WO2020216976A1 - Interruptor de corte en gas - Google Patents

Interruptor de corte en gas Download PDF

Info

Publication number
WO2020216976A1
WO2020216976A1 PCT/ES2020/070255 ES2020070255W WO2020216976A1 WO 2020216976 A1 WO2020216976 A1 WO 2020216976A1 ES 2020070255 W ES2020070255 W ES 2020070255W WO 2020216976 A1 WO2020216976 A1 WO 2020216976A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
gas
arc
gas cut
cut
Prior art date
Application number
PCT/ES2020/070255
Other languages
English (en)
French (fr)
Inventor
Luis RANEDO TORRES
Juan Antonio Sanchez Ruiz
Original Assignee
Ormazabal Y Cia., S.L.U.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=66518947&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2020216976(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ormazabal Y Cia., S.L.U. filed Critical Ormazabal Y Cia., S.L.U.
Priority to BR112021018968A priority Critical patent/BR112021018968A2/pt
Priority to MX2021011630A priority patent/MX2021011630A/es
Priority to ES20728094T priority patent/ES2951435T3/es
Priority to EP20728094.2A priority patent/EP3961668B1/en
Priority to PL20728094.2T priority patent/PL3961668T3/pl
Priority to US17/441,205 priority patent/US12002639B2/en
Priority to CN202080030194.3A priority patent/CN113711327A/zh
Publication of WO2020216976A1 publication Critical patent/WO2020216976A1/es
Priority to CONC2021/0012395A priority patent/CO2021012395A2/es

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/886Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts by movement of rotating pistons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/7015Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts
    • H01H33/7084Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts characterised by movable parts influencing the gas flow
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear

Definitions

  • the invention deals with a gas cut-off switch, for application in high voltage electrical switchgear such as cells, where a gas or gas mixture is used as a means of extinguishing the electric arc and electrical insulation.
  • the switch object of the invention comprises a casing equipped with at least one arc chamber inside which an electric arc can occur when the switch opens and closes, and wherein said electric arc is extinguished by the action of a blowing means that given its configuration and integral union with at least one mobile contact of the switch allows the blowing on the electric arc in the entire path of said mobile contact, as well as the regeneration of the dielectric medium in said arc chamber once the electric arc has been extinguished.
  • insulating medium which can be air or other gaseous medium, such as sulfur hexafluoride (SFe), dry air, nitrogen, etc.
  • SFe sulfur hexafluoride
  • the same insulating medium such as a dielectric gas of those mentioned above, in some cases also allows the extinction of the electric arc generated between the switch contacts in the opening and closing operations.
  • medium or high voltage electrical switches are designed to interrupt / cut the current that circulates through the line at a given moment and can reach the interruption / cut-off value of the apparatus, occurring at the time of separation of the switch contacts an electric arc that can damage them.
  • This is an unwanted phenomenon that has to be extinguished as soon as possible, since the arc can destroy the insulation and contacts, as well as produce a sudden increase in temperature and pressure that can lead to explosions that cause material damage, the formation of toxic gases or even personal injury. Therefore, the opening / cutting time is essential.
  • electrical switches use mechanical, hydraulic or electrical drives, as well as means of extinguishing the electric arc generated at the moment of opening the switch, such as magnetic blowing systems, lamination systems and static arc cooling, systems vane gas blowing systems, piston blowing systems, explosive charge detonation systems, ablation systems of a material that can emit a gas to help extinguish the electric arc, etc.
  • the switch can be incorporated in a housing and this housing in turn can be mounted within an enclosure, insulated in a dielectric gas, of an electrical switchgear cell.
  • the switch is associated with at least one vane that pushes the dielectric gas contained in said casing, thus creating, in some cases, a gas current towards the electric arc, and in other cases turbulence of said gas inside the casing in order to extinguish the electric arc.
  • the performance of said paddle is associated with the movement of the switch contacts, as for example with the actuation of the moving contact of the switch. In this way, in some cases, as for example in the cases of contact switches with rotary movement, the blades are associated with the actuating axis of the moving contact, so that the actuation of said moving contacts also causes the actuation of the paddles.
  • vane gas blowing systems are defined and in some of the documents this vane blowing is also combined with a magnetic blowing system to extinguish the electric arc generated between the switch contacts, specifically in the document ES2534873T3.
  • the actuation of the blades is associated with the actuating axis of the moving contact of the switch, this moving contact comprising a rotary movement and the switch comprising a housing in which the moving contact, the blades and the switch are incorporated. fixed contact, and where an electric arc is generated in the opening / closing of the switch.
  • the most widely used dielectric gas in recent years is SF 6 gas due to its excellent dielectric properties and, among many other advantages, because it is not toxic to people.
  • SF 6 gas due to its excellent dielectric properties and, among many other advantages, because it is not toxic to people.
  • ES2534873T3, ES2068699T3, ES2011445B3 and ES2066553T3 that also use SF 6 as dielectric gas, can also be cited.
  • dielectric gas in this electrical switchgear only of gases that are friendlier to the environment would entail a considerable increase in the size of these equipment for a given voltage level, due to the lower dielectric strength of these gases compared to SF 6 .
  • the gas cut-off switch object of the present invention responds to the needs of the aforementioned state of the art, as it is designed to reduce the distance between phases and thus achieve a compact envelope and internal conditions that are invariable compared to external conditions. or environmental such as pollution or humidity. Likewise, it is also prepared so that the gaseous dielectric medium can be pressurized at pressures above 1500 mbar and so that the same dielectric gas mentioned allows the extinction of the electric arc generated between the switch contacts in the opening and closing operations.
  • the gas cut-off switch of the invention is applicable in electrical power distribution networks and refers to a switch with several operating positions, such as a load cut-off switch, which can be installed indoors.
  • electrical equipment such as electrical switchgear cells
  • switch is integrated in its corresponding compartment and isolated in a gaseous dielectric medium, such as air, dry air, N2, 02, C02, or gas mixtures such as fluoroketones with vector gases such as C02, N2, 02, air or mixtures thereof, or gas mixtures such as non-flammable hydrofluoroolefins with vector gases such as N2, 02, dry air, helium, C02 or mixtures thereof, etc. .
  • gaseous dielectric medium such as air, dry air, N2, 02, C02, or gas mixtures such as fluoroketones with vector gases such as C02, N2, 02, air or mixtures thereof, or gas mixtures such as non-flammable hydrofluoroolefins with vector gases such as N2, 02, dry air, helium, C02 or mixtures thereof, etc.
  • the gas cut-off switch of the invention comprises at least one casing, comprising inside said casing, or at least partially inside it, a pair of fixed contacts arranged diametrically opposite each other and a moving contact with movement rotary device that can electrically connect the pair of fixed contacts to each other, and at least one arc chamber inside which an electric arc can occur when opening and closing the switch, the entire assembly being insulated in at least one dielectric gas inside of an electrical switchgear cell. It is also possible that inside the housing there is at least partially a pair of fixed contacts and a moving contact that can be electrically connected with said fixed contacts, thus the switch can be of the hinge type.
  • the switch comprises at least one means for blowing the electric arc, said blowing means being integrally attached to the moving contact, so that it performs the same movement path as the moving contact when opening and closing the switch.
  • the moving contact can comprise at least two ends, each of said ends being able to electrically connect with each fixed contact and thus establish a closed position of the switch.
  • the switch can comprise at least one earthing contact, the moving contact being able in this case to establish an electrical connection between a fixed contact and the earthing contact for the grounding maneuvering position of the switch.
  • the blowing means is arranged at each of the ends of the mobile contact, this blowing means may consist, for example, of a vane.
  • Each of said ends of the moving contact of the switch is located in each arc chamber that comprises the switch housing, and said arc chambers comprise at least one communication path with the outside of the housing, such as a grid, meeting said communication channel permanently open for the exit of gases generated in the opening of the switch and for the entry into the arc chambers of the clean dielectric gas contained inside the electrical switchgear cell once the switch opening operation is completed.
