WO2020213527A1 - Resin film, high-frequency circuit board, and production method for high-frequency circuit board - Google Patents

Resin film, high-frequency circuit board, and production method for high-frequency circuit board Download PDF

Info

Publication number
WO2020213527A1
WO2020213527A1 PCT/JP2020/016123 JP2020016123W WO2020213527A1 WO 2020213527 A1 WO2020213527 A1 WO 2020213527A1 JP 2020016123 W JP2020016123 W JP 2020016123W WO 2020213527 A1 WO2020213527 A1 WO 2020213527A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
resin
frequency circuit
circuit board
ether ketone
Prior art date
Application number
PCT/JP2020/016123
Other languages
French (fr)
Japanese (ja)
Inventor
貴司 権田
昭紘 小泉
Original Assignee
信越ポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越ポリマー株式会社 filed Critical 信越ポリマー株式会社
Priority to CN202080029888.5A priority Critical patent/CN113784838A/en
Priority to KR1020217034273A priority patent/KR20220005466A/en
Priority to JP2021514923A priority patent/JP7515961B2/en
Publication of WO2020213527A1 publication Critical patent/WO2020213527A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Definitions

  • the present invention relates to a resin film used from the MHz band to the GHz band, a high-frequency circuit board and a method for manufacturing the same, and more particularly to a resin film used in the band from 800 MHz to 100 GHz or less, a high-frequency circuit board and a method for manufacturing the same. It is a thing.
  • circuit boards are mainly designed and developed on the premise of communication utilizing the low frequency band, and are not designed and developed on the premise of large capacity and high speed communication utilizing the high frequency band.
  • the value of the rate is as high as about 4.3 of the normal type, and the dielectric loss tangent is also not as low as about 0.018.
  • a circuit board for large-capacity and high-speed communication is required to have a material having low dielectric properties such as relative permittivity and dielectric loss tangent, and excellent properties such as heat resistance and mechanical strength.
  • the relative permittivity is a parameter indicating the degree of polarization in the dielectric, and the higher the value, the larger the propagation delay of the electric signal. Therefore, in order to increase the propagation speed of the electric signal and enable high-speed calculation, it is preferable that the relative permittivity is low.
  • the dielectric loss tangent (also referred to as tan ⁇ ) is a parameter indicating the amount of electrical signal propagating in the dielectric that is converted into heat and lost. The lower the value, the smaller the signal loss and the electrical signal transmissibility. Is improved. Further, since the dielectric loss tangent increases as the frequency increases in the high frequency band, it is necessary to use a material whose value can be reduced in order to suppress the loss as much as possible.
  • circuit boards used in high frequency bands such as the MHz band to the GHz band are manufactured from materials having a lower relative permittivity and dielectric loss tangent than before in order to realize large capacity and high speed communication. Is strongly desired. Based on this point, materials with low relative permittivity and dielectric loss tangent have been enthusiastically studied, and as a result, polyarylene ether ketone (PAEK) resin, which is also called aromatic polyetherketone, has been proposed and attracted attention.
  • PAEK polyarylene ether ketone
  • Polyarylene ether ketone resin is a thermoplastic crystalline resin having excellent electrical insulation properties, mechanical properties, heat resistance, chemical resistance, radiation resistance, hydrolysis resistance, low water absorption, recyclability, etc. In view of this excellent property, the polyarylene ether ketone resin has been proposed and used in a wide range of fields such as automobile field, energy field, semiconductor field, medical field, aerospace component and the like.
  • the relative permittivity of the resin film in the frequency range of 800 MHz or more and 100 GHz or less is 3.5 or less, and the dielectric loss tangent is 0.007 or less, resulting in excellent low dielectric properties. Obtainable. Further, according to this resin film, it is possible to obtain excellent heat resistance that the resin film does not deform even if it is floated in a solder bath at 288 ° C. for 10 seconds.
  • the resin film made of polyarylene ether ketone resin can obtain excellent low dielectric properties and heat resistance, it is inferior in heating dimensional stability. Therefore, when the conductive layers are laminated, the heating dimensional characteristics with the conductive layer are obtained. Is so different that a new big problem of curling or deforming the laminated body arises.
  • the present invention has been made in view of the above, and is a resin capable of improving heating dimensional stability without deteriorating the low dielectric property and heat resistance of a film for high frequency circuit boards manufactured from a polyarylene ether ketone resin. It is an object of the present invention to provide a film, a high frequency circuit board, and a method for manufacturing the same.
  • the present invention is characterized by a resin film containing 100 parts by mass of a polyarylene ether ketone resin and 10 parts by mass or more and 80 parts by mass or less of a non-swelling synthetic mica. ..
  • the relative crystallinity of the resin film is preferably 80% or more. Further, it is preferable that the coefficient of linear expansion of the resin film is 1 ppm / ° C. or higher and 50 ppm / ° C. or lower.
  • the non-swelling synthetic mica may be at least one of phlogopite fluorine, tetrasilicon mica potassium, and potassium teniolite.
  • the average particle size of synthetic mica is preferably 0.5 ⁇ m or more and 50 ⁇ m or less. Further, it is desirable that the aspect ratio of the synthetic mica is 5 or more and 100 or less.
  • the present invention is characterized in that it is a high frequency circuit board having the resin film according to any one of claims 1 to 4.
  • the high-frequency circuit board may include a metal layer that is heat-sealed and laminated on a resin film.
  • the method for manufacturing a high frequency circuit board according to claim 5 or 6 is used.
  • a molding material containing at least 100 parts by mass of polyarylene ether ketone resin and 10 parts by mass or more and 80 parts by mass or less of non-swelling synthetic mica is melt-kneaded, and this molding material is extruded into a resin film by a die of an extrusion molding machine.
  • the relative crystallinity of the resin film is set to 80% or more, and the linear expansion coefficient of this resin film is set to 1 ppm / ° C or higher and 50 ppm / ° C or lower. It is characterized by doing.
  • the resin film in the claims includes a resin sheet in addition to the resin film.
  • This resin film is not particularly limited to transparent, opaque, translucent, non-stretched film, uniaxially stretched film, and biaxially stretched film.
  • the non-swellable synthetic mica include non-swellable synthetic mica heat-treated at 600 ° C. or higher.
  • the metal layer is laminated on one side of the resin film or on both sides, if necessary.
  • the resin film is molded from a non-swelling synthetic mica-containing molding material, the coefficient of linear expansion of the resin film can be reduced and the heating dimension stability of the resin film can be improved. Further, since the resin film is molded from a molding material containing a polyarylene ether ketone resin, the relative permittivity of the resin film in the frequency range of 800 MHz or more and 100 GHz or less is 3.5 or less, and the dielectric loss tangent is 0.006 or less. , The values of relative permittivity and dielectric loss tangent can be made lower than before.
  • the polyarylene ether ketone resin has an effect that the heating dimensional stability can be improved without deteriorating the low dielectric property and heat resistance of the manufactured resin film for high frequency circuit boards and the like. ..
  • the relative crystallinity of the resin film is 80% or more, excellent solder heat resistance can be obtained. Further, if the relative crystallinity of the resin film is 80% or more, it can be expected to secure the heating dimensional stability that can be used as a high frequency circuit board.
  • the coefficient of linear expansion of the resin film is 1 ppm / ° C. or higher and 50 ppm / ° C. or lower, when the resin film and the conductive layer are laminated, curl or warpage occurs when the resin film and the conductive layer are laminated. Can be prevented from being likely to occur. Further, it is possible to eliminate the possibility that the resin film and the conductive layer are peeled off.
  • the synthetic mica is at least one of phlogopite fluorine, tetrasilicon mica potassium, and potassium teniolite, it is possible to obtain excellent heating dimension stability and heat resistance. Obviously, since the synthetic mica is at least one of phlogopite fluorine, tetrasilicon mica potassium, and potassium teniolite, it is possible to obtain excellent heating dimension stability and heat resistance. Obviously, since the synthetic mica is at least one of phlogopite fluorine, tetrasilicon mica potassium, and potassium teniolite, it is possible to obtain excellent heating dimension stability and heat resistance. Become.
  • the polyarylene ether ketone resin has an effect that the heating dimensional stability can be improved without deteriorating the low dielectric property and heat resistance of the produced resin film for a high frequency circuit substrate.
  • the metal layer can be used as a conductive layer as it is, it is possible to reduce the manufacturing cost.
  • the resin film of the high-frequency circuit substrate is molded by the melt extrusion molding method, the thickness accuracy, productivity, and handleability of the resin film are improved, and the manufacturing equipment is simplified. Can be done.
  • the high frequency circuit substrate in the present embodiment is laminated on the resin film 1 and the resin film 1.
  • It is a circuit board for the fifth generation mobile communication system (5G) provided with a conductive layer 3 in a laminated structure
  • the resin film 1 is a polyarylene ether ketone resin which is a thermoplastic resin and a mica which is excellent in electrical insulation and the like.
  • a non-swellable synthetic mica that is produced by the molding material 4 containing and and contributes to dimensional stability is selected as the mica.
  • the resin film 1 is extruded into a film having a thickness of 2 ⁇ m or more and 1000 ⁇ m or less by a molding method using a molding material 4 containing a polyarylene ether ketone (PAEK) resin.
  • the molding material 4 is prepared by adding 10 parts by mass or more and 80 parts by mass or less of non-swelling synthetic mica to 100 parts by mass of the polyarylene ether ketone resin.
  • the molding material 4 contains an antioxidant, a light stabilizer, an ultraviolet absorber, a plasticizer, a lubricant, a flame retardant, an antistatic agent, a heat resistance improver, and an inorganic substance as long as the characteristics of the present invention are not impaired. Compounds, organic compounds and the like are selectively added.
  • the polyarylene ether ketone resin of the molding material 4 is a crystalline resin composed of an arylene group, an ether group, and a carbonyl group, and is, for example, Patent No. 5709878, Japanese Patent No. 5847522, or [Asahi Research Center Co., Ltd .: Examples include the resins described in Super Engineering Plastics / PEEK (above), which grow in advanced applications, and are excellent in low dielectric properties and heat resistance.
  • polyarylene ether ketone resin examples include a polyetheretherketone (PEEK) resin having a chemical structural formula represented by the chemical formula (1) and a polyetherketone having a chemical structure represented by the chemical formula (2).
  • PEK polyetheretherketone
  • PEKK polyetherketoneketone
  • PEEKK polyetherketoneketone
  • Examples thereof include polyetherketone etherketoneketone (PEKEKK) resin having a chemical structure.
  • polyetheretherketone resins a polyetheretherketone resin and a polyetherketoneketone resin are preferable from the viewpoints of easy availability, cost, and moldability of the resin film 1.
  • polyetheretherketone resins include product names manufactured by Victrex, Victrex Powerer series, Victorex Granules series, product names manufactured by Dycel Ebonic, Vestakeep series, and product names manufactured by Solvay Specialty Polymers: Ketaspire.
  • the PEEK series can be mentioned.
  • the product name: KEPSTAN series manufactured by Arkema Co., Ltd. corresponds.
  • the polyarylene ether ketone resin may be used alone or in combination of two or more. Further, the polyarylene ether ketone resin may be a copolymer having two or more chemical structures represented by the chemical formulas (1) to (5).
  • the polyarylene ether ketone resin is usually used in a form suitable for molding such as powder, granules, and pellets.
  • the method for producing the polyarylene ether ketone resin is not particularly limited, but for example, the production method described in the literature [Asahi Research Center Co., Ltd .: Super engineering plastic PEEK (above) growing for advanced applications] is used. can give.
  • the mica (also called mica) of the molding material 4 is a plate-like crystal belonging to the phyllosilicate mineral mica family, and is a mineral characterized by having a complete cleavage on the bottom surface.
  • This mica is classified into two types, natural mica (white mica, biotite, phlogopite, etc.) produced in the natural world and synthetic mica artificially produced using talc as the main raw material, and is industrially excellent in electricity. Widely used as an insulating material.
