉄濃度の変化量からヘマタイトの除去を判定しても良い。ヘマタイトが十分に溶出されている場合には、計測工程で計測される鉄濃度の計測値と前回計測値との差の単位時間当たりの変化(濃度勾配)が徐々に小さくなる。このことから、濃度勾配の変化量が判定基準として判定部に格納され、判定部が濃度勾配の変化量が所定範囲以内の値となったと判定した場合に、ヘマタイトが溶出して除去されたとして、判定部は制御部104に洗浄工程を終了させ、後述の排出工程を実施させる。 Alternatively, the removal of hematite may be determined from the amount of change in iron concentration. When hematite is sufficiently eluted, the change (concentration gradient) per unit time of the difference between the measurement value of the iron concentration measured in the measurement process and the previous measurement value is gradually reduced. From this, the change amount of the concentration gradient is stored in the determination unit as a determination criterion, and when the determination unit determines that the change amount of the concentration gradient is within a predetermined range, hematite is eluted and removed. The determination unit causes the control unit 104 to end the cleaning process and to perform a discharge process described later.
 例えば、計測工程で時間Tにおける鉄濃度Cが計測され、判定部に入力される。判定部は、前回(時間Tt-1)における鉄濃度Ct-1と、前々回(時間Tt-2)における鉄濃度Ct-2も格納している。
 判定部は、時間Tと時間Tt-1との間の鉄濃度の単位時間当たりの濃度勾配ΔC(=(C-Ct-1)/(T-Tt-1))を取得する。判定部は、前回取得した鉄濃度の単位時間当たりの濃度勾配ΔCt-1(=(Ct-1-Ct-2)/(Tt-1-Tt-2))を格納している。
 判定部は、今回取得した濃度勾配ΔCと前回取得した濃度勾配ΔCt-1の変化量Δdを取得する。判定部は、取得したΔdが予め格納された判定基準の範囲内である場合に、判定基準に到達したと判定する。例えば、判定基準は±20%とする。洗浄対象機器10内でのヘマタイトの析出が比較的均一である場合には、判定基準を±10%とすることにより、判定精度を向上させることができる。
For example, the iron concentration C t at the time T t is measured in the measurement process and input to the determination unit. Determination unit includes a iron concentration C t-1 in the previous (time T t-1), the iron concentration C t-2 is also stored in the time before last (time T t-2).
The determination unit determines a concentration gradient ΔC t per unit time of iron concentration between time T t and time T t−1 (= (C t −C t−1 ) / (T t −T t−1 )). To get. The determination unit stores the concentration gradient ΔC t−1 (= (C t−1 −C t−2 ) / (T t−1 −T t−2 )) per unit time of the iron concentration acquired last time. Yes.
The determination unit acquires the concentration gradient ΔC t acquired this time and the change amount Δd t of the concentration gradient ΔC t−1 acquired last time. Determination unit determines if the acquired [Delta] d t is in the range of pre-stored criteria, reaching the criteria and. For example, the criterion is ± 20%. In the case where hematite precipitates in the cleaning target device 10 is relatively uniform, the determination accuracy can be improved by setting the determination criterion to ± 10%.
 計測部に最新に入力された鉄濃度が判定基準未満と判定された場合、または、濃度勾配の変化量が所定範囲よりも大きいと判定された場合は、判定部は制御部104に洗浄工程を継続させる。制御部104は、洗浄液供給工程と同様の工程で、薬液タンク101内の洗浄液を再度に貫流ボイラ10に送給する。 When it is determined that the latest iron concentration input to the measurement unit is less than the determination criterion, or when it is determined that the amount of change in the concentration gradient is larger than the predetermined range, the determination unit causes the control unit 104 to perform a cleaning process. Let it continue. The control unit 104 supplies the cleaning liquid in the chemical liquid tank 101 to the once-through boiler 10 again in the same process as the cleaning liquid supply process.
 本実施形態において、上記計測工程で鉄濃度の計測と同時に洗浄液の酸化還元電位が計測され、洗浄液の酸化還元電位が上述の所定範囲から外れた場合、薬液タンク101中の洗浄液に還元剤が投入されることにより洗浄液の成分調整がなされてもよい。 In this embodiment, the oxidation-reduction potential of the cleaning liquid is measured simultaneously with the measurement of the iron concentration in the measurement step. By doing so, the components of the cleaning liquid may be adjusted.
(2)色変化に基づく判定
 本判定方法では、(A)ヘマタイトが付着した試験片、(B)水冷壁管、のいずれかの色変化を観測することによって判定される。
(2) Determination Based on Color Change In this determination method, the determination is made by observing the color change of either (A) the test piece to which hematite has adhered or (B) the water-cooled wall tube.
(2-A)試験片を用いた判定
 ヘマタイトが付着した試験片が準備される。
 試験片は、図7に示すように軸方向に沿って二分割に切断された水冷壁管であり、内壁面にヘマタイトが付着している。この試験片(切断試験片120)は、洗浄されている貫流ボイラ10(洗浄対象機器)と同程度のヘマタイトが付着しているものである。例えば、以前のメンテナンス時に同一位置から採取された水冷壁管や、類似条件で運用された別のプラントから採取された水冷壁管を切断して試験片が作製される。
 試験片は、水冷壁管と同じ材質の板材(板状試験片)であって、一表面に水冷壁管と同程度のヘマタイトが付着したものであっても良い。
 また試験片は、上記のように採取された水冷壁管(筒状の試験片であって、上記切断試験片のように軸方向に沿って切断していないもの)であっても良い。
(2-A) Determination using test piece A test piece to which hematite is adhered is prepared.
As shown in FIG. 7, the test piece is a water-cooled wall tube cut in two along the axial direction, and hematite is attached to the inner wall surface. This test piece (cutting test piece 120) has hematite of the same level as that of the once-through boiler 10 (device to be cleaned) being cleaned. For example, a test piece is produced by cutting a water-cooled wall tube collected from the same position during previous maintenance, or a water-cooled wall tube collected from another plant operated under similar conditions.
The test piece may be a plate material (plate-like test piece) made of the same material as the water-cooled wall tube, and hematite of the same degree as the water-cooled wall tube may be attached to one surface.
Further, the test piece may be a water-cooled wall tube (cylindrical test piece that is not cut along the axial direction like the cut test piece) collected as described above.
 本判定では、洗浄工程時に、試験片のヘマタイトが付着している面が洗浄液に浸漬される。
 浸漬方法としては、洗浄開始と同時に、複数個の切断試験片または板状試験片が薬液タンク101に貯留されている洗浄液中に浸漬される。
 この場合、薬液タンク101内部に還元雰囲気ガスが送給可能な構成とされて、試験片が浸漬されている間、薬液タンク101内部の洗浄液が水冷壁管13a,13bと同等の酸化還元電位に調整されることが好ましい。
In this determination, the surface of the test piece to which hematite is attached is immersed in the cleaning liquid during the cleaning process.
As the dipping method, simultaneously with the start of cleaning, a plurality of cut test pieces or plate-like test pieces are immersed in the cleaning liquid stored in the chemical tank 101.
In this case, the reducing atmosphere gas can be supplied into the chemical liquid tank 101, and while the test piece is immersed, the cleaning liquid in the chemical liquid tank 101 has an oxidation-reduction potential equivalent to that of the water-cooled wall tubes 13a and 13b. It is preferable to adjust.
 別の浸漬方法として、図8のように、切断試験片120の切断面に透明板(例えばアクリル製)121が配置されるとともに、切断試験片120の一端面が板材(図8では不図示)が配置されることにより形成された空間122に、貫流ボイラ10に送給された洗浄液と同濃度の除錆剤を含む洗浄液が注入されることにより、ヘマタイトが付着している面が洗浄液に浸漬される。洗浄液の注入は洗浄工程の開始と略同時に行われることが好ましい。
 この場合、還元雰囲気ガスにより、切断試験片120内に注入された洗浄液の酸化還元電位が水冷壁管13a,13bと同等の酸化還元電位に調整されることが好ましい。
As another dipping method, as shown in FIG. 8, a transparent plate (for example, acrylic) 121 is disposed on the cut surface of the cutting test piece 120, and one end surface of the cutting test piece 120 is a plate material (not shown in FIG. 8). The surface having hematite attached is immersed in the cleaning liquid by injecting the cleaning liquid containing the same concentration of the rust removing agent as the cleaning liquid supplied to the once-through boiler 10 into the space 122 formed by the arrangement of Is done. The injection of the cleaning liquid is preferably performed substantially simultaneously with the start of the cleaning process.
In this case, it is preferable that the oxidation-reduction potential of the cleaning liquid injected into the cutting specimen 120 is adjusted to the oxidation-reduction potential equivalent to that of the water-cooled wall tubes 13a, 13b by the reducing atmosphere gas.
 別の浸漬方法として、図9に示すように薬液供給ライン102のバルブV1上流側にバイパス部130が設置され、バイパス部130のバイパス管131の途中位置に筒状試験片132が接続される。洗浄液供給工程においてポンプ105が起動されるとともにバルブV1が開放されると、薬液供給ライン102を通過する洗浄液の一部がバイパス部130に流入して、筒状試験片132の内壁面が洗浄液に浸漬される。
 この場合、ガス供給工程において還元雰囲気ガスがバイパス部130にも到達するように供給して、筒状試験片132が浸漬されている間の筒状試験片132内の洗浄液が水冷壁管13a,13bと同等の酸化還元電位に調整されることが好ましい。
As another dipping method, as shown in FIG. 9, a bypass portion 130 is installed on the upstream side of the valve V <b> 1 of the chemical solution supply line 102, and a cylindrical test piece 132 is connected to a midway position of the bypass pipe 131 of the bypass portion 130. When the pump 105 is started and the valve V1 is opened in the cleaning liquid supply process, a part of the cleaning liquid passing through the chemical liquid supply line 102 flows into the bypass unit 130, and the inner wall surface of the cylindrical test piece 132 becomes the cleaning liquid. Soaked.
In this case, in the gas supply process, the reducing atmosphere gas is supplied so as to reach the bypass portion 130, and the cleaning liquid in the cylindrical test piece 132 is immersed in the water-cooled wall tube 13a, while the cylindrical test piece 132 is immersed. It is preferable to adjust to an oxidation-reduction potential equivalent to 13b.
<観測工程>
 洗浄工程中に、薬液タンク101内の洗浄液に浸漬された試験片の1つが、所定の時間間隔で洗浄液から取り出される。取り出された試験片のヘマタイトが付着した面の色が観測される。観測は、オペレータの目視またはCCDカメラを用いて行われる。目視観察の場合、オペレータは判定部に色変化の判定結果を入力する。CCDカメラによる観測の場合、計測データが判定部に送信される。
<Observation process>
During the cleaning process, one of the test pieces immersed in the cleaning liquid in the chemical liquid tank 101 is taken out from the cleaning liquid at predetermined time intervals. The color of the surface of the removed specimen on which hematite is adhered is observed. The observation is performed by an operator's visual observation or using a CCD camera. In the case of visual observation, the operator inputs the determination result of the color change to the determination unit. In the case of observation by a CCD camera, measurement data is transmitted to the determination unit.
 図8のようにヘマタイトが付着している面が洗浄液に浸漬された場合は、所定の時間周期で、透明板121側から目視またはCCDカメラによる観測が実施される。 As shown in FIG. 8, when the surface on which hematite is adhered is immersed in the cleaning liquid, observation is performed visually or by a CCD camera from the transparent plate 121 side at a predetermined time period.
 図9のようにバイパス部130を設置した場合は、所定の時間周期で筒状試験片132の内壁面がCCDカメラを用いて観測される。具体的に、筒状試験片132に観察孔が穿設され、観察孔にCCDカメラへ観測部位からの反射光が入光可能となるようなビューポートが挿入され、洗浄液に浸された内壁面が観測される。計測データが判定部に送信される。 When the bypass unit 130 is installed as shown in FIG. 9, the inner wall surface of the cylindrical test piece 132 is observed using a CCD camera at a predetermined time period. Specifically, an observation hole is drilled in the cylindrical test piece 132, and a viewport is inserted into the observation hole so that reflected light from the observation site can enter the CCD camera, and the inner wall surface is immersed in the cleaning liquid. Is observed. The measurement data is transmitted to the determination unit.
<判定工程>
 ヘマタイトは凡そ赤色であるが、ヘマタイトの除去が進行すると下地である自然酸化層(マグネタイト:凡そ黒色)または下地金属層(凡そ銀色)が露出するので、色調が変化する。
 判定部は、ヘマタイト由来の色が観測されない場合に、ヘマタイトが除去されたと判定する。判定部は、制御部104に洗浄工程を終了させ、後述の排出工程を実施させる。判定部は、ヘマタイト由来の色が観測された場合に、制御部104に洗浄工程を継続させる。
<Judgment process>
Hematite is approximately red, but as the removal of hematite proceeds, the underlying natural oxide layer (magnetite: approximately black) or the underlying metal layer (approximately silver) is exposed, and the color changes.
The determination unit determines that hematite is removed when no color derived from hematite is observed. The determination unit causes the control unit 104 to end the cleaning process and to perform a discharge process described later. The determination unit causes the control unit 104 to continue the cleaning process when a color derived from hematite is observed.
 判定部は、計測データ信号のRGB成分を分離し、R成分のみを抽出するか、R成分とB成分とを抽出する。判定部は、R成分の時間変化、または、R成分とB成分との比(R成分/B成分)の時間変化からヘマタイトの溶出し除去する状況を判定する。 The determination unit separates the RGB components of the measurement data signal and extracts only the R component or extracts the R component and the B component. The determination unit determines a state in which hematite is eluted and removed from the time change of the R component or the time change of the ratio between the R component and the B component (R component / B component).
 具体的に、判定部は、初期値に対するR成分値の比(R成分計測値/R成分初期値)、または、初期値に対するR成分/B成分の値の比((R成分/B成分計測値)/(R成分/B成分初期値))の判定基準を格納している。この判定基準は、具体的に1/5~1/10の範囲内の値である。ヘマタイトの析出状態によりR成分またはR成分/B成分の計測値が異なるので、基礎試験において判定基準を定めることが好ましい。
 判定部が初期値に対するR成分値の比、または、初期値に対するR成分/B成分の値の比が判定基準以下である場合に、ヘマタイト由来の色が観測されないと判定する。判定部は、ヘマタイト由来の色が観測されない場合に、ヘマタイトが溶出して除去されたとして、制御部104に洗浄工程を終了させ、後述の排出工程を実施させる。
Specifically, the determination unit determines the ratio of the R component value to the initial value (R component measurement value / R component initial value) or the ratio of the R component / B component value to the initial value ((R component / B component measurement). Value) / (R component / B component initial value)) is stored. This criterion is specifically a value within the range of 1/5 to 1/10. Since the measured values of the R component or the R component / B component differ depending on the precipitation state of hematite, it is preferable to determine the determination criteria in the basic test.
The determination unit determines that hematite-derived color is not observed when the ratio of the R component value to the initial value or the ratio of the R component / B component value to the initial value is equal to or less than the determination criterion. When the color derived from hematite is not observed, the determination unit determines that hematite is eluted and removed, and causes the control unit 104 to end the cleaning process and to perform a discharge process described later.
 初期値に対するR成分値の比、または、初期値に対するR成分/B成分の値の比が判定基準よりも大きい場合は、ヘマタイトが残留していることになるので判定部は制御部104に洗浄工程を継続させる。 If the ratio of the R component value to the initial value or the ratio of the R component / B component value to the initial value is larger than the criterion, hematite remains, so the determination unit cleans the control unit 104 Continue the process.
(2-B)水冷壁管を用いた判定
 洗浄工程において、所定の時間周期でバルブV2,V3が開放される。還元雰囲気ガスが、還元雰囲気ガス貯留部111から給気ライン112を介して貫流ボイラ10の水冷壁管13a,13bに送給され、水冷壁管13a,13b内の洗浄液が下部管寄せ14a,14bから薬液排出ライン103を介して薬液タンク101に送給される。全ての洗浄液が薬液タンク101に収容されると、バルブV2,V3が閉鎖される。
(2-B) Determination Using Water-Cooled Wall Tube In the cleaning process, the valves V2 and V3 are opened at a predetermined time period. The reducing atmosphere gas is supplied from the reducing atmosphere gas storage unit 111 to the water-cooled wall pipes 13a and 13b of the once-through boiler 10 through the air supply line 112, and the cleaning liquid in the water-cooled wall pipes 13a and 13b is transferred to the lower headers 14a and 14b. To the chemical liquid tank 101 through the chemical liquid discharge line 103. When all the cleaning liquid is stored in the chemical tank 101, the valves V2 and V3 are closed.
<観測工程>
 水冷壁管13a,13bのヘマタイトが付着した領域17の近傍において、観察孔が穿設される。観察孔は、水冷壁管13a,13bの燃料室11a,11bと反対側の面に形成される。観察孔にCCDカメラ用のビューポートが挿入され、内壁面が観測される。
<Observation process>
An observation hole is drilled in the vicinity of the region 17 where the hematite adheres to the water-cooled wall tubes 13a and 13b. The observation hole is formed on the surface of the water-cooled wall pipes 13a and 13b opposite to the fuel chambers 11a and 11b. A view port for the CCD camera is inserted into the observation hole, and the inner wall surface is observed.
<判定工程>
 (2-A)での説明と同様の工程で、判定部がヘマタイト由来の色からヘマタイトの除去状況を判定し、制御部104に洗浄工程の継続または終了を実施させる。
<Judgment process>
In the same process as described in (2-A), the determination unit determines the hematite removal status from the color derived from hematite, and causes the control unit 104 to continue or end the cleaning process.
 なお、CCDカメラを用いて判定するために水冷壁管13a,13bの面に形成された観察孔は、化学洗浄が終了した後に溶接などで埋めることで復旧させる。 Note that the observation holes formed in the surfaces of the water-cooled wall tubes 13a and 13b in order to make a determination using a CCD camera are restored by filling them with welding after the chemical cleaning is completed.
(3)水冷壁管外側からの内部状態の分析結果に基づく判定
 本方法では、超音波による肉厚計測または交流電気特性計測によって水冷壁管内部の状態が分析される。
(3) Determination based on analysis result of internal state from outside of water-cooled wall tube In this method, the state inside the water-cooled wall tube is analyzed by ultrasonic thickness measurement or AC electrical characteristic measurement.
(3-A)超音波計測
 化学洗浄実施前に、ヘマタイトが付着した領域の水冷壁管外側に超音波探触子が取り付けられる。ヘマタイトが付着する領域は、前回のメンテナンス時に水冷壁管を採取して内壁面を観察することにより特定される。または、化学洗浄実施前に水冷壁管外側で探触子を水流通方向にスキャンさせてヘマタイトが付着した水冷壁管の肉厚を計測することにより特定される。
(3-A) Ultrasonic measurement Before performing chemical cleaning, an ultrasonic probe is attached to the outside of the water-cooled wall tube in the area where hematite adheres. The region where hematite adheres is specified by collecting the water-cooled wall tube and observing the inner wall surface during the previous maintenance. Alternatively, it is specified by measuring the wall thickness of the water-cooled wall tube to which hematite is adhered by scanning the probe in the direction of water flow outside the water-cooled wall tube before chemical cleaning.
<計測工程>
 洗浄工程中に所定の時間間隔で水冷壁管の超音波計測が実施される。計測工程で取得された計測値(水冷壁管の厚さ)は、判定部に送信される。
<Measurement process>
