WO2020215763A1 - 一种高压直流输电dcs控制方法 - Google Patents

一种高压直流输电dcs控制方法 Download PDF

Info

Publication number
WO2020215763A1
WO2020215763A1 PCT/CN2019/127030 CN2019127030W WO2020215763A1 WO 2020215763 A1 WO2020215763 A1 WO 2020215763A1 CN 2019127030 W CN2019127030 W CN 2019127030W WO 2020215763 A1 WO2020215763 A1 WO 2020215763A1
Authority
WO
WIPO (PCT)
Prior art keywords
protection
control unit
direct current
voltage direct
current transmission
Prior art date
Application number
PCT/CN2019/127030
Other languages
English (en)
French (fr)
Inventor
吴健超
张彬
何卓亮
雷勇毅
何政平
宁兆活
Original Assignee
广州高澜节能技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州高澜节能技术股份有限公司 filed Critical 广州高澜节能技术股份有限公司
Publication of WO2020215763A1 publication Critical patent/WO2020215763A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20945Thermal management, e.g. inverter temperature control

Definitions

  • the invention relates to the technical field of high-voltage direct current transmission valve cooling equipment, and in particular to a high-voltage direct current transmission DCS control method.
  • the water cooling system is a kind of heat dissipation system, through the circulation of water, the heat is taken away to achieve the purpose of heat dissipation. Its heat dissipation effect is much higher than that of the air cooling system and it is more widely used. But its reliability is relatively poor, so more complete control equipment is needed to control and improve reliability.
  • the traditional water-cooling system control equipment has the following disadvantages: (1) The control unit and protection unit of the equipment are grouped together and summarized into the control system. The control and protection interact with each other and work in coordination, but it is not conducive for the equipment to distinguish between control and protection. It is not conducive to improving the safety and reliability of the equipment. (2) Although the protection signal adopts double or triple sampling values, the results are simply processed by the unified control system, following the master-slave switching of the control system. When the system is abnormal, all protections will have problems at the same time, which is not conducive to improvement. Protect the security of the unit. Therefore, it is necessary to develop a new high-voltage direct current transmission system to adapt to the optimized cold design of the high-voltage direct current transmission valve and improve the requirements of safety and reliability.
  • the technical problem solved by the present invention is to provide a DCS control method and system for high voltage direct current transmission.
  • the described DCS control method and system for high-voltage direct current transmission is used for the control and protection of the closed pure water cooling system of the high-voltage direct current transmission converter valve, which provides reliable guarantee for the safe operation of the converter valve, and has high practicality. value.
  • Three sets of independent protection units obtain equipment working data and transmit the working data to the redundant main control unit;
  • the main control unit obtains the working data, makes a logical judgment of the "three out of two" protection exit, and issues control instructions;
  • the redundant control unit executes the received instructions.
  • the redundant control unit includes two sets of control units for sampling digital input signals and executing output instructions of the main control unit.
  • the redundant main control unit includes two sets of main control units.
  • the main control unit and the control unit are separately connected through a communication bus. Two sets of control units can be controlled.
  • the one-master one-slave control is specifically: the master control unit performs operations on the device, the standby control unit is in a standby operation state, and at the same time receives synchronization data from the master control, when the master controller fails, seamless synchronization Switch to the backup controller. It can be switched manually under normal conditions, which is fully in line with the design concept of "main/standby switching".
  • the said receiving synchronization data is through the optical fiber real-time synchronization structure included in the control unit, and the data is quickly synchronized in each operation cycle.
  • the system operates normally, and if one of them is not available, the protection system switches to a "two out of one" export logic judgment.
  • the protection unit is used for detection and protection calculation of inlet valve temperature, flow pressure, expansion tank liquid level, electrical conductivity, etc.
  • the protection unit outputs the protection calculation result to the main controller, and then the main controller makes a logical judgment of the "three out of two" protection export based on the three sets of protection unit calculation outputs to achieve triple design and "three out of two” output.
  • the protection system will switch to a "two out of one" logical exit.
  • the communication between the valve cooling system and the DC control and protection system uses bus communication and optical modulation signal communication. For measurement signals, alarms and status signals with a large amount of information, bus communication is used, and for more important signals, optical modulation signals are used to upload .
  • the protection unit further includes: receiving instrument measurement signals, and important signals independently output hard contacts according to protection requirements, and disconnecting the communication network does not affect the normal operation of the system.
  • the protection unit, the control unit, and the main control unit are physically completely independent, that is, independent location arrangement, independent power supply, independent measurement loop, and independent operation.
