WO2020137496A1 - Method and apparatus for cleaning and maintaining boiler plant - Google Patents

Method and apparatus for cleaning and maintaining boiler plant Download PDF

Info

Publication number
WO2020137496A1
WO2020137496A1 PCT/JP2019/048147 JP2019048147W WO2020137496A1 WO 2020137496 A1 WO2020137496 A1 WO 2020137496A1 JP 2019048147 W JP2019048147 W JP 2019048147W WO 2020137496 A1 WO2020137496 A1 WO 2020137496A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
ammonia
neutral
based compound
solution
Prior art date
Application number
PCT/JP2019/048147
Other languages
French (fr)
Japanese (ja)
Inventor
貴行 和田
陽一 真保
良典 野口
瑞希 大塚
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to KR1020217004725A priority Critical patent/KR20210034040A/en
Publication of WO2020137496A1 publication Critical patent/WO2020137496A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/48Devices for removing water, salt, or sludge from boilers; Arrangements of cleaning apparatus in boilers; Combinations thereof with boilers
    • F22B37/52Washing-out devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/48Devices for removing water, salt, or sludge from boilers; Arrangements of cleaning apparatus in boilers; Combinations thereof with boilers
    • F22B37/50Devices for removing water, salt, or sludge from boilers; Arrangements of cleaning apparatus in boilers; Combinations thereof with boilers for draining or expelling water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/48Devices for removing water, salt, or sludge from boilers; Arrangements of cleaning apparatus in boilers; Combinations thereof with boilers
    • F22B37/54De-sludging or blow-down devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/56Boiler cleaning control devices, e.g. for ascertaining proper duration of boiler blow-down

Definitions

  • the present disclosure relates to a cleaning storage device for cleaning and storing a boiler plant and a cleaning storage method thereof.
  • a large amount of pure water is used to replace hydrazine water with operating water.
  • Wastewater treatment is required to dispose of hydrazine water and operating water discharged during replacement work. Therefore, replacement of hydrazine water with operating water becomes a factor that increases the load on the wastewater treatment facility.
  • hydrazine is a carcinogen, so there is a problem in wastewater treatment when switching to operating water. Therefore, without using hydrazine, it is possible to divert the stored water to operating water without draining the stored water, and it is preferable to use a storage method for a boiler plant that can prevent corrosion of plant components for several days or longer. Has become.
  • Patent Document 3 discloses a method for cleaning an exhaust heat recovery boiler, in which cleaning is performed at a low temperature (without heating/normal temperature) using a cleaning liquid containing a neutral rust remover.
  • Patent Document 4 discloses a cleaning method in which a heated cleaning liquid is circulated in the heat transfer tube in a state where the exhaust gas supply port and the exhaust gas outlet of the exhaust heat recovery boiler are closed.
  • Exhaust heat recovery boiler consists of multiple steam drums and evaporators.
  • a cleaning liquid from a cleaning facility 30 is put into a economizer 31, a steam drum 32, and an evaporator 33 from a water supply system to perform cleaning.
  • Fig. 13 shows a process diagram of a conventional chemical cleaning method.
  • a temporary system is connected to the cleaning target (S31).
  • S32 chemically cleaning
  • S33 washed with water
  • the above rustproof treatment is carried out at 80°C to 90°C by adding hydrazine water in order to prevent rusting during the period from washing to normal operation.
  • the rustproofing treatment at a low temperature as in Patent Document 3 does not form a sufficient rustproof film.
  • rust may occur on the inner surface of the heat transfer tube after blowing the anticorrosion treatment liquid. Rust on the inner surface of the heat transfer tube is not preferable from the viewpoint of cleaning work quality, water quality during operation, and facility reliability.
  • An object of the present invention is to provide a cleaning storage method and a cleaning storage apparatus for a boiler plant that can be used.
  • the cleaning storage method and cleaning storage apparatus of the boiler plant of the present disclosure adopt the following means.
  • a first aspect of the present disclosure includes a step of neutrally cleaning a cleaning target site having scale attached thereto at room temperature with a neutral cleaning solution containing a rust remover, and a pH of 9.
  • a method for cleaning and storing a boiler plant which includes a step of circulating an ammonia-based compound aqueous solution at room temperature of 8 or more and a step of blowing the ammonia-based compound aqueous solution from the cleaning target site.
  • the temperature rising facility and the preheating process of the cleaning liquid are unnecessary, and it is not necessary to monitor the temperature drop of the cleaning liquid due to cooling during the cleaning process. This makes it possible to reduce the cleaning cost and cleaning time.
  • the "normal temperature” means about room temperature, and is a temperature at which preheating or heating is not performed from the outside. Specifically, it is 5°C to 50°C, more preferably 15°C to 30°C.
  • ammonia-based compound aqueous solution having a pH of 9.8 or higher is circulated on the surface of the base material of the cleaning target site after the scale is removed, the ammonia-based compound aqueous solution is blown from the cleaning target site, and the surface contains ammonia-containing water. Covered with a membrane. As a result, it becomes possible to suppress rusting until the start of operation.
  • the main component of the ammonia-containing water film is ammonia water, which is the same as the feed water treatment chemical used when operating the boiler plant. From this, it is not necessary to remove the ammonia-containing water film at the start of the operation, and therefore the operation can be started as it is after the boiler plant is stored. As a result, working time can be shortened and cost can be reduced. Furthermore, since rusting can be suppressed without using hydrazine, it is excellent in environmental friendliness.
  • the neutral cleaning solution in the step of neutral cleaning, is circulated in the cleaning target site, iron ions in the circulated neutral cleaning solution are analyzed, and the neutral cleaning solution is analyzed. It is desirable to finish the neutral cleaning after confirming that the change in iron ion concentration in the cleaning liquid shows a saturation tendency.
  • scale components include calcium (Ca), aluminum (Al), copper (Cu), etc. Since Ca, Al, and Cu have low solubilities in the vicinity of neutrality, these scale components may not be completely dissolved/removed by low-temperature cleaning using a neutral rust remover. The scale that cannot be removed may remain as sludge in the system. The residual sludge can be discharged to the outside of the system to some extent by blowing the cleaning liquid or washing with water after cleaning, but it is difficult to discharge the whole sludge and may remain in the system.
  • the heat transfer tubes are arranged horizontally and the length is large at 20 m class, and it is difficult to discharge sludge at the flow velocity of the water flow at the time of cleaning and discharging (blowing). Particular attention is required.
  • the remaining sludge becomes a factor of lowering the heat transfer performance of the heat transfer tube and causing corrosion due to sludge-containing components.
  • the acidic cleaning solution in the step of performing the acid cleaning, is circulated in the cleaning target site, iron ions in the circulated acidic cleaning solution are analyzed, and iron in the acidic cleaning solution is analyzed. It is desirable to finish the acid cleaning after confirming that the change in ion concentration shows a saturation tendency.
  • the acidic cleaning liquid of the extruding blow is After blowing almost the entire amount and circulating the aqueous ammonia compound solution in the cleaning target site, the pH of the aqueous ammonia compound compound is analyzed, and the extrusion blow and the ammonia are analyzed until the analyzed pH becomes a reference value or more. It is desirable to continue the circulation of the aqueous system compound solution.
  • the acidic cleaning liquid is extruded and replaced with an aqueous ammonia compound solution.
  • the method further comprises a step of extruding and blowing the neutral cleaning liquid using the aqueous solution of the ammonia-based compound, and in the step of extruding and blowing, the Blowing almost the entire amount of the cleaning liquid, after circulating the ammonia-based compound aqueous solution in the cleaning target site was analyzed for components derived from the rust remover in the ammonia-based compound aqueous solution, of the components derived from the analyzed rust remover It is desirable to continue the extrusion blow and the circulation of the aqueous solution of ammonia compound until the concentration becomes equal to or lower than the reference value.
  • the neutral cleaning solution is extruded and replaced with an aqueous ammonia compound solution.
  • a solid vaporizable ammonia compound can be introduced into the site to be cleaned.
  • the solid of the vaporizable ammonia compound that has been input is vaporized in the cleaning target site, is quickly diffused, and is taken into the ammonia-containing water film.
  • the ammonia component escapes from the ammonia-containing water film, but the rust preventive effect of the water film can be maintained by introducing the vaporizable ammonia compound solid.
  • At least one of the acidic cleaning liquid and the neutral cleaning liquid may be filtered during circulation.
  • Sludge can be removed by filtering the circulating cleaning solution. As a result, the amount of sludge remaining generated during cleaning can be reduced, and therefore the heat transfer performance of the heat transfer tube due to sludge residue and the risk of corrosion due to sludge-containing components can be reduced.
  • the cleaning target portion may be an evaporator of the exhaust heat recovery boiler.
  • the amount of cleaning liquid used can be suppressed and the amount of drainage can be reduced.
  • a circulation part configured to circulate a fluid in a portion to be cleaned to which scale is attached, and a neutral cleaning liquid supply for supplying a neutral cleaning liquid containing a rust remover to the circulation part.
  • an ammonia-based compound aqueous solution supply section for supplying an ammonia-based compound aqueous solution containing an ammonia-based compound having a pH of 9.8 or more to the circulation section, and a blow channel for discharging the ammonia-based compound aqueous solution from the circulation section.
  • a cleaning and storage device for a boiler plant equipped with the same.
  • the circulation unit has a circulation flow path whose both ends are connected to an inlet/outlet of the cleaning target site, a pump provided in the middle of the circulation flow path, and the downstream side of the pump. And a filtering device provided in the middle of the circulation flow path.
  • one end is connected to at least one of the circulation part, the inlet and the outlet of the cleaning target site, and the other end is the acidic cleaning liquid supply part, the neutral cleaning liquid supply part, and the ammonia-based compound aqueous solution. You may further provide the blow flow path connected to at least one of the supply parts.
  • the blow liquid can be returned to at least one of the acidic cleaning liquid supply unit, the neutral cleaning liquid supply unit, and the ammonia-based compound aqueous solution supply unit, the installation of the drain tank can be omitted.
  • rust prevention treatment is performed on a cleaning target portion of a boiler at low cost and in a short time, and a boiler plant cleaning storage method and cleaning storage that can store a boiler It becomes a device.
  • FIG. 3 is a schematic diagram showing changes in the cleaning time and the Fe ion concentration in the neutral cleaning liquid in the first embodiment. It is a schematic diagram of an ammonia-containing water film. It is a schematic diagram at the time of specific part washing. It is process drawing of the cleaning storage method which concerns on 2nd Embodiment. It is a graph which illustrates the sludge amount in acid cleaning and neutral cleaning in 2nd Embodiment.
  • FIG. 7 is a schematic diagram of changes in the cleaning time and the Fe ion concentration in the cleaning liquid in the second embodiment.
  • the following embodiments exemplify a method for cleaning and storing an exhaust heat recovery boiler.
  • the inside of the cleaning target device (cleaning target portion) is cleaned using a cleaning liquid at room temperature without heating.
  • "Normal temperature” means about room temperature, and is a temperature at which preheating or heating is not performed from the outside.
  • the “normal temperature” is specifically 5 to 50° C., more preferably 15° C. to 30° C.
  • FIG. 1 shows a process diagram of a method for cleaning and storing a boiler plant according to this embodiment.
  • the cleaning storage method according to the present embodiment includes step 1 (S1) to step 6 (S6) in order.
  • the pH of the neutral cleaning solution containing the rust remover is 4 to 8.
  • the rust remover is a chelating agent, a reducing agent, or a mixture of a chelating agent and a reducing agent, and is an object to be removed that has adhered to the inside of the equipment to be cleaned (for example, a scale containing metal oxides or metal salts, rust hump). Etc.) can be removed.
  • “Rusty humps” are hump-like corrosion products (see JIS Z 0103 1050) that occur on the surface of steel.
  • the neutral cleaning liquid is appropriately adjusted in concentration of the chelating agent, the reducing agent and the corrosion inhibitor so as to obtain a desired cleaning capacity and cleaning time.
  • the chelating agent examples include aminocarboxylic acids such as EDTA, BAPTA, DOTA, EDDS, INN, NTA, DTPA, HEDTA, TTHA, PDTA, DPTA-OH, HIDA, DHEG, GEDTA, CMGA, EDDS, and salts thereof.
  • Carboxylic acid type chelating agents oxycarboxylic acids such as citric acid, gluconic acid, hydroxyacetic acid and salts thereof, oxycarboxylic acid type chelating agents such as ATMP, HEDP, NTMP, PBTC and EDTMP, and salts thereof. It is an organic phosphorus chelating agent such as.
  • the reducing agent examples include various metal ions such as Fe 2+ and Sn 2+ , nitrites such as sodium sulfite, organic compounds such as oxalic acid, formic acid, ascorbic acid and pyrogallol, hydrazine and hydrogen.
  • a corrosion inhibitor may be added to the neutral cleaning liquid.
  • the aqueous ammonia-based compound solution contains the ammonia-based compound at a concentration such that the pH is 9.8 to 11, preferably pH 9.8 to 10.5.
  • the ammonia-based compound is, for example, a volatile amine selected from 2-amino-2-methyl-1-propanol, monoethanolamine, monoisopropanolamine, cyclohexylamine, diethylethanolamine, morpholine, 3-methoxypropylamine, and ammonia. It is a compound.
  • the neutral cleaning solution contains organic phosphoric acid as a chelating agent
  • analyze phosphorus (P) in the aqueous ammonia compound solution can be carried out by the molybdenum blue absorptiometry described in JIS K 0102 Industrial Wastewater Testing Method 46.3 Total Phosphorus, ion chromatography, ICP mass spectrometry or atomic absorption.
  • steps 2 to 5 may be performed only once, or may be performed multiple times.
  • Fig. 2 exemplifies (S2) the amount of sludge (standard value) before and after neutral cleaning.