Ultrasonic measurement of a water-cooled wall tube is performed at predetermined time intervals during the cleaning process. The measurement value (the thickness of the water-cooled wall tube) acquired in the measurement process is transmitted to the determination unit.
<判定工程>
 ヘマタイトが溶出し除去が進行すると計測値は減少し、ヘマタイトが完全に除去されると超音波による計測値はヘマタイトの付着がない水冷壁管の肉厚として一定になる。判定部は、超音波による計測値の時間変化からヘマタイトの除去状況を判定する。
<Judgment process>
When hematite is eluted and removal proceeds, the measured value decreases, and when hematite is completely removed, the ultrasonic measured value becomes constant as the wall thickness of the water-cooled wall tube without adhesion of hematite. The determination unit determines the removal status of hematite from the time change of the measurement value by the ultrasonic wave.
 基礎試験やシミュレーションにより、付着したヘマタイトが十分に溶出したことを示す水冷壁管の肉厚を予想することができる。基礎試験またはシミュレーションで得られた肉厚が、ヘマタイトが除去されたことを示す判定基準として判定部に格納されている。この場合、判定部が計測工程で計測された肉厚が判定基準以下になったと判定した場合に、ヘマタイトが溶出して除去されたとして判定部は制御部104に洗浄工程を終了させ、後述の排出工程を実施させる。 <Through basic tests and simulations, it is possible to predict the thickness of the water-cooled wall tube, which indicates that the attached hematite has sufficiently eluted. The wall thickness obtained by the basic test or simulation is stored in the determination unit as a determination criterion indicating that hematite has been removed. In this case, when the determination unit determines that the wall thickness measured in the measurement process is equal to or less than the determination criterion, the determination unit terminates the cleaning process in the control unit 104 as hematite is eluted and removed, which will be described later. The discharge process is carried out.
 あるいは、肉厚の計測値の変化量からヘマタイトの除去を判定しても良い。ヘマタイトが十分に溶出されている場合には、計測工程で得られる肉厚値と前回の計測工程で得られた肉厚値との差が徐々に小さくなる。このことから、単位時間当たりの肉厚の変化の傾きである肉厚変化勾配の変化量が判定基準として判定部に格納され、判定部が肉厚変化勾配の変化量が所定範囲以内の値となったと判定された場合に、ヘマタイトが溶出して除去されたとして、判定部は制御部104に洗浄工程を終了させ、後述の排出工程を実施させる。 Alternatively, hematite removal may be determined from the amount of change in the measured thickness value. When hematite is sufficiently eluted, the difference between the wall thickness value obtained in the measurement process and the wall thickness value obtained in the previous measurement process is gradually reduced. From this, the change amount of the wall thickness change gradient, which is the inclination of the wall thickness change per unit time, is stored in the determination unit as a determination criterion, and the determination unit sets the change amount of the wall thickness change gradient to a value within a predetermined range. If it is determined that the hematite is eluted and removed, the determination unit causes the control unit 104 to end the cleaning process and to perform a discharge process described later.
 具体的な判定は、(1)洗浄液中の鉄濃度に基づく判定で説明した方法と同じ思想で行われる。超音波計測の場合も、判定基準は±20%とする。また、洗浄対象機器10内でのヘマタイトの析出が比較的均一である場合には、判定基準を±10%とすることにより、判定精度を向上させることができる。 Specific determination is performed based on the same idea as the method described in (1) Determination based on iron concentration in the cleaning liquid. Also in the case of ultrasonic measurement, the criterion is ± 20%. Moreover, when the precipitation of hematite in the apparatus 10 to be cleaned is relatively uniform, the determination accuracy can be improved by setting the determination criterion to ± 10%.
 計測工程で計測された肉厚値が判定基準に到達していないと判定された場合、または、肉厚変化勾配の変化量が所定範囲よりも大きいと判定された場合は、判定部は制御部104に洗浄工程を継続させる。 When it is determined that the wall thickness value measured in the measurement process does not reach the determination criterion, or when it is determined that the change amount of the wall thickness change gradient is larger than the predetermined range, the determination unit is a control unit In 104, the cleaning process is continued.
(3-B)交流電気特性計測
 化学洗浄実施前に、ヘマタイトが付着した領域の水冷壁管外側に電気特性評価装置140が図10に示すように設置される。2本の端子141が水冷壁管13(13a,13b)の軸方向に離間して設置され、端子141間にLCRメータ142が設置される。端子141先端間の距離は、水冷壁管13(13a,13b)の直流電気抵抗分と区別しやすいように、1m~5m程度に設定される。LCRメータ142に変えてネットワークアナライザが設置されても良い。
(3-B) AC Electrical Characteristic Measurement Before chemical cleaning, an electrical characteristic evaluation device 140 is installed outside the water-cooled wall tube in the area where hematite is adhered as shown in FIG. Two terminals 141 are installed apart from each other in the axial direction of the water-cooled wall tube 13 (13a, 13b), and an LCR meter 142 is installed between the terminals 141. The distance between the tips of the terminals 141 is set to about 1 m to 5 m so that it can be easily distinguished from the DC electric resistance of the water-cooled wall tube 13 (13a, 13b). Instead of the LCR meter 142, a network analyzer may be installed.
<計測工程>
 洗浄工程中に所定の時間間隔で水冷壁管の交流電気特性計測が実施される。
 図11は図10に示すように電気特性評価装置140を設置した場合の回路図である。水冷壁管13及び水冷壁管内部の洗浄液は、それぞれ抵抗R1及びR3と表される。ヘマタイトが付着した領域17は、抵抗R2a,R2b及びコンデンサ容量C1,C2で表される。
<Measurement process>
During the cleaning process, AC electric characteristics of the water-cooled wall tube are measured at predetermined time intervals.
FIG. 11 is a circuit diagram when the electrical property evaluation apparatus 140 is installed as shown in FIG. The water-cooled wall tube 13 and the cleaning liquid inside the water-cooled wall tube are represented as resistors R1 and R3, respectively. The region 17 to which hematite is attached is represented by resistors R2a and R2b and capacitor capacitances C1 and C2.
 ヘマタイト(酸化物)は抵抗成分である。ヘマタイトの除去が進行すると、ヘマタイトのコンデンサ容量(C1及びC2)が減少するので、上記回路のリアクタンスが減少する。LCRメータ141は、所定の時間間隔で水冷壁管13のリアクタンスを計測する。計測工程で取得されたリアクタンスの値は、判定部に送信される。 Hematite (oxide) is a resistance component. As hematite removal progresses, the capacitance of the hematite (C1 and C2) decreases, so the reactance of the circuit decreases. The LCR meter 141 measures the reactance of the water-cooled wall tube 13 at a predetermined time interval. The reactance value acquired in the measurement process is transmitted to the determination unit.
<判定工程>
 ヘマタイトの除去が進行するとリアクタンスの計測値は減少し、ヘマタイトが完全に除去されると計測されるリアクタンスは一定になる。判定部は、リアクタンスの時間変化からヘマタイトが溶出する除去状況を判定する。
<Judgment process>
As the hematite removal proceeds, the measured value of the reactance decreases, and when the hematite is completely removed, the measured reactance becomes constant. The determination unit determines a removal state in which hematite is eluted from the change in reactance with time.
 基礎試験やシミュレーションにより、付着したヘマタイトが十分に溶出したことを示す水冷壁管のリアクタンスを予想することができる。基礎試験またはシミュレーションで得られたリアクタンスが、ヘマタイトが除去されたことを示す判定基準として判定部に格納されている。この場合、判定部が計測工程で計測されたリアクタンスが判定基準以下になったと判定した場合に、ヘマタイトが溶出して除去されたとして、判定部は制御部104に洗浄工程を終了させ、後述の排出工程を実施させる。 ∙ Reactance of the water-cooled wall tube, which indicates that the attached hematite has sufficiently eluted, can be predicted by basic tests and simulations. The reactance obtained by the basic test or the simulation is stored in the determination unit as a determination criterion indicating that hematite has been removed. In this case, when the determination unit determines that the reactance measured in the measurement process is equal to or less than the determination criterion, the determination unit terminates the cleaning process in the control unit 104, assuming that hematite is eluted and removed, and will be described later. The discharge process is carried out.
 あるいは、リアクタンスの計測値の変化量からヘマタイトの除去を判定しても良い。ヘマタイトが十分に溶出されている場合には、計測工程で得られるリアクタンスと前回の計測工程で得られたリアクタンスとの差は徐々に小さくなる。単位時間当たりのリアクタンス変化勾配の変化量が判定基準として判定部に格納され、判定部がリアクタンス変化勾配の変化量が所定範囲内の値になったと判定された場合に、ヘマタイトが溶出して除去されたとして、判定部は制御部104に洗浄工程を終了させ、後述の排出工程を実施させる。 Alternatively, hematite removal may be determined from the amount of change in the reactance measurement. When hematite is sufficiently eluted, the difference between the reactance obtained in the measurement process and the reactance obtained in the previous measurement process is gradually reduced. The amount of change in reactance change gradient per unit time is stored in the determination unit as a criterion, and hematite is eluted and removed when the determination unit determines that the amount of change in reactance change gradient is within a specified range. As a result, the determination unit causes the control unit 104 to finish the cleaning process and to perform a discharge process described later.
 具体的な判定は、(1)洗浄液中の鉄濃度に基づく判定で説明した方法と同じ思想で行われる。交流電気特性を計測する場合も、判定基準は±20%とする。また、洗浄対象機器10内でのヘマタイトの析出が比較的均一である場合には、判定基準を±10%とすることにより、判定精度を向上させることができる。 Specific determination is performed based on the same idea as the method described in (1) Determination based on iron concentration in the cleaning liquid. Even when measuring AC electrical characteristics, the criterion is ± 20%. Moreover, when the precipitation of hematite in the apparatus 10 to be cleaned is relatively uniform, the determination accuracy can be improved by setting the determination criterion to ± 10%.
 計測工程で計測されたリアクタンスが判定基準に到達していないと判定された場合、または、リアクタンス変化勾配の変化量が所定範囲よりも大きいと判定された場合に、判定部は制御部104に洗浄工程を継続させる。 When it is determined that the reactance measured in the measurement process does not reach the determination criterion, or when it is determined that the change amount of the reactance change gradient is larger than the predetermined range, the determination unit performs cleaning to the control unit 104. Continue the process.
<排出工程>
 制御部104はバルブV2を開放する。水冷壁管13a,13b内の洗浄液は下部管寄せ14a,14bから薬液排出ライン103を介して薬液タンク101に送給されて回収される。これにより、本実施形態の化学洗浄方法が終了する。
 回収された洗浄液は除錆剤が残存していれば、洗浄成分(除錆剤の濃度)を再調整して次の化学洗浄に再利用しても良い。
<Discharge process>
The control unit 104 opens the valve V2. The cleaning liquid in the water-cooled wall pipes 13a and 13b is fed from the lower headers 14a and 14b to the chemical liquid tank 101 via the chemical liquid discharge line 103 and collected. Thereby, the chemical cleaning method of this embodiment is completed.
If the rust remover remains in the recovered cleaning solution, the cleaning component (the concentration of the rust remover) may be readjusted and reused for the next chemical cleaning.
 上記方法に依れば、中性除錆剤を含む洗浄液を使用しているので、漬け置き状態で洗浄工程が実施されたとしても、洗浄液に浸漬される水冷壁管13a,13bの内面が腐食することなく、ヘマタイトを洗浄液に溶解することができる。
 図5,6を用いて説明したように、本実施形態では自然酸化スケールであるマグネタイトの層を溶出させてヘマタイトを剥離除去する方法ではないので、スラッジの発生が抑制される。特に火力発電システム1では、貫流ボイラ10の水冷壁管の配管形状が長く複雑なために、スラッジが発生すると配管の途中にスラッジが集積して配管内を閉塞する場合がある。本実施形態のように洗浄液にヘマタイトを溶解させて水冷壁管13a,13bから除去すれば、化学洗浄後に洗浄液の排出とともに溶出したヘマタイトを排出することができる。従って、例えば本実施形態を採用した火力発電システム1では、フィルタ等のスラッジを除去する設備が不要であるし、スラッジを除去するための別の洗浄などの工程も不要である。
According to the above method, since the cleaning liquid containing the neutral rust remover is used, the inner surfaces of the water-cooled wall tubes 13a and 13b immersed in the cleaning liquid corrode even if the cleaning process is carried out in the soaking state. Hematite can be dissolved in the cleaning solution without doing so.
As described with reference to FIGS. 5 and 6, in this embodiment, since it is not a method of separating and removing hematite by eluting a magnetite layer which is a natural oxide scale, generation of sludge is suppressed. In particular, in the thermal power generation system 1, since the pipe shape of the water-cooled wall pipe of the once-through boiler 10 is long and complicated, when sludge is generated, the sludge may accumulate in the middle of the pipe and block the inside of the pipe. If hematite is dissolved in the cleaning liquid and removed from the water-cooled wall tubes 13a and 13b as in the present embodiment, the hematite eluted with the discharge of the cleaning liquid after chemical cleaning can be discharged. Therefore, for example, in the thermal power generation system 1 adopting the present embodiment, a facility for removing sludge such as a filter is unnecessary, and a process such as another cleaning for removing sludge is also unnecessary.
[第2実施形態]
 図12は第2実施形態に係る化学洗浄装置を説明する概略図である。
 第2実施形態の化学洗浄装置200は、第1実施形態と同様に、薬液供給ライン202及び薬液排出ライン203が貫流ボイラ10の下部管寄せ14a,14bに接続する。薬液供給ライン202及び薬液排出ライン203は薬液タンク201に接続する。貫流ボイラの上部管寄せ15a,15bに排気ライン213が接続する。
[Second Embodiment]
FIG. 12 is a schematic view illustrating a chemical cleaning apparatus according to the second embodiment.
In the chemical cleaning apparatus 200 according to the second embodiment, the chemical solution supply line 202 and the chemical solution discharge line 203 are connected to the lower headers 14a and 14b of the once-through boiler 10 as in the first embodiment. The chemical solution supply line 202 and the chemical solution discharge line 203 are connected to the chemical solution tank 201. An exhaust line 213 is connected to the upper headers 15a and 15b of the once-through boiler.
 化学洗浄装置200は、薬液供給ライン202のポンプ205の下流側に還元雰囲気調整部として還元雰囲気ガス供給部210を備える。還元雰囲気ガス供給部210は制御部204に接続する。 The chemical cleaning apparatus 200 includes a reducing atmosphere gas supply unit 210 as a reducing atmosphere adjustment unit on the downstream side of the pump 205 of the chemical solution supply line 202. The reducing atmosphere gas supply unit 210 is connected to the control unit 204.
第2実施形態の還元雰囲気ガス供給部210はマイクロバブル発生装置である。マイクロバブル発生装置は液体中に気泡を注入する装置である。本実施形態において、液体(洗浄液)に気泡として注入される気体は、第1実施形態で列挙した還元雰囲気ガスである。 The reducing atmosphere gas supply unit 210 of the second embodiment is a microbubble generator. A microbubble generator is an apparatus that injects bubbles into a liquid. In the present embodiment, the gas injected into the liquid (cleaning liquid) as bubbles is the reducing atmosphere gas listed in the first embodiment.
 図12では図示されていないが、図1と同様に貫流ボイラ10に接続される還元雰囲気ガス貯留部及び給気ラインが設置されていても良い。 Although not shown in FIG. 12, a reducing atmosphere gas storage section and an air supply line connected to the once-through boiler 10 may be installed as in FIG.
 第2実施形態の化学洗浄装置200を用いた化学洗浄方法を以下で説明する。本実施形態においても、化学洗浄方法を実施するに当たり、貫流ボイラ10と節炭器26とを連結する配管に設置されるバルブは閉鎖される。 A chemical cleaning method using the chemical cleaning apparatus 200 of the second embodiment will be described below. Also in the present embodiment, when the chemical cleaning method is performed, a valve installed in a pipe connecting the once-through boiler 10 and the economizer 26 is closed.
<洗浄液供給工程・ガス供給工程>
 制御部204はバルブV2を閉鎖する。制御部204はポンプ205及び還元雰囲気ガス供給部210を起動するとともにバルブV1を開放する。薬液タンク201内の洗浄液は薬液供給ライン202を介して還元雰囲気ガス供給部210に搬送される。還元雰囲気ガス供給部210は、洗浄液中に還元雰囲気ガスの気泡を注入する。気泡を含む洗浄液が薬液供給ライン202を介して貫流ボイラ10の水冷壁管13a,13bに供給される。
<Cleaning liquid supply process / gas supply process>
The control unit 204 closes the valve V2. The control unit 204 activates the pump 205 and the reducing atmosphere gas supply unit 210 and opens the valve V1. The cleaning liquid in the chemical tank 201 is conveyed to the reducing atmosphere gas supply unit 210 via the chemical supply line 202. The reducing atmosphere gas supply unit 210 injects bubbles of the reducing atmosphere gas into the cleaning liquid. The cleaning liquid containing bubbles is supplied to the water-cooled wall tubes 13a and 13b of the once-through boiler 10 via the chemical liquid supply line 202.
 洗浄液中の気泡は水冷壁管13a,13b内で洗浄液から放出され、水冷壁管13a,13b内に供給された洗浄液の上部空間に貯留される。制御部204はバルブV4を開放し、水冷壁管13a,13b内の空気は排気ライン213を介して系外に放出される。こうして、水冷壁管13a,13b内がパージガス雰囲気から還元雰囲気ガスに置換される。 Bubbles in the cleaning liquid are discharged from the cleaning liquid in the water-cooled wall pipes 13a and 13b and stored in the upper space of the cleaning liquid supplied in the water-cooled wall pipes 13a and 13b. The control unit 204 opens the valve V4, and the air in the water-cooled wall tubes 13a and 13b is discharged outside the system through the exhaust line 213. In this way, the inside of the water-cooled wall pipes 13a and 13b is replaced from the purge gas atmosphere to the reducing atmosphere gas.
 このように、第2実施形態では、第1実施形態のように独立したガス供給工程が不要であり、水冷壁管13a,13b内のガスの置換は洗浄液供給工程とともに行なわれる。 Thus, in the second embodiment, an independent gas supply step is not required as in the first embodiment, and the gas replacement in the water-cooled wall tubes 13a and 13b is performed together with the cleaning liquid supply step.
<洗浄工程>
 少なくともヘマタイトが付着した領域(特にヘマタイトが他部よりも多く付着した領域17)が洗浄液に浸漬されると、制御部204はポンプ205及び還元雰囲気ガス供給部210を停止するとともにバルブV1,V4を閉鎖する。洗浄液が静置された状態で、ヘマタイトの漬け置き洗浄処理が実施される。本実施形態においても、水冷壁管13a,13b内の洗浄液は水冷壁管13a,13bの周辺の環境温度と同程度であり、酸化還元電位が銀-塩化銀電極基準で-0.8V以上-0.4V以下に維持される。
<Washing process>
When at least a region to which hematite has adhered (particularly region 17 to which hematite has adhered more than the other portion) is immersed in the cleaning liquid, the control unit 204 stops the pump 205 and the reducing atmosphere gas supply unit 210 and switches the valves V1 and V4. Close. In the state where the cleaning liquid is allowed to stand, the hematite is soaked and cleaned. Also in this embodiment, the cleaning liquid in the water-cooled wall tubes 13a and 13b is at the same level as the ambient temperature around the water-cooled wall tubes 13a and 13b, and the oxidation-reduction potential is −0.8 V or more on the basis of the silver-silver chloride electrode. It is maintained at 0.4V or less.