  • the blowing means is configured to compress the dielectric gas in a first part of the arc chambers and force it to pass towards a second part of the arc chambers through the spaces between the arc chambers. ends of the moving contacts and the fixed contacts, and through spaces comprised between the blowing means and said contacts, so that the electric arc generated at the opening of the switch is blown by the dielectric gas throughout the entire travel of the moving contact.
  • the gases are evacuated from the second part of the arc chambers to the outside of the switch housing through the communication pathways, such as grilles, previously mentioned.
  • the pressures of the first part and the second part of the arc chambers stabilize, generating a flow of dielectric gas inverse to the blowing of the electric arc and thus regenerating the arc chambers with clean dielectric gas through the communication lines.
  • the communication channels that comprise the arc chambers allow the evacuation of gases and plasma produced by the electric arc during the opening / closing of the switch, thus facilitating the evacuation of the contaminated gas from the arc chambers, keeping them free from contamination and with pure dielectric gas for the next switch operation.
  • the actuation of the blowing means and the moving contact is associated with the actuation of a rotation axis, to which both the blowing means and the moving contact are integrally attached.
  • said axis of rotation can be divided into three sections, so that each section of axis comprises the moving contact and the blowing means, so that the three corresponding phases of the switch can be separated or assembled.
  • the gas cut-off switch is rotary and can be operated in three positions and with short-circuit closing capacity.
  • Figure 1 Represents a side view of an electrical switchgear cell where the arrangement of the gas cut-off switch of the invention is shown inside its corresponding compartment insulated in a dielectric gas.
  • Figure 2. Represents a sectional elevation view of the switch housing showing the arc chambers, the fixed contacts, the moving contact, the blowing medium and the flow towards the exterior of the generated polluted gas housing. in the switch opening maneuver.
  • Figure 3. Represents a sectional side view of the switch.
  • the gas cut-off switch (1) of the invention such as a load cut-off switch, is installed inside a cell (19) of electrical switchgear , which comprises several compartments, one of them being the compartment (20) where the gas cut-off switch (1) is located.
  • This compartment (20) of the gas cut-off switch (1) is sealed and pressurized in a dielectric gas, such as air, dry air, N2, 02, C02, or gas mixtures such as fluoroketones with vector gases such as C02, N2, 02, air or mixtures thereof, or gas mixtures such as non-flammable hydrofluoroolefins with vector gases such as N2, 02, dry air, helium, C02 or mixtures thereof, etc., so that It is possible to reduce the distance between phases, and consequently, more compact cells are obtained that minimize the problems of space in the facilities and transportation.
  • the switch is also prepared so that the gaseous dielectric medium can be pressurized to pressures above 1500 mbar.
  • a compact envelope is achieved and inside it an environment invariable to external or environmental conditions such as pollution or humidity.
  • the gas cut-off switch (1) as shown in Figures 1, 2 and 3, comprises a housing (2) that incorporates inside, or at least partially inside, a pair of fixed contacts ( 3, 4) arranged diametrically opposite each other and a mobile contact (5) with rotary movement that can electrically connect the pair of fixed contacts (3, 4), and at least one arc chamber (6, 7) in which Inside, an electric arc may occur when the gas cut-off switch (1) opens and closes.
  • the gas cut-off switch (1) can have two or three operating positions, in the latter case comprising at least one grounding contact (11) for the off position. earthing maneuver, being able to carry out connection, opening and earthing operations.
  • the casing (2) comprising the arc chambers (6, 7) can be structured in two pieces, a first piece comprising the arc chamber (6) and a second part comprising the arc chamber (7).
  • the arc chamber (6) incorporates the fixed contact (3) and the arc chamber (7) incorporates the fixed contact (4), so that the electrical contact between the moving contact (5) and each of the fixed contacts (3, 4), as well as the separation between them occurs in different arc chambers, thus dividing the power of the electric arc to dissipate and facilitating the extinction of the electric arc.
  • the gas cut-off switch (1) comprises at least one means of blowing (8) the electric arc, such as blades (12, 13), said blowing means (8) joined integrally to the mobile contact (5), so that it performs the same movement path as the mobile contact (5) in the opening and closing of the gas cut-off switch (1), which causes the electric arc to be blown at all times until its extinction.
  • the mobile contact (5) and the blowing means (8) move integral with an axis (18) of rotation, so that the actuation of the mobile contact (5) due to the actuation of said axis (18) of rotation makes that the blowing means (8) also acted.
  • the blades (12, 13) can be arranged at each of the ends (14, 15) of the movable contact (5), as shown in Figures 2 and 3, along the ends (14, 15) , projecting from said ends (14, 15) to the inner wall of the arc chambers (6, 7), and are configured to compress the dielectric gas in a first part (16) of the arc chambers (6, 7) and forcing said compressed dielectric gas to pass through the spaces between the ends (14, 15) of the mobile contact (5) and the fixed contacts (3, 4), and through the spaces between the blades (12, 13 ) and said contacts (3, 4, 5) towards a second part (17) of the arc chambers (6, 7) in the opening of the gas cut-off switch (1) for blowing the electric arc.
  • the arc chambers (6, 7) comprise at least one communication path (9, 10) with the outside of the casing (2), said communication path (9, 10) being permanently open for the exit of gases generated in the opening of the gas cut-off switch (1), as shown in figure 2, as well as for the entry into the arc chambers (6, 7) of the dielectric gas contained inside the electrical switchgear cell (19) once the opening operation of the gas cut-off switch (1) has been completed.
  • said communication routes (9, 10) are included in the second part (17) of the arc chambers (6 , 7) between the inside and outside of the casing (2).
  • the polluted gases generated in the opening of the gas cut-off switch (1) are evacuated to the outside of the casing (2) through the communication channels (9, 10), and once the opening of the gas cut-off switch (1) the pressures of the first part (16) and the second part (17) of the arc chambers (6, 7) stabilize, generating a flow of dielectric gas inverse to the blowing of the electric arc and thus regenerating the arc chambers (6, 7) with clean dielectric gas through the communication paths (9, 10), keeping them free from contamination and with pure dielectric gas for the next operation of the gas cut-off switch (1) .
  • the axis (18) of rotation can be divided into three sections, so that each section of the axis (18) comprises the mobile contact (5) and the blowing means (8) , so that the three corresponding phases of the gas cut-off switch (1) can be separated or assembled.
  • the mobile contact (5), the blowing means (8) and the axis of rotation (18) can form a solid piece that is configured as a unitary assembly.
  • the gas cut-off switch (1) can be a rotary switch with three operating positions and with capacity to make against short circuits, that is, those cases in which closing the circuit generates a missing, the switch being capable of withstanding the increase in the current that passes through the contacts, being able to reach several kA, in the closing operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Gas-Insulated Switchgears (AREA)
  • Circuit Breakers (AREA)
  • Rotary Switch, Piano Key Switch, And Lever Switch (AREA)

