WO2020217356A1 - Chromatography detector flow cell and chromatography detector - Google Patents

Chromatography detector flow cell and chromatography detector Download PDF

Info

Publication number
WO2020217356A1
WO2020217356A1 PCT/JP2019/017502 JP2019017502W WO2020217356A1 WO 2020217356 A1 WO2020217356 A1 WO 2020217356A1 JP 2019017502 W JP2019017502 W JP 2019017502W WO 2020217356 A1 WO2020217356 A1 WO 2020217356A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
capillary
flow cell
chromatography detector
main body
Prior art date
Application number
PCT/JP2019/017502
Other languages
French (fr)
Japanese (ja)
Inventor
悠佑 長井
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2021515386A priority Critical patent/JP7180760B2/en
Priority to PCT/JP2019/017502 priority patent/WO2020217356A1/en
Publication of WO2020217356A1 publication Critical patent/WO2020217356A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes

Definitions

  • the present invention relates to a flow cell for a chromatography detector and a chromatography detector.
  • a chromatographic device is known as a device that separates substances contained in a sample into different components.
  • the sample to be analyzed is supplied to the separation column together with the solvent.
  • the sample introduced into the separation column is eluted component by component due to differences in chemical properties or composition, and is guided to the flow cell of the detector together with the solvent.
  • the sample guided to the flow cell is optically detected.
  • a liquid chromatogram is generated based on the detection result by the detector.
  • both ends of the capillary are held by a pair of holding members.
  • the periphery of the capillary is covered with air, except for the contact portion with the pair of holding members.
  • a solvent containing a sample is introduced into the capillary.
  • the refractive index of the holding member is selected to a predetermined value.
  • the reflectance of the contact portion between each holding member and the capillary is hardly changed. Therefore, it is possible to suppress fluctuations in the baseline of the liquid chromatogram and perform accurate analysis.
  • the accuracy of the analysis decreases when the flow cell of Patent Document 1 is used for a long period of time.
  • An object of the present invention is to provide a flow cell for a chromatography detector and a chromatography detector that can be used for a long period of time.
  • An aspect according to one aspect of the present invention is a flow cell for a chromatography detector used for generating a chromatogram of a sample, which has an internal space extending in one direction and an optical introduction unit capable of introducing light into the internal space.
  • a main body portion held at one end of the internal space, a capillary that is accommodated in the internal space of the main body portion so as to extend in the one direction and forms a flow path through which an eluent containing a sample flows, and the main body portion and the said.
  • the present invention relates to a flow cell for a chromatography detector, comprising a sealing member that seals between a capillary and a light-shielding portion arranged between the light introducing portion and the sealing member.
  • aspects according to another aspect of the present invention include a flow cell for a chromatography detector and a light projecting unit that emits light to an eluent containing a sample flowing through the flow path through the light introduction section of the flow cell for a chromatography detector.
  • the present invention relates to a chromatography detector including a light receiving unit that receives light emitted by the light projecting unit and transmitted through a sample and outputs a signal indicating the amount of received light.
  • the flow cell for a chromatography detector and the chromatography detector can be used for a long period of time.
  • FIG. 1 is a diagram showing a configuration of a chromatographic apparatus including a chromatography detector according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the configuration of the detector of FIG.
  • FIG. 3 is a schematic partial cross-sectional view showing the structure of the flow cell of FIG.
  • FIG. 4 is a schematic partial cross-sectional view showing the structure of the flow cell according to the modified example.
  • FIG. 5 is a schematic partial cross-sectional view showing the structure of the flow cell according to another embodiment.
  • FIG. 1 is a diagram showing a configuration of a chromatographic apparatus including a chromatography detector according to an embodiment of the present invention.
  • the chromatographic apparatus 100 includes a chromatography detector 10 (hereinafter, abbreviated as detector 10), an eluent supply unit 20, a sample supply unit 30, a separation column 40, and a processing unit 50.
  • the eluent supply unit 20 includes two bottles 21 and 22, two liquid supply units 23 and 24, and a mixing unit 25.
  • An aqueous solution and an organic solvent are stored as eluents in the bottles 21 and 22, respectively.
  • the liquid feeding units 23 and 24 are, for example, liquid feeding pumps.
  • the liquid feeding unit 23 pumps the eluent stored in the bottle 21 by pressure.
  • the liquid feeding unit 24 pumps the eluent stored in the bottle 22 by pressure.
  • a degassing device (not shown) is inserted between the liquid feeding unit 23 and the bottle 21 and between the liquid feeding unit 24 and the bottle 22.
  • the mixing unit 25 is, for example, a gradient mixer.
  • the mixing unit 25 mixes the eluent pumped by the liquid feeding unit 23 and the eluent pumped by the liquid feeding unit 24 at an arbitrary ratio, and supplies the mixed eluent while changing the mixing ratio. ..
  • the sample supply unit 30 is, for example, an injector. The sample supply unit 30 introduces the sample to be analyzed into the separation column 40 together with the eluent supplied by the eluent supply unit 20.
  • the separation column 40 is housed inside a column constant temperature bath (not shown) and adjusted to a predetermined constant temperature.
  • the separation column 40 separates the introduced sample for each component according to the difference in chemical properties or composition.
  • the detector 10 detects the components of the sample separated by the separation column 40. Details of the detector 10 will be described later.
  • the processing unit 50 processes the detection result by the detector 10 to generate a chromatogram showing the relationship between the retention time of each component and the detection intensity.
  • FIG. 2 is a schematic diagram showing the configuration of the detector 10 of FIG.
  • the detector 10 includes a flow cell 1 for a chromatography detector (hereinafter, abbreviated as flow cell 1), a light projecting unit 11, a condensing lens 12, a spectroscopic unit 13, and a light receiving unit 14.
  • the flow cell 1 includes a main body 2 and a capillary 3.
  • the main body 2 has an internal space 2C extending in one direction. Further, the main body portion 2 has a light introduction portion 2A and a light extraction portion 2B at one end and the other end of the internal space 2C, respectively.
  • the light introduction unit 2A can introduce light into the internal space 2C, and the light extraction unit 2B can derive light from the internal space 2C.
  • an optical fiber may be used as described in FIG. 6 of Patent Document 1.
  • the main body 2 is formed with an introduction port 2a and an outlet 2b connected to the internal space 2C.
  • the capillary 3 has a flow path 3a inside, and is housed in the internal space 2C of the main body 2 so as to extend in one direction.
  • the eluent containing the sample that has passed through the separation column 40 of FIG. 1 is introduced from the introduction port 2a into the internal space 2C of the main body 2 as shown by an arrow A. After that, the eluent flows in one direction through the flow path 3a inside the capillary 3 as shown by the arrow B. After that, the eluent is led out from the outlet 2b to the outside of the main body 2 as shown by an arrow C.
  • the above one direction is referred to as a flow path direction.
  • the direction in which the eluent flows in the flow path direction is defined as downstream, and the opposite direction is defined as upstream. The details of the flow cell 1 will be described later.
  • the direction of the flow of the eluent containing the sample may be opposite to the above.
  • the light projecting unit 11 is a light source that emits wideband light, and in this example, includes a deuterium lamp that emits ultraviolet light.
  • the light projecting unit 11 may include other light sources such as a tungsten lamp or an LED (light emitting diode), or may include a plurality of light sources that emit light having different wavelengths.
  • the condensing lens 12 collects the light emitted by the light projecting unit 11 and irradiates the sample in the eluent flowing through the flow path 3a of the flow cell 1 through the light introducing unit 2A.
  • the light radiated to the sample interacts with the sample by passing through the sample, and then is incident on the spectroscopic unit 13 through the light derivation unit 2B.
  • the spectroscopic unit 13 is, for example, a reflection type diffraction grating, and disperses the incident light so as to be reflected at different angles for each wavelength.
  • the light receiving unit 14 is, for example, a photodiode array in which a plurality of photodiodes are arranged one-dimensionally. The light receiving unit 14 receives light of each wavelength dispersed by the spectroscopic unit 13 and outputs a signal indicating the amount of received light to the processing unit 50 of FIG. 1 as a detection result.
  • FIG. 3 is a schematic partial cross-sectional view showing the structure of Flow Cell 1 of FIG.
  • FIG. 3 shows the structure of the upstream end portion of the flow cell 1, but the structure of the downstream end portion of the flow cell 1 is basically the same as the structure of the upstream end portion.
  • the flow cell 1 includes a main body portion 2, a capillary 3, a pair of sealing members 4, and a pair of window members 5.
  • one seal member 4 and one window member 5 upstream of the flow cell 1 are shown, and the other seal member 4 and the other window member 5 downstream are omitted.
  • the main body 2 is made of stainless steel, for example, and has a cylindrical outer shape extending in the flow path direction. Therefore, both ends of the main body 2 are open.
  • the opening at the upstream end of the main body 2 serves as the light introduction portion 2A. Further, the opening at the downstream end of the main body 2 becomes the light lead-out portion 2B (FIG. 2).
  • the length L of the main body 2 in the flow path direction is, for example, 10 mm.
  • the capillary 3 is formed of, for example, molten quartz and has a cylindrical outer shape extending in the flow path direction.
  • the capillary 3 is housed in the internal space 2C of the main body 2.
  • the inside of the capillary 3 becomes the flow path 3a.
  • the diameter D of the flow path 3a is, for example, 100 ⁇ m.
  • the main body 2 is formed with an introduction port 2a penetrating from the outer peripheral surface to the inner peripheral surface.
  • the main body 2 is formed with a lead-out port 2b (FIG. 2) penetrating from the outer peripheral surface to the inner peripheral surface.
  • Each seal member 4 is an annular member having chemical resistance.
  • seal members 4A and 4B are referred to as seal members 4A and 4B, respectively.
  • the seal member 4A is arranged upstream of the flow cell 1 between the inner peripheral surface of the main body 2 and the outer peripheral surface of the capillary 3.
  • the seal member 4B (FIG. 2) is arranged downstream of the flow cell 1 between the inner peripheral surface of the main body 2 and the outer peripheral surface of the capillary 3. As a result, the inner peripheral surface of the main body 2 and the outer peripheral surface of the capillary 3 are sealed upstream and downstream of the flow cell 1.
  • each seal member 4 is preferably formed of a material having a refractive index in a specific range.
  • the difference between the reflectance of the contact surface between the capillary 3 and the sealing member 4 when the eluent is an aqueous solution and the reflectance of the contact surface when the eluent is an organic solvent is set to a predetermined value or less. be able to.
  • each sealing member 4 has a refractive index of 1.31 or less or 1.40 or more in relation to the number of incident apertures (incident angle) of light. It is preferably formed of the material to be contained. Examples of such a material include Teflon (registered trademark) AF (amorphous fluoropolymer) or PEEK (registered trademark; polyetheretherketone).
  • Each window member 5 is formed of, for example, quartz.
  • the window member 5A is attached to the light introduction portion 2A at the upstream end portion of the main body portion 2.
  • the window member 5B (FIG. 2) is attached to the optical lead-out portion 2B (FIG. 2) at the downstream end of the main body portion 2. As a result, the upstream end and the downstream end of the main body 2 are closed so that light can be transmitted.
