WO2020215569A1 - 一种单向传动的光伏追踪器及光伏追踪阵列 - Google Patents

一种单向传动的光伏追踪器及光伏追踪阵列 Download PDF

Info

Publication number
WO2020215569A1
WO2020215569A1 PCT/CN2019/103457 CN2019103457W WO2020215569A1 WO 2020215569 A1 WO2020215569 A1 WO 2020215569A1 CN 2019103457 W CN2019103457 W CN 2019103457W WO 2020215569 A1 WO2020215569 A1 WO 2020215569A1
Authority
WO
WIPO (PCT)
Prior art keywords
way transmission
main beam
photovoltaic
base
inner ring
Prior art date
Application number
PCT/CN2019/103457
Other languages
English (en)
French (fr)
Inventor
马丽君
王士涛
李彩霞
Original Assignee
江苏中信博新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏中信博新能源科技股份有限公司 filed Critical 江苏中信博新能源科技股份有限公司
Publication of WO2020215569A1 publication Critical patent/WO2020215569A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to the field of photovoltaic technology, in particular to provide a one-way transmission photovoltaic tracker and photovoltaic tracking array.
  • the main beam bears the role of supporting the photovoltaic module and transmitting the rotational torque.
  • the reverse torque will also be superimposed section by section along the main girder towards the center of the photovoltaic tracker in a reverse manner when the main beam is transmitting torsion.
  • the main beam of the photovoltaic tracker cannot be too long.
  • the existing method is usually to thicken the main girder, but the cost increase caused by thickening the main girder is very obvious.
  • other structural parts of the photovoltaic tracker will also be proposed. Higher design requirements.
  • the operation process of the photovoltaic tracker is divided into: reverse tracking, automatic tracking, wind, snow, rain and other operation modes.
  • certain protective measures need to be activated.
  • the photovoltaic tracker will run the system to the horizontal position of the photovoltaic module, but the photovoltaic tracker will drive the main beam of the photovoltaic tracker to vibrate due to the wind load when the photovoltaic module is flat.
  • the reverse torque is generated, and this reverse torque will be superimposed section by section along the main beam, so that the central main beam is subjected to the superposition of the reverse torque on both sides to produce a great reverse torque, which poses a great safety hazard. It is also impossible to lay the main beam over a long distance.
  • the main purpose of the present invention is to provide a one-way transmission photovoltaic tracker and photovoltaic tracking array, which can reduce the reverse torque superimposed on the main beam to the center, avoiding the central main beam from being too much Damage due to large reverse torque.
  • the technical solution applied by the present invention is to provide a one-way transmission photovoltaic tracker, including:
  • the main beam is sleeved in the one-way transmission device, and is rotatably connected with the upright column via the one-way transmission device;
  • the photovoltaic module is fixed on the main beam and can rotate with the main beam on the column.
  • the addition of one-way transmission nodes is taken as a starting point to interrupt the superposition of the reverse torque on the main beam section by section toward the center.
  • This scheme takes the intermediate drive structure as the central point, and adds a one-way transmission device at the connection part of the column and the main beam.
  • a plastic bearing and other two-way transmission connecting parts were usually installed at this position.
  • the reverse torque transmission along the main beam will be interrupted by the one-way transmission device.
  • the reverse torque will be distributed on each section of the main beam, and the torque will be relatively evenly distributed on each section of the main beam without causing The central moment of the main beam is too large and the main beam is damaged.
  • the one-way transmission device includes a transmission member and a base, and the transmission member has a cylindrical structure;
  • the top of the base is fixedly connected with the bottom of the transmission member, and the bottom of the base is connected with the top of the column.
  • the transmission member includes an inner ring, an outer ring and a plurality of special-shaped blocks, the inner ring is connected to the main beam, the outer ring is fixedly connected to the base, and the inner ring is connected to the base.
  • a raceway is formed between the outer rings, a plurality of the shaped blocks are arranged in the raceway, and the shaped blocks are connected with a pre-tensioning spring;
  • the special-shaped block When the inner ring is running in the forward direction, the special-shaped block is driven to rotate together. When the rotation speed of the inner ring is within a certain range, the special-shaped block deflects under the action of centrifugal force, and the special-shaped block and the inner ring , The outer ring is out of contact, so that the inner ring runs without wear;
  • the inner ring rotates in the reverse direction.
  • the special-shaped block is brought into contact with the inner and outer rings.
  • the inner ring and the outer ring are wedge tightly integrated so as to withstand the reverse torque transferred from the inner ring.
  • the special-shaped block includes two pairs of mutually parallel planes and two eccentric arc surfaces, and a pair of mutually parallel planes are respectively provided with end shafts, and the end shafts are used for installation and positioning.
  • a notch is provided on the end shaft, and the notch is used for installing the pre-tensioning spring.
  • the one-way transmission device does not work at this time and follows the main beam to follow the track; when the wind protection tracking system is flat, the power mechanism stops working , Tracking main beam generates a superimposed reverse torque to the center of the main beam due to strong wind vibration. If a unidirectional transmission is encountered in the reverse torque transmission path, the reverse torque superposition will stop. At this time, the moments on the main beams of each section will be distributed on the main beams of each section, and will not form the largest reverse moment superposition on the central main beam. In this way, the central main beam does not need to be thickened or special treatment to meet the safety resistance. Bend requirements.
  • the base includes a first side wall, a second side wall, and a mounting wall, and the mounting wall is connected to the first side wall and the second side wall to form a U-shaped groove.
  • the mounting wall is fixedly connected with the outer ring of the transmission member, and the notch clamps the top of the upright post, so that the base and the upright post are fixedly connected.
  • the base is a U-shaped structure, and the U-shaped structural slot of the base clamps the top of the column, which makes the one-way transmission device easier to install with the column, and improves the assembly of the photovoltaic panel support structure and the photovoltaic tracking array. And construction efficiency, to ensure the construction period.
  • the top of the base is a circular arc structure, which fits and is fixedly connected to the outer ring of the transmission member, the bottom of the base is a flat structure, and the bottom of the base is fixed to the column connection.
  • the arc part of the base is covered and connected with the transmission member, so that the contact surface between the base and the transmission member is increased, thereby reducing the force on the transmission member, thereby improving the stability and load-bearing capacity of the photovoltaic tracker Performance;
  • the one-way transmission device is a backstop or a small slewing bearing.
  • the main beam has a cylindrical structure
  • the photovoltaic module is connected to the main beam by a hoop.
  • the main beam is generally a solid or hollow rod-shaped structure. Because the photovoltaic module has a certain area, in order to stably support the photovoltaic module, the size of the main beam of the rod-shaped structure is generally relatively large, which leads to The manufacturing cost of the main beam is relatively high.