  • the vertical axis represents the amount of sludge remaining in the equipment to be cleaned.
  • S2 About 90% of sludge can be removed only by neutral cleaning.
  • FIG. 3 shows a schematic diagram of changes in the cleaning time and the Fe ion concentration in the cleaning liquid.
  • the horizontal axis represents the cleaning time
  • the vertical axis represents the Fe ion concentration
  • the broken line represents the transition during neutral cleaning.
  • the neutral cleaning when the cleaning progresses to some extent, the scale to be cleaned is removed, the Fe scale dissolution amount decreases, and the Fe ion concentration change in the cleaning liquid tends to be saturated.
  • the above cleaning and storing method by confirming the saturation tendency of the change in Fe ion concentration and ending each cleaning step, it is possible to avoid continuation of cleaning more than necessary and carry out neutral cleaning in the necessary minimum time. Thereby, extension of each cleaning time can be suppressed.
  • the ammonia-based compound aqueous solution is circulated in the system, so that the ammonia having a high pH (9.8 or more) is applied to the surface of the base material 10 of the cleaning target device.
  • the contained water film 11 is formed (see FIG. 4).
  • the high pH water film portion has a rust preventive effect, and the effect is maintained after the restoration of the cleaning equipment temporary pipe is completed after the aqueous solution of the ammonia compound is blown. Since the pH of the ammonia-containing water film 11 is 9.8 or higher, the rust-preventing effect is obtained even without hydrazine, so that hydrazine is not required and the environment is excellent.
  • ⁇ Ammonia component escapes from the ammonia-containing water film 11 when the restoration process of the temporary connection of the cleaning equipment is prolonged and the opening time becomes long. Therefore, (S6) during the dismantling of the temporary system, a solid substance of an ammonia compound that is vaporizable at room temperature and pressure may be additionally charged into the equipment to be cleaned to supplement the ammonia gas. The introduced ammonia compound is quickly vaporized to generate an ammonia-based gas. Ammonia-based gas diffuses in the system and is dissolved in the ammonia-containing water film. As a result, the pH of the ammonia-containing water film 11 can be maintained at a high level, so that the deterioration of the rust preventive effect of the ammonia-containing water film 11 due to the pH decrease can be reduced.
  • the water film of the aqueous ammonia compound solution or the solids of the ammonia compound remaining at the start of operation is easily dissolved in the operating water.
  • ammonia is used to adjust the pH of the feed water during operation.
  • the ammonia-based compound aqueous solution used for forming the water film in the above embodiment does not need to be removed at the start of operation of the exhaust heat recovery boiler because the main component is ammonia. Therefore, after the exhaust heat recovery boiler is stored, the operation can be started as it is, so that the working time can be shortened, the plant operation rate can be improved, and the chemical cost and the wastewater treatment cost can be reduced.
  • Neutral cleaning solution may be filtered during circulation.
  • the amount of sludge remaining at the time of cleaning can be reduced, and thus the risk of deterioration of heat transfer performance of the heat transfer tube due to sludge remaining and the risk of corrosion generation due to sludge-containing components can be reduced.
  • the cleaning storage method according to the above embodiment is suitable for cleaning the boiler water system of the exhaust heat recovery boiler.
  • the cleaning target equipment requiring cleaning is specified in a specific portion where scale easily adheres (for example, a heat transfer tube of an evaporator where scale easily adheres due to temperature and pressure conditions).
  • the amount of cleaning liquid used and the working time for cleaning can be reduced, which is more preferable.
  • FIG. 6 shows a process diagram of the boiler plant cleaning and storing method according to the present embodiment. This embodiment differs from the first embodiment in that an acid cleaning step is performed before neutral cleaning.
  • the cleaning storage method according to the present embodiment includes step 11 (S11) to step 19 (S19) in order.
  • the acidic cleaning liquid is injected from the temporary system to fill the inside of the cleaning target device with the acidic cleaning liquid, the acidic cleaning liquid is circulated in the cleaning target device at room temperature.
  • the wash solution is not warmed during circulation.
  • the acidic cleaning liquid may be an inorganic acid solution or an organic acid solution capable of dissolving Ca, Al, Cu and the like.
  • the pH of the acidic cleaning liquid is preferably 4 or less, more preferably 3 or less. For example, a 1% by mass to 10% by mass aqueous hydrochloric acid solution can be used as the acidic cleaning liquid.
  • Iron ions in the liquid are phenanthroline absorptiometry, flame atomic absorption, electric heating atomic absorption or ICP emission spectrophotometry described in JIS K 0101 Industrial water test method 60 iron (Fe), or boiler of JIS B 8224.
  • Water supply and boiler water-Test method 26 1,10-phenanthroline absorptiometry described in Iron (Fe), 2,4,6-tri-pyridyl-1,3,5-triazine (TPTZ) absorptiometry, flame It can be analyzed by an atomic absorption method, an electric heating atomic absorption method, an ICP emission spectroscopic analysis method, an ICP mass spectrometric method, a sulfosalicyl absorptiometry method, or the like.
  • JIS is an abbreviation for Japanese Industrial Standards.
  • the cleaning from steps 12 to 18 of the above cleaning storage method may be carried out only once or plural times.
  • steps (S11) and (S19) above are omitted.
  • the sludge remaining in the cleaning target device is (S15) neutral cleaning.
  • S15 neutral cleaning.
  • Fig. 7 exemplifies the residual sludge amount (standard value) in (S12) acid cleaning and (S15) neutral cleaning.
  • the vertical axis represents the amount of sludge remaining in the cleaning target device (100 before acid cleaning). As shown in FIG. 2, about 20% of the sludge remains in the acid cleaning at room temperature, but about 70% of the remaining 20% of the sludge could be removed by the neutral cleaning.
  • FIG. 8 shows a schematic diagram of changes in the cleaning time and the Fe ion concentration in the cleaning liquid.
  • the horizontal axis represents the cleaning time
  • the vertical axis represents the Fe ion concentration
  • the solid line represents the transition during acid cleaning
  • the broken line represents the transition during neutral cleaning.
  • the cleaning storage method by confirming the saturation tendency of the Fe ion concentration change and ending each cleaning step, it is possible to avoid excessive cleaning continuity and perform acid cleaning and neutral cleaning in the necessary minimum time. it can. Thereby, extension of each cleaning time can be suppressed.
  • the aqueous ammonia compound solution is circulated in the system, so that the surface of the base material 10 of the cleaning target device has a high pH (9.8).
  • the above-mentioned ammonia-containing water film 11 is formed.
  • the high pH water film portion has a rust preventive effect, and the effect is maintained after the restoration of the cleaning equipment temporary pipe is completed after the aqueous solution of the ammonia compound is blown. Since the pH of the ammonia-containing water film 11 is 9.8 or higher, the rust-preventing effect is obtained even without hydrazine, so that hydrazine is not required and the environment is excellent.
  • ⁇ Ammonia component escapes from the ammonia-containing water film 11 when the restoration process of the temporary connection of the cleaning equipment is prolonged and the opening time becomes long. Therefore, (S19) during the dismantling of the temporary system, a solid substance of a vaporizable ammonia compound at room temperature and normal pressure may be additionally charged into the device to be cleaned to supplement the ammonia gas. The introduced ammonia compound is quickly vaporized to generate an ammonia-based gas. Ammonia-based gas diffuses in the system and is dissolved in the ammonia-containing water film. As a result, the pH of the ammonia-containing water film 11 can be maintained at a high level, so that the deterioration of the rust preventive effect of the ammonia-containing water film 11 due to the pH decrease can be reduced.
  • the water film of the aqueous ammonia compound solution or the solids of the ammonia compound remaining at the start of operation is easily dissolved in the operating water.
  • ammonia is used to adjust the pH of the feed water during operation.
  • the ammonia-based compound aqueous solution used for forming the water film in the above embodiment does not need to be removed at the start of operation of the exhaust heat recovery boiler because the main component is ammonia. Therefore, after the exhaust heat recovery boiler is stored, the operation can be started as it is, so that the working time can be shortened, the plant operation rate can be improved, and the chemical cost and the wastewater treatment cost can be reduced.
  • At least one of the acidic cleaning solution and the neutral cleaning solution may be filtered during circulation.
  • the amount of sludge remaining at the time of cleaning can be reduced, so that the heat transfer performance of the heat transfer tube is reduced due to the sludge remaining and the risk of corrosion generation due to the sludge-containing component can be reduced.
  • the cleaning storage method according to the above embodiment is suitable for cleaning the boiler water system of the exhaust heat recovery boiler.
  • the cleaning target equipment requiring cleaning is specified in a specific portion where scale easily adheres (for example, a heat transfer tube of an evaporator where scale easily adheres due to temperature and pressure conditions).
  • the amount of cleaning liquid used and the working time for cleaning can be reduced, which is more preferable.
  • FIG. 9 is a process diagram of the boiler plant cleaning and storing method according to the present embodiment. This embodiment is different from the first and second embodiments in that the step of acid cleaning is performed after neutral cleaning.
  • the cleaning storage method according to the present embodiment includes step 21 (S21) to step 28 (S28) in order.
  • the reference value is set in advance by a preliminary test. Confirm that the pH of the aqueous ammonia-based compound solution is above the reference value.
  • the reference value is, for example, pH 9.8 or more, which has an anticorrosive effect even without hydrazine.
  • the above steps 22 to 27 may be carried out only once or a plurality of times.
  • FIG. 10 is a schematic diagram of a temporary system (cleaning storage device 2).
  • the cleaning target device is the heat transfer tube of the evaporator 1.
  • FIG. 10 for simplification of the drawing, only the inlet header 1a and the outlet header 1b of the heat transfer pipe to which the cleaning/storage device 2 is connected are shown.
  • the arrow entering the inlet header 1a represents the connection from the evaporator drum, and the arrow exiting the outlet header 1b represents the connection to the evaporator drum.
  • the cleaning storage device 2 includes a circulation unit 3, a chemical liquid tank 4, a chemical liquid pump 5, a makeup water tank 6, a drainage tank 7, and pipes L 1 to L 4 connecting them.
  • the circulation unit 3 includes a circulation flow path (pipe L 1 ) and a pump 8.
  • One end of the circulation flow path (pipe L 1 ) is connected to the inlet side of the heat transfer tube (inlet header 1 a) and the other end is connected to the outlet side of the heat transfer tube (outlet header 1 b ).
  • a pump 8 is provided in the middle of the circulation flow path (pipe L 1 ), and is configured to circulate a cleaning liquid or the like in the heat transfer tube.
  • Valves V 1 to V 4 are installed in the circulation flow path (pipe L 1 ).
  • the chemical liquid tank 4 is connected in the middle of the circulation flow path (pipe L 1 ) via the pipe L 2 and the chemical liquid pump 5.
  • a valve V 5 and a valve V 6 are arranged in the pipe L 2 so as to sandwich the chemical liquid pump 5.
  • a chemical liquid to be circulated (acid, rust remover or ammonia-based compound aqueous solution) can be stored.
  • the chemical liquid tank 4 may be a tank truck including the chemical liquid tank 4. In FIG. 10, since there is one chemical liquid tank 4, the chemical liquids in the chemical liquid tank 4 are replaced in order.
  • a makeup water tank 6 is connected to the circulation flow path (pipe L 1 ) via a pipe L 3 .
  • a valve V 7 and a valve V 8 are arranged in the pipe L 3 .
  • the connection position of the makeup water tank 6 may be either upstream or downstream of the circulating position of the connection position of the chemical liquid tank 4. Water such as pure water is stored in the makeup water tank 6.
  • the drainage tank 7 includes a connecting pipe (not shown) connected to both ends of the circulation flow path (pipe L 1 ) and the inlet port 1a of the heat transfer tube or the inlet port of the heat transfer tube via the lines L 4 to L 6. It is connected to the.
  • a valve V 9 and a valve V 10 are arranged in the pipe L 4 .
  • a valve V 11 and a valve V 12 are arranged in the pipe L 5 .
  • a valve V 13 and a valve V 14 are arranged in the pipe L 6 .
  • the filtration device 9 is provided in the circulation flow path (pipe L 1 ) on the circulation downflow outlet flow side of the pump 8.
  • the filtration device 9 is a device that removes fine solids by a filter or membrane filtration. Since the sludge generated in the neutral cleaning step and the acid cleaning step can be recovered by providing the filtering device 9 and the residual sludge amount during cleaning can be reduced, the risk of corrosion trouble due to residual sludge can be reduced.
  • FIG. 11 is a schematic diagram of a temporary system (cleaning storage device 20) different from FIG.
  • the same components as those in FIG. 10 are denoted by the same reference numerals.
  • a plurality of chemical liquid tanks 24a to 24c are connected in parallel, and a blow channel L 21 for returning drainage (blowing liquid) to one of the chemical liquid tanks 24a to 24c instead of the drainage tank 7.
  • a valve V 27 is arranged in the blow passage L 21 .
  • the makeup water tank 6, the chemical liquid tank 24a, the valve V 25a , the valve V26a , the chemical liquid pump 5, the pipe L 2 and the valve V 6 are the acidic cleaning liquid supply unit
  • the valve V 26b , the chemical liquid pump 5, the pipe L 2 and the valve V 6 are the neutral cleaning liquid supply unit
  • Acid is stored in the chemical liquid tank 24a.
  • a neutral rust remover is stored in the chemical liquid tank 24b.
  • Aqueous ammonia compound solution is stored in the chemical tank 24c.
  • the blow liquid in each step of acid cleaning liquid blowing, water washing, extrusion blow, and ammonia compound aqueous solution blowing can be returned to any of the chemical liquid tanks 24a to 24c.
  • the cleaning storage devices 2 and 20 of FIGS. 10 and 11 are either a detachable type that can be attached to a cleaning target device when used and can be detached from the cleaning target device when not in use, or a permanent type. Good.
  • FIG. 10 can be applied to the cleaning and storing method of the boiler plant of the first to third embodiments.
  • FIG. 11 can be applied to the cleaning and storing method of the boiler plant of the first to third embodiments.
  • FIG. 11 is particularly suitable for the cleaning and storing method of the boiler plant of the second and third embodiments.