  • an annular light-shielding portion 6 is formed on the inner peripheral surface of the main body portion 2 so as to project between the light introduction portion 2A and the seal member 4A (FIG. 3).
  • a part of the light guided from the light projecting portion 11 of FIG. 2 through the window member 5A to the internal space 2C of the main body portion 2 passes through the central opening 6a of the light shielding portion 6 and enters the flow path 3a of the capillary 3.
  • the other part of the light incident on the internal space 2C of the main body 2 is blocked by the light-shielding surface 6b of the light-shielding portion 6, so that the seal member 4A is not irradiated.
  • the light-shielding portion 6 allows the light to enter the flow path 3a and suppresses the irradiation of the seal member 4A with the light.
  • FIG. 4 is a schematic partial cross-sectional view showing the structure of the flow cell 1 according to the modified example.
  • the light-shielding portion 6 may be formed as a separate body from the main body portion 2 and may be arranged between the light introduction portion 2A and the seal member 4A.
  • the light-shielding portion 6 may be formed of the same material as the main body portion 2 (for example, stainless steel), or may be formed of another material such as ceramics.
  • the operation of the detector 10 will be described mainly with reference to FIG.
  • the eluent containing the sample that has passed through the separation column 40 (FIG. 1) is introduced into the internal space 2C of the main body 2 from the introduction port 2a upstream of the main body 2, and then the flow path 3a from the upstream end of the capillary 3. Introduced in. Since the inner peripheral surface of the main body 2 and the outer peripheral surface of the capillary 3 are sealed by the pair of sealing members 4, the eluent does not penetrate into the outer peripheral portion of the sealing member 4. The eluent flows downstream in the flow path 3a, is led out from the downstream end of the capillary 3, and is then led out of the main body 2 from the outlet 2b downstream of the main body 2.
  • light is emitted from the light projecting unit 11 (FIG. 2) and guided from the window member 5A to the internal space 2C of the main body unit 2.
  • a part of the light guided to the internal space 2C is blocked by the light-shielding surface 6b of the light-shielding portion 6, so that the seal member 4A is not irradiated.
  • the other part of the light guided to the internal space 2C enters the flow path 3a of the capillary 3 through the opening 6a of the light-shielding portion 6.
  • a gradient analysis is performed using an aqueous solution having a refractive index of about 1.333 and ACN having a refractive index of about 1.344. Therefore, the refractive index of the eluent flowing through the flow path 3a varies between 1.333 and 1.344.
  • the light incident on the flow path 3a is on the outer wall surface of the capillary 3 excluding the contact portion with each seal member 4, as shown by the dotted arrow in FIG. It propagates in the direction of the flow path while repeating total reflection.
  • each sealing member 4 when the refractive index of each sealing member 4 is 1.31 or less, the light is emitted regardless of the mixing ratio of the aqueous solution and ACN in the eluent. It propagates in the flow path direction while being totally reflected at the contact portion.
  • the refractive index of each sealing member 4 when the refractive index of each sealing member 4 is 1.40 or more, the light is not totally reflected at the contact portion, but the reflectance is substantially the same regardless of the mixing ratio of the aqueous solution and ACN. It becomes constant. Therefore, even if the mixing ratio of the aqueous solution and ACN changes, it is possible to prevent the reflectance of the contact portion from changing.
  • the light propagates in the capillary 3 and interacts with the sample in the eluent in the flow path 3a.
  • the light interacting with the sample passes through the window member 5B (FIG. 2), is guided to the outside of the main body 2, is separated by the spectroscopic unit 13 (FIG. 2), and then is received by the light receiving unit 14 (FIG. 2).
  • a chromatogram is generated by the processing unit 50 (FIG. 1) based on the amount of light received by the light receiving unit 14.
  • the detector 10 According to the present embodiment, light is emitted from the light projecting unit 11 to the eluent containing the sample flowing through the flow path 3a through the light introduction unit 2A of the flow cell 1.
  • the light emitted by the light projecting unit 11 and transmitted through the sample is received by the light receiving unit 14, and a signal indicating the amount of received light is output.
  • the capillary 3 is housed in the internal space 2C extending in the flow path direction in the main body 2 so as to extend in the flow path direction.
  • the space between the main body 2 and the capillary 3 is sealed by the sealing member 4.
  • a light-shielding portion 6 is arranged between the light introduction portion 2A at one end of the internal space 2C of the main body portion 2 and the seal member 4A.
  • the eluent containing the sample flows through the flow path 3a formed in the capillary 3. Further, the light from the light projecting unit 11 for detecting the sample is introduced from the light introducing unit 2A into the internal space 2C.
  • the light-shielding portion 6 is arranged between the light introduction portion 2A and the seal member 4A, it is possible to suppress the irradiation of light to the seal member 4A. Therefore, even when the analysis is performed for a long period of time, the change in the optical properties of the sealing member 4A is suppressed, and the accuracy of the analysis is prevented from being lowered. Further, it is possible to suppress a decrease in the mechanical strength of the seal member 4A. Therefore, the flow cell 1 can be used for a long period of time.
  • the light shielding unit 6 suppresses the irradiation of the seal member 4 with ultraviolet light. Therefore, the change in the optical properties of the seal member 4 is suppressed, and the accuracy of the analysis is prevented from being lowered. This makes it possible to analyze the sample more appropriately using ultraviolet light.
  • FIG. 5 is a schematic partial cross-sectional view showing the structure of the flow cell 1 according to the other embodiment.
  • the light-shielding portion 6 is located between the seal member 4A and the upstream end face 3b of the capillary 3 (the end face 3b facing the light introduction portion 2A) and the window member 5A. It is formed so as to protrude into. Specifically, in a state where the center of the opening 6a of the light-shielding portion 6 and the central axis of the capillary 3 overlap, the diameter d of the opening 6a is equal to the inner diameter d1 of the capillary 3 (that is, the diameter D of the flow path 3a). ..
  • the area of the light-shielding surface 6b of the light-shielding portion 6 of FIG. 5 is larger than the area of the light-shielding surface 6b of the light-shielding portion 6 of FIG. 3, indirect light such as reflected light is directed toward the seal member 4A. Even in this case, such light can be reliably blocked by the light-shielding surface 6b. Therefore, it is possible to further suppress the irradiation of the seal member 4A with light. Therefore, the optical properties of the sealing member 4A can be maintained for a longer period of time.
  • the diameter d of the opening 6a is equal to the inner diameter d1 of the capillary 3, but the embodiment is not limited to this.
  • the diameter d of the opening 6a may be the inner diameter d1 or more and the outer diameter d2 or less of the capillary 3. Even in this case, it is possible to reduce the direct incident of light from the end surface 3b of the capillary 3 into the wall surface of the capillary 3. Further, it is possible to reduce the irradiation of the seal member 4A with indirect light such as reflected light.
  • the flow cell for a chromatography detector is A flow cell for a chromatography detector used to generate a chromatogram of a sample.
  • a main body having an internal space extending in one direction and having a light introducing portion capable of introducing light into the internal space at one end of the internal space.
  • a capillary that is accommodated in the internal space of the main body so as to extend in the one direction and forms a flow path through which an eluent containing a sample flows.
  • a sealing member that seals between the main body and the capillary, A light-shielding portion arranged between the light introduction portion and the seal member may be provided.
  • the capillary is housed so as to extend in one direction in the internal space extending in one direction in the main body.
  • the space between the main body and the capillary is sealed by a sealing member.
  • a light-shielding portion is arranged between the light introduction portion at one end of the internal space of the main body portion and the seal member.
  • the eluent containing the sample flows through the flow path formed in the capillary.
  • light for detecting the sample is introduced into the internal space from the light introduction unit.
  • the light-shielding portion is arranged between the light introduction portion and the seal member, it is possible to suppress the irradiation of light to the seal member. Therefore, even when the analysis is performed for a long period of time, the change in the optical properties of the sealing member is suppressed, and the accuracy of the analysis is prevented from being lowered. Therefore, the flow cell for a chromatography detector can be used for a long period of time.
  • the capillary has an end face facing the light introduction portion and has an end face.
  • the light-shielding portion may be arranged so as to at least partially overlap the end face of the capillary in the one direction.
  • the light-shielding portion is formed in an annular shape having a circular opening.
  • the capillary is formed in a cylindrical shape.
  • the light-shielding portion is arranged so that the center of the opening and the central axis of the flow path of the capillary overlap.
  • the diameter of the opening of the light-shielding portion may be greater than or equal to the inner diameter of the capillary and less than or equal to the outer diameter.
  • the light-shielding portion can be easily arranged so as to overlap the end face of the capillary at least partially in one direction.
  • the diameter of the opening of the light-shielding portion may be equal to the inner diameter of the capillary.
  • the quantitative analysis of the sample can be performed with higher accuracy. Further, even when indirect light such as reflected light is directed to the seal member, such light can be more reliably blocked by the light-shielding portion, so that the optical properties of the seal member can be maintained for a longer period of time. .. As a result, the flow cell for the chromatography detector can be used for a longer period of time.
  • the light-shielding portion may be formed integrally with the main body portion.
  • the number of parts can be reduced.
  • the man-hours and the number of adjustments in manufacturing the flow cell for the chromatography detector can be reduced.
  • the chromatography detector according to another aspect is The flow cell for a chromatography detector according to any one of items 1 to 4,
  • a light projecting unit that emits light to an eluent containing a sample flowing through the flow path through the light introducing unit of the flow cell for a chromatography detector.
  • a light receiving unit that receives light emitted by the light projecting unit and has passed through the sample and outputs a signal indicating the amount of received light may be provided.
  • this chromatography detector In this chromatography detector, light is emitted from the light projecting unit to the eluent containing the sample flowing through the flow path through the light introduction unit of the flow cell for the chromatography detector. The light emitted by the light projecting unit and transmitted through the sample is received by the light receiving unit, and a signal indicating the amount of received light is output.
  • the light emitted by the light projecting unit is suppressed from being irradiated to the seal member. Therefore, even when the analysis is performed for a long period of time, the change in the optical properties of the sealing member is suppressed, and the accuracy of the analysis is prevented from being lowered. Therefore, the chromatography detector can be used for a long period of time.
  • the light projecting unit may include a deuterium lamp that emits ultraviolet light.
  • the light-shielding portion is arranged between the light introduction portion and the seal member, it is possible to suppress the irradiation of the seal member with ultraviolet light even when ultraviolet light is used. Therefore, the change in the optical properties of the sealing member is suppressed, and the accuracy of the analysis is prevented from being lowered. Therefore, the sample can be analyzed more appropriately using ultraviolet light.