  • This low-coupling logical relationship makes the protection unit and the control unit and the three sets of protection units have no dependency relationship, and can complete all their respective tasks completely independently, with higher reliability, and fully in line with the design of "control and protection separation" idea.
  • System-level protection problems only occur when multiple systems are in a fault state at the same time. Usually any one or more protection systems fail, that is, as long as one or more systems are operating normally, no system-level protection problems will occur. Failure to stop, significantly improve reliability.
  • the power supply adopts a redundant configuration, specifically, power is supplied when the two power supply devices work normally, and the average load of each power supply is only within half. If one power supply fails, the other power supply is working at full load.
  • the power supply adopts a redundant device, which prolongs the service life of the power supply.
  • the present invention has the following beneficial effects: the high-voltage direct current transmission valve cold DCS system provided by the present invention solves the problems of operation and safety in the control and protection room, and effectively improves the safety factor of the equipment;
  • the HVDC valve cold DCS system provided by the present invention solves the serious impact of failure between the control part and the protection part, and works independently of each other.
  • the protection system can independently play a protective role, and each independent protection system It is also independent work, in line with the concept of separation of control and protection.
  • the high-voltage direct current transmission valve cold DCS system provided by the present invention separates the control system, separates the requirements of the protection part, reduces the use requirements of the control system, directly reduces the cost of the control system, and has high economic value .
  • Reliability The present invention reduces the risk of improper operation of the equipment due to mutual influence through the configuration of separate and independent operation of the control system and the protection system, and improves the reliability of the water cooling system.
  • Safety The control system is divided into a redundant dual design, and the protection system adopts three independent sets of devices, distributed in different places, using different safety switches for isolation, which improves the safety of the equipment. Three sets of valve cooling system design are completed independently.
  • Figure 1 is a schematic flow chart of a DCS control method for high-voltage direct current transmission according to the present invention
  • Figure 2 is a schematic diagram of "three out of two" and “two out of one" of the protection system in the DCS control method for high-voltage direct current transmission according to the present invention.
  • the present invention is a high-voltage direct current transmission DCS control method, and the method is specifically:
  • Three sets of independent protection units obtain equipment working data and transmit the working data to the redundant main control unit;
  • the main control unit obtains the working data, makes a logical judgment of the "three out of two" protection exit, and issues a control instruction;
  • the redundant control unit executes the received instruction.
  • Step S1 Three sets of independent protection units obtain equipment working data, and transmit the working data to the redundant main control unit;
  • Step S2 The main control unit obtains the working data, makes a logical judgment of the "three out of two" protection exit, and issues a control instruction;
  • Step S3 The redundant control unit executes the received instruction.
  • the protection unit is used for the detection and protection calculation of inlet valve temperature, flow pressure, expansion tank liquid level, conductivity, etc.
  • the protection unit outputs the protection calculation result to the main controller, and then the main controller makes a logical judgment of the "three out of two" protection export based on the three sets of protection unit calculation outputs to achieve triple design and "three out of two” output.
  • the protection system will switch to a "two out of one" logical exit.
  • the communication between the valve cooling system and the DC control and protection system uses bus communication and optical modulation signal communication. For measurement signals, alarms and status signals with a large amount of information, bus communication is used, and for more important signals, optical modulation signals are used to upload .
  • the protection unit also includes: receiving instrument measurement signals, and important signals independently output hard contacts according to protection requirements, and disconnecting the communication network does not affect the normal operation of the system.
  • the protection unit, the control unit, and the main control unit are physically completely independent, that is, independent location arrangement, independent power supply, independent measurement loop, and independent operation.
  • This low-coupling logical relationship makes the protection unit and the control unit and the three sets of protection units have no dependency relationship, and can complete all their respective tasks completely independently, with higher reliability, and fully in line with the design of "control and protection separation" idea.
  • System-level protection problems only occur when multiple systems are in a fault state at the same time. Usually any one or more protection systems fail, that is, as long as one or more systems are running normally, no system-level protection problems will occur. Failure to stop, significantly improve reliability.