Abstract

The purpose of the present invention is to provide a method and an apparatus for cleaning and maintaining a boiler plant, by which, in a period between chemical cleaning and initiation of normal operation, it is possible to subject parts of a boiler to be cleaned to a rust-proofing treatment at low cost and in a short time, and to maintain the boiler. This method for maintaining a boiler plant includes: a step (S2) for subjecting parts to be cleaned, which have scale attached thereto, to neutral cleaning at room temperature using a neutral cleaning liquid containing a rust preventive agent; a step (S4) for circulating an aqueous solution of an ammonia-based compound having a pH of 9.8 or more at room temperature to the parts to be cleaned; and a step (S5) for blowing the aqueous solution of an ammonia-based compound from the parts to be cleaned.

Description

ボイラプラントの洗浄保管方法および洗浄保管装置Cleaning and storage method and cleaning storage device for boiler plant
 本開示は、ボイラプラントを洗浄保管するための洗浄保管装置およびその洗浄保管方法に関する。 The present disclosure relates to a cleaning storage device for cleaning and storing a boiler plant and a cleaning storage method thereof.
 ドラムを保有するボイラおよび排熱回収ボイラ(HRSG)などを備えたボイラプラントを運転停止などで数日間にわたり保管する場合、給水またはボイラ水の溶存酸素が、ボイラプラント構成要素の腐食要因となる。そのため、ボイラプラントの保管時には、防食剤を用いて腐食を防止している(特許文献1参照)。防食剤としては、脱酸素能を有するヒドラジンなどが用いられている。 When storing a boiler plant equipped with a boiler that has a drum and an exhaust heat recovery boiler (HRSG) for several days, such as when it is out of operation, the dissolved oxygen in the feed water or boiler water becomes a cause of corrosion of boiler plant components. Therefore, during storage of the boiler plant, corrosion is prevented by using an anticorrosive agent (see Patent Document 1). As the anticorrosive agent, hydrazine having deoxidizing ability is used.
 従来、ボイラプラントの運転停止などの保管時には、ボイラプラント構成要素内の運転用水(給水およびボイラ水)を保管水としてヒドラジン水へと入れ替え、ボイラプラントを再起動する際には、保管水であるヒドラジン水を運転用水へと入れ替えるという作業が行われているものがある。 Conventionally, at the time of storage such as shutdown of the boiler plant, the operating water (supply water and boiler water) in the boiler plant components is replaced with hydrazine water as the storage water, and when the boiler plant is restarted, it is the storage water. There is work that replaces hydrazine water with operating water.
 ヒドラジン水と運転用水との入れ替えには多量の純水が使用される。入れ替え作業で排出されたヒドラジン水および運転用水の廃棄には排水処理を要する。そのため、ヒドラジン水と運転用水との入れ替えは排水処理設備の負荷を増加させる要因となる。 A large amount of pure water is used to replace hydrazine water with operating water. Wastewater treatment is required to dispose of hydrazine water and operating water discharged during replacement work. Therefore, replacement of hydrazine water with operating water becomes a factor that increases the load on the wastewater treatment facility.
 更には、ヒドラジンは、発がん性物質であるなど運転用水への切り替えの排水処理に課題がある。このため、ヒドラジンを使用せずに更には保管水を排水することなく運転用水へと転用が可能となり、プラント構成要素の腐食を数日間以上に渡り防止可能なボイラプラントの保管方法の利用が好ましくなっている。 Furthermore, hydrazine is a carcinogen, so there is a problem in wastewater treatment when switching to operating water. Therefore, without using hydrazine, it is possible to divert the stored water to operating water without draining the stored water, and it is preferable to use a storage method for a boiler plant that can prevent corrosion of plant components for several days or longer. Has become.
 ヒドラジンを使用せずにボイラプラント構成要素の腐食を防止する方法として、給水およびボイラ水に添加されたアンモニアの濃度を調整して、保管水としての給水およびボイラ水のpHを高くする対応が知られている(特許文献2参照)。給水およびボイラ水のpHを9.8以上に設定すると、ボイラプラントの保管時にヒドラジンを添加しなくてもプラント構成要素内の腐食を防止することが可能となる。例えば、給水およびボイラ水のpHを10とすると、ヒドラジンを添加しなくてもボイラプラントを保管することが可能となる。 As a method to prevent corrosion of boiler plant components without using hydrazine, it is known to adjust the concentration of ammonia added to feed water and boiler water to increase the pH of feed water as storage water and boiler water. (See Patent Document 2). When the pH of feed water and boiler water is set to 9.8 or higher, it becomes possible to prevent corrosion in plant components without adding hydrazine during storage of the boiler plant. For example, if the pH of feed water and boiler water is set to 10, it is possible to store the boiler plant without adding hydrazine.
 また、特許文献3は、中性の除錆剤を含む洗浄液を使用して低温(加熱なし/常温)で洗浄を実施する排熱回収ボイラの洗浄方法を開示する。 Further, Patent Document 3 discloses a method for cleaning an exhaust heat recovery boiler, in which cleaning is performed at a low temperature (without heating/normal temperature) using a cleaning liquid containing a neutral rust remover.
 特許文献4は、排熱回収ボイラの排ガス供給口および排ガス出口を閉塞した状態で、伝熱管内に加熱された洗浄液を流通させる洗浄方法を開示する。 [Patent Document 4] discloses a cleaning method in which a heated cleaning liquid is circulated in the heat transfer tube in a state where the exhaust gas supply port and the exhaust gas outlet of the exhaust heat recovery boiler are closed.
特開昭62-233606号公報JP-A-62-233606 特開2014-159925号公報JP, 2014-159925, A 特開2015-105786号公報JP, 2005-105786, A 特開平11-37405号公報JP-A-11-37405
 排熱回収ボイラは複数の蒸気ドラムと蒸発器とから構成されている。複数の部位を洗浄する場合、図12に示すように、洗浄設備30からの洗浄液を給水系統から節炭器31、蒸気ドラム32、蒸発器33に入れて、洗浄を実施する方法がある。 Exhaust heat recovery boiler consists of multiple steam drums and evaporators. When cleaning a plurality of parts, as shown in FIG. 12, there is a method in which a cleaning liquid from a cleaning facility 30 is put into a economizer 31, a steam drum 32, and an evaporator 33 from a water supply system to perform cleaning.
 排熱回収ボイラの蒸発器には、放熱量の高いフィンチューブが採用されるのが一般的である。しかしながら、例えば特許文献4のように加熱された洗浄液を用いる洗浄方法では、フィンチューブからの放熱により洗浄液の温度を高温(50℃から90℃)に保つことが難しいため、洗浄効果が低下する。これに対する対策として、特許文献3では、中性除錆剤を用いて洗浄液を高温にせずに蒸発器を洗浄する。 ㆍGenerally, fin tubes with high heat dissipation are used for the evaporator of the exhaust heat recovery boiler. However, in the cleaning method using the heated cleaning liquid as disclosed in Patent Document 4, for example, it is difficult to maintain the temperature of the cleaning liquid at a high temperature (50° C. to 90° C.) due to heat radiation from the fin tube, so that the cleaning effect decreases. As a countermeasure against this, in Patent Document 3, the evaporator is cleaned using a neutral rust remover without heating the cleaning liquid to a high temperature.
 図13に従来の化学洗浄方法の工程図を示す。従来の化学洗浄方法では、まず、洗浄対象に仮設系統を接続する(S31)。次に、高温(50℃から90℃)で化学洗浄(S32)した後、洗浄液をブロー(S33)し、水洗(S34)で洗浄液を洗い流す。 Fig. 13 shows a process diagram of a conventional chemical cleaning method. In the conventional chemical cleaning method, first, a temporary system is connected to the cleaning target (S31). Next, after chemically cleaning (S32) at a high temperature (50° C. to 90° C.), the cleaning liquid is blown (S33) and washed with water (S34).
 化学洗浄処理でスケールが除去され露出した母材は酸素と反応し易いため、伝熱管内表面は発錆しやすい状態にある。水洗後、若干錆が発生するため、発生した錆をリンス液(濃度の薄い酸)で洗い流す(S35、20℃から90℃)。その後、系統内を中和(S36、20℃から90℃)し、ヒドラジン水を入れて防錆処理(S37、80℃から90℃)して伝熱管内表面に防錆皮膜を形成させた後、ブロー(S38)する。最後に、仮設系統を解体(S39)する。  Since the scale is removed by the chemical cleaning process and the exposed base material easily reacts with oxygen, the inner surface of the heat transfer tube is easily rusted. After rinsing with water, some rust is generated, so the rust that has occurred is washed off with a rinse liquid (acid with a low concentration) (S35, 20°C to 90°C). After that, after neutralizing the inside of the system (S36, 20°C to 90°C) and adding hydrazine water to prevent rusting (S37, 80°C to 90°C) to form a rustproof film on the inner surface of the heat transfer tube , Blow (S38). Finally, the temporary system is disassembled (S39).
 上記防錆処理は、洗浄後から通常運転に入るまでの期間の発錆を防止する目的で、ヒドラジン水を入れて80℃から90℃で防錆処理を実施される。しかしながら、特許文献3のような低温での防錆処理では十分な防錆皮膜が形成されない。不十分な状態では、防錆処理液をブローした後に伝熱管内表面で発錆する場合がある。伝熱管内表面での発錆は洗浄工事品質、運転時の水質、設備の信頼性の観点から好ましくない。 The above rustproof treatment is carried out at 80°C to 90°C by adding hydrazine water in order to prevent rusting during the period from washing to normal operation. However, the rustproofing treatment at a low temperature as in Patent Document 3 does not form a sufficient rustproof film. In an insufficient state, rust may occur on the inner surface of the heat transfer tube after blowing the anticorrosion treatment liquid. Rust on the inner surface of the heat transfer tube is not preferable from the viewpoint of cleaning work quality, water quality during operation, and facility reliability.
 系統内を高い濃度のアンモニアを含む保管水で満水とする防錆処理も考えられるが、仮設系統の解体工事のために保管水を抜かないといけない。よって、保管水で満水とするのは、工事の自由度(系統の一部切り離し、切り離し箇所の復旧)の観点から好ましくない場合がある。  Although rust prevention treatment that fills the inside of the system with storage water containing a high concentration of ammonia can be considered, it is necessary to drain the storage water for dismantling construction of the temporary system. Therefore, it may be unfavorable to fill the storage water with water from the viewpoint of the degree of freedom of construction (partial disconnection of the system and restoration of the disconnected part).
 本開示は、上記問題に鑑みなされたものであって、化学洗浄から通常運転を開始するまでの期間に、低コスト且つ短時間でボイラの洗浄対象部位の防錆処理を行い、ボイラを保管することができるボイラプラントの洗浄保管方法および洗浄保管装置を提供することを目的とする。 The present disclosure has been made in view of the above problems, and during the period from chemical cleaning to the start of normal operation, rust prevention treatment is performed on the cleaning target portion of the boiler at low cost and in a short time, and the boiler is stored. An object of the present invention is to provide a cleaning storage method and a cleaning storage apparatus for a boiler plant that can be used.
 上記課題を解決するために、本開示のボイラプラントの洗浄保管方法および洗浄保管装置は以下の手段を採用する。 In order to solve the above problems, the cleaning storage method and cleaning storage apparatus of the boiler plant of the present disclosure adopt the following means.
 本開示の第1の態様は、スケールが付着した洗浄対象部位を、除錆剤を含む中性の洗浄液により常温で中性洗浄する工程と、前記洗浄対象部位に、アンモニア系化合物を含むpH9.8以上の常温のアンモニア系化合物水溶液を循環させる工程と、前記洗浄対象部位から、前記アンモニア系化合物水溶液をブローする工程を備えたボイラプラントの洗浄保管方法を提供する。 A first aspect of the present disclosure includes a step of neutrally cleaning a cleaning target site having scale attached thereto at room temperature with a neutral cleaning solution containing a rust remover, and a pH of 9. Provided is a method for cleaning and storing a boiler plant, which includes a step of circulating an ammonia-based compound aqueous solution at room temperature of 8 or more and a step of blowing the ammonia-based compound aqueous solution from the cleaning target site.
 第1の態様によれば、常温で洗浄を実施することから、昇温設備および洗浄液の予熱工程が不要となり、洗浄工程中での放冷による洗浄液温度低下の監視が不要になる。これにより、洗浄コストおよび洗浄時間を低減させることが可能である。なお、「常温」とは、室温程度を意味し、外部から予熱や加熱を行わない温度である。具体的に5℃から50℃、より好ましくは15℃から30℃である。 According to the first aspect, since the cleaning is performed at room temperature, the temperature rising facility and the preheating process of the cleaning liquid are unnecessary, and it is not necessary to monitor the temperature drop of the cleaning liquid due to cooling during the cleaning process. This makes it possible to reduce the cleaning cost and cleaning time. The "normal temperature" means about room temperature, and is a temperature at which preheating or heating is not performed from the outside. Specifically, it is 5°C to 50°C, more preferably 15°C to 30°C.
 スケールを除去した後の洗浄対象部位の母材の表面にpH9.8以上の常温のアンモニア系化合物水溶液を循環させた後、洗浄対象部位からアンモニア系化合物水溶液をブローすると、該表面がアンモニア含有水膜で覆われる。これにより、運転開始までの期間、発錆を抑制できるようになる。アンモニア含有水膜の主成分はアンモニア水であり、ボイラプラントの運転時に使用する給水処理薬品と同じである。このことから、運転開始時にアンモニア含有水膜を除去する必要がないため、ボイラプラントを保管した後に、そのまま運転を開始できる。それにより作業時間が短縮され、コストも低減できる。さらに、ヒドラジンを使用せずに発錆を抑制できるため、環境性に優れている。 After the ammonia-based compound aqueous solution having a pH of 9.8 or higher is circulated on the surface of the base material of the cleaning target site after the scale is removed, the ammonia-based compound aqueous solution is blown from the cleaning target site, and the surface contains ammonia-containing water. Covered with a membrane. As a result, it becomes possible to suppress rusting until the start of operation. The main component of the ammonia-containing water film is ammonia water, which is the same as the feed water treatment chemical used when operating the boiler plant. From this, it is not necessary to remove the ammonia-containing water film at the start of the operation, and therefore the operation can be started as it is after the boiler plant is stored. As a result, working time can be shortened and cost can be reduced. Furthermore, since rusting can be suppressed without using hydrazine, it is excellent in environmental friendliness.
 上記第1の態様では、前記中性洗浄する工程において、前記洗浄対象部位内に前記中性の洗浄液を循環させ、循環させた前記中性の洗浄液中の鉄イオンを分析し、前記中性の洗浄液中の鉄イオン濃度変化が飽和傾向を示したことを確認した後、前記中性洗浄を終了することが望ましい。 In the first aspect, in the step of neutral cleaning, the neutral cleaning solution is circulated in the cleaning target site, iron ions in the circulated neutral cleaning solution are analyzed, and the neutral cleaning solution is analyzed. It is desirable to finish the neutral cleaning after confirming that the change in iron ion concentration in the cleaning liquid shows a saturation tendency.
 洗浄液中の鉄イオン濃度変化が飽和傾向となるということは洗浄の対象であるスケールが除去され、スケール溶解量が低下していることを意味する。これを確認して洗浄終了を判断することで、なるべく短い時間で最大の洗浄効果を得ることができる。 The fact that the iron ion concentration change in the cleaning liquid tends to be saturated means that the scale to be cleaned has been removed and the scale dissolution amount has decreased. By confirming this and determining the end of cleaning, the maximum cleaning effect can be obtained in the shortest possible time.