  • the main beam is mainly galvanized square tube or round tube.
  • the bearings used in the square tube main beam are inner square and outer circle, resulting in uneven bearing force and affecting bearing life.
  • the square main beam also has insufficient torsion resistance.
  • the bearings used in the main beam of the round tube are both circular inside and outside, so that the force is evenly received, thereby ensuring the service life of the bearing and the torsion resistance of the main beam.
  • Another technical solution applied by the present invention is to provide a photovoltaic tracking array, including:
  • the driving motor is connected to the main beam, and the driving motor controls the main components of the one-way transmission photovoltaic trackers When the beam is running, the column of the one-way transmission photovoltaic tracker is fixed on the prefabricated base.
  • a plurality of the one-way transmission photovoltaic trackers are arranged in a straight line, and two adjacent main beams are connected as a whole.
  • the addition of one-way transmission nodes is taken as a starting point to interrupt the superposition of the reverse torque on the main beam section by section toward the center.
  • This scheme takes the intermediate drive structure as the central point, and adds a one-way transmission device at the connection part of the column and the main beam.
  • a plastic bearing and other two-way transmission connecting parts were usually installed at this position.
  • the reverse torque transmission along the main beam will be interrupted by the one-way transmission device.
  • the reverse torque will be distributed on each section of the main beam, and the torque will be relatively evenly distributed on each section of the main beam without causing
  • the central moment of the main beam is too large and the main beam is damaged. Therefore, the length of the main beam will no longer be limited, and the main beam of the photovoltaic tracking system can be increased according to demand and still meet the requirements of long-term tracking and safe operation.
  • the present invention provides a one-way transmission photovoltaic tracker and photovoltaic tracking array, which can bring at least one of the following beneficial effects:
  • the interruption of the reverse torque on the main beam is superimposed section by section toward the center, and the intermediate drive structure is used as the center point.
  • One-way transmission device After adding this one-way transmission device, the reverse torque transmission along the main beam will be interrupted by the one-way transmission device. The reverse torque will be distributed on each section of the main beam, and the torque will be relatively uniform on each section of the main beam. Distribution, will not cause excessive central moment of the main beam and cause damage to the main beam.
  • the reverse moment can be distributed on each section of the main beam, which reduces the design requirements of each section of the main beam, and the length of the main beam can be extended to break through The existing length is limited by the reverse moment.
  • Fig. 1 is a schematic diagram of the structure of the one-way transmission photovoltaic tracker in the first embodiment.
  • Figure 2 is a schematic diagram of part of the structure of the one-way transmission in the third embodiment.
  • Fig. 3 is a schematic structural diagram of a cross-section of a special-shaped block in the first embodiment.
  • the direction indications (such as up, down, left, right, front and back) are used to explain the structure and movement of the various components of the present invention, not absolute but relative. These instructions are appropriate when these components are in the positions shown in the drawings. If the description of the position of these components changes, the directions of these directions will also change accordingly.
  • this embodiment provides a one-way transmission photovoltaic tracker, including: a column 1 for supporting the one-way transmission photovoltaic tracker, the column 1 can be square steel, Sectional steel, steel pipe, etc.; one-way transmission device 2 is used to interrupt the reverse moment along the main beam 3 during the rotation of the photovoltaic tracker.
  • the lower end of the one-way transmission device 2 is connected to the top of the column 1.
  • the one-way transmission device can be Backstop or small rotation, etc.; the main beam 3 is set in the one-way transmission device 2, and is connected to the column 1 by the one-way transmission device 2 in rotation.
  • the main beam 3 can be a round tube or a square tube; the photovoltaic module 4 is fixed On the main beam 3, it can rotate on the column 1 with the main beam 3.
  • Photovoltaic modules (commonly known as solar panels) are composed of solar cells or solar cells of different specifications cut by a laser cutting machine or a steel wire cutting machine. And package them on a stainless steel, aluminum or other non-metallic frame, install the upper glass and the back plate on the back, fill with nitrogen, and seal.
  • the main beam 3 has a cylindrical structure, and the photovoltaic module 4 is connected to the main beam 3 through a hoop 31.
  • the main beam 3 is generally a solid or hollow rod-shaped structure.
  • the main beam 3 of the rod-shaped structure is generally larger in size, which leads to the main The manufacturing cost of beam 3 is relatively high.
  • the main beam 3 is mainly galvanized square tube or round tube.
  • the bearings used in the square tube main beam are inner square and outer circle, resulting in uneven bearing force and affecting bearing life.
  • the square main beam also has insufficient torsion resistance.
  • the bearings used in the main beam of the round tube are both circular inside and outside, so that the force is evenly received, thereby ensuring the service life of the bearing and the torsion resistance of the main beam 3.
  • the main beam 3 assumes the role of supporting the photovoltaic module 4 and transmitting the rotational torque.
  • the photovoltaic tracker since the photovoltaic tracker is usually long, in the process of transmitting the torsion force of the main beam 3, the reverse torque will also be superimposed section by section toward the center of the photovoltaic tracker in a reverse manner along the main beam 3.
  • the main beam 3 of the photovoltaic tracker In order to prevent the main beam 3 from being damaged by the excessively large reverse torque step by step toward the middle, usually the main beam 3 of the photovoltaic tracker cannot be too long.
  • the existing method is usually to thicken the main girder 3.
  • the increase in cost caused by thickening the main girder 3 is very obvious. Usually, the increase in the weight of the main girder 3 will also affect the photovoltaic tracking. Other structural parts of the device put forward higher design requirements.
  • the addition of a one-way transmission node is taken as a starting point to interrupt the superposition of the reverse torque on the main beam 3 section by section toward the center.
  • This solution takes the intermediate drive structure as the center point, and adds a one-way transmission device 2 at the connection part of the column 1 and the main beam 3.
  • a plastic bearing and other two-way transmission connecting parts were usually installed at this position. After adding this one-way transmission device 2, the reverse torque transmission along the main beam 3 will be interrupted by the one-way transmission device 2.
  • the reverse torque will be distributed on the main beam 3 of each section, and the torque will be relatively uniform on the main beam 3 of each section Distribution, it will not cause the central moment of the main beam 3 to be too large and cause the main beam 3 to be damaged.
  • the power mechanism drives the tracker to run, at this time the one-way transmission device 2 does not work, and follows the main beam; when the wind protection tracking system is flat, the power mechanism stops working and tracks the main beam
