WO2020088030A1 - 一种直流输电系统及其后备无功控制装置 - Google Patents

一种直流输电系统及其后备无功控制装置 Download PDF

Info

Publication number
WO2020088030A1
WO2020088030A1 PCT/CN2019/100352 CN2019100352W WO2020088030A1 WO 2020088030 A1 WO2020088030 A1 WO 2020088030A1 CN 2019100352 W CN2019100352 W CN 2019100352W WO 2020088030 A1 WO2020088030 A1 WO 2020088030A1
Authority
WO
WIPO (PCT)
Prior art keywords
control unit
reactive power
filter
power control
transmission system
Prior art date
Application number
PCT/CN2019/100352
Other languages
English (en)
French (fr)
Inventor
艾红杰
严兵
王亚涛
熊飞
周仁伟
张群
芦明明
吴金波
王祺元
杨成飞
赵倩
王柏恒
Original Assignee
许继集团有限公司
许继电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 许继集团有限公司, 许继电气股份有限公司 filed Critical 许继集团有限公司
Publication of WO2020088030A1 publication Critical patent/WO2020088030A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the invention belongs to the technical field of reactive power compensation control of a DC transmission system, and particularly relates to a DC transmission system and a backup reactive power control device thereof.
  • the first is the independent configuration of reactive power control devices, that is, the use of independently configured reactive power control devices to perform reactive power compensation on the DC system; the advantages of this method are clear structure, simple control, and the disadvantage is that when the reactive power control host is faulty, Whether the backup strategy is complete will directly affect the stable operation of the system;
  • the second is to set the reactive power control device in the polar control system, that is, to issue the reactive power control command through the polar control system, as shown in Figure 1;
  • the advantage of this method is that it can avoid the exit of the bipolar control layer control The uncontrollable condition of the total station filter / capacitor and the reduction of the risk of system shutdown when the bipolar layer exits.
  • the disadvantage is that the system interface design is complex, the control logic is complex, and the reliability is poor. Once the polar control layer fails, it will not be possible Reactive power compensation.
  • the purpose of the present invention is to provide a backup reactive power control device for the DC transmission system, which is used to solve the problems of balanced reactive power control of the DC transmission system and stable AC bus voltage when both sets of DC station control hosts are unavailable; correspondingly, The invention also provides a DC transmission system adopting the backup reactive power control device.
  • a backup reactive power control device for a DC transmission system including a reactive power control unit and a measurement and control unit;
  • the measurement and control unit is connected to the reactive power control unit, and is provided with interfaces for detecting the voltage of the AC bus, the switching state of each AC filter, and the voltage and current of the DC transmission system. Voltage and current calculate the current power level and send the detected information to the reactive power control unit;
  • the reactive power control unit is provided with a control interface for connecting an AC filter, and an interface for connecting a station control host to obtain the working status of the station control host;
  • the reactive power control unit is used to send a control command to the control interface of each AC filter according to the working status of the station control host, the bus voltage information received from the measurement and control unit, and the current power level.
  • the technical solution provided by the present invention only controls the system to exchange reactive power without communicating with the pole control unit based on the AC bus voltage information detected by the measurement and control unit and the current power level calculated from the measured DC system voltage and current.
  • the AC bus voltage is stable, so as to solve the problem of stable system control after the two sets of reactive power control hosts in the DC transmission system are unavailable.
  • the logic of the reactive power control unit sending control commands to the AC filter control interfaces is:
  • the reactive power control unit After the reactive power control unit obtains the information about the abnormal working status of the station control host, it calculates the current power level according to the measured DC system voltage and current, and judges whether the number of filters at the current power level meets the compensation requirements. Put in a corresponding number of absolute minimum filters.