 上記第1の態様では、前記アンモニア系化合物水溶液を循環させる工程の前に、酸性の洗浄液により常温で酸洗浄する工程を設けることが望ましい。 In the first aspect, it is desirable to provide a step of performing acid cleaning at room temperature with an acidic cleaning liquid before the step of circulating the aqueous ammonia compound solution.
 プラントの運用によっては、スケール成分にカルシウム(Ca)、アルミニウム(Al)、銅(Cu)などが含まれる。Ca、AlおよびCuは、中性付近での溶解度が低いため、中性除錆剤を用いた低温洗浄では、これらスケール成分を溶解・除去しきれないことがある。除去できなかったスケールは、スラッジとして系統内に残留することがある。残留したスラッジは、洗浄後に洗浄液のブローあるいは水洗を行うことによって、幾分かは系外に排出できるが、全量排出は難しく、系統内に残留する可能性がある。特に、ガス竪流れ型の排熱回収ボイラは、伝熱管が水平に配置され、長さも20m級と大きく、洗浄時および排出(ブロー)時の水流の流速ではスラッジを排出することが難しいため、特に注意が必要となる。残留したスラッジは、伝熱管の伝熱性能低下やスラッジ含有成分による腐食発生の要因になる。 Depending on the operation of the plant, scale components include calcium (Ca), aluminum (Al), copper (Cu), etc. Since Ca, Al, and Cu have low solubilities in the vicinity of neutrality, these scale components may not be completely dissolved/removed by low-temperature cleaning using a neutral rust remover. The scale that cannot be removed may remain as sludge in the system. The residual sludge can be discharged to the outside of the system to some extent by blowing the cleaning liquid or washing with water after cleaning, but it is difficult to discharge the whole sludge and may remain in the system. In particular, in a gas vertical flow type exhaust heat recovery boiler, the heat transfer tubes are arranged horizontally and the length is large at 20 m class, and it is difficult to discharge sludge at the flow velocity of the water flow at the time of cleaning and discharging (blowing). Particular attention is required. The remaining sludge becomes a factor of lowering the heat transfer performance of the heat transfer tube and causing corrosion due to sludge-containing components.
 酸洗浄では、中性の洗浄液に溶解しにくいこれらのスケール成分(Ca,Al,Cu等)を除去でき、洗浄対象部位へのスラッジの残留量を低減できる。 In acid cleaning, these scale components (Ca, Al, Cu, etc.) that are difficult to dissolve in a neutral cleaning solution can be removed, and the amount of sludge remaining on the cleaning target site can be reduced.
 上記第1の態様では、前記酸洗浄する工程において、前記洗浄対象部位内に前記酸性の洗浄液を循環させ、循環させた前記酸性の洗浄液中の鉄イオンを分析し、前記酸性の洗浄液中の鉄イオン濃度変化が飽和傾向を示したことを確認した後、前記酸洗浄を終了することが望ましい。 In the first aspect, in the step of performing the acid cleaning, the acidic cleaning solution is circulated in the cleaning target site, iron ions in the circulated acidic cleaning solution are analyzed, and iron in the acidic cleaning solution is analyzed. It is desirable to finish the acid cleaning after confirming that the change in ion concentration shows a saturation tendency.
 上記第1の態様では、前記酸洗浄の後、前記アンモニア系化合物水溶液を用いて前記酸性の洗浄液を押出ブローする工程をさらに備え、前記押出ブローする工程において、前記押出ブローで前記酸性の洗浄液の略全量をブローし、前記洗浄対象部位内の前記アンモニア系化合物水溶液を循環した後に前記アンモニア系化合物水溶液のpHについて分析し、分析した前記pHが基準値以上となるまで、前記押出ブローおよび前記アンモニア系化合物水溶液の循環を継続することが望ましい。 In the first aspect, further comprising a step of extruding and blowing the acidic cleaning liquid using the aqueous ammonia compound solution after the acid cleaning, and in the step of extruding and blowing, the acidic cleaning liquid of the extruding blow is After blowing almost the entire amount and circulating the aqueous ammonia compound solution in the cleaning target site, the pH of the aqueous ammonia compound compound is analyzed, and the extrusion blow and the ammonia are analyzed until the analyzed pH becomes a reference value or more. It is desirable to continue the circulation of the aqueous system compound solution.
 押出ブローでは酸性の洗浄液をアンモニア系化合物水溶液で押出して置換する。ブロー液のpHに基づいて押出ブローの継続時間を判断することで、余分な時間を費やさずに済む。  In extrusion blow, the acidic cleaning liquid is extruded and replaced with an aqueous ammonia compound solution. By judging the duration of the extrusion blow based on the pH of the blow liquid, it is possible to avoid spending extra time.
 上記第1の態様において、前記中性洗浄の後、前記アンモニア系化合物水溶液を用いて前記中性の洗浄液を押出ブローする工程をさらに備え、前記押出ブローする工程において、押出ブローで前記中性の洗浄液の略全量をブローし、洗浄対象部位内のアンモニア系化合物水溶液を循環した後にアンモニア系化合物水溶液中の前記除錆剤に由来する成分について分析し、分析した前記除錆剤に由来する成分の濃度が基準値以下となるまで、前記押出ブローおよび前記アンモニア系化合物水溶液の循環を継続することが望ましい。 In the first aspect, after the neutral cleaning, the method further comprises a step of extruding and blowing the neutral cleaning liquid using the aqueous solution of the ammonia-based compound, and in the step of extruding and blowing, the Blowing almost the entire amount of the cleaning liquid, after circulating the ammonia-based compound aqueous solution in the cleaning target site was analyzed for components derived from the rust remover in the ammonia-based compound aqueous solution, of the components derived from the analyzed rust remover It is desirable to continue the extrusion blow and the circulation of the aqueous solution of ammonia compound until the concentration becomes equal to or lower than the reference value.
 押出ブローでは中性の洗浄液をアンモニア系化合物水溶液で押出して置換する。ブロー液中の除錆剤に由来する成分の濃度が低下したことで押出ブローの継続時間を判断することで、余分な時間を費やさずに済む。 In extrusion blow, the neutral cleaning solution is extruded and replaced with an aqueous ammonia compound solution. By determining the duration of extrusion blow due to the decrease in the concentration of the components derived from the rust remover in the blow liquid, it is possible to avoid spending extra time.
 上記第1の態様において、前記アンモニア系化合物水溶液をブローする工程の後、洗浄対象部位内に気化性のアンモニア化合物の固体を投入することができる。 In the first aspect, after the step of blowing the aqueous ammonia compound solution, a solid vaporizable ammonia compound can be introduced into the site to be cleaned.
 投入された気化性のアンモニア化合物の固体は、洗浄対象部位内で気化し、速やかに拡散されアンモニア含有水膜に取り込まれる。アンモニア含有水膜形成後に洗浄対象部位を長期間保存した場合、アンモニア含有水膜からアンモニア成分が抜けるが、気化性のアンモニア化合物の固体の投入により、水膜の防錆効果を維持できる。 The solid of the vaporizable ammonia compound that has been input is vaporized in the cleaning target site, is quickly diffused, and is taken into the ammonia-containing water film. When the portion to be cleaned is stored for a long period of time after the formation of the ammonia-containing water film, the ammonia component escapes from the ammonia-containing water film, but the rust preventive effect of the water film can be maintained by introducing the vaporizable ammonia compound solid.
 上記第1の態様において、前記酸性の洗浄液および前記中性の洗浄液の少なくも一方を循環の途中でろ過してもよい。 In the first aspect, at least one of the acidic cleaning liquid and the neutral cleaning liquid may be filtered during circulation.
 循環させている洗浄液をろ過することで、スラッジを除去できる。これにより洗浄時に発生したスラッジの残留量を低減できるため、スラッジ残留による伝熱管の伝熱性能低下およびスラッジ含有成分による腐食発生のリスクを低減できる。 Sludge can be removed by filtering the circulating cleaning solution. As a result, the amount of sludge remaining generated during cleaning can be reduced, and therefore the heat transfer performance of the heat transfer tube due to sludge residue and the risk of corrosion due to sludge-containing components can be reduced.
 上記第1の態様において、前記洗浄対象部位を排熱回収ボイラの蒸発器としてもよい。洗浄対象部位を蒸発器に限定することで、洗浄液の使用量を抑え、排水量も少なくできる。 In the first aspect, the cleaning target portion may be an evaporator of the exhaust heat recovery boiler. By limiting the part to be cleaned to the evaporator, the amount of cleaning liquid used can be suppressed and the amount of drainage can be reduced.
 本開示の第2の態様は、スケールが付着した洗浄対象部位内に流体を循環するよう構成された循環部と、前記循環部に除錆剤を含む中性の洗浄液を供給する中性洗浄液供給部と、前記循環部にアンモニア系化合物を含むpH9.8以上のアンモニア系化合物水溶液を供給するアンモニア系化合物水溶液供給部と、前記循環部から前記アンモニア系化合物水溶液を排出するブロー流路と、を備えたボイラプラントの洗浄保管装置を提供する。 According to a second aspect of the present disclosure, a circulation part configured to circulate a fluid in a portion to be cleaned to which scale is attached, and a neutral cleaning liquid supply for supplying a neutral cleaning liquid containing a rust remover to the circulation part. Section, an ammonia-based compound aqueous solution supply section for supplying an ammonia-based compound aqueous solution containing an ammonia-based compound having a pH of 9.8 or more to the circulation section, and a blow channel for discharging the ammonia-based compound aqueous solution from the circulation section. Provided is a cleaning and storage device for a boiler plant equipped with the same.
 上記第2の態様では、前記循環部が、両端が前記洗浄対象部位の出入口に接続された循環流路と、前記循環流路の途中に設けられたポンプと、前記ポンプよりも下流側の前記循環流路の途中に設けられたろ過装置と、を備えていてもよい。 In the second aspect, the circulation unit has a circulation flow path whose both ends are connected to an inlet/outlet of the cleaning target site, a pump provided in the middle of the circulation flow path, and the downstream side of the pump. And a filtering device provided in the middle of the circulation flow path.
 上記第2の態様では、一端が前記循環部、前記洗浄対象部位の入口および出口の少なくともいずれかに接続され、他端が前記酸性洗浄液供給部、前記中性洗浄液供給部および前記アンモニア系化合物水溶液供給部の少なくともいずれかに接続されたブロー流路をさらに備えていてもよい。 In the second aspect, one end is connected to at least one of the circulation part, the inlet and the outlet of the cleaning target site, and the other end is the acidic cleaning liquid supply part, the neutral cleaning liquid supply part, and the ammonia-based compound aqueous solution. You may further provide the blow flow path connected to at least one of the supply parts.
 上記第2の態様によれば、ブロー液を酸性洗浄液供給部、中性洗浄液供給部およびアンモニア系化合物水溶液供給部の少なくともいずれかに戻すことができるため、排水タンクの設置を省略できる。 According to the second aspect, since the blow liquid can be returned to at least one of the acidic cleaning liquid supply unit, the neutral cleaning liquid supply unit, and the ammonia-based compound aqueous solution supply unit, the installation of the drain tank can be omitted.
 本開示によれば、化学洗浄から通常運転を開始するまでの期間に、低コスト且つ短時間でボイラの洗浄対象部位の防錆処理を行い、ボイラを保管できるボイラプラントの洗浄保管方法および洗浄保管装置となる。 According to the present disclosure, in a period from chemical cleaning to the start of normal operation, rust prevention treatment is performed on a cleaning target portion of a boiler at low cost and in a short time, and a boiler plant cleaning storage method and cleaning storage that can store a boiler It becomes a device.
第1実施形態に係る洗浄保管方法の工程図である。It is process drawing of the cleaning storage method which concerns on 1st Embodiment. 中性洗浄でのスラッジ量を例示するグラフである。It is a graph which illustrates the amount of sludge in neutral washing. 第1実施形態における洗浄時間と中性洗浄液中のFeイオン濃度の推移の模式図である。FIG. 3 is a schematic diagram showing changes in the cleaning time and the Fe ion concentration in the neutral cleaning liquid in the first embodiment. アンモニア含有水膜の模式図である。It is a schematic diagram of an ammonia-containing water film. 特定部位洗浄時の模式図である。It is a schematic diagram at the time of specific part washing. 第2実施形態に係る洗浄保管方法の工程図である。It is process drawing of the cleaning storage method which concerns on 2nd Embodiment. 第2実施形態における酸洗浄および中性洗浄でのスラッジ量を例示するグラフである。It is a graph which illustrates the sludge amount in acid cleaning and neutral cleaning in 2nd Embodiment. 第2実施形態における洗浄時間と洗浄液中のFeイオン濃度の推移の模式図である。FIG. 7 is a schematic diagram of changes in the cleaning time and the Fe ion concentration in the cleaning liquid in the second embodiment. 第3実施形態に係る洗浄保管方法の工程図である。It is process drawing of the cleaning storage method which concerns on 3rd Embodiment. 洗浄保管装置の一例を示す模式図である。It is a schematic diagram which shows an example of a washing storage apparatus. 洗浄保管装置の一例を示す模式図である。It is a schematic diagram which shows an example of a washing storage apparatus. 複数部位洗浄時の模式図である。It is a schematic diagram at the time of washing multiple parts. 従来の化学洗浄方法の工程図である。It is process drawing of the conventional chemical cleaning method.
 以下に、本開示に係るボイラプラントの洗浄保管方法および洗浄保管装置の一実施形態について、図面を参照して説明する。 Hereinafter, an embodiment of a cleaning and storing method and a cleaning and storing apparatus for a boiler plant according to the present disclosure will be described with reference to the drawings.
 以下の実施形態では、排熱回収ボイラの洗浄保管方法を例示する。以下の実施形態に係る洗浄保管方法の各工程では、常温の洗浄液を用いて、加温せず洗浄対象機器(洗浄対象部位)内を洗浄する。「常温」とは、室温程度を意味し、外部から予熱や加熱を行わない温度である。「常温」は、具体的に5から50℃、より好ましくは15℃から30℃である。 The following embodiments exemplify a method for cleaning and storing an exhaust heat recovery boiler. In each step of the cleaning and storing method according to the following embodiment, the inside of the cleaning target device (cleaning target portion) is cleaned using a cleaning liquid at room temperature without heating. "Normal temperature" means about room temperature, and is a temperature at which preheating or heating is not performed from the outside. The “normal temperature” is specifically 5 to 50° C., more preferably 15° C. to 30° C.
〔第1実施形態〕
 図1に、本実施形態に係るボイラプラントの洗浄保管方法の工程図を示す。本実施形態に係る洗浄保管方法は、ステップ1(S1)からステップ6(S6)を順に含む。
[First Embodiment]
FIG. 1 shows a process diagram of a method for cleaning and storing a boiler plant according to this embodiment. The cleaning storage method according to the present embodiment includes step 1 (S1) to step 6 (S6) in order.
(S1)仮設系統(洗浄保管装置)接続
 まず、洗浄対象機器内に洗浄液を供給するための仮設系統を接続する。以降、洗浄液等は仮設系統を介して洗浄対象機器内に注入される。
(S1) Connection of Temporary System (Cleaning/Storage Device) First, a temporary system for supplying the cleaning liquid into the device to be cleaned is connected. After that, the cleaning liquid or the like is injected into the device to be cleaned via the temporary system.
(S2)中性洗浄
 仮設系統から除錆剤を含む中性の洗浄液を注入して洗浄対象機器内を中性の洗浄液で満たした後、該中性の洗浄液を常温で系統内に循環させる。循環させている間、洗浄液を加温することはない。
(S2) Neutral Cleaning After a neutral cleaning solution containing a rust remover is injected from the temporary system to fill the inside of the equipment to be cleaned with the neutral cleaning solution, the neutral cleaning solution is circulated in the system at room temperature. The wash solution is not warmed during circulation.