Abstract

A chromatography detector flow cell that comprises a body part, a capillary, a sealing member, and a light-blocking part. The body part has: an internal space that extends in one direction; and, at one end of the internal space, a light introduction part that can introduce light into the internal space. The capillary is housed in the internal space of the body part so as to extend in the one direction and forms a channel along which an eluent that includes a sample is to flow. The sealing member forms a seal between the body part and the capillary. The light-blocking part is arranged between the light introduction part and the sealing member.

Description

クロマトグラフィ検出器用フローセルおよびクロマトグラフィ検出器Flow cell for chromatographic detector and chromatographic detector
 本発明は、クロマトグラフィ検出器用フローセルおよびクロマトグラフィ検出器に関する。 The present invention relates to a flow cell for a chromatography detector and a chromatography detector.
 試料に含まれる物質を異なる成分ごとに分離する装置としてクロマトグラフ装置が知られている。例えば、液体クロマトグラフ装置においては、分析対象の試料が溶媒とともに分離カラムに供給される。分離カラムに導入された試料は、化学的性質または組成の違いにより成分ごとに溶離され、溶媒とともに検出器のフローセルに導かれる。検出器においては、フローセルに導かれた試料が光学的に検出される。検出器による検出結果に基づいて、液体クロマトグラムが生成される。 A chromatographic device is known as a device that separates substances contained in a sample into different components. For example, in a liquid chromatograph device, the sample to be analyzed is supplied to the separation column together with the solvent. The sample introduced into the separation column is eluted component by component due to differences in chemical properties or composition, and is guided to the flow cell of the detector together with the solvent. In the detector, the sample guided to the flow cell is optically detected. A liquid chromatogram is generated based on the detection result by the detector.
 近年、希少な試料を高感度でかつ高速に分析するために、液体クロマトグラフ装置およびその検出器には、小容量化および低拡散化が望まれている。ここで、検出器のフローセルを小容量化すると、フローセルを透過する光の光量が減少するとともに、光がフローセルの内壁で散乱しやすくなるため、試料を透過して検出される光の光量が減少し、検出感度が低下する。そこで、フローセルの小容量化と検出感度の維持とを両立させるために、内部にキャピラリが収容されたライトガイドセルと呼ばれるフローセルが開発されている。 In recent years, in order to analyze rare samples with high sensitivity and high speed, it is desired to reduce the volume and diffusion of the liquid chromatograph device and its detector. Here, if the volume of the flow cell of the detector is reduced, the amount of light transmitted through the flow cell is reduced, and the light is easily scattered on the inner wall of the flow cell, so that the amount of light transmitted through the sample is reduced. However, the detection sensitivity decreases. Therefore, in order to achieve both a small capacity of the flow cell and maintenance of the detection sensitivity, a flow cell called a light guide cell in which a capillary is housed has been developed.
 特許文献1に記載されたフローセルにおいては、キャピラリの両端部が一対の保持部材により保持される。一対の保持部材との接触部分を除いて、キャピラリの周囲は空気に覆われる。キャピラリの内部には、試料を含む溶媒が導入される。空気と、保持部材と、キャピラリと、溶媒との屈折率の大小関係が適切に決定されることにより、キャピラリ内に照射された光は、ほとんど散乱することなく、キャピラリの外壁面で全反射されながら試料を透過する。したがって、検出感度を維持しつつフローセルを小容量化することが可能である。
特開2014-41024号公報
In the flow cell described in Patent Document 1, both ends of the capillary are held by a pair of holding members. The periphery of the capillary is covered with air, except for the contact portion with the pair of holding members. A solvent containing a sample is introduced into the capillary. By appropriately determining the magnitude relationship between the refractive index of air, the holding member, the capillary, and the solvent, the light emitted into the capillary is totally reflected by the outer wall surface of the capillary with almost no scattering. While passing through the sample. Therefore, it is possible to reduce the capacity of the flow cell while maintaining the detection sensitivity.
Japanese Unexamined Patent Publication No. 2014-41024
 特許文献1に記載されたフローセルにおいては、保持部材の屈折率が所定の値に選定される。これにより、2種類以上の溶媒を用いたグラジエント分析が行われる場合でも、各保持部材とキャピラリとの接触部分の反射率がほとんど変化しない。そのため、液体クロマトグラムのベースラインの変動を抑制し、正確な分析を行うことが可能になる。しかしながら、特許文献1のフローセルを長期間にわたって使用すると、分析の正確さが低下することが判明した。 In the flow cell described in Patent Document 1, the refractive index of the holding member is selected to a predetermined value. As a result, even when gradient analysis using two or more kinds of solvents is performed, the reflectance of the contact portion between each holding member and the capillary is hardly changed. Therefore, it is possible to suppress fluctuations in the baseline of the liquid chromatogram and perform accurate analysis. However, it has been found that the accuracy of the analysis decreases when the flow cell of Patent Document 1 is used for a long period of time.
 本発明の目的は、長期間にわたって使用することが可能なクロマトグラフィ検出器用フローセルおよびクロマトグラフィ検出器を提供することである。 An object of the present invention is to provide a flow cell for a chromatography detector and a chromatography detector that can be used for a long period of time.
 本発明の一局面に従う態様は、試料のクロマトグラムの生成に用いられるクロマトグラフィ検出器用フローセルであって、一方向に延びる内部空間を有するとともに、前記内部空間に光を導入可能な光導入部を前記内部空間の一端に有する本体部と、前記本体部の前記内部空間に前記一方向に延びるように収容されるとともに、試料を含む溶離液が流れる流路を形成するキャピラリと、前記本体部と前記キャピラリとの間をシールするシール部材と、前記光導入部と前記シール部材との間に配置される遮光部とを備える、クロマトグラフィ検出器用フローセルに関する。 An aspect according to one aspect of the present invention is a flow cell for a chromatography detector used for generating a chromatogram of a sample, which has an internal space extending in one direction and an optical introduction unit capable of introducing light into the internal space. A main body portion held at one end of the internal space, a capillary that is accommodated in the internal space of the main body portion so as to extend in the one direction and forms a flow path through which an eluent containing a sample flows, and the main body portion and the said. The present invention relates to a flow cell for a chromatography detector, comprising a sealing member that seals between a capillary and a light-shielding portion arranged between the light introducing portion and the sealing member.
 本発明の他の局面に従う態様は、上記のクロマトグラフィ検出器用フローセルと、前記クロマトグラフィ検出器用フローセルの前記光導入部を通して、前記流路を流れる試料を含む溶離液に光を出射する投光部と、前記投光部により出射されかつ試料を透過した光を受光し、受光量を示す信号を出力する受光部とを備える、クロマトグラフィ検出器に関する。 Aspects according to another aspect of the present invention include a flow cell for a chromatography detector and a light projecting unit that emits light to an eluent containing a sample flowing through the flow path through the light introduction section of the flow cell for a chromatography detector. The present invention relates to a chromatography detector including a light receiving unit that receives light emitted by the light projecting unit and transmitted through a sample and outputs a signal indicating the amount of received light.
 本発明によれば、クロマトグラフィ検出器用フローセルおよびクロマトグラフィ検出器を長期間にわたって使用することが可能になる。 According to the present invention, the flow cell for a chromatography detector and the chromatography detector can be used for a long period of time.
図1は本発明の一実施の形態に係るクロマトグラフィ検出器を含むクロマトグラフ装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of a chromatographic apparatus including a chromatography detector according to an embodiment of the present invention. 図2は図1の検出器の構成を示す模式図である。FIG. 2 is a schematic view showing the configuration of the detector of FIG. 図3は図2のフローセルの構造を示す模式的部分断面図である。FIG. 3 is a schematic partial cross-sectional view showing the structure of the flow cell of FIG. 図4は変形例に係るフローセルの構造を示す模式的部分断面図である。FIG. 4 is a schematic partial cross-sectional view showing the structure of the flow cell according to the modified example. 図5は他の実施に係るフローセルの構造を示す模式的部分断面図である。FIG. 5 is a schematic partial cross-sectional view showing the structure of the flow cell according to another embodiment.
 (1)クロマトグラフ装置の構成
 以下、本発明の実施の形態に係るクロマトグラフィ検出器用フローセルおよびクロマトグラフィ検出器について図面を参照しながら詳細に説明する。図1は、本発明の一実施の形態に係るクロマトグラフィ検出器を含むクロマトグラフ装置の構成を示す図である。図1に示すように、クロマトグラフ装置100は、クロマトグラフィ検出器10(以下、検出器10と略記する。)、溶離液供給部20、試料供給部30、分離カラム40および処理部50を備える。
(1) Configuration of Chromatograph Device Hereinafter, the flow cell for a chromatography detector and the chromatography detector according to the embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing a configuration of a chromatographic apparatus including a chromatography detector according to an embodiment of the present invention. As shown in FIG. 1, the chromatographic apparatus 100 includes a chromatography detector 10 (hereinafter, abbreviated as detector 10), an eluent supply unit 20, a sample supply unit 30, a separation column 40, and a processing unit 50.
 溶離液供給部20は、2つのボトル21,22、2つの送液部23,24および混合部25を含む。ボトル21,22には、水溶液および有機溶媒が溶離液としてそれぞれ貯留される。送液部23,24は、例えば送液ポンプである。送液部23は、ボトル21に貯留された溶離液を圧送する。送液部24は、ボトル22に貯留された溶離液を圧送する。なお、送液部23とボトル21との間、送液部24とボトル22との間の各々には、図示しない脱気装置が介挿される。 The eluent supply unit 20 includes two bottles 21 and 22, two liquid supply units 23 and 24, and a mixing unit 25. An aqueous solution and an organic solvent are stored as eluents in the bottles 21 and 22, respectively. The liquid feeding units 23 and 24 are, for example, liquid feeding pumps. The liquid feeding unit 23 pumps the eluent stored in the bottle 21 by pressure. The liquid feeding unit 24 pumps the eluent stored in the bottle 22 by pressure. A degassing device (not shown) is inserted between the liquid feeding unit 23 and the bottle 21 and between the liquid feeding unit 24 and the bottle 22.
 混合部25は、例えばグラジエントミキサである。混合部25は、送液部23により圧送された溶離液と送液部24により圧送された溶離液とを任意の割合で混合し、混合比を変化させつつ、混合された溶離液を供給する。試料供給部30は、例えばインジェクタである。試料供給部30は、分析対象の試料を溶離液供給部20により供給された溶離液とともに分離カラム40に導入する。 The mixing unit 25 is, for example, a gradient mixer. The mixing unit 25 mixes the eluent pumped by the liquid feeding unit 23 and the eluent pumped by the liquid feeding unit 24 at an arbitrary ratio, and supplies the mixed eluent while changing the mixing ratio. .. The sample supply unit 30 is, for example, an injector. The sample supply unit 30 introduces the sample to be analyzed into the separation column 40 together with the eluent supplied by the eluent supply unit 20.
 分離カラム40は、図示しないカラム恒温槽の内部に収容され、所定の一定温度に調整される。分離カラム40は、導入された試料を化学的性質または組成の違いにより成分ごとに分離する。検出器10は、分離カラム40により分離された試料の成分を検出する。検出器10の詳細については後述する。処理部50は、検出器10による検出結果を処理することにより、各成分の保持時間と検出強度との関係を示すクロマトグラムを生成する。 The separation column 40 is housed inside a column constant temperature bath (not shown) and adjusted to a predetermined constant temperature. The separation column 40 separates the introduced sample for each component according to the difference in chemical properties or composition. The detector 10 detects the components of the sample separated by the separation column 40. Details of the detector 10 will be described later. The processing unit 50 processes the detection result by the detector 10 to generate a chromatogram showing the relationship between the retention time of each component and the detection intensity.
 図2は、図1の検出器10の構成を示す模式図である。図2に示すように、検出器10は、クロマトグラフィ検出器用フローセル1(以下、フローセル1と略記する。)、投光部11、集光レンズ12、分光部13および受光部14を含む。フローセル1は、本体部2およびキャピラリ3を含む。 FIG. 2 is a schematic diagram showing the configuration of the detector 10 of FIG. As shown in FIG. 2, the detector 10 includes a flow cell 1 for a chromatography detector (hereinafter, abbreviated as flow cell 1), a light projecting unit 11, a condensing lens 12, a spectroscopic unit 13, and a light receiving unit 14. The flow cell 1 includes a main body 2 and a capillary 3.