  • the AC filter that needs to be input is selected according to the priority of each AC filter input, and the AC filter is cut according to each input AC filter The priority of the selected AC filter that needs to be cut off.
  • the measurement and control unit and the reactive power control unit are connected via a LAN network communication.
  • a DC power transmission system includes a backup reactive power control device;
  • the backup reactive power control device includes a reactive power control unit and a measurement and control unit;
  • the measurement and control unit is connected to the reactive power control unit, and is provided with interfaces for detecting the voltage of the AC bus, the switching state of each AC filter, and the voltage and current of the DC transmission system. Voltage and current calculate the current power level and send the detected information to the reactive power control unit;
  • the reactive power control unit is provided with a control interface for connecting an AC filter, and an interface for connecting a station control host to obtain the working status of the station control host;
  • the reactive power control unit is used to send a control command to the control interface of each AC filter according to the working status of the station control host, the bus voltage information received from the measurement and control unit, and the current power level.
  • the logic of the reactive power control unit sending control commands to the AC filter control interfaces is:
  • the reactive power control unit After the reactive power control unit obtains the information about the abnormal working status of the station control host, it calculates the current power level according to the measured DC system voltage and current, and judges whether the number of filters at the current power level meets the compensation requirements. Put in a corresponding number of absolute minimum filters.
  • the AC filter that needs to be input is selected according to the priority of each AC filter input, and the AC filter is cut according to each input AC filter The priority of the selected AC filter that needs to be cut off.
  • the measurement and control unit and the reactive power control unit are connected via a LAN network communication.
  • FIG. 1 is a schematic diagram of a reactive power control method of a direct current transmission system in the prior art
  • FIG. 2 is a schematic structural diagram of a backup reactive power control device in an embodiment of the system of the present invention
  • FIG. 3 is a schematic diagram of a reactive power control method of a DC power transmission system in an embodiment of the system of the present invention
  • FIG. 4 is a schematic diagram of the input priority of each AC filter in the system embodiment of the present invention.
  • FIG. 5 is a schematic diagram of cutting priority of each AC filter in the embodiment of the system of the present invention.
  • the purpose of the present invention is to provide a backup reactive power control device for the DC transmission system, which is used to solve the problems of balanced reactive power control of the DC transmission system and stable AC bus voltage when both sets of DC station control hosts are unavailable; correspondingly, The invention also provides a DC transmission system adopting the backup reactive power control device.
  • a backup reactive power control device for a DC transmission system including a reactive power control unit and a measurement and control unit;
  • the measurement and control unit is connected to the reactive power control unit, and is provided with interfaces for detecting the voltage of the AC bus, the switching state of each AC filter, and the voltage and current of the DC transmission system. Voltage and current calculate the current power level and send the detected information to the reactive power control unit;
  • the reactive power control unit is provided with a control interface for connecting an AC filter, and an interface for connecting a station control host to obtain the working status of the station control host;
  • the reactive power control unit is used to send a control command to the control interface of each AC filter according to the working status of the station control host, the bus voltage information received from the measurement and control unit, and the current power level.
