WO2020215768A1 - 变频空调器的控制方法及装置和变频空调器 - Google Patents

变频空调器的控制方法及装置和变频空调器 Download PDF

Info

Publication number
WO2020215768A1
WO2020215768A1 PCT/CN2019/127502 CN2019127502W WO2020215768A1 WO 2020215768 A1 WO2020215768 A1 WO 2020215768A1 CN 2019127502 W CN2019127502 W CN 2019127502W WO 2020215768 A1 WO2020215768 A1 WO 2020215768A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
air
air conditioner
conditioning compressor
winding
Prior art date
Application number
PCT/CN2019/127502
Other languages
English (en)
French (fr)
Inventor
罗荣邦
许文明
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2020215768A1 publication Critical patent/WO2020215768A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • F24F2013/247Active noise-suppression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature

Definitions

  • This application relates to the technical field of air conditioners, for example, to a control method and device of an inverter air conditioner and an inverter air conditioner.
  • the air conditioner compressor of the existing air conditioner will resonate with the casing, the motor, the pipeline, etc. when running at certain frequencies, resulting in poor noise and excessive pipeline stress.
  • the air conditioner When the air conditioner is protected and released, it should run slowly to stabilize the system.
  • the internal unit has different operating loads.
  • the operation of the air-conditioning compressor will be unstable. This may cause the air conditioner compressor to fail to operate normally, resulting in unstable operation of the compressor.
  • the embodiments of the present disclosure provide a control method and device for an inverter air conditioner and an inverter air conditioner.
  • a brief summary is given below. This summary is not a general review, nor is it intended to identify key/important elements or describe the scope of protection of these embodiments. Its sole purpose is to present some concepts in a simple form as a prelude to the detailed description that follows.
  • the embodiment of the present disclosure provides a control method of an inverter air conditioner.
  • the method includes:
  • S2 Determine whether the target frequency f is greater than the winding boundary frequency f4. If f is greater than or equal to f4, select the first winding mode of the motor and run the air-conditioning compressor to a standstill frequency for a preset time, so that the air-conditioning compressor runs to Winding demarcation point frequency f4, switch to the second winding mode of the motor, make the air-conditioning compressor run to a standstill frequency for a preset time, and make the air-conditioning compressor run to the target frequency f.
  • the embodiment of the present disclosure provides a control device for an inverter air conditioner.
  • the device includes:
  • the calculation module is configured to calculate the target frequency f according to the preset temperature Ts and the indoor ambient temperature Tin;
  • a determining module configured to determine the size of the target frequency f and the winding boundary frequency f4 of the motor of the air-conditioning compressor
  • the control module is configured to control the air conditioner compressor to select the first winding mode of the motor according to the judgment module judging that the target frequency f is greater than or equal to the dividing point frequency f4, and to make the air conditioner compressor run to one
  • the frequency of the pause platform continues for a preset time, so that the air-conditioning compressor runs to the winding boundary frequency f4, and the second winding mode connection of the motor is switched to make the air-conditioning compressor run to the frequency of the two pause platforms in sequence After each lasting a preset time, the air-conditioning compressor is operated to the target frequency f.
  • the embodiment of the present disclosure provides an inverter air conditioner.
  • the inverter air conditioner includes: the technical solution of any embodiment of the above-mentioned device.
  • the target frequency f is greater than the winding demarcation point frequency f4. If f is greater than or equal to f4, the first winding mode of the motor is selected and the air conditioner compressor is operated to a constant frequency of a pause platform. Set time, make the air conditioner compressor run to the winding boundary frequency f4, switch to the second winding mode of the motor, make the air conditioner compressor run to a standstill platform frequency for a preset time, make the air conditioner compressor run to the target frequency f .
  • Calculate the target frequency by calculating the difference between the indoor ambient temperature and the user set temperature, determine whether the target frequency f is greater than the winding boundary frequency f4, and control the motor of the air conditioner compressor to connect to the first winding mode or the second winding mode, and then control
  • the operating frequency and operating time of the compressor on each stall platform (oil return platform) can make the compressor run more smoothly in the process of reaching the target frequency, making the compressor run more stable and reliable.
  • Fig. 1 is a flowchart of a control method of an inverter air conditioner according to an embodiment of the present disclosure
  • FIG. 2 is another flowchart of a control method of an inverter air conditioner according to an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of an embodiment of a control device for an inverter air conditioner according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of another embodiment of a control device for an inverter air conditioner according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of another embodiment of a control device for an inverter air conditioner according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a calculation module of a control device of an inverter air conditioner according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of an electronic device provided by an embodiment of the present disclosure.
  • 10-calculation module 101-temperature difference calculation unit; 102-target frequency calculation unit; 20-judgment module; 30-control module; 40-frequency comparison module; 50-time comparison module; 60-wind speed comparison module; 70 -Real-time detection module; 200-processor; 201-memory; 202-communication interface; 203-bus.
  • an embodiment of the present disclosure provides a method for controlling an inverter air conditioner, including:
  • the cooling mode can be selected to start
  • the air conditioner can be provided with a real-time detection module 70, a calculation module 10, a judgment module 20, and a control module 30.
  • the real-time detection module 70 obtains the indoor ambient temperature Tin and the preset temperature Ts through a temperature sensor. (That is, the user set temperature), of course, the preset temperature Ts and the indoor ambient temperature Tin can also be directly obtained through other modules, and then the target frequency f can be calculated by the calculation module 10.
  • S2 Determine whether the target frequency f is greater than the winding boundary frequency f4. If f is greater than or equal to f4, select the first winding mode of the motor and run the air-conditioning compressor to a standstill frequency for a preset time, so that the air-conditioning compressor runs to Winding demarcation point frequency f4, switch to the second winding mode of the motor, make the air-conditioning compressor run to a standstill frequency for a preset time, and make the air-conditioning compressor run to the target frequency f.
  • step S2 optionally, if f is greater than or equal to f4, the first winding mode is selected and the air-conditioning compressor runs at the first preset operating speed V1 to the frequency of the first pause platform for the first pause time t1, After the first pause time t1 ends, the air-conditioning compressor is operated at the preset operating speed V to the winding demarcation point frequency f4, and then switched to the second winding mode connection, so that the air-conditioning compressor runs to the second preset operating speed V2 The second pause platform continues for the second pause time t2; after the second pause time t2 ends, it runs at the third preset operating speed V3 to the target frequency f.