 本実施形態において洗浄工程の終了は、第1実施形態と同様に、(1)洗浄液中の鉄濃度、(2)ヘマタイト付着部分の色変化、(3)水冷壁管外側からの内部状態の分析結果、のいずれかに基づいて判定される。判定工程においてヘマタイトが溶出し除去されたことを判定部が判定すると、判定部は制御部104に洗浄工程を終了させ、排出工程を実施させる。 In the present embodiment, the end of the cleaning step is the same as in the first embodiment, (1) the iron concentration in the cleaning liquid, (2) the color change of the hematite adhering portion, (3) the analysis of the internal state from the outside of the water-cooled wall tube It is determined based on one of the results. When the determination unit determines that hematite is eluted and removed in the determination process, the determination unit causes the control unit 104 to end the cleaning process and to perform the discharge process.
<排出工程>
 第1実施形態と同様の工程で水冷壁管13a,13b内の洗浄液が薬液タンク201に回収される。これにより、本実施形態の化学洗浄方法が終了する。
<Discharge process>
The cleaning liquid in the water-cooled wall tubes 13a and 13b is collected in the chemical liquid tank 201 in the same process as in the first embodiment. Thereby, the chemical cleaning method of this embodiment is completed.
 第1及び第2実施形態の化学洗浄方法で消泡剤を含まない洗浄液を使用した場合、洗浄液を水冷壁管13a,13bに送給することによって洗浄液が発泡し、ヘマタイトが発生した領域に泡状の洗浄液が付着する。ヘマタイトと泡状の洗浄液とが接触する時間が長くなることで、洗浄力が向上する。また、洗浄液を泡状とすることで、洗浄液の使用量が低減する。 When a cleaning liquid that does not contain an antifoaming agent is used in the chemical cleaning methods of the first and second embodiments, the cleaning liquid is foamed by supplying the cleaning liquid to the water-cooled wall tubes 13a and 13b, and bubbles are generated in the region where hematite is generated. A sticky cleaning solution adheres. Detergency is improved by increasing the contact time between hematite and the foam-like cleaning liquid. Moreover, the usage-amount of a cleaning liquid reduces by making a cleaning liquid into foam.
[第3実施形態]
 図13は第3実施形態に係る化学洗浄装置を説明する概略図である。
 第3実施形態の化学洗浄装置300は、第1実施形態と同様に、薬液供給ライン302及び薬液排出ライン303が貫流ボイラ10の下部管寄せ14a,14bに接続する。薬液供給ライン302及び薬液排出ライン303は薬液タンク301に接続する。
[Third Embodiment]
FIG. 13 is a schematic view illustrating a chemical cleaning apparatus according to the third embodiment.
In the chemical cleaning apparatus 300 of the third embodiment, the chemical liquid supply line 302 and the chemical liquid discharge line 303 are connected to the lower headers 14a and 14b of the once-through boiler 10 as in the first embodiment. The chemical solution supply line 302 and the chemical solution discharge line 303 are connected to the chemical solution tank 301.
 化学洗浄装置300は、還元雰囲気調整部として還元雰囲気調整剤供給部310を備える。還元雰囲気調整剤供給部310は、還元雰囲気調整剤貯留部311及び還元雰囲気調整剤供給ライン312を備える。還元雰囲気調整剤貯留部311は還元雰囲気調整剤を収容する。還元雰囲気調整剤は例えばヒドラジン、L-アスコルビン酸、硫黄系還元剤等である。
 還元雰囲気調整剤供給部310はポンプ305の下流側で薬液供給ライン302に接続する。還元雰囲気調整剤供給ライン312にバルブV5が設置される。バルブV5は制御部304に接続する。
The chemical cleaning apparatus 300 includes a reducing atmosphere adjusting agent supply unit 310 as a reducing atmosphere adjusting unit. The reducing atmosphere adjusting agent supply unit 310 includes a reducing atmosphere adjusting agent storage unit 311 and a reducing atmosphere adjusting agent supply line 312. The reducing atmosphere adjusting agent storage unit 311 stores the reducing atmosphere adjusting agent. The reducing atmosphere adjusting agent is, for example, hydrazine, L-ascorbic acid, sulfur-based reducing agent and the like.
The reducing atmosphere adjusting agent supply unit 310 is connected to the chemical solution supply line 302 on the downstream side of the pump 305. A valve V5 is installed in the reducing atmosphere adjusting agent supply line 312. The valve V5 is connected to the control unit 304.
 図13では図示されていないが、図1と同様に貫流ボイラ10に接続される還元雰囲気ガス貯留部、給気ライン及び排気ラインが設置されていても良い。 Although not shown in FIG. 13, a reducing atmosphere gas storage unit, an air supply line, and an exhaust line connected to the once-through boiler 10 may be installed as in FIG.
 第3実施形態の化学洗浄装置300を用いて貫流ボイラ内に付着したヘマタイトを洗浄除去する化学洗浄方法を以下で説明する。本実施形態の化学洗浄方法を実施するに当たり、貫流ボイラ10と節炭器26とを連結する配管に設置されるバルブは閉鎖される。 A chemical cleaning method for cleaning and removing hematite adhering to the once-through boiler using the chemical cleaning apparatus 300 of the third embodiment will be described below. In carrying out the chemical cleaning method of the present embodiment, a valve installed in a pipe connecting the once-through boiler 10 and the economizer 26 is closed.
<洗浄液供給工程>
 制御部304はバルブV2を閉鎖する。制御部304はポンプ305を起動するとともにバルブV1,V5を開放する。薬液タンク301内の洗浄液が薬液供給ライン302を通過する間に、還元雰囲気調整剤供給部310から洗浄液中に還元雰囲気調整剤が投入される。還元雰囲気調整剤が投入された洗浄液が貫流ボイラ10の水冷壁管13a,13bに送給される。
<Cleaning liquid supply process>
The control unit 304 closes the valve V2. The control unit 304 activates the pump 305 and opens the valves V1 and V5. While the cleaning liquid in the chemical liquid tank 301 passes through the chemical liquid supply line 302, the reducing atmosphere adjusting agent is introduced into the cleaning liquid from the reducing atmosphere adjusting agent supply unit 310. The cleaning liquid charged with the reducing atmosphere adjusting agent is fed to the water-cooled wall tubes 13 a and 13 b of the once-through boiler 10.
<洗浄工程>
 少なくともヘマタイトが付着した領域が洗浄液に浸漬されると、制御部304はポンプ305を停止するとともにバルブV1,V5を閉鎖する。洗浄液が静置された状態で、ヘマタイトの漬け置き洗浄処理が実施される。
<Washing process>
When at least the region to which hematite is attached is immersed in the cleaning liquid, the control unit 304 stops the pump 305 and closes the valves V1 and V5. In the state where the cleaning liquid is allowed to stand, the hematite is soaked and cleaned.
 本実施形態においても、水冷壁管13a,13b内の洗浄液は水冷壁管13a,13bの周辺の環境温度と同程度である。還元雰囲気調整剤供給部310から洗浄液に還元雰囲気調整剤が投入されることにより、洗浄液の酸化還元電位が銀-塩化銀電極基準で-0.8V以上-0.4V以下に維持される。制御部304は蒸気酸化還元電位が得られる還元雰囲気調整剤投入量にするために、バルブV5の開度を調整する。 Also in the present embodiment, the cleaning liquid in the water-cooled wall tubes 13a and 13b is at the same level as the ambient temperature around the water-cooled wall tubes 13a and 13b. By introducing the reducing atmosphere adjusting agent from the reducing atmosphere adjusting agent supply unit 310 into the cleaning liquid, the oxidation-reduction potential of the cleaning liquid is maintained at −0.8 V or more and −0.4 V or less with respect to the silver-silver chloride electrode. The control unit 304 adjusts the opening of the valve V5 in order to obtain a reducing atmosphere adjusting agent input amount that provides a steam oxidation-reduction potential.
 本実施形態において洗浄工程の終了は、第1実施形態と同様に、(1)洗浄液中の鉄濃度、(2)ヘマタイト付着部分の色変化、(3)水冷壁管外側からの内部状態の分析結果、のいずれかに基づいて判定される。判定工程においてヘマタイトが溶出し除去されたことを判定部が判定すると、判定部は制御部104に洗浄工程を終了させ、排出工程を実施させる。 In the present embodiment, the end of the cleaning step is the same as in the first embodiment, (1) the iron concentration in the cleaning liquid, (2) the color change of the hematite adhering portion, (3) the analysis of the internal state from the outside of the water-cooled wall tube It is determined based on one of the results. When the determination unit determines that hematite is eluted and removed in the determination process, the determination unit causes the control unit 104 to end the cleaning process and to perform the discharge process.
<排出工程>
 第1実施形態と同様の工程で水冷壁管13a,13b内の洗浄液が薬液排出ライン303を介して薬液タンク301に回収される。これにより、本実施形態の化学洗浄方法が終了する。
<Discharge process>
In the same process as in the first embodiment, the cleaning liquid in the water-cooled wall pipes 13 a and 13 b is collected in the chemical liquid tank 301 via the chemical liquid discharge line 303. Thereby, the chemical cleaning method of this embodiment is completed.
 ヘマタイトが大量に付着している場合には、ヘマタイトの溶解による酸化還元電位の変動が大きくなる。本実施形態のように洗浄液に還元雰囲気調整剤を追加投入することにより、酸化還元電位を-0.8~-0.4Vの範囲内に容易に調整することができる。 When a large amount of hematite adheres, the oxidation-reduction potential fluctuates greatly due to the dissolution of hematite. By additionally adding a reducing atmosphere adjusting agent to the cleaning liquid as in this embodiment, the oxidation-reduction potential can be easily adjusted within the range of −0.8 to −0.4V.
[第4実施形態]
 図14は第4実施形態に係る化学洗浄装置を説明する概略図である。
 第4実施形態に係る化学洗浄装置400は第1実施形態の化学洗浄装置と同様に、薬液タンク401、薬液供給ライン402、薬液排出ライン403、制御部404、ポンプ405、還元雰囲気ガス供給部410として還元雰囲気ガス貯留部411及び給気ライン412、排気ライン413を備える。
 化学洗浄装置400において、薬液供給ライン402のポンプ405を跨いで循環ループ406が設置される。
 なお、第2実施形態及び第3実施形態の化学洗浄装置に対しても循環ループを設けることができる。
[Fourth Embodiment]
FIG. 14 is a schematic view illustrating a chemical cleaning apparatus according to the fourth embodiment.
Similarly to the chemical cleaning apparatus of the first embodiment, the chemical cleaning apparatus 400 according to the fourth embodiment is a chemical tank 401, a chemical supply line 402, a chemical discharge line 403, a control unit 404, a pump 405, and a reducing atmosphere gas supply unit 410. As a reducing atmosphere gas storage unit 411, an air supply line 412, and an exhaust line 413.
In the chemical cleaning apparatus 400, a circulation loop 406 is installed across the pump 405 of the chemical solution supply line 402.
A circulation loop can also be provided for the chemical cleaning apparatuses of the second embodiment and the third embodiment.
 洗浄液供給工程においてポンプ405を通過することにより洗浄液の温度が上昇する。ポンプ405を通過した洗浄液の一部が循環ループ406に流入し、ポンプ405上流側の薬液共有ラインに搬送される。こうすることにより、貫流ボイラ10の水冷壁管13a,13bに昇温された洗浄液が送給されることになり、第1実施形態乃至第3実施形態よりも高温(具体的に、水冷壁管13a,13bの周辺の環境温度より高く、環境温度+10℃以下)で洗浄工程が実施される。 The temperature of the cleaning liquid rises by passing through the pump 405 in the cleaning liquid supply process. Part of the cleaning liquid that has passed through the pump 405 flows into the circulation loop 406 and is conveyed to the chemical liquid sharing line upstream of the pump 405. By doing so, the heated cleaning liquid is supplied to the water-cooled wall tubes 13a and 13b of the once-through boiler 10, and the temperature is higher than that of the first to third embodiments (specifically, the water-cooled wall tube). The cleaning step is performed at a temperature higher than the ambient temperature around 13a and 13b and less than or equal to ambient temperature + 10 ° C.
 洗浄工程の温度を高くするほど、洗浄液とヘマタイトとの反応や洗浄液中への溶解が促進される。本実施形態に依れば、昇温設備を設置することなく簡易な構成で洗浄液の昇温を実現することができる。また、環境温度と洗浄液温度の温度差が小さいので、本実施形態の構成では長時間に渡り洗浄液の温度を環境温度よりも高く維持することが可能である。この結果、更に洗浄力を高めることが可能となる。 The higher the temperature of the cleaning process, the more the reaction between the cleaning liquid and hematite and the dissolution in the cleaning liquid are promoted. According to this embodiment, the temperature of the cleaning liquid can be increased with a simple configuration without installing a temperature increasing facility. Further, since the temperature difference between the environmental temperature and the cleaning liquid temperature is small, the configuration of the present embodiment can maintain the temperature of the cleaning liquid higher than the environmental temperature for a long time. As a result, the cleaning power can be further increased.
 本実施形態においても、第1実施形態と同様の方法で洗浄工程の終了が判定される。 Also in this embodiment, the end of the cleaning process is determined by the same method as in the first embodiment.
[第5実施形態]
 図15は第5実施形態に係る化学洗浄装置を説明する概略図である。
 第5実施形態に係る化学洗浄装置500は第1実施形態の化学洗浄装置と同様に、薬液タンク501、薬液供給ライン502、薬液排出ライン503、制御部504、ポンプ505、還元雰囲気ガス供給部510として還元雰囲気ガス貯留部511及び給気ライン512、排気ライン513を備える。
 化学洗浄装置500は、更に水供給部520を備える構成である。水供給部520は、水タンク521及び水供給ライン522を備える。水タンク521は内部に水を収容する。水供給ライン522には水張ポンプ523及びバルブV6が設置される。水供給ライン522は、下部管寄せ14a,14bに接続する。
[Fifth Embodiment]
FIG. 15 is a schematic view illustrating a chemical cleaning apparatus according to the fifth embodiment.
Similar to the chemical cleaning apparatus of the first embodiment, the chemical cleaning apparatus 500 according to the fifth embodiment is a chemical tank 501, a chemical supply line 502, a chemical discharge line 503, a control unit 504, a pump 505, and a reducing atmosphere gas supply unit 510. As a reducing atmosphere gas storage section 511, an air supply line 512, and an exhaust line 513.
The chemical cleaning apparatus 500 further includes a water supply unit 520. The water supply unit 520 includes a water tank 521 and a water supply line 522. The water tank 521 contains water therein. A water supply pump 523 and a valve V6 are installed in the water supply line 522. The water supply line 522 is connected to the lower headers 14a and 14b.
 第5実施形態の化学洗浄装置500を用いて貫流ボイラ内に付着したヘマタイトを洗浄除去する化学洗浄方法を以下で説明する。本実施形態の化学洗浄方法を実施するに当たり、貫流ボイラ10と節炭器26とを連結する配管に設置されるバルブは閉鎖される。 A chemical cleaning method for cleaning and removing hematite adhered in the once-through boiler using the chemical cleaning apparatus 500 of the fifth embodiment will be described below. In carrying out the chemical cleaning method of the present embodiment, a valve installed in a pipe connecting the once-through boiler 10 and the economizer 26 is closed.
<ガス供給工程>
 第1実施形態と同様の工程で、還元雰囲気ガス貯留部511から給気ライン512を介して水冷壁管13a,13b内に還元雰囲気ガスが供給され、水冷壁管13a,13b内が還元雰囲気ガスで充填される。
<Gas supply process>
In the same process as in the first embodiment, the reducing atmosphere gas is supplied from the reducing atmosphere gas storage unit 511 through the air supply line 512 into the water-cooled wall tubes 13a and 13b, and the water-cooled wall tubes 13a and 13b are reduced in the reducing atmosphere gas. Filled with.
<洗浄液供給工程>
 制御部504はポンプ505を起動するとともにバルブV1,V4を開放する。薬液タンク501内の洗浄液が薬液供給ライン502を介して貫流ボイラ10に送給される。
<Cleaning liquid supply process>
The control unit 504 activates the pump 505 and opens the valves V1 and V4. The cleaning liquid in the chemical liquid tank 501 is supplied to the once-through boiler 10 via the chemical liquid supply line 502.
 所定量の洗浄液が送給された後、制御部504はポンプ505を停止しバルブV1を閉鎖する。次いで、制御部504は、水張ポンプ523を起動するとともにバルブV6を開放する。これにより水タンク521内の水が水供給ライン522を介して貫流ボイラ10の水冷壁管13a,13bに送給される。 After the predetermined amount of cleaning liquid has been supplied, the control unit 504 stops the pump 505 and closes the valve V1. Next, the control unit 504 activates the water-filled pump 523 and opens the valve V6. As a result, the water in the water tank 521 is supplied to the water-cooled wall pipes 13 a and 13 b of the once-through boiler 10 through the water supply line 522.
 洗浄液及び水の流速を調整することにより、洗浄液の層が鉛直方向上側にあり、水の層が鉛直方向下側となり、洗浄液の層と水の層とが少なくとも一部が分離した状態で水冷壁管13a,13b内の水位が上昇する。本実施形態では、水冷壁管13a,13b内でヘマタイトが他部よりも多く付着している領域17が洗浄液の層に浸漬するように、制御部504は所定量の洗浄液及び水を、それぞれ薬液タンク501及び水タンク521から水冷壁管13a,13bに送給する。 By adjusting the flow rate of the cleaning liquid and water, the water cooling wall is in a state where the cleaning liquid layer is on the upper side in the vertical direction, the water layer is on the lower side in the vertical direction, and the cleaning liquid layer and the water layer are at least partially separated. The water level in the pipes 13a and 13b rises. In the present embodiment, the control unit 504 supplies a predetermined amount of cleaning liquid and water respectively to the chemical solution so that the region 17 where hematite adheres more than the other portions in the water-cooled wall tubes 13a and 13b is immersed in the cleaning liquid layer. The water is supplied from the tank 501 and the water tank 521 to the water-cooled wall pipes 13a and 13b.
<洗浄工程>
 ヘマタイトが他部よりも多く付着した領域17が洗浄液に浸漬されると、制御部504は水張ポンプ523を停止するとともにバルブV4,V6を閉鎖する。洗浄液が静置された状態で、ヘマタイトの漬け置き洗いが実施される。本実施形態においても、洗浄工程中の洗浄液温度は水冷壁管13a,13bの周辺の環境温度と同程度であり、洗浄工程中の洗浄液の酸化還元電位が-0.8V以上-0.4V以下(銀-塩化銀電極基準)に維持される。
<Washing process>
When the region 17 where hematite adheres more than the other part is immersed in the cleaning liquid, the control unit 504 stops the water-filled pump 523 and closes the valves V4 and V6. The hematite is soaked and washed in a state where the washing liquid is left still. Also in the present embodiment, the temperature of the cleaning liquid during the cleaning process is approximately the same as the ambient temperature around the water-cooled wall tubes 13a and 13b, and the oxidation-reduction potential of the cleaning liquid during the cleaning process is −0.8 V or more and −0.4 V or less. (Silver-silver chloride electrode standard).
 本実施形態では洗浄工程中に洗浄液の層と水の層とが分離した状態を確保する必要がある。このため、洗浄工程の終了は、第1実施形態で説明した(2)ヘマタイト付着部分の色変化、(3)水冷壁管外側からの内部状態の分析結果、のいずれかに基づいて判定される。判定工程においてヘマタイトが溶出して除去されたことを判定部が判定すると、判定部は制御部104に洗浄工程を終了させ、排出工程を実施させる。 In this embodiment, it is necessary to ensure that the cleaning liquid layer and the water layer are separated during the cleaning process. Therefore, the end of the cleaning process is determined based on either (2) color change of the hematite adhering portion described in the first embodiment, or (3) the analysis result of the internal state from the outside of the water-cooled wall tube. . When the determination unit determines that hematite is eluted and removed in the determination step, the determination unit causes the control unit 104 to end the cleaning step and cause the discharge step to be performed.
<排出工程>
 第1実施形態と同様の工程で水冷壁管13a,13b内の洗浄液が薬液タンク501に送給される。これにより、本実施形態の化学洗浄方法が終了する。
 薬液タンク501に回収された洗浄液は除錆剤濃度が低下している。このため、新たな洗浄液を追加して洗浄液を再利用するか、薬液タンク501から洗浄液を排出して廃棄する。
<Discharge process>
The cleaning liquid in the water-cooled wall tubes 13a and 13b is supplied to the chemical liquid tank 501 in the same process as in the first embodiment. Thereby, the chemical cleaning method of this embodiment is completed.
The cleaning liquid collected in the chemical tank 501 has a reduced rust remover concentration. Therefore, a new cleaning liquid is added and the cleaning liquid is reused, or the cleaning liquid is discharged from the chemical liquid tank 501 and discarded.