  • Natural mica has a different composition and structure depending on its production area, and also contains a large amount of impurities, so it is not suitable for producing a resin film 1 for a high-frequency circuit board with stable quality. Further, since natural mica has a hydroxyl group [OH group], there is a problem in heat resistance. On the other hand, synthetic mica is artificially manufactured mica, which has a constant composition and structure and few impurities. Therefore, the resin film 1 for a high-quality high-frequency circuit board that is stable in terms of heating dimensional stability and the like. Suitable for manufacturing. In addition, synthetic mica is superior in heat resistance to natural mica because all the hydroxyl groups are substituted with fluorine [F group]. Therefore, the mica used in the present invention is preferably synthetic mica rather than natural mica.
  • Synthetic mica is classified into non-swelling mica and swelling mica according to the difference in behavior with respect to water.
  • Non-swelling mica is a type of synthetic mica that does not change in dimensional stability or the like even when it comes into contact with water.
  • swelling mica is a synthetic mica having a property of absorbing moisture in the air, swelling, and cleaving.
  • the synthetic mica that can be used in the present invention is preferably non-swellable mica that is excellent in heat dimensional stability and water resistance, and more preferably synthetic mica that has been heat-treated at 600 ° C. or higher.
  • the non-swelling synthetic mica is not particularly limited, but the synthetic mica represented by the following general formula is preferably used.
  • X is a cation that forms an interlayer with a coordination number of 12
  • Y is a cation that forms an octahedral seat with a coordination number of 6
  • Z is a cation that forms a tetrahedron with a coordination number of 4.
  • non-swelling synthetic mica examples include phlogopite fluorine (KMg 3 (AlSi 3 O 10 ) F 2 ), potassium tetrasilicon mica (KMg 2.5 (Si 4 O 10 ) F 2 ), and potassium teniolite (KMg). 2 Li (Si 4 O 10 ) F 2 ) can be mentioned. Of these, non-swelling phlogopite fluorine is the most suitable.
  • Specific examples of this synthetic mica include potassium tetrasilicon mica manufactured by Katakura Corp. Agri, which is a high-purity, fine powder with excellent heat resistance [product name: Micromica MK series], and phlogopite fluorine mica manufactured by Topy Industries, Ltd. [PDM series. ], Potassium tetrasilicon mica manufactured by Topy Industries, Ltd. [PDM series] and the like.
  • Examples of the method for producing synthetic mica include (1) melting method, (2) solid phase reaction method, and (3) intercalation method.
  • the melting method (1) raw materials such as silica, magnesium oxide, alumina, fluoride, valerite, kalan rock, and oxides and carbon salts of various metals are combined and mixed, and melted at a high temperature of 1300 ° C. or higher.
  • the solid-state reaction method (2) uses talc as the main raw material, and oxides and carbonates of various metals including alkali fluoride, alkali silicate, and transition metals are added to the talc.
  • the manufacturing method of mixing and reacting at around 1000 ° C., the intercalation method of (3) is a manufacturing method of manufacturing by an intercalation method using talc as a main raw material.
  • the average particle size of synthetic mica is 0.5 ⁇ m or more and 50 ⁇ m or less, preferably 1 ⁇ m or less and 30 ⁇ m or less, more preferably 2 ⁇ m or more and 20 ⁇ m or less, and further preferably 3 ⁇ m or more and 10 ⁇ m or less. This is because when the average particle size of the synthetic mica is 0.5 ⁇ m or less, the synthetic mica particles are likely to aggregate and the uniform dispersibility in the polyarylene ether ketone resin is lowered.
  • the toughness of the resin film 1 for the high frequency circuit substrate obtained from the mixture of the polyarylene ether ketone resin and the synthetic mica may decrease. .. Further, when the average particle size of the synthetic mica exceeds 50 ⁇ m, the synthetic mica protrudes from the surface of the resin film 1, and the surface of the resin film 1 becomes rough, which hinders the transmission characteristics.
  • the aspect ratio of synthetic mica should be 5 or more and 100 or less.
  • the aspect ratio means a value obtained by dividing the diameter of the particles by the thickness when the synthetic mica is a scaly powder.
  • the specific aspect ratio of the synthetic mica is 5 or more and 100 or less, preferably 10 or more and 90 or less, more preferably 20 or more and 80 or less, and further preferably 30 or more and 50 or less.
  • Synthetic mica is added in the range of 10 parts by mass or more and 80 parts by mass or less, preferably 20 parts by mass or more and 70 parts by mass or less, and more preferably 30 parts by mass or more and 60 parts by mass or less with respect to 100 parts by mass of the polyarylene ether ketone resin. Will be done. This is because when the amount of synthetic mica added is less than 10 parts by mass, the effect of adjusting the heating dimensional stability of the resin film 1 for the high-frequency circuit board becomes insufficient.
  • the polyarylene ether ketone resin may be thermally decomposed due to significant heat generation during the preparation of the molding material 4 composed of the polyarylene ether ketone resin and the synthetic mica. Because there is. Further, the toughness of the resin film 1 obtained from the molding material 4 is lost and the resin film 1 becomes extremely brittle, and the resin film 1 may be damaged during molding. Furthermore, it is based on the reason that the relative permittivity and the dielectric loss tangent increase significantly more than necessary because the amount of synthetic mica added is large.
  • Synthetic mica is a silane coupling agent [vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epylcyclohexyl) ethyltrimethoxy, as long as the characteristics of the resin film 1 for a high-frequency circuit substrate are not impaired.
  • Silane 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyl Triethoxysilane, p-stiltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3 -Achroxypropyltrimethoxysilane, N-2 (aminoethyl) -3-aminopropylmethyldimethoxylane, N-2 (aminoethyl) -3-aminopropyltrimethoxylan, 3-aminopropyltrimethoxysilane, 3 -Aminopropyl
  • the polyarylene ether ketone resin and synthetic mica are melt-kneaded for a predetermined time to form a molding material 4 for the resin film 1.
  • a method for preparing the molding material 4 (1) polyarylene ether ketone resin and fine A method in which synthetic mica is added to molten polyarylene ether ketone without stirring and mixing with powdered synthetic mica, and these are melt-kneaded to prepare a molding material 4.
  • Polyarylene ether ketone resin and fine Examples thereof include a method of preparing the molding material 4 by stirring and mixing the powdered synthetic mica with the synthetic mica at room temperature (temperature of about 0 ° C. or higher and 50 ° C. or lower) and then melt-kneading. Any of these methods (1) and (2) may be used, but the method (1) is preferable from the viewpoint of dispersibility and workability.
  • a polyarylene ether ketone resin is mixed with a mixing roll, a pressure kneader, a Banbury mixer single-screw extruder, and a multi-screw extruder (biaxial).
  • the molding material 4 is prepared by melting with a melt-kneader such as an extruder, a triaxial extruder, a 4-screw extruder, etc., and adding synthetic mica to a polyarylene ether ketone resin to melt-knead and disperse the resin.
  • the temperature at the time of preparation of the melt-kneader is not particularly limited as long as it can be melt-kneaded and dispersed and the polyarylene ether ketone resin does not decompose, but is in the range of the melting point of the polyarylene ether ketone resin and lower than the thermal decomposition temperature. .. Specifically, the range is preferably 320 ° C. or higher and 450 ° C. or lower, preferably 360 ° C. or higher and 420 ° C. or lower, and more preferably 380 ° C. or higher and 400 ° C. or lower.
  • the prepared molding material 4 is usually extruded into a lump, a strand, a sheet, or a rod, and then used in a crusher or a cutting machine in a form suitable for molding such as a lump, a granule, or a pellet. ..
  • the method (2) In order to obtain a stirring mixture by stirring and mixing the polyarylene ether ketone resin and synthetic mica, a tumbler mixer, a hensyl mixer, a V-type mixer, and a nouter mixer , Ribbon blender, universal stirring mixer, etc.
  • the shape of the polyarylene ether ketone resin is preferably in the form of a powder that can be more uniformly dispersed with synthetic mica.
  • Examples of the method of crushing into powder include a shear crushing method, an impact crushing method, a collision crushing method, a frozen crushing method, and a solution crushing method.
  • the molding material 4 is a mixing roll of a stirred mixture of polyarylene ether ketone resin and synthetic mica, a pressure kneader, a Banbury mixer, a single-screw extruder, and a multi-screw extruder (two-screw extruder, three-screw extruder, four-screw extruder). It is prepared by melt-kneading and dispersing with a melt-kneader such as a machine).
  • the temperature of the melt-kneader at the time of this preparation is not particularly limited as long as it can be melt-kneaded and dispersed and the polyarylene ether ketone resin does not decompose, but is in the range of the melting point of the polyarylene ether ketone resin and lower than the thermal decomposition temperature.
  • the range is preferably 320 ° C. or higher and 450 ° C. or lower, preferably 360 ° C. or higher and 420 ° C. or lower, and more preferably 380 ° C. or higher and 400 ° C. or lower.
  • the prepared molding material 4 is usually extruded into a lump, a strand, a sheet, or a rod, and then used in a crusher or a cutting machine in a form suitable for molding such as a lump, a granule, or a pellet. ..
  • the molding material 4 is molded into the resin film 1 by various molding methods such as a melt extrusion molding method, a calender molding method, and a casting molding method.
  • the melt extrusion molding method is most suitable from the viewpoint of improving handleability and simplifying equipment.
  • the molding material 4 is melt-kneaded by a melt extrusion molding machine 10 such as a single-screw extruder or a twin-screw extrusion machine, and the T-die 13 of the melt extrusion molding machine 10 is used.
  • This is a method of continuously extruding a strip-shaped resin film 1 in the directions of a plurality of cooling rolls 16 and crimping rolls 17.
  • the melt extrusion molding machine 10 includes, for example, a single-screw extrusion molding machine, a twin-screw extrusion molding machine, and the like, and functions to melt-knead the charged molding material 4.
  • a raw material input port 11 for the polyarylene ether ketone resin of the molding material 4 is installed behind the upper part on the upstream side of the melt extrusion molding machine 10, and helium gas, neon gas, argon gas, etc. are installed in the raw material input port 11.
  • An inert gas supply pipe 12 that supplies an inert gas such as krypton gas, nitrogen gas, or carbon dioxide gas as needed is connected, and the inflow of the inert gas through the inert gas supply pipe 12 causes a molding material. Oxidation deterioration and oxygen cross-linking of the polyarylene ether ketone resin of No. 4 are effectively prevented.
  • the temperature of the melt extrusion molding machine 10 is not particularly limited as long as the resin film 1 can be molded and the polyarylene ether ketone resin does not decompose, but the thermal decomposition temperature is equal to or higher than the melting point of the polyarylene ether ketone resin. The range less than is good. Specifically, the temperature is adjusted to 320 ° C. or higher and 450 ° C. or lower, preferably 360 ° C. or higher and 420 ° C. or lower, and more preferably 380 ° C. or higher and 400 ° C. or lower.
  • the T die 13 is attached to the tip of the melt extrusion molding machine 10 via a connecting pipe 14 and functions to continuously push the strip-shaped resin film 1 downward.
  • the temperature at the time of extrusion of the T-die 13 is in the range of the melting point of the polyarylene ether ketone resin or more and less than the thermal decomposition temperature. Specifically, the temperature is adjusted to 320 ° C. or higher and 450 ° C. or lower, preferably 360 ° C. or higher and 420 ° C. or lower, and more preferably 380 ° C. or higher and 400 ° C. or lower.
  • the gear pump 15 is mounted on the connecting pipe 14 upstream of the T die 13.
  • the gear pump 15 transfers the molding material 4 melt-kneaded by the melt extrusion molding machine 10 to the T-die 13 at a constant flow rate and with high accuracy.
  • the plurality of cooling rolls 16 are made of a rotatable metal roll having a diameter larger than that of the crimping roll 17, for example, and are arranged and axially supported in a row from below the T-die 13 in the downstream direction, and the extruded resin film 1 is provided. It is sandwiched between the adjacent cooling rolls 17 and between the adjacent cooling rolls 16 and the cooling rolls 16, and the thickness of the resin film 1 is kept within a predetermined range while cooling the resin film 1 together with the crimping rolls 17. To control.
