WO2020216136A1 - 一种波束互易性能力上报方法及装置 - Google Patents

一种波束互易性能力上报方法及装置 Download PDF

Info

Publication number
WO2020216136A1
WO2020216136A1 PCT/CN2020/085259 CN2020085259W WO2020216136A1 WO 2020216136 A1 WO2020216136 A1 WO 2020216136A1 CN 2020085259 W CN2020085259 W CN 2020085259W WO 2020216136 A1 WO2020216136 A1 WO 2020216136A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
cell
capability
information
environmental parameter
Prior art date
Application number
PCT/CN2020/085259
Other languages
English (en)
French (fr)
Inventor
凌岑
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910702752.5A external-priority patent/CN111867093B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US17/605,816 priority Critical patent/US20220210780A1/en
Priority to EP20795207.8A priority patent/EP3937568B1/en
Publication of WO2020216136A1 publication Critical patent/WO2020216136A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06966Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using beam correspondence; using channel reciprocity, e.g. downlink beam training based on uplink sounding reference signal [SRS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for reporting beam reciprocity capabilities.
  • antenna arrays are usually configured for base stations and terminal devices that apply 5G communication technology, so that the base stations and terminal devices apply beamforming (BF) technology.
  • Beamforming technology can induce array gain, thereby effectively increasing information coverage and overcoming path attenuation in high frequency bands.
  • both the base station and the terminal equipment side can apply multiple beams of different directions for communication.
  • each beam has a strong directivity and a narrow beam
  • it is necessary to select a suitable transceiver beam pair for the base station and the terminal device.
  • each time a terminal device accesses a base station it can perform beam management with the base station, and through beam management, determine a suitable transceiver beam pair, so as to communicate through the appropriate transceiver beam pair to improve communication quality.
  • the process of beam management is cumbersome and takes a while.
  • the 5G communication technology introduces the concept of beam correspondence (BC), and the base station and terminal equipment can determine the appropriate transceiver beam pair through their own beam reciprocity capabilities.
  • BC beam correspondence
  • the terminal device no longer has the beam reciprocity capability, that is, the terminal device
  • the transceiver beam pair determined by the beam reciprocity capability is often no longer applicable, but in this case, the terminal device usually continues to transmit information through the transceiver beam pair, causing the beam used by the terminal device to deviate from the base station, thereby reducing communication efficiency, even when When the beam deviation angle is large, the base station cannot receive the information transmitted by the terminal device, and the communication service cannot be performed.
  • the embodiments of the present application disclose a method and device for reporting beam reciprocity capability.
  • an embodiment of the present application discloses a method for reporting beam reciprocity capability, including:
  • the terminal device judges whether it has the beam reciprocity capability according to the first judgment information and the first judgment condition acquired in advance;
  • the terminal device determines that it has the beam reciprocity capability, and the beam intensity of the downlink receiving beam of the terminal device is not less than the preset first intensity threshold, the terminal device passes the preset beam reciprocity capability , Determine the uplink transmit beam corresponding to the downlink receive beam;
  • the terminal device transmits the first communication information through the uplink transmit beam
  • the terminal device When the terminal device receives n transmission requests for the first communication information, the terminal device performs a detach operation, where n is a preset positive integer greater than 1;
  • the terminal device reports first capability information, where the first capability information indicates that the terminal device does not have the beam reciprocity capability.
  • the first judgment information includes: thresholds of environmental parameters and/or cell ID sets;
  • the environmental parameter is at least one of temperature or humidity.
  • the first judgment information includes a threshold value of an environmental parameter
  • the method also includes:
  • the terminal device When the terminal device receives n transmission requests for the first communication information, the terminal device acquires at least one environmental parameter;
  • the terminal device determines the threshold of the environmental parameter according to the at least one environmental parameter and historical environmental parameters that are not less than the first parameter threshold.
  • the threshold value of the environmental parameter can be updated according to at least one acquired environmental parameter when the terminal device does not have the beam reciprocity capability.
  • An optional design also includes:
  • the terminal device When the terminal device receives n transmission requests for the first communication information, the terminal device obtains the signal-to-interference plus noise ratio SINR of the downlink receiving beam;
  • the terminal device When the SINR is greater than the preset second parameter threshold, the terminal device adds the cell ID of the currently accessed cell to the cell ID set.
  • the cell ID set It belongs to the first judgment information, so as to subsequently judge whether the terminal device has the beam reciprocity capability according to the acquired cell ID set.
  • the first judgment information includes a threshold value of an environmental parameter
  • the terminal device judging whether it has the beam reciprocity capability according to the first judgment information and the first judgment condition obtained in advance includes:
  • the terminal device determines that it does not have the beam reciprocity capability.
  • the terminal device can determine whether it has the beam reciprocity capability through its own environment.
  • the terminal device judges whether it has the beam reciprocity capability according to the first judgment information and the first judgment condition acquired in advance, including :
  • the terminal device determines that it does not have the beam reciprocity capability.
  • the terminal device can determine whether it has the beam reciprocity capability according to the cell ID of the cell currently to be accessed.
  • An optional design also includes:
  • the terminal device obtains a new environmental parameter every first cycle
  • the terminal device When the new environmental parameter is less than the preset third parameter threshold, the terminal device performs a detach operation
  • the terminal device In the process of re-accessing the base station, the terminal device reports second capability information, where the second capability information indicates that the terminal device has a beam reciprocity capability.
  • the terminal device can determine whether to recover the beam reciprocity capability according to the environmental parameters, and after recovery, actively report the second capability information so that the base station can determine that the terminal device has the beam reciprocity capability.
  • An optional design also includes:
  • the terminal device compares the cell ID of the new cell to be accessed with the cell when accessing a new cell ID collection;
  • the terminal device When the cell ID of the new cell to be accessed is different from the cell ID in the cell ID set, the terminal device performs a detach operation
  • the terminal device In the process of re-accessing the base station, the terminal device reports second capability information, where the second capability information indicates that the terminal device has a beam reciprocity capability.
  • the terminal device can determine whether to restore the beam reciprocity capability according to the cell ID of the cell to be accessed, and after recovery, actively report the second capability information so that the base station can determine that the terminal device has the beam reciprocity capability.
  • the method further includes:
  • the terminal device performs beam management, and re-determines the pair of transmitting and receiving beams.
  • the terminal device can re-determine the transceiver beam pair through beam management, so as to communicate with the base station through the re-determined transceiver beam pair, thereby ensuring the communication efficiency between the terminal device and the base station.
  • An optional design also includes:
  • the terminal device executes Attach operation, wherein the first downlink receive beam is the best downlink receive beam determined by the beam reciprocity capability, and the first uplink transmit beam is the best downlink receive beam determined by the beam reciprocity capability Uplink transmit beam;
  • the terminal device In the process of re-accessing the base station, the terminal device reports second capability information, where the second capability information indicates that the terminal device has a beam reciprocity capability.
  • the terminal device can determine whether it recovers the beam reciprocity capability according to the transceiver beam pair determined through the beam management, and after determining the recovery, actively report the second capability information so that the base station can determine that the terminal device has beam reciprocity ability.
  • an embodiment of the present application discloses a beam reciprocity capability reporting device, including:
  • the first judgment module is configured to judge whether the terminal device has the beam reciprocity capability according to the first judgment information and the first judgment condition obtained in advance;
  • the beam determination module is configured to: when the first judgment module determines that the terminal device has beam reciprocity capability, and the beam intensity of the downlink receiving beam of the terminal device is not less than the preset first intensity threshold, pass the preset Beam reciprocity capability, to determine the uplink transmit beam corresponding to the downlink receive beam;
  • An information transmitting module configured to transmit first communication information through the uplink transmitting beam
  • the detach module is configured to perform a detach operation when the terminal device receives n transmission requests for the first communication information, where n is a preset positive integer greater than 1;
  • the capability reporting module is configured to report first capability information when the terminal device re-accesses the base station, where the first capability information indicates that the terminal device does not have the beam reciprocity capability.
  • the first judgment information includes: thresholds of environmental parameters and/or cell ID sets;
  • the environmental parameter is at least one of temperature or humidity.
  • the first judgment information includes a threshold value of an environmental parameter
  • the device also includes:
  • the first parameter acquisition module is configured to acquire at least one environmental parameter when the terminal device receives n times a transmission request for the first communication information
  • the threshold determination module is configured to determine the threshold of the environmental parameter according to the at least one environmental parameter and historical environmental parameters that are not less than the first parameter threshold when the at least one environmental parameter is not less than the first parameter threshold.
  • An optional design also includes:
  • the SINR acquisition module is configured to acquire the signal-to-interference-and-noise ratio SINR of the downlink receive beam when the terminal device receives n transmission requests for the first communication information;
  • the cell ID adding module is configured to add the cell ID of the currently accessed cell to the cell ID set when the SINR is greater than the preset second parameter threshold.
  • the first judgment information includes a threshold value of an environmental parameter
  • the first judgment module is specifically configured to determine that it does not have the beam reciprocity capability if the current environmental parameter is not less than the threshold value of the environmental parameter.
  • the first judgment information includes a cell ID set
  • the first determining module is specifically configured to: when the cell ID of the cell to be accessed by the terminal device is the same as a cell ID included in the cell ID set, the terminal device determines that it does not have beam reciprocity ability.
  • An optional design also includes:
  • the second parameter obtaining module is configured to obtain a new environmental parameter every first cycle when the current environmental parameter is not less than the threshold value of the environmental parameter;
  • the detach module is further configured to perform a detach operation when the new environmental parameter is less than a preset third parameter threshold;
  • the capability reporting module is further configured to report second capability information when the terminal device re-accesses the base station, where the second capability information indicates that the terminal device has a beam reciprocity capability.
  • An optional design also includes:
  • the cell ID comparison module is used to compare the new cell to be accessed when the terminal device accesses a new cell when the cell ID of the cell to be accessed currently is the same as the cell ID in the cell ID set The cell ID of and the cell ID set;
  • the detach module is further configured to perform a detach operation when the cell ID of the new cell to be accessed is different from the cell ID in the cell ID set;
  • the capability reporting module is further configured to report second capability information when the terminal device re-accesses the base station, where the second capability information indicates that the terminal device has a beam reciprocity capability.
  • An optional design also includes:
  • the beam management module is configured to perform beam management after the terminal device reports the first capability information, and re-determine the transceiver beam pair.
  • the detach module is further configured to: when the best downlink receive beam determined by beam management is the same as the first downlink receive beam, and the best uplink transmit beam determined by beam management is the same as the first downlink receive beam When an uplink transmit beam is the same, the detach operation is performed, wherein the first downlink receive beam is the best downlink receive beam determined by the beam reciprocity capability, and the first uplink transmit beam is passed through the beam The best uplink transmit beam determined by reciprocity capability;
  • the capability reporting module is further configured to report second capability information in the process of re-accessing the base station, where the second capability information indicates that the terminal device has a beam reciprocity capability.
  • an embodiment of the present application discloses a beam reciprocity capability reporting device, including:
  • the memory is used to store program instructions
  • the processor is configured to call and execute program instructions stored in the memory, so that the beam reciprocity capability reporting device executes the beam reciprocity capability reporting method described in the first aspect.
  • the beam reciprocity capability reporting device is a chip.
  • the embodiments of the present application disclose a computer-readable storage medium
  • the computer-readable storage medium stores instructions, which when run on a computer, cause the computer to execute the beam reciprocity capability reporting method described in the first aspect.
  • the terminal device Through the method for reporting beam reciprocity capability disclosed in the embodiments of the present application, it is possible to measure the beam reciprocity capability of the terminal device, and report when it is determined that the terminal device does not have the beam reciprocity capability to avoid occurrence When the terminal device no longer has the beam reciprocity capability, the terminal device still transmits information through the inapplicable transceiver beam pair, resulting in a decrease in communication efficiency.
  • the terminal device can determine whether it has beam reciprocity capability based on the first judgment information and whether the first communication information is successfully transmitted, so that the terminal device can determine whether it has With beam reciprocity capability, it has high accuracy.
  • the terminal device when the terminal device determines that it does not have the beam reciprocity capability through the first judgment information, it does not need to determine whether the terminal device has the beam reciprocity capability through whether the first communication information is successfully transmitted. That is, in this embodiment of the application, the terminal device first determines whether it has the beam reciprocity capability through the first judgment information, and directly reports the first capability information when it is determined that it does not have the beam reciprocity capability. , Thereby saving the power consumption of the terminal device to send the first communication information. Moreover, when judging whether the terminal device has beam reciprocity capability by whether the first communication information is successfully sent, it is often necessary to send the first communication information multiple times, which takes a long time. Therefore, the first judgment information is given priority to determine whether the terminal device is The method with the beam reciprocity capability can also improve the efficiency of the terminal device in judging whether it has the beam reciprocity capability.
  • FIG. 1 is a schematic structural diagram of a communication system applied in an embodiment of this application
  • FIG. 2 is a schematic diagram of beams in a method for reporting beam reciprocity capabilities disclosed in an embodiment of the application;
  • FIG. 3 is a schematic diagram of beams in a method for reporting beam reciprocity capabilities applied in an embodiment of this application;
  • FIG. 4 is a schematic diagram of beam reciprocity capability in a method for reporting beam reciprocity capability applied in an embodiment of this application;
  • FIG. 5 is a schematic diagram of an application scenario of a method for reporting beam reciprocity capabilities applied in an embodiment of this application
  • Fig. 6 is a schematic diagram of a working flow of a method for reporting beam reciprocity capabilities disclosed in an embodiment of the application;
  • FIG. 7 is a schematic diagram of information interaction between a base station and a terminal device in a method for reporting beam reciprocity capabilities disclosed in an embodiment of the application;
  • FIG. 8 is a schematic diagram of a workflow of another method for reporting beam reciprocity capabilities disclosed in an embodiment of this application.
  • FIG. 9 is a schematic diagram of the workflow of another method for reporting beam reciprocity capabilities disclosed in an embodiment of the application.
  • FIG. 10 is a schematic diagram of a workflow of another method for reporting beam reciprocity capabilities disclosed in an embodiment of the application.
  • FIG. 11 is a schematic diagram of a workflow of another method for reporting beam reciprocity capabilities disclosed in an embodiment of this application.
  • FIG. 12 is a schematic diagram of the workflow of another method for reporting beam reciprocity capabilities disclosed in an embodiment of the application.
  • FIG. 13 is a schematic structural diagram of a beam reciprocity capability reporting device disclosed in an embodiment of the application.
  • FIG. 14 is a schematic structural diagram of a terminal device disclosed in an embodiment of this application.
  • the embodiments of the present application disclose a method and device for reporting beam reciprocity capability.
  • the embodiment of the present application is applied to a communication system.
  • the communication system includes a base station 10 and a plurality of terminal devices 20.
  • the base station 10 is provided with an information transmitting receiving pair (TRP), and It communicates with a plurality of terminal devices 20 through TRP.
  • the base station 10 is a wireless network node that can provide the terminal device 20 with multiple wireless communication services such as voice calls, video, and messaging.
  • the terminal device 20 may also be called user equipment (UE), and the terminal device 20 may be a mobile terminal (such as a smart phone), a vehicle-mounted device, or a smart wearable device, etc., which is not limited in the embodiment of the present application .
  • the base station is a 5G base station, and correspondingly, the terminal device is a 5G terminal device.
  • the base station 10 and the terminal device can apply beamforming technology.
  • both the base station 10 and the terminal device 20 are equipped with antenna arrays.
  • the base station 10 usually uses multiple narrow beams with different directions for downlink transmission.
  • the terminal device 20 also has multiple narrow beams with different directions. Beam, and uplink transmission can be performed through the narrow beam.
  • each narrow beam has strong directivity, in order to achieve efficient communication between the base station and the terminal, it is necessary to set a suitable pair of transmitting and receiving beams.
  • this application discloses an example, which discloses a beam schematic shown in FIG. 3.
  • the base station 10 and the terminal device 20 in FIG. 3 are both provided with an antenna array, and data can be transmitted on the frequency domain resources of the high frequency band through multiple beams.
  • the base station 10 uses a total of eight beams from t1 to t8. These eight beams are used as the downlink transmission beams of the base station 10, and they are all narrow beams. That is to say, during the downlink transmission, the base station 10 can pass through These eight beams transmit information to the terminal device 20.
  • the terminal device 20 uses a total of four beams r1 to r4, and these four beams are used as the downlink receiving beams of the terminal device 20, that is, during the downlink transmission process, the terminal device 20 can receive the base station 10 transmission through these four beams. Information.
  • the base station 10 can use different directed downlink transmit beams (ie, the eight beams from t1 to t8) to transmit information to the terminal device 20 in order to select one of the eight beams from t1 to t8. Point to the downlink transmit beam that is most aligned with the terminal device 20 and use it as the best downlink transmit beam.
  • the terminal device can sequentially use different directed downlink reception beams (ie, the four beams r1 to r4) to receive the beams transmitted by the base station 10, so as to select one of the four beams r1 to r4 to point to the downlink that is most aligned with the base station 10.
  • the receiving beam is regarded as the best downlink receiving beam.
  • the communication efficiency of the downlink communication is the highest.
  • the best downlink transmitting beam and the best downlink receiving beam can be used as the best transceiver beam pair in the downlink communication process. For example, when the best downlink transmit beam of the base station 10 for the terminal device 20 is t4, and the best downlink receive beam of the terminal device 20 for the base station 10 is r3, the best transceiver beam pair is (t4, r3).
  • both the base station 10 and the terminal device 20 have beams for uplink communication.
  • the terminal device 20 can sequentially use different directed uplink transmit beams to transmit information to the base station 10, so as to determine an uplink transmit beam that is most directed to the base station 10, and use it as the best uplink transmit beam.
  • the base station 10 may sequentially use uplink receiving beams of different directions to receive the information transmitted by the terminal device 20, thereby determining an uplink receiving beam directed to the terminal device 20 and using it as the best uplink receiving beam.
  • the terminal equipment transmits information to the base station through the best uplink transmission beam
  • the base station receives the information transmitted by the terminal equipment through the best uplink reception beam
  • the communication efficiency of the uplink communication is the highest.
  • the best uplink transmit beam and the best uplink receive beam can be used as the best transceiver beam pair in the uplink communication process.
  • the beam reciprocity capability of a base station refers to: (1) The base station can determine the best downlink transmit beam for a terminal device according to the best downlink transmit beam for the terminal device The uplink receiving beam is used to receive the information transmitted by the terminal device through the best uplink receiving beam; (2) The base station can determine the best downlink transmitting beam for the terminal device according to the best uplink receiving beam for a certain terminal device , In order to transmit information to the terminal device through the best downlink transmit beam.
  • the beam reciprocity capability of the terminal device refers to: (1) The terminal device can determine the best uplink transmit beam for a certain base station according to the best downlink receive beam for the base station, so as to pass the best uplink Transmit beams to transmit information to the base station; (2) The terminal device can determine the best downlink receive beam for the terminal device according to the best uplink transmit beam for a certain base station, so that the terminal device can receive through the best downlink receive beam Information transmitted by this base station.
  • the terminal device When the terminal device has the beam reciprocity capability, the terminal device often determines the corresponding best uplink transmit beam according to the downlink receive beam applied when it receives the base station. Specifically, after the terminal device receives the information transmitted by the base station through a certain downlink receive beam, it determines the best uplink transmit beam for the base station according to the downlink receive beam and its own beam reciprocity capability, and then passes the best Uplink transmit beam, transmit information to the base station.
  • the beam reciprocity capability is set for the terminal device.
  • the corresponding relationship between each downlink receiving beam and its corresponding best uplink transmitting beam, and the corresponding relationship between each uplink transmitting beam and its corresponding best downlink receiving beam can be set in the terminal equipment, so that the terminal equipment In the process of communicating with the base station, the beam reciprocity capability is used to determine the beam to be applied in the communication process.
  • the corresponding relationship may be stored in the memory of the terminal device in the form of a table or a database, or a learning model may also be set in the terminal device, and the terminal device can obtain the corresponding relationship through the learning model.
  • the beam reciprocity capability of the terminal device may also be embodied in other forms, which is not limited in the embodiment of the present application.
  • a terminal device when it has beam reciprocity capability, it will usually report to the base station relevant information about its own beam reciprocity capability during the process of accessing the base station, and after the report, the terminal device is in the process of communicating with the base station In the application, the beam determined by the beam reciprocity capability is used to communicate with the base station.
  • the first terminal device determines that the best downlink receiving beam is the downlink receiving beam a.
  • the first terminal device can pass the beam reciprocity capability, Determine the uplink transmit beam b corresponding to the downlink receive beam a, and transmit information to the first base station through the uplink transmit beam b.
  • the beam reciprocity capability will change. For example, in some application scenarios, the terminal device no longer has the beam reciprocity capability. In this case, the beam determined by the terminal device through the beam reciprocity capability is no longer applicable. If the terminal device continues to use the beam, the beam used by the terminal device will deviate from the base station, thereby reducing communication efficiency. Further, if the determined uplink transmission beam deviates from the base station by a large angle, it may even cause the base station to fail to receive the information transmitted by the terminal device, making communication services impossible.
  • the terminal device has beam reciprocity capability.
  • the terminal device uses the downlink receive beam a to determine the best uplink transmit beam corresponding to the downlink receive beam a as the uplink transmit beam b, and transmit information to the base station through the uplink transmit beam b, which is the transmit beam aimed at the base station, so that the base station can receive the information transmitted by the terminal device.
  • the terminal device no longer has the beam reciprocity capability.
  • the terminal device still has the beam reciprocity capability by default and receives the information transmitted by the base station through the downlink receiving beam a
  • the terminal device The device will still transmit information to the base station through the uplink transmit beam b.
  • the uplink transmit beam b is often no longer the beam aligned with the reference.
  • the uplink transmit beam b transmits information to the base station, the communication efficiency is reduced, even when the uplink transmit beam b deviates from the base station by a large angle At this time, the base station will not receive the information transmitted by the uplink transmit beam b.
  • the second application scenario may include multiple application scenarios.
  • the terminal device may no longer have the beam reciprocity capability; or, when the terminal device has an external protective cover or a person holds the terminal device, it is interfered by the protective cover or human hands.
  • the device may not have the beam reciprocity capability; or, when an object is close to the terminal device, the terminal device may not have the beam reciprocity capability.
  • the terminal device when the terminal device is a mobile phone, the user’s head will approach In this case, the terminal device may not have beam reciprocity capability. That is to say, application scenarios such as high temperature, high humidity, antenna aging, terminal device external protective cover, human hand-held terminal device, or object approaching can all be the second application scenario. In this application scenario, the terminal device no longer has a beam Reciprocity capability.
  • the terminal device when the terminal device no longer has the beam reciprocity capability, if the terminal device still communicates through the beam reciprocity capability, the communication efficiency will often be reduced.
  • terminal devices usually default to having beam reciprocity capabilities, and each time they access the base station, they will report their own beam reciprocity capabilities to the base station. In this case, the terminal The device does not detect whether it has beam reciprocity capability in various application scenarios.
  • the terminal device will lose the beam reciprocity capability.
  • the terminal device if the terminal device has the beam reciprocity capability by default, It will still report to the base station that it has beam reciprocity capability.
  • the base station always believes that the terminal device has beam reciprocity capability, so that no beam management will be performed between the terminal device and the base station.
  • beam management is used to repair beam failures, that is, when beam reciprocity is not available, beam management is used to determine the beam for transmission between the terminal device and the base station. Therefore, when the terminal device loses the beam reciprocity capability but has the beam reciprocity capability by default, it will fail to repair the beam failure due to not performing beam management.
  • the terminal device still determines the uplink transmit beam b through the downlink receive beam a, and transmits information to the base station through the uplink transmit beam b, which results in a decrease in communication efficiency, even when the uplink transmit beam b deviates from the base station by a relatively large angle.
  • the base station will not be able to receive the information transmitted by the uplink transmission beam b, which causes the wireless link transmission between the base station and the terminal equipment to fail, and communication services cannot be performed.
  • an embodiment of the present application discloses a method for reporting beam reciprocity capability.
  • the terminal device judges whether it has the beam reciprocity capability according to the first judgment information obtained in advance and the corresponding first judgment condition.
  • the terminal device determines that it has the beam reciprocity capability based on the first judgment information, the terminal device further determines whether it has the beam reciprocity capability according to whether the communication information is successfully transmitted.
  • the first judgment information may include various forms of information.
  • the first judgment information usually includes: a threshold value of an environmental parameter and/or a cell ID set.
  • the environmental parameter is at least one of temperature or humidity.
  • the cell ID set includes at least one cell ID.
  • the beam reciprocity capability of the terminal device is more susceptible to environmental influences. Among them, in a high temperature environment or a high humidity environment, the performance of the antenna is more likely to change, causing the terminal device to lose the beam reciprocity capability. For example, when a user enters a sauna room with a terminal device, the high temperature and high humidity environment of the sauna room may cause the terminal device to not have beam reciprocity capabilities. Therefore, in the embodiment of the present application, the environmental parameter may be used as a kind of judgment information.
  • a first base station 11 and a second base station 12 are provided, a terminal device 20 accesses the first base station 11, and the cell of the second base station 12 can cover the terminal device 20 The area where the second base station 12 is located is a neighboring cell of the terminal device 20.
  • the downlink receiving beam used is the first receiving beam 001, and when the neighboring cell appears, when the terminal device communicates with the first base station 11 ,
  • the downlink receiving beam used is the second receiving beam 002.
  • the second receiving beam of the terminal device in order to avoid interference from neighboring cells, the second receiving beam of the terminal device often adjusts the direction, causing the second receiving beam 002 to deviate from the first receiving beam 001.
  • the terminal device can determine the corresponding uplink transmission beam according to the first reception beam, and the uplink transmission beam is aimed at the first base station 11.
  • the second receiving beam is different from the first receiving beam.
  • the uplink transmitting beam determined by the second receiving beam will also deviate from the first base station 11. Therefore, in this case, the terminal device no longer has a beam Reciprocity capability.
  • the cell ID can be used as a kind of judgment information, and the cell ID is the ID of the cell that the terminal device accesses when it is interfered by the neighboring cell.
  • the judgment information may also include other types of information, which is not limited in the embodiment of the present application.
  • the beam reciprocity capability reporting method disclosed in the embodiment of the present application includes the following steps:
  • Step S11 The terminal device judges whether it has the beam reciprocity capability according to the first judgment information and the first judgment condition acquired in advance. If yes, execute the operation of step S12, if not, execute the operation of step S15.
  • the first judgment information may include various forms of information.