 本実施形態の方法に依れば、ヘマタイトが他部よりも多く付着した領域17が洗浄液に浸漬されて集中的に除去されるので、使用する洗浄液の量を大幅に削減することができるため、洗浄コストを削減することが可能である。 According to the method of the present embodiment, since the region 17 where hematite adheres more than the other part is immersed in the cleaning liquid and concentratedly removed, the amount of the cleaning liquid to be used can be greatly reduced. Cleaning costs can be reduced.
[第6実施形態]
 第6実施形態の化学洗浄装置は、洗浄液がマイクロカプセルが収容される以外は、第1実施形態と同じ構成である。
 マイクロカプセルは、上述の洗浄液が水溶性のカプセルに包装されたものである。マイクロカプセルのカプセル材質は、例えばデキストリン、加工でんぷん、ゼラチン、アラビアガム、アルギン酸ソーダ、カラギーナン等の水溶性の高分子である。マイクロカプセルの大きさは例えば直径0.5mm~2mm程度である。マイクロカプセルは、例えば噴霧乾燥法、スプレークーリング法等により作製される。
[Sixth Embodiment]
The chemical cleaning apparatus of the sixth embodiment has the same configuration as that of the first embodiment except that the cleaning liquid contains microcapsules.
A microcapsule is one in which the above-described cleaning liquid is packaged in a water-soluble capsule. The capsule material of the microcapsule is a water-soluble polymer such as dextrin, processed starch, gelatin, gum arabic, sodium alginate, and carrageenan. The size of the microcapsule is, for example, about 0.5 mm to 2 mm in diameter. The microcapsules are produced by, for example, a spray drying method, a spray cooling method, or the like.
 第6実施形態の化学洗浄装置では、薬液供給ライン102のポンプ105上流側に、マイクロカプセル供給部が設置される。マイクロカプセル供給部はマイクロカプセルを収容するタンクを有している。マイクロカプセルは搬送用液体(例えば水)に分散された状態でタンクに収容される。 In the chemical cleaning apparatus of the sixth embodiment, a microcapsule supply unit is installed on the upstream side of the pump 105 of the chemical solution supply line 102. The microcapsule supply unit has a tank that accommodates the microcapsules. The microcapsules are stored in a tank in a state of being dispersed in a transport liquid (for example, water).
 第6実施形態では、第1実施形態と同様にして、ガス供給工程、洗浄液供給工程、洗浄工程及び排出工程が実施される。第6実施形態の洗浄液供給工程では、マイクロカプセル供給部と薬液供給ライン102とを連結する流路に設置されたポンプの起動によりマイクロカプセルを含む搬送用液体が薬液供給ライン102を流通する洗浄液中に供給され、マイクロカプセルを含む洗浄液が水冷壁管13a,13bに供給される。水冷壁管13a,13b内でマイクロカプセルが上方に向かって移動し、液面近傍に堆積する。マイクロカプセルのカプセルが搬送用液体に溶解することで洗浄液が放出され、液面近傍に泡状の洗浄液の層が形成される。特にヘマタイトが他部よりも多く付着した領域17が洗浄液の層に浸漬するように、マイクロカプセルの分散濃度(洗浄液量)及び液面高さ(制御部104が供給する搬送用液体の量)が適宜調整される。 In the sixth embodiment, the gas supply process, the cleaning liquid supply process, the cleaning process, and the discharge process are performed in the same manner as in the first embodiment. In the cleaning liquid supply process of the sixth embodiment, in the cleaning liquid in which the transport liquid including the microcapsules circulates through the chemical liquid supply line 102 by the activation of the pump installed in the flow path connecting the microcapsule supply unit and the chemical liquid supply line 102. The cleaning liquid containing the microcapsules is supplied to the water-cooled wall tubes 13a and 13b. The microcapsules move upward in the water-cooled wall tubes 13a and 13b and accumulate near the liquid surface. When the capsule of the microcapsule is dissolved in the transport liquid, the cleaning liquid is released, and a foam-like cleaning liquid layer is formed in the vicinity of the liquid surface. In particular, the dispersion concentration of the microcapsules (amount of cleaning liquid) and the liquid surface height (amount of transport liquid supplied by the control unit 104) are set so that the region 17 where hematite adheres more than the other part is immersed in the cleaning liquid layer. Adjust as appropriate.
 本実施形態の方法によれば、ヘマタイトが他部よりも多く発生した領域を洗浄液に容易に浸漬することができるので、使用する洗浄液の量を更に大幅に削減することができ、洗浄コストを更に削減することが可能である。 According to the method of this embodiment, since the region where hematite is generated more than the other part can be easily immersed in the cleaning liquid, the amount of the cleaning liquid to be used can be further greatly reduced, and the cleaning cost is further increased. It is possible to reduce.
 なお、第6実施形態は第2実施形態~第5実施形態の化学洗浄方法及び化学洗浄装置に対しても適用可能である。 The sixth embodiment can also be applied to the chemical cleaning methods and chemical cleaning apparatuses of the second to fifth embodiments.
[第7実施形態]
 第7実施形態に係る化学洗浄方法を、図1の化学洗浄装置100を用いて説明する。第7実施形態の化学洗浄方法では、洗浄工程以外は第1実施形態と同様にして、ガス供給工程、洗浄液供給工程及び排出工程が実施される。
[Seventh Embodiment]
A chemical cleaning method according to the seventh embodiment will be described using the chemical cleaning apparatus 100 of FIG. In the chemical cleaning method of the seventh embodiment, the gas supply process, the cleaning liquid supply process, and the discharge process are performed in the same manner as in the first embodiment except for the cleaning process.
 第7実施形態の化学洗浄方法における洗浄工程では、ヘマタイトが付着した領域が洗浄液に浸漬されると、制御部104はポンプ105を停止するとともにバルブV1,V4を閉鎖する。 In the cleaning step of the chemical cleaning method of the seventh embodiment, when the region to which hematite is attached is immersed in the cleaning liquid, the control unit 104 stops the pump 105 and closes the valves V1 and V4.
 制御部104はバルブV2を開放する。バルブV2の開放により洗浄液が薬液排出ライン103を介して薬液タンク101に戻るように送給されるので、水冷壁管13a,13b内の洗浄液の液面が低下する。次いで制御部104は、バルブV2を閉鎖するとともにバルブV1を開放し、ポンプ105を起動させる。これにより、薬液タンク101中の洗浄液が薬液供給ライン102を介して貫流ボイラ10の水冷壁管13a,13bに送給されて、水冷壁管13a,13b内の洗浄液の液面が上昇する。制御部104は、この洗浄液の排出と送給とを所定の周期で実施する。 The control unit 104 opens the valve V2. Since the cleaning liquid is fed back to the chemical liquid tank 101 via the chemical liquid discharge line 103 by opening the valve V2, the liquid level of the cleaning liquid in the water-cooled wall pipes 13a and 13b is lowered. Next, the control unit 104 closes the valve V2 and opens the valve V1 to start the pump 105. Thereby, the cleaning liquid in the chemical liquid tank 101 is supplied to the water-cooled wall pipes 13a and 13b of the once-through boiler 10 through the chemical liquid supply line 102, and the liquid level of the cleaning liquid in the water-cooled wall pipes 13a and 13b rises. The control unit 104 performs the discharge and supply of the cleaning liquid at a predetermined cycle.
 ここでの洗浄液の排出量は洗浄液の一部でも良いし全部でも良い。洗浄液の排出量を変えれば、液面の変化量を変えることができる。洗浄液の排出量、すなわち、液面の変化量は、ヘマタイトが他部よりも多く付着した領域の大きさや洗浄効率等を考慮して適宜設定されることが好ましい。制御部104は、液面変化量に対応させて、所定量の洗浄液を排出及び送給する。
 また、洗浄液の排出と送給とを繰り返す期間と、静置期間とを周期的に交互に実施されてもよい。
The discharge amount of the cleaning liquid here may be a part or all of the cleaning liquid. If the discharge amount of the cleaning liquid is changed, the change amount of the liquid level can be changed. The discharge amount of the cleaning liquid, that is, the amount of change in the liquid level is preferably set appropriately in consideration of the size of the region where hematite adheres more than the other part, the cleaning efficiency, and the like. The control unit 104 discharges and feeds a predetermined amount of cleaning liquid according to the liquid level change amount.
Moreover, the period which repeats discharge | emission and supply of a washing | cleaning liquid, and a stationary period may be implemented alternately alternately.
 洗浄液の排出と送給とを繰り返すと、水冷壁管13a,13b内での液面付近での洗浄液の撹拌が発生するとともに、洗浄液に流速が与えられることになる。この結果、洗浄力が向上し、ヘマタイトの洗浄効率が上昇する。 When the discharge and the supply of the cleaning liquid are repeated, the cleaning liquid is agitated in the vicinity of the liquid surface in the water-cooled wall tubes 13a and 13b, and a flow rate is given to the cleaning liquid. As a result, the cleaning power is improved, and the cleaning efficiency of hematite is increased.
 本実施形態において、洗浄工程の終了は、第1実施形態と同様に、(1)洗浄液中の鉄濃度、(2)ヘマタイト付着部分の色変化、(3)水冷壁管外側からの内部状態の分析結果、のいずれかに基づいて判定される。判定工程においてヘマタイトが除去されたことを判定部が判定すると、判定部は制御部104に洗浄工程を終了させ、排出工程を実施させる。 In the present embodiment, the end of the cleaning process is the same as in the first embodiment in (1) the iron concentration in the cleaning liquid, (2) the color change of the hematite adhering portion, and (3) the internal state from the outside of the water-cooled wall tube. The determination is made based on one of the analysis results. When the determination unit determines that hematite is removed in the determination step, the determination unit causes the control unit 104 to end the cleaning step and cause the discharge step to be performed.
 更に本実施形態では、(4)圧力変化に基づいて洗浄工程の終了が判定されても良い。
(4)圧力変化に基づく判定
 圧力変化信号に基づく判定では、図16に示すように、薬液排出ライン103の途中位置に圧力計150が設置される。
Furthermore, in the present embodiment, (4) the end of the cleaning process may be determined based on the pressure change.
(4) Determination Based on Pressure Change In the determination based on the pressure change signal, as shown in FIG. 16, a pressure gauge 150 is installed in the middle of the chemical liquid discharge line 103.
 上記の洗浄工程における送給工程時に、ポンプ105の回転数またはバルブV1の開度を所定の周波数で増減させる。こうすることにより、洗浄液の送給量が所定の周波数で増減するので、水冷壁管13a,13b内で洗浄液の液面が振動する。 During the feeding process in the above washing process, the rotational speed of the pump 105 or the opening of the valve V1 is increased or decreased at a predetermined frequency. By doing so, the feed amount of the cleaning liquid increases and decreases at a predetermined frequency, so that the liquid level of the cleaning liquid vibrates in the water-cooled wall tubes 13a and 13b.
<計測工程>
 上記の洗浄工程における排出工程で、圧力計150は薬液排出ライン103を通過する洗浄液の圧力を計測する。圧力値は判定部に送信される。
<Measurement process>
In the discharge process in the above-described cleaning process, the pressure gauge 150 measures the pressure of the cleaning liquid passing through the chemical liquid discharge line 103. The pressure value is transmitted to the determination unit.
<判定工程>
 送給工程により洗浄液の液面が振動すると、排出工程で圧力計150で計測される圧力は液面の振動状況を反映して周期的に変化する。この圧力の変化は、ヘマタイトの付着状況により変動する。すなわち、洗浄によりヘマタイトの除去が進行すると、洗浄液とヘマタイトとの摩擦係数が変化するために、圧力変化が経時的に変動する。ヘマタイトが水冷壁管から除去されると、送給工程での洗浄液送給の周波数と、排出工程での圧力変化の周波数とが一致する。このため、送給工程時の周期的な洗浄液送給の位相と、排出工程時の圧力変化の位相との差が一定になる。
<Judgment process>
When the liquid level of the cleaning liquid is vibrated by the feeding process, the pressure measured by the pressure gauge 150 in the discharge process periodically changes to reflect the vibration state of the liquid level. This change in pressure varies depending on the state of hematite adhesion. That is, when the removal of hematite proceeds by cleaning, the friction coefficient between the cleaning liquid and hematite changes, so that the pressure change varies with time. When the hematite is removed from the water-cooled wall pipe, the frequency of the cleaning liquid feeding in the feeding process matches the frequency of the pressure change in the discharging process. For this reason, the difference between the phase of the periodic cleaning liquid feeding during the feeding process and the phase of the pressure change during the discharging process becomes constant.
 判定工程は以下の2通りのステップのいずれかで実施される。
(ステップ4-A)
 判定部は、図17に例示されるように、送給工程時における送給量の波形、及び、計測工程で取得された圧力値の変化の波形を取得する。判定部は、送給量の波形と圧力変化の波形とを比較してヘマタイトが溶出する除去状況を判定する。
The determination process is performed in one of the following two steps.
(Step 4-A)
As illustrated in FIG. 17, the determination unit acquires the waveform of the feeding amount during the feeding process and the waveform of the change in the pressure value acquired in the measurement process. The determination unit compares the waveform of the supply amount with the waveform of the pressure change to determine the removal state in which hematite is eluted.
 具体的に、付着したヘマタイトが十分に溶出した場合における送給量の波形の位相と圧力変化の波形の位相との差(位相差、図17中に図示)を、基礎試験やシミュレーションにより予想することができる。基礎試験またはシミュレーションで得られた位相差が、ヘマタイトが除去されたことを示す判定基準として判定部に格納されている。この場合、判定部が計測工程で計測された位相差が判定基準以下になったと判定した場合に、ヘマタイトが溶出して除去されたとして、判定部は制御部104に洗浄工程を終了させ、排出工程を実施させる。 Specifically, the difference (phase difference, shown in FIG. 17) between the phase of the waveform of the feeding amount and the phase of the waveform of the pressure change when the attached hematite is sufficiently eluted is predicted by basic tests and simulations. be able to. The phase difference obtained by the basic test or simulation is stored in the determination unit as a determination criterion indicating that hematite has been removed. In this case, when the determination unit determines that the phase difference measured in the measurement process is equal to or less than the determination reference, the determination unit causes the control unit 104 to finish the cleaning process and discharge the hematite, assuming that the hematite is eluted and removed. Let the process run.
 あるいは、位相差の変化量からヘマタイトの除去を判定しても良い。ヘマタイトが十分に溶出されている場合には、得られる位相差と前回得られた位相差との差は徐々に小さくなる。単位時間当たりの位相差の変化の傾きである位相差変化勾配の変化量が判定基準として判定部に格納され、判定部が位相差変化勾配の変化量が所定範囲内の値になったと判定された場合に、判定部は制御部104に洗浄工程を終了させ、後述の排出工程を実施させる。 Alternatively, hematite removal may be determined from the amount of change in phase difference. When hematite is sufficiently eluted, the difference between the obtained phase difference and the previously obtained phase difference gradually decreases. The change amount of the phase difference change gradient, which is the slope of the change in phase difference per unit time, is stored in the determination unit as a determination criterion, and the determination unit determines that the change amount of the phase difference change gradient has become a value within a predetermined range. In the case where the determination is made, the determination unit causes the control unit 104 to finish the cleaning process and to perform a discharge process described later.
 具体的な判定は、(1)洗浄液中の鉄濃度に基づく判定で説明した方法と同じ思想で行われる。位相差を用いて判定する場合も、判定基準は±20%とする。また、洗浄対象機器10内でのヘマタイトの析出が比較的均一である場合には、判定基準を±10%とすることにより、判定精度を向上させることができる。 Specific determination is performed based on the same idea as the method described in (1) Determination based on iron concentration in the cleaning liquid. Even when the determination is made using the phase difference, the determination criterion is ± 20%. Moreover, when the precipitation of hematite in the apparatus 10 to be cleaned is relatively uniform, the determination accuracy can be improved by setting the determination criterion to ± 10%.
 位相差が判定基準より大きいと判定された場合、または、位相差変化勾配の変化量が所定範囲よりも大きいと判定された場合は、判定部は制御部104に洗浄工程を継続させる。 When it is determined that the phase difference is larger than the criterion, or when it is determined that the change amount of the phase difference change gradient is larger than the predetermined range, the determination unit causes the control unit 104 to continue the cleaning process.
(ステップ4-B)
 判定部は、計測工程で取得された圧力値の変化の波形を取得し、波形の周期や振幅などの経時変化からヘマタイトの除去状況を判定する。
(Step 4-B)
The determination unit acquires a waveform of a change in pressure value acquired in the measurement process, and determines a hematite removal status from a change over time such as a period and an amplitude of the waveform.
 具体的に、付着したヘマタイトが十分に溶出した場合における圧力値の波形の周期や振幅が、基礎試験やシミュレーションにより予想される。基礎試験またはシミュレーションで得られた周期または振幅が、ヘマタイトが除去されたことを示す判定基準として判定部に格納されている。この場合、周期または振幅が判定基準以下になったと判定した場合に、ヘマタイトが溶出して除去されたとして、判定部は制御部104に洗浄工程を終了させ、排出工程を実施させる。 Specifically, the period and amplitude of the pressure waveform when adhering hematite is sufficiently eluted can be predicted by basic tests and simulations. The period or amplitude obtained by the basic test or simulation is stored in the determination unit as a determination criterion indicating that hematite has been removed. In this case, when it is determined that the period or amplitude is equal to or less than the determination criterion, the determination unit causes the control unit 104 to end the cleaning process and perform the discharge process, assuming that hematite is eluted and removed.
 あるいは、周期または振幅の変化量からヘマタイトの除去を判定しても良い。ヘマタイトが十分に溶出されている場合には、計測工程により得られた周期または振幅の変化量と前回得られた周期または振幅の変化量のとの差は徐々に小さくなる。単位時間当たりの周期変化または振幅変化の傾きである周期変化勾配または振幅変化勾配の変化量が判定基準として判定部に格納され、判定部が周期変化勾配の変化量または振幅変化勾配の変化量が所定範囲内の値になったと判定された場合に、ヘマタイトが溶出して除去されたとして、判定部は制御部104に洗浄工程を終了させ、後述の排出工程を実施させる。 Alternatively, the removal of hematite may be determined from the amount of change in period or amplitude. If hematite is sufficiently eluted, the difference between the period or amplitude change obtained by the measurement process and the period or amplitude change obtained last time is gradually reduced. The change amount of the periodic change gradient or the amplitude change gradient, which is the inclination of the periodic change or amplitude change per unit time, is stored as a determination criterion in the determination unit, and the determination unit determines whether the change amount of the periodic change gradient or the change amount of the amplitude change gradient is If it is determined that the value is within the predetermined range, the determination unit causes the control unit 104 to end the cleaning process and to perform a discharge process described later, assuming that hematite is eluted and removed.
 具体的な判定は、(1)洗浄液中の鉄濃度に基づく判定で説明した方法と同じ思想で行われる。周期または振幅を用いて判定する場合も、判定基準は±20%とする。また、洗浄対象機器10内でのヘマタイトの析出が比較的均一である場合には、判定基準を±10%とすることにより、判定精度を向上させることができる。 Specific determination is performed based on the same idea as the method described in (1) Determination based on iron concentration in the cleaning liquid. Even in the case of determination using the period or amplitude, the determination criterion is ± 20%. Moreover, when the precipitation of hematite in the apparatus 10 to be cleaned is relatively uniform, the determination accuracy can be improved by setting the determination criterion to ± 10%.