 本体部2は、一方向に延びる内部空間2Cを有する。また、本体部2は、内部空間2Cの一端および他端にそれぞれ光導入部2Aおよび光導出部2Bを有する。光導入部2Aは内部空間2Cに光を導入可能であり、光導出部2Bは内部空間2Cから光を導出可能である。光導出部2Bとしては、特許文献1の図6に記載されているように、光ファイバが用いられてもよい。さらに、本体部2には、内部空間2Cにつながる導入口2aおよび導出口2bが形成される。キャピラリ3は、内部に流路3aを有し、一方向に延びるように本体部2の内部空間2Cに収容される。 The main body 2 has an internal space 2C extending in one direction. Further, the main body portion 2 has a light introduction portion 2A and a light extraction portion 2B at one end and the other end of the internal space 2C, respectively. The light introduction unit 2A can introduce light into the internal space 2C, and the light extraction unit 2B can derive light from the internal space 2C. As the optical derivation unit 2B, an optical fiber may be used as described in FIG. 6 of Patent Document 1. Further, the main body 2 is formed with an introduction port 2a and an outlet 2b connected to the internal space 2C. The capillary 3 has a flow path 3a inside, and is housed in the internal space 2C of the main body 2 so as to extend in one direction.
 図1の分離カラム40を通過した試料を含む溶離液は、矢印Aで示すように、導入口2aから本体部2の内部空間2Cに導入される。その後、溶離液は、矢印Bで示すように、キャピラリ3の内部の流路3aを一方向に流れる。その後、溶離液は、矢印Cで示すように、導出口2bから本体部2の外部に導出される。以下、上記の一方向を流路方向と呼ぶ。また、流路方向において溶離液が流れる方向を下流と定義し、その反対方向を上流と定義する。フローセル1の詳細については後述する。なお、試料を含む溶離液の流れの向きは、上記とは逆であってもよい。 The eluent containing the sample that has passed through the separation column 40 of FIG. 1 is introduced from the introduction port 2a into the internal space 2C of the main body 2 as shown by an arrow A. After that, the eluent flows in one direction through the flow path 3a inside the capillary 3 as shown by the arrow B. After that, the eluent is led out from the outlet 2b to the outside of the main body 2 as shown by an arrow C. Hereinafter, the above one direction is referred to as a flow path direction. Further, the direction in which the eluent flows in the flow path direction is defined as downstream, and the opposite direction is defined as upstream. The details of the flow cell 1 will be described later. The direction of the flow of the eluent containing the sample may be opposite to the above.
 投光部11は、広帯域の光を出射する光源であり、本例では紫外光を出射する重水素ランプを含む。投光部11は、タングステンランプまたはLED(発光ダイオード)等の他の光源を含んでもよいし、異なる波長の光を出射する複数の光源を含んでもよい。集光レンズ12は、投光部11により出射された光を集光し、光導入部2Aを通してフローセル1の流路3aを流れる溶離液中の試料に照射する。 The light projecting unit 11 is a light source that emits wideband light, and in this example, includes a deuterium lamp that emits ultraviolet light. The light projecting unit 11 may include other light sources such as a tungsten lamp or an LED (light emitting diode), or may include a plurality of light sources that emit light having different wavelengths. The condensing lens 12 collects the light emitted by the light projecting unit 11 and irradiates the sample in the eluent flowing through the flow path 3a of the flow cell 1 through the light introducing unit 2A.
 試料に照射された光は、試料を透過することにより試料と相互作用した後、光導出部2Bを通して分光部13に入射される。分光部13は、例えば反射型の回折格子であり、入射された光を波長ごとに異なる角度で反射するように分光する。受光部14は、例えば複数のフォトダイオードが一次元状に配列されたフォトダイオードアレイである。受光部14は、分光部13により分光された各波長の光を受光し、受光量を示す信号を検出結果として図1の処理部50に出力する。 The light radiated to the sample interacts with the sample by passing through the sample, and then is incident on the spectroscopic unit 13 through the light derivation unit 2B. The spectroscopic unit 13 is, for example, a reflection type diffraction grating, and disperses the incident light so as to be reflected at different angles for each wavelength. The light receiving unit 14 is, for example, a photodiode array in which a plurality of photodiodes are arranged one-dimensionally. The light receiving unit 14 receives light of each wavelength dispersed by the spectroscopic unit 13 and outputs a signal indicating the amount of received light to the processing unit 50 of FIG. 1 as a detection result.
 (2)フローセルの構造
 図3は、図2のフローセル1の構造を示す模式的部分断面図である。図3はフローセル1の上流端部の構造を示すが、フローセル1の下流端部の構造は上流端部の構造と基本的に同様である。図3に示すように、フローセル1は、本体部2、キャピラリ3、一対のシール部材4および一対の窓部材5を含む。図3には、フローセル1の上流における一方のシール部材4および一方の窓部材5が図示され、下流における他方のシール部材4および他方の窓部材5の図示が省略されている。
(2) Structure of Flow Cell FIG. 3 is a schematic partial cross-sectional view showing the structure of Flow Cell 1 of FIG. FIG. 3 shows the structure of the upstream end portion of the flow cell 1, but the structure of the downstream end portion of the flow cell 1 is basically the same as the structure of the upstream end portion. As shown in FIG. 3, the flow cell 1 includes a main body portion 2, a capillary 3, a pair of sealing members 4, and a pair of window members 5. In FIG. 3, one seal member 4 and one window member 5 upstream of the flow cell 1 are shown, and the other seal member 4 and the other window member 5 downstream are omitted.
 本体部2は、例えばステンレスにより形成され、流路方向に延びる円筒状の外形を有する。したがって、本体部2の両端部は開口している。本体部2の上流端部の開口が光導入部2Aとなる。また、本体部2の下流端部の開口が光導出部2B(図2)となる。流路方向における本体部2の長さLは、例えば10mmである。 The main body 2 is made of stainless steel, for example, and has a cylindrical outer shape extending in the flow path direction. Therefore, both ends of the main body 2 are open. The opening at the upstream end of the main body 2 serves as the light introduction portion 2A. Further, the opening at the downstream end of the main body 2 becomes the light lead-out portion 2B (FIG. 2). The length L of the main body 2 in the flow path direction is, for example, 10 mm.
 キャピラリ3は、例えば溶融石英により形成され、流路方向に延びる円筒状の外形を有する。キャピラリ3は、本体部2の内部空間2Cに収容される。キャピラリ3の内部が流路3aとなる。流路3aの直径Dは、例えば100μmである。キャピラリ3の上流端部よりもさらに上流において、本体部2には、外周面から内周面まで貫通する導入口2aが形成される。また、キャピラリ3の下流端部よりもさらに下流において、本体部2には、外周面から内周面まで貫通する導出口2b(図2)が形成される。 The capillary 3 is formed of, for example, molten quartz and has a cylindrical outer shape extending in the flow path direction. The capillary 3 is housed in the internal space 2C of the main body 2. The inside of the capillary 3 becomes the flow path 3a. The diameter D of the flow path 3a is, for example, 100 μm. Further upstream than the upstream end of the capillary 3, the main body 2 is formed with an introduction port 2a penetrating from the outer peripheral surface to the inner peripheral surface. Further, further downstream than the downstream end of the capillary 3, the main body 2 is formed with a lead-out port 2b (FIG. 2) penetrating from the outer peripheral surface to the inner peripheral surface.
 各シール部材4は、耐薬品性を有する円環状の部材である。以下の説明では、一対のシール部材4を区別する場合には、一方および他方のシール部材4をそれぞれシール部材4A,4Bと呼ぶ。シール部材4Aは、フローセル1の上流において、本体部2の内周面とキャピラリ3の外周面との間に配置される。シール部材4B(図2)は、フローセル1の下流において、本体部2の内周面とキャピラリ3の外周面との間に配置される。これにより、フローセル1の上流および下流において、本体部2の内周面とキャピラリ3の外周面との間がシールされる。 Each seal member 4 is an annular member having chemical resistance. In the following description, when the pair of seal members 4 are distinguished, one and the other seal member 4 are referred to as seal members 4A and 4B, respectively. The seal member 4A is arranged upstream of the flow cell 1 between the inner peripheral surface of the main body 2 and the outer peripheral surface of the capillary 3. The seal member 4B (FIG. 2) is arranged downstream of the flow cell 1 between the inner peripheral surface of the main body 2 and the outer peripheral surface of the capillary 3. As a result, the inner peripheral surface of the main body 2 and the outer peripheral surface of the capillary 3 are sealed upstream and downstream of the flow cell 1.
 各シール部材4との接触部分を除いて、キャピラリ3の周囲は空気に覆われる。ここで、各シール部材4は、特定の範囲の屈折率を有する材料により形成されることが好ましい。この場合、溶離液が水溶液であるときのキャピラリ3とシール部材4との接触面の反射率と、溶離液が有機溶媒であるときの同接触面の反射率との差を所定値以下にすることができる。 Except for the contact portion with each seal member 4, the periphery of the capillary 3 is covered with air. Here, each seal member 4 is preferably formed of a material having a refractive index in a specific range. In this case, the difference between the reflectance of the contact surface between the capillary 3 and the sealing member 4 when the eluent is an aqueous solution and the reflectance of the contact surface when the eluent is an organic solvent is set to a predetermined value or less. be able to.
 本実施の形態においては、有機溶媒がACN(アセトニトリル)である場合、光の入射開口数(入射角)との関係から、各シール部材4は1.31以下または1.40以上の屈折率を有する材料により形成されることが好ましい。このような材料としては、例えばテフロン(登録商標)AF(アモルファスフロロポリマ)またはPEEK(登録商標;ポリエーテルエーテルケトン)が挙げられる。 In the present embodiment, when the organic solvent is ACN (acetonitrile), each sealing member 4 has a refractive index of 1.31 or less or 1.40 or more in relation to the number of incident apertures (incident angle) of light. It is preferably formed of the material to be contained. Examples of such a material include Teflon (registered trademark) AF (amorphous fluoropolymer) or PEEK (registered trademark; polyetheretherketone).
 各窓部材5は、例えば石英により形成される。以下の説明では、一対の窓部材5を区別する場合には、一方および他方の窓部材5をそれぞれ窓部材5A,5Bと呼ぶ。窓部材5Aは、本体部2の上流端部の光導入部2Aに取り付けられる。窓部材5B(図2)は、本体部2の下流端部の光導出部2B(図2)に取り付けられる。これにより、本体部2の上流端部および下流端部が、光を透過可能に閉塞される。 Each window member 5 is formed of, for example, quartz. In the following description, when the pair of window members 5 are distinguished, one and the other window members 5 are referred to as window members 5A and 5B, respectively. The window member 5A is attached to the light introduction portion 2A at the upstream end portion of the main body portion 2. The window member 5B (FIG. 2) is attached to the optical lead-out portion 2B (FIG. 2) at the downstream end of the main body portion 2. As a result, the upstream end and the downstream end of the main body 2 are closed so that light can be transmitted.
 フローセル1の上流において、本体部2の内周面には光導入部2Aと、シール部材4Aとの間に突出するように円環状の遮光部6が形成される(図3)。図2の投光部11から窓部材5Aを通して本体部2の内部空間2Cに導かれた光の一部は、遮光部6の中央の開口6aを通ってキャピラリ3の流路3aに入射する。一方、本体部2の内部空間2Cに入射した光の他の一部は、遮光部6の遮光面6bで遮られることによりシール部材4Aには照射されない。このように、遮光部6は、流路3aに光が入射することを許容しつつ、シール部材4Aに光が照射されることを抑制する。 Upstream of the flow cell 1, an annular light-shielding portion 6 is formed on the inner peripheral surface of the main body portion 2 so as to project between the light introduction portion 2A and the seal member 4A (FIG. 3). A part of the light guided from the light projecting portion 11 of FIG. 2 through the window member 5A to the internal space 2C of the main body portion 2 passes through the central opening 6a of the light shielding portion 6 and enters the flow path 3a of the capillary 3. On the other hand, the other part of the light incident on the internal space 2C of the main body 2 is blocked by the light-shielding surface 6b of the light-shielding portion 6, so that the seal member 4A is not irradiated. In this way, the light-shielding portion 6 allows the light to enter the flow path 3a and suppresses the irradiation of the seal member 4A with the light.
 本実施の形態においては、遮光部6は本体部2と一体的に形成される。そのため、部品点数を減らすことができる。また、フローセル1の製造上の工数および調整数を減らすことができる。しかしながら、実施の形態はこれに限定されない。図4は、変形例に係るフローセル1の構造を示す模式的部分断面図である。図4に示すように、遮光部6は、本体部2とは別体として形成され、光導入部2Aとシール部材4Aとの間に配置されてもよい。この場合、遮光部6は、本体部2と同様の材料(例えばステンレス)により形成されてもよいし、セラミクス等の他の材料により形成されてもよい。 In the present embodiment, the light-shielding portion 6 is integrally formed with the main body portion 2. Therefore, the number of parts can be reduced. Moreover, the man-hours and the number of adjustments in manufacturing the flow cell 1 can be reduced. However, the embodiment is not limited to this. FIG. 4 is a schematic partial cross-sectional view showing the structure of the flow cell 1 according to the modified example. As shown in FIG. 4, the light-shielding portion 6 may be formed as a separate body from the main body portion 2 and may be arranged between the light introduction portion 2A and the seal member 4A. In this case, the light-shielding portion 6 may be formed of the same material as the main body portion 2 (for example, stainless steel), or may be formed of another material such as ceramics.