  • Each cooling roll 16 has a polyarylene ether ketone resin [glass transition point + 20 ° C.] or more and less than the melting point of the polyarylene ether ketone resin, preferably a polyarylene ether ketone resin [glass transition point + 30 ° C.] or more. [Glass transition point + 160 ° C] or less, more preferably [Glass transition point + 50 ° C] or more of polyarylene ether ketone resin or more, [Glass transition point + 140 ° C] or less of polyarylene ether ketone resin, still more preferably polyarylene ether ketone resin. It is adjusted to the temperature range of [Glass transition point + 60 ° C.] or more of the polyarylene ether ketone resin [Glass transition point + 120 ° C.], and is in sliding contact with the resin film 1 for a high frequency circuit substrate.
  • each cooling roll 16 when the temperature of each cooling roll 16 is less than the [glass transition point + 20 ° C.] of the polyarylene ether ketone resin, the relative crystallinity of the resin film 1 is less than 80%, and the solder heat resistance is improved. There is a problem that it cannot be obtained.
  • the temperature of each cooling roll 16 when the temperature of each cooling roll 16 is equal to or higher than the melting point of the polyarylene ether ketone resin, the resin film 1 may stick to the cooling roll 16 and break during the production of the resin film 1.
  • Examples of the temperature adjustment and cooling method of each cooling roll 16 include a method using a heat medium such as air, water, and oil, an electric heater, induction heating, and the like.
  • a pair of the plurality of pressure-bonding rolls 17 are rotatably supported from below the T-die 13 of the melt extrusion molding machine 10 in the downstream direction, sandwiching the plurality of cooling rolls 16 arranged in a row, and forming a resin film on the cooling rolls 16. 1 is pressed.
  • a winding machine 18 for the resin film 1 is installed downstream of the crimping roll 17 located on the downstream side, and a resin is placed between the pair of crimping rolls 17 and the winding pipe 19 of the winding machine 18.
  • a slit blade 20 that forms a slit on the side of the film 1 is arranged so as to be able to move up and down at least, and a tension is applied to the resin film 1 between the slit blade 20 and the winder 18 to smoothly wind the resin film 1.
  • the required number of shafts of tension rolls 21 for taking are rotatably supported.
  • each pressure-bonding roll 17 In order to improve the adhesion between the resin film 1 and the cooling roll 16 on the peripheral surface of each pressure-bonding roll 17, at least natural rubber, isoprene rubber, butadiene rubber, norbornene rubber, acrylonitrile butadiene rubber, nitrile rubber, urethane rubber, and silicone A rubber layer such as rubber or fluororubber is formed by coating as needed, and an inorganic compound such as silica or alumina is selectively added to this rubber layer. Among these, it is preferable to use silicone rubber or fluororubber having excellent heat resistance.
  • a metal elastic roll having a metal surface is used as needed, and when this metal elastic roll is used, it is possible to form a polyarylene ether ketone resin film 1 having an excellent surface smoothness.
  • this metal elastic roll include a metal sleeve roll, an air roll [manufactured by Dimco: product name], a UF roll [manufactured by Hitachi Zosen Corporation: product name], and the like.
  • such a pressure-bonding roll 17 has a polyarylene ether ketone resin [glass transition point + 20 ° C.] or more and less than the melting point of the polyarylene ether ketone resin, preferably a polyarylene ether ketone resin [glass transition point +30].
  • polyarylene ether ketone resin [glass transition point + 160 ° C] or lower, more preferably polyarylene ether ketone resin [glass transition point + 50 ° C] or higher, polyarylene ether ketone resin [glass transition point + 140 ° C] or lower, More preferably, it is adjusted to a temperature range of [glass transition point + 60 ° C.] or higher of the polyarylene ether ketone resin [glass transition point + 120 ° C.] of the polyarylene ether ketone resin, and is in sliding contact with the resin film 1.
  • the temperature of the crimping roll 17 is adjusted to the relevant temperature range in order to adjust the relative crystallization of the resin film 1 to 80% or more. That is, when the temperature of the pressure-bonding roll 17 is less than the [glass transition point + 20 ° C.] of the polyarylene ether ketone resin film 1, the relative crystallinity of the polyarylene ether ketone resin film 1 is less than 80%, and the solder heat resistance. The problem arises that Further, when the temperature of the pressure-bonding roll 17 is equal to or higher than the melting point of the polyarylene ether ketone resin, the resin film 1 may stick to the cooling roll 16 during the production of the resin film 1 and may break.
  • each crimping roll 17 is not limited, and examples thereof include a method using a heat medium such as air, water, and oil, an electric heater, and dielectric heating.
  • the molding material 4 is inactive at the raw material input port 11 of the melt extrusion molding machine 10 as shown by an arrow in the figure.
  • the gas is charged while being supplied, and the polyarylene ether ketone resin of the molding material 4 and the synthetic mica are melt-kneaded by the melt extrusion molding machine 10, and the resin film 1 is continuously extruded from the T die 13 into a strip shape.
  • the water content of the molding material 4 before melt extrusion is adjusted to 2000 ppm or less, preferably 1000 ppm or less, and more preferably 100 ppm or more and 500 ppm or less. This is because when the water content exceeds 2000 ppm, the polyarylene ether ketone resin may foam immediately after being extruded from the T die 13.
  • the resin film 1 After extruding the resin film 1, the resin film 1 is sequentially wound on a pair of crimping rolls 17, a plurality of cooling rolls 16, a tension roll 21, and a winding pipe 19 of a winding machine 18, and then the resin film 1 is cooled by the cooling roll 16. If both sides of the resin film 1 are cut by the slit blades 20 and the resin film 1 is sequentially wound around the winding tube 19 of the winding machine 18, the resin film 1 for a high-frequency circuit board can be manufactured. During the production of the resin film 1, fine irregularities can be formed on the surface of the resin film 1 without losing the effect of the present invention, and the friction coefficient of the surface of the resin film 1 can be reduced.
  • the thickness of the resin film 1 is not particularly limited as long as it is 2 ⁇ m or more and 1000 ⁇ m or less, but is preferably 10 ⁇ m or more and 800 ⁇ m from the viewpoint of ensuring a sufficient thickness of the high-frequency circuit board, handling, and thinning. Below, it is more preferably 20 ⁇ m or more and 500 ⁇ m or less, and further preferably 75 ⁇ m or more and 250 ⁇ m or less.
  • the lower limit of the relative permittivity is not particularly limited, but is practically 1.5 or more.
  • the relative permittivity of the resin film 1 at a frequency of 1 GHz is 3.4 or less
  • the relative permittivity at a frequency of 10 GHz is 3.17 or less
  • the relative permittivity near a frequency of 28 GHz is 3.29 or less
  • the frequency is 76.5 GHz.
  • the relative permittivity in is preferably 3.42 or less. This is because if the relative permittivity of the resin film 1 in the frequency range of 800 MHz or more and 100 GHz or less exceeds 3.5, the propagation speed of the electric signal decreases, which causes a problem that it is not suitable for high-speed communication.
  • the lower limit of the dielectric loss tangent is not particularly limited, but is 0.0001 or more in practical use.
  • the dielectric loss tangent of the resin film 1 at a frequency of 1 GHz is 0.003 or less, and the dielectric loss tangent at a frequency of around 10 GHz is 0.003 or less.
  • the dielectric loss tangent near the frequency of 28 GHz is preferably 0.0037 or less, and the dielectric loss tangent near the frequency of 76.5 GHz is preferably 0.0050 or less.
  • the method for measuring the specific dielectric constant and the dielectric tangent is not particularly limited, but is reflected / transmitted (S) such as the coaxial probe method, the coaxial S parameter method, the waveguide S parameter method, and the free space S parameter method.
  • S reflected / transmitted
  • Parameter) method measurement method using strip line (ring) resonator, cavity resonator perturbation method, measurement method using split-post waveguide resonator, measurement method using cylindrical (split cylinder) cavity resonator, Measurement methods using a multi-frequency balanced disc resonator, measurement methods using a cut-off cylindrical waveguide cavity resonator, resonator methods such as an open resonator method using a fabric perot resonator, etc. Be done.
  • the Fabry-Perot method using an open interferometer the method of obtaining the relative permittivity and dielectric loss tangent of high frequencies by the cavity resonator perturbation method, the three-terminal measurement method by a mutual induction bridge circuit, etc. can be mentioned.
  • the Fabry-Perot method and the cavity resonator perturbation method which are excellent in high resolution, are the most suitable.
  • the relative crystallinity of the resin film 1 is 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 100%. This is because when the relative crystallinity of the resin film 1 is less than 80%, there is a problem in the solder heat resistance of the resin film 1. Further, when the relative crystallinity is 80% or more, it can be expected to secure the heating dimensional stability that can be used as a high frequency circuit board.
  • the crystallinity of the resin film 1 can be expressed by the relative crystallinity.
  • the relative crystallinity of the resin film 1 is calculated by the following formula based on the thermal analysis result measured at a heating rate of 10 ° C./min using a differential scanning calorimeter.
  • Relative crystallinity (%) ⁇ 1- ( ⁇ Hc / ⁇ Hm) ⁇ ⁇ 100 ⁇ Hc: calorific value of recrystallization peak (J / g) ⁇ Hm: Calorific value of melting peak (J / g)
  • the thermal dimensional stability of the resin film 1 can be expressed by the coefficient of linear expansion.
  • the coefficient of linear expansion is 1 ppm / ° C. or higher and 50 ppm / ° C. or lower, preferably 3 ppm / ° C. or higher and 40 ppm / ° C. or lower, and more preferably 5 ppm / ° C. or higher in both the extrusion direction and the width direction (direction perpendicular to the extrusion direction) of the resin film 1. It is preferably 35 ppm / ° C. or lower, more preferably 10 ppm / ° C. or higher and 30 ppm / ° C. or lower.
  • the mechanical properties of the resin film 1 can be evaluated by the tensile elastic modulus at 23 ° C.
  • the tensile elastic modulus of the resin film 1 at 23 ° C. is 3500 N / mm 2 or more and 10000 N / mm 2 or less, preferably 3800 N / mm 2 or more and 9000 N / mm 2 or less, more preferably 3900 N / mm 2 or more and 8880 N / mm 2 or less.
  • the range is optimal. This is because when the tensile elastic modulus is less than 3500 N / mm 2 , the resin film 1 is inferior in rigidity, so that the resin film 1 may be wrinkled or the resin film 1 may be deformed during the production of the high frequency circuit substrate. Because there is. On the contrary, when it exceeds 10000 N / mm 2 , it takes a long time to mold the resin film 1, and the cost reduction cannot be expected.
  • the heat resistance of the resin film 1 is preferably evaluated by the solder heat resistance in consideration of the convenience of manufacturing a high frequency circuit board. Specifically, in accordance with the JIS standard C 5016 test method, the resin film 1 is floated in a solder bath at 288 ° C for 10 seconds, and if the resin film 1 is found to be deformed or wrinkled, it becomes heat resistant. If it is evaluated that there is a problem and no deformation or wrinkles are observed in the resin film 1, it is evaluated that there is no problem in heat resistance.
  • the high-frequency circuit board can be manufactured. Can be done.
  • the conductive layer 3 is formed on either the front and back surfaces, the front surface, or the back surface of the resin film 1, and the wiring pattern of the conductive circuit is formed later.
  • Examples of the conductor used for the conductive layer 3 include metals such as copper, gold, silver, chromium, iron, aluminum, nickel and tin, or alloys made of these metals.
  • the conductive layer 3 is formed by (1) heat-sealing the resin film 1 and the metal foil 2 to form the conductive layer 3, and (2) bonding the resin film 1 and the metal foil 2 with an adhesive. (3) A seed layer is formed on the resin film 1 and a metal layer is laminated on the seed layer, and the conductive layer 3 is formed from the seed layer and the metal layer. The method of forming the above is mentioned.