 除錆剤を含む中性の洗浄液のpHは、4から8である。除錆剤は、キレート剤、還元剤、またはキレート剤と還元剤との混合剤であり、洗浄対象機器内部に付着した除去対象物(例えば、金属酸化物や金属塩などを含むスケール、さびこぶなど)を除去可能な薬剤である。「さびこぶ」とは、鉄鋼の表面に生じるこぶ状の腐食生成物(JIS Z 0103 1050参照)である。中性の洗浄液は、所望の洗浄能力および洗浄時間が得られように、キレート剤、還元剤および腐食抑制剤の濃度が適切に調整されている。 The pH of the neutral cleaning solution containing the rust remover is 4 to 8. The rust remover is a chelating agent, a reducing agent, or a mixture of a chelating agent and a reducing agent, and is an object to be removed that has adhered to the inside of the equipment to be cleaned (for example, a scale containing metal oxides or metal salts, rust hump). Etc.) can be removed. “Rusty humps” are hump-like corrosion products (see JIS Z 0103 1050) that occur on the surface of steel. The neutral cleaning liquid is appropriately adjusted in concentration of the chelating agent, the reducing agent and the corrosion inhibitor so as to obtain a desired cleaning capacity and cleaning time.
 キレート剤は、例えばEDTA、BAPTA、DOTA、EDDS、INN、NTA、DTPA、HEDTA、TTHA、PDTA、DPTA-OH、HIDA、DHEG、GEDTA、CMGA、EDDSなどのアミノカルボン酸およびこれらの塩などのアミノカルボン酸系キレート剤、クエン酸、グルコン酸、ヒドロキシ酢酸などのオキシカルボン酸およびこれらの塩などのオキシカルボン酸系キレート剤、ATMP、HEDP、NTMP、PBTC、EDTMP等の有機リン酸およびこれらの塩などの有機リン系キレート剤である。還元剤は、例えば、Fe2+、Sn2+などの各種金属イオン、亜硫酸ナトリウムなどの亜硝酸塩、シュウ酸、蟻酸、アスコルビン酸、ピロガロールなどの有機化合物、ヒドラジン、水素などである。中性の洗浄液には腐食抑制剤が添加されていても良い。 Examples of the chelating agent include aminocarboxylic acids such as EDTA, BAPTA, DOTA, EDDS, INN, NTA, DTPA, HEDTA, TTHA, PDTA, DPTA-OH, HIDA, DHEG, GEDTA, CMGA, EDDS, and salts thereof. Carboxylic acid type chelating agents, oxycarboxylic acids such as citric acid, gluconic acid, hydroxyacetic acid and salts thereof, oxycarboxylic acid type chelating agents such as ATMP, HEDP, NTMP, PBTC and EDTMP, and salts thereof. It is an organic phosphorus chelating agent such as. Examples of the reducing agent include various metal ions such as Fe 2+ and Sn 2+ , nitrites such as sodium sulfite, organic compounds such as oxalic acid, formic acid, ascorbic acid and pyrogallol, hydrazine and hydrogen. A corrosion inhibitor may be added to the neutral cleaning liquid.
(S3)押出ブロー
 循環させた中性の洗浄液の液中Feイオンを分析し、液中Feイオン濃度の変化が飽和傾向になることが確認された後、洗浄対象機器内に常温のアンモニア系化合物水溶液を注入しながら中性の洗浄液を押出ブローする。飽和傾向とは、前回の液中Feイオン鉄濃度測定値と比較して、液中Feイオン濃度の変化幅が100mg/L以下となることを意味する。押出ブローに使用するアンモニア化合物水溶液の液量は、例えば洗浄対象機器の容量の1倍から1.5倍程度である。
(S3) Extrusion Blow After analyzing the Fe ions in the liquid of the neutral cleaning liquid that has been circulated and confirming that the change in the Fe ion concentration in the liquid tends to saturate, the ammonia-based compound at room temperature is placed in the device to be cleaned. The neutral cleaning solution is extrusion blown while pouring the aqueous solution. The saturation tendency means that the change width of the Fe ion concentration in the liquid is 100 mg/L or less as compared with the previously measured Fe ion iron concentration in the liquid. The amount of the aqueous ammonia compound solution used for extrusion blow is, for example, about 1 to 1.5 times the capacity of the device to be cleaned.
 アンモニア系化合物水溶液は、pHが9.8から11、好ましくはpH9.8から10.5となるような濃度でアンモニア系化合物を含む。アンモニア系化合物は、例えば、2-アミノ-2-メチル-1-プロパノール、モノエタノールアミン、モノイソプロパノールアミン、シクロヘキシルアミン、ジエチルエタノールアミン、モルホリン、3-メトキシプロピルアミン、及びアンモニアから選ばれる揮発性アミン化合物である。 The aqueous ammonia-based compound solution contains the ammonia-based compound at a concentration such that the pH is 9.8 to 11, preferably pH 9.8 to 10.5. The ammonia-based compound is, for example, a volatile amine selected from 2-amino-2-methyl-1-propanol, monoethanolamine, monoisopropanolamine, cyclohexylamine, diethylethanolamine, morpholine, 3-methoxypropylamine, and ammonia. It is a compound.
(S4)アンモニア系化合物水溶液循環
 上記(S3)において、アンモニア化合物水溶液で中性の洗浄液の略全量を押出ブローした後、押出ブローを一旦停止し、洗浄対象機器内のアンモニア系化合物水溶液を循環させる。アンモニア系化合物水溶液循環の間、アンモニア系化合物水溶液を加温することはない。
(S4) Circulation of Ammonia-Based Compound Aqueous Solution In (S3) above, after substantially all of the neutral cleaning liquid is extruded and blown with the ammonia-compound aqueous solution, the extrusion-blowing is temporarily stopped and the ammonia-based compound aqueous solution in the device to be cleaned is circulated. .. During the circulation of the aqueous ammonia compound solution, the aqueous ammonia compound solution is not heated.
 アンモニア系化合物水溶液を循環したのちに、該アンモニア系化合物水溶液を分析し、液中の除錆剤に由来する成分を確認する。 After circulating the ammonia-based compound aqueous solution, analyze the ammonia-based compound aqueous solution to confirm the components in the solution that are derived from the rust remover.
 例えば、中性の洗浄液がキレート剤として有機リン酸を含む場合、アンモニア系化合物水溶液中のリン(P)を分析する。P分析は、JIS K 0102 工業排水試験法 46.3 全りんに記載のモリブデン青吸光光度法、イオンクロマトグラフィー、ICP質量分析法または原子吸光法などで実施できる。 For example, if the neutral cleaning solution contains organic phosphoric acid as a chelating agent, analyze phosphorus (P) in the aqueous ammonia compound solution. P analysis can be carried out by the molybdenum blue absorptiometry described in JIS K 0102 Industrial Wastewater Testing Method 46.3 Total Phosphorus, ion chromatography, ICP mass spectrometry or atomic absorption.
 液中の除錆剤由来成分が基準値以下となるまで、上記(S3)、(S4)を繰り返す。基準値は予備試験等で事前に設定する。液中の除錆剤由来成分が基準値以下となったことを確認する。 Repeat steps (S3) and (S4) until the rust remover-derived component in the liquid falls below the standard value. The reference value is set in advance by a preliminary test. Confirm that the components derived from the rust remover in the liquid are below the standard values.
(S5)アンモニア系化合物水溶液ブロー
 上記(S4)の後、洗浄対象機器内からアンモニア系化合物水溶液をブローし、洗浄対象機器内面にアンモニア含有水膜を形成する。このアンモニア含有水膜部分は防錆効果がある。
(S5) Blow Ammonia-Based Compound Aqueous Solution After the above (S4), the ammonia-based compound aqueous solution is blown from inside the cleaning target device to form an ammonia-containing water film on the inner surface of the cleaning target device. This ammonia-containing water film portion has a rust preventive effect.
(S6)仮設系統解体
 上記(S5)の後、仮設系統を解体する。
(S6) Dismantling the temporary system After the above (S5), the temporary system is dismantled.
 上記ステップ2からステップ5の洗浄は、1回のみ実施しても良いし、複数回実施しても良い。 -The above steps 2 to 5 may be performed only once, or may be performed multiple times.
 洗浄対象機器が常設の洗浄保管装置を備えている場合、上記(S1)および(S6)は省略される。 If the equipment to be cleaned has a permanent cleaning and storage device, (S1) and (S6) above are omitted.
 図2に、(S2)中性洗浄前後のスラッジ量(規格値)を例示する。同図において、縦軸は洗浄対象機器内に残留したスラッジ量である。(S2)中性洗浄のみで9割程度のスラッジを除去できる。 Fig. 2 exemplifies (S2) the amount of sludge (standard value) before and after neutral cleaning. In the figure, the vertical axis represents the amount of sludge remaining in the equipment to be cleaned. (S2) About 90% of sludge can be removed only by neutral cleaning.
 (S2)中性洗浄では、Feスケールが溶解除去される。図3に、洗浄時間と洗浄液中のFeイオン濃度の推移の模式図を示す。同図において、横軸は洗浄時間、縦軸はFeイオン濃度、破線は中性洗浄時の推移である。中性洗浄では、ある程度洗浄が進むと洗浄の対象であるスケールが除去され、Feスケール溶解量が低下し、洗浄液中のFeイオン濃度変化が飽和傾向となる。上記洗浄保管方法では、Feイオン濃度変化の飽和傾向を確認して各洗浄工程を終了することで、必要以上の洗浄継続を避け、必要最低時間で中性洗浄を実施できる。これにより、各洗浄時間の延長を抑制できる。 (S2) Fe scale is dissolved and removed by neutral cleaning. FIG. 3 shows a schematic diagram of changes in the cleaning time and the Fe ion concentration in the cleaning liquid. In the figure, the horizontal axis represents the cleaning time, the vertical axis represents the Fe ion concentration, and the broken line represents the transition during neutral cleaning. In the neutral cleaning, when the cleaning progresses to some extent, the scale to be cleaned is removed, the Fe scale dissolution amount decreases, and the Fe ion concentration change in the cleaning liquid tends to be saturated. In the above cleaning and storing method, by confirming the saturation tendency of the change in Fe ion concentration and ending each cleaning step, it is possible to avoid continuation of cleaning more than necessary and carry out neutral cleaning in the necessary minimum time. Thereby, extension of each cleaning time can be suppressed.
 上記洗浄保管方法によれば、中性の洗浄液を洗い流した後、アンモニア系化合物水溶液を系内に循環させることで、洗浄対象機器の母材10の表面に高pH(9.8以上)のアンモニア含有水膜11が形成される(図4参照)。高pHの水膜部分は防錆効果があり、当該効果はアンモニア系化合物水溶液をブローした後、洗浄設備仮設配管の復旧工事が完了するまで持続される。アンモニア含有水膜11のpHが9.8以上であるので、ヒドラジンがなくても防錆効果を奏するため、ヒドラジンが不要となり環境性にも優れている。 According to the above-described cleaning storage method, after the neutral cleaning liquid is washed away, the ammonia-based compound aqueous solution is circulated in the system, so that the ammonia having a high pH (9.8 or more) is applied to the surface of the base material 10 of the cleaning target device. The contained water film 11 is formed (see FIG. 4). The high pH water film portion has a rust preventive effect, and the effect is maintained after the restoration of the cleaning equipment temporary pipe is completed after the aqueous solution of the ammonia compound is blown. Since the pH of the ammonia-containing water film 11 is 9.8 or higher, the rust-preventing effect is obtained even without hydrazine, so that hydrazine is not required and the environment is excellent.
 洗浄設備仮設配管の取合箇所復旧工程が長引き、開放時間が長くなる場合は、アンモニア含有水膜11からアンモニア成分が抜ける。そのため、(S6)仮設系統の解体中に、常温常圧で気化性のアンモニア化合物の固形物を追加で洗浄対象機器内に投入し、アンモニアガスを補充してもよい。投入されたアンモニア化合物は、速やかに気化し、アンモニア系ガスを発生させる。アンモニア系ガスは系統内に拡散し、アンモニア含有水膜に溶解される。それにより、アンモニア含有水膜11のpHを高く維持できるため、pH低下によるアンモニア含有水膜11の防錆効果の低下を低減できる。 ㆍAmmonia component escapes from the ammonia-containing water film 11 when the restoration process of the temporary connection of the cleaning equipment is prolonged and the opening time becomes long. Therefore, (S6) during the dismantling of the temporary system, a solid substance of an ammonia compound that is vaporizable at room temperature and pressure may be additionally charged into the equipment to be cleaned to supplement the ammonia gas. The introduced ammonia compound is quickly vaporized to generate an ammonia-based gas. Ammonia-based gas diffuses in the system and is dissolved in the ammonia-containing water film. As a result, the pH of the ammonia-containing water film 11 can be maintained at a high level, so that the deterioration of the rust preventive effect of the ammonia-containing water film 11 due to the pH decrease can be reduced.
 運転開始時に残留しているアンモニア系化合物水溶液の水膜またはアンモニア化合物の固形物は、運転用水に容易に溶解する。排熱回収ボイラでは、運転時の給水のpH調整にアンモニアを使用する。上記実施形態において水膜を形成するために用いるアンモニア系化合物水溶液は、主成分がアンモニアであるため、排熱回収ボイラの運転開始時に除去する必要がない。そのため、排熱回収ボイラを保管した後、そのまま運転を開始できるため、作業時間が短縮され、プラントの稼働率向上の他、薬品コスト、排水処理コスト低減も可能となる。 The water film of the aqueous ammonia compound solution or the solids of the ammonia compound remaining at the start of operation is easily dissolved in the operating water. In the exhaust heat recovery boiler, ammonia is used to adjust the pH of the feed water during operation. The ammonia-based compound aqueous solution used for forming the water film in the above embodiment does not need to be removed at the start of operation of the exhaust heat recovery boiler because the main component is ammonia. Therefore, after the exhaust heat recovery boiler is stored, the operation can be started as it is, so that the working time can be shortened, the plant operation rate can be improved, and the chemical cost and the wastewater treatment cost can be reduced.
 中性の洗浄液を循環の途中でろ過してもよい。それにより、洗浄時のスラッジ残留量を低減できるため、スラッジ残留による伝熱管の伝熱性能低下やスラッジ含有成分による腐食発生のリスクを低減できる。 ⿟ Neutral cleaning solution may be filtered during circulation. As a result, the amount of sludge remaining at the time of cleaning can be reduced, and thus the risk of deterioration of heat transfer performance of the heat transfer tube due to sludge remaining and the risk of corrosion generation due to sludge-containing components can be reduced.
 上記実施形態に係る洗浄保管方法は、排熱回収ボイラのボイラ水系統の洗浄に好適である。特に、図5に示すように、洗浄の必要性がある洗浄対象機器をスケールが付着しやすい特定の部位(例えば、温度、圧力条件からスケールが付着しやすい蒸発器の伝熱管)に特定した洗浄が、洗浄液の使用量および洗浄に係る作業時間を削減でき、より好適である。 The cleaning storage method according to the above embodiment is suitable for cleaning the boiler water system of the exhaust heat recovery boiler. In particular, as shown in FIG. 5, the cleaning target equipment requiring cleaning is specified in a specific portion where scale easily adheres (for example, a heat transfer tube of an evaporator where scale easily adheres due to temperature and pressure conditions). However, the amount of cleaning liquid used and the working time for cleaning can be reduced, which is more preferable.
〔第2実施形態〕
 図6に、本実施形態に係るボイラプラントの洗浄保管方法の工程図を示す。本実施形態は、中性洗浄の前に酸洗浄の工程を実施するところが第1実施形態と異なる。本実施形態に係る洗浄保管方法は、ステップ11(S11)からステップ19(S19)を順に含む。
[Second Embodiment]
FIG. 6 shows a process diagram of the boiler plant cleaning and storing method according to the present embodiment. This embodiment differs from the first embodiment in that an acid cleaning step is performed before neutral cleaning. The cleaning storage method according to the present embodiment includes step 11 (S11) to step 19 (S19) in order.
(S11)仮設系統(洗浄保管装置)接続
 第1実施形態の(S1)と同様に、まず、洗浄対象機器内に洗浄液を供給するための仮設系統を接続する。以降、洗浄液等は仮設系統を介して洗浄対象機器内に注入される。
(S11) Connection of Temporary System (Cleaning/Storage Device) Similar to (S1) of the first embodiment, first, a temporary system for supplying the cleaning liquid into the device to be cleaned is connected. After that, the cleaning liquid or the like is injected into the device to be cleaned via the temporary system.
(S12)酸洗浄