  • the superimposed reverse torque is transmitted to the center of the main beam 3 due to strong wind vibration. If the unidirectional transmission device 2 is encountered in the reverse torque transmission path, the reverse torque superposition will stop.
  • the moments on each section of the main girder 3 will be distributed on each section of the main girder 3, and will not form the largest reverse moment superposition on the central main girder. In this way, the central main girder does not need to be thickened or special treatments are sufficient. Safe bending requirements.
  • the one-way transmission device 2 includes a transmission member (not labeled) and a first base 24.
  • the transmission member is a cylindrical structure;
  • the top of the base 24 is fixedly connected with the bottom of the transmission member, such as electric welding connection, and the bottom of the first base 24 is connected with the top of the column 1, such as a bolt connection.
  • the transmission component includes an inner ring 21, an outer ring 22 and a plurality of special-shaped blocks 23.
  • the inner diameter of the inner ring 21 is adapted to the outer diameter of the main beam 3, and the inner ring 21 is sleeved on the main beam 3 so that the inner ring 21 and the main beam 3 are fixed together;
  • the lower part of the outer ring 22 is welded with two screws, the two screws are parallel to each other and vertically downward;
  • the first base 24 includes a first side wall, a second side wall and a mounting wall. The side wall and the second side wall are connected to form a U-shaped notch.
  • the mounting wall is provided with two screw holes adapted to the outer ring 22 screw.
  • the mounting wall and the outer ring 22 of the transmission member are fixedly connected by bolts.
  • the column 1 It is a square tube or U-shaped channel steel.
  • the notches are clamped on both sides of the top of the column 1, and the first base 24 is fixedly connected to the column 1 by bolts on both sides.
  • a raceway is formed between the inner ring 21 and the outer ring 22, a plurality of special-shaped blocks 23 are arranged in the raceway, and the special-shaped blocks 23 are connected with a pre-tension spring; as shown in Fig. 3, the special-shaped block 23 is composed of two parallel first side faces 231 , The second side surface 232 and the two eccentric first arc surface 233, the second arc surface 234 intersect to form a solid structure, the profiled block 23 is provided with end shafts on both sides, the end shaft is used for installation and positioning, the end shaft is provided There are notches, which are used to install pre-tension springs.
  • the special-shaped block 23 When the inner ring 21 is running in the forward direction, the special-shaped block 23 is driven to rotate together. When the speed of the inner ring 21 is within a certain range, the special-shaped block 23 deflects under the action of centrifugal force, and the special-shaped block 23 separates from the inner and outer rings 21, 22 Contact to make the inner ring 21 run without wear; when a reverse torque is transmitted from the main beam 3, the inner ring 21 runs in the reverse direction, and the special-shaped block 23 is brought into contact with the inner and outer rings 21 and 22 under the action of the pre-tensioned spring. The inner ring 21 and the outer ring 22 are wedged together by the special-shaped block 23, so as to withstand the reverse moment transferred from the main beam.
  • the power mechanism drives the tracker to run, at this time the one-way transmission device 2 does not work and follows the main beam 3; when the wind protection tracking system is flat, the power mechanism stops working, and the main beam 3
  • the superimposed reverse torque is transmitted to the center of the main beam 3 due to strong wind vibration. If a unidirectional transmission device is encountered in the reverse torque transmission path, the reverse torque superposition will stop. At this time, the moments on each section of the main girder 3 will be distributed on each section of the main girder 3, and will not form the largest reverse moment superposition on the central main girder. In this way, the central main girder does not need to be thickened or special treatments are sufficient. Safe bending requirements.
  • the one-way transmission device 2 includes a transmission member (not labeled) and a second base 25, and the transmission member is a cylindrical structure;
  • the second base 25 includes a first side wall 251, a second side wall 252, and a circular arc wall 253.
  • the first side wall 251 and the second side wall 252 are vertically fixed to the bottom of the second base 25, and the circular arc wall 253 is located at the bottom of the second base 25.
  • the lower end of the arc wall 253 is perpendicular to and fixedly connected to the bottom of the second base 25, and the upper end of the arc wall 253 is an arc surface and is connected to the outer ring 22 of the transmission member.
  • the bottom of the second base 25 is provided with a screw hole, and a bolt adapted to the screw hole passes through the first The screw holes at the bottom of the second base 25 fix the second base 25 and the upright column together.
  • the arc part of the second base 25 is covered and connected with the outer ring 22 of the transmission member, so that the contact area between the second base 25 and the transmission member is increased, thereby reducing the force on the transmission member, and thereby improving the photovoltaic tracker
  • this embodiment provides a photovoltaic tracking array, including: a one-way transmission photovoltaic tracker, a power mechanism, and a driving motor Control the operation of multiple one-way transmission photovoltaic trackers, and the one-way transmission photovoltaic trackers are fixed on the prefabricated base via the column 1.
  • a plurality of one-way transmission photovoltaic trackers are arranged in a straight line, and two adjacent main beams 3 are connected as a whole.
  • the operation process of the photovoltaic tracker is divided into: reverse tracking, automatic tracking, wind, snow, rain and other operation modes.
  • certain protective measures need to be activated.
  • the photovoltaic tracker will run the system to the horizontal position of the photovoltaic module (the tracker receives the least wind load in this state), but the photovoltaic tracker will be flat when the wind is flat.
  • the reverse torque is superimposed section by section along the main girder, so that the central main girder bears the superimposition of the reverse torque on both sides and produces a great reverse torque. Therefore, there is a great safety hazard and the long distance of the main girder cannot be realized. Of laying.
  • the addition of a one-way transmission node is taken as a starting point to interrupt the stepwise superposition of the reverse torque on the main beam toward the center.
  • This scheme takes the intermediate drive structure as the central point, and adds a one-way transmission device at the connection part of the column and the main beam.
  • a plastic bearing and other two-way transmission connecting parts were usually installed at this position.
  • the reverse torque transmission along the main beam will be interrupted by the one-way transmission device.
  • the reverse torque will be distributed on each section of the main beam, and the torque will be relatively evenly distributed on each section of the main beam without causing
  • the central moment of the main beam is too large and the main beam is damaged. Therefore, the length of the main beam will no longer be limited, and the main beam of the photovoltaic tracking system can be increased according to demand and still meet the requirements of long-term tracking and safe operation.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及光伏技术领域,提供了一种单向传动的光伏追踪器及光伏追踪阵列,包括:立柱,用于支撑所述单向传动的光伏追踪器;单向传动装置,用于打断所述光伏追踪器转动过程中沿主梁的反向力矩,所述单向传动装置的下端与所述立柱的顶端连接;主梁,套设在所述单向传动装置内,经所述单向传动装置与所述立柱转动连接;光伏组件,固定在所述主梁上,可随所述主梁在所述立柱上转动。藉由前述构造,可降低反向力矩在主梁上向中心叠加,避免中心主梁因承受太大反向力矩而损坏。