  • the motor winding of the air-conditioning compressor is the first winding and impedance with larger impedance
  • the frequency of the first pause platform is f1
  • the frequency of the second pause platform is f2
  • f1 is less than f4
  • f2 is greater than f4.
  • the first winding mode of the motor can be set to Y type
  • the second winding mode is triangle type
  • the winding switching boundary frequency of the two winding modes that is, the winding boundary point frequency f4 is 65Hz (according to The motor winding parameters are adjusted)
  • the winding structure of the motor is switched through the winding switching part to select Y-type or delta-type connection mode
  • the frequency of the first pause platform to f1 (adjustable at 45Hz) and time to t1 (1min can be adjusted) Adjust
  • the frequency of the second pause platform is f2 (adjustable at 76Hz) and the time is t2 (adjustable at 1min).
  • the target frequency f is calculated based on the difference ⁇ T between the preset temperature Ts and the indoor ambient temperature Tin.
  • the difference ⁇ T between the indoor ambient temperature Tin and the preset temperature Ts can also be calculated by obtaining the indoor ambient temperature Tin and the preset temperature Ts of the indoor unit of the air conditioner, and then through the calculation module 10Calculate the target frequency f.
  • the method further includes: S101, correcting the target frequency f according to the windshield of the air-conditioning indoor fan, when the wind speed of the air-conditioning indoor fan windshield r ⁇ r1, the target frequency is corrected negatively ; When r>r2, the target frequency is corrected in the positive direction, where r1 and r2 are the preset wind speed values.
  • the target frequency f is corrected according to the windshield of the air-conditioning indoor fan; when the wind speed of the air-conditioning indoor fan windshield r ⁇ r1, the target frequency is corrected negatively , To prevent condensation or freezing; when r1 ⁇ r ⁇ r2, the target frequency is not corrected; when r>r2, the target frequency is positively corrected to prevent overheating and reduce the output of the evaporator; determine whether the target frequency f is greater than the winding boundary point If the frequency f4, f is greater than or equal to f4, first select the first winding mode and make the air-conditioning compressor run at V1 of 2Hz/s to the frequency f1 of the first standstill platform for the first standstill time t1 (adjustable for 1min).
  • the air conditioner compressor After the pause time is over, the air conditioner compressor will run to the winding boundary frequency f4 at the preset operating speed V of 0.5Hz/s. At this time, switch the second winding mode to connect, and then run to the second pause platform at V2 of 2Hz/s The frequency f2 lasts for the second pause time t2 (adjustable for 1 min), and after the second pause time ends, it runs to the target frequency f according to V3 at 2 Hz/s to quickly achieve the heat exchange effect and make the compressor run more smoothly.
  • the air-conditioning compressor is not limited to 0.5 or 2Hz/s according to the preset operating speed, and can be adjusted as required.
  • the target frequency f k1*r+k2* ⁇ T+b+c, where k1 is the speed coefficient; k2 is the temperature difference coefficient; b is a constant, and r is the air-conditioning indoor fan Rotation speed, c is the frequency correction value, 0 ⁇ k1 ⁇ 1, 1 ⁇ k2 ⁇ 3.
  • the operating speed V is 0.5Hz/s to run to the winding demarcation point frequency f4.
  • the second winding mode is switched, and then V2 is 2Hz/s to run to the frequency f1 of the second pause platform for the second pause time t2(1min Adjustable), after the end of the second pause time, run to the target frequency f according to V3 of 2Hz/s.
  • the calculated f is less than f4
  • the Y-type winding mode is selected and the air-conditioning compressor can run to the target frequency at 0.5 Hz/s.
  • step S2 the electric motor and the air conditioner compressor are connected through a winding switching unit, the winding structure of the motor is switched by the winding switching unit, and the winding switching is controlled according to the result of determining the magnitude of f and f4 Department switching action.
  • the motor is a three-phase motor having three-phase windings of U-phase, V-phase, and W-phase. Two terminals of each phase winding of the motor are connected to the winding switching part, and the winding switching part switches the connection of the terminals, To switch to the Y-shaped winding connection as the first winding method or the delta winding connection as the second winding method.
  • the target frequency f k1*r+k2* ⁇ T+b, where k1 is the speed coefficient; k2 is the temperature difference coefficient; b is a constant, and r is the air-conditioned room The speed of the fan, 0 ⁇ k1 ⁇ 1, 1 ⁇ k2 ⁇ 3.
  • the embodiment of the present disclosure provides a control device for an inverter air conditioner.
  • control device of the inverter air conditioner includes:
  • the calculation module 10 is configured to calculate the target frequency f according to the preset temperature Ts and the indoor ambient temperature Tin;
  • the determining module 20 is configured to determine the size of the target frequency f and the winding boundary frequency f4 of the motor of the air-conditioning compressor;
  • the control module 30 is configured to control the air conditioner compressor to select the first winding mode of the motor and make the air conditioner compressor run to a standstill according to the judgment module 20 determining that the target frequency f is greater than or equal to the dividing point frequency f4 The frequency of the platform continues for a preset time, so that the air-conditioning compressor runs to the winding dividing point frequency f4, and the second winding mode of the motor is switched to make the air-conditioning compressor run to a standstill platform frequency for a preset time, so that the air-conditioning compressor Run to the target frequency f.
  • the calculation module 10 calculates the target frequency f through the obtained preset temperature Ts and the indoor ambient temperature Tin, and the judgment module 20 judges the magnitude relationship between f and f4 according to the calculated target frequency f, and the control module 30 according to The judgment result of the judgment module 20 is that f is greater than or equal to f4, and the air-conditioning compressor is controlled to select the first winding mode (Y-winding mode) of the motor, and the air-conditioning compressor is operated to the frequency of the first standstill platform to continue the first standstill Time, the air conditioner compressor is operated to the winding boundary frequency f4, and the second winding mode connection of the motor (delta winding mode) is switched at this time, and the air conditioner compressor is operated to the second standstill platform After the frequency pauses for a second pause time, the air-conditioning compressor is operated to the target frequency f.
  • the air-conditioning compressor is controlled to select the first winding mode (Y-winding mode) of the motor, and the air-conditioning compressor is operated to the frequency of the
  • the device further includes:
  • the frequency comparison module 40 is configured to compare the operating frequency of the air conditioner compressor with the frequency of the pause platform, obtain a comparison result, and send it to the control module 30;
  • the time comparison module 50 is configured to compare the operating time of the air-conditioning compressor with the preset pause platform time, obtain the comparison result, and send it to the control module 30;
  • the control module 30 controls the motor winding mode and operating frequency of the air-conditioning compressor according to the comparison result of the frequency comparison module 40, and then continuously controls the operating frequency of the air-conditioning compressor according to the comparison result of the time comparison module 50 .
  • the frequency comparison module 40 compares the operating frequency of the air-conditioning compressor with the frequency of the pause platform and the comparison result of the time comparison module 50 , And send the comparison result to the control module 30.