 仮設系統から酸性の洗浄液を注入して洗浄対象機器内を酸性の洗浄液で満たした後、該酸性の洗浄液を常温で洗浄対象機器内に循環させる。循環させている間、洗浄液を加温することはない。酸性の洗浄液は、Ca,AlおよびCu等を溶解可能な無機酸溶液または有機酸溶液であればよい。酸性の洗浄液のpHは4以下が好ましく、3以下がさらに好ましい。例えば、酸性の洗浄液として1質量%から10質量%塩酸水溶液を用いることができる。
(S12) Acid Cleaning After the acidic cleaning liquid is injected from the temporary system to fill the inside of the cleaning target device with the acidic cleaning liquid, the acidic cleaning liquid is circulated in the cleaning target device at room temperature. The wash solution is not warmed during circulation. The acidic cleaning liquid may be an inorganic acid solution or an organic acid solution capable of dissolving Ca, Al, Cu and the like. The pH of the acidic cleaning liquid is preferably 4 or less, more preferably 3 or less. For example, a 1% by mass to 10% by mass aqueous hydrochloric acid solution can be used as the acidic cleaning liquid.
(S13)酸性洗浄液ブロー
 循環させた酸性の洗浄液の液中鉄(Fe)イオンを分析し、Feイオン濃度変化の飽和傾向が確認された後、洗浄液をブローして酸洗浄を終了する。飽和傾向とは、前回の液中Feイオン鉄濃度測定値と比較して、液中Feイオン濃度の変化幅が100mg/L以下となることを意味する。
(S13) Blow of acidic cleaning solution Iron (Fe) ions in the circulated acidic cleaning solution are analyzed, and after a saturation tendency of changes in Fe ion concentration is confirmed, the cleaning solution is blown to complete the acid cleaning. The saturation tendency means that the change width of the Fe ion concentration in the liquid is 100 mg/L or less as compared with the previously measured Fe ion iron concentration in the liquid.
 液中鉄イオンは、JIS K 0101 工業用水試験法 60 鉄(Fe)に記載のフェナントロリン吸光光度法、フレーム原子吸光法、電気加熱原子吸光法またはICP発光分光分析法、または、JIS B 8224のボイラの給水およびボイラ水―試験方法 26 鉄(Fe)に記載の1,10-フェナントロリン吸光光度法、2,4,6-トリ-ピリジル-1,3,5-トリアジン(TPTZ)吸光光度法、フレーム原子吸光法、電気加熱原子吸光法、ICP発光分光分析法またはICP質量分析法、スルホサリチル吸光光度法などで分析できる。JISは、日本工業規格の略称である。 Iron ions in the liquid are phenanthroline absorptiometry, flame atomic absorption, electric heating atomic absorption or ICP emission spectrophotometry described in JIS K 0101 Industrial water test method 60 iron (Fe), or boiler of JIS B 8224. Water supply and boiler water-Test method 26 1,10-phenanthroline absorptiometry described in Iron (Fe), 2,4,6-tri-pyridyl-1,3,5-triazine (TPTZ) absorptiometry, flame It can be analyzed by an atomic absorption method, an electric heating atomic absorption method, an ICP emission spectroscopic analysis method, an ICP mass spectrometric method, a sulfosalicyl absorptiometry method, or the like. JIS is an abbreviation for Japanese Industrial Standards.
(S14)水洗
 洗浄対象機器内を水で満たした後、該水を常温で循環させて洗浄対象機器内に残る酸性の洗浄液を水で置換する。当該工程は、省略されてもよい。
(S14) Washing with water After the inside of the device to be cleaned is filled with water, the water is circulated at room temperature to replace the acidic cleaning liquid remaining in the device to be cleaned with water. This step may be omitted.
(S15)中性洗浄
 上記(S14)の水をブローした後、除錆剤を含む中性の洗浄液で洗浄対象機器内を満たし、該中性の洗浄液を常温で系統内に循環させる。循環させている間、洗浄液を加温することはない。中性の洗浄液は、第1実施形態と同様のものを使用できる。
(S15) Neutral Cleaning After blowing the water of (S14) above, the inside of the equipment to be cleaned is filled with a neutral cleaning liquid containing a rust remover, and the neutral cleaning liquid is circulated in the system at room temperature. The wash solution is not warmed during circulation. As the neutral cleaning liquid, the same one as in the first embodiment can be used.
(S16)押出ブロー
 第1実施形態の(S3)と同様に、循環させた中性の洗浄液の液中Feイオンを分析し、液中Feイオン濃度の変化が飽和傾向になることが確認された後、洗浄対象機器内に常温のアンモニア系化合物水溶液を注入しながら中性の洗浄液を押出ブローする。アンモニア系化合物水溶液は、第1実施形態と同様のものを使用できる。
(S16) Extrusion Blow Similar to (S3) of the first embodiment, Fe ions in the circulating neutral cleaning liquid were analyzed, and it was confirmed that the change in Fe ion concentration in the liquid tended to be saturated. After that, the neutral cleaning liquid is extruded and blown while injecting the ammonia-based compound aqueous solution at room temperature into the device to be cleaned. The same aqueous ammonia solution as in the first embodiment can be used.
(S17)アンモニア系化合物水溶液循環
 第1実施形態の(S4)と同様に、上記(S16)において、中性の洗浄液の略全量をアンモニア化合物水溶液で押出ブローした後、押出ブローを一旦停止し、洗浄対象機器内のアンモニア系化合物水溶液を循環させる。アンモニア系化合物水溶液循環の間、アンモニア系化合物水溶液を加温することはない。
(S17) Circulation of Aqueous Solution of Ammonia Compound In the same manner as (S4) of the first embodiment, in (S16), after substantially all the amount of the neutral cleaning solution is extruded and blown with the aqueous solution of ammonia compound, the extruded blow is temporarily stopped, The ammonia compound aqueous solution in the equipment to be cleaned is circulated. During the circulation of the aqueous ammonia compound solution, the aqueous ammonia compound solution is not heated.
 アンモニア系化合物水溶液循環したのちに該アンモニア系化合物水溶液を分析し、液中の除錆剤に由来する成分を確認する。 After circulating the ammonia-based compound aqueous solution, analyze the ammonia-based compound aqueous solution to confirm the components in the solution derived from the rust remover.
 液中の除錆剤由来成分が基準値以下となるまで、上記(S16)、(S17)を繰り返す。基準値は予備試験等で事前に設定する。液中の除錆剤由来成分が基準値以下となったことを確認する。 Repeat the above steps (S16) and (S17) until the content of the rust remover-derived component in the solution is below the standard value. The reference value is set in advance by a preliminary test. Confirm that the components derived from the rust remover in the liquid are below the standard values.
(S18)アンモニア系化合物水溶液ブロー
 第1実施形態の(S5)と同様に、上記(S17)の後、洗浄対象機器内からアンモニア系化合物水溶液をブローし、洗浄対象機器内面にアンモニア含有水膜を形成する。このアンモニア含有水膜部分は防錆効果がある。
(S18) Blow Ammonia-Based Compound Aqueous Solution Similar to (S5) of the first embodiment, after (S17) described above, the ammonia-based compound aqueous solution is blown from the inside of the equipment to be cleaned to form an ammonia-containing water film on the inner surface of the equipment to be cleaned. Form. This ammonia-containing water film portion has a rust preventive effect.
(S19)仮設系統解体
 第1実施形態の(S6)と同様に、上記(S18)の後、仮設系統を解体する。
(S19) Temporary system dismantling Similar to (S6) of the first embodiment, after (S18), the temporary system is dismantled.
 上記洗浄保管方法のステップ12からステップ18の洗浄は、1回のみ実施しても良いし、複数回実施しても良い。 The cleaning from steps 12 to 18 of the above cleaning storage method may be carried out only once or plural times.
 洗浄対象機器が常設の保管装置を備えている場合、上記(S11)および(S19)は省略される。 If the device to be cleaned has a permanent storage device, steps (S11) and (S19) above are omitted.
 上記洗浄保管方法によれば、Ca,AlおよびCu等の中性の洗浄液に溶解しにくいスケールを(S12)酸洗浄で除去した後、洗浄対象機器内に残留するスラッジを(S15)中性洗浄で除去する。中性の洗浄液を使用することで、対象機器の母材腐食を極力抑えながら残りのスケールを溶解除去し、スラッジの残留量を低減できる。 According to the above cleaning and storing method, after the scale that is difficult to dissolve in the neutral cleaning liquid such as Ca, Al and Cu is removed by (S12) acid cleaning, the sludge remaining in the cleaning target device is (S15) neutral cleaning. To remove. By using a neutral cleaning solution, it is possible to dissolve and remove the remaining scale while suppressing the base material corrosion of the target equipment as much as possible, and reduce the amount of sludge residue.
 図7に(S12)酸洗浄および(S15)中性洗浄でのスラッジ残留量(規格値)を例示する。同図において、縦軸は洗浄対象機器内に残留したスラッジ量(酸洗浄前を100とする)である。図2に示すように、常温の酸洗浄では2割程度のスラッジが残留するが、中性洗浄することで残留した2割の内の7割程度のスラッジを除去できた。 Fig. 7 exemplifies the residual sludge amount (standard value) in (S12) acid cleaning and (S15) neutral cleaning. In the figure, the vertical axis represents the amount of sludge remaining in the cleaning target device (100 before acid cleaning). As shown in FIG. 2, about 20% of the sludge remains in the acid cleaning at room temperature, but about 70% of the remaining 20% of the sludge could be removed by the neutral cleaning.
 (S12)酸洗浄および(S15)中性洗浄では、ともにFeスケールも溶解除去される。図8に、洗浄時間と洗浄液中のFeイオン濃度の推移の模式図を示す。同図において、横軸は洗浄時間、縦軸はFeイオン濃度、実線は酸洗浄時の推移、破線は中性洗浄時の推移である。酸洗浄および中性洗浄では、ある程度洗浄が進むと洗浄の対象であるスケールが除去され、Feスケール溶解量が低下し、洗浄液中のFeイオン濃度変化が飽和傾向となる。本実施形態に係る洗浄保管方法では、Feイオン濃度変化の飽和傾向を確認して各洗浄工程を終了することで、必要以上の洗浄継続を避け、必要最低時間で酸洗浄および中性洗浄を実施できる。これにより、各洗浄時間の延長を抑制できる。 Fe scales are also dissolved and removed in both (S12) acid cleaning and (S15) neutral cleaning. FIG. 8 shows a schematic diagram of changes in the cleaning time and the Fe ion concentration in the cleaning liquid. In the figure, the horizontal axis represents the cleaning time, the vertical axis represents the Fe ion concentration, the solid line represents the transition during acid cleaning, and the broken line represents the transition during neutral cleaning. In the acid cleaning and the neutral cleaning, when the cleaning progresses to a certain extent, the scale to be cleaned is removed, the Fe scale dissolution amount decreases, and the Fe ion concentration change in the cleaning liquid tends to be saturated. In the cleaning storage method according to the present embodiment, by confirming the saturation tendency of the Fe ion concentration change and ending each cleaning step, it is possible to avoid excessive cleaning continuity and perform acid cleaning and neutral cleaning in the necessary minimum time. it can. Thereby, extension of each cleaning time can be suppressed.
 本実施形態に係る洗浄保管方法によれば、中性の洗浄液を洗い流した後、アンモニア系化合物水溶液を系内に循環させることで、洗浄対象機器の母材10の表面に高pH(9.8以上)のアンモニア含有水膜11が形成される。高pHの水膜部分は防錆効果があり、当該効果はアンモニア系化合物水溶液をブローした後、洗浄設備仮設配管の復旧工事が完了するまで持続される。アンモニア含有水膜11のpHが9.8以上であるので、ヒドラジンがなくても防錆効果を奏するため、ヒドラジンが不要となり環境性にも優れている。 According to the cleaning and storing method according to the present embodiment, after washing the neutral cleaning liquid, the aqueous ammonia compound solution is circulated in the system, so that the surface of the base material 10 of the cleaning target device has a high pH (9.8). The above-mentioned ammonia-containing water film 11 is formed. The high pH water film portion has a rust preventive effect, and the effect is maintained after the restoration of the cleaning equipment temporary pipe is completed after the aqueous solution of the ammonia compound is blown. Since the pH of the ammonia-containing water film 11 is 9.8 or higher, the rust-preventing effect is obtained even without hydrazine, so that hydrazine is not required and the environment is excellent.
 洗浄設備仮設配管の取合箇所復旧工程が長引き、開放時間が長くなる場合は、アンモニア含有水膜11からアンモニア成分が抜ける。そのため、(S19)仮設系統の解体中に、常温常圧で気化性のアンモニア化合物の固形物を追加で洗浄対象機器内に投入し、アンモニアガスを補充してもよい。投入されたアンモニア化合物は、速やかに気化し、アンモニア系ガスを発生させる。アンモニア系ガスは系統内に拡散し、アンモニア含有水膜に溶解される。それにより、アンモニア含有水膜11のpHを高く維持できるため、pH低下によるアンモニア含有水膜11の防錆効果の低下を低減できる。 ㆍAmmonia component escapes from the ammonia-containing water film 11 when the restoration process of the temporary connection of the cleaning equipment is prolonged and the opening time becomes long. Therefore, (S19) during the dismantling of the temporary system, a solid substance of a vaporizable ammonia compound at room temperature and normal pressure may be additionally charged into the device to be cleaned to supplement the ammonia gas. The introduced ammonia compound is quickly vaporized to generate an ammonia-based gas. Ammonia-based gas diffuses in the system and is dissolved in the ammonia-containing water film. As a result, the pH of the ammonia-containing water film 11 can be maintained at a high level, so that the deterioration of the rust preventive effect of the ammonia-containing water film 11 due to the pH decrease can be reduced.
 運転開始時に残留しているアンモニア系化合物水溶液の水膜またはアンモニア化合物の固形物は、運転用水に容易に溶解する。排熱回収ボイラでは、運転時の給水のpH調整にアンモニアを使用する。上記実施形態において水膜を形成するために用いるアンモニア系化合物水溶液は、主成分がアンモニアであるため、排熱回収ボイラの運転開始時に除去する必要なない。そのため、排熱回収ボイラを保管した後、そのまま運転を開始できるため、作業時間が短縮され、プラントの稼働率向上の他、薬品コスト、排水処理コスト低減も可能となる。 The water film of the aqueous ammonia compound solution or the solids of the ammonia compound remaining at the start of operation is easily dissolved in the operating water. In the exhaust heat recovery boiler, ammonia is used to adjust the pH of the feed water during operation. The ammonia-based compound aqueous solution used for forming the water film in the above embodiment does not need to be removed at the start of operation of the exhaust heat recovery boiler because the main component is ammonia. Therefore, after the exhaust heat recovery boiler is stored, the operation can be started as it is, so that the working time can be shortened, the plant operation rate can be improved, and the chemical cost and the wastewater treatment cost can be reduced.
 酸性の洗浄液および中性の洗浄液の少なくも一方を循環の途中でろ過してもよい。それにより、洗浄時のスラッジ残留量を低減できるため、スラッジ残留による伝熱管の伝熱性能低下およびスラッジ含有成分による腐食発生のリスクを低減できる。 At least one of the acidic cleaning solution and the neutral cleaning solution may be filtered during circulation. As a result, the amount of sludge remaining at the time of cleaning can be reduced, so that the heat transfer performance of the heat transfer tube is reduced due to the sludge remaining and the risk of corrosion generation due to the sludge-containing component can be reduced.
 上記実施形態に係る洗浄保管方法は、排熱回収ボイラのボイラ水系統の洗浄に好適である。特に、図5に示すように、洗浄の必要性がある洗浄対象機器をスケールが付着しやすい特定の部位(例えば、温度、圧力条件からスケールが付着しやすい蒸発器の伝熱管)に特定した洗浄が、洗浄液の使用量および洗浄に係る作業時間を削減でき、より好適である。 The cleaning storage method according to the above embodiment is suitable for cleaning the boiler water system of the exhaust heat recovery boiler. In particular, as shown in FIG. 5, the cleaning target equipment requiring cleaning is specified in a specific portion where scale easily adheres (for example, a heat transfer tube of an evaporator where scale easily adheres due to temperature and pressure conditions). However, the amount of cleaning liquid used and the working time for cleaning can be reduced, which is more preferable.