  • the method (1) is a method in which a resin film 1 and a metal foil 2 are sandwiched between a press molding machine or a roll and heated and pressurized to form a conductive layer 3.
  • the thickness of the metal foil 2 is preferably in the range of 1 ⁇ m or more and 100 ⁇ m or less, preferably 5 ⁇ m or more and 80 ⁇ m or less, and more preferably 10 ⁇ m or more and 70 ⁇ m or less.
  • the surface of the resin film 1 or the metal foil 2 can form fine irregularities in order to improve the fusion strength at the time of heat fusion. Further, the surface of the resin film 1 or the metal foil 2 may be surface-treated by corona irradiation treatment, ultraviolet irradiation treatment, plasma irradiation treatment, frame irradiation treatment, itro irradiation treatment, oxidation treatment, hairline processing, sand mat processing or the like. Further, the surface of the resin film 1 or the metal foil 2 can be treated with a silane coupling agent, a silane agent, a titaniumate-based coupling agent, or an aluminate-based coupling agent.
  • an adhesive such as an epoxy resin adhesive, a phenol resin adhesive, or a siloxane-modified polyamide imide resin adhesive is placed between the resin film 1 and the metal foil 2, and a press molding machine or a roll is used.
  • This is a method of forming a metal foil 2 on a resin film 1 by sandwiching it between them and then heating and pressurizing it.
  • the thickness of the metal foil 2 is preferably in the range of 1 ⁇ m or more and 100 ⁇ m or less, preferably 5 ⁇ m or more and 80 ⁇ m or less, and more preferably 10 ⁇ m or more and 70 ⁇ m or less.
  • the surface of the resin film 1 or the metal foil 2 can be formed with fine irregularities from the viewpoint of improving the adhesive strength. Further, the surface of the resin film 1 or the metal foil 2 may be surface-treated by corona irradiation treatment, ultraviolet irradiation treatment, plasma irradiation treatment, frame irradiation treatment, itro irradiation treatment, oxidation treatment, hairline processing, sand mat processing, or the like. Absent. Further, the surface of the resin film 1 or the metal foil 2 can be treated with a silane coupling agent, a silane agent, a titaniumate-based coupling agent, or an aluminate-based coupling agent in the same manner as described above.
  • a seed layer for adhesion is formed on the resin film 1 by a method such as a sputtering method, a thin film deposition method, or a plating method, and a heat fusion method, a thin film deposition method, or a plating method is used on the seed layer.
  • This is a method of forming a metal layer and forming the seed layer and the metal layer on the conductive layer 3.
  • a metal such as copper, gold, silver, chromium, iron, aluminum, nickel, tin, zinc, or an alloy composed of these metals can be used.
  • the thickness of the seed layer is usually in the range of 0.1 ⁇ m or more and 2 ⁇ m or less.
  • the anchor layer When forming a seed layer on the resin film 1, it is possible to form an anchor layer for the purpose of improving the adhesive strength of these layers.
  • the anchor layer include metals such as nickel and chromium, but nickel having excellent environmental friendliness is preferably preferable.
  • the metal layer for example, a metal such as copper, gold, silver, chromium, iron, aluminum, nickel, tin, zinc or an alloy composed of these metals can be used.
  • the metal layer may be a single layer made of one kind of metal, or may be a plurality of layers or multiple layers made of two or more kinds of metals.
  • the thickness of the metal layer is not particularly limited, but is preferably 0.1 ⁇ m or more and 50 ⁇ m or less, preferably 1 ⁇ m or more and 30 ⁇ m or less.
  • the conductive layer 3 composed of the seed layer and the metal layer is preferably in the range of 0.2 ⁇ m or more and 50 ⁇ m or less, preferably 1 ⁇ m or more and 30 ⁇ m or less, more preferably 5 ⁇ m or more and 20 ⁇ m or less, and further preferably 5 ⁇ m or more and 10 ⁇ m or less.
  • the seed layer and the metal layer may be the same metal or different metals. Further, in order to prevent surface corrosion, a metal protective layer such as gold or nickel may be coated on the surface of the metal layer.
  • the method (1) in which the resin film 1 and the metal foil 2 are heat-sealed is the most suitable. This is because in the case of the method (2), it is necessary to bond the resin film 1 and the metal foil 2 with an adhesive, so that the dielectric properties of the adhesive are reflected, and the relative permittivity and dielectric constant of the high frequency circuit board are reflected. This is because there is a situation in which the direct contact rises. Further, in the case of the method (3), the process of forming the conductive layer 3 becomes complicated, which leads to an increase in cost.
  • the required number of wiring patterns for the conductive circuit can be formed by an etching method, a plating method, a printing method, or the like.
  • a method for forming this wiring pattern it is possible to use a sulfuric acid-hydrogen peroxide system, an etching agent for iron chloride, or the like, which minimizes the occurrence of undercut and wiring thinning and enables good wiring formation.
  • By forming such a wiring pattern having a predetermined shape it is possible to manufacture a high-frequency circuit board having excellent low dielectric properties and capable of suppressing signal loss.
  • the resin film 1 is molded by the molding material 4 containing non-swellable synthetic mica, the coefficient of linear expansion can be reduced. Therefore, when the heating dimensional stability of the resin film 1 can be improved, the difference in the heating dimensional characteristics from the metal layer made of the metal foil 2 or the like can be suppressed, and the conductive layer 3 is laminated to manufacture the high frequency circuit board. In addition, it is possible to prevent the high frequency circuit board from being curled or deformed.
  • the relative permittivity of the resin film 1 in the frequency range of 800 MHz or more and 100 GHz or less is 3.5 or less, and the dielectric loss tangent is 0. It becomes 007 or less, and the values of the relative permittivity and the dielectric loss tangent can be made lower than before. Therefore, it is possible to obtain a high-frequency circuit board capable of transmitting and receiving a large-capacity high-frequency signal at high speed. Further, the use of this high frequency circuit board makes it possible to greatly contribute to the realization of the fifth generation mobile communication system.
  • the polyarylene ether ketone resin since the polyarylene ether ketone resin is used, the loss is reduced, and the resin film 1 for the high frequency circuit board can be used for a long period of time, which makes it very easy to realize high-speed communication utilizing the high frequency band. .. Further, since the polyarylene ether ketone resin is used instead of the polyimide resin, it is possible to easily multi-layer the high frequency circuit board. Further, since the resin film 1 having a relative crystallinity of 80% or more, which is excellent in heat resistance, is used as the substrate material, excellent solder heat resistance can be obtained.
  • FIG. 3 shows a second embodiment of the present invention.
  • metal foils 2 for wiring patterns are laminated on both the front and back surfaces of the resin film 1 by a heat fusion method, and the pair is laminated.
  • the conductive layer 3 is formed by the metal foil 2 of the above. Since the other parts are the same as those in the above embodiment, the description thereof will be omitted.
  • the conductive layer 3 is laminated on one resin film 1, the present invention is not limited to this, and the conductive layer 3 may be newly laminated on a plurality of resin films 1 having a laminated structure. Further, the metal foil 2 is laminated on the surface of the resin film 1 by a heat fusion method, and the conductive layer 3 is laminated and formed. However, the present invention is not limited to this, and the metal foil 2 may be laminated and formed by a vapor deposition method or a plating method. good. Further, the high frequency circuit board can also be used for an automobile collision prevention millimeter wave radar device, an advanced driver assistance system (ADAS), artificial intelligence (AI), and the like.
  • ADAS advanced driver assistance system
  • AI artificial intelligence
  • Example 1 First, in order to manufacture a resin film for a high-frequency circuit board, a commercially available polyetheretherketone resin [manufactured by Victorec, product name: Victorex Granules 450G (hereinafter abbreviated as "450G”)] is used as a polyetherketone resin. The mixture was prepared and dried in a dehumidifying hot air dryer heated to 160 ° C. for 12 hours or more.
  • 450G Victorex Granules 450G
  • the non-swelling synthetic mica was forcibly press-fitted from the second supply port of the side feeder immediately next to the vent port opened to the atmospheric pressure of the co-rotating twin-screw extruder.
  • this synthetic mica a commercially available potassium tetrasilicon mica [manufactured by Katakura Corp. Agri, product name: Micromica MK-100, average particle size: 4.9 ⁇ m] was used.
  • the molten state of the polyetheretherketone resin was visually observed from the vent port of the co-rotating twin-screw extruder.
  • the polyetheretherketone resin and synthetic mica were added so as to be 25 parts by mass of synthetic mica with respect to 100 parts by mass of the polyetheretherketone resin.
  • a strand-shaped extruded product was extruded from a co-rotating twin-screw extruder, and the extruded product was air-cooled and solidified, and then cut into pellets to prepare a molding material.
  • the obtained molding material was put into a single-screw extruder with a T-die having a width of 900 mm and melt-kneaded, and the melt-kneaded molding material was continuously extruded from the T-die to obtain a resin film for a high-frequency circuit board. It was extruded into a strip shape.
  • the temperature of the single-screw extruder was adjusted to 380 to 400 ° C.
  • the temperature of the T-die was adjusted to 400 ° C.
  • the temperature of the connecting pipe connecting the single-screw extruder and the T-die and the gear pump was adjusted to 400 ° C.
  • the resin film After molding the resin film for the high frequency circuit board in this way, the resin film is formed into a pair of pressure-bonding rolls made of silicone rubber as shown in FIG. 2, and a plurality of metal rolls which are cooling rolls at 200 ° C., 230 ° C., and 250 ° C.
  • the 6-inch take-up pipe of the take-up machine located downstream of these is sequentially wound, sandwiched between the crimping roll and the metal roll, and both sides of the continuous resin film are cut with a slit blade and taken up.
  • a resin film having a length of 100 m and a width of 650 mm was produced by sequentially winding it around a tube.
  • a slit blade that cuts both sides of the resin film is arranged so as to be able to move up and down between the crimping roll and the take-up pipe, and a tension roll that applies tension to the resin film is placed between the take-up pipe and the slit blade.
  • a tension roll that applies tension to the resin film is placed between the take-up pipe and the slit blade.
  • the thickness, mechanical properties, heating dimension stability, dielectric properties, and heat resistance of the resin film were evaluated and summarized in Table 1.
  • the mechanical properties were evaluated by the tensile elastic modulus, the thermal dimensional stability was evaluated by the linear expansion coefficient, the dielectric properties were evaluated by the relative permittivity and the dielectric loss tangent, and the heat resistance was evaluated by the solder heat resistance.
  • the film thickness of the resin film for high-frequency circuit board was measured using a micrometer [Product name manufactured by Mitutoyo Co., Ltd .: Coolant Proof Micrometer Code MDC-25PJ]. At the time of measurement, arbitrary 10 points in the width direction (direction perpendicular to the extrusion direction) of the polyarylene ether ketone resin film were measured, and the average value thereof was taken as the film thickness.
  • Relative crystallinity (%) ⁇ 1- ( ⁇ Hc / ⁇ Hm) ⁇ ⁇ 100
  • ⁇ Hc represents the calorific value (J / g) of the recrystallization peak of the resin film under the heating condition of 10 ° C./min
  • ⁇ Hm is the crystal of the resin film under the heating condition of 10 ° C./min. It represents the calorific value (J / g) of the melting peak.
  • the mechanical properties of the resin film for high-frequency circuit boards were evaluated by the tensile elastic modulus at 23 ° C.
  • the mechanical properties were measured in the extrusion direction and the width direction (direction perpendicular to the extrusion direction).
  • the measurement was carried out in accordance with JIS K 7127 under the conditions of a tensile speed of 50 mm / min, a temperature of 23 ° C. ⁇ 2 ° C., and a relative humidity of 50 RH ⁇ 5% RH.
  • the tensile elastic modulus was measured 5 times and the average value was taken as the tensile elastic modulus.