Description

一种单向传动的光伏追踪器及光伏追踪阵列 技术领域
本发明涉及光伏技术领域,尤其是指提供了一种单向传动的光伏追踪器及光伏追踪阵列。
背景技术
随着全球环保意识的逐渐增强,利用可再生资源实现清洁发电逐渐取代了之前利用不可再生资源以破坏环境为代价来实现发电。因此,太阳能光伏发电作为一种绿色清洁且可再生的发电技术日益受到人们的青睐,为了实现能量利用的最大化,现有的太阳能装置上通常安装光伏追踪器,以使得光伏板能够尽量垂直于太阳的光线。
光伏跟踪器在全天的跟踪工作中,主梁承担了支撑光伏组件,传递转动扭力的作用。但由于光伏跟踪器通常较长,主梁在传递扭力的过程中,反向扭矩也将沿主梁以反向的方式朝光伏跟踪器中心逐段叠加。为了避免反向扭矩逐段朝中间叠加过大而造成主梁受损,通常光伏跟踪器的主梁不能做到太长。若要实现主梁长度的延伸,现有的方式通常为将主梁加厚,但加厚主梁引起的成本上升非常明显,通常因主梁重量增加,也将会对光伏跟踪器的其他结构部分提出更高的设计要求。
光伏追踪器的运行过程分为:逆跟踪、自动跟踪、大风、雪天、雨天等运行方式。如大风模式下,需启动一定的保护措施,光伏追踪器会 将系统运行到光伏组件水平状态位置,但光伏跟踪器在大风放平的状态下,因风载荷将带动光伏跟踪器的主梁振动而产生反向扭矩,此反向扭矩将沿主梁逐段叠加,进而使得中心主梁因承受了两侧反向扭矩的叠加而产生极大的反向扭矩,因而存在极大的安全隐患,也无法实现主梁较长距离的铺设。
发明内容
为解决上述技术问题,本发明的主要目的在于提供了一种单向传动的光伏追踪器及光伏追踪阵列,该结构可降低反向力矩在主梁上向中心叠加,避免中心主梁因承受太大反向力矩而损坏。
为达成上述目的,本发明应用的技术方案是:提供了一种单向传动的光伏追踪器,包括:
立柱,用于支撑;
单向传动装置,用于打断所述光伏追踪器转动过程中沿主梁的反向力矩,所述单向传动装置的下端与所述立柱的顶端连接;
主梁,套设在所述单向传动装置内,经所述单向传动装置与所述立柱转动连接;
光伏组件,固定在所述主梁上,可随所述主梁在所述立柱上转动。
本技术方案中,以增加单向传动节点作为出发点,打断反向扭矩在主梁上的逐段向中心叠加。本方案以中间驱动结构为中心点,在立柱与主梁的连接部位,增设单向传动装置,以往在此位置,通常设置塑料轴承等可双向传动的连接部件。增加此单向传动装置后,沿主梁的反向力 矩传递将被单向传动装置打断,反向力矩将分布在各段主梁上,力矩在各段主梁上相对均匀分布,不会造成主梁中心力矩过大而引起主梁受损。
在本实施例中优选,所述单向传动装置包括传动构件及底座,所述传动构件为圆柱形结构;
所述底座的顶部与所述传动构件的底部固定连接,所述底座的底部与所述立柱的顶端连接。
在本实施例中优选,所述传动构件包括内圈、外圈及多个异形块,所述内圈与所述主梁连接,所述外圈与所述底座固定连接,所述内圈与所述外圈之间形成滚道,多个所述异形块设置在所述滚道中,所述异形块连接有预紧弹簧;
当所述内圈正向运转时,带动所述异形块一起旋转,当所述内圈转速在一定范围内时,所述异形块在离心力的作用下发生偏转,所述异形块与所述内、外圈脱离接触,使所述内圈无磨损运转;
当所述主梁上有反向力矩传来时,所述内圈反向运转,在所述预紧弹簧的作用下使所述异形块与所述内、外圈接触,经所述异形块将所述内圈与所述外圈楔紧成一体,从而承受由所述内圈转送来的反向力矩。
在本实施例中优选,所述异形块包括两对相互平行的平面及两个偏心圆弧面,一对相互平行的平面上分别设有端轴,所述端轴用于安装定位,所述端轴上设有槽口,所述槽口用于安装所述预紧弹簧。
本技术方案中,若跟踪器在持续跟踪过程中,动力机构驱动跟踪器运转,此时单向传动装置不起作用,跟随跟踪主梁运转;当大风保护跟踪系统整体放平时,动力机构停止工作,跟踪主梁因大风振动而产生朝 主梁中心传递叠加的反向力矩,若反向力矩传递路径中遇到单向传动装置,则反向力矩叠加停止。此时在各段主梁上的力矩将分布在各段主梁上,不会在中心主梁上形成最大的反向力矩叠加,如此,中心主梁无需加厚或者特殊处理即可满足安全抗弯要求。
在本实施例中优选,所述底座包括第一侧壁、第二侧壁及安装壁,所述安装壁分别与所述第一侧壁、所述第二侧壁连接,形成U型的槽口,所述安装壁与所述传动构件的外圈固定连接,所述槽口夹持所述立柱顶部,使所述底座与所述立柱固定连接。
本技术方案中,底座为U型结构,底座的U型结构槽口夹持立柱顶部设计,使得单向传动装置更易于与立柱安装,使得工作人员提高了光伏板支撑结构和光伏追踪阵列的组装和搭建效率,保证了施工期。
在本实施例中优选,所述底座的顶部为圆弧结构,与所述传动构件的外圈适配且固定连接,所述底座的底部为平面结构,所述底座的底部与所述立柱固定连接。
本技术方案中,底座的圆弧部分与传动构件包覆连接,使得底座与传动构件的接触为面增大,从而降低了传动构件的受力,进而提高了本光伏追踪器的稳定性和承重性能;也有弧面侧壁保证其抗扭性能,保证了单向传动装置的强度,进而保证了本光伏光伏追踪器结构的强度;且弧面侧壁还保证单向传动装置受力的均匀性,进而保证单向传动装置的使用寿命。