  • the first judgment information usually includes: a threshold value of an environmental parameter and/or a cell ID set.
  • the environmental parameter is at least one of temperature or humidity.
  • the set of cell IDs includes at least one cell ID.
  • the terminal device when the first judgment information includes the threshold value of the environmental parameter, the terminal device usually adopts the following steps when judging whether it has the beam reciprocity capability according to the first judgment information and the first judgment condition acquired in advance: When the current environmental parameter is not less than the threshold value of the environmental parameter, the terminal device determines that it does not have the beam reciprocity capability. Wherein, when the current environmental parameter of the terminal device is not less than the threshold value of the environmental parameter, it indicates that the terminal device is in a high temperature or high humidity environment. In this case, the terminal device can determine that it does not have beam reciprocity capability.
  • the terminal device may determine the threshold value of the environmental parameter in advance in the following manner:
  • the terminal device determines that it does not have the beam reciprocity capability (for example, after the terminal device transmits the first communication information, the terminal device receives n transmission requests for the first communication information), the terminal device Obtain at least one environmental parameter.
  • the terminal device acquires m environmental parameters, and none of the m environmental parameters is less than the first parameter threshold, the terminal device determines the environmental parameter threshold according to the m environmental parameters, so that in step S11 , The threshold value of the environmental parameter is used as the first judgment information.
  • m is a preset positive integer.
  • multiple methods can be used.
  • multiple environmental parameter values may be preset, and the terminal device compares the m environmental parameters with the multiple environmental parameter values, if none of the m environmental parameters is less than some of the environmental parameters Value, the partial environmental parameter value is used as the first parameter threshold value, and it is determined that the largest environmental parameter value in the first parameter threshold value is the threshold value of the environmental parameter.
  • the environmental parameter is temperature
  • the preset multiple environmental parameter values are 35 degrees, 37 degrees, and 39 degrees, respectively.
  • 35 degrees and 37 degrees are the first parameter thresholds
  • the terminal device determines the larger first parameter threshold (ie 37 degrees) Is the threshold of the environmental parameter.
  • the threshold value of the environmental parameter is determined by the preset environmental parameter value, and the multiple preset environmental parameter values are the corresponding environmental parameters in the high temperature or high humidity environment.
  • the preset The environmental parameter values of 35 degrees, 37 degrees and 39 degrees all correspond to high temperature environments. Therefore, even if there is an error in some of the acquired environmental parameters, the threshold value of the environmental parameter determined in this way is still the corresponding environmental parameter in a high temperature or high humidity environment, which can reduce the time when the environmental parameter is determined by the environmental parameter. There may be errors.
  • the terminal device presets the first parameter threshold, and when none of the m environmental parameters is less than the first parameter threshold, the terminal device determines that the average value of the m environmental parameters is the value of the environmental parameter Threshold.
  • the average value of m environmental parameters greater than the first parameter threshold is used as the environmental parameter threshold, that is, when determining the environmental parameter threshold, the environment in which the terminal device is located is combined, so that Make the acquired threshold of the environmental parameter meet the application scenario of the terminal device.
  • the first parameter threshold value is a higher temperature value or a higher humidity value. If none of the m environmental parameters are less than the first parameter threshold, it means that the terminal device is in a high temperature or high humidity environment. Further, it can be considered that the problem of the terminal device not having beam reciprocity capability is high temperature or high humidity. It is caused by the environment, therefore, the threshold value of the environmental parameter can be determined according to the m environmental parameters.
  • m is a preset positive integer, usually a value greater than 1, for example, m is set to 3.
  • the terminal device determines the threshold value of the environmental parameter through multiple environmental parameters.
  • the threshold value of the environmental parameter is determined by fewer environmental parameters, if some of the environmental parameters have errors due to inaccurate measurement and other reasons, it will often cause the threshold value of the environmental parameters to also appear errors.
  • the threshold value of the environmental parameter is determined by a plurality of environmental parameters, so that this error can be reduced and the accuracy of the threshold value of the environmental parameter can be improved.
  • the terminal device judges whether it has beam reciprocity capability according to the first judgment information and the first judgment condition obtained in advance, including:
  • the terminal device determines that it does not have the beam reciprocity capability.
  • the terminal device can determine that it does not have the beam reciprocity capability.
  • the embodiment of the present application it is possible to obtain in advance information such as the environmental parameters of the terminal device or the cell ID of the access cell each time the terminal device does not have the beam reciprocity capability, and use it as the first judgment information , And store the first judgment information.
  • the terminal device may determine the cell ID set in advance in the following manner:
  • the terminal device determines that it does not have the beam reciprocity capability (for example, after the terminal device transmits the first communication information, the terminal device receives n transmission requests for the first communication information), the terminal device Obtain the signal to interference plus noise ratio SINR of the downlink receiving beam;
  • the terminal device When the SINR is greater than the preset second parameter threshold, the terminal device adds the cell ID of the currently accessed cell to the cell ID set.
  • the terminal device when the SINR is greater than the preset second parameter threshold, it indicates that the terminal device is subject to strong interference from neighboring cells, and the interference causes the terminal device to not have the beam reciprocity capability.
  • the terminal device adds the cell ID of the currently accessed cell to the cell ID set, thereby obtaining a cell ID set including at least one cell ID.
  • the method of obtaining the first judgment information in the embodiment of the present application is introduced.
  • the first judgment information can also be supplemented and updated according to the situation that the terminal device does not have the beam reciprocity capability during the application process.
  • Step S12 When the terminal device determines that it has beam reciprocity capability, and the beam intensity of the downlink receiving beam of the terminal device is not less than the preset first intensity threshold, the terminal device uses the preset beam mutual The workability capability determines the uplink transmit beam corresponding to the downlink receive beam.
  • the beam intensity includes: reference signal receiving power (reference signal receiving power, RSRP) and/or reference information receiving quality (reference signal receiving quality, RSRQ).
  • RSRP reference signal receiving power
  • RSRQ reference information receiving quality
  • the beam intensity of the downlink receiving beam of the terminal device is not less than the preset first intensity threshold, it indicates that the communication quality of the downlink receiving beam is good, and it is generally considered that the downlink receiving beam is the best downlink receiving beam.
  • the uplink transmission beam corresponding to the downlink reception beam can be determined.
  • the first intensity threshold can be set according to actual communication requirements.
  • the first intensity threshold may be -95dB.
  • the first intensity threshold may also be another value, which is not limited in the embodiment of the present application.
  • the terminal device is preset with a beam reciprocity capability.
  • the terminal device can determine the uplink transmit beam corresponding to the downlink receive beam through the preset beam reciprocity capability. For example, when the beam reciprocity capability is determined by the correspondence between each downlink receive beam set in the terminal device and its corresponding best uplink transmit beam, and the relationship between each uplink transmit beam and its corresponding best downlink receive beam When the corresponding relationship is embodied, the terminal device can query the corresponding relationship to determine the uplink transmit beam corresponding to the downlink receive beam.
  • Step S13 The terminal device transmits the first communication information through the uplink transmit beam.
  • the terminal device may transmit the first communication information to the TRP on the base station side through an uplink transmit beam.
  • the first communication information may be information that needs to be transmitted to the base station when the terminal device performs various communication services after the terminal device accesses the cell of the terminal device.
  • the first communication information may be network request information of the terminal device.
  • Step S14 When the terminal device receives n transmission requests for the first communication information, the terminal device performs a detach operation, and n is a preset positive integer greater than 1.
  • n is a positive integer greater than 1, and its specific value can be set and adjusted according to the requirements of the terminal device for reporting the beam reciprocity capability.
  • the specific value of n can be set at the factory. In the subsequent application process, when the detection accuracy of the beam reciprocity capability is high, the value of n can be adjusted to a smaller value. When the detection accuracy requirement for the beam reciprocity capability is low, the value of n can be adjusted to a larger value.
  • the base station After the terminal device transmits the first communication information to the base station through the uplink transmission beam, if the base station receives the first communication information, the base station transmits corresponding feedback information to the terminal device. In addition, if the base station does not receive the first communication information, the base station will also transmit a transmission request for the first communication information to the terminal device. The transmission request for the first communication information is used to request the terminal device to send the first communication information again. First communication information. In addition, each time the terminal device receives a transmission request for the first communication information, it will respond to the request, that is, transmit the first communication information to the base station again through the uplink transmission beam. In the process of communicating with the terminal equipment, the base station can send and receive information through its own TRP.
  • the terminal device if the terminal device receives n transmission requests for the first communication information, it indicates that when the terminal device transmits the first communication information to the base station through the uplink transmission beam multiple times, the base station has not received the first communication information. Communication information. That is, the uplink transmission beam deviates from the base station.
  • the uplink transmit beam is obtained through the beam reciprocity capability of the terminal device, when it is determined that the uplink transmit beam deviates from the base station, it indicates that in the current scenario, the pair of uplink transmit and receive beams and the passing beam actually need to be applied
  • the uplink transceiver beam pair obtained by the reciprocity capability is different, and the previously preset beam reciprocity capability of the terminal device no longer works. In this case, the terminal device can determine that it does not currently have the beam reciprocity capability.
  • Step S15 In the process of re-accessing the base station, the terminal device reports first capability information, where the first capability information indicates that the terminal device does not have the beam reciprocity capability.
  • the terminal device When the terminal device no longer accesses the network provided by the base station, the terminal device unregisters the network, and this operation is a detach operation. When the terminal device determines that it does not have beam reciprocity capability, it can perform a detach operation, and in the process of reconnecting to the base station, report first capability information to the base station.
  • the first capability information indicates that the terminal device does not have beam reciprocity. The reciprocity capability, so that the base station can determine that the terminal device no longer has the beam reciprocity capability.
  • the base station when a terminal device accesses the base station, the base station usually transmits a capability request indication (for example, a UE Capability Enquiry indication) to the terminal device to instruct the terminal device to report its own capability information to the base station.
  • a capability request indication for example, a UE Capability Enquiry indication
  • the terminal device After receiving the capability request indication, the terminal device reports corresponding capability information (for example, UE Capability Information) to the base station, and the capability information includes whether the terminal device has beam reciprocity capability.
  • the capability information includes a field for indicating whether the terminal device has beam reciprocity capability, and different bytes can be set in this field to characterize whether the terminal device has beam reciprocity capability.
  • the first capability information is the capability information with "0" set in the field.
  • the terminal device determines that it has beam reciprocity capability through the operation of step S14, it can return to perform the operation of step S11 every preset period, that is, the terminal device will perform the operation of step S11 every preset period according to the first judgment information And the first judgment condition, judge whether it has the beam reciprocity capability. In this case, since the operation of step S11 is performed every preset period, the terminal device can timely detect that the terminal device does not have the beam reciprocity capability during the application process.
  • the duration of the preset period can be set when the terminal device leaves the factory, and the duration of the preset period can be adjusted according to the requirement of detection accuracy and the received adjustment operation. For example, when the requirement for detection accuracy is high, the duration of the preset period can be adjusted to a shorter duration, and when the requirement for detection accuracy is low, the duration of the preset period can be adjusted to a longer duration.
  • the terminal device Through the method for reporting beam reciprocity capability disclosed in the embodiments of the present application, it is possible to measure the beam reciprocity capability of the terminal device, and report when it is determined that the terminal device does not have the beam reciprocity capability to avoid occurrence When the terminal device no longer has the beam reciprocity capability, the terminal device still transmits information through the inapplicable transceiver beam pair, resulting in a decrease in communication efficiency.
  • the terminal device can determine whether it has beam reciprocity capability based on the first judgment information and whether the first communication information is successfully transmitted, so that the terminal device can determine whether it has With beam reciprocity capability, it has high accuracy.
  • the terminal device when the terminal device determines that it does not have the beam reciprocity capability through the first judgment information, it does not need to perform the operations of step S12 to step S13, but directly performs the detach operation, and In the process of reconnecting to the base station, the first capability information is reported. That is to say, in the embodiment of this application, the terminal device first determines whether it has the beam reciprocity capability through the judgment information, and determines that it does not have the beam reciprocity capability. In the case of a transferability capability, the first capability information is directly reported without determining whether the terminal device has the beam reciprocity capability through whether the first communication information is successfully sent, thereby saving the power consumption of the terminal device for sending the first communication information.
  • the first judgment information is given priority to determine whether the terminal device is The method with the beam reciprocity capability can also improve the efficiency of the terminal device in judging whether it has the beam reciprocity capability.
  • the terminal device is disclosed to determine whether it has beam reciprocity capability based on the first judgment information and the first judgment condition, and the first judgment information includes: the threshold value of the environmental parameter and/or the cell ID Set, the environmental parameter is at least one of temperature or humidity.
  • the first judgment information can be stored in the blacklist of the terminal device.
  • the threshold value of the environmental parameter may also be updated.
  • the embodiment of the present application further discloses the following steps:
  • Step S16 When the terminal device receives the transmission request for the first communication information n times, the terminal device acquires at least one environmental parameter.
  • the environmental parameter is at least one of temperature or humidity.
  • the terminal device receives n transmission requests for the first communication information, it indicates that the terminal device currently does not have the beam reciprocity capability. In this case, the terminal device can obtain at least one current environmental parameter every time it determines that it does not have the beam reciprocity capability.
  • the terminal device can measure environmental parameters through its own built-in environmental parameter measurement device, for example, it can detect temperature through a built-in temperature sensor, or it can also detect humidity through a built-in humidity sensor.
  • the terminal device can also be connected to other measurement devices through the network to obtain environmental parameters transmitted by other measurement devices.
  • the terminal equipment may lose the beam reciprocity capability under high temperature or high humidity.
  • the high temperature and high humidity environment of the sauna room may cause the terminal device to not have the beam reciprocity capability. Therefore, in the embodiment of the present application, the terminal device needs to obtain environmental parameters.
  • Step S17 When the at least one environmental parameter is not less than the first parameter threshold, the terminal device determines the threshold of the environmental parameter according to the at least one environmental parameter and historical environmental parameters that are not less than the first parameter threshold.
  • the determined threshold of the environmental parameter belongs to the first judgment information, that is, through the operation of step S17, the threshold of the environmental parameter in the first judgment information is updated.
  • step S11 is executed again, that is, it is necessary to determine whether the terminal device has the beam reciprocity capability according to the first judgment information and the first judgment condition again, the judgment can be made by the threshold value of the environmental parameter determined in step S17. That is, when the terminal device judges the beam reciprocity capability again, the judgment is made based on the updated threshold value of the environmental parameter.
  • the terminal device acquires at least one environmental parameter every time it receives n times a transmission request for the first communication information, and when the acquired at least one environmental parameter is not less than the first parameter
  • the terminal device determines the threshold of the environmental parameter according to the at least one environmental parameter and the historical environmental parameter that is not less than the first parameter threshold.
  • the historical environmental parameters refer to environmental parameters previously acquired by the terminal device.
  • the first parameter threshold is a preset value of a corresponding environmental parameter in a high temperature or high humidity environment.
  • the first parameter threshold may be set to 35 degrees.
  • the terminal device re-determines the threshold value of the environmental parameter by using at least one environmental parameter obtained this time and the historical environmental parameter obtained before.
  • step S16 to step S17 when the terminal device receives n transmission requests for the first communication information, that is, the terminal device can determine that it does not have the beam reciprocity capability, the terminal device realizes the update of the threshold value of the environmental parameter .
  • the terminal device will determine the threshold of the environmental parameter based on at least one currently acquired environmental parameter and the historical environmental parameter that is not less than the first parameter threshold previously acquired each time, and the terminal device does not have beam interaction again.
  • the at least one previously acquired environmental parameter is used as a historical environmental parameter, and the threshold of the environmental parameter is determined again.
  • the terminal device acquires a environmental parameters, where a is a preset positive integer, and when the a environmental parameters are not less than the first parameter threshold, and the previously acquired When the b environmental parameters are not less than the first parameter threshold (that is, there are b historical environmental parameters not less than the first parameter threshold), according to the a environmental parameters and b historical environmental parameters not less than the first parameter threshold Determine the threshold of environmental parameters.
  • the terminal device when the terminal device does not have the beam reciprocity capability again, the previously acquired a environmental parameters are called historical environmental parameters, that is, there are "a+b" historical parameter parameters that are not less than the first parameter threshold.
  • the terminal device acquires a environmental parameters again, and then determines the threshold value of the environmental parameters based on the acquired a environmental parameters again and the “a+b” historical environmental parameters.
  • the threshold of the environmental parameter can be obtained in a variety of ways.
  • multiple environmental parameter values can be preset, and each time the terminal device receives n times a transmission request for the first communication information (that is, determines that it does not With beam reciprocity capability), the terminal device obtains at least one environmental parameter,
  • the terminal device presets multiple environmental parameter values. After the terminal device obtains at least one environmental parameter, if the at least one environmental parameter and the historical environmental parameter are compared with the multiple environmental parameter values, if the at least one environmental parameter and the historical environmental parameter are not less than one of them Partial environmental parameter values, using the partial environmental parameter values as the first parameter threshold, and determining that the largest environmental parameter value in the first parameter threshold is the threshold value of the environmental parameter.
  • the environmental parameter is temperature
  • the preset multiple environmental parameter values are 35 degrees, 37 degrees, and 39 degrees, respectively.
  • 35 degrees and 37 degrees are the first parameter thresholds
  • the terminal device determines the larger first parameter threshold (That is, 37 degrees) is the threshold value of the environmental parameter.
  • the threshold value of the environmental parameter is determined by the preset environmental parameter value, and the multiple preset environmental parameter values are the corresponding environmental parameters in the high temperature or high humidity environment.
  • the preset The environmental parameter values of 35 degrees, 37 degrees and 39 degrees all correspond to high temperature environments. Therefore, even if there is an error in some of the acquired environmental parameters, the threshold value of the environmental parameter determined in this way is still the corresponding environmental parameter in a high temperature or high humidity environment, so that the threshold value of the environmental parameter determined by the environmental parameter can be reduced. error.
  • the terminal device presets the first parameter threshold, and when the at least one environmental parameter and the historical environmental parameter are not less than the first parameter threshold, the terminal device determines the difference between the at least one environmental parameter and the historical environmental parameter The average value is the threshold value of the environmental parameter.
  • the average value of at least one environmental parameter greater than the first parameter threshold and the historical environmental parameter is used as the threshold of the environmental parameter, that is, when the threshold of the environmental parameter is determined, the terminal device is Environment, so that the acquired threshold value of the environmental parameter can meet the application scenario of the terminal device.
  • the first parameter threshold value is a higher temperature value or a higher humidity value. If the at least one environmental parameter is not less than the first parameter threshold, it means that the terminal device is in a high temperature or high humidity environment. Further, it can be considered that the problem of the terminal device not having beam reciprocity capability is high temperature or high humidity. As a result of the environment, the threshold value of the environmental parameter may be determined according to the at least one environmental parameter and the historical environmental parameter not less than the first parameter threshold.
  • a method for obtaining the threshold value of the environmental parameter during the application process of the terminal device is disclosed, so that the threshold value of the environmental parameter can be updated during the application process of the terminal device.
  • the terminal device After determining the threshold of the environmental parameter, in the subsequent application process, when the current environmental parameter of the terminal device is not less than the threshold of the environmental parameter, it indicates that the current environment of the terminal device is such that the terminal device does not have beam reciprocity In a high-temperature or high-humidity environment with sexual capability, furthermore, the terminal device can determine that it does not have the beam reciprocity capability. In other words, the terminal device can determine the environmental conditions under which the terminal device does not have the beam reciprocity capability based on the threshold of the environmental parameter, and further determine whether it needs to actively report the first capability information, so that it can be based on the first determination information Determine whether the terminal device has beam reciprocity capability.
  • the terminal device judges whether it has the beam reciprocity capability according to the first judgment information and the first judgment condition obtained in advance, including:
  • the terminal device determines that it does not have the beam reciprocity capability.
  • the terminal device compares the threshold value of the environmental parameter with the current environmental parameter, and when the current environmental parameter is not less than the threshold value of the environmental parameter , The terminal device determines that it does not have the beam reciprocity capability.
  • the terminal device determines the threshold of the environmental parameter according to the environmental parameter of the sauna room. In this case, when the user brings the terminal device into the sauna again, the terminal device can determine that the current environmental parameter is not less than the threshold of the environmental parameter, thereby determining that it does not have the beam reciprocity capability, and actively report the first capability information.
  • the first judgment information may also be a cell ID set, and the cell ID set includes at least one cell ID.
  • the embodiment of the present application also discloses the following steps:
  • Step S18 When the terminal device receives n transmission requests for the first communication information, the terminal device obtains the signal to interference plus noise ratio (SINR) of the downlink receive beam. ).
  • SINR signal to interference plus noise ratio
  • the SINR of the downlink receiving beam can reflect whether the downlink receiving beam is interfered.
  • Step S19 When the SINR is greater than the preset second parameter threshold, the terminal device adds the cell ID of the currently accessed cell to the cell ID set.
  • the terminal device can obtain the cell ID of the currently accessed cell.
  • the SINR is greater than the preset second parameter threshold, it indicates that the terminal device is subject to strong interference from neighboring cells, and this interference may cause the terminal device to not have beam reciprocity capability.
  • the terminal device adds the cell ID of the currently accessed cell to the cell ID set.
  • the cell ID set belongs to the first judgment information.
  • the terminal device judges whether it has the beam reciprocity capability according to the first judgment information and the first judgment condition obtained in advance, including:
  • the terminal device determines that it does not have the beam reciprocity capability.
  • the terminal device When the cell ID of the cell currently to be accessed by the terminal device is the same as one of the cell IDs included in the cell ID set, it indicates that the terminal device will often be interfered by neighboring cells after accessing the cell, and thus no longer have beam interaction. Ability to work.
  • a method for obtaining the cell ID in the cell ID set during the application process of the terminal device is disclosed.
  • the cell ID can be added to the cell ID set, and the terminal device stores the cell ID set.
  • the terminal device can simultaneously Store multiple cell IDs.
  • the terminal device determines that it does not have the beam reciprocity capability, and actively reports the first capability information, so that it can Improve the accuracy of determining whether it has beam reciprocity capability through the cell ID.
  • the terminal device can also determine the frequency with which it accesses each cell ID, and only store the ID of the cell with the higher frequency that it accesses, and no longer store other cells with lower frequencies. ID. Since the frequency of terminal equipment accessing other cell IDs is low, it can be considered that the possibility of terminal equipment accessing other cell IDs is low. In this case, the other cell IDs are no longer saved, which can not only reduce terminal equipment The occupation of memory space also reduces the matching procedure between the cell ID of the cell currently to be accessed and the cell stored in the terminal device, and improves the efficiency of the terminal device in determining whether it has beam reciprocity capability.
  • the threshold value of environmental parameters during the application process of the terminal device, or to determine the cell ID of the cell accessed when the terminal device is interfered by neighboring cells and thus does not have beam reciprocity capability.
  • the ID is added to the cell ID set.
  • the terminal device preferentially uses the first judgment information to determine whether it has the beam reciprocity capability.
  • the method of judging whether the terminal device has the beam reciprocity capability based on whether the first communication information is successfully transmitted the method of judging whether the terminal device has the beam reciprocity capability through the first judgment information can save the terminal device from sending the first communication information. Time-consuming power consumption, and time-consuming is relatively short. Therefore, the first judgment information is preferably used to determine whether it has the beam reciprocity capability, which can improve the efficiency of the terminal device in determining whether it has the beam reciprocity capability.
  • the terminal device when it is determined through the first judgment information that it has the beam reciprocity capability, the terminal device then judges whether it has the beam reciprocity capability based on whether the first communication information is successfully transmitted, that is, the terminal device can be based on the first judgment information and Whether the first communication information is sent successfully, these two factors determine whether it has the beam reciprocity capability, and therefore, the accuracy of the terminal device in determining whether it has the beam reciprocity capability can be improved.
  • the beam reciprocity capability reporting method disclosed in the embodiment of the present application includes the following steps:
  • Step S21 The terminal device judges whether the current environmental parameter is not less than the threshold value of the environmental parameter, if not, execute the operation of step S22, if yes, execute the operation of step S26.
  • the environmental parameter is at least one of temperature or humidity.
  • the threshold value of the environmental parameter can be determined by the operations from step S16 to step S17, and can be recorded in the blacklist of the terminal device after the determination, so that each time step S21 is performed, the blacklist is extracted Thresholds of environmental parameters.
  • the terminal device determines that the current environmental parameter is not less than the threshold value of the environmental parameter, it usually indicates that the terminal device is in a high temperature or high humidity environment. In this case, the terminal device usually does not have beam reciprocity ability
  • Step S22 When the terminal device determines that the current environmental parameter is less than the threshold value of the environmental parameter, the terminal device determines whether the cell ID of the current cell to be accessed is the same as the cell ID included in the cell ID set; If not, execute the operation of step S23, if yes, execute the operation of step S26.
  • the cell ID set includes at least one cell ID.
  • the cell ID of the current cell to be accessed is the same as a cell ID in the cell ID set, it means that the terminal device will lose the beam due to interference from neighboring cells after accessing the cell to be accessed. Reciprocity capability.
  • the cell ID in the cell ID set can be determined through the operations of step S18 to step S19, and can be recorded in the blacklist of the terminal device after determination, so that each time step S22 is performed, the blacklist The cell ID set is extracted from the list, and the cell ID of the cell currently to be accessed by the terminal device is compared with the cell ID in the cell ID set.