Abstract

Interruptor de corte en gas (1) dotado de varias posiciones de maniobra y destinado a encontrarse aislado en un gas dieléctrico en el interior de una celda (19) de aparamenta eléctrica que comprende al menos una carcasa (2) con una pareja de contactos fijos (3, 4) dispuestos diametralmente opuestos entre sí y un contacto móvil (5) con movimiento rotativo para conectarse eléctricamente con dichos contactos fijos (3, 4); una cámara de arco (6, 7) y un medio de soplado (8) del arco eléctrico unido de forma solidaria al contacto móvil (5), donde la cámara de arco (6, 7) comprende una vía de comunicación (9, 10) con el exterior de la carcasa (2) que permite tanto la salida de los gases generados en el soplado del arco eléctrico como la entrada de gas dieléctrico limpio en dicha cámara de arco (6, 7).

Description

INTERRUPTOR DE CORTE EN GAS
DESCRIPCIÓN
OBJETO DE LA INVENCIÓN
La invención trata sobre un interruptor de corte en gas, de aplicación en aparamenta eléctrica de alta tensión como por ejemplo en celdas, en donde se emplea un gas o mezcla de gases como medio de extinción del arco eléctrico y aislamiento eléctrico.
El interruptor objeto de la invención, comprende una carcasa dotada de al menos una cámara de arco en cuyo interior puede producirse un arco eléctrico en la apertura y cierre del interruptor, y en donde dicho arco eléctrico es extinguido por la actuación de un medio de soplado que dada su configuración y unión solidaria con al menos un contacto móvil del interruptor permite el soplado sobre el arco eléctrico en todo el recorrido de dicho contacto móvil, así como la regeneración del medio dieléctrico en dicha cámara de arco una vez extinguido el arco eléctrico.
ANTECEDENTES DE LA INVENCIÓN
Los interruptores eléctricos de media o alta tensión en ocasiones se encuentran instalados en el interior de equipos eléctricos, tales como por ejemplo celdas de aparamenta eléctrica, en donde dichos interruptores se encuentran incorporados en su debido compartimento. Con el objeto de reducir la distancia entre fases y conseguir de este modo una envolvente compacta y un medio aislante invariable a condiciones exteriores o ambientales como contaminación o humedad, el compartimento del interruptor requiere la utilización de un medio aislante, que puede ser aire o bien otro medio gaseoso, como por ejemplo hexafluoruro de azufre (SFe), aire seco, nitrógeno, etc. Asimismo, el mismo medio aislante, como por ejemplo un gas dieléctrico de los mencionados anteriormente, en algunos casos también permite la extinción del arco eléctrico generado entre los contactos del interruptor en las maniobras de apertura y cierre. Como es conocido, los interruptores eléctricos de media o alta tensión están previstos para interrumpir/cortar la corriente que en un momento determinado circula por la línea y pueda llegar al valor de interrupción/corte del aparato, produciéndose en el momento de la separación de los contactos del interruptor un arco eléctrico que puede llegar a dañarlos. Este es un fenómeno indeseado que tiene que ser extinguido lo antes posible, dado que el arco puede destruir los aislamientos y los contactos, así como producir un incremento brusco de temperatura y presión que pueden llegar a producir explosiones que provoquen daños materiales, la formación de gases tóxicos o incluso daños personales. Por lo tanto, el tiempo de apertura/corte resulta fundamental.
Otra de las situaciones que pueden producirse son los cierres contra cortocircuitos, es decir, aquellos casos en los que, al cerrar el circuito, se genera una falta. En este caso se produce un incremento de la corriente que pasa por los contactos, llegando a varios kA y además se produce una erosión en los contactos debida al pre-arco.
Para conseguir limitar al máximo el desgaste de los contactos, interesa que la maniobra de apertura del interruptor sea lo más rápida posible, para que la separación de los contactos se realice también de forma rápida. Para ello, los interruptores eléctricos utilizan accionamientos mecánicos, hidráulicos o eléctricos, así como medios de extinción del arco eléctrico generado en el momento de la apertura del interruptor, como por ejemplo sistemas de soplado magnético, sistemas de laminación y enfriamiento del arco estático, sistemas de soplado de gas por paletas, sistemas de soplado por pistón, sistemas de detonación de cargas explosivas, sistemas de ablación de un material que puede emitir un gas para la ayuda de la extinción del arco eléctrico, etc.
El interruptor puede encontrarse incorporado en una carcasa y esta carcasa a su vez puede estar montada dentro de una envolvente, aislada en un gas dieléctrico, de una celda de aparamenta eléctrica. En los sistemas de soplado de gas por paletas mencionados, el interruptor está asociado con al menos una paleta que empuja el gas dieléctrico contenido en la citada carcasa, creando así, en algunos casos una corriente de gas hacía el arco eléctrico, y en otros casos turbulencias de dicho gas en el interior de la carcasa con objeto de extinguir el arco eléctrico. La actuación de dicha paleta se encuentra asociada con el movimiento de los contactos del interruptor, como por ejemplo con el accionamiento del contacto móvil del interruptor. De esta forma, en algunos casos, como por ejemplo en los casos de los interruptores de contactos con movimiento rotativo, las paletas se encuentran asociadas al eje de accionamiento del contacto móvil, de forma que el accionamiento de dichos contactos móviles también provoque la actuación de las paletas.
En este sentido, se pueden citar algunos ejemplos del estado de la técnica, como por ejemplo los documentos ES2534873T3, ES2068699T3, ES2011445B3 y
ES2066553T3. En todos estos documentos se definen sistemas de soplado de gas por paletas y en alguno de los documentos además se combina este soplado por paletas con un sistema de soplado magnético para la extinción del arco eléctrico generado entre los contactos del interruptor, en concreto en el documento ES2534873T3. En todos estos ejemplos citados, la actuación de las paletas está asociada con el eje de accionamiento del contacto móvil del interruptor, comprendiendo este contacto móvil un movimiento rotativo y comprendiendo el interruptor una carcasa en donde se encuentran incorporados el contacto móvil, las paletas y el contacto fijo, y en donde se genera un arco eléctrico en la apertura/cierre del interruptor. En una maniobra de apertura del interruptor, debido a la separación de los contactos, se genera dicho arco eléctrico, y debido al movimiento del contacto móvil las paletas comprimen el gas dieléctrico dentro de la carcasa del interruptor de forma que dicho gas encuentra salida por los espacios comprendidos entre los contactos y las paletas, soplando así el arco eléctrico con objeto de extinguirlo.
Los sistemas de extinción del arco eléctrico existentes mediante soplado de gas por paletas, y en concreto los definidos en los ejemplos citados del estado de la técnica, presentan el inconveniente de que la carcasa que incorpora el interruptor y en donde se genera el arco eléctrico es estanca, es decir, los gases contaminados y el plasma generado durante la maniobra del interruptor no son evacuados y por tanto se acumulan dentro de dicha carcasa. Debido a esto, la mezcla de gases con impurezas que se dispone en el interior de la carcasa supone un perjuicio para la siguiente maniobra de apertura y puede provocar consecuencias indeseadas como, por ejemplo, un incremento brusco de temperatura y presión que pueden llegar a producir explosiones que provoquen daños materiales, la formación de gases tóxicos o incluso daños personales. Asimismo, debido a que la carcasa del interruptor es estanca no se puede realizar una regeneración del gas contenido en la misma, por lo que la siguiente maniobra podría verse perjudicada al no disponer de un gas dieléctrico puro.