  • the power supply adopts a redundant configuration, which is specifically to supply power when two power supply devices are working normally.
  • the average load of each power supply is only within half. If one power supply fails, the other power supply is working at full load.
  • the power supply adopts a redundant device, which prolongs the service life of the power supply.
  • the DCS control system is mainly divided into a redundant control system and a triple protection system.
  • the protection systems are respectively the protection VPRA, the protection VPRB, and the protection VPRC redundant configurations.
  • the protection I/O is three sets.
  • the main control system is divided into VCPA and VCPB redundant configurations, and its control I/O is also divided into two sets of A and B, and the signal acquisition and control also enter the redundant control I/O respectively.
  • VCPA and VCPB use optical fiber communication to synchronize data in operation.
  • VCPB will receive operating data immediately under the optical fiber synchronization data, and at the same time, take over the control system without disturbing the control I/O part.
  • the control I/OA When the control system is switched from VCPA to VCPB, the control I/OA is also switched to the I/OB module, the original I/OA module is turned into a standby state, but it can also accept the module redundancy control command of the VCPB system, and control The I/OA module follows the output of the main operating system VCPB to improve the control reliability of the equipment.
  • the operation station A and operation station B are also switched to the main controller.
  • the operation station adopts the principle of dualization. The design and working conditions are as follows:
  • All sensors participating in protection are configured according to triple configuration; sensors only participating in control are configured according to dual configuration; the same set of control and protection can be reused, and sensors cannot be mixed in the same set of control and protection.
  • the control host is configured as a dual and independent configuration: the connection mode of the protection host and the I/O unit is a one-to-one connection according to a set, that is, VCPA and IOA are connected, VCPB and IOB are connected, VCPC and IOC are connected.
  • the same control and protection host can share a set of I/O units. The signal to the control and protection should be taken and sent directly, and no transfer is allowed.
  • Starting valve cold control host switching conditions should at least include: (a) abnormal start of control system self-check, (b) abnormal start of measured value, (c) start of protection alarm segment.
  • each manufacturer should develop a complete protection alarm segment based on its own characteristics to achieve control system switching.
  • the three protection hosts are independent of each other, and the three out of two functions are implemented in the control system.
  • the three-out-two logic of the protection function shall be adopted, and the three-out-two logic of the device shall not be adopted.
  • DC control and valve cooling control are independent subsystems.
  • the duty system is determined according to the self-checking situation. The main and standby switching of each subsystem does not affect each other.
  • the valve cooling control system in the on-duty state receives the valve cooling protection signal, and after judging from three out of two, it will directly export to the DC control system without switching the system.
  • the protection system is represented by A, B, C, and the system is represented by a, b, and c.
  • the output of the AND gate in the first row is Aa, Bb, Cc, and the AND gate output in the second row. It is AaBb, AaCc, Bb.
  • the second behavior of the two-out-of-one method (Aa, Bb, Cc), Said Indicates that the output has nothing to do with the protection system, when (Aa, Bb, Cc) and When the AND gate is output, it means that when a set of protection system is unavailable, the output mode is one out of two.
  • valve cooling control to DC control protection optical fiber digital method is adopted to realize cross interconnection communication, that is, valve cooling protection passes through the exit of the channel.
  • Each group of communication is configured with one optical fiber in each direction.
  • the protocol adopts IEC60044-8. Communication abnormalities are added.
  • Monitoring signal (COM_IND) DC control to valve cold signals include: PCP_ACTIVE, SWITCH_PUMP, DEBLOCK, COM_IND; valve cold to DC control signals include: TRIP, RUN_BACK, VCCP_OK, RFO, REDUNDANT, VCCP_ACTIVE, COM_IND.
  • Analog signals include: valve hall temperature, outdoor temperature, inlet valve temperature, and outlet valve temperature.
  • the valve cooling system should be equipped with customizable built-in wave recording or digital interface (IEC60044-8) that provides wave recording data.
  • the control host should have at least three states (ACTIVE, STANDBY, OFF/TEST), and the protection host should have at least two states (ACTIVE, OFF/TEST)
  • the backup system with a trip signal is not allowed to switch to the main system.
  • the trip signal of the backup system must not be exported.
  • Two control systems and three protection systems have a total of 10 DC power supplies.
  • Two sets of valve cooling control hosts should be screened independently, three sets of valve cooling protection hosts should be screened independently, and the same set of control and protection hosts can be screened together.
  • Each screen provides dual power supply, and each chassis or module is powered by dual power supplies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Safety Devices In Control Systems (AREA)