 (3)検出器の動作
 主に図3を参照して検出器10の動作について説明する。分離カラム40(図1)を通過した試料を含む溶離液は、本体部2の上流における導入口2aから本体部2の内部空間2Cに導入された後、キャピラリ3の上流端部から流路3a内に導入される。本体部2の内周面とキャピラリ3の外周面との間は一対のシール部材4によりシールされるので、シール部材4の外周部分には溶離液は浸入しない。溶離液は、流路3aを下流方向に流れ、キャピラリ3の下流端部から導出された後、本体部2の下流における導出口2bから本体部2の外部に導出される。
(3) Operation of the detector The operation of the detector 10 will be described mainly with reference to FIG. The eluent containing the sample that has passed through the separation column 40 (FIG. 1) is introduced into the internal space 2C of the main body 2 from the introduction port 2a upstream of the main body 2, and then the flow path 3a from the upstream end of the capillary 3. Introduced in. Since the inner peripheral surface of the main body 2 and the outer peripheral surface of the capillary 3 are sealed by the pair of sealing members 4, the eluent does not penetrate into the outer peripheral portion of the sealing member 4. The eluent flows downstream in the flow path 3a, is led out from the downstream end of the capillary 3, and is then led out of the main body 2 from the outlet 2b downstream of the main body 2.
 また、投光部11(図2)から光が出射され、窓部材5Aから本体部2の内部空間2Cに導かれる。上記のように、内部空間2Cに導かれた光の一部は、遮光部6の遮光面6bにより遮られるので、シール部材4Aには照射されない。内部空間2Cに導かれた光の他の一部は、遮光部6の開口6aを通ってキャピラリ3の流路3aに入射する。 Further, light is emitted from the light projecting unit 11 (FIG. 2) and guided from the window member 5A to the internal space 2C of the main body unit 2. As described above, a part of the light guided to the internal space 2C is blocked by the light-shielding surface 6b of the light-shielding portion 6, so that the seal member 4A is not irradiated. The other part of the light guided to the internal space 2C enters the flow path 3a of the capillary 3 through the opening 6a of the light-shielding portion 6.
 ここで、本実施の形態においては、屈折率が約1.333の水溶液と、屈折率が約1.344のACNとを用いたグラジエント分析が行われる。そのため、流路3aを流れる溶離液の屈折率は、1.333と1.344との間で変化する。この場合、本例における光の入射角によれば、流路3aに入射した光は、図3に点線の矢印で示すように、各シール部材4との接触部分を除くキャピラリ3の外壁面で全反射を繰り返しながら、流路方向に伝搬する。 Here, in the present embodiment, a gradient analysis is performed using an aqueous solution having a refractive index of about 1.333 and ACN having a refractive index of about 1.344. Therefore, the refractive index of the eluent flowing through the flow path 3a varies between 1.333 and 1.344. In this case, according to the incident angle of the light in this example, the light incident on the flow path 3a is on the outer wall surface of the capillary 3 excluding the contact portion with each seal member 4, as shown by the dotted arrow in FIG. It propagates in the direction of the flow path while repeating total reflection.
 各シール部材4との接触部分においては、各シール部材4の屈折率が1.31以下である場合には、溶離液における水溶液とACNとの混合比がいずれの値であっても、光は当該接触部分で全反射されつつ流路方向に伝搬する。一方、各シール部材4の屈折率が1.40以上である場合には、光は接触部分で全反射しないものの、水溶液とACNとの混合比がいずれの値であっても、反射率が略一定となる。したがって、水溶液とACNとの混合比が変化しても、当該接触部分の反射率が変化することを防止することができる。 In the contact portion with each sealing member 4, when the refractive index of each sealing member 4 is 1.31 or less, the light is emitted regardless of the mixing ratio of the aqueous solution and ACN in the eluent. It propagates in the flow path direction while being totally reflected at the contact portion. On the other hand, when the refractive index of each sealing member 4 is 1.40 or more, the light is not totally reflected at the contact portion, but the reflectance is substantially the same regardless of the mixing ratio of the aqueous solution and ACN. It becomes constant. Therefore, even if the mixing ratio of the aqueous solution and ACN changes, it is possible to prevent the reflectance of the contact portion from changing.
 光は、キャピラリ3内を伝搬することにより、流路3a内で溶離液中の試料と相互作用する。試料と相互作用した光は、窓部材5B(図2)を通過して本体部2外に導かれ、分光部13(図2)により分光された後、受光部14(図2)により受光される。受光部14による受光量に基づいて、処理部50(図1)によりクロマトグラムが生成される。 The light propagates in the capillary 3 and interacts with the sample in the eluent in the flow path 3a. The light interacting with the sample passes through the window member 5B (FIG. 2), is guided to the outside of the main body 2, is separated by the spectroscopic unit 13 (FIG. 2), and then is received by the light receiving unit 14 (FIG. 2). To. A chromatogram is generated by the processing unit 50 (FIG. 1) based on the amount of light received by the light receiving unit 14.
 (4)効果
 本発明者は、特許文献1のフローセルを長期間にわたって使用した場合に分析の正確さが低下する原因を特定するために、種々の実験および考察を繰り返した結果、分析の正確さの低下は保持部材の光学的性質の変化に起因することを見い出した。また、本発明者は、保持部材に光(特に紫外光)が長期間照射されることにより、保持部材の機械的強度の低下のみならず、保持部材の光学的性質(例えば屈折率)が変化するという知見を得た。
(4) Effect The present inventor has repeated various experiments and discussions in order to identify the cause of the decrease in the accuracy of the analysis when the flow cell of Patent Document 1 is used for a long period of time, and as a result, the accuracy of the analysis It was found that the decrease in the holding member was caused by a change in the optical properties of the holding member. Further, in the present inventor, when the holding member is irradiated with light (particularly ultraviolet light) for a long period of time, not only the mechanical strength of the holding member is lowered but also the optical properties (for example, refractive index) of the holding member are changed. I got the knowledge to do.
 そこで、本実施の形態に係る検出器10においては、投光部11によりフローセル1の光導入部2Aを通して、流路3aを流れる試料を含む溶離液に光が出射される。投光部11により出射されかつ試料を透過した光が受光部14により受光され、受光量を示す信号が出力される。 Therefore, in the detector 10 according to the present embodiment, light is emitted from the light projecting unit 11 to the eluent containing the sample flowing through the flow path 3a through the light introduction unit 2A of the flow cell 1. The light emitted by the light projecting unit 11 and transmitted through the sample is received by the light receiving unit 14, and a signal indicating the amount of received light is output.
 フローセル1においては、本体部2における流路方向に延びる内部空間2Cに、キャピラリ3が流路方向に延びるように収容される。本体部2とキャピラリ3との間が、シール部材4によりシールされる。本体部2の内部空間2Cの一端における光導入部2Aと、シール部材4Aとの間に遮光部6が配置される。試料を含む溶離液がキャピラリ3に形成された流路3aを流れる。また、試料を検出するための投光部11からの光が光導入部2Aから内部空間2Cに導入される。 In the flow cell 1, the capillary 3 is housed in the internal space 2C extending in the flow path direction in the main body 2 so as to extend in the flow path direction. The space between the main body 2 and the capillary 3 is sealed by the sealing member 4. A light-shielding portion 6 is arranged between the light introduction portion 2A at one end of the internal space 2C of the main body portion 2 and the seal member 4A. The eluent containing the sample flows through the flow path 3a formed in the capillary 3. Further, the light from the light projecting unit 11 for detecting the sample is introduced from the light introducing unit 2A into the internal space 2C.
 この構成によれば、光導入部2Aとシール部材4Aとの間に遮光部6が配置されるので、光がシール部材4Aに照射されることが抑制される。そのため、長期間にわたって分析を行った場合でも、シール部材4Aの光学的性質が変化することが抑制され、分析の正確さが低下することが防止される。また、シール部材4Aの機械的強度の低下を抑制することができる。したがって、フローセル1を長期間にわたって使用することが可能になる。 According to this configuration, since the light-shielding portion 6 is arranged between the light introduction portion 2A and the seal member 4A, it is possible to suppress the irradiation of light to the seal member 4A. Therefore, even when the analysis is performed for a long period of time, the change in the optical properties of the sealing member 4A is suppressed, and the accuracy of the analysis is prevented from being lowered. Further, it is possible to suppress a decrease in the mechanical strength of the seal member 4A. Therefore, the flow cell 1 can be used for a long period of time.
 また、投光部11として紫外光を出射する重水素ランプを用いた場合でも、紫外光がシール部材4に照射されることが遮光部6により抑制される。そのため、シール部材4の光学的性質が変化することが抑制され、分析の正確さが低下することが防止される。これにより、紫外光を用いて試料をより適切に分析することができる。 Further, even when a deuterium lamp that emits ultraviolet light is used as the light projecting unit 11, the light shielding unit 6 suppresses the irradiation of the seal member 4 with ultraviolet light. Therefore, the change in the optical properties of the seal member 4 is suppressed, and the accuracy of the analysis is prevented from being lowered. This makes it possible to analyze the sample more appropriately using ultraviolet light.
 (5)他の実施の形態
 図5は、他の実施に係るフローセル1の構造を示す模式的部分断面図である。図5に示すように、他の実施の形態においては、遮光部6は、シール部材4Aおよびキャピラリ3の上流の端面3b(光導入部2Aに対向する端面3b)と、窓部材5Aとの間に突出するように形成される。具体的には、遮光部6の開口6aの中心とキャピラリ3の中心軸とが重なった状態において、開口6aの直径dは、キャピラリ3の内直径d1(すなわち流路3aの直径D)と等しい。
(5) Other Embodiments FIG. 5 is a schematic partial cross-sectional view showing the structure of the flow cell 1 according to the other embodiment. As shown in FIG. 5, in another embodiment, the light-shielding portion 6 is located between the seal member 4A and the upstream end face 3b of the capillary 3 (the end face 3b facing the light introduction portion 2A) and the window member 5A. It is formed so as to protrude into. Specifically, in a state where the center of the opening 6a of the light-shielding portion 6 and the central axis of the capillary 3 overlap, the diameter d of the opening 6a is equal to the inner diameter d1 of the capillary 3 (that is, the diameter D of the flow path 3a). ..
 この構成によれば、投光部11から窓部材5Aを通して本体部2の内部空間2Cに導かれた光の一部は、遮光部6の遮光面6bで遮られることにより、キャピラリ3の端面3bからキャピラリ3の壁面内に直接入射することが防止される。この場合、試料と相互作用することなくキャピラリ3の壁面内を伝達して受光部14に到達する光の光量が減少する。これにより、試料の濃度と受光部14による受光量から算出される吸光度との直線性が低下することが防止される。その結果、より高い精度で試料の定量分析を行うことができる。 According to this configuration, a part of the light guided from the light projecting portion 11 to the internal space 2C of the main body portion 2 through the window member 5A is blocked by the light shielding surface 6b of the light shielding portion 6, so that the end surface 3b of the capillary 3 is blocked. It is prevented from directly incident on the wall surface of the capillary 3. In this case, the amount of light transmitted through the wall surface of the capillary 3 and reaching the light receiving unit 14 without interacting with the sample is reduced. This prevents the linearity between the concentration of the sample and the absorbance calculated from the amount of light received by the light receiving unit 14 from being lowered. As a result, the quantitative analysis of the sample can be performed with higher accuracy.
 また、図5の遮光部6の遮光面6bの面積は、図3の遮光部6の遮光面6bの面積よりも大型化されるので、反射光等の間接的な光がシール部材4Aに向かう場合でも、そのような光を遮光面6bにより確実に遮ることができる。そのため、シール部材4Aに光が照射されることをより抑制することができる。したがって、シール部材4Aの光学的性質をより長期にわたって維持することができる。 Further, since the area of the light-shielding surface 6b of the light-shielding portion 6 of FIG. 5 is larger than the area of the light-shielding surface 6b of the light-shielding portion 6 of FIG. 3, indirect light such as reflected light is directed toward the seal member 4A. Even in this case, such light can be reliably blocked by the light-shielding surface 6b. Therefore, it is possible to further suppress the irradiation of the seal member 4A with light. Therefore, the optical properties of the sealing member 4A can be maintained for a longer period of time.