在本实施例中优选,所述单向传动装置为逆止器或小型回转支承。
在本实施例中优选,所述主梁为圆柱形结构,所述光伏组件通过抱 箍与所述主梁连接。
本技术方案中,主梁一般为一个实心或空心的杆状结构,由于光伏组件具有一定的面积,所以,为了稳定地支撑光伏组件,杆状结构的主梁的尺寸一般比较大,这导致了主梁的制作成本较高。目前主梁主要为镀锌方管或圆管,方管主梁使用的轴承是内方外圆,导致轴承受力不均匀,影响轴承使用寿命;同时方形主梁在抗扭方面也存在不足。且圆管主梁使用的轴承内外均为圆形,使得其受力均匀,进而既能保证轴承的使用寿命,又能保证主梁的抗扭性能。
本发明应用的另一技术方案是:提供了一种光伏追踪阵列,包括:
多个如上述任意一项所述的单向传动的光伏追踪器及动力机构,所述驱动电机与所述主梁连接,所述驱动电机控制多个所述单向传动的光伏追踪器的主梁运转,所述单向传动的光伏追踪器的立柱固定在预制基座上。
在本实施例中优选,多个所述单向传动的光伏追踪器呈直线排列,且相邻两个所述主梁连接为一体。
本技术方案中,以增加单向传动节点作为出发点,打断反向扭矩在主梁上的逐段向中心叠加。本方案以中间驱动结构为中心点,在立柱与主梁的连接部位,增设单向传动装置,以往在此位置,通常设置塑料轴承等可双向传动的连接部件。增加此单向传动装置后,沿主梁的反向力矩传递将被单向传动装置打断,反向力矩将分布在各段主梁上,力矩在各段主梁上相对均匀分布,不会造成主梁中心力矩过大而引起主梁受损。因此主梁长度将不再受限,光伏跟踪系统的主梁可按照需求增长,仍可 满足长期跟踪安全运行的要求。
本发明提供一种单向传动的光伏追踪器及光伏追踪阵列,能够带来以下至少一种有益效果:
1.本发明中,通过以增加单向传动节点作为出发点,打断反向扭矩在主梁上的逐段向中心叠加,以中间驱动结构为中心点,在立柱与主梁的连接部位,增设单向传动装置,增加此单向传动装置后,沿主梁的反向力矩传递将被单向传动装置打断,反向力矩将分布在各段主梁上,力矩在各段主梁上相对均匀分布,不会造成主梁中心力矩过大而引起主梁受损。
2.本发明中,通过立柱与主梁的连接部位增设单向传动装置,可将反向力矩分布在各段主梁上,降低各段主梁的设计要求,并且主梁长度可延长,突破现有的长度受反向力矩的限制。
附图说明
图1是本实施例一中单向传动的光伏追踪器的结构示意图。
图2是本实施例三中单向传动装置部分结构的示意图。
图3是本实施例一中异形块截面的结构示意图。
附图标号说明:
1.立柱,2.单向传动装置,21.内圈,22.外圈,23.异形块,231.第一侧面,232.第二侧面,233.第一弧面,234.第二弧面,24.第一底座, 25.第二底座,251.第一侧壁,252.第二侧壁,253.圆弧壁,3.主梁,31.抱箍,4.光伏组件。
具体实施方式
尽管本发明可以容易地表现为不同形式的实施例,但在附图中示出并且在本说明书中将详细说明的仅仅是其中一些具体实施例,同时可以理解的是本说明书应视为是本发明原理的示范性说明,而并非旨在将本发明限制到在此所说明的那样。
由此,本说明书中所指出的一个特征将用以说明本发明的一个实施例的其中一个特征,而不是暗示本发明的每个实施例必须具有所说明的特征。此外,应当注意的是本说明书描述了许多特征。尽管某些特征可以组合在一起以示出可能的系统设计,但是这些特征也可用于其它的未明确说明的组合。由此,除非另有说明,所说明的组合并非旨在限制。
在附图所示的实施例中,方向的指示(诸如上、下、左、右、前和后)用以解释本发明的各种组件的结构和运动不是绝对的而是相对的。当这些组件处于附图所示的位置时,这些说明是合适的。如果这些组件的位置的说明发生改变时,则这些方向的指示也相应地改变。
以下结合本说明书的附图,对本发明的较佳实施例予以进一步地详尽阐述。
在实施例一中,如图1所示,本实施例提供了一种单向传动的光伏追踪器,包括:立柱1,用于支撑单向传动的光伏追踪器,立柱1可以为方钢、型钢、钢管等;单向传动装置2,用于打断光伏追踪器转动过 程中沿主梁3的反向力矩,单向传动装置2的下端与立柱1的顶端连接,单向传动装置可为逆止器或者小型回转等;主梁3,套设在单向传动装置2内,经单向传动装置2与立柱1转动连接,主梁3可为圆管或方管;光伏组件4,固定在主梁3上,可随主梁3在立柱1上转动。光伏组件(俗称太阳能电池板)由太阳能电池片或由激光切割机机或钢线切割机切割开的不同规格的太阳能电池组合在一起构成。并且把他们封装在一个不锈钢、铝或其他非金属边框上,安装好上面的玻璃及背面的背板、充入氮气、密封。优选地,主梁3为圆柱形结构,光伏组件4通过抱箍31与主梁3连接。主梁3一般为一个实心或空心的杆状结构,由于光伏组件4具有一定的面积,所以,为了稳定地支撑光伏组件4,杆状结构的主梁3的尺寸一般比较大,这导致了主梁3的制作成本较高。目前主梁3主要为镀锌方管或圆管,方管主梁使用的轴承是内方外圆,导致轴承受力不均匀,影响轴承使用寿命;同时方形主梁在抗扭方面也存在不足。且圆管主梁使用的轴承内外均为圆形,使得其受力均匀,进而既能保证轴承的使用寿命,又能保证主梁3的抗扭性能。