Abstract

本发明涉及高压直流输电阀冷设备技术领域,一种高压直流输电DCS控制方法包括:三套独立的保护单元获取设备工作数据,并将工作数据传输至冗余主控单元;主控单元获取工作数据进行"三取二"保护出口逻辑判断,并发出控制指令;冗余控制单元执行接收到的指令。本发明用于高压直流输电换流阀密闭式纯水冷系统的控制及保护,为换流阀的安全运行提供可靠的保证。

Description

一种高压直流输电DCS控制方法 技术领域
本发明涉及高压直流输电阀冷设备技术领域,具体涉及一种高压直流输电DCS控制方法。
背景技术
水冷系统是一种散热系统,通过水的循环流动,带走热量达到散热的目的,其散热效果比风冷系统高出很多,应用更为广泛。但其可靠性比较差,所以需要更为完善的控制设备进行控制提高可靠性。
传统的水冷系统控制设备具有以下缺点:(1)设备的控制单元和保护单元集中在一起归纳为控制系统,控制与保护间互相影响,协调工作,但不利于设备区分控制和保护的不同情况,不利于提高设备的安全可靠性能。(2)保护信号虽然采用二重或三重等采样取值,但结果都是由统一的控制系统简单处理,跟随控制系统主从切换,系统出现异常时,所有保护都同时出问题,不利于提高保护单元的安全性。因此,有必要开发一种新的高压直流输电系统,来适应高压直流输电阀冷优化设计,提高安全可靠的要求。
发明内容
本发明解决的技术问题是,提供了一种高压直流输电DCS控制方法及系统。所述的一种高压直流输电DCS控制方法及系统,用于高压直流输电换流阀密闭式纯水冷却系统的控制及保护,为换流阀的安全运行提供可靠的保证,具有较高的实用价值。
为了解决上述技术问题,本发明提供的技术方案为:
三套独立的保护单元获取设备工作数据,并将工作数据传输至冗余主控单元;
主控单元获取工作数据进行“三取二”保护出口逻辑判断,并发出控制指令;
冗余控制单元执行接收到的指令。
优选地,所述的冗余控制单元包含两套控制单元,用于采样开关量输入信号和执行主控单元输出指令。
优选地,所述的冗余主控单元包含两套主控单元,两套控制单元一主一从同时运算工作,主控单元与控制单元通过通讯总线实现分别连接,任一套主控单元均可对两套控制单元进行控制。
优选地,所述的一主一从控制具体为:主用控制单元对设备执行操作,备用控制单元处于待机运行状态,同时接收主用控制的同步数据,当主用控制器故障时,无缝同步切换至备用控制器。正常时可以手动切换,完全切合“主备切换”的设计理念。
优选地,所述的接收同步数据是通过控制单元包含的光纤实时同步结构,数据在每个运算周期快速同步。
优选地,所述的三套独立保护单元,若存在一套以上保护器正常工作状态,系统正常运行,若其中一套不可用时,保护系统转为“二取一”出口逻辑判断。
优选地,所述的保护单元用于进阀温度、流量压力、膨胀罐液位、电导率等检测和保护运算。保护单元把保护计算结果输出到主控制器,再由主控制器根据三套保护单元计算输出进行“三取二”保护出口逻 辑判断,实现三重化设计和“三取二”输出,当其中一套保护不可用时,保护系统转为“二取一”逻辑出口。阀冷系统与直流控制保护系统之间的通讯采用总线通讯和光调制信号通讯,对于信息量较大的测量信号、报警和状态信号采用总线通讯方式,对于重要程度较高的信号采用光调制信号上传。
优选地,所述的保护单元还包括:接收仪表测量信号,重要信号根据保护要求独立输出硬接点,断开通讯网络不影响系统的正常运行。
优选地,所述的保护单元与控制单元、主控单元之间物理上完全独立,即即位置布置独立、电源独立、测量回路独立、运算独立。这种低耦合的逻辑关系使得保护单元与控制单元之间、三套保护单元之间不存在依存关系,可以完全独立完成各自的全部工作,可靠性更高,完全切合“控保分离”的设计理念。只有当多套系统都同时处于故障状态时,才会出现系统级的保护问题,平时任意一套或多套保护系统故障,即只要存在一套或以上的系统正常运行,都不会产生系统级的故障停机,显著提升可靠性。