  • Dielectric characteristics of resin film for high-frequency circuit boards [Frequency: 1 GHz, 10 GHz]
  • the dielectric characteristics of the resin film for a high-frequency circuit board at a frequency of 1 GHz and 10 GHz were measured by a cavity resonator perturbation method using a network analyzer [PNA-L network analyzer N5230A manufactured by Agilent Technologies].
  • ASTMD2520 For the measurement of the dielectric property at 1 GHz, ASTMD2520 except that the cavity resonator was changed to the cavity resonator 1 GHz [Kanto Electronics Application Development Co., Ltd. model; CP431] and the cavity resonator 10 GHz [Kanto Electronics Application Development Co., Ltd. model; CP531]. It was carried out in accordance with.
  • the measurement of the dielectric property was carried out in an environment of temperature: 23 ° C. ⁇ 1 ° C. and humidity of 50% RH ⁇ 5% RH.
  • Dielectric characteristics of resin film for high-frequency circuit boards [Frequency: around 28 GHz, around 76.5 GHz]
  • the frequency of the resin film for a high-frequency circuit board: around 28 GHz and around 76.5 GHz was measured by the Fabry-Perot method, which is a kind of open resonator method, using a vector network analyzer.
  • the resonator is an open type resonator [manufactured by Keycom: Fabry-Perot resonator Model No. DPS03] was used.
  • a resin film for a high-frequency circuit board was placed on the sample table of the open resonator jig, and the measurement was performed by the Fabry-Perot method, which is a kind of open resonator method, using a vector network analyzer. Specifically, the relative permittivity and the dielectric loss tangent were measured by a resonance method utilizing the difference in resonance frequency between the state where the resin film was not placed on the sample table and the state where the resin film was placed. The specific frequencies used for measuring the dielectric properties are as shown in Table 4.
  • Measurement of the dielectric property specifically, the dielectric property near 28 GHz and 76.5 GHz was measured by a predetermined measuring device under an environment of temperature: 24 ° C. and humidity of 40%.
  • a vector network analyzer E8631A [manufactured by Agilent Technologies: product name] was used near 28 GHz.
  • a vector network analyzer N5227A [manufactured by Agilent Technologies: product name] was used.
  • the linear expansion coefficient of the resin film for high-frequency circuit board was measured in the extrusion direction and width direction (direction perpendicular to the extrusion direction) of the resin film. Specifically, when measuring the linear expansion coefficient in the extrusion direction of the resin film, the extrusion direction is 20 mm ⁇ 4 mm in the width direction, and when measuring the linear expansion coefficient in the width direction, the extrusion direction is 4 mm ⁇ 20 mm in the width direction. It was cut out to a size and measured.
  • thermomechanical analyzer When measuring the coefficient of linear expansion, a load: 50 mN and a heating rate: 5 ° C./min were used in a tension mode using a thermomechanical analyzer [Product name: SII // SS7100 manufactured by Hitachi High-Tech Science Co., Ltd.]. From 25 ° C to 250 ° C at the rate of temperature rise: 5 ° C / min. The temperature was raised at the rate of 1 and the temperature change of the dimensions was measured, and the coefficient of linear expansion was determined by the inclination in the range of 25 ° C. to 125 ° C.
  • Example 2 First, in order to manufacture a resin film for a high-frequency circuit board, a commercially available polyetheretherketone resin [manufactured by Solvay Specialty Polymers, product name: Ketaspire PEEK KT-851NL SP (hereinafter, "KT") is used as a polyetherketone resin. -851NL SP ”)] was prepared, and this polyetheretherketone resin was dried for 12 hours or more in a dehumidifying hot air dryer heated to 160 ° C. For non-swelling synthetic mica, commercially available potassium tetrasilicon mica [Product name: Micromica MK-100DS, average particle size: 3.3 ⁇ m] manufactured by Katakura Corp. Agri Co., Ltd. was used.
  • the polyetheretherketone resin and synthetic mica were prepared as a molding material for a resin film for a high-frequency circuit substrate by the same method as in Example 1.
  • the polyetheretherketone resin and synthetic mica were mixed so as to be 35 parts by mass of synthetic mica with respect to 100 parts by mass of the polyetheretherketone resin.
  • the resin film for the high frequency circuit board was extruded using this molding material by the same method as in Example 1. After the resin film was extruded, the thickness, mechanical properties, heating dimension stability, dielectric properties, and heat resistance of the resin film were evaluated by the same methods as in Example 1 and summarized in Table 1.
  • Example 3 First, in order to manufacture a resin film for a high-frequency circuit board, the polyetheretherketone resin used in Example 2 as the polyetherketone resin [manufactured by Solvay Specialty Polymers, product name: Ketaspire PEEK KT-851NL SP ( Hereinafter, it is abbreviated as “KT-851NL SP”)], and this polyetheretherketone resin and non-swellable synthetic mica are used as a molding material for a resin film for a high-frequency circuit substrate by the same method as in Example 1. Manufactured. As for the polyetheretherketone resin and synthetic mica, synthetic mica was added so as to be 45 parts by mass of synthetic mica with respect to 100 parts by mass of the polyetheretherketone resin. The synthetic mica was the potassium tetrasilicon mica of Example 1.
  • the resin film for the high frequency circuit board was extruded using this molding material by the same method as in Example 1. After the resin film was extruded, the thickness, mechanical properties, heating dimension stability, dielectric properties, and heat resistance of the resin film were evaluated by the same methods as in Example 1 and summarized in Table 1.
  • Example 4 In order to manufacture a resin film for a high-frequency circuit board, a commercially available polyetheretherketone resin [manufactured by Victorec, product name: Victorex Granules 381G (hereinafter abbreviated as "381G”)] is prepared as a polyetherketone resin. , This polyetheretherketone resin was dried for 12 hours or more in a dehumidifying hot air dryer heated to 160 ° C. As the synthetic mica, the potassium tetrasilicon mica of Example 1 was used.
  • non-swelling synthetic mica was added to the polyetheretherketone resin so that the amount of synthetic mica was 45 parts by mass with respect to 100 parts by mass of the polyetheretherketone resin, and the polyetheretherketone resin and synthetic mica were carried out. It was produced as a molding material for a resin film for a high-frequency circuit substrate by the same method as in Example 1.
  • the resin film for the high frequency circuit board was extruded using this molding material by the same method as in Example 1. After the resin film was extruded, the thickness, mechanical properties, heating dimension stability, dielectric properties, and heat resistance of the resin film were evaluated by the same methods as in Example 1 and shown in Table 2.
  • Example 5 Polyetheretherketone resin used in Example 4 as a polyarylene ether ketone resin for producing a resin film for a high-frequency circuit board [manufactured by Victorec, product name: Victorex Granules 381G (hereinafter abbreviated as "381G"). ] was prepared, and this polyetheretherketone resin was dried for 12 hours or more in a dehumidifying hot air dryer heated to 160 ° C.
  • a polyetheretherketone resin and a non-swellable synthetic mica were produced as a molding material for a resin film for a high-frequency circuit board by the same method as in Example 1.
  • a commercially available potassium tetrasilicon mica manufactured by Katakura Corp. Agri, product name: Micromica MK-300, average particle size: 11.9 ⁇ m] was used.
  • the polyetheretherketone resin and synthetic mica were added so as to be 65 parts by mass of synthetic mica with respect to 100 parts by mass of the polyetheretherketone resin.
  • the resin film for the high frequency circuit board was extruded by the same method as in Example 1 using this molding material. After the resin film was extruded, the thickness, mechanical properties, heating dimension stability, dielectric properties, and heat resistance of the resin film were evaluated by the same methods as in Example 1 and shown in Table 2.
  • Example 1 The polyetheretherketone resin used in Example 1 was prepared, and the polyetheretherketone resin was dried in a dehumidifying dryer heated to 160 ° C. for 12 hours or more. After the polyetheretherketone resin is dried, the polyetheretherketone resin is set in a ⁇ 40 mm extrusion molding machine equipped with a 900 mm wide T-die and melt-kneaded, and the melt-kneaded polyetheretherketone resin is uniaxially extruded. A resin film for a high-frequency circuit substrate was extruded by continuously extruding from the T-die of the molding machine and then cooling with a metal roll heated to 200 ° C., 230 ° C., and 250 ° C. from the single-screw extruder side. The temperature of the ⁇ 40 mm single-screw extruder was 380 ° C to 400 ° C (confirmed), and the temperature of the T die was 400 ° C.
  • the resin film for the high-frequency circuit board is extruded in this way, the resin film is subjected to a pair of crimping rolls made of silicone rubber as shown in FIG. 2, and metal rolls at 200 ° C., 230 ° C. , And the 6-inch take-up pipe of the take-up machine located downstream of these, and sandwiched between the crimping roll and the metal roll, and both sides of the continuous resin film are cut with a slit blade and wound.
  • a resin film having a length of 100 m and a width of 650 mm was produced by sequentially winding it around a pipe. Once the resin film was obtained, the thickness, mechanical properties, heating dimensional stability, dielectric properties, and heat resistance of the resin film were evaluated by the same methods as in Example 1 and summarized in Table 3.
  • Example 2 The polyetheretherketone resin used in Example 2 was prepared, and the polyetheretherketone resin was dried in a dehumidifying dryer heated to 160 ° C. for 12 hours or more. After drying the polyetheretherketone resin for 12 hours or more in this way, this polyetheretherketone resin and calcium carbonate [manufactured by Toyo Fine Chemicals, product name: Whiten P-10, average particle size: 2.5 ⁇ m] are used as examples. It was prepared as a molding material for a resin film for a high-frequency circuit substrate by the same method as in 1. The polyetheretherketone resin and calcium carbonate were mixed so as to be 43 parts by mass of calcium carbonate with respect to 100 parts by mass of the polyetheretherketone resin.
  • the resin film for the high frequency circuit board was extruded by the same method as in Example 1 using the molding material. After the resin film was extruded, the thickness, mechanical properties, heating dimension stability, dielectric properties, and heat resistance of the resin film were evaluated by the same methods as in Example 1 and summarized in Table 3.
  • Example 3 The polyetheretherketone resin used in Example 4 was prepared, and the polyetheretherketone resin was dried in a dehumidifying dryer heated to 160 ° C. for 12 hours or more. After the polyetheretherketone resin has been dried for 12 hours or more, the polyetheretherketone resin and amorphous silica [manufactured by Admatex, product name: SC5500-SQ, average particle size: 1.4 ⁇ m] are added to the polyether. Amorphous silica was mixed so as to be 37 parts by mass with respect to 100 parts by mass of the ether ketone resin.
  • a resin film for a high-frequency circuit board was extruded using this molding material by the same method as in Example 1. Once the resin film was obtained, the thickness, mechanical properties, heating dimension stability, dielectric properties, and heat resistance of the resin film were evaluated by the same methods as in Examples, and are shown in Table 3.
  • the resin film for the high-frequency circuit board of each embodiment had a relative permittivity of 3.5 or less and a dielectric loss tangent of 0.005 or less. Further, as for the mechanical properties, since the tensile elastic modulus is 3500 N / mm 2 or more and has high rigidity, the handleability at the time of assembling the high frequency circuit board is excellent. Regarding the thermal dimensional stability, the coefficient of linear expansion was 50 ppm / ° C or less, and better results than before were obtained. Further, regarding heat resistance, no deformation or wrinkles were observed even when the product was floated in a solder bath at 288 ° C. for 10 seconds, and it had heat resistance that could be used as a high-frequency circuit board.
  • the resin film for the high-frequency circuit board of the comparative example did not contain the non-swellable synthetic mica, so the coefficient of linear expansion was 55 ppm / ° C or higher, which was an insufficient result. From these measurement results, it was found that the resin film of each example has excellent dielectric properties and is most suitable for a high frequency circuit board used in a high frequency band from the MHz band to the GHz band.