  • step S21 to step S22 refer to that the terminal device judges whether it has the beam reciprocity capability according to the first judgment information and the first judgment condition acquired in advance, wherein the first judgment information includes the information of the environmental parameters in step S21.
  • the threshold value and the cell ID in step S22 are set.
  • step S22 can also be performed first, and then the operation of step S21, that is, the terminal device first determines whether the cell ID of the cell to be accessed is the same as any one of the cell ID sets. If they are different, the terminal The device then determines whether the current environmental parameter is not less than the threshold value of the environmental parameter, and when the terminal device determines that the current environmental parameter is less than the threshold value of the environmental parameter, the operation of step S23 is performed again.
  • the terminal device can also determine at the same time whether the current environmental parameter is not less than the threshold of the environmental parameter, and whether the cell ID of the cell to be accessed is the same as the cell ID included in the cell ID set, and if the judgment results of both are no, then The operation of step S23 is performed.
  • Step S23 When the beam intensity of the downlink receive beam of the terminal device is not less than the preset first intensity threshold, the terminal device determines the uplink transmission corresponding to the downlink receive beam through the preset beam reciprocity capability Beam.
  • step S21 to step S22 when the terminal device determines that the current environmental parameter is less than the threshold value of the environmental parameter, and determines that the cell ID of the cell to be accessed is different from the cell ID in the cell ID set, it is considered that the terminal device currently has a beam Reciprocity capability, and follow-up communication through beam reciprocity capability. In this case, in the communication process, the terminal device can further determine whether it has the beam reciprocity capability through whether the communication information is successfully sent.
  • Step S24 The terminal device transmits the first communication information through the uplink transmit beam.
  • Step S25 The terminal device determines whether a transmission request for the first communication information has been received n times, and if so, performs the operation of step S26.
  • n is a preset positive integer greater than 1.
  • the terminal device does not receive the transmission request for the first communication information, or the terminal device receives the transmission request for the first communication information, but the number of transmission requests is less than n times, it indicates that the terminal device can transmit the first communication information.
  • the communication information is successfully sent to the base station. Therefore, the terminal equipment can be considered to have beam reciprocity capability.
  • Step S26 The terminal device determines that it does not have beam reciprocity capability.
  • Step S27 The terminal device performs a detach operation, and in the process of re-accessing the base station, reports first capability information, where the first capability information indicates that the terminal device does not have the beam reciprocity capability.
  • the terminal device may also perform the following operations:
  • Step S28 waiting for a preset period, and then returning to perform the operation of step S21.
  • step S24 the terminal device determines that it has not received n transmission requests for the first communication, it often indicates that the terminal device has beam reciprocity capability. In this case, the terminal device can wait for a preset period , And then return to perform the operation of step S21, that is, determine again whether it has the beam reciprocity capability, so that the terminal device can timely detect that it does not have the beam reciprocity capability.
  • the duration of the preset period can be set when the terminal device leaves the factory, and the duration of the preset period can be adjusted according to the requirement of detection accuracy and the received adjustment operation. For example, when the requirement for detection accuracy is high, the duration of the preset period can be adjusted to a shorter duration, and when the requirement for detection accuracy is low, the duration of the preset period can be adjusted to a longer duration.
  • the terminal device firstly determines whether it has the beam reciprocity capability based on the judgment information and the current information corresponding to the judgment information.
  • the terminal device passes the first communication Whether the information is sent successfully, it is judged whether it has beam reciprocity capability.
  • the solution of the embodiment of the present application can determine whether it has the beam reciprocity capability through the two methods of whether the first determination information and the first communication information are successfully sent, thereby having high detection accuracy. Moreover, when it is determined whether the terminal device does not have the beam reciprocity capability through whether the first communication information is successfully transmitted, the terminal device actively reports the first capability information, so as to avoid the occurrence of when the terminal device no longer has the beam reciprocity capability. The terminal equipment still transmits information through unsuitable transceiver beam pairs, resulting in reduced communication efficiency.
  • the terminal device preferentially determines whether it has the beam reciprocity capability through the first judgment information, and directly reports the first capability information when it is determined that it does not have the beam reciprocity capability.
  • the power consumption of the terminal device for sending the first communication information is saved.
  • the first judgment information is given priority to determine whether the terminal device is The method with the beam reciprocity capability can also improve the efficiency of the terminal device in judging whether it has the beam reciprocity capability.
  • step S26 after performing the operation of step S26, that is, after determining that it does not have the beam reciprocity capability, the following operations may be performed:
  • Step S29 The terminal device obtains the first judgment information.
  • the terminal device After the terminal device determines that it does not have the beam reciprocity capability, it may also obtain the first judgment information.
  • the first judgment information includes a threshold value of an environmental parameter and/or a cell ID set.
  • the terminal device obtains the first judgment information
  • the terminal device acquires at least one environmental parameter, and when the at least one environmental parameter is not less than the first parameter threshold, the terminal device The at least one environmental parameter and the historical environmental parameter not less than the first parameter threshold determine the threshold of the environmental parameter.
  • the terminal device may also obtain the SINR of the downlink receive beam, and when the SINR is greater than the preset second parameter threshold, the terminal device The device adds the cell ID of the currently accessed cell to the cell ID set.
  • step S29 is performed after step S27.
  • step S26 is performed, step S29 is performed first, and then step S27 is performed.
  • step S26 is performed, step S29 is performed first, and then step S27 is performed.
  • the terminal device can detect whether it has the beam reciprocity capability, and if it is determined that it does not have the beam reciprocity capability, actively report the first capability information.
  • the terminal device may also recover the beam reciprocity capability during the application process. Therefore, the terminal device may also report the second capability information.
  • this application also discloses another embodiment.
  • the method further includes:
  • Step S30 The terminal device determines whether it needs to report second capability information based on the first judgment information.
  • the second capability information indicates that the terminal device has beam reciprocity capability, and if so, performs the operation of step S31.
  • the terminal device when the current environmental parameter is not less than the threshold value of the environmental parameter, the terminal device obtains a new environmental parameter every first cycle; when the new environmental parameter is less than a preset At the third parameter threshold, the terminal device determines that it needs to report the second capability information.
  • the third parameter threshold is a threshold value corresponding to an environmental parameter in a low temperature or low humidity environment.
  • the environmental parameter of the terminal device is less than the third parameter threshold, it indicates that the terminal device is in a low temperature or low humidity environment .
  • the terminal device is affected by the environment and the terminal device does not have beam reciprocity capability, then when the terminal device is in a suitable environment (such as a low temperature and low humidity environment), it will often restore its own beam reciprocity capability. For example, when the terminal device is in a high-temperature environment or a high-humidity environment, the terminal device often does not have beam reciprocity capabilities. When the terminal device’s environment changes and the new environment is a low-temperature or low-humidity environment, The beam reciprocity capability of the terminal equipment is usually restored.
  • a suitable environment such as a low temperature and low humidity environment
  • the terminal device when the terminal device determines that the environmental parameter is less than the third parameter threshold, it indicates that the terminal device is in a low temperature or low humidity environment. In this case, the beam reciprocity capability of the terminal device has often been restored. Therefore, the terminal device The device may report the second capability information so that the base station can determine that the terminal device has the beam reciprocity capability, so that in the subsequent communication process, the base station and the terminal device communicate based on the beam reciprocity capability to improve communication efficiency.
  • the terminal device compares the cell ID of the new cell to be accessed with the cell ID of the cell when accessing a new cell.
  • the cell ID set when the cell ID of the new cell to be accessed is different from the cell ID in the cell ID set, the terminal device determines that it needs to report second capability information, the second capability information Indicate that the terminal device has beam reciprocity capability.
  • the second capability information can be reported.
  • Step S31 The terminal device performs a detach operation, and reports second capability information during the process of re-accessing the base station.
  • the base station determines that the terminal device has the beam reciprocity capability based on the second capability information. In the subsequent communication process, the base station and the terminal device perform operations based on the beam reciprocity capability. Communication, which can improve the communication efficiency between the base station and the terminal device.
  • the terminal device determines that it needs to report the second capability information, it performs a detach operation, then re-accesses the base station, and in the process of re-accessing the base station, reports the second capability information.
  • the terminal device After the terminal device reports the first capability information, it needs to perform beam management, and communicate with the base station through the transceiver beam pair determined by the beam management. In this case, when the terminal device determines that it needs to report the second capability information, the terminal device It is also possible to no longer perform the detachment operation, but report the second capability information to the base station through a pair of transceiver beams determined by beam management.
  • the terminal device actively reports the first capability information to the base station after determining that it does not have the beam reciprocity capability.
  • the terminal device after reporting the first capability information, in order to ensure that the terminal device and the base station The communication between them is smooth, and beam management is also required.
  • the terminal device After reporting the first capability information, the terminal device performs beam management and re-determines the pair of transceiver beams.
  • beam management is used to re-determine a pair of transceiver beams, and the newly-determined transceiver beam is a beam pair aimed at the base station by the terminal device.
  • the terminal device and the base station may communicate based on the re-determined transmission and reception beam pair in the subsequent communication process, thereby improving communication efficiency.
  • Beam management usually includes downlink beam management and uplink beam management. Among them, the downlink beam management is divided into three processes: P-1, P-2 and P-3.
  • the P-1 process is used to implement coarse alignment of the downlink beams of the base station and the terminal device.
  • the base station transmits information to the terminal device through different downlink transmit beams in turn, and the terminal device uses different downlink receive beams to measure the downlink. Transmit beams.
  • the downlink transmit beam used by the base station and the downlink receive beam used by the terminal device are both thicker beams to achieve coarse alignment of the downlink beams of the base station and the terminal device.
  • the P-2 process is used to fine-tune the downlink transmit beam of the base station.
  • the terminal equipment uses the same downlink receive beam to measure different downlink transmit beams of the base station.
  • the downlink transmit beam is a narrow beam to determine the base station transmission A better quality downlink transmit beam (that is, the best downlink transmit beam).
  • the P-3 process is used to fine-tune the downlink receive beam of the terminal device.
  • the terminal device measures the downlink transmit beam determined by the base station in the P-2 process through different downlink receive beams.
  • the downlink receive beam is a narrow beam , So as to determine the downlink receiving beam with better transmission quality of the terminal equipment (that is, the best downlink receiving beam).
  • the process of uplink beam management is divided into three processes: U-1, U-2 and U-3.
  • the U-1 process is used to realize the coarse alignment of the uplink beams of the base station and the terminal equipment.
  • the terminal equipment transmits information to the base station through different uplink transmission beams in turn, and the base station uses different uplink reception beams to measure the uplink transmission beam
  • the uplink receiving beam used by the base station and the uplink transmitting beam used by the terminal equipment are both thicker beams, so as to achieve coarse alignment of the uplink beams of the base station and the terminal equipment.
  • the U-2 process is used to fine-tune the uplink receiving beam of the base station.
  • the base station uses different uplink receiving beams to measure the same uplink transmitting beam of the terminal equipment.
  • the uplink receiving beam is narrow beam to determine the base station transmission A better quality uplink receiving beam (that is, the best uplink receiving beam).
  • the U-3 process is used to fine-tune the uplink transmission beam of the terminal equipment.
  • the base station measures the different uplink transmission beams of the terminal equipment through the uplink reception beam determined in the U-2 process.
  • the uplink transmission beam is a narrow beam , So as to determine the uplink transmit beam with better transmission quality of the terminal equipment (that is, the best uplink transmit beam).
  • the terminal device can re-determine the transceiver beam pair with better communication quality, thereby improving the subsequent communication quality.
  • embodiments of this application also include:
  • the terminal device executes Attach operation
  • the terminal device reports second capability information, where the second capability information indicates that the terminal device has beam reciprocity capability;
  • the first downlink receiving beam is the best downlink receiving beam determined by the beam reciprocity capability
  • the first uplink transmitting beam is the best uplink transmitting beam determined by the beam reciprocity capability
  • the terminal device When the best downlink receive beam determined by beam management is the same as the first downlink receive beam, and the best uplink transmit beam determined by beam management is the same as the first uplink transmit beam, it indicates that the terminal equipment interacts with each other through the preset beam.
  • the transmit-receive beam pair determined by the accessibility capability is the same as the transmit-receive beam pair determined through beam management. In this case, it indicates that the terminal device has beam reciprocity capability. Therefore, the terminal device reports the second capability information to the base station so that the base station It is determined that the terminal device has the beam reciprocity capability, so that the base station and the terminal device still use the beam reciprocity capability to determine the applied transceiver beam pair in the subsequent communication process, instead of beam management, so as to further improve the communication efficiency.
  • the beam reciprocity capability reporting device includes: a first judging module 110, a beam determining module 120, an information transmitting module 130, a detachment module 140, and a capability reporting module 150.
  • the first judgment module 110 is configured to judge whether the terminal device has the beam reciprocity capability according to the first judgment information and the first judgment condition obtained in advance.
  • the beam determination module 120 is configured to pass when the first judgment module determines that the terminal device has beam reciprocity capability, and the beam intensity of the downlink receiving beam of the terminal device is not less than the preset first intensity threshold
  • the preset beam reciprocity capability determines the uplink transmit beam corresponding to the downlink receive beam.
  • the beam intensity includes: reference signal receiving power (reference signal receiving power, RSRP) and/or reference information receiving quality (reference signal receiving quality, RSRQ).
  • RSRP reference signal receiving power
  • RSRQ reference information receiving quality
  • the information transmitting module 130 is configured to transmit the first communication information through the uplink transmitting beam.
  • the first communication information may be information that needs to be transmitted to the base station when the terminal device performs various communication services after the terminal device accesses the cell of the terminal device.
  • the first communication information may be network request information of the terminal device.
  • the detach module 140 is configured to perform a detach operation when the terminal device receives n transmission requests for the first communication information, and n is a preset positive integer greater than 1.
  • n is a positive integer greater than 1, and its specific value can be set and adjusted according to the requirements of the terminal device for reporting the beam reciprocity capability.
  • the specific value of n can be set at the factory. In the subsequent application process, when the detection accuracy of the beam reciprocity capability is high, the value of n can be adjusted to a smaller value. When the detection accuracy requirement for the beam reciprocity capability is low, the value of n can be adjusted to a larger value.
  • the capability reporting module 150 is configured to report first capability information when the terminal device re-accesses the base station, where the first capability information indicates that the terminal device does not have the beam reciprocity capability.
  • the first judgment information may include various forms of information.
  • the first judgment information usually includes: a threshold value of an environmental parameter and/or a cell ID set.
  • the environmental parameter is at least one of temperature or humidity.
  • the set of cell IDs includes at least one cell ID.
  • the first judgment information includes the threshold value of the environmental parameter
  • the device disclosed in the embodiment of the present application further includes:
  • the first parameter acquisition module is configured to acquire at least one environmental parameter when the terminal device receives n times a transmission request for the first communication information
  • the threshold determination module is configured to determine the threshold of the environmental parameter according to the at least one environmental parameter and historical environmental parameters that are not less than the first parameter threshold when the at least one environmental parameter is not less than the first parameter threshold.
  • the environmental parameter is at least one of temperature or humidity.
  • the terminal device receives n transmission requests for the first communication information, it indicates that the terminal device currently does not have the beam reciprocity capability.
  • the terminal device can obtain at least one current environmental parameter each time it determines that it does not have the beam reciprocity capability, and then, when m environmental parameters are obtained, and none of the m environmental parameters is less than
  • the threshold value of the environmental parameter is determined according to the m environmental parameters and historical environmental parameters that are not less than the first parameter threshold, and the threshold value of the environmental parameter belongs to the first judgment information.
  • the device disclosed in the embodiment of the present application further includes:
  • the SINR acquisition module is configured to acquire the signal-to-interference-and-noise ratio SINR of the downlink receive beam when the terminal device receives n transmission requests for the first communication information;
  • the cell ID adding module is configured to add the cell ID of the currently accessed cell to the cell ID set when the SINR is greater than the preset second parameter threshold.
  • the SINR of the downlink receiving beam can reflect whether the downlink receiving beam is interfered.
  • the SINR is greater than the preset second parameter threshold, it indicates that the terminal device is subject to strong interference from neighboring cells, and the interference may cause the terminal device to not have beam reciprocity capability.
  • the terminal device adds the cell ID of the currently accessed cell to the cell ID set, which can be used as the first judgment information.
  • the first judgment module when the first judgment information includes the threshold value of the environmental parameter, the first judgment module is specifically configured to determine that it does not have a beam if the current environmental parameter is not less than the threshold value of the environmental parameter. Reciprocity capability.
  • the first judgment module is specifically configured to: when the cell ID of the cell currently to be accessed by the terminal device and a cell ID included in the set of cell IDs At the same time, the terminal device determines that it does not have the beam reciprocity capability.
  • the terminal device may also restore its own beam reciprocity capability during the application process.
  • the device disclosed in the embodiment of the present application further includes:
  • the second parameter obtaining module is configured to obtain a new environmental parameter every first cycle when the current environmental parameter is not less than the threshold value of the environmental parameter;
  • the detach module is further configured to perform a detach operation when the new environmental parameter is less than a preset third parameter threshold;
  • the capability reporting module is further configured to report second capability information when the terminal device re-accesses the base station, where the second capability information indicates that the terminal device has a beam reciprocity capability.
  • the new environmental parameter when the new environmental parameter is less than the preset third parameter threshold, it indicates that the environment in which the terminal device is located has changed to a low-temperature and low-humidity environment. In this case, the terminal device determines its own ability to restore beam reciprocity, Thereby actively reporting the second capability information.
  • the device disclosed in the embodiment of the present application it further includes:
  • the cell ID comparison module is used to compare the new cell to be accessed when the terminal device accesses a new cell when the cell ID of the cell to be accessed currently is the same as the cell ID in the cell ID set The cell ID of and the cell ID set;
  • the detach module is further configured to perform a detach operation when the cell ID of the new cell to be accessed is different from the cell ID in the cell ID set;
  • the capability reporting module is further configured to report second capability information when the terminal device re-accesses the base station, where the second capability information indicates that the terminal device has a beam reciprocity capability.
  • the terminal device When the cell ID of the new cell to be accessed is different from the cell ID in the cell ID set, it indicates that the terminal device no longer accesses the cell with strong interference from the neighboring cell. In this case, the terminal device Determine the self-recovery beam reciprocity capability, so as to actively report the second capability information.
  • the device disclosed in the embodiment of the present application further includes:
  • the beam management module is configured to perform beam management after the terminal device reports the first capability information, and re-determine the transceiver beam pair.
  • beam management is used to re-determine a pair of transceiver beams, and the newly-determined transceiver beam is a beam pair aimed at the base station by the terminal device.
  • the terminal device and the base station may communicate based on the re-determined transmission and reception beam pair in the subsequent communication process, thereby improving communication efficiency.
  • the detach module is further configured to: when the best downlink receive beam determined by beam management is the same as the first downlink receive beam, and the best downlink receive beam determined by beam management When the uplink transmit beam is the same as the first uplink transmit beam, the detach operation is performed, wherein the first downlink receive beam is the best downlink receive beam determined by the beam reciprocity capability, and the first uplink transmit beam Is the best uplink transmit beam determined by the beam reciprocity capability;
  • the capability reporting module is further configured to report second capability information in the process of re-accessing the base station, where the second capability information indicates that the terminal device has a beam reciprocity capability.
  • the terminal device When the best downlink receive beam determined by beam management is the same as the first downlink receive beam, and the best uplink transmit beam determined by beam management is the same as the first uplink transmit beam, it indicates that the terminal equipment interacts with each other through the preset beam.
  • the transmit-receive beam pair determined by the accessibility capability is the same as the transmit-receive beam pair determined through beam management. In this case, it indicates that the terminal device has beam reciprocity capability. Therefore, the terminal device reports the second capability information to the base station so that the base station It is determined that the terminal device has the beam reciprocity capability, so that the base station and the terminal device still use the beam reciprocity capability to determine the applied transceiver beam pair in the subsequent communication process, instead of beam management, so as to further improve the communication efficiency.
  • the beam reciprocity capability reporting device disclosed in the embodiments of the present application, it is possible to measure the beam reciprocity capability of the terminal device, and report when it is determined that the terminal device does not have the beam reciprocity capability to avoid occurrence
  • the terminal device still transmits information through the inapplicable transceiver beam pair, resulting in a decrease in communication efficiency.
  • the terminal device can determine whether it has beam reciprocity capability based on the first judgment information and whether the first communication information is successfully transmitted, so that the terminal device can determine whether it has With beam reciprocity capability, it has high accuracy.
  • the terminal device when the terminal device determines that it does not have the beam reciprocity capability through the first judgment information, it directly performs the detachment operation, and reports the first capability information during the process of reconnecting to the base station. That is to say, in this embodiment of the application, the terminal device first determines whether it has the beam reciprocity capability through the judgment information, and when it determines that it does not have the beam reciprocity capability, it directly reports the first capability information, and It is not necessary to determine whether the terminal device has the beam reciprocity capability based on whether the first communication information is successfully sent, thereby saving the power consumption of the terminal device when sending the first communication information.
  • the first judgment information is given priority to determine whether the terminal device is The method with the beam reciprocity capability can also improve the efficiency of the terminal device in judging whether it has the beam reciprocity capability.
  • the terminal device includes:
  • the memory is used to store program instructions
  • the processor 1101 is configured to call and execute program instructions stored in the memory, so that the beam reciprocity capability reporting apparatus executes all or part of the embodiments corresponding to FIG. 6 and FIGS. 8 to 12 step.
  • the terminal device may further include a transceiver 1102 and a bus 1103, and the memory includes a random access memory 1104 and a read-only memory 1105.
  • the processor is respectively coupled to the receiver/transmitter, the random access memory and the read-only memory through the bus.
  • the basic input output system solidified in the read-only memory or the bootloader guide system in the embedded system is started to guide the terminal device into a normal operating state.
  • the application program and the operating system are run in the random access memory, so that the terminal device executes all or part of the steps in the embodiment corresponding to FIG. 6 and FIGS. 8 to 12.
  • the communication device of the embodiment of the present invention may correspond to the terminal device in the above-mentioned FIG. 6 and the embodiments corresponding to FIGS. 8 to 12, and the processor and transceiver in the terminal device may implement FIG. 6 and FIG.
  • the functions and/or various steps and methods implemented by the terminal device in the embodiments corresponding to FIG. 8 to FIG. 12 are not repeated here for brevity.
  • this embodiment may also be based on a terminal device implemented by a general physical server combined with network function virtualization (English: Network Function Virtualization, NFV) technology.
  • the terminal device is a virtual terminal device (eg, virtual host, virtual Router or virtual switch).
  • the virtual terminal device may be a virtual machine (English: Virtual Machine, VM) running a program for sending notification messages, and the virtual machine is deployed on a hardware device (for example, a physical server).
  • Virtual machine refers to a complete computer system with complete hardware system functions that is simulated by software and runs in a completely isolated environment.
  • Those skilled in the art can virtualize multiple communication devices with the above-mentioned functions on a general physical server by reading this application. I won't repeat them here.
  • the beam reciprocity capability reporting device disclosed in the embodiment of the present application may be in various forms.
  • the beam reciprocity capability reporting device is a chip.
  • the memory in the chip stores program instructions, and the processor in the chip implements the reporting of beam reciprocity capabilities by calling the program instructions stored in the memory.
  • the beam reciprocity capability reporting device is a terminal device, for example, a mobile phone, a vehicle-mounted device with a communication function, or a smart wearable device, etc., which is not limited in the embodiment of the application .
  • an embodiment of the present application also provides a computer-readable storage medium, wherein instructions are stored in the computer-readable storage medium, and when the computer-readable storage medium runs on a computer, the computer implementation includes FIG. 6, And all or part of the steps in the embodiment corresponding to FIG. 8 to FIG. 12.
  • the computer-readable storage medium is provided in any device, and the arbitrary device may be a random-access memory (RAM), and the memory may also include a non-volatile memory (non-volatile memory), such as Read-only memory (ROM), flash memory (flash memory), hard disk (HDD) or solid-state drive (SSD); memory can also include a combination of the above types of memory, etc. .
  • the various illustrative logic units and circuits described in the embodiments of this application can be implemented by general-purpose processors, digital information processors, application specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, Discrete gates or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor, and optionally, the general-purpose processor may also be any traditional processor, controller, microcontroller, or state machine.
  • the processor can also be implemented by a combination of computing devices, such as a digital information processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital information processor core, or any other similar configuration achieve.
  • the steps of the method or algorithm described in the embodiments of the present application can be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other storage medium in the field.
  • the storage medium may be connected to the processor, so that the processor can read information from the storage medium, and can store and write information to the storage medium.
  • the storage medium may also be integrated into the processor.
  • the processor and the storage medium may be set in the ASIC, and the ASIC may be set in the UE.
  • the processor and the storage medium may also be provided in different components in the UE.
  • the size of the sequence number of each process does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not correspond to the difference in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the technology in the embodiments of the present invention can be implemented by means of software plus a necessary general hardware platform.
  • the technical solutions in the embodiments of the present invention can be embodied in the form of software products, which can be stored in a storage medium, such as ROM/RAM. , Magnetic disks, optical disks, etc., including a number of instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to execute the methods described in the various embodiments or some parts of the embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开一种波束互易性能力上报方法及装置,该方法中,终端设备根据第一判断信息和第一判断条件,判断自身是否具备波束互易性能力,若具备,且下行接收波束的波束强度不小于第一强度阈值时,终端设备通过波束互易性能力,确定上行发射波束,通过上行发射波束发射第一通信信息;当终端设备接收到n次针对所述第一通信信息的发射请求时,终端设备执行去附着操作,并在重新接入基站的过程中上报第一能力信息,以指示自身不具备波束互易性能力,实现对终端设备的波束互易性能力的测量,并在确定终端设备不具备波束互易性能力的情况下主动上报,以避免出现终端设备不再具备波束互易性能力时,通过不适用的收发波束对传输信息的现象。