Por otro lado, el gas dieléctrico más empleado en los últimos años es el gas SF6 debido a sus excelentes propiedades dieléctricas y, entre otras muchas ventajas más, a que no es tóxico para las personas. En este sentido, también se pueden volver a citar los mismos documentos del estado de la técnica mencionados anteriormente, ES2534873T3, ES2068699T3, ES2011445B3 y ES2066553T3 que también utilizan el SF6 como gas dieléctrico. Sin embargo, este gas presenta un gran impacto ambiental debido a su alto potencial de efecto invernadero (GWP = 22800), por lo que en los últimos años se buscan gases alternativos que puedan sustituir a este gas en este tipo de aparamenta eléctrica.
El empleo como gas dieléctrico en esta aparamenta eléctrica únicamente de gases más amigables con el medio ambiente supondría un considerable aumento del tamaño de estos equipos para un nivel de tensión dada, debido a la menor rigidez dieléctrica de estos gases frente al SF6. Otra opción en este caso sería aumentar la presión de llenado de los equipos a valores superiores a los empleados con SF6 (alrededor de 1300 mbar), realizando el diseño para recipientes con presiones superiores a 1500 mbar.
DESCRIPCIÓN DE LA INVENCIÓN
El interruptor de corte en gas objeto de la presente invención da respuesta a las necesidades del estado de la técnica antes mencionadas, pues está diseñado para reducir la distancia entre fases y conseguir de este modo una envolvente compacta y unas condiciones internas invariables frente a condiciones exteriores o ambientales como contaminación o humedad. Asimismo, también está preparado para que el medio dieléctrico gaseoso se pueda presurizar a presiones por encima de 1500 mbar y para que el mismo gas dieléctrico mencionado permita la extinción del arco eléctrico generado entre contactos del interruptor en las maniobras de apertura y cierre. Así, el interruptor de corte en gas de la invención es de aplicación en redes de distribución de energía eléctrica y se refiere a un interruptor de varias posiciones de maniobra, como por ejemplo un interruptor de corte en carga, que puede ser instalado en el interior de equipos eléctricos, como por ejemplo celdas de aparamenta eléctrica, en donde dicho interruptor se encuentra integrado en su correspondiente compartimento y aislado en un medio dieléctrico gaseoso, como por ejemplo aire, aire seco, N2, 02, C02, o mezclas de gases como fluorocetonas con gases vectores como C02, el N2, el 02, el aire o mezclas de los mismos, o mezclas de gases como hidrofluoroolefinas no inflamables con gases vectores como N2, 02, aire seco, helio, C02 o mezclas de los mismos, etc. Más concretamente, el interruptor de corte en gas de la invención comprende al menos una carcasa, comprendiendo en el interior de dicha carcasa, o al menos parcialmente en su interior, una pareja de contactos fijos dispuestos diametralmente opuestos entre sí y un contacto móvil con movimiento rotativo que puede conectar eléctricamente entre sí la pareja de contactos fijos, y al menos una cámara de arco en cuyo interior puede producirse un arco eléctrico en la apertura y cierre del interruptor, estando todo el conjunto aislado en al menos un gas dieléctrico en el interior de una celda de aparamenta eléctrica. También cabe la posibilidad de que en el interior de la carcasa se disponga al menos, parcialmente, una pareja de contactos fijos y un contacto móvil que se puede conectar eléctricamente con dichos contactos fijos, pudiendo ser de esta forma el interruptor del tipo charnela.
Preferentemente, de acuerdo con la presente invención el interruptor comprende al menos un medio de soplado del arco eléctrico, estando dicho medio de soplado unido de forma solidaria al contacto móvil, de forma que realiza el mismo recorrido de movimiento que el contacto móvil en la apertura y cierre del interruptor. El contacto móvil puede comprender al menos dos extremos, pudiendo cada uno de dichos extremos conectarse eléctricamente con cada contacto fijo y establecer así una posición de cierre del interruptor. También se ha previsto que el interruptor pueda comprender al menos un contacto de puesta a tierra, pudiendo el contacto móvil establecer en este caso una conexión eléctrica entre un contacto fijo y el contacto de puesta a tierra para la posición de maniobra de puesta a tierra del interruptor. Dado que el contacto móvil del interruptor comprende dos extremos, el corte de la corriente eléctrica se produce en dos puntos, por lo que la energía del arco eléctrico generado se divide entre dos zonas separadas, la potencia del arco eléctrico a disipar también se divide entre dichos dos puntos y por tanto se facilita la extinción del arco eléctrico. El medio de soplado se dispone en cada uno de los extremos del contacto móvil, pudiendo consistir este medio de soplado por ejemplo en una paleta.
Cada uno de dichos extremos del contacto móvil del interruptor se encuentra en cada cámara de arco que comprende la carcasa del interruptor, y dichas cámaras de arco comprenden al menos una vía de comunicación con el exterior de la carcasa, como por ejemplo una rejilla, encontrándose dicha vía de comunicación permanentemente abierta para la salida de gases generados en la apertura del interruptor y para la entrada en las cámaras de arco del gas dieléctrico limpio contenido en el interior de la celda de aparamenta eléctrica una vez finalizada la maniobra de apertura del interruptor.
Por tanto, en una maniobra de apertura del interruptor el medio de soplado está configurado para comprimir el gas dieléctrico en una primera parte de las cámaras de arco y obligarlo a pasar hacia una segunda parte de las cámaras de arco a través de espacios comprendidos entre los extremos de los contactos móviles y los contactos fijos, y a través de espacios comprendidos entre el medio de soplado y dichos contactos, de forma que el arco eléctrico generado en la apertura del interruptor sea soplado por el gas dieléctrico en todo el recorrido del contacto móvil. Al mismo tiempo, los gases son evacuados desde la segunda parte de las cámaras de arco al exterior de la carcasa del interruptor a través de las vías de comunicación, como por ejemplo rejillas, anteriormente citadas. Una vez finalizada la apertura del interruptor y extinguido el arco eléctrico, las presiones de la primera parte y la segunda parte de las cámaras de arco se estabilizan, generando un flujo del gas dieléctrico inverso al soplado del arco eléctrico y regenerando así las cámaras de arco con gas dieléctrico limpio a través de las vías de comunicación. De esta forma, mediante las vías de comunicación que comprenden las cámaras de arco se permite la evacuación de gases y plasma producidos por el arco eléctrico durante la apertura/cierre del interruptor, facilitando así la evacuación del gas contaminado de las cámaras de arco, manteniéndolas libres de contaminación y con gas dieléctrico puro para la siguiente maniobra del interruptor. La actuación del medio de soplado y del contacto móvil se encuentra asociada al accionamiento de un eje de rotación, al cual se encuentran unidos de forma solidaria tanto el medio de soplado como el contacto móvil.
Se ha contemplado la posibilidad de que dicho eje de rotación pueda dividirse en tres secciones, de forma que cada sección de eje comprende el contacto móvil y el medio de soplado, de modo que se pueden separar o montar las tres fases correspondientes del interruptor. También se ha contemplado la posibilidad de que el contacto móvil, el medio de soplado y el eje de rotación puedan formar una pieza sólida que se configure como un conjunto unitario.
El interruptor de corte en gas es rotativo y puede ser de tres posiciones de maniobra y con capacidad de cierre contra cortocircuito.
DESCRIPCIÓN DE LAS FIGURAS