  • the resin film, high frequency circuit board and its manufacturing method according to the present invention are used in the fields of information communication, automobile equipment and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Waveguides (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

Provided are: a resin film that can achieve improved thermal dimensional stability without a reduction in the low-dielectric properties and heat resistance characteristic of a film that is for use, for example, in a high-frequency circuit board produced from a poly(arylene ether ketone) resin; a high-frequency circuit board; and a production method for the high-frequency circuit board. A resin film 1 that contains 100 parts by mass of a poly(arylene ether ketone) resin and 10–80 parts by mass of a non-swelling synthetic mica. The resin film 1 is molded using a molding material 4 that contains a non-swelling synthetic mica and can therefore achieve a reduced coefficient of linear expansion. As a result, the thermal dimensional stability of the resin film 1 is improved, it is possible to suppress differences in thermal dimensional properties relative to a metal layer that comprises a metal foil 2 or the like, and, when a conductive layer 3 is formed to produce a high-frequency circuit board, it is possible to prevent curling and deformation of the high-frequency circuit board.

Description

樹脂フィルム、高周波回路基板及びその製造方法Resin film, high frequency circuit board and its manufacturing method
 本発明は、MHz帯域からGHz帯域にかけて使用される樹脂フィルム、高周波回路基板及びその製造方法に関し、より詳しくは、800MHzから100GHz以下の帯域で使用される樹脂フィルム、高周波回路基板及びその製造方法に関するものである。 The present invention relates to a resin film used from the MHz band to the GHz band, a high-frequency circuit board and a method for manufacturing the same, and more particularly to a resin film used in the band from 800 MHz to 100 GHz or less, a high-frequency circuit board and a method for manufacturing the same. It is a thing.
 近年、需要が急速に拡大している多機能携帯電話やタブレット端末等の移動体情報通信機器、次世代テレビ等の電子機器には、より大容量のデータを高速で送受信することが求められており、この要望に伴い、電気信号の高周波数化が検討されている。例えば、移動体情報通信分野では、第五世代移動通信システム(5G)の検討が世界的に進められている(特許文献1、2参照)。この第五世代移動通信システムの通信速度は前世代の数十倍以上であり、これを実現するため、電気信号は10GHz以上の高周波数帯域が検討されている。また、自動車分野においては、車載レーダシステムとして、ミリ波と呼ばれる60GHz以上の高周波数帯域の信号の利用が研究されている。 In recent years, mobile information communication devices such as multifunctional mobile phones and tablet terminals, whose demand is rapidly expanding, and electronic devices such as next-generation televisions are required to send and receive larger amounts of data at high speed. Therefore, in response to this request, increasing the frequency of electric signals is being studied. For example, in the field of mobile information and communication, the fifth generation mobile communication system (5G) is being studied worldwide (see Patent Documents 1 and 2). The communication speed of this 5th generation mobile communication system is several tens of times higher than that of the previous generation, and in order to realize this, a high frequency band of 10 GHz or more is being studied for electric signals. Further, in the field of automobiles, the use of signals in a high frequency band of 60 GHz or more called millimeter waves is being studied as an in-vehicle radar system.
特表2017‐502595号公報Special Table 2017-502595 特公平6‐27002号公報Special Fair 6-27002 Gazette
 しかしながら、従来における回路基板は、主に低周波数帯域を活用した通信を前提に設計・開発され、高周波数帯域を活用した大容量・高速通信を前提に設計・開発されてはいないので、比誘電率の値が通常タイプの4.3程度と高く、誘電正接も0.018程度と低くない値である。これに対し、大容量・高速通信用の回路基板は、比誘電率や誘電正接等の誘電特性が低く、しかも、耐熱性や機械的強度等の特性に優れる材料が要求される。 However, conventional circuit boards are mainly designed and developed on the premise of communication utilizing the low frequency band, and are not designed and developed on the premise of large capacity and high speed communication utilizing the high frequency band. The value of the rate is as high as about 4.3 of the normal type, and the dielectric loss tangent is also not as low as about 0.018. On the other hand, a circuit board for large-capacity and high-speed communication is required to have a material having low dielectric properties such as relative permittivity and dielectric loss tangent, and excellent properties such as heat resistance and mechanical strength.
 この点について詳しく説明すると、比誘電率は、誘電体内の分極の程度を示すパラメータであり、値が高い程、電気信号の伝搬遅延が大きくなる。したがって、電気信号の伝搬速度を高め、高速演算を可能にするためには、比誘電率は低いほうが好ましい。また、誘電正接(tanδともいう)は、誘電体内の伝搬する電気信号が熱に変換されて失われる量を示すパラメータであり、値が低い程、信号の損失が減少し、電気信号の伝達率が向上する。さらに、誘電正接は、高周波数帯域では、周波数の増加に伴って増大してしまうので、損失を少しでも抑制するためには、値を小さくすることのできる材料を用いる必要がある。 Explaining this point in detail, the relative permittivity is a parameter indicating the degree of polarization in the dielectric, and the higher the value, the larger the propagation delay of the electric signal. Therefore, in order to increase the propagation speed of the electric signal and enable high-speed calculation, it is preferable that the relative permittivity is low. The dielectric loss tangent (also referred to as tan δ) is a parameter indicating the amount of electrical signal propagating in the dielectric that is converted into heat and lost. The lower the value, the smaller the signal loss and the electrical signal transmissibility. Is improved. Further, since the dielectric loss tangent increases as the frequency increases in the high frequency band, it is necessary to use a material whose value can be reduced in order to suppress the loss as much as possible.
 以上のことから、MHz帯域からGHz帯域等の高周波数帯域で使用される回路基板は、大容量・高速通信を実現するため、従来よりも比誘電率と誘電正接の低い材料により、製造されることが強く望まれる。この点を踏まえ、比誘電率と誘電正接の低い材料が鋭意検討されているが、その結果、ポリアリーレンエーテルケトン(芳香族ポリエーテルケトンともいう、PAEK)樹脂が提案され、注目されている。 From the above, circuit boards used in high frequency bands such as the MHz band to the GHz band are manufactured from materials having a lower relative permittivity and dielectric loss tangent than before in order to realize large capacity and high speed communication. Is strongly desired. Based on this point, materials with low relative permittivity and dielectric loss tangent have been enthusiastically studied, and as a result, polyarylene ether ketone (PAEK) resin, which is also called aromatic polyetherketone, has been proposed and attracted attention.
 ポリアリーレンエーテルケトン樹脂は、電気絶縁性質、機械的性質、耐熱性、耐薬品性、耐放射線性、耐加水分解性、低吸水性、リサイクル性等に優れる熱可塑性の結晶性樹脂である。この優れた性質に鑑み、ポリアリーレンエーテルケトン樹脂は、自動車分野、エネルギー分野、半導体分野、医療分野、航空・宇宙分等の広範囲な分野で使用が提案され、利用されている。 Polyarylene ether ketone resin is a thermoplastic crystalline resin having excellent electrical insulation properties, mechanical properties, heat resistance, chemical resistance, radiation resistance, hydrolysis resistance, low water absorption, recyclability, etc. In view of this excellent property, the polyarylene ether ketone resin has been proposed and used in a wide range of fields such as automobile field, energy field, semiconductor field, medical field, aerospace component and the like.
 このポリアリーレンエーテルケトン樹脂により、樹脂フィルムを製造すれば、樹脂フィルムの周波数800MHz以上100GHz以下の範囲における比誘電率が3.5以下、誘電正接が0.007以下となり、優れた低誘電特性を得ることができる。さらに、この樹脂フィルムによれば、288℃のはんだ浴に10秒間浮かべても変形しないという優れた耐熱性を得ることができる。 If a resin film is produced from this polyarylene ether ketone resin, the relative permittivity of the resin film in the frequency range of 800 MHz or more and 100 GHz or less is 3.5 or less, and the dielectric loss tangent is 0.007 or less, resulting in excellent low dielectric properties. Obtainable. Further, according to this resin film, it is possible to obtain excellent heat resistance that the resin film does not deform even if it is floated in a solder bath at 288 ° C. for 10 seconds.
 しかしながら、ポリアリーレンエーテルケトン樹脂製の樹脂フィルムは、優れた低誘電特性と耐熱性とを得られるものの、加熱寸法安定性に劣るため、導電層が積層された場合、導電層との加熱寸法特性が大きく異なるため、積層体がカールしたり、変形するという大きな問題が新たに生じることとなる。 However, although the resin film made of polyarylene ether ketone resin can obtain excellent low dielectric properties and heat resistance, it is inferior in heating dimensional stability. Therefore, when the conductive layers are laminated, the heating dimensional characteristics with the conductive layer are obtained. Is so different that a new big problem of curling or deforming the laminated body arises.
 ポリアリーレンエーテルケトン樹脂製の樹脂フィルムの加熱寸法安定性を改良する方法としては、(1)ポリアリーレンエーテルケトン樹脂、六方晶窒化ホウ素、及びタルクを含む成形材料により樹脂フィルムを成形する方法(特許第5896822号公報参照)、(2)ポリエーテルエーテルケトンを90質量%以上で含有する樹脂フィルムを二軸延伸処理する方法(特許第5847522号公報参照)等の方法が提案されている。 As a method for improving the heating dimension stability of a resin film made of polyarylene ether ketone resin, (1) a method of molding a resin film with a molding material containing polyarylene ether ketone resin, hexagonal boron nitride, and talc (Patent). (See Japanese Patent No. 5896822), (2) A method of biaxially stretching a resin film containing 90% by mass or more of polyetheretherketone (see Patent No. 5847522) has been proposed.
 しかし、(1)の方法の場合には、六方晶窒化ホウ素が均一分散性に劣るので、機械的特性や誘電特性の品質が安定しないという問題が新たに生じる。また、(2)の方法の場合には、樹脂フィルム上に金属層を形成する場合、樹脂フィルムと金属箔とを接着剤で接着したり、樹脂フィルムに金属層をシード層を介して積層形成することは可能ではあるが、樹脂フィルムと金属箔との熱融着は、樹脂フィルムの溶融により二軸延伸が外れてしまい、積層後、積層体にカールや変形が生じてしまうこととなる。 However, in the case of the method (1), since hexagonal boron nitride is inferior in uniform dispersibility, there is a new problem that the quality of mechanical properties and dielectric properties is not stable. Further, in the case of the method (2), when the metal layer is formed on the resin film, the resin film and the metal foil are bonded with an adhesive, or the metal layer is laminated on the resin film via the seed layer. Although it is possible to do so, in the heat fusion between the resin film and the metal foil, the biaxial stretching is removed due to the melting of the resin film, and the laminated body is curled or deformed after laminating.
 本発明は上記に鑑みなされたもので、ポリアリーレンエーテルケトン樹脂により製造した高周波回路基板用等のフィルムの低誘電特性と耐熱性を低下させることなく、加熱寸法安定性を向上させることのできる樹脂フィルム、高周波回路基板及びその製造方法を提供することを目的としている。 The present invention has been made in view of the above, and is a resin capable of improving heating dimensional stability without deteriorating the low dielectric property and heat resistance of a film for high frequency circuit boards manufactured from a polyarylene ether ketone resin. It is an object of the present invention to provide a film, a high frequency circuit board, and a method for manufacturing the same.
 本発明者等は、鋭意研究した結果、熱可塑性樹脂の材料中、耐熱性が最も高く、低誘電特性に優れたポリアリーレンエーテルケトン樹脂に着目し、このポリアリーレンエーテルケトン樹脂を用いて本発明を完成させた。 As a result of diligent research, the present inventors have focused on a polyarylene ether ketone resin having the highest heat resistance and excellent low dielectric property among thermoplastic resin materials, and the present invention has been made using this polyarylene ether ketone resin. Was completed.
 すなわち、本発明においては上記課題を解決するため、ポリアリーレンエーテルケトン樹脂100質量部と、非膨潤性の合成マイカ10質量部以上80質量部以下とを含有する樹脂フィルムであることを特徴としている。 That is, in order to solve the above problems, the present invention is characterized by a resin film containing 100 parts by mass of a polyarylene ether ketone resin and 10 parts by mass or more and 80 parts by mass or less of a non-swelling synthetic mica. ..