Description

一种波束互易性能力上报方法及装置
本申请要求在2019年4月24日提交中国国家知识产权局、申请号为201910336113.1、发明名称为“一种波束互易性能力的检测和动态上报的方法和终端”的中国专利申请的优先权,在2019年7月31日提交中国专利局、申请号为201910702752.5、发明名称为“一种波束互易性能力上报方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,具体涉及一种波束互易性能力上报方法及装置。
背景技术
在第五代(fifth-generation,5G)通信技术中,通常应用高频段的频谱资源,但是,高频段的路径衰减较大。为了克服路径衰减大的问题,目前通常为应用5G通信技术的基站和终端设备配置天线阵列,以使基站和终端设备应用波束成形(Beamforming,BF)技术。波束成形技术能够引发阵列增益,从而有效增加信息覆盖,克服高频段的路径衰减。当应用波束成形技术时,基站和终端设备侧均能够应用多个不同指向的波束进行通信。
另外,由于各个波束具有较强的方向性,并且波束较窄,为了实现基站与终端设备之间的高效通信,需要为基站和终端设备选择合适的收发波束对。其中,终端设备每次在接入基站时,可与基站进行波束管理,通过波束管理,确定合适的收发波束对,从而通过合适的收发波束对进行通信,以便提高通信质量。但是,波束管理的过程较为繁琐,并且会耗费一段时间。这种情况下,5G通信技术引入了波束互易性(beam correspondence,BC)这一概念,基站和终端设备通过自身的波束互易性能力,能够确定合适的收发波束对。
但是,发明人在本申请的研究过程中发现,终端设备的波束互易性能力会发生变化,在某些应用场景下,终端设备不再具备波束互易性能力,也就是说,终端设备之前通过波束互易性能力确定的收发波束对往往不再适用,但这种情况下,终端设备通常继续通过该收发波束对传输信息,导致终端设备采用的波束偏离基站,从而降低通信效率,甚至当波束偏离角度较大时,会导致基站无法接收到终端设备发射的信息,使通信业务无法进行。
发明内容
当终端设备不再具备波束互易性能力时,如果终端设备仍然通过波束互易性能力确定的收发波束传输信息,会导致通信效率降低,甚至导致基站无法接收到终端设备发射的信息,为了解决这一问题,本申请实施例公开一种波束互易性能力上报方法及装置。
第一方面,本申请实施例公开一种波束互易性能力上报方法,包括:
终端设备根据预先获取的第一判断信息和第一判断条件,判断自身是否具备波束互易性能力;
当所述终端设备确定自身具备波束互易性能力,并且所述终端设备的下行接收波束的波束强度不小于预设的第一强度阈值时,所述终端设备通过预设的波束互易性能力,确定所述下行接收波束对应的上行发射波束;
所述终端设备通过所述上行发射波束发射第一通信信息;
当所述终端设备接收到n次针对所述第一通信信息的发射请求时,所述终端设备执行去附着操作,n为预设的大于1的正整数;
所述终端设备在重新接入基站的过程中,上报第一能力信息,所述第一能力信息指示所述终端设备不具备波束互易性能力。
通过上述波束互易性能力上报方法,能够实现对终端设备的波束互易性能力的测量,并在确定终端设备不具备波束互易性能力的情况下进行上报,以避免出现当终端设备不再具备波束互易性能力时,终端设备仍然通过不适用的收发波束对传输信息,所导致的通信效率降低的情况。
一种可选的设计中,所述第一判断信息包括:环境参数的阈值和/或小区ID集合;
所述环境参数为温度或湿度中的至少一种。
一种可选的设计中,所述第一判断信息包括环境参数的阈值;
所述方法还包括:
当所述终端设备接收到n次针对所述第一通信信息的发射请求时,所述终端设备获取至少一个环境参数;
当所述至少一个环境参数不小于第一参数阈值时,所述终端设备根据所述至少一个环境参数,以及不小于所述第一参数阈值的历史环境参数确定环境参数的阈值。
通过上述步骤,能够在终端设备不具备波束互易性能力的情况下,根据获取到的至少一个环境参数,对环境参数的阈值进行更新。
一种可选的设计中,还包括:
当所述终端设备接收到n次针对所述第一通信信息的发射请求时,所述终端设备获取所述下行接收波束的信号与干扰加噪声比SINR;
当所述SINR大于预设的第二参数阈值时,所述终端设备将当前接入小区的小区ID添加至所述小区ID集合中。
通过上述步骤,能够获取当终端设备受到邻小区干扰,导致自身不具备波束互易性能力时,终端设备接入小区的小区ID,并将该小区ID添加至小区ID集合中,该小区ID集合属于第一判断信息,以便后续根据获取到的小区ID集合,判断终端设备是否具备波束互易性能力。
一种可选的设计中,所述第一判断信息包括环境参数的阈值;
所述终端设备根据预先获取的第一判断信息和第一判断条件,判断自身是否具备波束互易性能力,包括:
若当前的环境参数不小于所述环境参数的阈值,所述终端设备确定自身不具备波束互易性能力。
通过上述步骤,终端设备能够通过自身所处的环境,确定自身是否具备波束互易性能力。
一种可选的设计中,当所述第一判断信息为小区ID集合时,所述终端设备根据预先获取的第一判断信息和第一判断条件,判断自身是否具备波束互易性能力,包括:
当所述终端设备当前待接入小区的小区ID与所述小区ID集合中包括的一个小区ID相同时,所述终端设备确定自身不具备波束互易性能力。
通过上述步骤,终端设备能够根据当前待接入小区的小区ID,确定自身是否具备波束互易性能力。
一种可选的设计中,还包括:
当所述当前的环境参数不小于所述环境参数的阈值时,所述终端设备每隔第一周期获取 新的环境参数;
当所述新的环境参数小于预设的第三参数阈值时,所述终端设备执行去附着操作;
所述终端设备在重新接入基站的过程中,上报第二能力信息,所述第二能力信息指示所述终端设备具备波束互易性能力。
通过上述方法,终端设备能够根据环境参数,确定自身是否恢复波束互易性能力,并在恢复之后,主动上报第二能力信息,以便基站确定终端设备具备波束互易性能力。
一种可选的设计中,还包括:
当所述当前待接入小区的小区ID与所述小区ID集合中的小区ID相同时,所述终端设备在接入新的小区时,比较新的待接入小区的小区ID与所述小区ID集合;
当所述新的待接入小区的小区ID与所述小区ID集合中的小区ID均不同时,所述终端设备执行去附着操作;
所述终端设备在重新接入基站的过程中,上报第二能力信息,所述第二能力信息指示所述终端设备具备波束互易性能力。
通过上述方法,终端设备能够根据待接入小区的小区ID,确定自身是否恢复波束互易性能力,并在恢复之后,主动上报第二能力信息,以便基站确定终端设备具备波束互易性能力。
一种可选的设计中,在所述终端设备上报第一能力信息之后,还包括:
所述终端设备进行波束管理,重新确定收发波束对。
通过上述步骤,终端设备能够通过波束管理重新确定收发波束对,以便通过重新确定的收发波束对与基站进行通信,从而保障终端设备与基站之间的通信效率。
一种可选的设计中,还包括:
当所述终端设备通过波束管理确定的最佳下行接收波束与第一下行接收波束相同,以及通过波束管理确定的最佳上行发射波束与第一上行发射波束相同时,所述终端设备执行去附着操作,其中,所述第一下行接收波束为通过所述波束互易性能力确定的最佳下行接收波束,所述第一上行发射波束为通过所述波束互易性能力确定的最佳上行发射波束;
所述终端设备在重新接入基站的过程中,上报第二能力信息,所述第二能力信息指示所述终端设备具备波束互易性能力。
通过上述步骤,终端设备能够根据通过波束管理确定的收发波束对,确定自身是否恢复波束互易性能力,并在确定恢复之后,主动上报第二能力信息,以便基站确定终端设备具备波束互易性能力。
第二方面,本申请实施例公开一种波束互易性能力上报装置,包括:
第一判断模块,用于根据预先获取的第一判断信息和第一判断条件,判断终端设备是否具备波束互易性能力;
波束确定模块,用于当所述第一判断模块确定终端设备具备波束互易性能力,并且所述终端设备的下行接收波束的波束强度不小于预设的第一强度阈值时,通过预设的波束互易性能力,确定所述下行接收波束对应的上行发射波束;
信息发射模块,用于通过所述上行发射波束发射第一通信信息;
去附着模块,用于当所述终端设备接收到n次针对所述第一通信信息的发射请求时,执行去附着操作,n为预设的大于1的正整数;
能力上报模块,用于在所述终端设备重新接入基站的过程中,上报第一能力信息,所述第一能力信息指示所述终端设备不具备波束互易性能力。
一种可选的设计中,所述第一判断信息包括:环境参数的阈值和/或小区ID集合;
所述环境参数为温度或湿度中的至少一种。
一种可选的设计中,所述第一判断信息包括环境参数的阈值;
所述装置还包括:
第一参数获取模块,用于当所述终端设备接收到n次针对所述第一通信信息的发射请求时,获取至少一个环境参数;
阈值确定模块,用于当所述至少一个环境参数均不小于第一参数阈值时,根据所述至少一个环境参数,以及不小于所述第一参数阈值的历史环境参数确定环境参数的阈值。
一种可选的设计中,还包括:
SINR获取模块,用于当所述终端设备接收到n次针对所述第一通信信息的发射请求时,获取所述下行接收波束的信号与干扰加噪声比SINR;
小区ID添加模块,用于当所述SINR大于预设的第二参数阈值时,将当前接入小区的小区ID添加至所述小区ID集合中。
一种可选的设计中,所述第一判断信息包括环境参数的阈值;
所述第一判断模块具体用于,若当前的环境参数不小于所述环境参数的阈值,确定自身不具备波束互易性能力。
一种可选的设计中,所述第一判断信息包括小区ID集合;
所述第一判断模块具体用于,当所述终端设备当前待接入小区的小区ID与所述小区ID集合中包括的一个小区ID相同时,所述终端设备确定自身不具备波束互易性能力。
一种可选的设计中,还包括:
第二参数获取模块,用于当所述当前的环境参数不小于所述环境参数的阈值时,每隔第一周期获取新的环境参数;
所述去附着模块还用于,当所述新的环境参数小于预设的第三参数阈值时,执行去附着操作;
所述能力上报模块还用于,在所述终端设备重新接入基站的过程中,上报第二能力信息,所述第二能力信息指示所述终端设备具备波束互易性能力。
一种可选的设计中,还包括:
小区ID比较模块,用于当所述当前待接入小区的小区ID与所述小区ID集合中的小区ID相同时,在所述终端设备接入新的小区时,比较新的待接入小区的小区ID与所述小区ID集合;
所述去附着模块还用于,当所述新的待接入小区的小区ID与所述小区ID集合中的小区ID均不同时,执行去附着操作;
所述能力上报模块还用于,在所述终端设备重新接入基站的过程中,上报第二能力信息,所述第二能力信息指示所述终端设备具备波束互易性能力。
一种可选的设计中,还包括:
波束管理模块,用于在所述终端设备上报第一能力信息之后,进行波束管理,重新确定收发波束对。
一种可选的设计中,所述去附着模块还用于,当通过波束管理确定的最佳下行接收波束与第一下行接收波束相同,以及通过波束管理确定的最佳上行发射波束与第一上行发射波束相同时,去附着操作,其中,所述第一下行接收波束为通过所述波束互易性能力确定的最佳下行接收波束,所述第一上行发射波束为通过所述波束互易性能力确定的最佳上行发射波束;
所述能力上报模块还用于,在重新接入基站的过程中,上报第二能力信息,所述第二能 力信息指示所述终端设备具备波束互易性能力。
第三方面,本申请实施例公开一种波束互易性能力上报装置,包括:
处理器和存储器,
所述存储器,用于存储程序指令;
所述处理器,用于调用并执行所述存储器中存储的程序指令,以使所述波束互易性能力上报装置执行第一方面所述的波束互易性能力上报方法。
一种可选的设计中,所述波束互易性能力上报装置为芯片。
第四方面,本申请实施例公开一种计算机可读存储介质,
所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得所述计算机执行第一方面所述的波束互易性能力上报方法。
通过本申请实施例公开的波束互易性能力上报方法,能够实现对终端设备的波束互易性能力的测量,并在确定终端设备不具备波束互易性能力的情况下进行上报,以避免出现当终端设备不再具备波束互易性能力时,终端设备仍然通过不适用的收发波束对传输信息,所导致的通信效率降低的情况。
进一步的,在本申请实施例中,终端设备能够通过第一判断信息,以及第一通信信息是否发送成功两个因素,判断自身是否具备波束互易性能力,从而能够使终端设备在判断自身是否具备波束互易性能力时,具备较高的准确性。
另外,在本申请实施例中,当终端设备通过第一判断信息确定自身不具备波束互易性能力时,则无需通过第一通信信息是否发送成功,判断终端设备是否具备波束互易性能力,也就是说,在本申请实施例中,终端设备首先通过第一判断信息,确定自身是否具备波束互易性能力,并在确定自身不具备波束互易性能力的时,直接上报第一能力信息,从而节省了终端设备发送第一通信信息的功耗。并且,通过第一通信信息是否发送成功来判断终端设备是否具备波束互易性能力时,往往需要多次发送第一通信信息,耗时较长,因此,优先通过第一判断信息确定终端设备是否具备波束互易性能力的方式,也能提高终端设备判断自身是否具备波束互易性能力的效率。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例应用的一种通信系统的结构示意图;
图2为本申请实施例公开的一种波束互易性能力上报方法中的波束示意图;
图3为本申请实施例应用的一种波束互易性能力上报方法中的波束示意图;
图4为本申请实施例应用的一种波束互易性能力上报方法中的波束互易性能力示意图;
图5为本申请实施例应用的一种波束互易性能力上报方法的应用场景示意图;
图6为本申请实施例公开的一种波束互易性能力上报方法的工作流程示意图;
图7为本申请实施例公开的一种波束互易性能力上报方法中,基站与终端设备的信息交互示意图;
图8为本申请实施例公开的又一种波束互易性能力上报方法的工作流程示意图;
图9为本申请实施例公开的又一种波束互易性能力上报方法的工作流程示意图;
图10为本申请实施例公开的又一种波束互易性能力上报方法的工作流程示意图;
图11为本申请实施例公开的又一种波束互易性能力上报方法的工作流程示意图;
图12为本申请实施例公开的又一种波束互易性能力上报方法的工作流程示意图;
图13为本申请实施例公开的一种波束互易性能力上报装置的结构示意图;
图14为本申请实施例公开的一种终端设备的结构示意图。
具体实施方式
当终端设备不再具备波束互易性能力时,如果终端设备仍然通过波束互易性能力确定的收发波束传输信息,会导致通信效率降低,甚至导致基站无法接收到终端设备发射的信息,为了解决这一问题,本申请实施例公开一种波束互易性能力上报方法及装置。
参见图1,本申请实施例应用于一种通信系统,该通信系统包括一个基站10以及多个终端设备20,其中,该基站10设置有信息发射接收点(transmitting receiving pair,TRP),并可通过TRP与多个终端设备20进行通信。该基站10为一种无线网络节点,能够为终端设备20提供如语音通话、视频和消息收发等多种无线通信业务。另外,该终端设备20也可称为用户设备(user equipment,UE),该终端设备20可以为移动终端(例如智能手机)、车载设备或智能穿戴设备等,本申请实施例对此不做限定。示例性的,在5G通信技术中,该基站为5G基站,相应的,该终端设备即为5G终端设备。
另外,参见图2,在本申请实施例中,基站10和终端设备能够应用波束成形技术。也就是说,基站10和终端设备20均配置有天线阵列,为了对抗路径衰减,基站10通常使用多个不同指向的窄波束进行下行传输,相应的,终端设备20也具备多个不同指向的窄波束,并可通过该窄波束进行上行传输。
这种情况下,由于各个窄波束具有较强的方向性,因此,为了实现基站和终端之间的高效通信,需要设置合适的收发波束对。
为了明确基站和终端设备之间在进行通信过程中,所采用的收发波束对,本申请公开一个示例,该示例公开图3所示的一个波束示意图。其中,图3中的基站10与终端设备20均设置有天线阵列,可通过多个波束在高频段的频域资源上进行数据的传输。如图3所示,基站10使用了t1至t8共八个波束,这八个波束作为基站10的下行发射波束,且均为窄波束,也就是说,在下行传输过程中,基站10可通过这八个波束向终端设备20发射信息。另外,终端设备20使用r1至r4共四个波束,这四个波束作为终端设备20的下行接收波束,也就是说,在下行传输过程中,终端设备20可通过这四个波束接收基站10发射的信息。
这种情况下,为了提高通信效率,基站10可依次使用不同指向的下行发射波束(即t1至t8这八个波束)向终端设备20发射信息,以便从t1至t8这八个波束中选择一个指向最对准终端设备20的下行发射波束,将其作为最佳下行发射波束。并且,终端设备可依次使用不同指向的下行接收波束(即r1至r4这四个波束)接收基站10发射的波束,以便从r1至r4这四个波束中选择一个指向最对准基站10的下行接收波束,将其作为最佳下行接收波束。当基站10通过最佳下行发射波束向终端设备20发射信息,以及终端设备20通过最佳下行接收波束接收基站10发射的信息时,下行通信的通信效率最高。其中,最佳下行发射波束和最佳下行接收波束,即可作为下行通信过程中的最佳收发波束对。例如,当基站10针对终端设备20的最佳下行发射波束为t4,而终端设备20针对该基站10的最佳下行接收波束为r3时,则该最佳收发波束对为(t4,r3)。
相应的,在进行上行通信的过程中,基站10与终端设备20均具有进行上行通信的波束。其中,终端设备20可依次使用不同指向的上行发射波束向基站10发射信息,以便确定一个 指向最对准基站10的上行发射波束,并将其作为最佳上行发射波束。另外,基站10可依次使用不同指向的上行接收波束接收终端设备20传输的信息,从而确定一个指向最对准终端设备20的上行接收波束,并将其作为最佳上行接收波束。当终端设备通过最佳上行发射波束向基站发射信息,以及基站通过最佳上行接收波束接收终端设备发射的信息时,上行通信的通信效率最高。其中,最佳上行发射波束和最佳上行接收波束,即可作为上行通信过程中的最佳收发波束对。
这种情况下,为了提高通信效率,通常为终端设备和基站设置波束互易性能力。参见图4所示的波束互易性能力示意图,基站的波束互易性能力指的是:(1)基站能够根据针对某一终端设备的最佳下行发射波束,确定针对该终端设备的最佳上行接收波束,以便通过该最佳上行接收波束,接收该终端设备传输的信息;(2)基站能够根据针对某一终端设备的最佳上行接收波束,确定针对该终端设备的最佳下行发射波束,以便通过该最佳下行发射波束向该终端设备发射信息。
另外,终端设备的波束互易性能力,指的是:(1)终端设备能够根据针对某一基站的最佳下行接收波束,确定针对该基站的最佳上行发射波束,以便通过该最佳上行发射波束,向基站发射信息;(2)终端设备能够根据针对某一基站的最佳上行发射波束,确定针对该终端设备的最佳下行接收波束,以便终端设备通过该最佳下行接收波束,接收该基站传输的信息。
当终端设备具备波束互易性能力时,终端设备往往根据自身接收基站时应用的下行接收波束,确定对应的最佳上行发射波束。具体的,终端设备在通过某一下行接收波束接收到基站传输的信息之后,根据该下行接收波束和自身的波束互易性能力,确定针对该基站的最佳上行发射波束,再通过该最佳上行发射波束,向基站发射信息。
其中,通常在终端设备出厂时,就为终端设备设置好波束互易性能力。例如,可在终端设备内设置各个下行接收波束和其对应的最佳上行发射波束之间的对应关系,以及各个上行发射波束和其对应的最佳下行接收波束之间的对应关系,以便终端设备在与基站通信的过程中,通过该波束互易性能力,确定通信过程中需应用的波束。