光伏跟踪器在全天的跟踪工作中,主梁3承担了支撑光伏组件4,传递转动扭力的作用。但由于光伏跟踪器通常较长,主梁3在传递扭力的过程中,反向扭矩也将沿主梁3以反向的方式朝光伏跟踪器中心逐段叠加。为了避免反向扭矩逐段朝中间叠加过大而造成主梁3受损,通常光伏跟踪器的主梁3不能做到太长。若要实现主梁3长度的延伸,现有的方式通常为将主梁3加厚,但加厚主梁3引起的成本上升非常明显,通常因主梁3重量增加,也将会对光伏跟踪器的其他结构部分提出更高 的设计要求。本实施例中,以增加单向传动节点作为出发点,打断反向扭矩在主梁3上的逐段向中心叠加。本方案以中间驱动结构为中心点,在立柱1与主梁3的连接部位,增设单向传动装置2,以往在此位置,通常设置塑料轴承等可双向传动的连接部件。增加此单向传动装置2后,沿主梁3的反向力矩传递将被单向传动装置2打断,反向力矩将分布在各段主梁3上,力矩在各段主梁3上相对均匀分布,不会造成主梁3中心力矩过大而引起主梁3受损。若跟踪器在持续跟踪过程中,动力机构驱动跟踪器运转,此时单向传动装置2不起作用,跟随跟踪主梁运转;当大风保护跟踪系统整体放平时,动力机构停止工作,跟踪主梁因大风振动而产生朝主梁3中心传递叠加的反向力矩,若反向力矩传递路径中遇到单向传动装置2,则反向力矩叠加停止。此时在各段主梁3上的力矩将分布在各段主梁3上,不会在中心主梁上形成最大的反向力矩叠加,如此,中心主梁无需加厚或者特殊处理即可满足安全抗弯要求。
在实施例二中,如图1、图3所示,在实施例一的基础上,单向传动装置2包括传动构件(未标注)及第一底座24,传动构件为圆柱形结构;第一底座24的顶部与传动构件的底部固定连接,如电焊连接,第一底座24的底部与立柱1的顶端连接,如螺栓连接。传动构件包括内圈21、外圈22及多个异形块23,内圈21的内径与主梁3的外径适配,内圈21套设在主梁3上,使内圈21与主梁3固定在一起;外圈22下部焊接有两个螺杆,两个螺杆相互平行且竖直向下;第一底座24包括第一侧壁、第二侧壁及安装壁,安装壁分别与第一侧壁、第二侧壁连接,形成U型的槽口,安装壁上设有两个与外圈22螺杆适配的螺孔,安装壁与传 动构件的外圈22经螺栓固定连接,立柱1为方管或U型槽钢,槽口夹持在立柱1顶部的两侧,两侧通过螺栓使第一底座24与立柱1固定连接。内圈21与外圈22之间形成滚道,多个异形块23设置在滚道中,异形块23连接有预紧弹簧;如图3,异形块23是由两个相互平行的第一侧面231、第二侧面232与两个偏心的第一弧面233、第二弧面234相交而构成的实体结构,异形块23的两侧设有端轴,端轴用于安装定位,端轴上设有槽口,槽口用于安装预紧弹簧。
当内圈21正向运转时,带动异形块23一起旋转,当内圈21转速在一定范围内时,异形块23在离心力的作用下发生偏转,异形块23与内、外圈21、22脱离接触,使内圈21无磨损运转;当主梁3上有反向力矩传来时,内圈21反向运转,在预紧弹簧的作用下使异形块23与内、外圈21、22接触,经异形块23将内圈21与外圈22楔紧成一体,从而承受由主梁转送来的反向力矩。若跟踪器在持续跟踪过程中,动力机构驱动跟踪器运转,此时单向传动装置2不起作用,跟随主梁3运转;当大风保护跟踪系统整体放平时,动力机构停止工作,主梁3因大风振动而产生朝主梁3中心传递叠加的反向力矩,若反向力矩传递路径中遇到单向传动装置,则反向力矩叠加停止。此时在各段主梁3上的力矩将分布在各段主梁3上,不会在中心主梁上形成最大的反向力矩叠加,如此,中心主梁无需加厚或者特殊处理即可满足安全抗弯要求。
在实施例三中,如图1、图2所示,在实施例一、二的基础上,单向传动装置2包括传动构件(未标注)及第二底座25,传动构件为圆柱形结构;第二底座25包括第一侧壁251、第二侧壁252及圆弧壁253, 第一侧壁251、第二侧壁252相互垂直固定在第二底座25的底部,圆弧壁253位于第一侧壁251与第二侧壁252之间,圆弧壁253的下端与第二底座25的底部垂直且固定连接,圆弧壁253的上端为圆弧面,且与传动构件的外圈22适配,使圆弧壁253上端的圆弧面顶持在外圈22的下端,二者经焊接固定在一起;第二底座25的底部设有螺孔,与螺孔适配的螺栓穿过第二底座25底部的螺孔,将第二底座25与立柱固定在一起。
第二底座25的圆弧部分与传动构件的外圈22包覆连接,使得第二底座25与传动构件的接触为面增大,从而降低了传动构件的受力,进而提高了本光伏追踪器的稳定性和承重性能;也有弧面壁253保证其抗扭性能,保证了单向传动装置2的强度,进而保证了本光伏光伏追踪器结构的强度;且弧面壁253还保证单向传动装置2受力的均匀性,进而保证单向传动装置2的使用寿命。