  • This embodiment provides a DC transmission system, AC bus and DC station control, and AC filter measurement and control device.
  • the DC station control host detects the voltage of the AC bus, determines whether the AC bus needs to be switched on or off according to the voltage of the AC bus, and which AC filters need to be switched on or off, and then generates the corresponding control command and sends it to the reactive power compensation control Device, the reactive power compensation control device controls the input and removal of the AC filter according to the received control command.
  • the DC transmission system provided in this embodiment is also provided with at least one backup reactive power compensation device.
  • the backup reactive power compensation device is used to control reactive power balance through the AC filter when both sets of DC station control hosts are unavailable. Maintain the voltage stability of the AC bus.
  • FIG. 2 The principle of the backup reactive power compensation device in this embodiment is shown in FIG. 2, which includes redundantly set reactive power control unit B-RPCA and reactive power control unit B-RPCB, and redundantly set AC filter measurement and control unit ACF A and measurement and control unit ACF B; reactive power control unit B-RPCA and reactive power control unit B-RPCB are connected to station control host DCSCA and station control host DCSCB through hard wiring, to obtain station control host A and station control host B Operating status.
  • the reactive power control unit B-RPCA and the reactive power control unit B-RPCB are connected to the measurement and control unit ACF A and the measurement and control unit ACF B through LAN network communication.
  • the measurement and control unit ACF and the measurement and control unit ACF are connected to the AC bus and the DC measurement unit to detect the voltage of the AC bus and the voltage and current of the DC system, and send the detected information to the reactive control unit B-RPCA and Reactive power control unit B-RPCB.
  • the measurement and control unit ACF A and measurement and control unit ACF are connected to the AC filter to detect the switching state of the AC filter and send the detected information to the reactive control unit B-RPCA and reactive control unit B-RPCB through the LAN network .
  • the reactive power control unit B-RPCA and reactive power control unit B-RPCB are also connected to the AC filter. According to the information received from the measurement and control unit ACF A and the measurement and control unit ACF B, the switching of the AC filter is controlled.
  • the control logic is as follows As shown in Figure 3, specifically:
  • the reactive power control unit After the reactive power control unit obtains the information about the abnormal working status of the station control host, it calculates the current power level according to the measured DC system voltage and current values, and judges whether the number of filters at the current power level meets the compensation requirements, if not Then put in a corresponding number of absolute minimum filters.
  • the AC filters to be cut are selected according to the cut order of the AC filters, and the cut control commands are sent to these AC filters.
  • 16 groups of AC filters are configured.
  • the 16 groups are divided into four large groups: Group A: BP11 / 23 of 4 groups; Group B: HP24 / 36 of 4 groups; C Group: HP3 in 3 groups; Group D: SC in 5 groups.
  • Group A BP11 / 23 of 4 groups
  • Group B HP24 / 36 of 4 groups
  • C HP3 in 3 groups
  • Group D SC in 5 groups.
  • BP11 / 23, HP24 / 36, HP3, SC are AC filter models.
  • each group of AC filters are independently configured, that is, each group corresponds to a measurement and control device, which is configured with different communication addresses and communicates with the backup reactive power control device.
  • the input priority and cut-off priority of each group are shown in Figures 4 and 5, respectively.
  • the AC filters of the BP11 / 23, HP24 / 36, and HP3 types are the minimum filters, and the SC type is essentially a capacitor, not a minimum. Filter, so it is not in the input sequence.
  • This embodiment provides a backup reactive power control device for the DC power transmission system, which is the same as the backup reactive power control device for the DC power transmission system in the above-mentioned system embodiment.
  • This device has been described in detail in the above-mentioned system embodiment. Explain more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