该对应关系可通过表格或数据库等形式存储在终端设备的存储器内,或者,还可以在终端设备内设置学习模型,终端设备通过该学习模型获取该对应关系。
当然,终端设备的波束互易性能力还可以通过其他形式体现,本申请实施例对此不做限定。
另外,当终端设备具备波束互易性能力时,通常在接入基站的过程中,会向基站上报自身具备波束互易性能力的相关信息,并在上报之后,终端设备在与基站通信的过程中,应用通过波束互易性能力确定的波束与基站进行通信。
例如,在第一终端设备与第一基站在通信的过程中,第一终端设备确定最佳下行接收波束为下行接收波束a,这种情况下,第一终端设备可通过波束互易性能力,确定下行接收波束a相应的上行发射波束b,并通过上行发射波束b向第一基站发射信息。
但是,终端设备在应用过程中,波束互易性能力会发生变化,例如,在某些应用场景下,终端设备不再具备波束互易性能力。这种情况下,终端设备通过波束互易性能力确定的波束不再适用,如果终端设备继续应用该波束,会导致终端设备采用的波束偏离基站,从而降低了通信效率。进一步的,如果确定的上行发射波束偏离基站的角度较大,甚至会导致基站无法接收到终端设备发射的信息,使通信业务无法进行。
例如,在第一应用场景下,终端设备具备波束互易性能力,在与基站通信的过程中,终端设备通过下行接收波束a,确定下行接收波束a对应的最佳上行发射波束为上行发射波束b, 并通过上行发射波束b向基站发射信息,该上行发射波束b即为对准基站的发射波束,从而能够使基站接收到终端设备发射的信息。
在第二应用场景下,终端设备不再具备波束互易性能力,这种情况下,如果终端设备仍然默认自身具备波束互易性能力,并且通过下行接收波束a接收基站传输的信息,则终端设备仍然会通过上行发射波束b向基站发射信息。但是,在该应用场景下,上行发射波束b往往不再是对准基准的波束,通过该上行发射波束b向基站发射信息时,通信效率降低,甚至当上行发射波束b偏离基站的角度较大时,基站将接收不到上行发射波束b发射的信息。
另外,导致终端设备不具备波束互易性能力的因素往往有多种,相应的,第二应用场景可包括多种应用场景。其中,根据提案R1-1702941和R1-1612732可知,在高温或高湿度的应用场景下,以及在受到小区干扰的应用场景下,终端设备往往不具备波束互易性能力。并且,终端设备内设置的天线发生老化后,也可能导致终端设备不再具备波束互易性能力;或者,终端设备外置保护套或者人手持终端设备时,受到保护套或者人手的干扰,终端设备也可能不具备波束互易性能力;或者,当物体靠近终端设备时,也可能导致终端设备不具备波束互易性能力,例如,当该终端设备为手机,用户接听电话时,人头会靠近该终端设备,这种情况下,终端设备也可能不具备波束互易性能力。也就是说,高温、高湿、天线老化、终端设备外置保护套、人手持终端设备或者物体靠近等应用场景,均可为第二应用场景,在该应用场景下,终端设备不再具备波束互易性能力。
根据上述对波束互易性能力的介绍可知,当终端设备不再具备波束互易性能力时,如果终端设备仍然通过波束互易性能力进行通信,往往会导致通信效率降低。但是,目前终端设备在出厂之后,通常一直默认自身具备波束互易性能力,并且,每次在接入基站时,会向基站上报自身具备波束互易性能力的信息,这种情况下,终端设备不会检测自身在各种应用场景下,是否具备波束互易性能力。
但是,在一些应用场景下,例如,在高温天气,或者在高湿度的下雨天等,终端设备会丧失波束互易性能力,这种情况下,终端设备如果默认自身具备波束互易性能力,仍然会向基站上报自身具备波束互易性能力,相应的,基站也始终认为终端设备具备波束互易性能力,从而终端设备与基站之间不会进行波束管理。其中,波束管理用于修复波束故障,即在不具备波束互易性能力的情况下,波束管理用于确定终端设备与基站之间进行传输的波束。因此,当终端设备丧失波束互易性能力,但默认自身具备波束互易性能力时,会由于不进行波束管理,导致波束故障修复失败。并且,在这种情况下,终端设备仍然通过下行接收波束a确定上行发射波束b,并通过上行发射波束b向基站发射信息,从而导致通信效率降低,甚至当上行发射波束b偏离基站的角度较大时,基站将接收不到上行发射波束b发射的信息,导致基站与终端设备之间的无线链路传输失败,通信业务无法进行。
为了解决上述问题,本申请实施例公开一种波束互易性能力上报方法。在该方法中,终端设备根据预先获取的第一判断信息,以及相应的第一判断条件,判断自身是否具备波束互易性能力。当终端设备基于第一判断信息,确定自身具备波束互易性能力时,终端设备进一步根据通信信息是否发射成功,判断自身是否具备波束互易性能力。
其中,所述第一判断信息可包括多种形式的信息,示例性的,所述第一判断信息通常包括:环境参数的阈值和/或小区ID集合。所述环境参数为温度或湿度中的至少一种。在小区ID集合中,包括至少一个小区ID。
终端设备的波束互易性能力较易受到环境影响,其中,在高温环境下,或者在高湿度的 环境下,天线的性能较易发生变化,从而导致终端设备丧失波束互易性能力。例如,当用户携带终端设备进入桑拿房时,桑拿房的高温高湿环境可能会导致终端设备不具备波束互易性能力。因此,本申请实施例中,可将环境参数作为一种判断信息。
另外,在实际应用过程中,除了高温和高湿度的环境影响以外,邻小区的干扰往往也会导致终端设备不具备波束互易性能力。例如,参见图5所示的示意图,在一个示例中,设置有第一基站11和第二基站12,终端设备20接入第一基站11,并且,第二基站12的小区能够覆盖终端设备20所在的区域,即第二基站12的小区为终端设备20的邻小区。设定未出现邻小区的情况下,终端设备与第一基站11进行通信时,采用的下行接收波束为第一接收波束001,而出现邻小区的时,终端设备与第一基站11进行通信时,采用的下行接收波束为第二接收波束002。在下行通信过程中,为了避免邻小区的干扰,终端设备的第二接收波束往往会调整方向,导致第二接收波束002与第一接收波束001发生偏离。
当终端设备具备波束互易性能力时,终端设备可根据第一接收波束,确定相应的上行发射波束,该上行发射波束对准第一基站11。但是,第二接收波束与第一接收波束不同,这种情况下,通过第二接收波束确定的上行发射波束,也会偏离第一基站11,因此,这种情况下,终端设备不再具备波束互易性能力。也就是说,当终端设备受到邻小区的干扰时,往往会丧失波束互易性能力。因此,本申请实施例中,可将小区ID作为一种判断信息,该小区ID为终端设备受到邻区干扰时,所接入的小区的ID。
另外,还可能存在其他因素导致终端设备不具备波束互易性能力,相应的,所述判断信息还可以包括其他类型的信息,本申请实施例对此不做限定。
参见图6所示的工作流程示意图,本申请实施例公开的波束互易性能力上报方法包括以下步骤:
步骤S11、终端设备根据预先获取的第一判断信息和第一判断条件,判断自身是否具备波束互易性能力。若是,执行步骤S12的操作,若否,执行步骤S15的操作。
其中,所述第一判断信息可包括多种形式的信息,示例性的,所述第一判断信息通常包括:环境参数的阈值和/或小区ID集合。所述环境参数为温度或湿度中的至少一种。在所述小区ID集合中,包括至少一个小区ID,当终端设备接入该小区ID对应的小区时,会在邻小区干扰的影响下,不具备波束互易性能力。
另外,当所述第一判断信息包括环境参数的阈值时,所述终端设备根据预先获取的第一判断信息和第一判断条件,判断自身是否具备波束互易性能力时,通常采用以下步骤:当所述当前的环境参数不小于所述环境参数的阈值时,所述终端设备确定自身不具备波束互易性能力。其中,终端设备当前的环境参数不小于所述环境参数的阈值时,则表明终端设备处于高温或高湿的环境中,这种情况下,终端设备可确定自身不具备波束互易性能力。
当所述第一判断信息包括环境参数的阈值时,所述终端设备可预先通过以下方式确定所述环境参数的阈值:
当终端设备确定自身不具备波束互易性能力(例如,在终端设备发射第一通信信息之后,所述终端设备接收到n次针对所述第一通信信息的发射请求)时,所述终端设备获取至少一个环境参数。当所述终端设备获取到m个环境参数,并且所述m个环境参数均不小于第一参数阈值时,所述终端设备根据所述m个环境参数,确定环境参数的阈值,以便在步骤S11中,将所述环境参数的阈值作为所述第一判断信息。其中,m为预设的正整数。
另外,在根据所述m个环境参数,确定环境参数的阈值时,可采用多种方式。在一种方式中,可预先设置多个环境参数值,终端设备将所述m个环境参数与所述多个环境参数值相 比较,如果所述m个环境参数均不小于其中的部分环境参数值,将所述部分环境参数值作为第一参数阈值,并确定所述第一参数阈值中最大的环境参数值为所述环境参数的阈值。
例如,所述环境参数为温度,预先设置的多个环境参数值分别为35度、37度和39度。当获取到的m个环境参数均大于35度和37度,但是小于39度时,则35度和37度为第一参数阈值,终端设备确定其中较大的第一参数阈值(即37度)为所述环境参数的阈值。
该种方式中,通过预先设置的环境参数值确定环境参数的阈值,而预先设置的多个环境参数值,为高温或高湿环境下对应的环境参数,例如,在上述示例中,预先设置的环境参数值35度、37度和39度均对应高温环境。因此,即使获取到的部分环境参数出现误差,通过该方式确定的环境参数的阈值,仍然为高温或高湿环境下对应的环境参数,从而能够减少通过所述环境参数确定环境参数的阈值时,可能会存在的误差。
在另一种方式中,终端设备预先设置第一参数阈值,当所述m个环境参数均不小于第一参数阈值时,终端设备确定所述m个环境参数的平均值为所述环境参数的阈值。
该种方式中,将大于第一参数阈值的m个环境参数的平均值作为环境参数的阈值,也就是说,在确定所述环境参数的阈值时,结合了终端设备所处的环境,从而能够使获取到的环境参数的阈值符合终端设备的应用场景。
在本申请实施例中,第一参数阈值为较高的温度值或较高的湿度值。如果所述m个环境参数均不小于第一参数阈值,则说明终端设备处于高温或高湿的环境中,进一步的,可认为终端设备不具备波束互易性能力的问题是高温或高湿的环境所导致的,因此,可根据所述m个环境参数确定环境参数的阈值。
另外,m为预设的正整数,通常可取大于1的数值,例如,将m设置为3。这种情况下,终端设备通过多个环境参数确定环境参数的阈值。当通过较少的环境参数确定环境参数的阈值时,如果其中部分环境参数由于测量不准确等原因出现误差,往往会导致环境参数的阈值也出现误差。而本申请实施例通过多个环境参数确定环境参数的阈值,从而能够减少这种误差,提高环境参数的阈值的准确性。
当所述第一判断信息为小区ID集合时,所述终端设备根据预先获取的第一判断信息和第一判断条件,判断自身是否具备波束互易性能力,包括:
当所述当前待接入小区的小区ID与所述小区ID集合中的任意一个小区ID相同时,所述终端设备确定自身不具备波束互易性能力。
当所述终端设备待接入小区的小区ID与所述小区ID集合中的任意一个小区ID相同时,则表示当终端设备接入该小区ID对应的小区之后,会受到邻小区的干扰,并在邻小区干扰的影响下丧失波束互易性能力,因此,终端设备可确定自身不具备波束互易性能力。
进一步的,在本申请实施例中,能够预先获取终端设备每次不具备波束互易性能力的情况下,终端设备的环境参数或接入小区的小区ID等信息,将其作为第一判断信息,并存储所述第一判断信息。
其中,当所述第一判断信息包括小区ID集合时,所述终端设备可预先通过以下方式确定所述小区ID集合:
当终端设备确定自身不具备波束互易性能力(例如,在终端设备发射第一通信信息之后,所述终端设备接收到n次针对所述第一通信信息的发射请求)时,所述终端设备获取下行接收波束的信号与干扰加噪声比SINR;
当SINR大于预设的第二参数阈值时,所述终端设备将当前接入小区的小区ID添加至小区ID集合中。
其中,当所述SINR大于预设的第二参数阈值时,则表明终端设备受到邻小区较强的干扰,该干扰导致终端设备不具备波束互易性能力。这种情况下,终端设备将当前接入小区的小区ID添加至小区ID集合中,从而获取包括至少一个小区ID的小区ID集合。
上述描述中,介绍了在本申请实施例中,获取第一判断信息的方法。另外,在本申请实施例中,还能够根据终端设备在应用过程中出现的不具备波束互易性能力的情况,对第一判断信息进行补充更新。
步骤S12、当所述终端设备确定自身具备波束互易性能力,并且所述终端设备的下行接收波束的波束强度不小于预设的第一强度阈值时,所述终端设备通过预设的波束互易性能力,确定所述下行接收波束对应的上行发射波束。
所述波束强度包括:参考信息接收功率(reference signal receiving power,RSRP)和/或参考信息接收质量(reference signal receiving quality,RSRQ)。
其中,如果终端设备的下行接收波束的波束强度不小于预设的第一强度阈值,则表明该下行接收波束的通信质量较好,通常认为该下行接收波束即为最佳下行接收波束。并且,通过终端设备的波束互易性能力,可确定该下行接收波束对应的上行发射波束。
另外,所述第一强度阈值可根据实际通信需求进行设置。在一种可行的示例中,当波束强度为RSRP时,该第一强度阈值可以为-95dB。当然,该第一强度阈值还可以为其他值,本申请实施例对此不做限定。
在本申请实施例中,终端设备预设有波束互易性能力,这种情况下,通过预先设置的波束互易性能力,终端设备可以确定下行接收波束对应的上行发射波束。例如,当波束互易性能力通过终端设备内设置的各个下行接收波束和其对应的最佳上行发射波束之间的对应关系,以及各个上行发射波束和其对应的最佳下行接收波束之间的对应关系体现时,终端设备可查询该对应关系,确定所述下行接收波束对应的上行发射波束。
步骤S13、所述终端设备通过所述上行发射波束发射第一通信信息。
该步骤中,终端设备可通过上行发射波束向基站侧的TRP发射所述第一通信信息。其中,所述第一通信信息可以为终端设备在接入终端设备的小区之后,终端设备进行各种通信业务的过程中,需要发射至基站的信息,例如,当终端设备在访问网络时,所述第一通信信息可以为终端设备的网络请求信息。
步骤S14、当所述终端设备接收到n次针对所述第一通信信息的发射请求时,所述终端设备执行去附着操作,n为预设的大于1的正整数。
其中,n为大于1的正整数,其具体数值可根据终端设备对波束互易性能力上报的需求进行设置及调整。在一个示例中,n的具体数值可在出厂时完成设置,在后续的应用过程中,当对波束互易性能力的检测精度需求较高时,可将n的数值调整为较小的数值,当对波束互易性能力的检测精度需求较低时,可将n的数值调整为较大的数值。
终端设备在通过上行发射波束向基站发射所述第一通信信息之后,如果基站接收到所述第一通信信息,基站向终端设备传输相应的反馈信息。另外,如果基站并未接收到所述第一通信信息,基站还会向终端设备传输针对第一通信信息的发射请求,所述针对第一通信信息的发射请求用于请求终端设备再次发送所述第一通信信息。并且,终端设备每次在接收到针对所述第一通信信息的发射请求之后,会响应该请求,即通过所述上行发射波束再次向基站发射所述第一通信信息。基站在与终端设备进行通信的过程中,可通过自身的TRP进行信息的收发。
其中,如果终端设备接收到n次针对所述第一通信信息的发射请求,则表明终端设备多 次通过所述上行发射波束向基站发射第一通信信息时,基站均未接收到所述第一通信信息。也就是说,所述上行发射波束偏离了基站。
进一步的,由于该上行发射波束通过终端设备的波束互易性能力得到,因此,在确定该上行发射波束偏离了基站时,则表明在当前场景下,实际需要应用的上行收发波束对与通过波束互易性能力得到的上行收发波束对不同,该终端设备之前预先设定的波束互易性能力不再起作用,这种情况下,终端设备可确定自身当前不具备波束互易性能力。
步骤S15、所述终端设备在重新接入基站的过程中,上报第一能力信息,所述第一能力信息指示所述终端设备不具备波束互易性能力。
当终端设备不再接入基站提供的网络时,终端设备对该网络进行注销,该操作即为去附着(即detach)操作。当终端设备确定自身不具备波束互易性能力时,可执行去附着操作,并在重新接入基站的过程中,向基站上报第一能力信息,该第一能力信息指示终端设备不具备波束互易性能力,以便基站确定终端设备不再具备波束互易性能力。
参见图7所示的信息交互示意图,终端设备在接入基站的过程中,基站通常会向终端设备传输能力请求指示(例如UE Capability Enquiry指示),以指示终端设备向基站上报自身的能力信息。接收到该能力请求指示之后,终端设备向基站上报相应的能力信息(例如UE Capability Information信息),该能力信息中包括终端设备是否波束互易性能力。
具体的,在能力信息中包括用于指示终端设备是否具备波束互易性能力的字段,该字段中可通过设置不同的字节,以表征终端设备是否具备波束互易性能力。
在一种可行的示例中,当在该字段中设置“1”这一字节时,可表征终端设备具备波束互易性能力,当在该字段中设置“0”这一字节时,可表征终端设备不具备波束互易性能力,该示例中,第一能力信息即为字段中设置“0”的能力信息。
另外,若通过步骤S14的操作,终端设备确定自身具备波束互易性能力时,可每隔预设周期,返回执行步骤S11的操作,即终端设备每隔预设周期,再根据第一判断信息和第一判断条件,判断自身是否具备波束互易性能力。这种情况下,由于每隔预设周期就执行步骤S11的操作,因此,终端设备能够在应用过程中,及时检测到终端设备不具备波束互易性能力的情况。
其中,所述预设周期的时长可在终端设备出厂时完成设置,并且,根据检测精度的需求,还可以根据接收到的调整操作,对预设周期的时长进行调整。例如,当对检测精度需求较高时,可将预设周期的时长调整为较短的时长,当对检测精度的需求较低时,可将预设周期的时长调整为较长的时长。
通过本申请实施例公开的波束互易性能力上报方法,能够实现对终端设备的波束互易性能力的测量,并在确定终端设备不具备波束互易性能力的情况下进行上报,以避免出现当终端设备不再具备波束互易性能力时,终端设备仍然通过不适用的收发波束对传输信息,所导致的通信效率降低的情况。
进一步的,在本申请实施例中,终端设备能够通过第一判断信息,以及第一通信信息是否发送成功两个因素,判断自身是否具备波束互易性能力,从而能够使终端设备在判断自身是否具备波束互易性能力时,具备较高的准确性。
另外,在本申请实施例中,当终端设备通过第一判断信息确定自身不具备波束互易性能力时,则无需执行步骤S12至步骤S13的操作,而是直接进行去附着的操作,并在重新接入基站的过程中,上报第一能力信息,也就是说,在本申请实施例中,终端设备首先通过判断信息,确定自身是否具备波束互易性能力,并在确定自身不具备波束互易性能力的时,直接 上报第一能力信息,而无需通过第一通信信息是否发送成功来判断终端设备是否具备波束互易性能力,从而节省了终端设备发送第一通信信息的功耗。并且,通过第一通信信息是否发送成功来判断终端设备是否具备波束互易性能力时,往往需要多次发送第一通信信息,耗时较长,因此,优先通过第一判断信息确定终端设备是否具备波束互易性能力的方式,也能提高终端设备判断自身是否具备波束互易性能力的效率。
在上述实施例中,公开了终端设备根据第一判断信息与第一判断条件,判断自身是否具备波束互易性能力的操作,所述第一判断信息包括:环境参数的阈值和/或小区ID集合,所述环境参数为温度或湿度中的至少一种。
其中,可预先获取终端设备每次不具备波束互易性能力的情况下,终端设备的环境参数或接入小区的小区ID等信息,据此确定第一判断信息,并存储该第一判断信息,例如,可将该第一判断信息存储至终端设备的黑名单中。另外,还能够根据终端设备在应用过程中出现的不具备波束互易性能力的情况,进一步获取第一判断信息。针对这一情况,本申请还公开另一实施例。