在实施例四中,如图1所示,在实施例一、二、三的基础上,本实施例提供了一种光伏追踪阵列,包括:单向传动的光伏追踪器及动力机构,驱动电机控制多个单向传动的光伏追踪器运转,单向传动的光伏追踪器经立柱1固定在预制基座上。多个单向传动的光伏追踪器呈直线排列,且相邻两个主梁3连接为一体。
光伏追踪器的运行过程分为:逆跟踪、自动跟踪、大风、雪天、雨天等运行方式。如大风模式下,需启动一定的保护措施,光伏追踪器会将系统运行到光伏组件水平状态位置(此状态下跟踪器所受风载荷最小),但光伏跟踪器在大风放平的状态下,反向扭矩沿主梁逐段叠加,进而使得中心主梁因承受了两侧反向扭矩的叠加而产生极大的反向扭 矩,因而存在极大的安全隐患,也无法实现主梁较长距离的铺设。本实施例中,以增加单向传动节点作为出发点,打断反向扭矩在主梁上的逐段向中心叠加。本方案以中间驱动结构为中心点,在立柱与主梁的连接部位,增设单向传动装置,以往在此位置,通常设置塑料轴承等可双向传动的连接部件。增加此单向传动装置后,沿主梁的反向力矩传递将被单向传动装置打断,反向力矩将分布在各段主梁上,力矩在各段主梁上相对均匀分布,不会造成主梁中心力矩过大而引起主梁受损。因此主梁长度将不再受限,光伏跟踪系统的主梁可按照需求增长,仍可满足长期跟踪安全运行的要求。
应当说明的是,上述实施例均可根据需要自由组合。以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种单向传动的光伏追踪器,其特征在于,包括:
    立柱,用于支撑;
    单向传动装置,用于打断所述光伏追踪器转动过程中沿主梁的反向力矩,所述单向传动装置的下端与所述立柱的顶端连接;
    主梁,套设在所述单向传动装置内,经所述单向传动装置与所述立柱转动连接;
    光伏组件,固定在所述主梁上,可随所述主梁在所述立柱上转动。
  2. 根据权利要求1所述的单向传动的光伏追踪器,其特征在于:
    所述单向传动装置包括传动构件及底座,所述传动构件为圆柱形结构;
    所述底座的顶部与所述传动构件的底部固定连接,所述底座的底部与所述立柱的顶端连接。
  3. 根据权利要求2所述的单向传动的光伏追踪器,其特征在于:
    所述传动构件包括内圈、外圈及多个异形块,所述内圈与所述主梁连接,所述外圈与所述底座固定连接,所述内圈与所述外圈之间形成滚道,多个所述异形块设置在所述滚道中,所述异形块连接有预紧弹簧;
    当所述内圈正向运转时,带动所述异形块一起旋转,当所述内圈转速在一定范围内时,所述异形块在离心力的作用下发生偏转,所述异形块与所述内、外圈脱离接触,使所述内圈无磨损运转;
    当所述主梁上有反向力矩传来时,所述内圈反向运转,在所述预紧弹簧的作用下使所述异形块与所述内、外圈接触,经所述异形块将所述内圈与所述外圈楔紧成一体,从而承受由所述内圈转送来的反向力矩。
  4. 根据权利要求3所述的单向传动的光伏追踪器,其特征在于:
    所述异形块包括两对相互平行的平面及两个偏心圆弧面,一对相互平行的平面上分别设有端轴,所述端轴用于安装定位,所述端轴上设有槽口,所述槽口用于安装所述预紧弹簧。
  5. 根据权利要求2所述的单向传动的光伏追踪器,其特征在于:
    所述底座包括第一侧壁、第二侧壁及安装壁,所述安装壁分别与所述第一侧壁、所述第二侧壁连接,形成U型的槽口,所述安装壁与所述传动构件的外圈固定连接,所述槽口夹持所述立柱顶部,使所述底座与所述立柱固定连接。
  6. 根据权利要求2所述的单向传动的光伏追踪器,其特征在于:
    所述底座的顶部为圆弧结构,与所述传动构件的外圈适配且固定连接,所述底座的底部为平面结构,所述底座的底部与所述立柱固定连接。
  7. 根据权利要求1所述的单向传动的光伏追踪器,其特征在于:
    所述单向传动装置为逆止器或小型回转支承。
  8. 根据权利要求1-7中任意一项所述的单向传动的光伏追踪器,其特征在于:
    所述主梁为圆柱形结构,所述光伏组件通过抱箍与所述主梁连接。
  9. 一种光伏追踪阵列,其特征在于,包括:
    多个如权利要求1-8中任意一项所述的单向传动的光伏追踪器及驱动电机,所述驱动电机与所述主梁连接,所述驱动电机控制多个所述单向传动的光伏追踪器的主梁运转,所述单向传动的光伏追踪器的立柱固定在预制基座上。
  10. 根据权利要求9所述的光伏追踪阵列,其特征在于:
    多个所述单向传动的光伏追踪器呈直线排列,且相邻两个所述主梁连接为一体。
PCT/CN2019/103457 2019-04-20 2019-08-29 一种单向传动的光伏追踪器及光伏追踪阵列 WO2020215569A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910320781.5 2019-04-20
CN201910320781.5A CN109889155A (zh) 2019-04-20 2019-04-20 一种单向传动的光伏追踪器及光伏追踪阵列