一种直流输电系统及其后备无功控制装置,后备无功控制装置包括无功控制单元和测控单元;测控单元与无功控制单元连接,并设有用于检测交流母线电压、各交流滤波器投切状态以及直流输电系统的电压和电流的接口,将检测到的信息发送给无功控制单元;无功控制单元连接交流滤波器的控制接口和站控主机,获取站控主机工作状态的接口;无功控制单元用于根据站控主机的工作状态、从测控单元接收到的母线电压信息和当前功率水平值,向各交流滤波器的控制接口发送控制命令。无需与极控单元通信即可控制系统交换无功功率,维持交流母线电压稳定,从而解决直流输电系统双套无功控制主机均不可用后系统稳定控制的问题。

Description

一种直流输电系统及其后备无功控制装置 技术领域
本发明属于直流输电系统无功补偿控制技术领域,具体涉及一种直流输电系统及其后备无功控制装置。
背景技术
随着直流特高压/超高压工程的相继投运,特高压直流输电系统的稳定运行对整个电网系统的稳定运行越来越重要,这就要求控制系统具有更高的可靠性。
目前特高压控制系统的无功控制主要有两种方式:
第一种是无功控制装置独立配置,即采用独立配置的无功控制装置对直流系统进行无功补偿;这种方式的优点是结构清晰,控制简单,缺点是无功控制主机均故障时,后备策略是否完整将直接影响系统能够稳定运行;
第二种是将无功控制装置设置在极控系统中,即通过极控系统下发无功控制命令,如图1所示;这种方式的优点在于能够避免双极控层控制退出情况下全站滤波器/电容器无法控制的状况,以及降低双极层控制退出情况下系统停运风险,缺点是系统接口设计复杂,控制逻辑复杂,并且可靠性差,一旦极控层出现故障,将不能进行无功补偿。
发明内容
本发明的目的在于提供一种直流输电系统后备无功控制装置,用于解决双套直流站控主机均不可用情况下,直流输电系统无功控制平衡,交流母线电压稳定的问题;相应的,本发明还提供了一种采用该后备无功控制装置的直流输电系统。
为实现上述目的,本发明提供的技术方案是:
一种直流输电系统的后备无功控制装置,包括无功控制单元和测控单元;
所述测控单元与无功控制单元连接,并设有用于检测交流母线电压、各交流滤波器投切状态以及直流输电系统的电压和电流的接口,用于根据交流母线的电压和直流输电系统的电压、电流计算当前的功率水平,并将检测到的信息发送给无功控制单元;
所述无功控制单元设有用于连接交流滤波器的控制接口,以及用于连接站控主机,获取站控主机工作状态的接口;
所述无功控制单元用于根据站控主机的工作状态、从测控单元接收到的母线电压信息和当前功 率水平,向各交流滤波器的控制接口发送控制命令。
本发明所提供的技术方案,仅根据测控单元检测到的交流母线电压信息和根据测量到的直流系统电压电流计算的当前功率水平,无需与极控单元通信即可控制系统交换无功功率,维持交流母线电压稳定,从而解决直流输电系统双套无功控制主机均不可用后系统稳定控制的问题。
作为对无功控制单元的进一步改进,无功控制单元向各交流滤波器控制接口发送控制命令的逻辑为:
当无功控制单元获取到站控主机工作状态异常的信息后,根据测量到的直流系统电压和电流计算出当前的功率水平,判断当前功率水平下滤波器数量是否满足补偿需求,如果不满足则投入相应数量的绝对最小滤波器。
作为对各交流滤波器投切顺序的进一步改进,为了保证各交流滤波器的使用率均衡,根据各交流滤波器投入的优先级选择需要投入的交流滤波器,根据各已经投入的交流滤波器切除的优先级选择需要切除的交流滤波器。
作为对交流滤波器投入优先级和切除优先级的进一步改进,当交流滤波器的投入优先级越高时,其切除优先级越低。
作为对测控单元和无功控制单元之间连接关系的进一步改进,所述测控单元与无功控制单元之间通过LAN网通讯连接。