  • the control module 30 controls the motor winding mode of the air-conditioning compressor according to the comparison result, and then controls the operating frequency of the air-conditioning compressor to run to the target frequency value.
  • the device further includes:
  • the wind speed comparison module 60 is configured to compare the windshield wind speed of the air conditioner indoor unit with a preset wind speed, obtain a comparison result, and send it to the control module 30;
  • the control module 30 corrects the target frequency f according to the comparison result of the wind speed comparison module 60.
  • the comparison result obtained by the wind speed comparison module 60 may be sent to the control module 30, and the control module 30 compares the wind speed according to the wind speed.
  • the comparison result of the module 60 corrects the target frequency.
  • the judgment module 20 judges the magnitude relationship between f and f4 according to the revised target frequency f, and then sends it to the control module 30.
  • the control module 30 controls the motor winding mode of the air-conditioning compressor according to the judgment result. And then to control the operating frequency of the air-conditioning compressor to run to the target frequency value.
  • the device further includes:
  • the real-time detection module 70 is configured to detect the operating frequency, operating time, windshield wind speed, and indoor ambient temperature of the air-conditioning compressor in real time, and send the detected indoor ambient temperature to the calculation module 10, and the detected The operating frequency of the air-conditioning compressor is sent to the frequency comparison module 40, the detected operating time of the air-conditioning compressor is sent to the time comparison module 50, and the detected windshield wind speed of the air-conditioning compressor Send to the wind speed comparison module 60.
  • the aforementioned frequency comparison module 40, time comparison module 50, and wind speed comparison module 60 can detect the operating frequency, operating time, and windshield wind speed of the air conditioner compressor in real time through the real-time detection module 70 to obtain corresponding parameters.
  • the calculation module 10 may also obtain corresponding parameters through the indoor ambient temperature detected by the real-time detection module 70 in real time.
  • the calculation module 10 includes:
  • the temperature difference calculation unit 101 is configured to calculate the difference ⁇ T between the indoor ambient temperature Tin and the preset temperature Ts;
  • the target frequency calculation unit 102 is configured to calculate the target frequency f according to the calculation result of the temperature difference calculation unit 101.
  • the calculation formula of the target frequency f has been explained in the embodiment of the above method, and it will not be repeated here.
  • the embodiment of the present disclosure provides an inverter air conditioner.
  • the inverter air conditioner includes the device described in any of the above embodiments:
  • the inverter air conditioner includes the device described in any of the above embodiments, and therefore has all the beneficial effects of the above device, and will not be repeated here.
  • the embodiment of the present disclosure provides an electronic device, the structure of which is shown in FIG. 7, and the electronic device includes:
  • At least one processor (processor) 200 one processor 200 is taken as an example in FIG. 7; and a memory (memory) 201 may also include a communication interface (Communication Interface) 202 and a bus 203. Among them, the processor 200, the communication interface 202, and the memory 201 can communicate with each other through the bus 203. The communication interface 202 can be used for information transmission. The processor 200 may call the logic instructions in the memory 201 to execute the control method of the foregoing embodiment.
  • the above-mentioned logical instructions in the memory 201 can be implemented in the form of a software functional unit and when sold or used as an independent product, they can be stored in a computer readable storage medium.
  • the memory 201 can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 200 executes functional applications and data processing by running software programs, instructions, and modules stored in the memory 201, that is, implements the control method in the foregoing method embodiment.
  • the memory 201 may include a storage program area and a storage data area.
  • the storage program area may store an operating system and an application program required by at least one function; the storage data area may store data created according to the use of the terminal device, etc.
  • the memory 201 may include a high-speed random access memory, and may also include a non-volatile memory.
  • the technical solutions of the embodiments of the present disclosure can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes one or more instructions to enable a computer device (which can be a personal computer, a server, or a network). Equipment, etc.) execute all or part of the steps of the method described in the embodiments of the present disclosure.
  • the aforementioned storage medium may be a non-transitory storage medium, including: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk, etc.
  • the first element can be called the second element, and likewise, the second element can be called the first element, as long as all occurrences of the "first element” are renamed consistently and all occurrences "Second component” can be renamed consistently.
  • the first element and the second element are both elements, but they may not be the same element.
  • the terms used in this application are only used to describe the embodiments and are not used to limit the claims. As used in the description of the embodiments and claims, unless the context clearly indicates otherwise, the singular forms of "a” (a), “one” (an) and “the” (the) are intended to also include plural forms .
  • the term “and/or” as used in this application refers to any and all possible combinations of one or more of the associated lists.
  • the term “comprise” (comprise) and its variants “comprises” and/or including (comprising) and the like refer to the stated features, wholes, steps, operations, elements, and/or The existence of components does not exclude the existence or addition of one or more other features, wholes, steps, operations, elements, components and/or groups of these. If there are no more restrictions, the element defined by the sentence “including a" does not exclude the existence of other same elements in the process, method, or device that includes the element.
  • each embodiment focuses on the differences from other embodiments, and the same or similar parts between the various embodiments can be referred to each other.
  • the methods, products, etc. disclosed in the embodiments if they correspond to the method parts disclosed in the embodiments, see the descriptions in the method parts for relevant points.
  • the disclosed methods and products may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units may only be a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection between devices or units through some interfaces, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units can be selected to implement this embodiment according to actual needs.
  • the functional units in the embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of the code, and the module, program segment, or part of the code contains one or more functions for realizing the specified logical function.
  • Executable instructions may also occur in a different order from the order marked in the drawings. For example, two consecutive blocks can actually be executed in parallel, and they can sometimes be executed in the reverse order, depending on the functions involved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种变频空调器的控制方法及装置和变频空调器,该方法中根据预设温度Ts与室内环境温度Tin计算出目标频率f;判断目标频率f是否大于绕组分界点频率f4,若f大于等于f4,选择电动机的第一绕组方式并使空调压缩机运行至一个停顿平台的频率持续预设时间,使空调压缩机运行至绕组分界点频率f4,切换至电动机的第二绕组方式接线,使空调压缩机运行至一个停顿平台的频率持续预设时间,使空调压缩机运行至目标频率f。通过判断f是否大于f4,选择电动机的第一绕组方式或第二绕组方式接线,进而控制压缩机在各个停顿平台的运行频率、运行时间,使得压缩机运行稳定可靠。