 周期または振幅が判定基準より大きいと判定された場合、または、周期変化勾配の変化量若しくは振幅変化勾配の変化量が所定範囲よりも大きいと判定された場合は、判定部は制御部104に洗浄工程を継続させる。 When it is determined that the period or amplitude is larger than the determination criterion, or when it is determined that the change amount of the periodic change gradient or the change amount of the amplitude change gradient is larger than the predetermined range, the determination unit cleans the control unit 104. Continue the process.
 なお、本実施形態の化学洗浄方法は、第2実施形態~第4実施形態の化学洗浄装置を用いた場合にも適用可能である。 Note that the chemical cleaning method of the present embodiment can also be applied to the case where the chemical cleaning apparatus of the second to fourth embodiments is used.
[第8実施形態]
 図18は第8実施形態に係る化学洗浄装置を説明する概略図である。
 第8実施形態に係る化学洗浄装置600は第1実施形態の化学洗浄装置と同様に、薬液タンク601、薬液供給ライン602、薬液排出ライン603、制御部604、ポンプ605、還元雰囲気ガス供給部610として還元雰囲気ガス貯留部611及び給気ライン612、排気ライン613を備える。化学洗浄装置600は更に、薬液排出ライン603にポンプ606を備える。薬液排出ライン603には、薬液排出ライン603を流通する洗浄液の圧力を計測する圧力計が設置されていても良い。
 第8実施形態に係る化学洗浄方法を、図18を用いて説明する。第8実施形態の化学洗浄方法では、洗浄工程以外は第1実施形態と同様にして、ガス供給工程、洗浄液供給工程及び排出工程が実施される。
[Eighth Embodiment]
FIG. 18 is a schematic view illustrating a chemical cleaning apparatus according to the eighth embodiment.
Similar to the chemical cleaning apparatus of the first embodiment, the chemical cleaning apparatus 600 according to the eighth embodiment is a chemical liquid tank 601, a chemical liquid supply line 602, a chemical liquid discharge line 603, a control unit 604, a pump 605, and a reducing atmosphere gas supply unit 610. As a reducing atmosphere gas storage section 611, an air supply line 612, and an exhaust line 613. The chemical cleaning apparatus 600 further includes a pump 606 in the chemical solution discharge line 603. The chemical liquid discharge line 603 may be provided with a pressure gauge that measures the pressure of the cleaning liquid flowing through the chemical liquid discharge line 603.
A chemical cleaning method according to the eighth embodiment will be described with reference to FIG. In the chemical cleaning method of the eighth embodiment, the gas supply process, the cleaning liquid supply process, and the discharge process are performed in the same manner as in the first embodiment except for the cleaning process.
 第8実施形態の化学洗浄方法における洗浄工程では、ヘマタイトが付着した領域が洗浄液に浸漬されると、制御部604は薬液供給ライン602のポンプ605を停止するとともにバルブV1,V4を閉鎖する。 In the cleaning step in the chemical cleaning method of the eighth embodiment, when the region to which hematite is attached is immersed in the cleaning liquid, the control unit 604 stops the pump 605 of the chemical liquid supply line 602 and closes the valves V1 and V4.
 制御部604はバルブV2,V3を開放するとともにポンプ606を作動させる。バルブV3の開放により還元雰囲気ガス貯留部111から給気ライン112を介して貫流ボイラ10の水冷壁管13a,13bに還元雰囲気ガスが送給され、洗浄液液面上部の空間内のガス圧力が上昇する。同時に、バルブV2の開放とポンプ606の起動により、水冷壁管13a,13b内部の洗浄液が薬液排出ライン603を介して薬液タンク601に送給され、水冷壁管13a,13b内の洗浄液の液面が低下する。 Control unit 604 opens valves V2 and V3 and operates pump 606. When the valve V3 is opened, the reducing atmosphere gas is supplied from the reducing atmosphere gas storage unit 111 to the water-cooled wall pipes 13a and 13b of the once-through boiler 10 through the supply line 112, and the gas pressure in the space above the cleaning liquid level increases. To do. At the same time, when the valve V2 is opened and the pump 606 is activated, the cleaning liquid in the water-cooled wall pipes 13a and 13b is supplied to the chemical liquid tank 601 through the chemical liquid discharge line 603, and the liquid level of the cleaning liquid in the water-cooled wall pipes 13a and 13b. Decreases.
 次いで制御部604は、バルブV2,V3を閉鎖するとともにバルブV1,V4を開放する。制御部はポンプ606を停止させ、ポンプ605を起動させる。これにより、薬液タンク601中の洗浄液が薬液供給ライン602を介して貫流ボイラ10の水冷壁管13a,13bに送給されて、水冷壁管13a,13b内の洗浄液の液面が上昇する。 Next, the control unit 604 closes the valves V2 and V3 and opens the valves V1 and V4. The control unit stops the pump 606 and starts the pump 605. Thereby, the cleaning liquid in the chemical liquid tank 601 is supplied to the water-cooled wall pipes 13a and 13b of the once-through boiler 10 via the chemical liquid supply line 602, and the liquid level of the cleaning liquid in the water-cooled wall pipes 13a and 13b rises.
 ガスによる洗浄液液面の加圧とポンプを用いた洗浄液の排出を利用するので、第7実施形態に比べて洗浄液排出時の流速が高く、水冷壁管13a,13b内での液面付近での洗浄液が撹拌されやすい。このため、第7実施形態よりも洗浄力が向上し、ヘマタイトの洗浄効率が上昇する。 Since the pressurization of the cleaning liquid level with gas and the discharge of the cleaning liquid using a pump are utilized, the flow rate when the cleaning liquid is discharged is higher than that in the seventh embodiment, and the liquid level in the water-cooled wall tubes 13a and 13b The cleaning liquid is easily stirred. For this reason, a cleaning power improves rather than 7th Embodiment and the cleaning efficiency of hematite rises.
 本実施形態において、洗浄工程の終了は、第7実施形態と同様に、(1)洗浄液中の鉄濃度、(2)ヘマタイト付着部分の色変化、(3)水冷壁管外側からの内部状態の分析結果、(4)圧力変化信号、のいずれかに基づいて判定される。判定工程においてヘマタイトが除去されたことを判定部が判定すると、判定部は制御部104に洗浄工程を終了させ、排出工程を実施させる。 In this embodiment, the end of the cleaning process is the same as in the seventh embodiment in (1) iron concentration in the cleaning liquid, (2) color change of the hematite adhering portion, (3) internal state from the outside of the water-cooled wall tube. The determination is made based on one of the analysis result and (4) pressure change signal. When the determination unit determines that hematite is removed in the determination step, the determination unit causes the control unit 104 to end the cleaning step and cause the discharge step to be performed.
 本実施形態の化学洗浄装置及び化学洗浄方法は、第2実施形態~第4実施形態に対して薬液排出ラインにポンプを設置する場合にも適用可能である。 The chemical cleaning apparatus and chemical cleaning method of the present embodiment can also be applied to the case where a pump is installed in the chemical solution discharge line as compared with the second to fourth embodiments.
[第9実施形態]
 図19は第9実施形態に係る化学洗浄装置を説明する概略図である。
 第9実施形態に係る化学洗浄装置700は第1実施形態の化学洗浄装置と同様に、薬液タンク701、薬液供給ライン702、薬液排出ライン703、制御部704、ポンプ705、還元雰囲気ガス供給部710として還元雰囲気ガス貯留部711及び給気ライン712、排気ライン713を備える。化学洗浄装置700は更に循環ライン720を備える。
 なお、第2実施形態~第4実施形態の化学洗浄装置に対しても同様の循環ラインを設置することが可能である。
[Ninth Embodiment]
FIG. 19 is a schematic view for explaining a chemical cleaning apparatus according to the ninth embodiment.
Similar to the chemical cleaning apparatus of the first embodiment, the chemical cleaning apparatus 700 according to the ninth embodiment is a chemical tank 701, a chemical supply line 702, a chemical discharge line 703, a control unit 704, a pump 705, and a reducing atmosphere gas supply unit 710. As a reducing atmosphere gas storage unit 711, an air supply line 712, and an exhaust line 713. The chemical cleaning apparatus 700 further includes a circulation line 720.
A similar circulation line can be installed for the chemical cleaning apparatuses of the second to fourth embodiments.
 循環ライン720は、貫流ボイラの一端側として下部管寄せ14a,14bと、他端側として上部管寄せ15a,15bとに接続する。循環ライン720の途中位置に循環ポンプ721が設置される。循環ライン720及び循環ポンプ721は仮設として設置されても良い。
 循環ポンプ721の下流側に抜出し部722が設置される。
The circulation line 720 is connected to the lower headers 14a and 14b as one end side of the once-through boiler and to the upper headers 15a and 15b as the other end side. A circulation pump 721 is installed in the middle of the circulation line 720. The circulation line 720 and the circulation pump 721 may be temporarily installed.
An extraction portion 722 is installed on the downstream side of the circulation pump 721.
 洗浄液の循環方向は特に限定されない。図19の構成では水冷壁管13a,13b内を下から上に向かって洗浄液が流通するように循環されるが、上から下に向かって洗浄液が流通するように循環される構成としても良い。 The circulation direction of the cleaning liquid is not particularly limited. In the configuration of FIG. 19, the cleaning liquid is circulated through the water-cooled wall pipes 13a and 13b from the bottom to the top. However, the cleaning liquid may be circulated from the top to the bottom.
 本実施形態では洗浄液の温度は環境温度付近であり、また循環流量も洗浄工程の間に少なくとも1回は循環する程度の小流量でよい。従って、循環ポンプ721の吐出し圧力は低くても良い。 In this embodiment, the temperature of the cleaning liquid is close to the environmental temperature, and the circulating flow rate may be a small flow rate that circulates at least once during the cleaning process. Therefore, the discharge pressure of the circulation pump 721 may be low.
 第9実施形態の化学洗浄装置700を用いた化学洗浄方法を以下で説明する。第9実施形態の化学洗浄方法では、第1実施形態と同様にして、ガス供給工程及び排出工程が実施される。 A chemical cleaning method using the chemical cleaning apparatus 700 of the ninth embodiment will be described below. In the chemical cleaning method of the ninth embodiment, the gas supply process and the discharge process are performed in the same manner as in the first embodiment.
<洗浄液供給工程>
 制御部704はポンプ705を起動させるとともにバルブV1,V4を開放する。薬液タンク701内の洗浄液が薬液供給ライン702を介して貫流ボイラ10に送給される。第9実施形態では、貫流ボイラ10内の下部管寄せ、水冷壁管、上部管寄せ、及び循環ライン720の全てに洗浄液が供給される。制御部704は下部管寄せ、水冷壁管、上部管寄せ、及び循環ライン720の全てを浸漬できる洗浄液量を格納しており、洗浄液供給工程で所定量の洗浄液を貫流ボイラ10に送給する。
<Cleaning liquid supply process>
The control unit 704 activates the pump 705 and opens the valves V1 and V4. The cleaning liquid in the chemical liquid tank 701 is supplied to the once-through boiler 10 via the chemical liquid supply line 702. In the ninth embodiment, the cleaning liquid is supplied to all of the lower header, the water-cooled wall tube, the upper header, and the circulation line 720 in the once-through boiler 10. The control unit 704 stores an amount of cleaning liquid that can immerse all of the lower header, the water-cooled wall tube, the upper header, and the circulation line 720, and supplies a predetermined amount of cleaning liquid to the once-through boiler 10 in the cleaning liquid supply process.
 ここで、貫流ボイラ10と気水分離器30とを連結する配管に設置されるバルブは閉鎖される。こうすることにより洗浄液が貫流ボイラ10の下流側で隣接する機器である気水分離器30に洗浄液が流入することを防止できる。 Here, the valve installed in the pipe connecting the once-through boiler 10 and the steam separator 30 is closed. By doing so, the cleaning liquid can be prevented from flowing into the steam separator 30 which is a device adjacent on the downstream side of the once-through boiler 10.
<洗浄工程>
 所定量の洗浄液が貫流ボイラ10に送給されると、制御部704はポンプ705を停止するとともにバルブV1,V4を閉鎖する。次いで制御部704は循環ポンプ721を起動する。循環ポンプ721の起動により、洗浄液が下部管寄せ14a,14b、水冷壁管13a,13b、上部管寄せ15a,15a及び循環ライン720を通過する。すなわち、本実施形態では貫流ボイラ10に隣接する他の機器(節炭器26、気水分離器30)に洗浄液が流入することなく循環される。循環は、洗浄工程期間中に洗浄液が貫流ボイラ10~循環ライン720の間を少なくとも1周回るだけの流量で実施される。
<Washing process>
When a predetermined amount of cleaning liquid is supplied to the once-through boiler 10, the control unit 704 stops the pump 705 and closes the valves V1 and V4. Next, the control unit 704 activates the circulation pump 721. When the circulation pump 721 is activated, the cleaning liquid passes through the lower headers 14a and 14b, the water-cooled wall tubes 13a and 13b, the upper headers 15a and 15a, and the circulation line 720. That is, in the present embodiment, the cleaning liquid is circulated without flowing into other equipment (the economizer 26 and the steam separator 30) adjacent to the once-through boiler 10. Circulation is performed at a flow rate that allows the cleaning liquid to circulate between the once-through boiler 10 and the circulation line 720 at least once during the cleaning process.
 なお、循環ポンプ721の回転数を所定の周期で増減させても良い。こうすることにより、水冷壁管13a,13b内部を流通する洗浄液の流速が変動し、洗浄能力が更に向上する。 In addition, you may increase / decrease the rotation speed of the circulation pump 721 with a predetermined period. By doing so, the flow rate of the cleaning liquid flowing through the water-cooled wall tubes 13a and 13b varies, and the cleaning performance is further improved.
 また、循環ポンプ721を通過する際に洗浄液が昇温される。このため、例えば第1実施形態のように洗浄工程中に洗浄液を静置した場合と比較して高い温度(具体的に、水冷壁管13a,13bの周辺の環境温度より高く、環境温度+10℃以下)で洗浄工程が実施される。 Also, the temperature of the cleaning liquid is raised when passing through the circulation pump 721. For this reason, for example, as compared with the case where the cleaning liquid is allowed to stand during the cleaning process as in the first embodiment (specifically, higher than the environmental temperature around the water-cooled wall tubes 13a and 13b, the environmental temperature + 10 ° C. The cleaning step is performed in the following).
 洗浄工程中において洗浄液の流通路(下部管寄せ14a,14b、水冷壁管13a,13b、上部管寄せ15a,15b及び循環ライン720)は閉空間を構成するので、洗浄工程中の洗浄液の酸化還元電位は-0.8V以上-0.4V以下(銀-塩化銀電極基準)に維持される。 During the cleaning process, the flow path of the cleaning liquid (the lower headers 14a and 14b, the water-cooled wall pipes 13a and 13b, the upper headers 15a and 15b, and the circulation line 720) constitutes a closed space. The potential is maintained at −0.8 V or more and −0.4 V or less (silver-silver chloride electrode standard).
 本実施形態において洗浄工程の終了は、第1実施形態と同様に、(1)洗浄液中の鉄濃度、(2)ヘマタイト付着部分の色変化、(3)水冷壁管外側からの内部状態の分析結果、(4)圧力変化のいずれかに基づいて判定される。
 (1)洗浄液中の鉄濃度による判定の場合は、第1実施形態のように薬液タンク701に洗浄液が回収されて鉄濃度が測定されても良い。または、循環ライン720を通過する洗浄液の一部が抜出し部722から採取されて、鉄濃度測定に供されてもよい。
In the present embodiment, the end of the cleaning step is the same as in the first embodiment, (1) the iron concentration in the cleaning liquid, (2) the color change of the hematite adhering portion, (3) the analysis of the internal state from the outside of the water-cooled wall tube As a result, (4) it is determined based on one of the pressure changes.
(1) In the case of determination based on the iron concentration in the cleaning liquid, the iron concentration may be measured by collecting the cleaning liquid in the chemical tank 701 as in the first embodiment. Alternatively, a part of the cleaning liquid that passes through the circulation line 720 may be collected from the extraction unit 722 and used for iron concentration measurement.
 (4)圧力変化に基づく判定の場合は、第7実施形態と同様に循環ライン720に圧力計が設置される。循環ポンプ721の回転数を所定の周波数で増減させる運用を行い、循環ライン720に設置された圧力計で計測される圧力値を用いて、第7実施形態で説明したのと同様の思想で、判定部がヘマタイトが溶出する除去状況を判定する。 (4) In the case of determination based on pressure change, a pressure gauge is installed in the circulation line 720 as in the seventh embodiment. The operation of increasing or decreasing the rotation speed of the circulation pump 721 at a predetermined frequency is performed, and using the pressure value measured by the pressure gauge installed in the circulation line 720, the same idea as described in the seventh embodiment, The determination unit determines a removal situation in which hematite is eluted.
 判定工程においてヘマタイトが除去されたことを判定部が判定すると、判定部は制御部104に洗浄工程を終了させ、排出工程を実施させる。 When the determination unit determines that hematite has been removed in the determination step, the determination unit causes the control unit 104 to end the cleaning step and cause the discharge step to be performed.
 本実施形態に依れば、洗浄液に流速が与えられ、洗浄液が撹拌され、更に洗浄工程中に洗浄液が加熱されるため、循環ラインを設けない第1実施形態よりも洗浄力が向上し、ヘマタイトの洗浄効率が上昇する。 According to this embodiment, a flow rate is given to the cleaning liquid, the cleaning liquid is stirred, and further, the cleaning liquid is heated during the cleaning process. Therefore, the cleaning power is improved as compared with the first embodiment in which no circulation line is provided, and hematite The cleaning efficiency increases.
1 火力発電システム
10,10a,10b 貫流ボイラ
11a,11b 燃焼室
12a,12b 壁面
13,13a,13b 水冷壁管
14a,14b 下部管寄せ
15a,15b 上部管寄せ
16 分岐部
100,200,300,400,500,600,700 化学洗浄装置
101,201,301,401,501,601,701 薬液タンク
102,202,302,402,502,602,702 薬液供給ライン
103,203,303,403,503,603,703 薬液排出ライン
104,204,304,404,504,604,704 制御部
105,205,305,405,505,605,606,705 ポンプ
110,210,410,510,610,710 還元雰囲気ガス供給部
111,411,511,611,711 還元雰囲気ガス貯留部
112,412,512,612,712 給気ライン
113,213,413,513,613,713 排気ライン
120 切断試験片
121 透明板
122 空間
130 バイパス部
131 バイパス管
132 筒状試験片
140 電気特性評価装置
150 圧力計
310 還元雰囲気調整剤供給部
311 還元雰囲気調整剤貯留部
312 還元雰囲気調整剤供給ライン
406 循環ループ
520 水供給部
521 水タンク
522 水供給ライン
523 水張ポンプ
720 循環ライン
721 循環ポンプ
722 抜出し部
DESCRIPTION OF SYMBOLS 1 Thermal power generation system 10,10a, 10b Through- flow boiler 11a, 11b Combustion chamber 12a, 12b Wall surface 13,13a, 13b Water-cooled wall pipe 14a, 14b Lower header 15a, 15b Upper header 16 Branch part 100,200,300,400 , 500, 600, 700 Chemical cleaning apparatus 101, 201, 301, 401, 501, 601, 701 Chemical liquid tank 102, 202, 302, 402, 502, 602, 702 Chemical liquid supply line 103, 203, 303, 403, 503 603, 703 Chemical solution discharge line 104, 204, 304, 404, 504, 604, 704 Control unit 105, 205, 305, 405, 505, 605, 606, 705 Pump 110, 210, 410, 510, 610, 710 Reducing atmosphere Gas supply part 111,411,511, 11,711 Reducing atmosphere gas storage part 112,412,512,612,712 Air supply line 113,213,413,513,613,713 Exhaust line 120 Cut specimen 121 Transparent plate 122 Space 130 Bypass part 131 Bypass pipe 132 Tube Test piece 140 Electrical characteristic evaluation device 150 Pressure gauge 310 Reducing atmosphere adjusting agent supply unit 311 Reducing atmosphere adjusting agent storage unit 312 Reducing atmosphere adjusting agent supply line 406 Circulation loop 520 Water supply unit 521 Water tank 522 Water supply line 523 Water-tight pump 720 Circulation line 721 Circulation pump 722 Extraction part