Para complementar la descripción y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de figuras en el que, con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
Figura 1.- Representa una vista lateral de una celda de aparamenta eléctrica en donde se muestra la disposición del interruptor de corte en gas de la invención dentro de su correspondiente compartimento aislado en un gas dieléctrico.
Figura 2.- Representa una vista de alzado en sección de la carcasa del interruptor en donde se muestran las cámaras de arco, los contactos fijos, el contacto móvil, el medio de soplado y el flujo hacia el exterior de la carcasa de gas contaminado generado en la maniobra de apertura del interruptor.
Figura 3.- Representa una vista lateral en sección del interruptor.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN Tal y como se aprecia en la figura 1 , el interruptor de corte en gas (1) de la invención, como puede ser por ejemplo un interruptor de corte en carga, se encuentra instalado en el interior de una celda (19) de aparamenta eléctrica, la cual comprende varios compartimentos, siendo uno de ellos el compartimento (20) donde se encuentra el interruptor de corte en gas (1). Este compartimento (20) del interruptor de corte en gas (1) se encuentra sellado y presurizado en un gas dieléctrico, como puede ser por ejemplo aire, aire seco, N2, 02, C02, o mezclas de gases como fluorocetonas con gases vectores como C02, el N2, el 02, el aire o mezclas de los mismos, o mezclas de gases como hidrofluoroolefinas no inflamables con gases vectores como N2, 02, aire seco, helio, C02 o mezclas de los mismos, etc., de forma que se permite reducir la distancia entre fases, y en consecuencia, se obtienen unas celdas más compactas que minimizan los problemas de espacio en las instalaciones y de transporte. Con este mismo fin, el interruptor también está preparado para que el medio dieléctrico gaseoso se puede presurizar a presiones por encima de 1500 mbar. Asimismo, mediante el aislamiento en gas se consigue una envolvente compacta y en su interior un entorno invariable a condiciones exteriores o ambientales como contaminación o humedad.
El interruptor de corte en gas (1), tal y como se muestra en las figuras 1 , 2 y 3, comprende una carcasa (2) que incorpora en su interior, o al menos parcialmente en su interior, una pareja de contactos fijos (3, 4) dispuestos diametralmente opuestos entre sí y un contacto móvil (5) con movimiento rotativo que puede conectar eléctricamente entre sí la pareja de contactos fijos (3, 4), y al menos una cámara de arco (6, 7) en cuyo interior puede producirse un arco eléctrico en la apertura y cierre del interruptor de corte en gas (1). Tal y como se muestra en la figura 2, el interruptor de corte en gas (1) puede ser de dos o de tres posiciones de maniobra, comprendiendo en este último caso al menos un contacto de puesta a tierra (11) para la posición de maniobra de puesta a tierra, pudiendo realizar las maniobras de conexión, apertura y puesta a tierra.
En el interior de la carcasa (2), en concreto en las cámaras de arco (6, 7) se dispone del mismo gas dieléctrico que se dispone en el compartimento (20) del interruptor de corte en gas (1), de forma que dicho gas dieléctrico se emplea tanto para el aislamiento eléctrico como para la extinción de arcos eléctricos. La carcasa (2) que comprende las cámaras de arco (6, 7) puede estar estructurada en dos piezas, una primera pieza que comprende la cámara de arco (6) y una segunda pieza que comprende la cámara de arco (7). La cámara de arco (6) incorpora el contacto fijo (3) y la cámara de arco (7) incorpora el contacto fijo (4), de forma que el contacto eléctrico entre el contacto móvil (5) y cada uno de los contactos fijos (3, 4), así como la separación entre ellos se produce en cámaras de arco diferentes, dividiendo de esta manera la potencia del arco eléctrico a disipar y facilitando la extinción del arco eléctrico.
Asimismo, tal y como se muestra en las figuras 2 y 3, el interruptor de corte en gas (1) comprende al menos un medio de soplado (8) del arco eléctrico, como por ejemplo unas paletas (12, 13), estando dicho medio de soplado (8) unido de forma solidaria al contacto móvil (5), de forma que realiza el mismo recorrido de movimiento que el contacto móvil (5) en la apertura y cierre del interruptor de corte en gas (1), lo cual hace que el arco eléctrico sea soplado en todo momento hasta su extinción. El contacto móvil (5) y el medio de soplado (8) se mueven solidarios a un eje (18) de rotación, por lo que el accionamiento del contacto móvil (5) debido a la actuación de dicho eje (18) de rotación hace que el medio de soplado (8) también actué. Las paletas (12, 13) pueden disponerse en cada uno de los extremos (14, 15) del contacto móvil (5), tal y como se muestra en las figuras 2 y 3, a lo largo de los extremos (14, 15), sobresaliendo por dichos extremos (14, 15) hasta la pared interior de las cámaras de arco (6, 7), y están configuradas para comprimir el gas dieléctrico en una primera parte (16) de las cámaras de arco (6, 7) y obligar a pasar a dicho gas dieléctrico comprimido a través de espacios comprendidos entre los extremos (14, 15) del contacto móvil (5) y los contactos fijos (3, 4), y a través de espacios comprendidos entre las paletas (12, 13) y dichos contactos (3, 4, 5) hacia una segunda parte (17) de las cámaras de arco (6, 7) en la apertura del interruptor de corte en gas (1) para el soplado al arco eléctrico. Asimismo, las cámaras de arco (6, 7) comprenden al menos una vía de comunicación (9, 10) con el exterior de la carcasa (2), encontrándose dicha vía de comunicación (9, 10) permanentemente abierta para la salida de gases generados en la apertura del interruptor de corte en gas (1), tal y como se muestra en la figura 2, así como para la entrada en las cámaras de arco (6, 7) del gas dieléctrico contenido en el interior de la celda (19) de aparamenta eléctrica una vez finalizada la maniobra de apertura del interruptor de corte en gas (1).
En la realización preferente de la invención se ha previsto que dichas vías de comunicación (9, 10), como por ejemplo unas rejillas (no representadas en las figuras), estén comprendidas en la segunda parte (17) de las cámaras de arco (6, 7) entre el interior y el exterior de la carcasa (2). De esta forma, los gases contaminados generados en la apertura del interruptor de corte en gas (1) son evacuados al exterior de la carcasa (2) a través de las vías de comunicación (9, 10), y una vez realizada la apertura del interruptor de corte en gas (1) las presiones de la primera parte (16) y la segunda parte (17) de las cámaras de arco (6, 7) se estabilizan, generando un flujo del gas dieléctrico inverso al soplado del arco eléctrico y regenerando así las cámaras de arco (6, 7) con gas dieléctrico limpio a través de las vías de comunicación (9, 10), manteniéndolas libres de contaminación y con gas dieléctrico puro para la siguiente maniobra del interruptor de corte en gas (1).
Tal y como se puede observar en la figura 3, el eje (18) de rotación se puede dividir en tres secciones, de forma que cada sección de eje (18) comprende el contacto móvil (5) y el medio de soplado (8), de modo que se pueden separar o montar las tres fases correspondientes del interruptor de corte en gas (1). Como otra forma de realización, también se ha previsto que el contacto móvil (5), el medio de soplado (8) y el eje (18) de rotación puedan formar una pieza sólida que se configura como un conjunto unitario.
Tal y como se ha mencionado anteriormente, el interruptor de corte en gas (1) puede ser un interruptor rotativo de tres posiciones de maniobra y con capacidad de cierre contra cortocircuitos, es decir, aquellos casos en los que al cerrar el circuito se genera una falta, siendo el interruptor capaz de soportar el incremento de la corriente que pasa por los contactos, pudiendo llegar a varios kA, en la maniobra de cierre.