优选地,所述的电源采用冗余配置,具体为两个电源设备正常工作时供电,平均每路电源负载仅在一半以内,若一个电源出现故障时,另一个电源处于满负荷工作。所述的电源采用冗余装置,延长了电源的使用寿命。
与现有技术相比,本发明具有的有益效果为:本发明提供的高压直流输电阀冷DCS系统,很好的解决了控制和保护间的运行和安全问题,有效提升了设备的安全系数;本发明提供的高压直流输电阀冷 DCS系统,解决了控制部分和保护部分间出现故障的严重影响,相互间独立工作,控制系统故障时,保护系统能独立起保护作用,且各个独立保护系统间也同样是独立工作,符合控、保分离的理念。经济性:本发明提供的高压直流输电阀冷DCS系统,独立出控制系统,分离了保护部分的要求,降低了对控制系统的使用要求,直接降低了控制系统的成本,有较高的经济价值。可靠性:本发明通过把控制系统和保护系统分开、独立运行的配置,减少互相间的影响对设备运行的不当风险,提高了水冷系统的可靠性。安全性:控制系统分为冗余的双重设计,保护系统采用独立的三套装置,分布在不同的地方,使用不同的安全开关隔离,提高了设备的安全性。阀冷系统设计三套独立完成。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明所述的一种高压直流输电DCS控制方法的流程示意图;
图2是本发明所述的高压直流输电DCS控制方法中保护系统的“三取二”与“二取一”原理图。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本流程图,因此其仅显示与本发明有关的流程。
实施例1
如图1所示,本发明是一种高压直流输电DCS控制方法,所述的方法具体为:
S1.三套独立的保护单元获取设备工作数据,并将工作数据传输至冗余主控单元;
S2.主控单元获取工作数据进行“三取二”保护出口逻辑判断,并发出控制指令;
S3.冗余控制单元执行接收到的指令。
步骤S1:三套独立的保护单元获取设备工作数据,并将工作数据传输至冗余主控单元;
步骤S2:主控单元获取工作数据进行“三取二”保护出口逻辑判断,并发出控制指令;
步骤S3:冗余控制单元执行接收到的指令。
所述的三套独立保护单元,若存在一套以上保护器正常工作状态,系统正常运行,若其中一套不可用时,保护系统转为“二取一”出口逻辑判断。
所述的保护单元用于进阀温度、流量压力、膨胀罐液位、电导率等检测和保护运算。保护单元把保护计算结果输出到主控制器,再由主控制器根据三套保护单元计算输出进行“三取二”保护出口逻辑判断,实现三重化设计和“三取二”输出,当其中一套保护不可用时,保护系统转为“二取一”逻辑出口。阀冷系统与直流控制保护系统之间的通讯采用总线通讯和光调制信号通讯,对于信息量较大的测量信号、报警和状态信号采用总线通讯方式,对于重要程度较高的信号采 用光调制信号上传。
所述的保护单元还包括:接收仪表测量信号,重要信号根据保护要求独立输出硬接点,断开通讯网络不影响系统的正常运行。
所述的保护单元与控制单元、主控单元之间物理上完全独立,即即位置布置独立、电源独立、测量回路独立、运算独立。这种低耦合的逻辑关系使得保护单元与控制单元之间、三套保护单元之间不存在依存关系,可以完全独立完成各自的全部工作,可靠性更高,完全切合“控保分离”的设计理念。只有当多套系统都同时处于故障状态时,才会出现系统级的保护问题,平时任意一套或多套保护系统故障,即只要存在一套或以上的系统正常运行都不会产生系统级的故障停机,显著提升可靠性。
所述的电源采用冗余配置,具体为两个电源设备正常工作时供电,平均每路电源负载仅在一半以内,若一个电源出现故障时,另一个电源处于满负荷工作。所述的电源采用冗余装置,延长了电源的使用寿命。
实施例2