Description

变频空调器的控制方法及装置和变频空调器
本申请基于申请号为201910346239.7、申请日为2019年4月26日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及空调技术领域,例如涉及一种变频空调器的控制方法及装置和变频空调器。
背景技术
目前,随着经济的发展和生活水平的提高,人们对有更好舒适性调节及节能性的变频空调器有了更高的需求。
现有的空调器的空调压缩机在某些频率运行时会与壳体、电动机、管路等产生共振,导致噪声差、管路应力超标。当空调器出现保护并解除后,本应缓运行让系统稳定下来,然而随着室内外侧工况的不同,内机运行负荷不同,对于一些特殊情况,会使得空调压缩机的运行过程不平稳,从而可能导致空调压缩机无法正常运行,造成压缩机运行的不稳定。
发明内容
本公开实施例提供了一种变频空调器的控制方法及装置和变频空调器,为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。
本公开实施例提供了一种变频空调器的控制方法。
在一些实施例中,所述方法包括:
S1,根据预设温度Ts与室内环境温度Tin计算出目标频率f;
S2,判断目标频率f是否大于绕组分界点频率f4,若f大于等于f4,选择电动机的第一绕组方式并使空调压缩机运行至一个停顿平台的频率持续预设时间,使空调压缩机运行至绕组分界点频率f4,切换至电动机的第二绕组方式接线,使空调压缩机运行至一个停顿平台的频率持续预设时间,使空调压缩机运行至目标频率f。
本公开实施例提供了一种变频空调器的控制装置。
在一些实施例中,所述的装置包括:
计算模块,被配置为根据预设温度Ts与室内环境温度Tin计算出目标频率f;
判断模块,被配置为判断所述目标频率f与空调压缩机的电动机的绕组分界点频率f4的大小;
控制模块,被配置为根据所述判断模块判断出所述目标频率f大于等于所述分界点频率f4控制所述空调压缩机选择电动机的第一绕组方式,并使所述空调压缩机运行至一个停顿平台的频率持续预设时间,使所述空调压缩机运行至所述绕组分界点频率f4,切换至电动机的第二绕组方式接线,使所述空调压缩机依次运行至两个停顿平台的频率分别持续预设时间后,使所述空调压缩机运行至所述目标频率f。
本公开实施例提供了一种变频空调器。
在一些实施例中,所述变频空调器包括:上述所述装置的任一实施例的技术方案。
本公开实施例提供的技术方案可以包括以下有益效果:
本公开提供的变频空调器的控制方法中判断目标频率f是否大于绕组分界点频率f4,若f大于等于f4,选择电动机的第一绕组方式并使空调压缩机运行至一个停顿平台的频率持续预设时间,使空调压缩机运行至绕组分界点频率f4,切换至电动机的第二绕组方式接线,使空调压缩机运行至一个停顿平台的频率持续预设时间,使空调压缩机运行至目标频率f。通过计算出室内环境温度与用户设定温度的差计算出目标频率,判断目标频率f是否大于绕组分界点频率f4,控制空调压缩机的电动机与第一绕组方式或第二绕组方式接线,进而控制压缩机在各个停顿平台(回油平台)的运行频率、运行时间,能够使压缩机在运行达到目标频率的过程中更加平稳,使得压缩机运行稳定可靠。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起被配置为解释本公开的原理。
图1是本公开实施例示出的一种变频空调器的控制方法的一流程图;
图2是本公开实施例示出的一种变频空调器的控制方法的另一流程示意图;
图3是本公开实施例示出的一种变频空调器的控制装置的一实施例示意图;
图4是本公开实施例示出的一种变频空调器的控制装置的另一实施例示意图;
图5是本公开实施例示出的一种变频空调器的控制装置的又一实施例示意图;
图6是本公开实施例示出的一种变频空调器的控制装置的计算模块的示意图;
图7是本公开实施例提供的电子设备的结构示意图。
附图标记:
10-计算模块;101-温差计算单元;102-目标频率计算单元;20-判断模块;30-控制模块;40-频率比对模块;50-时间比对模块;60-风速比对模块;70-实时检测模块;200-处理器;201-存储器;202-通信接口;203-总线。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实 施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
如图1所示,本公开实施例提供了一种变频空调器的控制方法,包括:
S1,根据预设温度Ts与室内环境温度Tin计算出目标频率f;
可选地,例如可以选择制冷模式开机,空调器可以设置有实时检测模块70、计算模块10、判断模块20和控制模块30,实时检测模块70通过温度传感器获得室内环境温度Tin和预设温度Ts(也就是用户设定温度),当然也可以通过其他模块直接获得预设温度Ts和室内环境温度Tin,再通过计算模块10计算出目标频率f。
S2,判断目标频率f是否大于绕组分界点频率f4,若f大于等于f4,选择电动机的第一绕组方式并使空调压缩机运行至一个停顿平台的频率持续预设时间,使空调压缩机运行至绕组分界点频率f4,切换至电动机的第二绕组方式接线,使空调压缩机运行至一个停顿平台的频率持续预设时间,使空调压缩机运行至目标频率f。
在步骤S2中,可选地,若f大于等于f4,选择所述第一绕组方式并使空调压缩机按照第一预设运行速度V1运行至第一停顿平台的频率持续第一停顿时间t1,在第一停顿时间t1结束后使空调压缩机按照预设运行速度V运行至绕组分界点频率f4,切换至所述第二绕组方式接线,使空调压缩机按照第二预设运行速度V2运行到第二停顿平台持续第二停顿时间t2;在第二停顿时间t2结束后再按照第三预设运行速度V3运行至目标频率f,空调压缩机的电动机绕组为阻抗较大的第一绕组和阻抗较小的第二绕组,第一停顿平台的频率为f1,第二停顿平台的频率为f2,f1小于f4,f2大于f4。