一种直流输电系统,包括后备无功控制装置;所述后备无功控制装置包括无功控制单元和测控单元;
所述测控单元与无功控制单元连接,并设有用于检测交流母线电压、各交流滤波器投切状态以及直流输电系统的电压和电流的接口,用于根据交流母线的电压和直流输电系统的电压、电流计算当前的功率水平,并将检测到的信息发送给无功控制单元;
所述无功控制单元设有用于连接交流滤波器的控制接口,以及用于连接站控主机,获取站控主机工作状态的接口;
所述无功控制单元用于根据站控主机的工作状态、从测控单元接收到的母线电压信息和当前功率水平,向各交流滤波器的控制接口发送控制命令。
作为对无功控制单元的进一步改进,无功控制单元向各交流滤波器控制接口发送控制命令的逻辑为:
当无功控制单元获取到站控主机工作状态异常的信息后,根据测量到的直流系统电压和电流计算出当前的功率水平,判断当前功率水平下滤波器数量是否满足补偿需求,如果不满足则投入相应数量的绝对最小滤波器。
作为对各交流滤波器投切顺序的进一步改进,为了保证各交流滤波器的使用率均衡,根据各交流滤波器投入的优先级选择需要投入的交流滤波器,根据各已经投入的交流滤波器切除的优先级选择需要切除的交流滤波器。
作为对交流滤波器投入优先级和切除优先级的进一步改进,当交流滤波器的投入优先级越高时,其切除优先级越低。
作为对测控单元和无功控制单元之间连接关系的进一步改进,所述测控单元与无功控制单元之间通过LAN网通讯连接。
附图说明
图1为现有技术中直流输电系统的无功控制方法示意图;
图2为本发明系统实施例中后备无功控制装置的结构示意图;
图3为本发明系统实施例中直流输电系统的无功控制方法示意图;
图4为本发明系统实施例中各交流滤波器投入优先级的示意图;
图5为本发明系统实施例中各交流滤波器切除优先级的示意图。
具体实施方式
本发明的目的在于提供一种直流输电系统后备无功控制装置,用于解决双套直流站控主机均不可用情况下,直流输电系统无功控制平衡,交流母线电压稳定的问题;相应的,本发明还提供了一种采用该后备无功控制装置的直流输电系统。
为实现上述目的,本发明提供的技术方案是:
一种直流输电系统的后备无功控制装置,包括无功控制单元和测控单元;
所述测控单元与无功控制单元连接,并设有用于检测交流母线电压、各交流滤波器投切状态以及直流输电系统的电压和电流的接口,用于根据交流母线的电压和直流输电系统的电压、电流计算当前的功率水平,并将检测到的信息发送给无功控制单元;
所述无功控制单元设有用于连接交流滤波器的控制接口,以及用于连接站控主机,获取站控主机工作状态的接口;
所述无功控制单元用于根据站控主机的工作状态、从测控单元接收到的母线电压信息和当前功率水平,向各交流滤波器的控制接口发送控制命令。
下面结合附图对本发明的技术方案作进一步说明。
系统实施例:
本实施例提供一种直流输电系统,交流母线和直流站控,交流滤波器测控装置。直流站控主机检测交流母线的电压,根据交流母线的电压判断交流母线是否需要投入或切除交流滤波器,以及需 要投入或切除哪些交流滤波器,然后生成相应的控制指令并发送给无功补偿控制装置,无功补偿控制装置根据接收到的控制指令控制交流滤波器的投入和切除。
本实施例所提供的直流输电系统还设置有至少一个后备无功补偿装置,后备无功补偿装置用于在双套直流站控主机均不可用时,通过交流滤波器投切进行无功平衡控制,维持交流母线电压稳定。
本实施例中的后备无功补偿装置,其原理如图2所示,包括冗余设置的无功控制单元B-RPCA和无功控制单元B-RPCB,以及冗余设置的交流滤波器测控单元ACF A和测控单元ACF B;无功控制单元B-RPCA和无功控制单元B-RPCB均通过硬接线与站控主机DCSCA和站控主机DCSCB连接,获取站控主机A和站控主机B的运行状态。