DCS控制系统主要分为冗余的控制系统和三重化的保护系统,保护系统分别为保护VPRA、保护VPRB、保护VPRC冗余配置,其保护I/O分别为三套。主控系统分为VCPA和VCPB冗余配置,并且其控制I/O同样分为A,B两套,信号采集和控制也是分别进入冗余控制I/O。
VCPA和VCPB间采用光纤通讯同步运行中的数据,当主用 VCPA系统故障时,VCPB在光纤同步数据下,即时接收运行数据,同时接管控制系统,对控制I/O部分不产生扰动。
所述控制系统由VCPA切换至VCPB时,控制I/OA也切换为I/OB的模块上,原来的I/OA模块转为备用状态,但同样能接受VCPB系统的模块冗余控制指令,控制I/OA的模块跟随主用运行系统VCPB的输出,提高设备的控制可靠性。
所述控制系统主备运行时,操作站A和操作站B同样切换到主用的控制器上,操作站采用双重化的原则,设计及工作情况要求如下:
所有参与保护的传感器按三重化配置;只参与控制的传感器按双重化配置;同一套控制和保护可以复用,不是同一套控制和保护间不能混用传感器。
控制主机按双重化独立配置:保护主机与I/O单元连接方式为按套一对一连接,即VCPA与IOA连接,VCPB与IOB连接,VCPC与IOC连接。同一套控制和保护主机可以共用一套I/O单元。到控制和保护的信号应直采直送,不允许转送。
启动阀冷控制主机切换条件应至少包括:(a)控制系统自检异常启动、(b)测量值异常启动、(c)保护报警段启动。
为避免控制系统无法检测的测量异常造成不可接受的控制结果,各厂家应结合自身特点制定完备的保护报警段实现控制系统切换。
实施例3
三套保护主机相互独立,三取二功能在控制系统中实现。应采用保护功能的三取二逻辑,不得采用装置三取二逻辑。直流控保和阀冷 控制作为相互独立的子系统,根据自检情况决定值班系统,各子系统主备切换相互不影响。处于值班状态的阀冷控制系统接收到阀冷保护信号,经三取二判断后,不切换系统直接出口送至直流控制系统。
如图3所示,保护系统用A、B、C表示,系统用a、b、c表示,三取二方式第一行与门的输出为Aa、Bb、Cc,第二行的与门输出为AaBb、AaCc、Bb。二取一方式第二行为(Aa,Bb,Cc)、
Figure PCTCN2019127030-appb-000001
所述的
Figure PCTCN2019127030-appb-000002
表示输出与保护系统无关,当(Aa,Bb,Cc)与
Figure PCTCN2019127030-appb-000003
与门输出时,表示一套保护系统不可用时,进行二取一的输出方式。
实施例4
阀冷控制至直流控保之间采用光纤数字方式实现交叉互联通信即阀冷保护通过该通道出口,每一组通信按双方向各一根光纤配置,协议采用IEC60044-8,通信中增加通讯异常监视信号(COM_IND)。直流控保至阀冷信号包括:PCP_ACTIVE、SWITCH_PUMP、DEBLOCK、COM_IND;阀冷至直流控保信号包括:TRIP、RUN_BACK、VCCP_OK、RFO、REDUNDANT、VCCP_ACTIVE、COM_IND。模拟量信号包括:阀厅温度、室外温度、进阀温度、出阀温度。
阀冷系统应配置可自定义的内置录波或提供录波数据的数字接口(IEC60044-8)。
控制主机至少应具备三种状态(ACTIVE、STANDBY、OFF/TEST),保护主机至少应具备两种状态(ACTIVE、OFF/TEST)
存在跳闸信号的备用系统不允许切换为主系统。备用系统的跳闸 信号不得出口。
实施例5
2个控制系统和三个保护系统合计有10路直流电源供应。两套阀冷控制主机应独立组屏,三套阀冷保护主机应独立组屏,同一套控制和保护主机可以共同组屏。每面屏提供双电源供电,每个机箱或模块由双电源供电。
上列详细说明是针对本发明可行实施例的具体说明,以上实施例并非用以限制本发明的专利范围,凡未脱离本发明所为的等效实施或变更,均应包含于本案的专利范围中。