可选地,在上述操作中可以设置电动机的第一绕组方式为Y型,第二绕组方式为三角型,两种绕组方式的绕线切换分界点频率即绕组分界点频率f4为65Hz(可根据电动机绕组参数进行调整),通过绕组切换部切换所述电动机的绕组结构,使其选择Y型还是三角型接线方式,设第一停顿平台的频率为f1(45Hz可调)时间为t1(1min可调);第二停顿平台的频率为f2(76Hz可调)时间为t2(1min可调)。
在一些实施例中,根据预设温度Ts与室内环境温度Tin的差值△T计算出目标频率f。
在上述操作中也可以通过获得空调室内机的室内环境温度Tin和预设温度Ts,计算出室内环境温度Tin与预设温度Ts的差值△T,△T=Tin-Ts,然后通过计算模块10计算出目标频率f。
如图2所示,在一些实施例中,所述的方法还包括:S101,根据空调室内风机的风挡 对目标频率f进行修正,当空调室内风机风挡的风速r≤r1,目标频率负向修正;当r>r2目标频率正向修正,其中r1和r2为预设风速值。
当空调室内机存在不同风挡时,通过上述计算得出的目标频率f之后,再根据空调室内风机的风挡对目标频率f进行修正;当空调室内风机风挡的风速r≤r1,目标频率负向修正,防止凝练或者冻结发生;当r1<r≤r2目标频率不做修正;当r>r2目标频率正向修正,防止过热度偏大,降低蒸发器能力输出;判断目标频率f是否大于绕组分界点频率f4,f大于等于f4,则先选择第一绕组方式并使空调压缩机按照V1为2Hz/s运行至第一停顿平台的频率f1持续第一停顿时间t1(1min可调),在第一停顿时间结束后使空调压缩机按照预设运行速度V为0.5Hz/s运行至绕组分界点频率f4,此时切换第二绕组方式接线,再按照V2为2Hz/s运行到第二停顿平台的频率f2持续第二停顿时间t2(1min可调),在第二停顿时间结束后再按照V3为2Hz/s运行至目标频率f,以快速达到换热效果,使压缩机运行更加平稳。
空调压缩机按照预设的运行速度不仅限于0.5或2Hz/s,可以根据需要做调整。
可选地,在空调室内机存在风挡时,目标频率f=k1*r+k2*△T+b+c,其中k1为转速系数;k2为温差系数;b为常数,r为空调室内风机的转速,c为频率修正值,0<k1<1,1<k2<3。
举例以k1=0.025;k2=2.212;b=0.533(b可以根据实际需要取不同的常数数值),同时设定室内风机风挡设定静音、低风、中风、高风、强力,对应转速r分别为500rpm、800rpm、1200rpm、1500rpm、1700rpm(rpm是Revolutions Per minute的缩写,是转/每分钟);
设0≤△T<5℃、5≤△T<10℃、10≤△T<15℃、15≤△T<20℃、20≤△T<27℃、≥27℃,这里取计算出的△T=25℃,根据f=k1*r+k2*△T+b+c,根据当前室内风机风挡的风速确定c,计算出f,进而在步骤S2中判断出f大于f4,则先选择Y型绕组方式,并使空调压缩机按照V1为2Hz/s运行至第一停顿平台的频率f1持续第一停顿时间t1(1min可调),在第一停顿时间结束后使空调压缩机按照预设运行速度V为0.5Hz/s运行至绕组分界点频率f4,此时切换第二绕组方式接线,再按照V2为2Hz/s运行到第二停顿平台的频率f1持续第二停顿时间t2(1min可调),在第二停顿时间结束后再按照V3为2Hz/s运行至目标频率f。反之,若计算出的f小于f4,则选择Y型绕组方式并使空调压缩机可以按照0.5Hz/s运行至到目标频率。
在步骤S2中,使所述电动机与所述空调压缩机之间通过绕组切换部连接,用所述绕组切换部切换所述电动机的绕组结构,根据判断f与f4的大小结果控制所述绕组切换部切换动作。
电动机是具有U相、V相、W相的三相绕组的三相电动机,电动机的各相绕组的两个端子与所述绕组切换部连接,所述绕组切换部通过切换所述端子的连接,来切换成作为所述第一绕组方式的Y型绕组连接或作为所述第二绕组方式的三角型绕组连接。
可选地,在空调室内机无风挡时,即静音模式,目标频率f=k1*r+k2*△T+b,其中k1为转速系数;k2为温差系数;b为常数,r为空调室内风机的转速,0<k1<1,1<k2<3。
举例以k1=0.025;k2=2.212;b=0.533(b可以根据实际需要取不同的常数数值),同时设定室内风机静音时的转速r=500rpm(rpm是Revolutions Per minute的缩写,是转/每分钟);
设0≤△T<5℃、5≤△T<10℃、10≤△T<15℃、15≤△T<20℃、20≤△T<27℃、≥27℃,这里取计算出的△T=25℃,根据f=k1*r+k2*△T+b计算出f=68.3333Hz,进而在步骤S2中判断出f大于f4,则先选择Y型绕组方式,并使空调压缩机按照V1为2Hz/s运行至第一停顿平台的频率f1持续第一停顿时间t1(1min可调),在第一停顿时间结束后使空调压缩机按照预设运行速度V为0.5Hz/s运行至绕组分界点频率f4,此时切换第二绕组方式接线,再按照V2为2Hz/s运行到第二停顿平台的频率f2持续第二停顿时间t2(1min可调),在第二停顿时间结束后再按照V3为2Hz/s运行至目标频率f。反之,若计算出的f小于f4,则选择Y型绕组方式并使空调压缩机可以按照0.5Hz/s运行至到目标频率。
本公开实施例提供一种变频空调器的控制装置。
如图3所示,在一些实施例中,所述变频空调器的控制装置包括:
计算模块10,被配置为根据预设温度Ts与室内环境温度Tin计算出目标频率f;
判断模块20,被配置为判断所述目标频率f与空调压缩机的电动机的绕组分界点频率f4的大小;
控制模块30,被配置为根据所述判断模块20判断出所述目标频率f大于等于所述分界点频率f4控制所述空调压缩机选择电动机的第一绕组方式并使空调压缩机运行至一个停顿平台的频率持续预设时间,使空调压缩机运行至绕组分界点频率f4,切换至电动机的第二绕组方式接线,使空调压缩机运行至一个停顿平台的频率持续预设时间,使空调压缩机运行至目标频率f。