 なお、樹脂フィルムの相対結晶化度が80%以上であることが好ましい。
 また、樹脂フィルムの線膨張係数が1ppm/℃以上50ppm/℃以下であることが好ましい。
 また、非膨潤性の合成マイカは、フッ素金雲母、カリウム四ケイ素雲母、及びカリウムテニオライトの少なくともいずれかであると良い。
 また、合成マイカの平均粒子径は、0.5μm以上50μm以下であることが好ましい。
 また、合成マイカのアスペクト比は、5以上100以下であることが望ましい。
The relative crystallinity of the resin film is preferably 80% or more.
Further, it is preferable that the coefficient of linear expansion of the resin film is 1 ppm / ° C. or higher and 50 ppm / ° C. or lower.
Further, the non-swelling synthetic mica may be at least one of phlogopite fluorine, tetrasilicon mica potassium, and potassium teniolite.
The average particle size of synthetic mica is preferably 0.5 μm or more and 50 μm or less.
Further, it is desirable that the aspect ratio of the synthetic mica is 5 or more and 100 or less.
 また、本発明においては上記課題を解決するため、請求項1ないし4のいずれかに記載された樹脂フィルムを有する高周波回路基板であることを特徴としている。
 なお、高周波回路基板には、樹脂フィルムに熱融着して積層される金属層を含むことができる。
Further, in order to solve the above problems, the present invention is characterized in that it is a high frequency circuit board having the resin film according to any one of claims 1 to 4.
The high-frequency circuit board may include a metal layer that is heat-sealed and laminated on a resin film.
 また、本発明においては上記課題を解決するため、請求項5又は6に記載した高周波回路基板の製造方法であって、
 少なくともポリアリーレンエーテルケトン樹脂100質量部と、非膨潤性の合成マイカ10質量部以上80質量部以下とを含有する成形材料を溶融混練し、この成形材料を押出成形機のダイスにより樹脂フィルムに押出成形し、この樹脂フィルムを冷却ロールに接触させて冷却することにより、樹脂フィルムの相対結晶化度を80%以上とするとともに、この樹脂フィルムの線膨張係数を1ppm/℃以上50ppm/℃以下とすることを特徴としている。
Further, in the present invention, in order to solve the above problems, the method for manufacturing a high frequency circuit board according to claim 5 or 6 is used.
A molding material containing at least 100 parts by mass of polyarylene ether ketone resin and 10 parts by mass or more and 80 parts by mass or less of non-swelling synthetic mica is melt-kneaded, and this molding material is extruded into a resin film by a die of an extrusion molding machine. By molding and bringing this resin film into contact with a cooling roll to cool it, the relative crystallinity of the resin film is set to 80% or more, and the linear expansion coefficient of this resin film is set to 1 ppm / ° C or higher and 50 ppm / ° C or lower. It is characterized by doing.
 ここで、特許請求の範囲における樹脂フィルムには、樹脂製のフィルムの他、樹脂シートが含まれる。この樹脂フィルムは、透明、不透明、半透明、無延伸フィルム、一軸延伸フィルム、二軸延伸フィルムを特に問うものではない。また、非膨潤性の合成マイカとしては、600℃以上で熱処理された非膨潤性の合成マイカ等があげられる。金属層は、必要に応じ、樹脂フィルムの片面に積層されたり、両面に積層される。 Here, the resin film in the claims includes a resin sheet in addition to the resin film. This resin film is not particularly limited to transparent, opaque, translucent, non-stretched film, uniaxially stretched film, and biaxially stretched film. Examples of the non-swellable synthetic mica include non-swellable synthetic mica heat-treated at 600 ° C. or higher. The metal layer is laminated on one side of the resin film or on both sides, if necessary.
 本発明によれば、樹脂フィルムを、非膨潤性の合成マイカ含有の成形材料により成形するので、樹脂フィルムの線膨張係数を低下させ、樹脂フィルムの加熱寸法安定性の向上を図ることができる。また、樹脂フィルムを、ポリアリーレンエーテルケトン樹脂含有の成形材料により成形するので、樹脂フィルムの周波数800MHz以上100GHz以下の範囲における比誘電率が3.5以下で、かつ誘電正接が0.006以下となり、比誘電率と誘電正接の値を従来よりも低くすることができる。 According to the present invention, since the resin film is molded from a non-swelling synthetic mica-containing molding material, the coefficient of linear expansion of the resin film can be reduced and the heating dimension stability of the resin film can be improved. Further, since the resin film is molded from a molding material containing a polyarylene ether ketone resin, the relative permittivity of the resin film in the frequency range of 800 MHz or more and 100 GHz or less is 3.5 or less, and the dielectric loss tangent is 0.006 or less. , The values of relative permittivity and dielectric loss tangent can be made lower than before.
 本発明によれば、ポリアリーレンエーテルケトン樹脂により、製造した高周波回路基板用等の樹脂フィルムの低誘電特性と耐熱性を低下させることなく、加熱寸法安定性を向上させることができるという効果がある。 According to the present invention, the polyarylene ether ketone resin has an effect that the heating dimensional stability can be improved without deteriorating the low dielectric property and heat resistance of the manufactured resin film for high frequency circuit boards and the like. ..
 請求項2記載の発明によれば、樹脂フィルムの相対結晶化度が80%以上なので、優れたはんだ耐熱性を得ることができる。また、樹脂フィルムの相対結晶化度が80%以上であれば、高周波回路基板として使用可能な加熱寸法安定性の確保が期待できる。 According to the invention of claim 2, since the relative crystallinity of the resin film is 80% or more, excellent solder heat resistance can be obtained. Further, if the relative crystallinity of the resin film is 80% or more, it can be expected to secure the heating dimensional stability that can be used as a high frequency circuit board.
 請求項3記載の発明によれば、樹脂フィルムの線膨張係数が1ppm/℃以上50ppm/℃以下なので、樹脂フィルムと導電層とを積層する場合、これら樹脂フィルムと導電層の積層時にカールや反りが生じやすくなるのを防止することができる。また、樹脂フィルムと導電層とが剥離してしまうおそれを排除することができる。 According to the invention of claim 3, since the coefficient of linear expansion of the resin film is 1 ppm / ° C. or higher and 50 ppm / ° C. or lower, when the resin film and the conductive layer are laminated, curl or warpage occurs when the resin film and the conductive layer are laminated. Can be prevented from being likely to occur. Further, it is possible to eliminate the possibility that the resin film and the conductive layer are peeled off.
 請求項4記載の発明によれば、合成マイカを、フッ素金雲母、カリウム四ケイ素雲母、及びカリウムテニオライトの少なくともいずれかとするので、優れた加熱寸法安定性や耐熱性等を得ることが可能となる。 According to the invention of claim 4, since the synthetic mica is at least one of phlogopite fluorine, tetrasilicon mica potassium, and potassium teniolite, it is possible to obtain excellent heating dimension stability and heat resistance. Become.
 請求項5記載の発明によれば、ポリアリーレンエーテルケトン樹脂により、製造した高周波回路基板用樹脂フィルムの低誘電特性と耐熱性を低下させることなく、加熱寸法安定性を向上させることができるという効果がある。 According to the invention of claim 5, the polyarylene ether ketone resin has an effect that the heating dimensional stability can be improved without deteriorating the low dielectric property and heat resistance of the produced resin film for a high frequency circuit substrate. There is.
 請求項6記載の発明によれば、高周波回路基板の樹脂フィルムと金属層とを接着剤で接着する必要がないので、高周波回路基板に接着剤による悪影響が及ぶのを防ぐことが可能となる。また、金属層をそのまま導電層とすることができるので、製造コストの削減を図ることが可能となる。 According to the invention of claim 6, since it is not necessary to bond the resin film of the high frequency circuit board and the metal layer with an adhesive, it is possible to prevent the high frequency circuit board from being adversely affected by the adhesive. Further, since the metal layer can be used as a conductive layer as it is, it is possible to reduce the manufacturing cost.
 請求項7記載の発明によれば、高周波回路基板の樹脂フィルムを溶融押出成形法により成形するので、樹脂フィルムの厚さ精度、生産性、ハンドリング性を向上させたり、製造設備を簡略化することができる。 According to the invention of claim 7, since the resin film of the high-frequency circuit substrate is molded by the melt extrusion molding method, the thickness accuracy, productivity, and handleability of the resin film are improved, and the manufacturing equipment is simplified. Can be done.
本発明に係る樹脂フィルムと高周波回路基板の実施形態を模式的に示す断面説明図である。It is sectional drawing which shows typically the embodiment of the resin film and the high frequency circuit board which concerns on this invention. 本発明に係る樹脂フィルム、高周波回路基板及びその製造方法の実施形態を模式的に示す全体説明図である。It is an overall explanatory view which shows typically the embodiment of the resin film, the high frequency circuit board and the manufacturing method thereof which concerns on this invention. 本発明に係る樹脂フィルムと高周波回路基板の第2の実施形態を模式的に示す断面説明図である。It is sectional drawing which shows typically the 2nd Embodiment of the resin film and the high frequency circuit board which concerns on this invention.
 以下、図面を参照して本発明の好ましい実施の形態を説明すると、本実施形態における高周波回路基板は、図1や図2に示すように、樹脂フィルム1と、この樹脂フィルム1に積層される導電層3とを積層構造に備えた第五世代移動通信システム(5G)用の回路基板であり、樹脂フィルム1が、熱可塑性樹脂であるポリアリーレンエーテルケトン樹脂と、電気絶縁性等に優れるマイカとを含有する成形材料4により製造され、マイカとして、寸法安定性に資する非膨潤性の合成マイカが選択される。 Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. As shown in FIGS. 1 and 2, the high frequency circuit substrate in the present embodiment is laminated on the resin film 1 and the resin film 1. It is a circuit board for the fifth generation mobile communication system (5G) provided with a conductive layer 3 in a laminated structure, and the resin film 1 is a polyarylene ether ketone resin which is a thermoplastic resin and a mica which is excellent in electrical insulation and the like. A non-swellable synthetic mica that is produced by the molding material 4 containing and and contributes to dimensional stability is selected as the mica.
 樹脂フィルム1は、ポリアリーレンエーテルケトン(PAEK)樹脂含有の成形材料4を用いた成形法により、2μm以上1000μm以下の厚さのフィルムに押出成形される。成形材料4は、ポリアリーレンエーテルケトン樹脂100質量部に、非膨潤性の合成マイカ10質量部以上80質量部以下が添加されることより、調製される。この成形材料4には、本発明の特性を損なわない範囲で上記樹脂の他、酸化防止剤、光安定剤、紫外線吸収剤、可塑剤、滑剤、難燃剤、帯電防止剤、耐熱向上剤、無機化合物、有機化合物等が選択的に添加される。 The resin film 1 is extruded into a film having a thickness of 2 μm or more and 1000 μm or less by a molding method using a molding material 4 containing a polyarylene ether ketone (PAEK) resin. The molding material 4 is prepared by adding 10 parts by mass or more and 80 parts by mass or less of non-swelling synthetic mica to 100 parts by mass of the polyarylene ether ketone resin. In addition to the above resins, the molding material 4 contains an antioxidant, a light stabilizer, an ultraviolet absorber, a plasticizer, a lubricant, a flame retardant, an antistatic agent, a heat resistance improver, and an inorganic substance as long as the characteristics of the present invention are not impaired. Compounds, organic compounds and the like are selectively added.
 成形材料4のポリアリーレンエーテルケトン樹脂は、アリーレン基、エーテル基、及びカルボニル基からなる結晶性の樹脂であり、例えば特許5709878号公報や特許第5847522号公報、あるいは文献〔株式会社旭リサーチセンター:先端用途で成長するスーパーエンプラ・PEEK(上)〕等に記載された樹脂があげられ、低誘電特性や耐熱性等に優れる。 The polyarylene ether ketone resin of the molding material 4 is a crystalline resin composed of an arylene group, an ether group, and a carbonyl group, and is, for example, Patent No. 5709878, Japanese Patent No. 5847522, or [Asahi Research Center Co., Ltd .: Examples include the resins described in Super Engineering Plastics / PEEK (above), which grow in advanced applications, and are excellent in low dielectric properties and heat resistance.