Claims (10)

  1. 一种高压直流输电DCS控制方法,其特征在于,包括:
    三套独立的保护单元获取设备工作数据,并将工作数据传输至冗余主控单元;
    主控单元获取工作数据进行“三取二”保护出口逻辑判断,并发出控制指令;
    冗余控制单元执行接收到的指令。
  2. 根据权利要求1所述的一种高压直流输电DCS控制方法,其特征在于,所述的冗余控制单元包含两套控制单元,用于采样开关量输入信号和执行主控单元输出指令。
  3. 根据权利要求1所述的一种高压直流输电DCS控制方法,其特征在于,所述的冗余主控单元包含两套主控单元,两套控制单元一主一从同时运算工作,主控单元与控制单元通过通讯总线实现分别连接,任一套主控单元均可对两套控制单元进行控制。
  4. 根据权利要求3所述的一种高压直流输电DCS控制方法,其特征在于,所述的一主一从控制具体为:主用控制单元对设备执行操作,备用控制单元处于待机运行状态,同时接收主用控制的同步数据,当主用控制器故障时,无缝同步切换至备用控制器。
  5. 根据权利要求4所述的一种高压直流输电DCS控制方法,其特征在于,所述的接收同步数据是通过控制单元包含的光纤实时同步结构,数据在每个运算周期快速同步。
  6. 根据权利要求1所述的一种高压直流输电DCS控制方法,其特征在于,所述的三套独立保护单元,若存在一套以上保护器正常工 作状态,系统正常运行,若其中一套不可用时,保护系统转为“二取一”出口逻辑判断,。
  7. 根据权利要求6所述的一种高压直流输电DCS控制方法,其特征在于,所述的保护单元用于进阀温度、流量压力、膨胀罐液位、电导率等检测和保护运算。
  8. 根据权利要求7所述的一种高压直流输电DCS控制方法,其特征在于,所述的保护单元还包括:接收仪表测量信号,信号并以硬接点的形式输出。
  9. 根据权利要求8所述的一种高压直流输电DCS控制方法,其特征在于,所述的保护单元与控制单元、主控单元之间物理上完全独立,即位置布置独立、电源独立、测量回路独立、运算独立。
  10. 根据权利要求9所述的一种高压直流输电DCS控制方法,其特征在于,所述的电源采用冗余配置,具体为两个电源设备正常工作时供电,平均每路电源负载仅在一半以内,若一个电源出现故障时,另一个电源处于满负荷工作。
PCT/CN2019/127030 2019-04-22 2019-12-20 一种高压直流输电dcs控制方法 WO2020215763A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910323874.3A CN110278685A (zh) 2019-04-22 2019-04-22 一种高压直流输电dcs控制方法
CN201910323874.3 2019-04-22

Publications (1)

Publication Number Publication Date
WO2020215763A1 true WO2020215763A1 (zh) 2020-10-29

Family

ID=67959529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127030 WO2020215763A1 (zh) 2019-04-22 2019-12-20 一种高压直流输电dcs控制方法

Country Status (2)