Claims

REIVINDICACIONES
1.- Interruptor de corte en gas (1) dotado de varias posiciones de maniobra y destinado a encontrarse aislado en un gas dieléctrico en el interior de una celda (19) de aparamenta eléctrica que comprende al menos una carcasa (2), la cual a su vez comprende:
- una pareja de contactos fijos (3, 4) y un contacto móvil (5) con movimiento rotativo para conectarse eléctricamente con dichos contactos fijos (3, 4);
- al menos una cámara de arco (6, 7); y
- al menos un medio de soplado (8) del arco eléctrico
caracterizado porque:
el medio de soplado (8) está unido de forma solidaria al contacto móvil (5), de forma que realiza el mismo recorrido de movimiento que el contacto móvil (5) en la apertura y cierre del interruptor de corte en gas (1), y por que
la cámara de arco (6, 7) comprende al menos una vía de comunicación (9, 10) con el exterior de la carcasa (2) que permite tanto la salida de los gases generados en el soplado del arco eléctrico como la entrada de gas dieléctrico limpio en dicha cámara de arco (6, 7).
2.- Interruptor de corte en gas (1) según la reivindicación 1 , caracterizado porque los contactos fijos (3, 4) se encuentran dispuestos diametralmente opuestos entre sí y el contacto móvil (5) puede conectar eléctricamente entre sí la pareja de contactos fijos (3, 4).
3.- Interruptor de corte en gas (1) según la reivindicación 2, caracterizado porque comprende al menos un contacto de puesta a tierra (11) para la posición de maniobra de puesta a tierra del interruptor de corte en gas (1), de forma que dicho interruptor de corte en gas (1) comprende tres posiciones de maniobra, conexión, apertura y puesta a tierra.
4 Interruptor de corte en gas (1) según cualquiera de las reivindicaciones anteriores, caracterizado porque el medio de soplado (8) del interruptor de corte en gas (1) comprende al menos una paleta (12, 13) en cada uno de los extremos (14, 15) del contacto móvil (5), configurado para comprimir el gas dieléctrico en una primera parte (16) de las cámaras de arco (6, 7) y obligar a pasar a dicho gas dieléctrico comprimido a través de espacios comprendidos entre los extremos (14, 15) del contacto móvil (5) y los contactos fijos (3, 4), y a través de espacios comprendidos entre las paletas (12, 13) y dichos contactos (3, 4, 5) hacia una segunda parte (17) de las cámaras de arco (6, 7) en la apertura del interruptor de corte en gas (1) para el soplado al arco eléctrico.
5.- Interruptor de corte en gas (1) según la reivindicación 4, caracterizado porque la segunda parte (17) de las cámaras de arco (6, 7) comprende las vías de comunicación (9, 10) entre el interior y el exterior de la carcasa (2).
6.- Interruptor de corte en gas (1) según la reivindicación 5, caracterizado porque las vías de comunicación (9, 10) comprenden una rejilla de refrigeración de gases.
7.- Interruptor de corte en gas (1) según la reivindicación 4, caracterizado porque el contacto móvil (5) y el medio de soplado (8) se mueven solidarios a un eje (18) de rotación.
8.- Interruptor de corte en gas (1) según reivindicación 7, caracterizado porque el eje (18) de rotación se divide en tres secciones, de forma que cada sección de eje (18) comprende el contacto móvil (5) y el medio de soplado (8), de modo que se pueden separar o montar las tres fases correspondientes del interruptor de corte en gas (1).
9.- Interruptor de corte en gas (1) según reivindicación 7, caracterizado porque el contacto móvil (5), el medio de soplado (8) y el eje (18) de rotación forman una pieza sólida que se configura como un conjunto unitario.
PCT/ES2020/070255 2019-04-26 2020-04-22 Interruptor de corte en gas WO2020216976A1 (es)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112021018968A BR112021018968A2 (pt) 2019-04-26 2020-04-22 Interruptor de corte de gás
MX2021011630A MX2021011630A (es) 2019-04-26 2020-04-22 Interruptor de corte en gas.
ES20728094T ES2951435T3 (es) 2019-04-26 2020-04-22 Interruptor de corte para aparamenta aislada en gas
EP20728094.2A EP3961668B1 (en) 2019-04-26 2020-04-22 Shut-off switch for gas insulated switchgear
PL20728094.2T PL3961668T3 (pl) 2019-04-26 2020-04-22 Wyłącznik odcinający dla rozdzielnic z izolacją gazową
US17/441,205 US12002639B2 (en) 2019-04-26 2020-04-22 Gas shut-off switch
CN202080030194.3A CN113711327A (zh) 2019-04-26 2020-04-22 气体切断开关
CONC2021/0012395A CO2021012395A2 (es) 2019-04-26 2021-09-22 Interruptor de corte en gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESU201930665 2019-04-26
ES201930665U ES1229781Y (es) 2019-04-26 2019-04-26 Interruptor de corte en gas

Publications (1)

Publication Number Publication Date
WO2020216976A1 true WO2020216976A1 (es) 2020-10-29

Family

ID=66518947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2020/070255 WO2020216976A1 (es) 2019-04-26 2020-04-22 Interruptor de corte en gas

Country Status (11)

Country Link
US (1) US12002639B2 (es)
EP (1) EP3961668B1 (es)
CN (1) CN113711327A (es)
AR (1) AR118759A1 (es)
BR (1) BR112021018968A2 (es)
CO (1) CO2021012395A2 (es)
ES (2) ES1229781Y (es)
HU (1) HUE062808T2 (es)
MX (1) MX2021011630A (es)
PL (1) PL3961668T3 (es)
WO (1) WO2020216976A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022200659A1 (en) * 2021-03-23 2022-09-29 Ormazabal Y Cia., S.L.U. Gas-insulated electrical switchgear for medium and high voltage electrical distribution networks

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0199044A2 (de) * 1985-04-26 1986-10-29 Concordia Sprecher Energie Gmbh Gekapselter Lastschalter
ES2011445B3 (es) 1985-10-30 1990-01-16 Alsthom Distribuidor de hexafluoruro de azufre para conmutacion en carga.
EP0484747A2 (en) * 1990-11-06 1992-05-13 G & W ELECTRIC COMPANY Rotary puffer switch
ES2066553T3 (es) 1991-05-23 1995-03-01 Siemens Ag Interruptor giratorio de posiciones multiples que trabaja con gas de extincion.
ES2068699T3 (es) 1991-06-12 1995-04-16 Abb Distribusjon As Una disposicion en un aparato de maniobra de carga de alta tension electrica, aislado con sfg.
EP2608240A1 (en) * 2011-12-20 2013-06-26 LSIS Co., Ltd. Arc extinguishing apparatus for ring main unit