 なお、本実施の形態においては、開口6aの直径dはキャピラリ3の内直径d1と等しいが、実施の形態はこれに限定されない。開口6aの直径dは、キャピラリ3の内直径d1以上でかつ外直径d2以下であってもよい。この場合でも、光がキャピラリ3の端面3bからキャピラリ3の壁面内に直接入射することを軽減することができる。また、反射光等の間接的な光がシール部材4Aに照射されることを軽減することができる。 In the present embodiment, the diameter d of the opening 6a is equal to the inner diameter d1 of the capillary 3, but the embodiment is not limited to this. The diameter d of the opening 6a may be the inner diameter d1 or more and the outer diameter d2 or less of the capillary 3. Even in this case, it is possible to reduce the direct incident of light from the end surface 3b of the capillary 3 into the wall surface of the capillary 3. Further, it is possible to reduce the irradiation of the seal member 4A with indirect light such as reflected light.
 (6)態様
 本発明者は、特許文献1のフローセルを長期間にわたって使用した場合に分析の正確さが低下する原因を特定するために、種々の実験および考察を繰り返した結果、分析の正確さの低下は保持部材の光学的性質の変化に起因することを見い出した。また、本発明者は、保持部材に光(特に紫外光)が長期間照射されることにより、保持部材の光学的性質(例えば屈折率)が変化するという知見を得た。本発明者は、この知見に基づいて、以下の構成に想到した。
(6) Aspect The present inventor has repeated various experiments and discussions in order to identify the cause of the decrease in the accuracy of the analysis when the flow cell of Patent Document 1 is used for a long period of time, and as a result, the accuracy of the analysis It was found that the decrease in the holding member was caused by a change in the optical properties of the holding member. Further, the present inventor has obtained the finding that the optical properties (for example, the refractive index) of the holding member are changed by irradiating the holding member with light (particularly ultraviolet light) for a long period of time. Based on this finding, the present inventor came up with the following configuration.
 (第1項)一態様に係るクロマトグラフィ検出器用フローセルは、
 試料のクロマトグラムの生成に用いられるクロマトグラフィ検出器用フローセルであって、
 一方向に延びる内部空間を有するとともに、前記内部空間に光を導入可能な光導入部を前記内部空間の一端に有する本体部と、
 前記本体部の前記内部空間に前記一方向に延びるように収容されるとともに、試料を含む溶離液が流れる流路を形成するキャピラリと、
 前記本体部と前記キャピラリとの間をシールするシール部材と、
 前記光導入部と前記シール部材との間に配置される遮光部とを備えてもよい。
(Clause 1) The flow cell for a chromatography detector according to one aspect is
A flow cell for a chromatography detector used to generate a chromatogram of a sample.
A main body having an internal space extending in one direction and having a light introducing portion capable of introducing light into the internal space at one end of the internal space.
A capillary that is accommodated in the internal space of the main body so as to extend in the one direction and forms a flow path through which an eluent containing a sample flows.
A sealing member that seals between the main body and the capillary,
A light-shielding portion arranged between the light introduction portion and the seal member may be provided.
 このクロマトグラフィ検出器用フローセルにおいては、本体部における一方向に延びる内部空間に、キャピラリが一方向に延びるように収容される。本体部とキャピラリとの間が、シール部材によりシールされる。本体部の内部空間の一端における光導入部と、シール部材との間に遮光部が配置される。試料を含む溶離液がキャピラリに形成された流路を流れる。また、試料を検出するための光が光導入部から内部空間に導入される。 In this flow cell for a chromatography detector, the capillary is housed so as to extend in one direction in the internal space extending in one direction in the main body. The space between the main body and the capillary is sealed by a sealing member. A light-shielding portion is arranged between the light introduction portion at one end of the internal space of the main body portion and the seal member. The eluent containing the sample flows through the flow path formed in the capillary. In addition, light for detecting the sample is introduced into the internal space from the light introduction unit.
 この構成によれば、光導入部とシール部材との間に遮光部が配置されるので、光がシール部材に照射されることが抑制される。そのため、長期間にわたって分析を行った場合でも、シール部材の光学的性質が変化することが抑制され、分析の正確さが低下することが防止される。したがって、クロマトグラフィ検出器用フローセルを長期間にわたって使用することが可能になる。 According to this configuration, since the light-shielding portion is arranged between the light introduction portion and the seal member, it is possible to suppress the irradiation of light to the seal member. Therefore, even when the analysis is performed for a long period of time, the change in the optical properties of the sealing member is suppressed, and the accuracy of the analysis is prevented from being lowered. Therefore, the flow cell for a chromatography detector can be used for a long period of time.
 (第2項)第1項に記載のクロマトグラフィ検出器用フローセルにおいて、
 前記キャピラリは、前記光導入部に対向する端面を有し、
 前記遮光部は、前記一方向において前記キャピラリの前記端面と少なくとも部分的に重なるように配置されてもよい。
(Item 2) In the flow cell for chromatographic detector according to item 1,
The capillary has an end face facing the light introduction portion and has an end face.
The light-shielding portion may be arranged so as to at least partially overlap the end face of the capillary in the one direction.
 この場合、光がキャピラリの端面に照射されることが抑制される。そのため、試料と相互作用することなくキャピラリの壁面内を伝達して検出される光の光量が減少する。したがって、試料の濃度と検出量との直線性が低下することが防止される。その結果、より高い精度で試料の定量分析を行うことができる。 In this case, it is suppressed that the light is applied to the end face of the capillary. Therefore, the amount of light transmitted through the wall surface of the capillary and detected without interacting with the sample is reduced. Therefore, it is possible to prevent the linearity between the concentration of the sample and the detected amount from being lowered. As a result, the quantitative analysis of the sample can be performed with higher accuracy.
 また、反射光等の間接的な光がシール部材に向かう場合でも、そのような光を遮光部により確実に遮ることができるので、シール部材の光学的性質をより長期にわたって維持することができる。これにより、クロマトグラフィ検出器用フローセルをより長期間にわたって使用することが可能になる。 Further, even when indirect light such as reflected light is directed to the seal member, such light can be reliably blocked by the light-shielding portion, so that the optical properties of the seal member can be maintained for a longer period of time. This makes it possible to use the flow cell for a chromatography detector for a longer period of time.
 (第3項)第2項に記載のクロマトグラフィ検出器用フローセルにおいて、
 前記遮光部は、円形の開口を有する円環状に形成され、
 前記キャピラリは、円筒状に形成され、
 前記遮光部は、前記開口の中心と前記キャピラリの前記流路の中心軸とが重なるように配置され、
 前記遮光部の前記開口の直径は、前記キャピラリの内直径以上でかつ外直径以下であってもよい。
(Item 3) In the flow cell for chromatographic detector according to item 2,
The light-shielding portion is formed in an annular shape having a circular opening.
The capillary is formed in a cylindrical shape.
The light-shielding portion is arranged so that the center of the opening and the central axis of the flow path of the capillary overlap.
The diameter of the opening of the light-shielding portion may be greater than or equal to the inner diameter of the capillary and less than or equal to the outer diameter.
 この場合、一方向においてキャピラリの端面と少なくとも部分的に重なるように容易に遮光部を配置することができる。 In this case, the light-shielding portion can be easily arranged so as to overlap the end face of the capillary at least partially in one direction.
 (第4項)第3項に記載のクロマトグラフィ検出器用フローセルにおいて、
 前記遮光部の前記開口の直径は、前記キャピラリの内直径と等しくてもよい。
(Item 4) In the flow cell for chromatographic detector according to item 3,
The diameter of the opening of the light-shielding portion may be equal to the inner diameter of the capillary.
 この場合、光がキャピラリの端面に照射されることが防止される。そのため、さらに高い精度で試料の定量分析を行うことができる。また、反射光等の間接的な光がシール部材に向かう場合でも、そのような光を遮光部にさらに確実に遮ることができるので、シール部材の光学的性質をより長期にわたって維持することができる。その結果、クロマトグラフィ検出器用フローセルをより長期間にわたって使用することが可能になる。 In this case, it is prevented that the light is applied to the end face of the capillary. Therefore, the quantitative analysis of the sample can be performed with higher accuracy. Further, even when indirect light such as reflected light is directed to the seal member, such light can be more reliably blocked by the light-shielding portion, so that the optical properties of the seal member can be maintained for a longer period of time. .. As a result, the flow cell for the chromatography detector can be used for a longer period of time.
 (第5項)第1~4のいずれか一項に記載のクロマトグラフィ検出器用フローセルにおいて、
 前記遮光部は、前記本体部と一体的に形成されてもよい。
(Item 5) In the flow cell for a chromatography detector according to any one of items 1 to 4,
The light-shielding portion may be formed integrally with the main body portion.
 この場合、部品点数を減らすことができる。また、クロマトグラフィ検出器用フローセルの製造上の工数および調整数を減らすことができる。 In this case, the number of parts can be reduced. In addition, the man-hours and the number of adjustments in manufacturing the flow cell for the chromatography detector can be reduced.
 (第6項)他の態様に係るクロマトグラフィ検出器は、
 第1~4のいずれか一項に記載のクロマトグラフィ検出器用フローセルと、
 前記クロマトグラフィ検出器用フローセルの前記光導入部を通して、前記流路を流れる試料を含む溶離液に光を出射する投光部と、
 前記投光部により出射されかつ試料を透過した光を受光し、受光量を示す信号を出力する受光部とを備えてもよい。
(Section 6) The chromatography detector according to another aspect is
The flow cell for a chromatography detector according to any one of items 1 to 4,
A light projecting unit that emits light to an eluent containing a sample flowing through the flow path through the light introducing unit of the flow cell for a chromatography detector.
A light receiving unit that receives light emitted by the light projecting unit and has passed through the sample and outputs a signal indicating the amount of received light may be provided.
 このクロマトグラフィ検出器においては、投光部により上記のクロマトグラフィ検出器用フローセルの光導入部を通して、流路を流れる試料を含む溶離液に光が出射される。投光部により出射されかつ試料を透過した光が受光部により受光され、受光量を示す信号が出力される。 In this chromatography detector, light is emitted from the light projecting unit to the eluent containing the sample flowing through the flow path through the light introduction unit of the flow cell for the chromatography detector. The light emitted by the light projecting unit and transmitted through the sample is received by the light receiving unit, and a signal indicating the amount of received light is output.
 クロマトグラフィ検出器用フローセルにおいては、投光部により出射された光がシール部材に照射されることが抑制される。そのため、長期間にわたって分析を行った場合でも、シール部材の光学的性質が変化することが抑制され、分析の正確さが低下することが防止される。したがって、クロマトグラフィ検出器を長期間にわたって使用することが可能になる。 In the flow cell for a chromatography detector, the light emitted by the light projecting unit is suppressed from being irradiated to the seal member. Therefore, even when the analysis is performed for a long period of time, the change in the optical properties of the sealing member is suppressed, and the accuracy of the analysis is prevented from being lowered. Therefore, the chromatography detector can be used for a long period of time.
 (第7項)第6項に記載のクロマトグラフィ検出器において、
 前記投光部は、紫外光を出射する重水素ランプを含んでもよい。
(Item 7) In the chromatography detector according to item 6,
The light projecting unit may include a deuterium lamp that emits ultraviolet light.
 この構成によれば、光導入部とシール部材との間に遮光部が配置されるので、紫外光を用いた場合でも、紫外光がシール部材に照射されることが抑制される。そのため、シール部材の光学的性質が変化することが抑制され、分析の正確さが低下することが防止される。したがって、紫外光を用いて試料をより適切に分析することができる。 According to this configuration, since the light-shielding portion is arranged between the light introduction portion and the seal member, it is possible to suppress the irradiation of the seal member with ultraviolet light even when ultraviolet light is used. Therefore, the change in the optical properties of the sealing member is suppressed, and the accuracy of the analysis is prevented from being lowered. Therefore, the sample can be analyzed more appropriately using ultraviolet light.