参见图8所示的工作流程示意图,当所述第一判断信息为环境参数的阈值时,还可以对环境参数的阈值进行更新,这种情况下,本申请实施例还公开以下步骤:
步骤S16、当所述终端设备接收到n次针对所述第一通信信息的发射请求时,所述终端设备获取至少一个环境参数。
其中,所述环境参数为温度或湿度中的至少一种。当所述终端设备接收到n次针对所述第一通信信息的发射请求时,则表明终端设备当前不具备波束互易性能力。这种情况下,终端设备可在每次确定自身不具备波束互易性能力时,获取当前的至少一个环境参数。
另外,终端设备可通过自身内置的环境参数测量器件对环境参数进行测量,例如,可通过内置的温度传感器对温度进行检测,或者,还可以通过内置的湿度传感器,对湿度进行检测。或者,终端设备还可通过网络与其他的测量设备相连接,获取其他测量设备传输的环境参数。
根据提案R1-1702941和R1-1612732,可知终端设备在高温或高湿的情况下,有可能会丧失波束互易性能力。例如,当用户携带终端设备进入桑拿房时,桑拿房的高温及高湿环境可能会导致终端设备不具备波束互易性能力。因此,本申请实施例中,终端设备需要获取环境参数。
步骤S17、当所述至少一个环境参数不小于第一参数阈值时,所述终端设备根据所述至少一个环境参数,以及不小于所述第一参数阈值的历史环境参数确定环境参数的阈值。
其中,所确定的环境参数的阈值,属于第一判断信息,也就是说,通过步骤S17的操作,对第一判断信息中的环境参数的阈值进行了更新。这种情况下,当再次执行步骤S11,即需要再次根据第一判断信息和第一判断条件,判断终端设备是否具备波束互易性能力时,可通过步骤S17确定的环境参数的阈值进行判断,即终端设备再次判断波束互易性能力时,通过更新后的环境参数的阈值进行判断。
在本申请实施例中,终端设备每次在接收到n次针对所述第一通信信息的发射请求时,就获取至少一个环境参数,当获取到的所述至少一个环境参数不小于第一参数阈值时,终端设备再根据所述至少一个环境参数,以及不小于所述第一参数阈值的历史环境参数确定环境参数的阈值。所述历史环境参数,指的是所述终端设备之前获取到的环境参数。
其中,第一参数阈值为预先设置的高温或高湿环境下对应的环境参数的值,例如,可将第一参数阈值设置为35度。这种情况下,当所述m个环境参数均不小于第一参数阈值时, 则说明终端设备不具备波束互易性能力是由于自身处于高温或高湿环境所导致的。这种情况下,终端设备通过本次获取到的至少一个环境参数,以及之前获取到的历史环境参数,重新确定环境参数的阈值。
通过步骤S16至步骤S17的方法,当终端设备接收到n次针对第一通信信息的发射请求,即终端设备可确定自身不具备波束互易性能力时,终端设备实现对环境参数的阈值的更新。在更新过程中,终端设备每次会根据当前获取到的至少一个环境参数,以及之前获取到不小于第一参数阈值的历史环境参数,确定环境参数的阈值,并且,终端设备再次不具备波束互易性能力时,将之前获取到的所述至少一个环境参数作为历史环境参数,再次确定环境参数的阈值。
也就是说,当终端设备不具备波束互易性能力时,终端设备获取a个环境参数,a为预设的正整数,当所述a个环境参数不小于第一参数阈值,并且之前获取的b个环境参数也不小于第一参数阈值(即存在不小于第一参数阈值的b个历史环境参数)时,根据所述a个环境参数,以及不小于第一参数阈值的b个历史环境参数确定环境参数的阈值。
另外,当终端设备再次不具备波束互易性能力时,则之前获取的所述a个环境参数称为历史环境参数,即存在“a+b”个不小于第一参数阈值的历史参数参数。这种情况下,终端设备再次获取a个环境参数,然后基于再次获取到的a个环境参数,以及“a+b”个历史环境参数,确定环境参数的阈值。
其中,环境参数的阈值可通过多种方式获取。在其中一种方式中,在本申请实施例中,可预先设置多个环境参数值,并且,终端设备每次在接收到n次针对所述第一通信信息的发射请求时(即确定自身不具备波束互易性能力时),终端设备获取至少一个环境参数,
另外,在根据所述至少一个环境参数,以及不小于所述第一参数阈值的历史环境参数确定环境参数的阈值时,可采用多种方式。
在其中一种方式中,终端设备预先设置多个环境参数值。在终端设备获取到至少一个环境参数之后,如果所述至少一个环境参数与历史环境参数分别与所述多个环境参数值相比较,如果所述至少一个环境参数和历史环境参数均不小于其中的部分环境参数值,将所述部分环境参数值作为第一参数阈值,并确定所述第一参数阈值中最大的环境参数值为所述环境参数的阈值。
例如,所述环境参数为温度,预先设置的多个环境参数值分别为35度、37度和39度。当获取到的至少一个环境参数和历史环境参数均大于35度和37度,但是小于39度时,则35度和37度为第一参数阈值,终端设备确定其中较大的第一参数阈值(即37度)为所述环境参数的阈值。
该种方式中,通过预先设置的环境参数值确定环境参数的阈值,而预先设置的多个环境参数值,为高温或高湿环境下对应的环境参数,例如,在上述示例中,预先设置的环境参数值35度、37度和39度均对应高温环境。因此,即使获取到的部分环境参数出现误差,通过该方式确定的环境参数的阈值,仍然为高温或高湿环境下对应的环境参数,从而能够减少通过所述环境参数确定的环境参数的阈值的误差。
在另一种方式中,终端设备预先设置第一参数阈值,当所述至少一个环境参数和历史环境参数均不小于第一参数阈值时,终端设备确定所述至少一个环境参数和历史环境参数的平均值为所述环境参数的阈值。
该种方式中,将大于第一参数阈值的至少一个环境参数和历史环境参数的平均值作为环境参数的阈值,也就是说,在确定所述环境参数的阈值时,结合了终端设备所处的环境,从 而能够使获取到的环境参数的阈值符合终端设备的应用场景。
在本申请实施例中,第一参数阈值为较高的温度值或较高的湿度值。如果所述至少一个环境参数均不小于第一参数阈值,则说明终端设备处于高温或高湿的环境中,进一步的,可认为终端设备不具备波束互易性能力的问题是高温或高湿的环境所导致的,因此,可根据所述至少一个环境参数以及不小于第一参数阈值的历史环境参数确定环境参数的阈值。
上述实施例中,公开了在终端设备的应用过程中,获取环境参数的阈值的方法,从而能够在终端设备的应用过程中,对环境参数的阈值进行更新。
在确定环境参数的阈值之后,在后续的应用过程中,当终端设备当前的环境参数不小于所述环境参数的阈值时,则表明终端设备当前所处的环境为导致终端设备不具备波束互易性能力的高温或高湿环境中,进一步的,终端设备可确定自身不具备波束互易性能力。也就是说,终端设备可基于该环境参数的阈值,判断在哪些环境条件下,终端设备不具备波束互易性能力,并进一步确定是否需要主动上报第一能力信息,从而能够基于第一判断信息判断终端设备是否具备波束互易性能力。
其中,当所述第一判断信息包括环境参数的阈值时,所述终端设备根据预先获取的第一判断信息和第一判断条件,判断自身是否具备波束互易性能力,包括:
若当前的环境参数不小于所述环境参数的阈值,所述终端设备确定自身不具备波束互易性能力。
也就是说,当第一判断信息为环境参数的阈值时,终端设备会比较所述环境参数的阈值和所述当前的环境参数,当所述当前的环境参数不小于所述环境参数的阈值时,所述终端设备确定自身不具备波束互易性能力。
例如,当用户携带终端设备进入桑拿房时,桑拿房的高温高湿环境可能会导致终端设备丧失波束互易性能力,当通过上述实施例中各个步骤的操作,确定终端设备不具备波束互易性能力时,则终端设备根据桑拿房的环境参数确定环境参数的阈值。这种情况下,当用户再次携带终端设备进入桑拿房时,终端设备可确定当前的环境参数不小于所述环境参数的阈值,从而确定自身不具备波束互易性能力,并主动上报第一能力信息。
另外,所述第一判断信息还可以为小区ID集合,该小区ID集合中包括至少一个小区ID。参见图9所示的工作流程示意图,本申请实施例还公开以下步骤:
步骤S18、当所述终端设备接收到n次针对所述第一通信信息的发射请求时,所述终端设备获取所述下行接收波束的信号与干扰加噪声比(signal to interference plus noise ratio,SINR)。
其中,下行接收波束的SINR能够反映下行接收波束是否受到干扰。
步骤S19、当所述SINR大于预设的第二参数阈值时,所述终端设备将当前接入小区的小区ID添加至所述小区ID集合中。
终端设备在接入基站的过程中,能够获取当前接入小区的小区ID。另外,当所述SINR大于预设的第二参数阈值时,则表明终端设备受到邻小区较强的干扰,该干扰会导致终端设备不具备波束互易性能力。这种情况下,终端设备将当前接入小区的小区ID添加至小区ID集合中。
在本申请实施例中,通过上述步骤,能够获取当终端设备受到邻小区干扰,导致自身不具备波束互易性能力时,终端设备接入小区的小区ID,并将该小区ID添加至小区ID集合中,该小区ID集合属于第一判断信息。
其中,当所述第一判断信息为小区ID集合时,所述终端设备根据预先获取的第一判断信 息和第一判断条件,判断自身是否具备波束互易性能力,包括:
当终端设备当前待接入小区的小区ID与所述小区ID集合中包括的一个小区ID相同时,所述终端设备确定自身不具备波束互易性能力。
当终端设备当前待接入小区的小区ID与所述小区ID集合中包括的一个小区ID相同时,则表明终端设备在接入小区之后,往往会受到邻小区的干扰,从而不再具备波束互易性能力。
上述实施例中,公开了在终端设备的应用过程中,获取小区ID集合中的小区ID的方法。
另外,每次在获取到需要添加至小区ID的小区ID集合之后,即可将该小区ID添加至小区ID集合中,并由终端设备存储该小区ID集合,这种情况下,终端设备可同时存储多个小区ID,当终端设备当前待接入小区的小区ID与其中任意一个小区ID相同时,则终端设备确定自身不具备波束互易性能力时,并主动上报第一能力信息,从而能够提高通过小区ID,确定自身是否具备波束互易性能力的准确度。
或者,在将小区ID添加至小区ID集合之后,终端设备还可以确定自身接入各个小区ID的频率,并只存储自身接入的频率较高的小区ID,不再保存频率较低的其他小区ID。由于终端设备接入其他小区ID的频率较低,则可认为终端设备接入其他小区ID的可能性较低,这种情况下,不再保存所述其他小区ID,不仅能够减少对终端设备的内存空间的占用,并且,还减少了当前待接入小区的小区ID与终端设备内存储的小区的匹配步骤,提高了终端设备确定自身是否具备波束互易性能力的效率。
通过上述实施例,能够在终端设备的应用过程中,更新环境参数的阈值,或者确定当终端设备受到邻小区干扰,从而不具备波束互易性能力时所接入小区的小区ID,将该小区ID添加至小区ID集合中。
这种情况下,终端设备优先通过第一判断信息,确定自身是否具备波束互易性能力。与根据第一通信信息是否发送成功来判断是否具备波束互易性能力的方式相比,通过第一判断信息判断终端设备是否具备波束互易性能力的方式,能够节省终端设备发送第一通信信息时产生的功耗,并且耗时较短。因此,优先通过第一判断信息确定自身是否具备波束互易性能力,能够提高终端设备确定自身是否具备波束互易性能力的效率。
另外,当通过第一判断信息,确定自身具备波束互易性能力时,终端设备再通过第一通信信息是否发送成功判断自身是否具备波束互易性能力,即终端设备能够基于第一判断信息和第一通信信息是否发送成功,这两个因素判断自身是否具备波束互易性能力,因此,能够提高终端设备确定自身是否具备波束互易性能力的准确性。
为了详细阐述终端设备判断自身是否具备波束互易性能力,以及根据判断结果进行波束互易性能力上报的操作,作为图6方法的细化,本申请公开另一实施例。参见图10所示的工作流程示意图,本申请实施例公开的波束互易性能力上报方法包括以下步骤:
步骤S21、终端设备判断当前的环境参数是否不小于环境参数的阈值,若否,执行步骤S22的操作,若是,执行步骤S26的操作。
其中,所述环境参数为温度或湿度中的至少一种。所述环境参数的阈值可通过步骤S16至步骤S17的操作确定,并可在确定之后,记载在终端设备的黑名单中,从而每次在执行步骤S21时,从所述黑名单中提取所述环境参数的阈值。
另外,当所述终端设备确定当前的环境参数不小于所述环境参数的阈值时,通常表明该终端设备处于高温或高湿的环境下,这种情况下,终端设备通常不具备波束互易性能力
步骤S22、当所述终端设备确定所述当前的环境参数小于所述环境参数的阈值时,所述 终端设备判断当前待接入小区的小区ID是否与所述小区ID集合包括的小区ID相同,若否,执行步骤S23的操作,若是,执行步骤S26的操作。
在小区ID集合中,包括至少一个小区ID。当所述当前待接入小区的小区ID与小区ID集合中的一个小区ID相同时,则表示终端设备在接入所述当前待接入小区之后,会由于受到邻小区的干扰,从而丧失波束互易性能力。
其中,所述小区ID集合中的小区ID可通过步骤S18至步骤S19的操作确定,并可在确定之后,记载在终端设备的黑名单中,从而每次在执行步骤S22时,从所述黑名单中提取所述小区ID集合,再将终端设备当前待接入小区的小区ID分别与小区ID集合中的小区ID进行对比。
步骤S21至步骤S22的操作,指的是终端设备根据预先获取的第一判断信息和第一判断条件,判断自身是否具备波束互易性能力,其中,第一判断信息包括步骤S21中环境参数的阈值和步骤S22中的小区ID集合。
另外,在上述操作中,终端设备通过第一判断信息判断自身是否具备波束互易性能力时,先通过环境参数的阈值进行判断,然后再通过小区ID集合进行判断。但是,在实际的应用过程中,该操作并无严格的时间先后顺序。例如,也可以先执行步骤S22的操作,再执行步骤S21的操作,也就是说,终端设备先判断当前待接入小区的小区ID与小区ID集合中的任意一个ID是否相同,若不同,终端设备再判断当前的环境参数是否不小于环境参数的阈值,当终端设备确定所述当前的环境参数小于所述环境参数的阈值时,再执行步骤S23的操作。或者,终端设备还可以同时确定当前的环境参数是否不小于环境参数的阈值,以及待接入小区的小区ID是否与小区ID集合包括的小区ID相同,二者的判断结果均为否时,再执行步骤S23的操作。
步骤S23、当所述终端设备的下行接收波束的波束强度不小于预设的第一强度阈值时,所述终端设备通过预设的波束互易性能力,确定所述下行接收波束对应的上行发射波束。
通过步骤S21至步骤S22的操作,当终端设备确定当前的环境参数小于环境参数的阈值,以及确定待接入小区的小区ID与小区ID集合中的小区ID不同时,则认为终端设备当前具备波束互易性能力,并通过波束互易性能力进行后续的通信。这种情况下,在通信过程中,终端设备可通过通信信息是否发送成功,进一步判断自身是否具备波束互易性能力。
步骤S24、所述终端设备通过所述上行发射波束发射第一通信信息。
步骤S25、所述终端设备确定是否接收到n次针对所述第一通信信息的发射请求,若是,执行步骤S26的操作。
其中,n为预设的大于1的正整数。
另外,若终端设备未接收到针对第一通信信息的发射请求,或者,终端设备接收到针对第一通信信息的发射请求,但发射请求的次数少于n次时,表明终端设备能够将第一通信信息成功发送至基站,因此,可认为终端设备具备波束互易性能力。
步骤S26、所述终端设备确定自身不具备波束互易性能力。
步骤S27、所述终端设备执行去附着操作,并在重新接入基站的过程中,上报第一能力信息,所述第一能力信息指示所述终端设备不具备波束互易性能力。
另外,若通过步骤S24的操作,终端设备确定未接收到n次针对所述第一通信的发射请求时,还可执行以下操作:
步骤S28、等待预设周期,然后再返回执行步骤S21的操作。
若通过步骤S24的操作,终端设备确定未接收到n次针对所述第一通信的发射请求,往 往表明终端设备具备波束互易性能力,这种情况下,终端设备可在等待预设周期之后,再返回执行步骤S21的操作,即再次判断自身是否具备波束互易性能力,以便终端设备及时检测到自身不具备波束互易性能力的情况。
其中,所述预设周期的时长可在终端设备出厂时完成设置,并且,根据检测精度的需求,还可以根据接收到的调整操作,对预设周期的时长进行调整。例如,当对检测精度需求较高时,可将预设周期的时长调整为较短的时长,当对检测精度的需求较低时,可将预设周期的时长调整为较长的时长。
通过本申请实施例的方案,终端设备优先根据判断信息以及判断信息对应的当前信息,确定自身是否具备波束互易性能力,当确定自身具备波束互易性能力时,终端设备再通过第一通信信息是否发送成功,判断自身是否具备波束互易性能力。
也就是说,本申请实施例的方案能够通过第一判断信息与第一通信信息是否发送成功这两种方式,判断自身是否具备波束互易性能力,从而具有较高的检测精度。并且,当通过第一通信信息是否发送成功,确定终端设备不具备波束互易性能力时,终端设备主动上报第一能力信息,从而能够避免出现当终端设备不再具备波束互易性能力时,终端设备仍然通过不适用的收发波束对传输信息,所导致的通信效率降低的情况。
进一步的,本申请实施例的方案中,终端设备优先通过第一判断信息确定自身是否具备波束互易性能力,并在确定自身不具备波束互易性能力的时,直接上报第一能力信息,从而节省了终端设备发送第一通信信息的功耗。并且,通过第一通信信息是否发送成功来判断终端设备是否具备波束互易性能力时,往往需要多次发送第一通信信息,耗时较长,因此,优先通过第一判断信息确定终端设备是否具备波束互易性能力的方式,也能提高终端设备判断自身是否具备波束互易性能力的效率。
另外,参见图11所示的工作流程示意图,在执行步骤S26的操作,即确定自身不具备波束互易性能力之后,还可以执行以下操作:
步骤S29、终端设备获取第一判断信息。
当终端设备确定自身不具备波束互易性能力之后,还可获取第一判断信息。其中,所述第一判断信息包括环境参数的阈值和/或小区ID集合。
所述终端设备获取第一判断信息的方式,可参见步骤S16至步骤S17,以及步骤S18至步骤S19的操作。具体的,在通过步骤S26的操作,确定自身不具备波束互易性能力之后,终端设备获取至少一个环境参数,当所述至少一个环境参数不小于第一参数阈值时,所述终端设备根据所述至少一个环境参数,以及不小于所述第一参数阈值的历史环境参数确定环境参数的阈值。另外,在通过步骤S26的操作,确定自身不具备波束互易性能力之后,终端设备还可以获取所述下行接收波束的SINR,当所述SINR大于预设的第二参数阈值时,所述终端设备将当前接入小区的小区ID添加至小区ID集合中。
另外,在图11中,步骤S29在步骤S27之后执行,而在实际的应用过程中,也可在执行步骤S26之后,先执行步骤S29的操作,然后再执行步骤S27的操作,本申请实施例对此不做限定。
通过上述各个实施例的方法,终端设备能够检测自身是否具备波束互易性能力,并在确定自身不具备波束互易性能力的情况下,主动上报第一能力信息。另外,终端设备在应用过程中,还可能恢复波束互易性能力,因此,终端设备还可上报第二能力信息。
这种情况下,本申请还公开另一实施例,在该实施例中,参见图12所示的工作流程示意 图,在步骤S29之后,还包括:
步骤S30、终端设备基于所述第一判断信息,确定自身是否需要上报第二能力信息,所述第二能力信息指示所述终端设备具备波束互易性能力,若是,执行步骤S31的操作。
具体的,该步骤中,当所述当前的环境参数不小于所述环境参数的阈值时,所述终端设备每隔第一周期获取新的环境参数;当所述新的环境参数小于预设的第三参数阈值时,所述终端设备确定自身需要上报第二能力信息。
其中,所述第三参数阈值为低温或低湿度环境下的环境参数所对应的阈值,当终端设备的环境参数小于所述第三参数阈值时,表明所述终端设备处于低温或低湿度的环境。