〔第3実施形態〕
 図9に、本実施形態に係るボイラプラントの洗浄保管方法の工程図を示す。本実施形態は、酸洗浄の工程を中性洗浄の後に実施するところが第1,2実施形態と異なる。本実施形態に係る洗浄保管方法は、ステップ21(S21)からステップ28(S28)を順に含む。
[Third Embodiment]
FIG. 9 is a process diagram of the boiler plant cleaning and storing method according to the present embodiment. This embodiment is different from the first and second embodiments in that the step of acid cleaning is performed after neutral cleaning. The cleaning storage method according to the present embodiment includes step 21 (S21) to step 28 (S28) in order.
(S21)仮設系統(保管装置)接続
 第1実施形態の(S1)と同様に、まず、洗浄対象機器内に洗浄液を供給するための仮設系統を接続する。以降、洗浄液等は仮設系統を介して洗浄対象機器内に注入される。
(S21) Temporary System (Storage Device) Connection Similar to (S1) of the first embodiment, first, a temporary system for supplying the cleaning liquid into the cleaning target device is connected. After that, the cleaning liquid or the like is injected into the device to be cleaned via the temporary system.
(S22)中性洗浄
 第1実施形態の(S2)と同様に、仮設系統から除錆剤を含む中性の洗浄液を注入して洗浄対象機器内を中性の洗浄液で満たした後、該中性の洗浄液を常温で系統内に循環させる。循環させている間、洗浄液を加温することはない。中性の洗浄液は、第1実施形態と同様のものを使用できる。
(S22) Neutral Cleaning As in (S2) of the first embodiment, a neutral cleaning liquid containing a rust remover is injected from the temporary system to fill the inside of the cleaning target device with the neutral cleaning liquid, and then Circulate a cleaning solution that is water-soluble in the system at room temperature. The wash solution is not warmed during circulation. As the neutral cleaning liquid, the same one as in the first embodiment can be used.
(S23)中性洗浄液ブロー
 循環させた中性の洗浄液の液中鉄(Fe)イオンを分析し、Feイオン濃度変化の飽和傾向が確認されたら洗浄液をブローして中性洗浄を終了する。
(S23) Blow of Neutral Cleaning Solution Iron (Fe) ions in the circulating neutral cleaning solution are analyzed, and if a saturation tendency of the change in Fe ion concentration is confirmed, the cleaning solution is blown to complete the neutral cleaning.
(S24)酸洗浄
 上記(S23)で中性の洗浄液をブローした後、除錆剤を含む酸性の洗浄液で洗浄対象機器内を満たし、該酸性の洗浄液を常温で系統内に循環させる。循環させている間、洗浄液を加温することはない。酸性の洗浄液は、第2実施形態と同様のものを用いることができる。
(S24) Acid Cleaning After blowing the neutral cleaning liquid in (S23), the inside of the equipment to be cleaned is filled with an acidic cleaning liquid containing a rust remover, and the acidic cleaning liquid is circulated in the system at room temperature. The wash solution is not warmed during circulation. As the acidic cleaning liquid, the same one as in the second embodiment can be used.
(S25)押出ブロー
 循環させた酸性の洗浄液の液中Feイオンを分析し、液中Feイオン濃度の変化が飽和傾向になることが確認された後、洗浄対象機器内に常温のアンモニア系化合物水溶液を注入しながら中性の洗浄液を押出ブローする。アンモニア系化合物水溶液は、第1実施形態と同様のものを使用できる。
(S25) Extrusion Blow After analyzing the Fe ions in the liquid of the circulated acidic cleaning liquid and confirming that the change in the Fe ion concentration in the liquid tends to be saturated, an aqueous ammonia compound solution at room temperature is placed in the equipment to be cleaned. The neutral cleaning liquid is extrusion blown while being injected. The same aqueous ammonia solution as in the first embodiment can be used.
(S26)アンモニア系化合物水溶液循環
 上記(S25)において、アンモニア化合物水溶液で酸性の洗浄液の略全量をアンモニア化合物水溶液で押出ブローした後、押出ブローを一旦停止し、洗浄対象機器内のアンモニア系化合物水溶液を循環させる。アンモニア系化合物水溶液循環の間、アンモニア系化合物水溶液を加温することはない。
(S26) Circulation of Ammonia-Based Compound Aqueous Solution In the above (S25), after substantially all of the acidic cleaning solution is extruded and blown with the ammonia-compound aqueous solution, the extrusion-blowing is temporarily stopped and the ammonia-based compound aqueous solution in the equipment to be cleaned. Circulate. During the circulation of the aqueous ammonia compound solution, the aqueous ammonia compound solution is not heated.
 アンモニア系化合物水溶液循環したのちにアンモニア系化合物水溶液を分析し、アンモニア系化合物水溶液のpHの値を確認する。 ㆍAfter circulating the ammonia-based compound aqueous solution, analyze the ammonia-based compound aqueous solution to confirm the pH value of the ammonia-based compound aqueous solution.
 アンモニア系化合物水溶液のpHが基準値以上となるまで、上記(S25)、(S26)を繰り返す。基準値は予備試験等で事前に設定する。アンモニア系化合物水溶液のpHが基準値以上となったことを確認する。基準値は、例えばヒドラジンがなくても防錆効果を奏するpH9.8以上である。 Repeat the above (S25) and (S26) until the pH of the aqueous solution of the ammonia-based compound becomes equal to or higher than the reference value. The reference value is set in advance by a preliminary test. Confirm that the pH of the aqueous ammonia-based compound solution is above the reference value. The reference value is, for example, pH 9.8 or more, which has an anticorrosive effect even without hydrazine.
(S27)アンモニア系化合物水溶液ブロー
 第1実施形態の(S5)と同様に、上記(S26)の後、洗浄対象機器内からアンモニア系化合物水溶液をブローし、洗浄対象機器内面にアンモニア含有水膜を形成する。このアンモニア含有水膜部分は防錆効果がある。
(S27) Blow Ammonia-Based Compound Aqueous Solution Similar to (S5) of the first embodiment, after the above (S26), the ammonia-based compound aqueous solution is blown from the inside of the equipment to be cleaned to form an ammonia-containing water film on the inner surface of the equipment to be cleaned. Form. This ammonia-containing water film portion has a rust preventive effect.
(S28)仮設系統解体
 第1実施形態の(S6)と同様に、上記(S27)の後、仮設系統を解体する。
(S28) Temporary System Dismantling Similar to (S6) of the first embodiment, after (S27), the temporary system is dismantled.
 上記ステップ22からステップ27の洗浄は、1回のみ実施しても良いし、複数回実施しても良い。 The above steps 22 to 27 may be carried out only once or a plurality of times.
 次に、洗浄対象機器を排熱回収ボイラの蒸発器とした場合の洗浄について、図10および図11を参照して説明する。 Next, cleaning when the device to be cleaned is the evaporator of the exhaust heat recovery boiler will be described with reference to FIGS. 10 and 11.
 図10は、仮設系統(洗浄保管装置2)の模式図である。図10において、洗浄対象機器は、蒸発器1の伝熱管である。図10では図の簡略化のため洗浄保管装置2が接続される伝熱管の入口管寄せ1aおよび出口寄せ1bのみを記載する。図10において、入口管寄せ1aに入る矢印は蒸発器ドラムからのつながり、出口管寄せ1bから出る矢印は蒸発器ドラムへのつながりを表す。 FIG. 10 is a schematic diagram of a temporary system (cleaning storage device 2). In FIG. 10, the cleaning target device is the heat transfer tube of the evaporator 1. In FIG. 10, for simplification of the drawing, only the inlet header 1a and the outlet header 1b of the heat transfer pipe to which the cleaning/storage device 2 is connected are shown. In FIG. 10, the arrow entering the inlet header 1a represents the connection from the evaporator drum, and the arrow exiting the outlet header 1b represents the connection to the evaporator drum.
 洗浄保管装置2は、循環部3、薬液タンク4、薬液ポンプ5、補給水タンク6、排水タンク7およびそれらを接続する配管LからLを備えている。循環部3は、循環流路(配管L)およびポンプ8を備えている。 The cleaning storage device 2 includes a circulation unit 3, a chemical liquid tank 4, a chemical liquid pump 5, a makeup water tank 6, a drainage tank 7, and pipes L 1 to L 4 connecting them. The circulation unit 3 includes a circulation flow path (pipe L 1 ) and a pump 8.
 循環流路(配管L)は、一端が伝熱管の入口側(入口管寄せ1a)に接続され、他端が伝熱管の出口側(出口管寄せ1b)に接続されている。循環流路(配管L)の途中にはポンプ8が設けられており、伝熱管内に洗浄液等を循環できるよう構成されている。循環流路(配管L)には、バルブVからVが設置されている。 One end of the circulation flow path (pipe L 1 ) is connected to the inlet side of the heat transfer tube (inlet header 1 a) and the other end is connected to the outlet side of the heat transfer tube (outlet header 1 b ). A pump 8 is provided in the middle of the circulation flow path (pipe L 1 ), and is configured to circulate a cleaning liquid or the like in the heat transfer tube. Valves V 1 to V 4 are installed in the circulation flow path (pipe L 1 ).
 薬液タンク4は、配管Lおよび薬液ポンプ5を介して循環流路(配管L)の途中に接続されている。配管Lには薬液ポンプ5を挟むようバルブVとバルブVが配置されている。薬液タンク4内には、循環させたい薬液(酸、除錆剤またはアンモニア系化合物水溶液)が貯留されうる。薬液タンク4は、薬液タンク4を含むタンクローリであってもよい。図10では薬液タンク4が1つなので、薬液タンク4内の薬液を順番に入れ替える。 The chemical liquid tank 4 is connected in the middle of the circulation flow path (pipe L 1 ) via the pipe L 2 and the chemical liquid pump 5. A valve V 5 and a valve V 6 are arranged in the pipe L 2 so as to sandwich the chemical liquid pump 5. In the chemical liquid tank 4, a chemical liquid to be circulated (acid, rust remover or ammonia-based compound aqueous solution) can be stored. The chemical liquid tank 4 may be a tank truck including the chemical liquid tank 4. In FIG. 10, since there is one chemical liquid tank 4, the chemical liquids in the chemical liquid tank 4 are replaced in order.
 循環流路(配管L)には、配管Lを介して補給水タンク6が接続されている。配管LにはバルブVおよびバルブVが配置されている。補給水タンク6の接続位置は、薬液タンク4の接続位置の循環流上流、下流側どちらでも良い。補給水タンク6には、純水等の水が貯留されている。 A makeup water tank 6 is connected to the circulation flow path (pipe L 1 ) via a pipe L 3 . A valve V 7 and a valve V 8 are arranged in the pipe L 3 . The connection position of the makeup water tank 6 may be either upstream or downstream of the circulating position of the connection position of the chemical liquid tank 4. Water such as pure water is stored in the makeup water tank 6.
 排水タンク7は、配管LからLを介して循環流路(配管L)の両端付近および伝熱管の入口管寄せ1aまたは伝熱管の入口管寄せに接続される連絡管(図示なし)に接続されている。配管LにはバルブVおよびバルブV10が配置されている。配管LにはバルブV11およびバルブV12が配置されている。配管LにはバルブV13およびバルブV14が配置されている。 The drainage tank 7 includes a connecting pipe (not shown) connected to both ends of the circulation flow path (pipe L 1 ) and the inlet port 1a of the heat transfer tube or the inlet port of the heat transfer tube via the lines L 4 to L 6. It is connected to the. A valve V 9 and a valve V 10 are arranged in the pipe L 4 . A valve V 11 and a valve V 12 are arranged in the pipe L 5 . A valve V 13 and a valve V 14 are arranged in the pipe L 6 .
 図10の洗浄保管装置2では、ポンプ8の循環流下出口流側の循環流路(配管L)にろ過装置9が設けられている。ろ過装置9は、フィルターまたは膜濾過により微固形物を除去する装置である。ろ過装置9を備えることで、中性洗浄工程や酸洗浄工程で発生するスラッジを回収し、洗浄時のスラッジ残留量を低減できるため、スラッジ残留による腐食トラブルのリスクを低減できる。 In the cleaning storage device 2 of FIG. 10, the filtration device 9 is provided in the circulation flow path (pipe L 1 ) on the circulation downflow outlet flow side of the pump 8. The filtration device 9 is a device that removes fine solids by a filter or membrane filtration. Since the sludge generated in the neutral cleaning step and the acid cleaning step can be recovered by providing the filtering device 9 and the residual sludge amount during cleaning can be reduced, the risk of corrosion trouble due to residual sludge can be reduced.
 図10の洗浄保管装置2には、常温で動作するため、流体の温度を調整する手段は設置されない。 Since the cleaning/storage device 2 of FIG. 10 operates at room temperature, no means for adjusting the temperature of the fluid is installed.
 図11は、図10とは別の仮設系統(洗浄保管装置20)の模式図である。図10と共通の構成は同じ符号で表す。図11の洗浄保管装置20では、薬液タンク24aから24cを複数並列に接続し、かつ、排水タンク7の代わりに薬液タンク24aから24cのいずれかに排水(ブロー液)を戻すブロー流路L21を設けている。ブロー流路L21にはバルブV27が配置されている。 FIG. 11 is a schematic diagram of a temporary system (cleaning storage device 20) different from FIG. The same components as those in FIG. 10 are denoted by the same reference numerals. In the cleaning storage device 20 of FIG. 11, a plurality of chemical liquid tanks 24a to 24c are connected in parallel, and a blow channel L 21 for returning drainage (blowing liquid) to one of the chemical liquid tanks 24a to 24c instead of the drainage tank 7. Is provided. A valve V 27 is arranged in the blow passage L 21 .
 図11では、補給水タンク6、薬液タンク24a、バルブV25a、バルブV26a、薬液ポンプ5、配管LおよびバルブVが酸性洗浄液供給部、補給水タンク6、薬液タンク24b、バルブV25b、バルブV26b、薬液ポンプ5、配管LおよびバルブVが中性洗浄液供給部、補給水タンク6、薬液タンク24c、バルブV25c、バルブV26c、薬液ポンプ5、配管LおよびバルブVがアンモニア系化合物水溶液供給部である。 In FIG. 11, the makeup water tank 6, the chemical liquid tank 24a, the valve V 25a , the valve V26a , the chemical liquid pump 5, the pipe L 2 and the valve V 6 are the acidic cleaning liquid supply unit, the makeup water tank 6, the chemical liquid tank 24b, the valve V 25b , The valve V 26b , the chemical liquid pump 5, the pipe L 2 and the valve V 6 are the neutral cleaning liquid supply unit, the makeup water tank 6, the chemical liquid tank 24c, the valve V 25c , the valve V 26c , the chemical liquid pump 5, the pipe L 2 and the valve V 6. Is an ammonia compound aqueous solution supply part.
 薬液タンク24aには酸が貯留される。薬液タンク24bには中性の除錆剤が貯留される。薬液タンク24cにはアンモニア系化合物水溶液が貯留される。 Acid is stored in the chemical liquid tank 24a. A neutral rust remover is stored in the chemical liquid tank 24b. Aqueous ammonia compound solution is stored in the chemical tank 24c.
 各薬液毎に薬液タンク24aから24cを設けることで、酸性洗浄液ブロー、水洗、押出ブロー、アンモニア系化合物水溶液ブローの各工程のブロー液を薬液タンク24aから24cのいずれかに戻せる。 By providing chemical liquid tanks 24a to 24c for each chemical liquid, the blow liquid in each step of acid cleaning liquid blowing, water washing, extrusion blow, and ammonia compound aqueous solution blowing can be returned to any of the chemical liquid tanks 24a to 24c.
 なお、図10および図11の洗浄保管装置2,20は、使用時に洗浄対象機器に取り付けて使用できるとともに、不使用時には洗浄対象機器から取り外しできる着脱可能型、または、常設型のいずれであってもよい。 Note that the cleaning storage devices 2 and 20 of FIGS. 10 and 11 are either a detachable type that can be attached to a cleaning target device when used and can be detached from the cleaning target device when not in use, or a permanent type. Good.
 図10は、上記第1実施形態から第3実施形態のボイラプラントの洗浄保管方法に適用できる。図11は、上記第1実施形態から第3実施形態のボイラプラントの洗浄保管方法に適用できる。図11は、特に上記第2実施形態および第3実施形態のボイラプラントの洗浄保管方法に好適である。 FIG. 10 can be applied to the cleaning and storing method of the boiler plant of the first to third embodiments. FIG. 11 can be applied to the cleaning and storing method of the boiler plant of the first to third embodiments. FIG. 11 is particularly suitable for the cleaning and storing method of the boiler plant of the second and third embodiments.
1 蒸発器
1a 入口管寄せ
1b 出口管寄せ
2 洗浄保管装置
3 循環部
4,24a,24b,24c 薬液タンク
5 薬液ポンプ
6 補給水タンク
7 排水タンク
8 ポンプ
9 ろ過装置
10 母材
11 アンモニア含有水膜
 