Claims (7)

  1. 試料のクロマトグラムの生成に用いられるクロマトグラフィ検出器用フローセルであって、
     一方向に延びる内部空間を有するとともに、前記内部空間に光を導入可能な光導入部を前記内部空間の一端に有する本体部と、
     前記本体部の前記内部空間に前記一方向に延びるように収容されるとともに、試料を含む溶離液が流れる流路を形成するキャピラリと、
     前記本体部と前記キャピラリとの間をシールするシール部材と、
     前記光導入部と前記シール部材との間に配置される遮光部とを備える、クロマトグラフィ検出器用フローセル。
    A flow cell for a chromatography detector used to generate a chromatogram of a sample.
    A main body having an internal space extending in one direction and having a light introducing portion capable of introducing light into the internal space at one end of the internal space.
    A capillary that is accommodated in the internal space of the main body so as to extend in the one direction and forms a flow path through which an eluent containing a sample flows.
    A sealing member that seals between the main body and the capillary,
    A flow cell for a chromatography detector including a light-shielding portion arranged between the light introduction portion and the sealing member.
  2. 前記キャピラリは、前記光導入部に対向する端面を有し、
     前記遮光部は、前記一方向において前記キャピラリの前記端面と少なくとも部分的に重なるように配置される、請求項1記載のクロマトグラフィ検出器用フローセル。
    The capillary has an end face facing the light introduction portion and has an end face.
    The flow cell for a chromatography detector according to claim 1, wherein the light-shielding portion is arranged so as to at least partially overlap the end face of the capillary in the one direction.
  3. 前記遮光部は、円形の開口を有する円環状に形成され、
     前記キャピラリは、円筒状に形成され、
     前記遮光部は、前記開口の中心と前記キャピラリの前記流路の中心軸とが重なるように配置され、
     前記遮光部の前記開口の直径は、前記キャピラリの内直径以上でかつ外直径以下である、請求項2記載のクロマトグラフィ検出器用フローセル。
    The light-shielding portion is formed in an annular shape having a circular opening.
    The capillary is formed in a cylindrical shape.
    The light-shielding portion is arranged so that the center of the opening and the central axis of the flow path of the capillary overlap.
    The flow cell for a chromatography detector according to claim 2, wherein the diameter of the opening of the light-shielding portion is not less than the inner diameter of the capillary and not more than the outer diameter.
  4. 前記遮光部の前記開口の直径は、前記キャピラリの内直径と等しい、請求項3記載のクロマトグラフィ検出器用フローセル。 The flow cell for a chromatography detector according to claim 3, wherein the diameter of the opening of the light-shielding portion is equal to the inner diameter of the capillary.
  5. 前記遮光部は、前記本体部と一体的に形成される、請求項1~4のいずれか一項に記載のクロマトグラフィ検出器用フローセル。 The flow cell for a chromatography detector according to any one of claims 1 to 4, wherein the light-shielding portion is integrally formed with the main body portion.
  6. 請求項1~4のいずれか一項に記載のクロマトグラフィ検出器用フローセルと、
     前記クロマトグラフィ検出器用フローセルの前記光導入部を通して、前記流路を流れる試料を含む溶離液に光を出射する投光部と、
     前記投光部により出射されかつ試料を透過した光を受光し、受光量を示す信号を出力する受光部とを備える、クロマトグラフィ検出器。
    The flow cell for a chromatography detector according to any one of claims 1 to 4.
    A light projecting unit that emits light to an eluent containing a sample flowing through the flow path through the light introducing unit of the flow cell for a chromatography detector.
    A chromatography detector comprising a light receiving unit that receives light emitted by the light projecting unit and transmitted through a sample and outputs a signal indicating the amount of received light.
  7. 前記投光部は、紫外光を出射する重水素ランプを含む、請求項6記載のクロマトグラフィ検出器。 The chromatography detector according to claim 6, wherein the light projecting unit includes a deuterium lamp that emits ultraviolet light.
PCT/JP2019/017502 2019-04-24 2019-04-24 Chromatography detector flow cell and chromatography detector WO2020217356A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021515386A JP7180760B2 (en) 2019-04-24 2019-04-24 Flow cells for chromatography detectors and chromatography detectors
PCT/JP2019/017502 WO2020217356A1 (en) 2019-04-24 2019-04-24 Chromatography detector flow cell and chromatography detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/017502 WO2020217356A1 (en) 2019-04-24 2019-04-24 Chromatography detector flow cell and chromatography detector