Publications (1)

Publication Number Publication Date
WO2020215569A1 true WO2020215569A1 (zh) 2020-10-29

Family

ID=66937925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103457 WO2020215569A1 (zh) 2019-04-20 2019-08-29 一种单向传动的光伏追踪器及光伏追踪阵列

Country Status (2)

Country Link
CN (1) CN109889155A (zh)
WO (1) WO2020215569A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109889155A (zh) * 2019-04-20 2019-06-14 江苏中信博新能源科技股份有限公司 一种单向传动的光伏追踪器及光伏追踪阵列

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201763814U (zh) * 2010-09-04 2011-03-16 胡国贤 一种受力单向轴承
CN105024638A (zh) * 2015-08-26 2015-11-04 四川钟顺太阳能开发有限公司 一种用于太阳能平单轴跟踪系统的支撑结构
CN105262422A (zh) * 2015-11-25 2016-01-20 中信博新能源科技(苏州)有限公司 用于光伏跟踪系统的导向支承机构及光伏跟踪系统
JP2016073101A (ja) * 2014-09-30 2016-05-09 ダイキン工業株式会社 太陽光パネルユニットおよび太陽光発電システム。
CN106026878A (zh) * 2016-07-01 2016-10-12 张胜平 太阳能跟踪互联双柱机器人
CN107294482A (zh) * 2017-07-24 2017-10-24 江苏中信博新能源科技股份有限公司 一种光伏系统及其跟踪机构
CN208548864U (zh) * 2018-08-21 2019-02-26 厦门安泰科新能源科技有限公司 一种太阳能追踪系统传动装置
CN109889155A (zh) * 2019-04-20 2019-06-14 江苏中信博新能源科技股份有限公司 一种单向传动的光伏追踪器及光伏追踪阵列
CN209488507U (zh) * 2019-04-20 2019-10-11 江苏中信博新能源科技股份有限公司 一种单向传动的光伏追踪器及光伏追踪阵列

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI424136B (zh) * 2009-08-24 2014-01-21 Herng Jiunn Liao 用於太陽能板之雙軸式太陽追蹤器系統與裝置
CN102075116B (zh) * 2010-12-06 2012-12-05 安徽枞晨回转支承有限公司 自动跟踪太阳的回转底盘
CN207354201U (zh) * 2017-10-20 2018-05-11 青海鹭岛新能源开发利用有限公司 光伏支架以及光伏组件总成

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201763814U (zh) * 2010-09-04 2011-03-16 胡国贤 一种受力单向轴承
JP2016073101A (ja) * 2014-09-30 2016-05-09 ダイキン工業株式会社 太陽光パネルユニットおよび太陽光発電システム。
CN105024638A (zh) * 2015-08-26 2015-11-04 四川钟顺太阳能开发有限公司 一种用于太阳能平单轴跟踪系统的支撑结构
CN105262422A (zh) * 2015-11-25 2016-01-20 中信博新能源科技(苏州)有限公司 用于光伏跟踪系统的导向支承机构及光伏跟踪系统
CN106026878A (zh) * 2016-07-01 2016-10-12 张胜平 太阳能跟踪互联双柱机器人
CN107294482A (zh) * 2017-07-24 2017-10-24 江苏中信博新能源科技股份有限公司 一种光伏系统及其跟踪机构
CN208548864U (zh) * 2018-08-21 2019-02-26 厦门安泰科新能源科技有限公司 一种太阳能追踪系统传动装置
CN109889155A (zh) * 2019-04-20 2019-06-14 江苏中信博新能源科技股份有限公司 一种单向传动的光伏追踪器及光伏追踪阵列
CN209488507U (zh) * 2019-04-20 2019-10-11 江苏中信博新能源科技股份有限公司 一种单向传动的光伏追踪器及光伏追踪阵列

Also Published As

Publication number Publication date
CN109889155A (zh) 2019-06-14

Similar Documents

Publication Publication Date Title
KR100997883B1 (ko) 토크튜브 지지체 및 이를 이용한 태양광 트랙커
CN104503470B (zh) 一种光伏发电斜单轴跟踪支架
JP2016509462A (ja) 太陽エネルギー集光のための支持体を含む太陽追尾式の光起電太陽集光器アレイ
WO2015051267A1 (en) Solar photovoltaic single axis tracker
US10305418B2 (en) Torque tube coupler
CN212163236U (zh) 一种自供电的平单轴光伏跟踪系统
CN102621996A (zh) 联动式单轴太阳能追踪器系统及其转动传动机构
KR20150026296A (ko) 태양 광 추적 식 전기 발생장치
WO2020215569A1 (zh) 一种单向传动的光伏追踪器及光伏追踪阵列
CN102291048A (zh) 双轴回转自动跟踪太阳能装置
CN102981515A (zh) 一种伞式单轴跟踪光伏发电系统
KR20130020410A (ko) 경사 선형 양축식 솔라 트래커
KR100959554B1 (ko) 태양광 발전용 단축 회전식 가대 및 이를 이용한 태양광발전 시스템
CN202197233U (zh) 双轴回转自动跟踪太阳能装置
CN102200784B (zh) 一种链式传动的太阳能二维跟踪装置
KR20130005942A (ko) 태양광 트랙커
CN209488507U (zh) 一种单向传动的光伏追踪器及光伏追踪阵列
WO2020215482A1 (zh) 一种带自锁功能的柔性支撑光伏跟踪支架
CN107525284B (zh) 一种定日镜装置
CN215059216U (zh) 一种高径向载荷回转减速机
NL2033453B1 (en) A Floating Wave Energy Conversion Device with an Auxiliary Stable Conversion Mechanism
CN203867781U (zh) 一种叶片可自动调节角度的垂直轴风力原动机
CN208226950U (zh) 大跨度光伏阵列跟踪支架的摆臂装置
CN107992095B (zh) 一种双轴跟踪装置
CN112636679B (zh) 一种具有多点支撑传动轴的跟踪传动系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926369

Country of ref document: EP

Kind code of ref document: A1