Country Link
CN (1) CN110278685A (zh)
WO (1) WO2020215763A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110278685A (zh) * 2019-04-22 2019-09-24 广州高澜节能技术股份有限公司 一种高压直流输电dcs控制方法
CN112816805A (zh) * 2019-11-15 2021-05-18 许继集团有限公司 一种柔性直流换流阀控制系统及过流检测方法、系统
CN111431147B (zh) * 2020-04-15 2022-05-17 中国南方电网有限责任公司超高压输电公司广州局 柔性直流换流阀阀控系统保护装置故障切换系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104852372A (zh) * 2015-05-22 2015-08-19 中国南方电网有限责任公司 一种柔性直流输电系统的冗余控制方法
CN105529822A (zh) * 2014-09-28 2016-04-27 国家电网公司 一种冗余的控制保护系统
CN206211516U (zh) * 2016-12-02 2017-05-31 福建省电力勘测设计院 基于三取二冗余跳闸逻辑的大容量柔性直流换流站保护系统
CN107666139A (zh) * 2016-07-28 2018-02-06 全球能源互联网研究院 一种用于柔性直流输电系统的控制保护系统
CN107919652A (zh) * 2017-12-12 2018-04-17 荣信汇科电气技术有限责任公司 一种柔性直流系统换流阀的三取二保护拓扑结构及方法
CN110278685A (zh) * 2019-04-22 2019-09-24 广州高澜节能技术股份有限公司 一种高压直流输电dcs控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101634866B (zh) * 2009-02-10 2012-02-22 广州高澜节能技术股份有限公司 一种高压直流输电换流阀纯水冷却装置控制系统
CN201536278U (zh) * 2009-12-02 2010-07-28 南京南瑞继保电气有限公司 一种三取二逻辑装置
CN101719661A (zh) * 2009-12-04 2010-06-02 南京南瑞继保电气有限公司 高压直流输电控制保护系统定值校验方法
CN102497002B (zh) * 2011-11-23 2014-04-23 广东省电力设计研究院 一种直流输电工程完全双重化保护冗余系统
CN103760882A (zh) * 2013-11-06 2014-04-30 中国南方电网有限责任公司超高压输电公司检修试验中心 直流阀冷完备冗余试验装置控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105529822A (zh) * 2014-09-28 2016-04-27 国家电网公司 一种冗余的控制保护系统
CN104852372A (zh) * 2015-05-22 2015-08-19 中国南方电网有限责任公司 一种柔性直流输电系统的冗余控制方法
CN107666139A (zh) * 2016-07-28 2018-02-06 全球能源互联网研究院 一种用于柔性直流输电系统的控制保护系统
CN206211516U (zh) * 2016-12-02 2017-05-31 福建省电力勘测设计院 基于三取二冗余跳闸逻辑的大容量柔性直流换流站保护系统
CN107919652A (zh) * 2017-12-12 2018-04-17 荣信汇科电气技术有限责任公司 一种柔性直流系统换流阀的三取二保护拓扑结构及方法
CN110278685A (zh) * 2019-04-22 2019-09-24 广州高澜节能技术股份有限公司 一种高压直流输电dcs控制方法

Also Published As

Publication number Publication date
CN110278685A (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
WO2020215763A1 (zh) 一种高压直流输电dcs控制方法
US11095132B2 (en) Battery management system
EP2759039B1 (en) Control and protection for parallel uninterruptible power supplies
US8772964B2 (en) Parallel control and protection for UPS
US9093860B2 (en) Fault detection for parallel inverters system
CN105305801B (zh) 一种模块式冷冗余航空电力转换器拓扑结构
CN106476626A (zh) 地铁车辆辅助供电扩展系统
WO2020088030A1 (zh) 一种直流输电系统及其后备无功控制装置
CN115764789A (zh) 一种保护配电装置双余度控制系统
CN207968057U (zh) 一种主变压器冷却器供电装置
CN108037716B (zh) 智能一次设备ied装置的冗余设计方法
CN106300428A (zh) 一种光伏系统及其控制方法
CN106849352A (zh) 包含光调制通讯模块的换流阀控制保护系统
CN110601168A (zh) 一种大功率高可靠高压直流供电系统
CN206293967U (zh) 一种两段直流电源母线互为热备份的系统架构
CN104917288A (zh) 一种实验室不间断供电系统
CN201535871U (zh) 基于双核cpu和双板热备的智能合并单元
TWI460965B (zh) 隔離式備援電力控制系統
CN205004828U (zh) 一种基于光伏储能自动切换的变电站监控系统
CN104092282B (zh) 一种直流输电换流阀水冷控制系统及交流双电源切换装置
CN220964331U (zh) 新型数据中心高压直流供配电系统
JP6229971B2 (ja) 電源供給装置
CN221807495U (zh) 一种应用于数据中心的冷量分配单元控制架构
KR20100005197U (ko) H-브릿지 멀티레벨 인버터의 이중화 제어장치
CN107919725A (zh) 一种采用交错控制构型的航空电源控制盒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925937

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.03.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19925937

Country of ref document: EP

Kind code of ref document: A1