Claims (18)

  1.  キレート剤、還元剤、または、前記キレート剤と前記還元剤との混合物である除錆剤を含む洗浄液が、ヘマタイトが付着した部材を有する洗浄対象機器に供給される洗浄液供給工程と、
     前記部材中の少なくとも前記ヘマタイトが付着した領域が前記洗浄液に浸漬され、前記洗浄液の酸化還元電位が前記洗浄液に前記ヘマタイトが溶出する値に維持されて、前記ヘマタイトが前記部材から除去される洗浄工程とを有し、
     前記キレート剤が、アミノカルボン酸系キレート剤、オキシカルボン酸系キレート剤及び有機リン系キレート剤のいずれかであり、
     前記還元剤が、金属イオン、亜硫酸塩、シュウ酸、蟻酸、アスコルビン酸、ピロガロール、ヒドラジン、水素のいずれかであり、
     前記洗浄液のpHが4~8の範囲内である化学洗浄方法。
    A cleaning liquid supply step in which a cleaning liquid containing a rusting agent that is a chelating agent, a reducing agent, or a mixture of the chelating agent and the reducing agent is supplied to a device to be cleaned having a member to which hematite is attached;
    A cleaning step in which at least the region where the hematite is adhered in the member is immersed in the cleaning liquid, and the oxidation-reduction potential of the cleaning liquid is maintained at a value at which the hematite is eluted in the cleaning liquid, and the hematite is removed from the member And
    The chelating agent is any one of an aminocarboxylic acid chelating agent, an oxycarboxylic acid chelating agent and an organic phosphorus chelating agent,
    The reducing agent is any one of metal ions, sulfites, oxalic acid, formic acid, ascorbic acid, pyrogallol, hydrazine, and hydrogen;
    A chemical cleaning method wherein the pH of the cleaning liquid is within a range of 4 to 8.
  2.  前記値が銀-塩化銀電極基準で-0.8V以上-0.4V以下の範囲内に維持されて前記洗浄工程が実施される請求項1に記載の化学洗浄方法。 The chemical cleaning method according to claim 1, wherein the cleaning step is performed while the value is maintained within a range of -0.8 V or more and -0.4 V or less based on a silver-silver chloride electrode.
  3.  前記洗浄対象機器に還元雰囲気ガスが供給されることによって前記値が調整される請求項1または請求項2に記載の化学洗浄方法。 The chemical cleaning method according to claim 1 or 2, wherein the value is adjusted by supplying a reducing atmosphere gas to the device to be cleaned.
  4.  前記洗浄工程中の前記洗浄液の温度が、前記部材の周辺の環境温度以上前記環境温度よりも10℃高い温度以下の範囲内である請求項1乃至請求項3のいずれかに記載の化学洗浄方法。 The chemical cleaning method according to any one of claims 1 to 3, wherein a temperature of the cleaning liquid in the cleaning step is in a range from an ambient temperature around the member to a temperature not higher than 10 ° C higher than the ambient temperature. .
  5.  前記洗浄液が静置した状態で前記領域が前記洗浄液に浸漬される請求項1乃至請求項4のいずれかに記載の化学洗浄方法。 The chemical cleaning method according to any one of claims 1 to 4, wherein the region is immersed in the cleaning liquid in a state where the cleaning liquid is left standing.
  6.  前記洗浄工程中に、前記洗浄液が前記部材から排出される工程と、排出された前記洗浄液が前記部材に送給される工程とを繰り返して、前記領域の近傍で前記洗浄液の液面の高さを移動させる請求項1乃至請求項4のいずれかに記載の化学洗浄方法。 During the cleaning step, the step of discharging the cleaning liquid from the member and the step of supplying the discharged cleaning liquid to the member are repeated to increase the level of the cleaning liquid near the region. The chemical cleaning method according to claim 1, wherein the chemical cleaning method is moved.
  7.  前記洗浄工程中に、前記洗浄液が前記部材に通過して前記部材の上流側端部から排出され、排出された前記洗浄液が、前記部材の下流側端部に直接的に循環される請求項1乃至請求項4のいずれかに記載の化学洗浄方法。 The cleaning liquid passes through the member and is discharged from the upstream end of the member during the cleaning step, and the discharged cleaning liquid is circulated directly to the downstream end of the member. The chemical cleaning method according to claim 4.
  8.  前記洗浄液中の鉄濃度が計測される計測工程と、
     前記鉄濃度に基づいて前記部材からの前記ヘマタイトの除去状況が判定される判定工程とを更に有し、
     前記洗浄工程中に前記洗浄液が前記洗浄対象機器から排出され、前記計測工程で排出された前記洗浄液中の鉄濃度が計測され、
     前記判定工程において前記鉄濃度が所定濃度以上と判定された場合、または、濃度勾配の変化量が所定範囲内の値であると判定された場合に、前記洗浄工程が終了される請求項1乃至請求項4のいずれかに記載の化学洗浄方法。
    A measuring step in which the iron concentration in the cleaning liquid is measured;
    A determination step of determining the removal status of the hematite from the member based on the iron concentration,
    The cleaning liquid is discharged from the cleaning target device during the cleaning process, and the iron concentration in the cleaning liquid discharged in the measurement process is measured,
    The cleaning process is terminated when the iron concentration is determined to be equal to or higher than a predetermined concentration in the determination step, or when the change amount of the concentration gradient is determined to be a value within a predetermined range. The chemical cleaning method according to claim 4.
  9.  ヘマタイトスケールが付着した部材を有する洗浄対象機器を化学洗浄するための化学洗浄装置であって、
     キレート剤、還元剤、または、前記キレート剤と前記還元剤との混合物であり、前記キレート剤が、アミノカルボン酸系キレート剤、オキシカルボン酸系キレート剤及び有機リン系キレート剤のいずれかであり、前記還元剤が、金属イオン、亜硫酸塩、シュウ酸、蟻酸、アスコルビン酸、ピロガロール、ヒドラジン、水素のいずれかである除錆剤を含み、pHが4~8の範囲内である洗浄液を収容する薬液タンクと、
     前記洗浄対象機器と前記薬液タンクとを連結し、前記部材に前記洗浄液を供給する薬液供給ラインと、
     前記薬液供給ラインに設置されるポンプと、
     前記洗浄対象機器と前記薬液タンクとを連結し、前記洗浄液を前記部材から排出する薬液排出ラインと、
     前記部材中の少なくとも前記ヘマタイトが付着した領域を前記洗浄液に浸漬させる手段と、
     洗浄中の前記洗浄液の酸化還元電位を前記洗浄液に前記ヘマタイトが溶出する値に維持する手段とを備え、
     前記薬液タンク、前記薬液供給ライン及び前記ポンプが、前記部材に前記洗浄液を供給する手段である化学洗浄装置。
    A chemical cleaning apparatus for chemically cleaning a device to be cleaned having a member to which a hematite scale is attached,
    A chelating agent, a reducing agent, or a mixture of the chelating agent and the reducing agent, and the chelating agent is one of an aminocarboxylic acid chelating agent, an oxycarboxylic acid chelating agent and an organophosphorus chelating agent In addition, the reducing agent contains a derusting agent that is any one of metal ions, sulfites, oxalic acid, formic acid, ascorbic acid, pyrogallol, hydrazine, and hydrogen, and contains a cleaning solution having a pH in the range of 4-8. A chemical tank,
    A chemical supply line for connecting the cleaning target device and the chemical tank and supplying the cleaning liquid to the member;
    A pump installed in the chemical supply line;
    A chemical solution discharge line for connecting the cleaning target device and the chemical solution tank, and discharging the cleaning solution from the member;
    Means for immersing at least the region of the member to which the hematite is adhered in the cleaning liquid;
    Means for maintaining the redox potential of the cleaning liquid during cleaning at a value at which the hematite elutes in the cleaning liquid;
    The chemical cleaning apparatus, wherein the chemical liquid tank, the chemical liquid supply line, and the pump are means for supplying the cleaning liquid to the member.
  10.  前記値を、銀-塩化銀電極基準で-0.8V以上-0.4V以下の範囲内の値に調整する還元雰囲気調整部を備える請求項9に記載の化学洗浄装置。 10. The chemical cleaning apparatus according to claim 9, further comprising a reducing atmosphere adjusting unit that adjusts the value to a value within a range of −0.8 V to −0.4 V based on a silver-silver chloride electrode.
  11.  前記還元雰囲気調整部が、前記洗浄対象器に還元雰囲気ガスを供給する請求項9または請求項10に記載の化学洗浄装置。 The chemical cleaning apparatus according to claim 9 or 10, wherein the reducing atmosphere adjusting unit supplies a reducing atmosphere gas to the cleaning target device.
  12.  前記部材に供給された前記洗浄液の温度が、前記部材の周辺の環境温度以上前記環境温度よりも10℃高い温度以下の範囲内である請求項9乃至請求項11のいずれかに記載の化学洗浄装置。 12. The chemical cleaning according to claim 9, wherein the temperature of the cleaning liquid supplied to the member is in a range of an ambient temperature around the member and a temperature that is 10 ° C. higher than the ambient temperature. apparatus.
  13.  前記ポンプを挟んで上流側の前記薬液供給ラインと下流側の前記薬液供給ラインとを連結する循環ループを更に備え、
     前記ポンプを通過した前記洗浄液の一部が前記循環ループを介して前記ポンプの上流側に搬送される請求項9乃至請求項12のいずれかに記載の化学洗浄装置。
    A circulation loop connecting the upstream chemical liquid supply line and the downstream chemical liquid supply line across the pump;
    The chemical cleaning apparatus according to any one of claims 9 to 12, wherein a part of the cleaning liquid that has passed through the pump is conveyed to the upstream side of the pump through the circulation loop.
  14.  洗浄中に、前記部材への前記洗浄液の供給及び前記部材からの前記洗浄液の排出を停止して、前記洗浄液を静置させる請求項9乃至請求項13のいずれかに記載の化学洗浄装置。 The chemical cleaning apparatus according to any one of claims 9 to 13, wherein during the cleaning, the supply of the cleaning liquid to the member and the discharge of the cleaning liquid from the member are stopped, and the cleaning liquid is allowed to stand still.
  15.  水を収容する水タンクと、前記水タンクと前記洗浄対象機器とを連結する水供給ラインと、前記水供給ラインに設置される水張ポンプとを備える水供給部を更に備える請求項9乃至請求項14のいずれかに記載の化学洗浄装置。 The water supply part provided with the water tank which accommodates water, the water supply line which connects the said water tank and the said washing | cleaning object apparatus, and the water supply pump installed in the said water supply line is further provided. Item 15. The chemical cleaning device according to any one of Item 14.
  16.  洗浄中に、前記薬液排出ラインを通じて前記部材内の洗浄液を前記薬液タンクに向かって排出させることと、前記薬液供給ラインを通じて前記薬液タンク中の前記洗浄液を前記部材に送給させることとを繰り返させる請求項9乃至請求項12のいずれかに記載の化学洗浄装置。 During the cleaning, the cleaning liquid in the member is discharged toward the chemical liquid tank through the chemical liquid discharge line, and the cleaning liquid in the chemical liquid tank is supplied to the member through the chemical liquid supply line. The chemical cleaning apparatus according to any one of claims 9 to 12.
  17.  前記部材の上流側端部と下流側端部とを連絡する循環ラインと、前記循環ラインに設置される循環ポンプとを備える循環部を有し、
     洗浄中に前記循環ラインを通じて、前下流側端部から排出された前記洗浄液を前記上流側端部に循環させる請求項9乃至請求項12のいずれかに記載の化学洗浄装置。
    A circulation section comprising a circulation line connecting the upstream end and the downstream end of the member, and a circulation pump installed in the circulation line;
    The chemical cleaning apparatus according to any one of claims 9 to 12, wherein the cleaning liquid discharged from the front downstream end through the circulation line is circulated to the upstream end through the circulation line.
  18.  前記洗浄対象機器の前記洗浄液の酸化還元電位を前記洗浄液に前記ヘマタイトが溶出する値に維持して前記洗浄対象機器を洗浄している間に、前記洗浄対象機器から排出された前記洗浄液中の鉄濃度に基づいて前記部材からの前記ヘマタイトが溶出する除去状況を判定し、前記鉄濃度が所定濃度以上と判定した場合、または、濃度勾配の変化量が所定範囲内の値であると判定した場合に前記洗浄対象機器の洗浄を終了させる判定部を更に備える請求項9乃至請求項12のいずれかに記載の化学洗浄装置。
     