1 Evaporator 1a Inlet heading 1b Outlet heading 2 Cleaning storage device 3 Circulating part 4, 24a, 24b, 24c Chemical liquid tank 5 Chemical liquid pump 6 Makeup water tank 7 Drainage tank 8 Pump 9 Filtration device 10 Base material 11 Ammonia-containing water film

Claims (12)

  1.  スケールが付着した洗浄対象部位を、除錆剤を含む中性の洗浄液により常温で中性洗浄する工程と、
     前記洗浄対象部位に、アンモニア系化合物を含むpH9.8以上の常温のアンモニア系化合物水溶液を循環させる工程と、
     前記洗浄対象部位から、前記アンモニア系化合物水溶液をブローする工程を備えたボイラプラントの洗浄保管方法。
    A step of neutrally cleaning the portion to be cleaned with the scale attached thereto at room temperature with a neutral cleaning liquid containing a rust remover,
    Circulating an aqueous solution of an ammonia-based compound containing ammonia-based compound at room temperature and having a pH of 9.8 or higher,
    A method for cleaning and storing a boiler plant, comprising a step of blowing the aqueous solution of an ammonia-based compound from the cleaning target portion.
  2.  前記中性洗浄する工程において、
     前記洗浄対象部位内に前記中性の洗浄液を循環させ、
     循環させた前記中性の洗浄液中の鉄イオンを分析し、
     前記中性の洗浄液中の鉄イオン濃度変化が飽和傾向を示したことを確認した後、前記中性洗浄を終了する請求項1に記載のボイラプラントの洗浄保管方法。
    In the step of neutral cleaning,
    Circulating the neutral cleaning liquid in the cleaning target site,
    Analyzing iron ions in the circulated neutral cleaning solution,
    The method for cleaning and storing a boiler plant according to claim 1, wherein the neutral cleaning is terminated after confirming that the change in the iron ion concentration in the neutral cleaning liquid shows a saturation tendency.
  3.  前記アンモニア系化合物水溶液を循環させる工程の前に、酸性の洗浄液により常温で酸洗浄する工程を備えた請求項1または2に記載のボイラプラントの洗浄保管方法。 The method for cleaning and storing a boiler plant according to claim 1 or 2, further comprising a step of performing acid cleaning with an acidic cleaning liquid at room temperature before the step of circulating the aqueous ammonia compound solution.
  4.  前記酸洗浄する工程において、
     前記洗浄対象部位内に前記酸性の洗浄液を循環させ、
     循環させた前記酸性の洗浄液中の鉄イオンを分析し、
     前記酸性の洗浄液中の鉄イオン濃度変化が飽和傾向を示したことを確認した後、前記酸洗浄を終了する請求項3に記載のボイラプラントの洗浄保管方法。
    In the step of acid cleaning,
    Circulating the acidic cleaning liquid in the cleaning target site,
    Analyzing iron ions in the circulated acidic washing solution,
    The method for cleaning and storing a boiler plant according to claim 3, wherein the acid cleaning is terminated after confirming that the change in the iron ion concentration in the acidic cleaning liquid shows a saturation tendency.
  5.  前記酸洗浄の後、前記アンモニア系化合物水溶液を用いて前記酸性の洗浄液を押出ブローする工程をさらに備え、
     前記押出ブローする工程において、
     前記押出ブローで前記酸性の洗浄液の略全量をブローし、前記洗浄対象部位内の前記アンモニア系化合物水溶液を循環した後に前記アンモニア系化合物水溶液のpHについて分析し、
     分析した前記pHが基準値以上となるまで、前記押出ブローおよび前記アンモニア系化合物水溶液の循環を継続する請求項3または4に記載のボイラプラントの洗浄保管方法。
    After the acid cleaning, the method further comprises a step of extruding and blowing the acidic cleaning solution using the aqueous ammonia compound solution,
    In the extrusion blowing step,
    Blow almost the entire amount of the acidic cleaning liquid by the extrusion blow, analyze the pH of the ammonia-based compound aqueous solution after circulating the ammonia-based compound aqueous solution in the cleaning target site,
    The method for cleaning and storing a boiler plant according to claim 3 or 4, wherein the extrusion blow and the circulation of the aqueous ammonia compound solution are continued until the analyzed pH becomes a reference value or more.
  6.  前記中性洗浄の後、前記アンモニア系化合物水溶液を用いて前記中性の洗浄液を押出ブローする工程をさらに備え、
     前記押出ブローする工程において、
     前記押出ブローで前記中性の洗浄液の略全量をブローし、前記洗浄対象部位内の前記アンモニア系化合物水溶液を循環した後に前記アンモニア系化合物水溶液中の前記除錆剤に由来する成分について分析し、
     分析した前記除錆剤に由来する成分の濃度が基準値以下となるまで、前記押出ブローおよび前記アンモニア系化合物水溶液の循環を継続する請求項1から4のいずれかに記載のボイラプラントの洗浄保管方法。
    After the neutral cleaning, the method further comprises a step of extrusion-blowing the neutral cleaning liquid using the aqueous ammonia compound solution,
    In the extrusion blowing step,
    Blow almost the entire amount of the neutral cleaning liquid in the extrusion blow, analyze the components derived from the rust remover in the ammonia-based compound aqueous solution after circulating the ammonia-based compound aqueous solution in the cleaning target site,
    The boiler plant cleaning and storage according to any one of claims 1 to 4, wherein the extrusion blow and the circulation of the ammonia-based compound aqueous solution are continued until the concentration of the analyzed component derived from the rust remover becomes a reference value or less. Method.
  7.  前記アンモニア系化合物水溶液をブローする工程の後、前記洗浄対象部位内に気化性のアンモニア化合物の固体を投入する請求項1から6のいずれかに記載のボイラプラントの洗浄保管方法。 The method for cleaning and storing a boiler plant according to any one of claims 1 to 6, wherein after the step of blowing the aqueous solution of the ammonia compound, a solid of a vaporizable ammonia compound is introduced into the cleaning target site.
  8.  前記酸性の洗浄液および前記中性の洗浄液の少なくとも一方を循環の途中でろ過する請求項1から7のいずれかに記載のボイラプラントの洗浄保管方法。 The method for cleaning and storing a boiler plant according to any one of claims 1 to 7, wherein at least one of the acidic cleaning solution and the neutral cleaning solution is filtered during circulation.
  9.  前記洗浄対象部位を排熱回収ボイラの蒸発器とする請求項1から8のいずれかに記載のボイラプラントの洗浄保管方法。 The method for cleaning and storing a boiler plant according to any one of claims 1 to 8, wherein the cleaning target portion is an evaporator of an exhaust heat recovery boiler.
  10.  スケールが付着した洗浄対象部位内に流体を循環するよう構成された循環部と、
     前記循環部に除錆剤を含む中性の洗浄液を供給する中性洗浄液供給部と、
     前記循環部にアンモニア系化合物を含むpH9.8以上のアンモニア系化合物水溶液を供給するアンモニア系化合物水溶液供給部と、
     前記循環部から前記アンモニア系化合物水溶液を排出するブロー流路と、
    を備えたボイラプラントの洗浄保管装置。
    A circulation unit configured to circulate a fluid in the cleaning target area to which the scale is attached,
    A neutral cleaning liquid supply unit that supplies a neutral cleaning liquid containing a rust remover to the circulation unit,
    An ammonia-based compound aqueous solution supply unit that supplies an ammonia-based compound aqueous solution containing an ammonia-based compound and having a pH of 9.8 or more to the circulation unit;
    A blow flow path for discharging the ammonia-based compound aqueous solution from the circulation unit,
    Boiler plant cleaning storage equipment equipped with.
  11.  前記循環部が、
     両端が前記洗浄対象部位の出入口に接続された循環流路と、
     前記循環流路の途中に設けられたポンプと、
     前記ポンプよりも下流側の前記循環流路の途中に設けられたろ過装置と、
    を備えた請求項10に記載のボイラプラントの洗浄保管装置。
    The circulation unit,
    A circulation channel whose both ends are connected to the inlet and outlet of the cleaning target portion,
    A pump provided in the middle of the circulation flow path,
    A filtering device provided in the middle of the circulation flow path on the downstream side of the pump,
    The cleaning and storing apparatus for a boiler plant according to claim 10, further comprising:
  12.  前記ブロー流路は、一端が前記循環部、前記洗浄対象部位の入口および出口の少なくともいずれかに接続され、他端が前記中性洗浄液供給部および前記アンモニア系化合物水溶液供給部の少なくともいずれかに接続された請求項10または11に記載のボイラプラントの洗浄保管装置。
     
     
    One end of the blow passage is connected to the circulation unit, at least one of an inlet and an outlet of the cleaning target portion, and the other end is connected to at least one of the neutral cleaning liquid supply unit and the ammonia-based compound aqueous solution supply unit. The cleaning/storage device for a boiler plant according to claim 10 or 11, which is connected.

PCT/JP2019/048147 2018-12-27 2019-12-09 Method and apparatus for cleaning and maintaining boiler plant WO2020137496A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020217004725A KR20210034040A (en) 2018-12-27 2019-12-09 Cleaning storage method and cleaning storage device of boiler plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018245053A JP7150594B2 (en) 2018-12-27 2018-12-27 Boiler plant cleaning storage method and cleaning storage device
JP2018-245053 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020137496A1 true WO2020137496A1 (en) 2020-07-02

Family

ID=71127996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048147 WO2020137496A1 (en) 2018-12-27 2019-12-09 Method and apparatus for cleaning and maintaining boiler plant

Country Status (4)

Country Link
JP (1) JP7150594B2 (en)
KR (1) KR20210034040A (en)
TW (1) TWI796533B (en)
WO (1) WO2020137496A1 (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08219405A (en) * 1995-02-16 1996-08-30 Kyushu Electric Power Co Inc Corrosionproof method for boiler equipment
JP2000279906A (en) * 1999-03-30 2000-10-10 Toshiba Corp Method of washing inside surface of piping in power plant, inside surface washing and maintaining method, and inside surface washing method
JP2002129366A (en) * 2000-10-23 2002-05-09 Kurita Water Ind Ltd Corrosion prevention method for non-operating boiler
JP2004226026A (en) * 2003-01-24 2004-08-12 Chugoku Electric Power Co Inc:The Cleaning method in plant
JP2004535546A (en) * 2001-06-20 2004-11-25 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Improved scale adjuster
JP2006322672A (en) * 2005-05-19 2006-11-30 Ebara Kogyo Senjo Kk Consistent cleaning method for drum type boiler scale, and cleaning system therefor
JP2007138219A (en) * 2005-11-16 2007-06-07 Kurita Water Ind Ltd Corrosion prevention method for boiler in rest
CN101319322A (en) * 2008-07-22 2008-12-10 夏畅斌 Environment-friendly type passivation liquid for boiler and preparation method thereof
WO2014129244A1 (en) * 2013-02-20 2014-08-28 三菱重工業株式会社 Boiler operation method and boiler
JP2015105786A (en) * 2013-11-29 2015-06-08 三菱日立パワーシステムズ株式会社 Exhaust heat recovery boiler and cleaning method
JP2016017659A (en) * 2014-07-04 2016-02-01 三菱日立パワーシステムズ株式会社 Chemical cleaning method and chemical cleaner
CN205425958U (en) * 2015-11-17 2016-08-03 上海蓝浦清洗技术有限公司 Wash device of flash stove
CN106032966A (en) * 2015-03-18 2016-10-19 东莞新科技术研究开发有限公司 Method for cleaning heat exchangers
CN107036485A (en) * 2017-05-27 2017-08-11 南通海轶锶换热设备有限公司 A kind of cleaning of plate type heat exchanger
CN107059030A (en) * 2017-05-02 2017-08-18 西安热工研究院有限公司 A kind of power station superheater or reheater oxide skin chemical cleaning system and method
JP2018009722A (en) * 2016-07-12 2018-01-18 三菱日立パワーシステムズ株式会社 Boiler plant and operating method for the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62233606A (en) 1986-04-02 1987-10-14 株式会社日立製作所 Boiler maintenance system
US5841826A (en) * 1995-08-29 1998-11-24 Westinghouse Electric Corporation Method of using a chemical solution to dislodge and dislocate scale, sludge and other deposits from nuclear steam generators
JPH1137405A (en) 1997-07-16 1999-02-12 Mitsubishi Heavy Ind Ltd Chemical cleaning method of heat transfer tube of waste heat recovery boiler
CN105987373A (en) * 2015-02-15 2016-10-05 东莞新科技术研究开发有限公司 Boiler cleaning method
CN106642064A (en) 2016-09-28 2017-05-10 中国神华能源股份有限公司 Chemical cleaning method of boiler

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08219405A (en) * 1995-02-16 1996-08-30 Kyushu Electric Power Co Inc Corrosionproof method for boiler equipment
JP2000279906A (en) * 1999-03-30 2000-10-10 Toshiba Corp Method of washing inside surface of piping in power plant, inside surface washing and maintaining method, and inside surface washing method
JP2002129366A (en) * 2000-10-23 2002-05-09 Kurita Water Ind Ltd Corrosion prevention method for non-operating boiler
JP2004535546A (en) * 2001-06-20 2004-11-25 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Improved scale adjuster
JP2004226026A (en) * 2003-01-24 2004-08-12 Chugoku Electric Power Co Inc:The Cleaning method in plant
JP2006322672A (en) * 2005-05-19 2006-11-30 Ebara Kogyo Senjo Kk Consistent cleaning method for drum type boiler scale, and cleaning system therefor
JP2007138219A (en) * 2005-11-16 2007-06-07 Kurita Water Ind Ltd Corrosion prevention method for boiler in rest
CN101319322A (en) * 2008-07-22 2008-12-10 夏畅斌 Environment-friendly type passivation liquid for boiler and preparation method thereof
WO2014129244A1 (en) * 2013-02-20 2014-08-28 三菱重工業株式会社 Boiler operation method and boiler
JP2015105786A (en) * 2013-11-29 2015-06-08 三菱日立パワーシステムズ株式会社 Exhaust heat recovery boiler and cleaning method
JP2016017659A (en) * 2014-07-04 2016-02-01 三菱日立パワーシステムズ株式会社 Chemical cleaning method and chemical cleaner
CN106032966A (en) * 2015-03-18 2016-10-19 东莞新科技术研究开发有限公司 Method for cleaning heat exchangers
CN205425958U (en) * 2015-11-17 2016-08-03 上海蓝浦清洗技术有限公司 Wash device of flash stove
JP2018009722A (en) * 2016-07-12 2018-01-18 三菱日立パワーシステムズ株式会社 Boiler plant and operating method for the same
CN107059030A (en) * 2017-05-02 2017-08-18 西安热工研究院有限公司 A kind of power station superheater or reheater oxide skin chemical cleaning system and method
CN107036485A (en) * 2017-05-27 2017-08-11 南通海轶锶换热设备有限公司 A kind of cleaning of plate type heat exchanger

Also Published As

Publication number Publication date
TWI796533B (en) 2023-03-21
TW202041812A (en) 2020-11-16
JP2020106199A (en) 2020-07-09
JP7150594B2 (en) 2022-10-11
KR20210034040A (en) 2021-03-29

Similar Documents

Publication Publication Date Title
JP4171329B2 (en) Scale cleaner
JP2011512421A (en) Acidic aqueous solution containing a chelating agent and use of the aqueous solution
US7122510B2 (en) One-bath particle-free chemical cleaning
JP2013507561A (en) Method for cleaning gas turbine fuel chamber parts
JP2015150484A (en) Scale removal method and scale remover for steam generating apparatus
WO2020137496A1 (en) Method and apparatus for cleaning and maintaining boiler plant
JPH11141804A (en) Method of chemically cleaning boiler
JP6938861B2 (en) Boiler equipment scale removal method
JP2016017188A (en) Chemical cleaning method and chemical cleaning device
TWI744801B (en) Chemical cleaning method and chemical cleaning device
KR100689569B1 (en) Method for cleaning a steam generating device of a compressed water reactor
JP6328916B2 (en) Waste heat recovery boiler and cleaning method
CN110132046B (en) Chemical cleaning device and chemical cleaning method using same
US4861386A (en) Enhanced cleaning procedure for copper alloy equipment
CN110067610B (en) Method for operating power plant and thermal power plant
JP2719599B2 (en) How to clean piping
JP2006028574A (en) Water purification treatment method for pickled steel strip
JP6766090B2 (en) Exhaust heat recovery boiler and cleaning method
JP2002257302A (en) Feeding method of corrosion inhibitor
JP2014059076A (en) Scale removal method for boiler water system
JP2001140086A (en) Corrosion inhibitor for boiler water circulating line and method for inhibiting corrosion of boiler water circulating line
CN100545316C (en) Be used for removing the sedimental purging method that comprises magnetite in the pressurized vessel of power station
JP2007119803A (en) Method for cleaning inside face of copper tube or copper alloy tube
JPH0445593B2 (en)
JP6819720B2 (en) Water system pretreatment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902456

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217004725

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2101000924

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902456

Country of ref document: EP

Kind code of ref document: A1