Publications (1)

Publication Number Publication Date
WO2020217356A1 true WO2020217356A1 (en) 2020-10-29

Family

ID=72941105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017502 WO2020217356A1 (en) 2019-04-24 2019-04-24 Chromatography detector flow cell and chromatography detector

Country Status (2)

Country Link
JP (1) JP7180760B2 (en)
WO (1) WO2020217356A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555240A (en) * 1978-10-20 1980-04-23 Toshiba Corp Flow cell
JPH0662356U (en) * 1993-02-05 1994-09-02 横河電機株式会社 Light absorption cell
JP2013120151A (en) * 2011-12-08 2013-06-17 Hitachi High-Technologies Corp Flow cell and liquid analyzer
JP2013122397A (en) * 2011-12-09 2013-06-20 Jasco Corp High pressure resistant fluorescence flow cell, flow cell assembly, fluorescence detector and supercritical fluid chromatograph
JP2014041024A (en) * 2012-08-21 2014-03-06 Shimadzu Corp Flow cell
JP2014044145A (en) * 2012-08-28 2014-03-13 Shimadzu Corp Flow cell
JP2014174099A (en) * 2013-03-12 2014-09-22 Jasco Corp Chromatography system, signal processing device, chromatography data processing terminal, and program
US20180238845A1 (en) * 2017-02-23 2018-08-23 Phoseon Technology, Inc. Integrated illumination-detection flow cell for liquid chromatography
JP2018169408A (en) * 2012-10-18 2018-11-01 ブイユーブイ・アナリティクス・インコーポレイテッドVUV Analytics,Inc. Vacuum ultraviolet absorption spectral method
WO2019038818A1 (en) * 2017-08-22 2019-02-28 株式会社島津製作所 Flow cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1616166A4 (en) * 2003-04-07 2008-07-09 Rheodyne Llc Flow cells utilizing photometric techniques
JP2006300741A (en) * 2005-04-21 2006-11-02 Rohm Co Ltd Micro flow passage for optical measurement, and micro fluid chip

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555240A (en) * 1978-10-20 1980-04-23 Toshiba Corp Flow cell
JPH0662356U (en) * 1993-02-05 1994-09-02 横河電機株式会社 Light absorption cell
JP2013120151A (en) * 2011-12-08 2013-06-17 Hitachi High-Technologies Corp Flow cell and liquid analyzer
JP2013122397A (en) * 2011-12-09 2013-06-20 Jasco Corp High pressure resistant fluorescence flow cell, flow cell assembly, fluorescence detector and supercritical fluid chromatograph
JP2014041024A (en) * 2012-08-21 2014-03-06 Shimadzu Corp Flow cell
JP2014044145A (en) * 2012-08-28 2014-03-13 Shimadzu Corp Flow cell
JP2018169408A (en) * 2012-10-18 2018-11-01 ブイユーブイ・アナリティクス・インコーポレイテッドVUV Analytics,Inc. Vacuum ultraviolet absorption spectral method
JP2014174099A (en) * 2013-03-12 2014-09-22 Jasco Corp Chromatography system, signal processing device, chromatography data processing terminal, and program
US20180238845A1 (en) * 2017-02-23 2018-08-23 Phoseon Technology, Inc. Integrated illumination-detection flow cell for liquid chromatography
WO2019038818A1 (en) * 2017-08-22 2019-02-28 株式会社島津製作所 Flow cell

Also Published As

Publication number Publication date
JPWO2020217356A1 (en) 2020-10-29
JP7180760B2 (en) 2022-11-30

Similar Documents

Publication Publication Date Title
JP6595204B2 (en) Optical analyzer
CN107532992B (en) Optical measuring device
CN110325830A (en) Integrated irradiating and detecting flow cell for liquid chromatogram
EP1141675A1 (en) Dual pathlength system for light absorbance detection
US20120069340A1 (en) Flow cell exploiting radiation within cell wall
US8253117B2 (en) Fluorescence detector
US10429363B2 (en) Far-ultraviolet absorbance detection device for liquid chromatography
WO2020217356A1 (en) Chromatography detector flow cell and chromatography detector
JP7154540B2 (en) Apparatus and method for measuring absorbance of substances in solution
US20220268628A1 (en) Devices, systems, and methods for spectroscopy having an adjustable pathlength
US20180335408A1 (en) Combined fluorescence and absorption detector for on-column detection after capillary separation techniques
KR101513604B1 (en) Fluid Flowing Cell For Analyzing Micro-Sample
JP7180786B2 (en) Flow cells for chromatography detectors and chromatography detectors
WO2017029712A1 (en) Detector for liquid chromatography
US20130278931A1 (en) Sample receiving apparatus
JP7147952B2 (en) Chromatographic detector
CN114563515B (en) Structure of flow cell assembly for chromatographic detector
RU2419086C1 (en) Spectrophotometric liquid cell
US20230296438A1 (en) Absorbance spectroscopy analyzer and method of use
WO2020100242A1 (en) Flow cell for chromatography detector, chromatography detector, and chromatograph device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926584

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515386

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926584

Country of ref document: EP

Kind code of ref document: A1