     
    The iron in the cleaning liquid discharged from the cleaning target device while cleaning the cleaning target device while maintaining the redox potential of the cleaning liquid of the cleaning target device at a value at which the hematite elutes in the cleaning solution. When the removal state in which the hematite elutes from the member is determined based on the concentration and the iron concentration is determined to be equal to or higher than the predetermined concentration, or when the change amount of the concentration gradient is determined to be a value within the predetermined range The chemical cleaning apparatus according to claim 9, further comprising a determination unit that finishes cleaning the device to be cleaned.

PCT/JP2015/067439 2014-07-04 2015-06-17 Chemical washing method and chemical washing device WO2016002516A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580028213.8A CN106414805B (en) 2014-07-04 2015-06-17 Chemical cleaning method and chemically-cleaning device
SG11201610066TA SG11201610066TA (en) 2014-07-04 2015-06-17 Chemical washing method and chemical washing device
PH12016502379A PH12016502379A1 (en) 2014-07-04 2016-11-29 Chemical cleaning method and chemical cleaning device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-139044 2014-07-04
JP2014139043A JP5721888B1 (en) 2014-07-04 2014-07-04 Chemical cleaning method and chemical cleaning apparatus
JP2014139044A JP6522293B2 (en) 2014-07-04 2014-07-04 Chemical cleaning method and chemical cleaning apparatus
JP2014-139043 2014-07-04