在该实施例中,计算模块10通过获得的预设温度Ts和室内环境温度Tin计算出目标频率f,判断模块20根据计算出的目标频率f,判断f与f4的大小关系,控制模块30根据判断模块20的判断结果为f大于等于f4,控制空调压缩机选择电动机的第一绕组方式(Y型绕组方式),并使所述空调压缩机运行至第一个停顿平台的频率持续第一停顿时间,再使所述空调压缩机运行至所述绕组分界点频率f4,此时切换至电动机的第二绕组方式接线(三角型绕组方式),在使所述空调压缩机运行至第二停顿平台的频率停顿第二停顿时间后,使所述空调压缩机运行至所述目标频率f。
如图4所示,在一些实施例中,所述的装置还包括:
频率比对模块40,被配置为比对所述空调压缩机的运行频率与停顿平台的频率,获取比对结果,发送至所述控制模块30;
时间比对模块50,被配置为比对所述空调压缩机的运行时间与预设停顿平台时间进行比对,获取比对结果,发送至所述控制模块30;
所述控制模块30根据所述频率比对模块40的比对结果控制空调压缩机的电动机绕组方式和运行频率,再根据所述时间比对模块50的比对结果持续控制空调压缩机的运行频 率。
在该实施例中,在判断模块20判断f大于等于f4后,通过频率比对模块40对所述空调压缩机的运行频率与停顿平台的频率进行比对和时间比对模块50的比对结果,并将其比对结果发送给控制模块30,控制模块30根据比对结果控制空调压缩机的电动机绕组方式,进而去控制空调压缩机的运行频率运行到目标频率值。
如图4所示,在一些实施例中,所述的装置还包括:
风速比对模块60,被配置为比对所述空调室内机的风挡风速与预设风速,获取比对结果,发送至所述控制模块30;
所述控制模块30根据所述风速比对模块60的比对结果修正所述目标频率f。
在该实施例中,在上述频率比对模块40和时间比对模块50的基础上还可以通过风速比对模块60获取的比对结果发送给控制模块30,控制模块30根据所述风速比对模块60的比对结果修正目标频率,判断模块20根据修正后的目标频率f判断f与f4的大小关系,再发送给控制模块30,控制模块30根据判断结果控制空调压缩机的电动机绕组方式,进而去控制空调压缩机的运行频率运行到目标频率值。
如图5所示,在一些实施例中,所述的装置还包括:
实时检测模块70,被配置为实时检测所述空调压缩机的运行频率、运行时间、风挡风速和室内环境温度,并将检测到的所述室内环境温度发送至所述计算模块10,检测到的所述空调压缩机的运行频率发送至所述频率比对模块40,检测到的所述空调压缩机的运行时间发送至所述时间比对模块50,检测到的所述空调压缩机的风挡风速发送至所述风速比对模块60。
在该实施例中,上述频率比对模块40、时间比对模块50和风速比对模块60可以通过实时检测模块70实时检测所述空调压缩机的运行频率、运行时间、风挡风速获取相应参数,计算模块10也可以通过实时检测模块70实时检测到的室内环境温度获取相应参数。
如图6所示,在一些实施例中,所述计算模块10包括:
温差计算单元101,被配置为计算所述室内环境温度Tin与预设温度Ts的差值△T;和
目标频率计算单元102,被配置为根据所述温差计算单元101的计算结果计算出所述目标频率f。
在该实施例中,当获得室内环境温度Tin与预设温度Ts后还可以通过温差计算单元101计算出二者的差值△T,△T=Tin-Ts,然后,目标频率计算单元102再通过△T,计算出目标频率f,在上述方法的实施例中已说明目标频率f的计算公式,在此就不一一赘述。
本公开实施例提供了一种变频空调器。
在一些实施例中,该变频空调器包括上述任一实施例所述的装置:
在该实施例中,变频空调器包括上述任一实施例所述的装置,因此具有上述装置的全部有益效果,在此就不一一赘述。
本公开实施例提供了一种电子设备,其结构如图7所示,该电子设备包括:
至少一个处理器(processor)200,图7中以一个处理器200为例;和存储器(memory)201,还可以包括通信接口(Communication Interface)202和总线203。其中,处理器200、通信接口202、存储器201可以通过总线203完成相互间的通信。通信接口202可以用于信息传输。处理器200可以调用存储器201中的逻辑指令,以执行上述实施例的控制方法。
此外,上述的存储器201中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器201作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器200通过运行存储在存储器201中的软件程序、指令以及模块,从而执行功能应用以及数据处理,即实现上述方法实施例中的控制方法。
存储器201可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器201可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开实施例的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。当用于本申请中时,虽然术语“第一”、“第二”等可能会在本申请中使用以描述各元件,但这些元件不应受到这些术语的限制。这些术语仅用于将一个元件与另一个元件区别开。比如,在不改变描述的含义的情况下,第一元件可以叫做第二元件,并且同样第,第二元件可以叫做第一元件,只要所有出现的“第一元件”一致重命名并且所有出现的“第二元件”一致重命名即可。第一元件和第二元件都是元件,但可以不是相同的元件。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising) 等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定 的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (10)