如果终端设备受到环境影响,导致该终端设备不具备波束互易性能力,那么,当终端设备处于合适的环境(例如低温和低湿度的环境)下,往往会恢复自身的波束互易性能力。例如,当终端设备所处的环境为高温环境或高湿度环境时,终端设备往往不具备波束互易性能力,当终端设备所处环境发生变化,新的环境为低温或低湿度的环境时,终端设备的波束互易性能力通常会恢复。
上述实施例中,当终端设备确定环境参数小于第三参数阈值时,则表明终端设备处于低温或低湿度的环境,这种情况下,终端设备的波束互易性能力往往已经恢复,因此,终端设备可上报第二能力信息,以便基站确定终端设备已经具备波束互易性能力,从而在后续的通信过程中,基站与终端设备基于波束互易性能力进行通信,以提高通信效率。
另外,当所述当前待接入小区的小区ID与所述小区ID集合中的小区ID相同时,所述终端设备在接入新的小区时,比较新的待接入小区的小区ID与所述小区ID集合;当所述新的待接入小区的小区ID与所述小区ID集合中的小区ID均不同时,所述终端设备确定自身需要上报第二能力信息,所述第二能力信息指示所述终端设备具备波束互易性能力。
如果当前待接入小区的小区ID与判断信息中的小区ID相同,而新的待接入小区的小区ID与判断信息中的小区ID不同时,则表明终端设备接入新的小区之后,不再受到邻小区的干扰,从而恢复波束互易性能力,因此,可上报第二能力信息。
步骤S31、所述终端设备执行去附着操作,并在重新接入基站的过程中,上报第二能力信息。
终端设备在上报所述第二能力信息之后,基站基于所述第二能力信息,确定终端设备已经具备波束互易性能力,在后续的通信过程中,基站与终端设备基于波束互易性能力进行通信,从而能够提高基站与终端设备之间的通信效率。
也就是说,当终端设备确定需要上报第二能力信息时,执行去附着操作,然后重新接入基站,并在重新接入基站的过程中,上报第二能力信息。
另外,终端设备在上报第一能力信息之后,需要进行波束管理,并通过波束管理确定的收发波束对与基站进行通信,这种情况下,当终端设备确定需要上报第二能力信息时,终端设备还可以不再执行去附着操作,而是通过波束管理确定的收发波束对,向基站上报所述第二能力信息。
在上述各个实施例中,公开了终端设备在确定自身不具备波束互易性能力之后,主动向基站上报第一能力信息的操作,另外,在上报第一能力信息之后,为了保障终端设备与基站之间的通信顺利进行,还需要进行波束管理。
这种情况下,公开另一实施例,本申请实施例还包括:
在上报所述第一能力信息之后,所述终端设备进行波束管理,重新确定收发波束对。
其中,波束管理用于重新确定收发波束对,重新确定的收发波束为终端设备对准基站的波束对。在重新确定收发波束对之后,终端设备与基站在进行后续的通信过程中,可基于重新确定的收发波束对进行通信,从而提高通信效率。
波束管理通常包括下行波束管理与上行波束管理。其中,下行波束管理分为P-1,P-2和P-3三个过程。
具体的,P-1过程用于实现基站和终端设备的下行波束的粗对齐,该过程中,基站依次通过不同的下行发射波束向终端设备传输信息,终端设备用不同的下行接收波束测量该下行发射波束,该过程中,基站采用的下行发射波束与终端设备采用的下行接收波束均为较粗的波束,以实现基站与终端设备的下行波束的粗对齐。
P-2过程用于对基站的下行发射波束进行精调,该过程中,终端设备通过相同的下行接收波束,测量基站的不同的下行发射波束,该下行发射波束为窄波束,从而确定基站传输质量较好的下行发射波束(即最佳下行发射波束)。
P-3过程用于对终端设备的下行接收波束进行精调,该过程中,终端设备通过不同的下行接收波束,测量P-2过程中基站确定的下行发射波束,该下行接收波束为窄波束,从而确定终端设备传输质量较好的下行接收波束(即最佳下行接收波束)。
相应的,上行波束管理的过程分为U-1,U-2和U-3三个过程。
其中,U-1过程用于实现基站和终端设备的上行波束的粗对齐,该过程中,终端设备依次通过不同的上行发射波束向基站传输信息,基站用不同的上行接收波束测量该上行发射波束,该过程中,基站采用的上行接收波束与终端设备采用的上行发射波束均为较粗的波束,以实现基站与终端设备的上行波束的粗对齐。
U-2过程用于对基站的上行接收波束进行精调,该过程中,基站通过不同的上行接收波束,测量终端设备相同的上行发射波束,该上行接收波束进为窄波束,从而确定基站传输质量较好的上行接收波束(即最佳上行接收波束)。
U-3过程用于对终端设备的上行发射波束进行精调,该过程中,基站通过U-2过程中确定的上行接收波束,测量终端设备不同的上行发射波束,该上行发射波束为窄波束,从而确定终端设备传输质量较好的上行发射波束(即最佳上行发射波束)。
通过波束管理,终端设备能够重新确定通信质量较好的收发波束对,从而提高后续的通信质量。
进一步的,本申请实施例还包括:
当所述终端设备通过波束管理确定的最佳下行接收波束与第一下行接收波束相同,以及通过波束管理确定的最佳上行发射波束与第一上行发射波束相同时,所述终端设备执行去附着操作;
所述终端设备在重新接入基站的过程中,上报第二能力信息,所述第二能力信息指示所述终端设备具备波束互易性能力;
其中,所述第一下行接收波束为通过所述波束互易性能力确定的最佳下行接收波束,所述第一上行发射波束为通过所述波束互易性能力确定的最佳上行发射波束。
当通过波束管理确定的最佳下行接收波束与第一下行接收波束相同,以及通过波束管理确定的最佳上行发射波束与第一上行发射波束相同时,则表明终端设备通过预设的波束互易性能力确定的收发波束对,与通过波束管理确定的收发波束对相同,这种情况下,则表明终端设备具备波束互易性能力,因此,终端设备向基站上报第二能力信息,以便基站确定终端设备具备波束互易性能力,从而使基站和终端设备在后续通信过程中,仍然通过波束互易性 能力确定应用的收发波束对,而不再进行波束管理,以便进一步提高通信效率。
下述为本发明装置实施例,可以用于执行本发明方法实施例。对于本发明装置实施例中未披露的细节,请参照本发明方法实施例。
相应的,在本申请另一实施例中,还公开一种波束互易性能力上报装置。参见图13所示的结构示意图,所述波束互易性能力上报装置包括:第一判断模块110、波束确定模块120、信息发射模块130、去附着模块140和能力上报模块150。
其中,所述第一判断模块110,用于根据预先获取的第一判断信息和第一判断条件,判断终端设备是否具备波束互易性能力。
所述波束确定模块120,用于当所述第一判断模块确定终端设备具备波束互易性能力,并且所述终端设备的下行接收波束的波束强度不小于预设的第一强度阈值时,通过预设的波束互易性能力,确定所述下行接收波束对应的上行发射波束。
所述波束强度包括:参考信息接收功率(reference signal receiving power,RSRP)和/或参考信息接收质量(reference signal receiving quality,RSRQ)。
所述信息发射模块130,用于通过所述上行发射波束发射第一通信信息。
其中,所述第一通信信息可以为终端设备在接入终端设备的小区之后,终端设备进行各种通信业务的过程中,需要发射至基站的信息,例如,当终端设备在访问网络时,所述第一通信信息可以为终端设备的网络请求信息。
所述去附着模块140,用于当所述终端设备接收到n次针对所述第一通信信息的发射请求时,执行去附着操作,n为预设的大于1的正整数。
其中,n为大于1的正整数,其具体数值可根据终端设备对波束互易性能力上报的需求进行设置及调整。在一个示例中,n的具体数值可在出厂时完成设置,在后续的应用过程中,当对波束互易性能力的检测精度需求较高时,可将n的数值调整为较小的数值,当对波束互易性能力的检测精度需求较低时,可将n的数值调整为较大的数值。
所述能力上报模块150,用于在所述终端设备重新接入基站的过程中,上报第一能力信息,所述第一能力信息指示所述终端设备不具备波束互易性能力。
其中,所述第一判断信息可包括多种形式的信息,示例性的,所述第一判断信息通常包括:环境参数的阈值和/或小区ID集合。所述环境参数为温度或湿度中的至少一种。在所述小区ID集合中,包括至少一个小区ID,当终端设备接入该小区ID对应的小区时,会在邻小区干扰的影响下,不具备波束互易性能力。
在一种可行的设计中,所述第一判断信息包括环境参数的阈值,本申请实施例公开的装置还包括:
第一参数获取模块,用于当所述终端设备接收到n次针对所述第一通信信息的发射请求时,获取至少一个环境参数;
阈值确定模块,用于当所述至少一个环境参数均不小于第一参数阈值时,根据所述至少一个环境参数,以及不小于所述第一参数阈值的历史环境参数确定环境参数的阈值。
其中,所述环境参数为温度或湿度中的至少一种。当所述终端设备接收到n次针对所述第一通信信息的发射请求时,则表明终端设备当前不具备波束互易性能力。这种情况下,终端设备可在每次确定自身不具备波束互易性能力时,获取当前的至少一个环境参数,然后,当获取到m个环境参数,并且所述m个环境参数均不小于第一参数阈值时,根据所述m个环境参数,以及不小于所述第一参数阈值的历史环境参数确定环境参数的阈值,所述环境参 数的阈值属于第一判断信息。
另外,在本申请实施例公开的装置中,还包括:
SINR获取模块,用于当所述终端设备接收到n次针对所述第一通信信息的发射请求时,获取所述下行接收波束的信号与干扰加噪声比SINR;
小区ID添加模块,用于当所述SINR大于预设的第二参数阈值时,将当前接入小区的小区ID添加至所述小区ID集合中。
其中,下行接收波束的SINR能够反映下行接收波束是否受到干扰。当所述SINR大于预设的第二参数阈值时,则表明终端设备受到邻小区较强的干扰,该干扰会导致终端设备不具备波束互易性能力。这种情况下,终端设备将当前接入小区的小区ID添加至小区ID集合中,该小区ID集合可被用作第一判断信息。
在本申请实施例中,当所述第一判断信息包括环境参数的阈值时,所述第一判断模块具体用于,若当前的环境参数不小于所述环境参数的阈值,确定自身不具备波束互易性能力。
另外,当所述第一判断信息为小区ID集合时,所述第一判断模块具体用于,当所述终端设备当前待接入小区的小区ID与所述小区ID集合中包括的一个小区ID相同时,所述终端设备确定自身不具备波束互易性能力。
进一步的,终端设备在应用过程中,还可能会恢复自身的波束互易性能力。这种情况下,本申请实施例公开的装置还包括:
第二参数获取模块,用于当所述当前的环境参数不小于所述环境参数的阈值时,每隔第一周期获取新的环境参数;
所述去附着模块还用于,当所述新的环境参数小于预设的第三参数阈值时,执行去附着操作;
所述能力上报模块还用于,在所述终端设备重新接入基站的过程中,上报第二能力信息,所述第二能力信息指示所述终端设备具备波束互易性能力。
其中,当所述新的环境参数小于预设的第三参数阈值时,则表明终端设备所处的环境转变为低温低湿的环境,这种情况下,终端设备确定自身恢复波束互易性能力,从而主动上报第二能力信息。
进一步的,在本申请实施例公开的装置中,还包括:
小区ID比较模块,用于当所述当前待接入小区的小区ID与所述小区ID集合中的小区ID相同时,在所述终端设备接入新的小区时,比较新的待接入小区的小区ID与所述小区ID集合;
所述去附着模块还用于,当所述新的待接入小区的小区ID与所述小区ID集合中的小区ID均不同时,执行去附着操作;
所述能力上报模块还用于,在所述终端设备重新接入基站的过程中,上报第二能力信息,所述第二能力信息指示所述终端设备具备波束互易性能力。
当所述新的待接入小区的小区ID与所述小区ID集合中的小区ID均不同时,则表明该终端设备不再接入邻小区干扰较强的小区,这种情况下,终端设备确定自身恢复波束互易性能力,从而主动上报第二能力信息。
当终端设备不具备波束互易性能力时,为了保障终端设备与基站之间的通信效率,在本申请实施例公开的装置中,还包括:
波束管理模块,用于在所述终端设备上报第一能力信息之后,进行波束管理,重新确定收发波束对。
其中,波束管理用于重新确定收发波束对,重新确定的收发波束为终端设备对准基站的波束对。在重新确定收发波束对之后,终端设备与基站在进行后续的通信过程中,可基于重新确定的收发波束对进行通信,从而提高通信效率。
进一步的,在本申请实施例公开的装置中,所述去附着模块还用于,当通过波束管理确定的最佳下行接收波束与第一下行接收波束相同,以及通过波束管理确定的最佳上行发射波束与第一上行发射波束相同时,去附着操作,其中,所述第一下行接收波束为通过所述波束互易性能力确定的最佳下行接收波束,所述第一上行发射波束为通过所述波束互易性能力确定的最佳上行发射波束;
所述能力上报模块还用于,在重新接入基站的过程中,上报第二能力信息,所述第二能力信息指示所述终端设备具备波束互易性能力。
当通过波束管理确定的最佳下行接收波束与第一下行接收波束相同,以及通过波束管理确定的最佳上行发射波束与第一上行发射波束相同时,则表明终端设备通过预设的波束互易性能力确定的收发波束对,与通过波束管理确定的收发波束对相同,这种情况下,则表明终端设备具备波束互易性能力,因此,终端设备向基站上报第二能力信息,以便基站确定终端设备具备波束互易性能力,从而使基站和终端设备在后续通信过程中,仍然通过波束互易性能力确定应用的收发波束对,而不再进行波束管理,以便进一步提高通信效率。
通过本申请实施例公开的波束互易性能力上报装置,能够实现对终端设备的波束互易性能力的测量,并在确定终端设备不具备波束互易性能力的情况下进行上报,以避免出现当终端设备不再具备波束互易性能力时,终端设备仍然通过不适用的收发波束对传输信息,所导致的通信效率降低的情况。
进一步的,在本申请实施例中,终端设备能够通过第一判断信息,以及第一通信信息是否发送成功两个因素,判断自身是否具备波束互易性能力,从而能够使终端设备在判断自身是否具备波束互易性能力时,具备较高的准确性。
另外,在本申请实施例中,当终端设备通过第一判断信息确定自身不具备波束互易性能力时,直接进行去附着的操作,并在重新接入基站的过程中,上报第一能力信息,也就是说,在本申请实施例中,终端设备首先通过判断信息,确定自身是否具备波束互易性能力,并在确定自身不具备波束互易性能力时,直接上报第一能力信息,而无需通过第一通信信息是否发送成功来判断终端设备是否具备波束互易性能力,从而节省了终端设备发送第一通信信息的功耗。并且,通过第一通信信息是否发送成功来判断终端设备是否具备波束互易性能力时,往往需要多次发送第一通信信息,耗时较长,因此,优先通过第一判断信息确定终端设备是否具备波束互易性能力的方式,也能提高终端设备判断自身是否具备波束互易性能力的效率。
相应的,本申请实施例公开一种波束互易性能力上报装置,参见图14所示的结构示意图,所述终端设备包括:
处理器1101和存储器,
所述存储器,用于存储程序指令;
所述处理器1101,用于调用并执行所述存储器中存储的程序指令,以使所述波束互易性能力上报装置执行图6,以及图8至图12对应的实施例中的全部或部分步骤。
进一步的,该终端装置还可以包括:收发器1102和总线1103,所述存储器包括随机存取存储器1104和只读存储器1105。
其中,处理器通过总线分别耦接收发器、随机存取存储器以及只读存储器。其中,当需 要运行该终端装置时,通过固化在只读存储器中的基本输入输出系统或者嵌入式系统中的bootloader引导系统进行启动,引导该终端装置进入正常运行状态。在该终端装置进入正常运行状态后,在随机存取存储器中运行应用程序和操作系统,从而使所述终端装置执行图6,以及图8至图12对应的实施例中的全部或部分步骤。
本发明实施例的通信设备可对应于上述图6,以及图8至图12所对应的实施例中的终端装置,并且,该终端装置中的处理器和收发器等可以实现图6,以及图8至图12所对应的实施例中的终端装置所具有的功能和/或所实施的各种步骤和方法,为了简洁,在此不再赘述。
需要说明的是,本实施例也可以基于通用的物理服务器结合网络功能虚拟化(英文:Network Function Virtualization,NFV)技术实现的终端装置,所述终端装置为虚拟终端装置(如,虚拟主机、虚拟路由器或虚拟交换机)。所述虚拟终端装置可以是运行有用于发送通告报文功能的程序的虚拟机(英文:Virtual Machine,VM),所述虚拟机部署在硬件设备上(例如,物理服务器)。虚拟机指通过软件模拟的具有完整硬件系统功能的、运行在一个完全隔离环境中的完整计算机系统。本领域技术人员通过阅读本申请即可在通用物理服务器上虚拟出具有上述功能的多个通信设备。此处不再赘述。
本申请实施例公开的波束互易性能力上报装置,可为多种形式的装置。在一种可行的实现方式中,所述波束互易性能力上报装置为芯片。该芯片中的存储器存储程序指令,并且,该芯片中的处理器通过调用所述存储器中存储的程序指令,实现波束互易性能力的上报。
在另外一种可行的实现方式中,所述波束互易性能力上报装置为终端设备,例如,可以为手机、具有通信功能的车载设备或智能穿戴设备等,本申请实施例对此不做限定。
具体实现中,本申请实施例还提供一种计算机可读存储介质,其中,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,可使所述计算机实施包括图6,以及图8至图12对应的实施例中的全部或部分步骤。该计算机可读存储介质设置在任意设备中,所述任意设备可为随机存取存储器(random-access memory,RAM),该存储器也可以包括非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合等。
本领域技术任何还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信息处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信息处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信息处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、 或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于UE中。可选地,处理器和存储媒介也可以设置于UE中的不同的部件中。
应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本说明书的各个部分均采用递进的方式进行描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点介绍的都是与其他实施例不同之处。尤其,对于装置和系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例部分的说明即可。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
本领域的技术人员可以清楚地了解到本发明实施例中的技术可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本发明实施例中的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例或者实施例的某些部分所述的方法。
本说明书中各个实施例之间相同相似的部分互相参见即可。尤其,对于……实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例中的说明即可。
以上所述的本发明实施方式并不构成对本发明保护范围的限定。