无功控制单元B-RPCA和无功控制单元B-RPCB与测控单元ACF A和测控单元ACF B之间通过LAN网通讯连接。
测控单元ACF A和测控单元ACF B均与交流母线和直流测量单元连接,检测交流母线的电压和直流系统的电压电流,并将检测到的信息通过LAN网发送给无功控制单元B-RPCA和无功控制单元B-RPCB。
测控单元ACF A和测控单元ACF B与交流滤波器连接,检测交流滤波器的投切状态,并将检测到的信息通过LAN网发送给无功控制单元B-RPCA和无功控制单元B-RPCB。
无功控制单元B-RPCA和无功控制单元B-RPCB还与交流滤波器连接,根据从测控单元ACF A和测控单元ACF B接收到的信息,控制交流滤波器的投切,控制的逻辑如图3所示,具体为:
确定各交流滤波器的投入优先级和切除优先级;本实施例中,将交流滤波器的投入优先级和切除优先级之间设置成为互斥关系,即当某个交流滤波器的投入优先级越高时,其切除优先级越低,当某个交流滤波器的投入优先级越低时,其切除优先级越高;
判断站控主机DCSCA和站控主机DCSCB是否出现异常,当站控主机DCSCA和站控主机DCSCB均工作在异常状态时:
当无功控制单元获取到站控主机工作状态异常的信息后,根据测量到的直流系统电压和电流值计算出当前的功率水平,判断当前功率水平下滤波器数量是否满足补偿需求,如果不满足则投入相应数量的绝对最小滤波器。
如果交流母线的电压低于设定值,则根据交流滤波器投入顺序选择出需要投入的交流滤波器,向这些交流滤波器发送投入的控制命令;
如果交流母线的电压高于设定值,则根据交流滤波器切除顺序选择出需要切除的交流滤波器,向这些交流滤波器发送切除的控制命令。
下面以某±800KV特高压直流输电工程为例:
在500KV交流网络配置16个小组的交流滤波器,16个小组又分为四个大组,分别为:A组:4个小组的BP11/23;B组:4个小组的HP24/36;C组:3个小组的HP3;D组:5个小组的SC。其中,BP11/23、HP24/36、HP3、SC均为交流滤波器的型号。
对应每一组交流滤波器测控都是独立配置,即每一小组对应一台测控装置,分别配置不同的通信地址,分别与后备无功控制装置通信。
各组的投入优先级和切除优先级分别如图4和图5所示,其中,BP11/23、HP24/36、HP3类型的交流滤波器为最小滤波器,SC类型本质是电容器,不属于最小滤波器,所以不在投入顺序中。
设交流母线的电压上限值为Umax,电压下限值为Umin,则后备无功控制装置对交流母线电压控制的逻辑为:
当交流母线电压Uac大于电压上限值时,则每隔500ms切除1小组交流滤波器,直到交流母线的电压值不大于电压上限值Umax。
当交流母线电压Uac小于电压下限值Umin时,则每隔设定时间投入1小组交流滤波器,直到交流母线的电压值不小于电压下限值Umin。
装置实施例:
本实施例提供一种直流输电系统的后备无功控制装置,与上述系统实施例中的直流输电系统的后备无功控制装置相同,该装置已在上述系统实施例中做了详细介绍,这里不多做说明。
以上给出了本发明涉及的具体实施方式,但本发明不局限于所描述的实施方式。在本发明给出的思路下,采用对本领域技术人员而言容易想到的方式对上述实施例中的技术手段进行变换、替换、修改,并且起到的作用与本发明中的相应技术手段基本相同、实现的发明目的也基本相同,这样形成的技术方案是对上述实施例进行微调形成的,这种技术方案仍落入本发明的保护范围内。