  1. 一种变频空调器的控制方法,其特征在于,包括:
    根据预设温度Ts与室内环境温度Tin计算出目标频率f;
    判断目标频率f是否大于绕组分界点频率f4,若f大于等于f4,选择电动机的第一绕组方式并使空调压缩机运行至一个停顿平台的频率持续预设时间,使空调压缩机运行至绕组分界点频率f4,切换至电动机的第二绕组方式接线,使空调压缩机运行至一个停顿平台的频率持续预设时间,使空调压缩机运行至目标频率f。
  2. 根据权利要求1所述的方法,其特征在于,
    根据预设温度Ts与室内环境温度Tin的差值△T计算出目标频率f。
  3. 根据权利要求1所述的方法,其特征在于,还包括:
    若f大于等于f4,选择所述第一绕组方式并使空调压缩机按照第一预设运行速度V1运行至第一停顿平台的频率持续第一停顿时间t1,在第一停顿时间t1结束后使空调压缩机按照预设运行速度V运行至绕组分界点频率f4,切换至所述第二绕组方式接线,使空调压缩机按照第二预设运行速度V2运行到第二停顿平台持续第二停顿时间t2;在第二停顿时间t2结束后再按照第三预设运行速度V3运行至目标频率f,空调压缩机的电动机绕组为阻抗较大的第一绕组和阻抗较小的第二绕组,第一停顿平台的频率为f1,第二停顿平台的频率为f2,f1小于f4,f2大于f4。
  4. 根据权利要求1所述的方法,其特征在于,还包括:
    根据空调室内风机的风挡对目标频率f进行修正,当空调室内风机风挡的风速r≤r1,目标频率负向修正;当r>r2目标频率正向修正,其中r1和r2为预设风速值。
  5. 一种变频空调器的控制装置,其特征在于,包括:
    计算模块,被配置为根据预设温度Ts与室内环境温度Tin计算出目标频率f;
    判断模块,被配置为判断所述目标频率f与空调压缩机的电动机的绕组分界点频率f4的大小;
    控制模块,被配置为根据所述判断模块判断出所述目标频率f大于等于所述分界点频率f4控制所述空调压缩机选择电动机的第一绕组方式并使空调压缩机运行至一个停顿平台的频率持续预设时间,使空调压缩机运行至绕组分界点频率f4,切换至电动机的第二绕组方式接线,使空调压缩机运行至一个停顿平台的频率持续预设时间,使空调压缩机运行至目标频率f。
  6. 根据权利要求5所述的装置,其特征在于,还包括:
    频率比对模块,被配置为比对所述空调压缩机的运行频率与停顿平台的频率,获取比对结果,发送至所述控制模块;
    时间比对模块,被配置为比对所述空调压缩机的运行时间与预设停顿平台时间进行比对,获取比对结果,发送至所述控制模块;
    所述控制模块根据所述频率比对模块的比对结果控制空调压缩机的电动机绕组方式 和运行频率,再根据所述时间比对模块的比对结果持续控制空调压缩机的运行频率。
  7. 根据权利要求6所述的装置,其特征在于,还包括:
    风速比对模块,被配置为比对所述空调室内机的风挡风速与预设风速,获取比对结果,发送至所述控制模块;
    所述控制模块根据所述风速比对模块的比对结果修正所述目标频率f。
  8. 根据权利要求7所述的装置,其特征在于,还包括:
    实时检测模块,被配置为实时检测所述空调压缩机的运行频率、运行时间、风挡风速和室内环境温度,并将检测到的所述室内环境温度发送至所述计算模块,检测到的所述空调压缩机的运行频率发送至所述频率比对模块,检测到的所述空调压缩机的运行时间发送至所述时间比对模块,检测到的所述空调压缩机的风挡风速发送至所述风速比对模块。
  9. 根据权利要求5所述的装置,其特征在于,所述计算模块包括:
    温差计算单元,被配置为计算所述室内环境温度Tin与预设温度Ts的差值△T;和目标频率计算单元,被配置为根据所述温差计算单元的计算结果计算出所述目标频率f。
  10. 一种变频空调器,其特征在于,包括如权利要求5至9任一项所述的装置。
PCT/CN2019/127502 2019-04-26 2019-12-23 变频空调器的控制方法及装置和变频空调器 WO2020215768A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910346239.7A CN111854100A (zh) 2019-04-26 2019-04-26 变频空调器的控制方法及装置和变频空调器
CN201910346239.7 2019-04-26