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE413228A (es) * 1935-01-12
US2100753A (en) * 1935-12-24 1937-11-30 Westinghouse Electric & Mfg Co Circuit interrupter
FR1405556A (fr) * 1963-09-14 1965-07-09 Driescher Spezialfab Fritz Recharge pour interrupteur-disjoncteur
DE2930830C2 (de) * 1979-07-30 1983-06-16 Siemens AG, 1000 Berlin und 8000 München Unter Last trennender, mehrpoliger Hochspannungs-Drehschalter
DE3126745A1 (de) * 1981-07-02 1983-01-20 Siemens AG, 1000 Berlin und 8000 München Dreipolige kabelanschlusseinheit fuer eine dreipolige metallgekapselte, druckgasisolierte hochspannungsschaltanlage
US4675481A (en) 1986-10-09 1987-06-23 General Electric Company Compact electric safety switch
FR2606209B1 (fr) 1986-11-03 1994-05-20 Merlin Et Gerin Interrupteur rotatif multipolaire a isolement gazeux
EP0284813B1 (de) * 1987-03-25 1992-10-14 BBC Brown Boveri AG Druckgasschalter
US4791530A (en) * 1987-09-01 1988-12-13 S&C Electric Company Insulating barrier system for switchgear
NO167614C (no) * 1989-03-20 1991-11-20 Eb Distribusjon Anordning ved slukking av brytelysbue i lastbryter.
US5483416A (en) * 1994-12-12 1996-01-09 Hubbell Incorporated Adjustable insulating barrier arrangement for air insulated padmounted switchgear
DE19615912A1 (de) * 1996-04-22 1997-10-23 Asea Brown Boveri Trennschalter
NL1010515C2 (nl) * 1998-11-09 2000-05-10 Elin Holec High Voltage Bv Hoogspanningscheider.
DE69833181D1 (de) 1998-12-04 2006-04-06 Het Veer N V Hochspannungsschalter
JP2002171624A (ja) * 2000-11-30 2002-06-14 Mitsubishi Electric Corp ガス封入形開閉装置
FI116865B (fi) * 2004-01-19 2006-03-15 Abb Oy Kytkinlaite
DE102007004950B4 (de) * 2006-03-09 2008-07-17 Switchcraft Europe Gmbh Elektrische Schaltanlage
JP4469399B2 (ja) 2008-03-12 2010-05-26 住友ゴム工業株式会社 スタッドレスタイヤ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0199044A2 (de) * 1985-04-26 1986-10-29 Concordia Sprecher Energie Gmbh Gekapselter Lastschalter
ES2011445B3 (es) 1985-10-30 1990-01-16 Alsthom Distribuidor de hexafluoruro de azufre para conmutacion en carga.
EP0484747A2 (en) * 1990-11-06 1992-05-13 G & W ELECTRIC COMPANY Rotary puffer switch
ES2066553T3 (es) 1991-05-23 1995-03-01 Siemens Ag Interruptor giratorio de posiciones multiples que trabaja con gas de extincion.
ES2068699T3 (es) 1991-06-12 1995-04-16 Abb Distribusjon As Una disposicion en un aparato de maniobra de carga de alta tension electrica, aislado con sfg.
EP2608240A1 (en) * 2011-12-20 2013-06-26 LSIS Co., Ltd. Arc extinguishing apparatus for ring main unit
ES2534873T3 (es) 2011-12-20 2015-04-29 Lsis Co., Ltd. Aparato de extinción de arcos para un centro de transformación

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022200659A1 (en) * 2021-03-23 2022-09-29 Ormazabal Y Cia., S.L.U. Gas-insulated electrical switchgear for medium and high voltage electrical distribution networks

Also Published As

Publication number Publication date
HUE062808T2 (hu) 2023-12-28
US20220157544A1 (en) 2022-05-19
MX2021011630A (es) 2022-02-21
EP3961668B1 (en) 2023-06-07
PL3961668T3 (pl) 2023-12-04
CO2021012395A2 (es) 2021-09-30
ES2951435T3 (es) 2023-10-20
ES1229781U (es) 2019-05-21
CN113711327A (zh) 2021-11-26
US12002639B2 (en) 2024-06-04
BR112021018968A2 (pt) 2021-11-30
EP3961668C0 (en) 2023-06-07
AR118759A1 (es) 2021-10-27
ES1229781Y (es) 2019-08-12
EP3961668A1 (en) 2022-03-02

Similar Documents

Publication Publication Date Title
ES2785998T3 (es) Conmutador de desconexión de un interruptor al vacío de tres posiciones que proporciona una interrupción de corriente, una desconexión y una conexión a tierra
US10643764B2 (en) Gas-insulated electrical apparatus filled with a dielectric gas
KR101763451B1 (ko) 아크열을 재이용하는 복합소호형 차단기
JP5181003B2 (ja) スイッチギヤ
KR102486734B1 (ko) 가스 절연형 저 전압 또는 중간 전압 부하 차단 스위치
KR101977053B1 (ko) 친환경 가스절연 부하개폐기의 퍼퍼와 아크슈트를 조합한 아크소호장치
EP2784886B1 (en) Gas-insulated device for electrical use
ES2951435T3 (es) Interruptor de corte para aparamenta aislada en gas
ES2374019T3 (es) Interruptor seccionador eléctrico de media y alta tensión.
ES2908223T3 (es) Aparato de corte mecánico de un circuito eléctrico de alta tensión o de muy alta tensión con dispositivo de fraccionamiento
CN105590786A (zh) 一种新型灭弧室
RU2803565C2 (ru) Газовый выключатель
ES2509223T3 (es) Interruptor de corte en gas
JP4382601B2 (ja) 接地開閉器
WO2023285716A1 (es) Interruptor de corte en carga o de corrientes de cortocircuito y equipo eléctrico que incorpora dicho interruptor
EP2866244B1 (en) Helicoidal switch
ES2929798T3 (es) Seccionador bajo carga aislado en gas y aparellaje que comprende un seccionador bajo carga aislado en gas
JP7221460B1 (ja) 開閉装置
JP5997320B1 (ja) 気中開閉器
ES2913627T3 (es) Conmutador de media tensión aislado en gas con dispositivo de apantallamiento
ES1229542U (es) Aparamenta eléctrica aislada en gas para redes de distribución eléctrica
RU2021129955A (ru) Газовый выключатель
KR101514205B1 (ko) 복합 소호 방식 가스 차단기
SU266009A1 (ru) ПАТЕНТНС- ТЕХНИЧССКЛЯ БйБЛЙОТЕКД10
KR20160069796A (ko) 회전개폐식 체크밸브를 가지는 복합소호방식 가스 차단기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20728094

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021018968

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020728094

Country of ref document: EP

Effective date: 20211126

ENP Entry into the national phase

Ref document number: 112021018968

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210923