Claims (10)

  1. 一种直流输电系统的后备无功控制装置,其特征在于,包括无功控制单元和测控单元;
    所述测控单元与无功控制单元连接,并设有用于检测交流母线电压、各交流滤波器投切状态以及直流输电系统的电压和电流的接口,用于根据交流母线的电压和直流输电系统的电压、电流计算当前的功率水平,并将检测到的信息发送给无功控制单元;
    所述无功控制单元设有用于连接交流滤波器的控制接口,以及用于连接站控主机,获取站控主机工作状态的接口;
    所述无功控制单元用于根据站控主机的工作状态、从测控单元接收到的母线电压信息和当前功率水平,向各交流滤波器的控制接口发送控制命令。
  2. 根据权利要求1所述的一种直流输电系统的后备无功控制装置,其特征在于,无功控制单元向各交流滤波器控制接口发送控制命令的逻辑为:
    当无功控制单元获取到站控主机工作状态异常的信息后,根据测量到的直流系统电压和电流计算出当前的功率水平,判断当前功率水平下滤波器数量是否满足补偿需求,如果不满足则投入相应数量的绝对最小滤波器。
  3. 根据权利要求2所述的一种直流输电系统的后备无功控制装置,其特征在于,根据各交流滤波器投入的优先级选择需要投入的交流滤波器,根据各已经投入的交流滤波器切除的优先级选择需要切除的交流滤波器。
  4. 根据权利要求3所述的一种直流输电系统的后备无功控制装置,其特征在于,当交流滤波器的投入优先级越高时,其切除优先级越低。
  5. 根据权利要求1所述的一种直流输电系统的后备无功控制装置,所述测控单元与无功控制单元之间通过LAN网通讯连接。
  6. 一种直流输电系统,包括后备无功控制装置;其特征在于,所述后备无功控制装置包括无功控制单元和测控单元;
    所述测控单元与无功控制单元连接,并设有用于检测交流母线电压、各交流滤波器投切状态以及直流输电系统的电压和电流的接口,用于根据交流母线的电压和直流输电系统的电压、电流计算当前的功率水平,并将检测到的信息发送给无功控制单元;
    所述无功控制单元设有用于连接交流滤波器的控制接口,以及用于连接站控主机,获取站控主机工作状态的接口;
    所述无功控制单元用于根据站控主机的工作状态、从测控单元接收到的母线电压信息和当前功 率水平,向各交流滤波器的控制接口发送控制命令。
  7. 根据权利要求6所述的一种直流输电系统,其特征在于,无功控制单元向各交流滤波器控制接口发送控制命令的逻辑为:
    当无功控制单元获取到站控主机工作状态异常的信息后,根据测量到的直流输电系统电压和电流计算出当前的功率水平,判断当前功率水平下滤波器数量是否满足补偿需求,如果不满足则投入相应数量的绝对最小滤波器。
  8. 根据权利要求7所述的一种直流输电系统,其特征在于,根据各交流滤波器投入的优先级选择需要投入的交流滤波器,根据各已经投入的交流滤波器切除的优先级选择需要切除的交流滤波器。
  9. 根据权利要求8所述的一种直流输电系统,其特征在于,当交流滤波器的投入优先级越高时,其切除优先级越低。
  10. 根据权利要求6所述的一种直流输电系统,所述测控单元与无功控制单元之间通过LAN网通讯连接。
PCT/CN2019/100352 2018-10-31 2019-08-13 一种直流输电系统及其后备无功控制装置 WO2020088030A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811289694.X 2018-10-31
CN201811289694.XA CN109599882B (zh) 2018-10-31 2018-10-31 一种直流输电系统及其后备无功控制装置

Publications (1)

Publication Number Publication Date
WO2020088030A1 true WO2020088030A1 (zh) 2020-05-07

Family

ID=65957628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100352 WO2020088030A1 (zh) 2018-10-31 2019-08-13 一种直流输电系统及其后备无功控制装置

Country Status (2)