Publications (1)

Publication Number Publication Date
WO2020215768A1 true WO2020215768A1 (zh) 2020-10-29

Family

ID=72940737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127502 WO2020215768A1 (zh) 2019-04-26 2019-12-23 变频空调器的控制方法及装置和变频空调器

Country Status (2)

Country Link
CN (1) CN111854100A (zh)
WO (1) WO2020215768A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216324A (ja) * 2008-03-11 2009-09-24 Toshiba Carrier Corp 空気調和機
CN101726073A (zh) * 2009-09-30 2010-06-09 广东美的电器股份有限公司 一种变频空调器的控制方法
US20150089972A1 (en) * 2012-04-16 2015-04-02 Mitsubishi Electric Corporation Heat pump device, air conditioner, and freezer
CN105333578A (zh) * 2015-11-26 2016-02-17 江苏新科电器有限公司 一种变频空调的压缩机频率控制方法
CN107860161A (zh) * 2017-09-19 2018-03-30 珠海格力电器股份有限公司 压缩机缸体切换方法、装置、存储介质、压缩机及设备
CN109210708A (zh) * 2018-08-23 2019-01-15 青岛海尔空调器有限总公司 空调器压缩机控制方法、控制装置和空调器
CN109469604A (zh) * 2018-10-08 2019-03-15 珠海格力电器股份有限公司 一种具有多级能效点压缩机的换热设备及其控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5146148A (en) * 1988-11-04 1992-09-08 Europe Patent Ltd. Process and a device for changing the effective speed of a polyphase asynchronous motor and a suitable motor system for the application of the process
JP2003240363A (ja) * 2002-02-20 2003-08-27 Fujitsu General Ltd 多室形空気調和機の制御方法
CN102705212A (zh) * 2012-06-07 2012-10-03 青岛海尔空调电子有限公司 变频压缩机的启动方法
CN103486785B (zh) * 2013-09-18 2016-05-04 Tcl空调器(中山)有限公司 变频空调压缩机的回油控制方法及其装置
CN104314796A (zh) * 2014-10-21 2015-01-28 芜湖美智空调设备有限公司 压缩机频率的控制方法、压缩机频率的控制装置和空调器
CN111033143B (zh) * 2017-08-17 2021-06-11 三菱电机株式会社 空调机
CN107576016B (zh) * 2017-09-22 2020-04-24 青岛海尔空调器有限总公司 空调的控制方法及系统
CN109114729B (zh) * 2018-07-26 2021-04-20 青岛海尔空调器有限总公司 一种空调器控制方法和空调器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216324A (ja) * 2008-03-11 2009-09-24 Toshiba Carrier Corp 空気調和機
CN101726073A (zh) * 2009-09-30 2010-06-09 广东美的电器股份有限公司 一种变频空调器的控制方法
US20150089972A1 (en) * 2012-04-16 2015-04-02 Mitsubishi Electric Corporation Heat pump device, air conditioner, and freezer
CN105333578A (zh) * 2015-11-26 2016-02-17 江苏新科电器有限公司 一种变频空调的压缩机频率控制方法
CN107860161A (zh) * 2017-09-19 2018-03-30 珠海格力电器股份有限公司 压缩机缸体切换方法、装置、存储介质、压缩机及设备
CN109210708A (zh) * 2018-08-23 2019-01-15 青岛海尔空调器有限总公司 空调器压缩机控制方法、控制装置和空调器
CN109469604A (zh) * 2018-10-08 2019-03-15 珠海格力电器股份有限公司 一种具有多级能效点压缩机的换热设备及其控制方法

Also Published As

Publication number Publication date
CN111854100A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
CN111854086A (zh) 变频空调器的控制方法及装置和变频空调器
WO2020215768A1 (zh) 变频空调器的控制方法及装置和变频空调器
WO2020215834A1 (zh) 变频空调器的控制方法及装置和变频空调器
CN111854088B (zh) 变频空调器的控制方法及装置和变频空调器
WO2020215771A1 (zh) 变频空调器的控制方法、控制装置和变频空调器
CN111854092B (zh) 变频空调器的控制方法及装置和变频空调器
CN111854091B (zh) 变频空调器的控制方法及装置和变频空调器
WO2020215766A1 (zh) 变频空调器的控制方法、控制装置和变频空调器
CN111854103B (zh) 变频空调器的控制方法及装置和变频空调器
WO2020215767A1 (zh) 变频空调器的控制方法、控制装置和变频空调器
CN111854093B (zh) 变频空调器的控制方法及装置和变频空调器
CN111854083B (zh) 变频空调器的控制方法及装置和变频空调器
CN111854080B (zh) 变频空调器的控制方法及装置和变频空调器
CN111854101B (zh) 变频空调器的控制方法及装置和变频空调器
CN111854090B (zh) 变频空调器的控制方法及装置和变频空调器
CN111854081B (zh) 变频空调器的控制方法、控制装置和变频空调器
CN111854094B (zh) 变频空调器的控制方法及装置和变频空调器
CN111854104B (zh) 变频空调器的控制方法及装置和变频空调器
CN111854105B (zh) 变频空调器的控制方法及装置和变频空调器
CN111854106B (zh) 变频空调器的控制方法及装置和变频空调器
CN111854077B (zh) 变频空调器的控制方法、控制装置和变频空调器
CN111854102B (zh) 变频空调器的控制方法及装置和变频空调器
CN111854082B (zh) 变频空调器的控制方法、控制装置和变频空调器
CN111854097B (zh) 变频空调器的控制方法、控制装置和变频空调器
CN111854089B (zh) 变频空调器的控制方法、控制装置和变频空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926230

Country of ref document: EP

Kind code of ref document: A1