Claims (23)

  1. 一种波束互易性能力上报方法,其特征在于,包括:
    终端设备根据预先获取的第一判断信息和第一判断条件,判断自身是否具备波束互易性能力;
    当所述终端设备确定自身具备波束互易性能力,并且所述终端设备的下行接收波束的波束强度不小于预设的第一强度阈值时,所述终端设备通过预设的波束互易性能力,确定所述下行接收波束对应的上行发射波束;
    所述终端设备通过所述上行发射波束发射第一通信信息;
    当所述终端设备接收到n次针对所述第一通信信息的发射请求时,所述终端设备执行去附着操作,n为预设的大于1的正整数;
    所述终端设备在重新接入基站的过程中,上报第一能力信息,所述第一能力信息指示所述终端设备不具备波束互易性能力。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一判断信息包括:环境参数的阈值和/或小区ID集合;
    所述环境参数为温度或湿度中的至少一种。
  3. 根据权利要求2所述的方法,其特征在于,所述第一判断信息包括环境参数的阈值;
    所述方法还包括:
    当所述终端设备接收到n次针对所述第一通信信息的发射请求时,所述终端设备获取至少一个环境参数;
    当所述至少一个环境参数不小于第一参数阈值时,所述终端设备根据所述至少一个环境参数,以及不小于所述第一参数阈值的历史环境参数确定环境参数的阈值。
  4. 根据权利要求2所述的方法,其特征在于,还包括:
    当所述终端设备接收到n次针对所述第一通信信息的发射请求时,所述终端设备获取所述下行接收波束的信号与干扰加噪声比SINR;
    当所述SINR大于预设的第二参数阈值时,所述终端设备将当前接入小区的小区ID添加至所述小区ID集合中。
  5. 根据权利要求2所述的方法,其特征在于,所述第一判断信息包括环境参数的阈值;
    所述终端设备根据预先获取的第一判断信息和第一判断条件,判断自身是否具备波束互易性能力,包括:
    若当前的环境参数不小于所述环境参数的阈值,所述终端设备确定自身不具备波束互易性能力。
  6. 根据权利要求2所述的方法,其特征在于,所述第一判断信息包括小区ID集合;
    所述终端设备根据预先获取的第一判断信息和第一判断条件,判断自身是否具备波束互易性能力,包括:
    当所述终端设备当前待接入小区的小区ID与所述小区ID集合中包括的一个小区ID相同时,所述终端设备确定自身不具备波束互易性能力。
  7. 根据权利要求5所述的方法,其特征在于,还包括:
    当所述当前的环境参数不小于所述环境参数的阈值时,所述终端设备每隔第一周期获取新的环境参数;
    当所述新的环境参数小于预设的第三参数阈值时,所述终端设备执行去附着操作;
    所述终端设备在重新接入基站的过程中,上报第二能力信息,所述第二能力信息指示所述终端设备具备波束互易性能力。
  8. 根据权利要求6所述的方法,其特征在于,还包括:
    当所述当前待接入小区的小区ID与所述小区ID集合中的小区ID相同时,所述终端设备在接入新的小区时,比较新的待接入小区的小区ID与所述小区ID集合;
    当所述新的待接入小区的小区ID与所述小区ID集合中的小区ID均不同时,所述终端设备执行去附着操作;
    所述终端设备在重新接入基站的过程中,上报第二能力信息,所述第二能力信息指示所述终端设备具备波束互易性能力。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,在所述终端设备上报第一能力信息之后,还包括:
    所述终端设备进行波束管理,重新确定收发波束对。
  10. 根据权利要求9所述的方法,其特征在于,还包括:
    当所述终端设备通过波束管理确定的最佳下行接收波束与第一下行接收波束相同,以及通过波束管理确定的最佳上行发射波束与第一上行发射波束相同时,所述终端设备执行去附着操作,其中,所述第一下行接收波束为通过所述波束互易性能力确定的最佳下行接收波束,所述第一上行发射波束为通过所述波束互易性能力确定的最佳上行发射波束;
    所述终端设备在重新接入基站的过程中,上报第二能力信息,所述第二能力信息指示所述终端设备具备波束互易性能力。
  11. 一种波束互易性能力上报装置,其特征在于,包括:
    第一判断模块,用于根据预先获取的第一判断信息和第一判断条件,判断终端设备是否具备波束互易性能力;
    波束确定模块,用于当所述第一判断模块确定终端设备具备波束互易性能力,并且所述终端设备的下行接收波束的波束强度不小于预设的第一强度阈值时,通过预设的波束互易性能力,确定所述下行接收波束对应的上行发射波束;
    信息发射模块,用于通过所述上行发射波束发射第一通信信息;
    去附着模块,用于当所述终端设备接收到n次针对所述第一通信信息的发射请求时,执行去附着操作,n为预设的大于1的正整数;
    能力上报模块,用于在所述终端设备重新接入基站的过程中,上报第一能力信息,所述第一能力信息指示所述终端设备不具备波束互易性能力。
  12. 根据权利要求11所述的装置,其特征在于,
    所述第一判断信息包括:环境参数的阈值和/或小区ID集合;
    所述环境参数为温度或湿度中的至少一种。
  13. 根据权利要求12所述的装置,其特征在于,所述第一判断信息包括环境参数的阈值;
    所述装置还包括:
    第一参数获取模块,用于当所述终端设备接收到n次针对所述第一通信信息的发射请求时,获取至少一个环境参数;
    阈值确定模块,用于当所述至少一个环境参数均不小于第一参数阈值时,根据所述至少一个环境参数,以及不小于所述第一参数阈值的历史环境参数确定环境参数的阈值。
  14. 根据权利要求12所述的装置,其特征在于,还包括:
    SINR获取模块,用于当所述终端设备接收到n次针对所述第一通信信息的发射请求时,获取所述下行接收波束的信号与干扰加噪声比SINR;
    小区ID添加模块,用于当所述SINR大于预设的第二参数阈值时,将当前接入小区的小区ID添加至所述小区ID集合中。
  15. 根据权利要求12所述的装置,其特征在于,所述第一判断信息包括环境参数的阈值;
    所述第一判断模块具体用于,若当前的环境参数不小于所述环境参数的阈值,确定自身不具备波束互易性能力。
  16. 根据权利要求12所述的装置,其特征在于,所述第一判断信息包括小区ID集合;
    所述第一判断模块具体用于,当所述终端设备当前待接入小区的小区ID与所述小区ID集合中包括的一个小区ID相同时,所述终端设备确定自身不具备波束互易性能力。
  17. 根据权利要求15所述的装置,其特征在于,还包括:
    第二参数获取模块,用于当所述当前的环境参数不小于所述环境参数的阈值时,每隔第一周期获取新的环境参数;
    所述去附着模块还用于,当所述新的环境参数小于预设的第三参数阈值时,执行去附着操作;
    所述能力上报模块还用于,在所述终端设备重新接入基站的过程中,上报第二能力信息,所述第二能力信息指示所述终端设备具备波束互易性能力。
  18. 根据权利要求16所述的装置,其特征在于,还包括:
    小区ID比较模块,用于当所述当前待接入小区的小区ID与所述小区ID集合中的小区ID相同时,在所述终端设备接入新的小区时,比较新的待接入小区的小区ID与所述小区ID集合;
    所述去附着模块还用于,当所述新的待接入小区的小区ID与所述小区ID集合中的小区ID均不同时,执行去附着操作;
    所述能力上报模块还用于,在所述终端设备重新接入基站的过程中,上报第二能力信息, 所述第二能力信息指示所述终端设备具备波束互易性能力。
  19. 根据权利要求11至18任一项所述的装置,其特征在于,还包括:
    波束管理模块,用于在所述终端设备上报第一能力信息之后,进行波束管理,重新确定收发波束对。
  20. 根据权利要求19所述的装置,其特征在于,
    所述去附着模块还用于,当通过波束管理确定的最佳下行接收波束与第一下行接收波束相同,以及通过波束管理确定的最佳上行发射波束与第一上行发射波束相同时,执行去附着操作,其中,所述第一下行接收波束为通过所述波束互易性能力确定的最佳下行接收波束,所述第一上行发射波束为通过所述波束互易性能力确定的最佳上行发射波束;
    所述能力上报模块还用于,在重新接入基站的过程中,上报第二能力信息,所述第二能力信息指示所述终端设备具备波束互易性能力。
  21. 一种波束互易性能力上报装置,其特征在于,包括:
    处理器和存储器,
    所述存储器,用于存储程序指令;
    所述处理器,用于调用并执行所述存储器中存储的程序指令,以使所述波束互易性能力上报装置执行权利要求1-10任一项所述的波束互易性能力上报方法。
  22. 根据权利要求21所述的装置,其特征在于,
    所述波束互易性能力上报装置为芯片。
  23. 一种计算机可读存储介质,其特征在于,
    所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得所述计算机执行如权利要求1-10任一项所述的波束互易性能力上报方法。
PCT/CN2020/085259 2019-04-24 2020-04-17 一种波束互易性能力上报方法及装置 WO2020216136A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/605,816 US20220210780A1 (en) 2019-04-24 2020-04-17 Beam Correspondence Capability Reporting Method and Apparatus
EP20795207.8A EP3937568B1 (en) 2019-04-24 2020-04-17 Beam correspondence capacity reporting method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910336113 2019-04-24
CN201910336113.1 2019-04-24
CN201910702752.5A CN111867093B (zh) 2019-04-24 2019-07-31 一种波束互易性能力上报方法及装置
CN201910702752.5 2019-07-31

Publications (1)

Publication Number Publication Date
WO2020216136A1 true WO2020216136A1 (zh) 2020-10-29

Family

ID=72941533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085259 WO2020216136A1 (zh) 2019-04-24 2020-04-17 一种波束互易性能力上报方法及装置

Country Status (3)

Country Link
US (1) US20220210780A1 (zh)
EP (1) EP3937568B1 (zh)
WO (1) WO2020216136A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4087149A4 (en) * 2020-01-07 2022-12-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. BEAM SELECTION METHOD, TERMINAL AND NETWORK DEVICE
US20220007207A1 (en) * 2020-07-06 2022-01-06 Qualcomm Incorporated Beam switching and enhanced beam reporting to mitigate interference in beamforming

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180102827A1 (en) * 2016-10-12 2018-04-12 Samsung Electronics Co., Ltd. Apparatus and method for beam search based on antenna configuration in wireless communication system
WO2018085709A1 (en) * 2016-11-04 2018-05-11 Intel IP Corporation Beam reciprocity indication and joint uplink downlink beam management
WO2018147346A1 (ja) * 2017-02-10 2018-08-16 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN109560839A (zh) * 2017-09-26 2019-04-02 华为技术有限公司 一种确定波束互易性能力当前状态的方法及终端
WO2019064270A1 (en) * 2017-09-28 2019-04-04 Telefonaktiebolaget Lm Ericsson (Publ) MULTI-BEAM RANDOM ACCESS PROCEDURE IN TRANSFER EXECUTION

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180102827A1 (en) * 2016-10-12 2018-04-12 Samsung Electronics Co., Ltd. Apparatus and method for beam search based on antenna configuration in wireless communication system
WO2018085709A1 (en) * 2016-11-04 2018-05-11 Intel IP Corporation Beam reciprocity indication and joint uplink downlink beam management
WO2018147346A1 (ja) * 2017-02-10 2018-08-16 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN109560839A (zh) * 2017-09-26 2019-04-02 华为技术有限公司 一种确定波束互易性能力当前状态的方法及终端
WO2019064270A1 (en) * 2017-09-28 2019-04-04 Telefonaktiebolaget Lm Ericsson (Publ) MULTI-BEAM RANDOM ACCESS PROCEDURE IN TRANSFER EXECUTION

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Remaining Details on Beam Management", 3GPP TSG RAN WG1 MEETING NR AD-HOC #3 R1-1716213, 21 September 2017 (2017-09-21), XP051339670 *
NTT DOCOMO, INC.: "Beam correspondence information (BCI) acquisition scheme", 3GPP TSG-RAN WG1 MEETING #87 R1-1612732, 18 November 2016 (2016-11-18), XP051190548 *
SAMSUNG: "Discussion on beam correspondence", 3GPP TSG RAN WG1 #88 R1-1702941, 17 February 2017 (2017-02-17), XP051221749 *
See also references of EP3937568A4

Also Published As

Publication number Publication date
US20220210780A1 (en) 2022-06-30
EP3937568B1 (en) 2023-07-26
EP3937568A4 (en) 2022-06-01
EP3937568A1 (en) 2022-01-12

Similar Documents

Publication Publication Date Title
US11546106B2 (en) Method and device for determining beam failure detection reference signal resource
US10667159B2 (en) Method, user equipment, base station, and system for enhancing reliability of wireless communication
US11178612B2 (en) Communication method, terminal, and network device
US20150341863A1 (en) Method and apparatus for adjusting network configuration
KR20170132136A (ko) 빔포밍 트레이닝을 위한 상호성 검출 및 활용 기술
WO2020216136A1 (zh) 一种波束互易性能力上报方法及装置
WO2019047784A1 (zh) Mdt的配置方法和相关设备
WO2019024871A1 (zh) 非授权频段下的信息传输方法、网络设备及终端
CN104869586B (zh) 一种动态信道检测的处理方法及接入点设备
US20220240120A1 (en) Resource Measurement Method and Apparatus
WO2020134984A1 (zh) 一种波束失败恢复方法及装置
WO2022105756A1 (zh) 定位方法、装置、终端设备、基站及位置管理服务器
US20060258286A1 (en) Radio resource measurement and estimation
EP4195563A1 (en) Measurement method and apparatus for positioning, and storage medium
WO2022135061A1 (zh) 邻区测量触发方法及装置、计算机可读存储介质
WO2021109974A1 (zh) 波束质量测量方法和设备
US20220352941A1 (en) Channel transmission method and communication apparatus
WO2020200116A1 (zh) 无线链路质量或波束质量评估方法及装置
CN111867093B (zh) 一种波束互易性能力上报方法及装置
WO2020125616A1 (zh) 一种prach检测方法及装置
US20220248467A1 (en) System and method for dynamic sensitivity control for interference avoidance
WO2022087914A1 (zh) 波束测量方法、设备以及存储介质
US20200178186A1 (en) Access Method And Access Device
WO2021031004A1 (zh) 载波测量方法和装置
WO2019095794A1 (zh) 一种传输信道质量信息的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795207

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020795207

Country of ref document: EP

Effective date: 20211007

NENP Non-entry into the national phase

Ref country code: DE