Country Link
CN (1) CN109599882B (zh)
WO (1) WO2020088030A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112290577A (zh) * 2020-10-21 2021-01-29 广东电网有限责任公司广州供电局 通信接口及直流控制系统与稳控装置的通讯装置和方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109599882B (zh) * 2018-10-31 2021-03-30 许继集团有限公司 一种直流输电系统及其后备无功控制装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150256094A1 (en) * 2014-03-07 2015-09-10 General Electric Company Hybrid high voltage direct current converter system and method of operating the same
CN105978015A (zh) * 2016-06-22 2016-09-28 南京南瑞继保电气有限公司 一种用于高压直流输电的交流滤波器切除方法和控制装置
CN106159952A (zh) * 2016-08-31 2016-11-23 南方电网科学研究院有限责任公司 一种交流滤波器投切系统及投切方法
CN106532732A (zh) * 2016-10-09 2017-03-22 国网上海市电力公司 高压直流输电系统中对交流滤波器组的无功控制方法
CN106532755A (zh) * 2016-10-09 2017-03-22 国家电网公司 一种高压直流输电系统的无功控制系统及方法
CN109599882A (zh) * 2018-10-31 2019-04-09 许继集团有限公司 一种直流输电系统及其后备无功控制装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101383509B (zh) * 2008-10-17 2010-06-02 南方电网技术研究中心 特高压直流输电控制系统配置方法
CN103701133B (zh) * 2013-12-25 2015-12-02 中国南方电网有限责任公司超高压输电公司检修试验中心 高压直流输电系统低功率运行情况下的无功控制方法
KR20170089351A (ko) * 2016-01-26 2017-08-03 엘에스산전 주식회사 Hvdc 시스템에서의 제어장치 및 이의 동작방법
CN106159953B (zh) * 2016-08-31 2018-09-07 南方电网科学研究院有限责任公司 一种交流滤波器投切系统及投切方法
CN106786711B (zh) * 2016-11-21 2019-07-16 许继集团有限公司 一种分层接入系统的极控系统
CN206658052U (zh) * 2017-04-27 2017-11-21 国网冀北电力有限公司唐山供电公司 一种低压智能电容器控制器及无功补偿系统
CN107086553B (zh) * 2017-06-30 2020-01-03 南方电网科学研究院有限责任公司 一种直流输电系统的控制保护方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150256094A1 (en) * 2014-03-07 2015-09-10 General Electric Company Hybrid high voltage direct current converter system and method of operating the same
CN105978015A (zh) * 2016-06-22 2016-09-28 南京南瑞继保电气有限公司 一种用于高压直流输电的交流滤波器切除方法和控制装置
CN106159952A (zh) * 2016-08-31 2016-11-23 南方电网科学研究院有限责任公司 一种交流滤波器投切系统及投切方法
CN106532732A (zh) * 2016-10-09 2017-03-22 国网上海市电力公司 高压直流输电系统中对交流滤波器组的无功控制方法
CN106532755A (zh) * 2016-10-09 2017-03-22 国家电网公司 一种高压直流输电系统的无功控制系统及方法
CN109599882A (zh) * 2018-10-31 2019-04-09 许继集团有限公司 一种直流输电系统及其后备无功控制装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112290577A (zh) * 2020-10-21 2021-01-29 广东电网有限责任公司广州供电局 通信接口及直流控制系统与稳控装置的通讯装置和方法

Also Published As

Publication number Publication date
CN109599882B (zh) 2021-03-30
CN109599882A (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
CN103946768B (zh) 并联逆变器系统的故障检测
CN103907263A (zh) 并行的不间断电源的控制和保护
CA2925966A1 (en) Coordination control method of multi-terminal vsc-hvdc transmission system
WO2020088030A1 (zh) 一种直流输电系统及其后备无功控制装置
TW201438366A (zh) 高可靠的不斷電系統用靜態切換開關電路
CN201393076Y (zh) 一种ups双机冗余并联系统
CN109193914B (zh) 一种冗余电源智能控制装置
CN103560547B (zh) 一种交直流输电线路中交流系统故障的处理方法
CN208028652U (zh) 一种双主机并联冗余供电系统
CN208028651U (zh) 一种双主机并机冗余控制系统
CN104485734A (zh) 一种三相交流复合型静态转换开关
CN104410165B (zh) 一种微网间互联的方法及系统
WO2021093403A1 (zh) 一种并联多端高压直流换流站控制权限切换系统及方法
CN107479645A (zh) 一种双输入电源模块、服务器供电系统及供电方法
CN112993950A (zh) 一种柔直换流阀交流连接线单相接地故障保护系统和方法
CN103078331B (zh) 阶梯式电容器组投切装置及其投切方法
WO2020215763A1 (zh) 一种高压直流输电dcs控制方法
CN106093683B (zh) 加热器断线检测系统以及断线检测方法
WO2016108588A1 (ko) 이중화 제어기의 운전방법
CN205724924U (zh) 电力负荷平衡自动调节装置
CN106850264B (zh) 一种网络设备
CN206302202U (zh) 一种单机主控冗余控制型ups
CN107623330B (zh) 一种阀基控制系统的控制方法
CN208158220U (zh) 一种大功率模块化ups系统
CN113098063A (zh) 一种新能源孤岛送出交流故障穿越控制方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879499

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879499

Country of ref document: EP

Kind code of ref document: A1