Publications (1)

Publication Number Publication Date
WO2016002516A1 true WO2016002516A1 (en) 2016-01-07

Family

ID=55019063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067439 WO2016002516A1 (en) 2014-07-04 2015-06-17 Chemical washing method and chemical washing device

Country Status (5)

Country Link
CN (1) CN106414805B (en)
PH (1) PH12016502379A1 (en)
SG (1) SG11201610066TA (en)
TW (1) TWI599411B (en)
WO (1) WO2016002516A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200102492A1 (en) * 2017-05-02 2020-04-02 Halliburton Energy Services, Inc. Nanosized particulates for downhole applications
WO2020217666A1 (en) * 2019-04-26 2020-10-29 三菱パワー株式会社 Chemical cleaning method and chemical cleaning apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7051474B2 (en) * 2018-02-09 2022-04-11 三菱重工業株式会社 Chemical cleaning equipment and chemical cleaning method using it
CN112108464B (en) * 2020-07-22 2022-05-10 岭东核电有限公司 Chemical cleaning device and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785980A (en) * 1980-11-17 1982-05-28 Hitachi Ltd Method for removal of oxide on metallic surface
JPS58210200A (en) * 1982-06-02 1983-12-07 Hitachi Ltd Method for dissolving iron oxide film
JPS59232279A (en) * 1983-06-13 1984-12-27 Hitachi Ltd Removing method of oxide on metallic surface
US4789406A (en) * 1986-08-20 1988-12-06 Betz Laboratories, Inc. Method and compositions for penetrating and removing accumulated corrosion products and deposits from metal surfaces
JPS6421088A (en) * 1987-07-17 1989-01-24 Mitsubishi Heavy Ind Ltd Method for chemically cleaning hardly soluble scale
US5037483A (en) * 1990-01-30 1991-08-06 Nalco Chemical Company On-line iron clean-up
JP2013071111A (en) * 2011-09-29 2013-04-22 Mitsubishi Heavy Ind Ltd Method and apparatus for washing metallic filter, and washing liquid for metallic filter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018965B2 (en) * 2003-09-03 2006-03-28 General Electric Company Aqueous compositions for cleaning gas turbine compressor blades
CN103498164A (en) * 2013-09-04 2014-01-08 大连理工大学 Environment-friendly cleaning liquid and cleaning method for oxide layer of hot-rolled steel plate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785980A (en) * 1980-11-17 1982-05-28 Hitachi Ltd Method for removal of oxide on metallic surface
JPS58210200A (en) * 1982-06-02 1983-12-07 Hitachi Ltd Method for dissolving iron oxide film
JPS59232279A (en) * 1983-06-13 1984-12-27 Hitachi Ltd Removing method of oxide on metallic surface
US4789406A (en) * 1986-08-20 1988-12-06 Betz Laboratories, Inc. Method and compositions for penetrating and removing accumulated corrosion products and deposits from metal surfaces
JPS6421088A (en) * 1987-07-17 1989-01-24 Mitsubishi Heavy Ind Ltd Method for chemically cleaning hardly soluble scale
US5037483A (en) * 1990-01-30 1991-08-06 Nalco Chemical Company On-line iron clean-up
JP2013071111A (en) * 2011-09-29 2013-04-22 Mitsubishi Heavy Ind Ltd Method and apparatus for washing metallic filter, and washing liquid for metallic filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200102492A1 (en) * 2017-05-02 2020-04-02 Halliburton Energy Services, Inc. Nanosized particulates for downhole applications
US11572501B2 (en) * 2017-05-02 2023-02-07 Halliburton Energy Services, Inc. Nanosized particulates for downhole applications
WO2020217666A1 (en) * 2019-04-26 2020-10-29 三菱パワー株式会社 Chemical cleaning method and chemical cleaning apparatus

Also Published As

Publication number Publication date
CN106414805B (en) 2019-03-22
TW201615293A (en) 2016-05-01
SG11201610066TA (en) 2017-01-27
TWI599411B (en) 2017-09-21
CN106414805A (en) 2017-02-15
PH12016502379A1 (en) 2017-02-20

Similar Documents

Publication Publication Date Title
JP6522293B2 (en) Chemical cleaning method and chemical cleaning apparatus
WO2016002516A1 (en) Chemical washing method and chemical washing device
AU2001272969B9 (en) Dynamic optimization of chemical additives in a water treatment system
JP5721888B1 (en) Chemical cleaning method and chemical cleaning apparatus
AU2001272969A1 (en) Dynamic optimization of chemical additives in a water treatment system
CN210465220U (en) Water chemistry measurement circulation loop and experimental kettle
CN105256320B (en) A kind of chemical complexing cleaning method of polysilicon equipment
CN108195223A (en) A kind of offline pickling descaling system of heat exchanger and technique
JP2013071111A (en) Method and apparatus for washing metallic filter, and washing liquid for metallic filter
KR20080103124A (en) Apparatus for testing corrosion fatigue life of automotive chassis parts
JP6619256B2 (en) Chemical cleaning method and chemical cleaning apparatus
CN110132046B (en) Chemical cleaning device and chemical cleaning method using same
CN107208879B (en) The cleaning method of the fiery furnace wall tubes of direct current cooker
CN1270835C (en) Method for cleaning a steam generating device of a compressed water reactor
JP6370651B2 (en) Chemical solution preparation method, chemical solution preparation apparatus, and chemical cleaning method
JPH02310452A (en) Method for monitoring local corrosion
CN111141671B (en) Simulation test device and method for galvanic corrosion of composite steel bar coating and core material
KR101328425B1 (en) Measuring method of corrosion and water quality using water-loof system in a heating system and water-loof system used the same
CN214334573U (en) Corrosion and scale inhibitor testing device
JP4581306B2 (en) Carbon steel local corrosion monitoring method and carbon steel local corrosion prevention method
Calderón et al. The corrosion process of P-110 steel in stimulation fluids used in the oil industry
KR101414291B1 (en) Cleaning Method and Apparatus of Heat Exchanger by Observing Corrosion Current
JP4207553B2 (en) Carbon steel local corrosion monitoring method and local corrosion prevention method
Kirilina et al. Water Treatment Upgrade of Steam Drum Boilers Based on a VTIAMIN Reagent
Hall New 3-Cell Test Facility to Measure Erosion-Corrosion Inhibition Effectiveness in a CO2 Saturated Flow Loop Containing Sand, High Salt Con [c] entration, and Oil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815955

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: IDP00201607874

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 12016502379

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15815955

Country of ref document: EP

Kind code of ref document: A1