 ポリアリーレンエーテルケトン樹脂の具体例としては、例えば化学式(1)で表される化学構造式を有するポリエーテルエーテルケトン(PEEK)樹脂、化学式(2)で表される化学構造を有するポリエーテルケトン(PEK)樹脂、化学式(3)で表される化学構造を有するポリエーテルケトンケトン(PEKK)樹脂、化学式(4)の化学構造を有するポリエーテルエーテルケトンケトン(PEEKK)樹脂、あるいは化学式(5)の化学構造を有するポリエーテルケトンエーテルケトンケトン(PEKEKK)樹脂等があげられる。 Specific examples of the polyarylene ether ketone resin include a polyetheretherketone (PEEK) resin having a chemical structural formula represented by the chemical formula (1) and a polyetherketone having a chemical structure represented by the chemical formula (2). PEK) resin, polyetherketoneketone (PEKK) resin having the chemical structure represented by the chemical formula (3), polyetheretherketoneketone (PEEKK) resin having the chemical structure of the chemical formula (4), or the chemical formula (5). Examples thereof include polyetherketone etherketoneketone (PEKEKK) resin having a chemical structure.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 これらポリアリーレンエーテルケトン樹脂の中では、易入手性、コスト、及び樹脂フィルム1の成形性の観点から、ポリエーテルエーテルケトン樹脂とポリエーテルケトンケトン樹脂とが好ましい。ポリエーテルエーテルケトン樹脂の具体例としては、ビクトレック社製の製品名:Victrex Powderシリーズ、Victrex Granulesシリーズ、ダイセル・エボニック社製の製品名:ベスタキープシリーズ、ソルベイスペシャルティポリマーズ社製の製品名:キータスパイア PEEKシリーズがあげられる。また、ポリエーテルケトンケトン樹脂の具体例としては、アルケマ社製の製品名:KEPSTANシリーズが該当する。 Among these polyetheretherketone resins, a polyetheretherketone resin and a polyetherketoneketone resin are preferable from the viewpoints of easy availability, cost, and moldability of the resin film 1. Specific examples of polyetheretherketone resins include product names manufactured by Victrex, Victrex Powerer series, Victorex Granules series, product names manufactured by Dycel Ebonic, Vestakeep series, and product names manufactured by Solvay Specialty Polymers: Ketaspire. The PEEK series can be mentioned. Further, as a specific example of the polyetherketoneketone resin, the product name: KEPSTAN series manufactured by Arkema Co., Ltd. corresponds.
 ポリアリーレンエーテルケトン樹脂は、1種単独でも良いし、2種以上を混合して使用しても良い。また、ポリアリーレンエーテルケトン樹脂は、化学式(1)~(5)で表される化学構造を2つ以上有する共重合体でも良い。ポリアリーレンエーテルケトン樹脂は、通常、粉状、顆粒状、ペレット状等の成形加工に適した形態で使用される。また、ポリアリーレンエーテルケトン樹脂の製造方法としては、特に限定されるものではないが、例えば文献〔株式会社旭リサーチセンター:先端用途で成長するスーパーエンプラ・PEEK(上)〕に記載された製法があげられる。 The polyarylene ether ketone resin may be used alone or in combination of two or more. Further, the polyarylene ether ketone resin may be a copolymer having two or more chemical structures represented by the chemical formulas (1) to (5). The polyarylene ether ketone resin is usually used in a form suitable for molding such as powder, granules, and pellets. The method for producing the polyarylene ether ketone resin is not particularly limited, but for example, the production method described in the literature [Asahi Research Center Co., Ltd .: Super engineering plastic PEEK (above) growing for advanced applications] is used. can give.
 成形材料4のマイカ(雲母ともいう)は、フィロケイ酸鉱物雲母族に属する板状結晶であり、底面に完全な劈開を持っていることが特徴の鉱物である。このマイカは、自然界で産出される天然マイカ(白雲母、黒雲母、金雲母等)と、タルクを主原料として人工的に製造される合成マイカの2種類に分類され、工業的に優れた電気絶縁材料として広く用いられている。 The mica (also called mica) of the molding material 4 is a plate-like crystal belonging to the phyllosilicate mineral mica family, and is a mineral characterized by having a complete cleavage on the bottom surface. This mica is classified into two types, natural mica (white mica, biotite, phlogopite, etc.) produced in the natural world and synthetic mica artificially produced using talc as the main raw material, and is industrially excellent in electricity. Widely used as an insulating material.
 天然マイカは、その産地により組成や構造が異なり、加えて不純物を多く含むため、品質の安定した高周波回路基板用の樹脂フィルム1の製造には不適切である。また、天然マイカは、水酸基〔OH基〕有しているため、耐熱性に問題がある。これに対し、合成マイカは、人工的に製造されたマイカで、組成や構造が一定であり、不純物も少ないため、加熱寸法安定性等に安定した高品質の高周波回路基板用の樹脂フィルム1の製造に好適である。また、合成マイカは、水酸基が全てフッ素〔F基〕で置換されているので、天然マイカより耐熱性に優れる。したがって、本発明で使用されるマイカは、天然マイカより合成マイカが好ましい。 Natural mica has a different composition and structure depending on its production area, and also contains a large amount of impurities, so it is not suitable for producing a resin film 1 for a high-frequency circuit board with stable quality. Further, since natural mica has a hydroxyl group [OH group], there is a problem in heat resistance. On the other hand, synthetic mica is artificially manufactured mica, which has a constant composition and structure and few impurities. Therefore, the resin film 1 for a high-quality high-frequency circuit board that is stable in terms of heating dimensional stability and the like. Suitable for manufacturing. In addition, synthetic mica is superior in heat resistance to natural mica because all the hydroxyl groups are substituted with fluorine [F group]. Therefore, the mica used in the present invention is preferably synthetic mica rather than natural mica.
 合成マイカは、水に対する挙動の違いにより、非膨潤性マイカと、膨潤性マイカとに分類される。非膨潤マイカは、水と接触しても寸法安定性等に変化を起こさないタイプの合成マイカである。これに対し、膨潤性マイカは、空気中の水分等を吸収して膨潤し、劈開してしまう性質の合成マイカである。膨潤性マイカを使用した場合、膨潤性マイカが水分を含むため、高周波回路基板用の樹脂フィルム1が成形中に発泡してしまうおそれがある。このため、本発明で使用可能な合成マイカは、加熱寸法安定性や耐水性に優れる非膨潤性マイカが好ましく、より好ましくは600℃以上で熱処理を施された合成マイカが最適である。 Synthetic mica is classified into non-swelling mica and swelling mica according to the difference in behavior with respect to water. Non-swelling mica is a type of synthetic mica that does not change in dimensional stability or the like even when it comes into contact with water. On the other hand, swelling mica is a synthetic mica having a property of absorbing moisture in the air, swelling, and cleaving. When swellable mica is used, since the swellable mica contains water, the resin film 1 for the high frequency circuit board may foam during molding. Therefore, the synthetic mica that can be used in the present invention is preferably non-swellable mica that is excellent in heat dimensional stability and water resistance, and more preferably synthetic mica that has been heat-treated at 600 ° C. or higher.
 非膨潤性の合成マイカとしては、特に限定されないが下記一般式で示される合成マイカが好適に使用される。
 一般式:X1/3~1.02~3(Z10)F1.5~2.0
The non-swelling synthetic mica is not particularly limited, but the synthetic mica represented by the following general formula is preferably used.
General formula: X 1/3 to 1.0 Y 2 to 3 (Z 4 O 10 ) F 1.5 to 2.0
 ここで、Xは配位数12の層間をしめる陽イオン、Yは配位数6の八面体席をしめる陽イオン、Zは配位数4の四面体をしめる陽イオンであり、それぞれ以下の1種または2種以上のイオンで置換される〔X:Na、K、Li、Rb、Ca2+、Ba2+及びSr2+、Y:Mg2+、Fe2+、Ni2+、Mn2+、Co2+、Zn2+、Ti2+、Al3+、Cr3+、Fe3+、Li、Z:Al3+、Fe3+、Si4+、Ge4+、B3+〕。 Here, X is a cation that forms an interlayer with a coordination number of 12, Y is a cation that forms an octahedral seat with a coordination number of 6, and Z is a cation that forms a tetrahedron with a coordination number of 4. Substituted by one or more ions [X: Na + , K + , Li + , Rb + , Ca 2+ , Ba 2+ and Sr 2+ , Y: Mg 2+ , Fe 2+ , Ni 2+ , Mn 2+ , Co 2+ , Zn 2+ , Ti 2+ , Al 3+ , Cr 3+ , Fe 3+ , Li + , Z: Al 3+ , Fe 3+ , Si 4+ , Ge 4+ , B 3+ ].
 非膨潤性の合成マイカとしては、例えばフッ素金雲母(KMg(AlSi10)F)、カリウム四ケイ素雲母(KMg2.5(Si10)F)、カリウムテニオライト(KMgLi(Si10)F)があげられる。これらの中では、非膨潤性のフッ素金雲母が最適である。この合成マイカの具体例としては、耐熱性に優れる高純度で微粉末の片倉コープアグリ社製のカリウム四ケイ素雲母〔製品名:ミクロマイカMKシリーズ〕、トピー工業社製のフッ素金雲母〔PDMシリーズ〕、トピー工業社製のカリウム四ケイ素雲母〔PDMシリーズ〕等があげられる。 Examples of non-swelling synthetic mica include phlogopite fluorine (KMg 3 (AlSi 3 O 10 ) F 2 ), potassium tetrasilicon mica (KMg 2.5 (Si 4 O 10 ) F 2 ), and potassium teniolite (KMg). 2 Li (Si 4 O 10 ) F 2 ) can be mentioned. Of these, non-swelling phlogopite fluorine is the most suitable. Specific examples of this synthetic mica include potassium tetrasilicon mica manufactured by Katakura Corp. Agri, which is a high-purity, fine powder with excellent heat resistance [product name: Micromica MK series], and phlogopite fluorine mica manufactured by Topy Industries, Ltd. [PDM series. ], Potassium tetrasilicon mica manufactured by Topy Industries, Ltd. [PDM series] and the like.
 合成マイカの製造方法としては、(1)溶融法、(2)固相反応法、(3)インターカレーション法等の方法があげられる。(1)の溶融法は、シリカ、酸化マグネシウム、アルミナ、フッ化物、長石、カラン岩、それに各種金属の酸化物や炭素塩等の原料を組み合わせて混合し、1300℃の以上の高温で溶融して徐冷する製造法、(2)の固相反応法は、タルクを主原料とし、このタルクに、フッ化アルカリ、ケイフッ化アルカリ、さらに遷移金属を含む各種金属の酸化物や炭酸塩等を加えて混合し、1000℃前後で反応させる製造法、(3)のインターカレーション法は、タルクを主原料とするインターカレーション法により製造する製造法である。 Examples of the method for producing synthetic mica include (1) melting method, (2) solid phase reaction method, and (3) intercalation method. In the melting method (1), raw materials such as silica, magnesium oxide, alumina, fluoride, valerite, kalan rock, and oxides and carbon salts of various metals are combined and mixed, and melted at a high temperature of 1300 ° C. or higher. The solid-state reaction method (2) uses talc as the main raw material, and oxides and carbonates of various metals including alkali fluoride, alkali silicate, and transition metals are added to the talc. In addition, the manufacturing method of mixing and reacting at around 1000 ° C., the intercalation method of (3), is a manufacturing method of manufacturing by an intercalation method using talc as a main raw material.
 合成マイカの平均粒子径は、0.5μm以上50μm以下、好ましくは1μm以下30μm以下、より好ましくは2μm以上20μm以下、さらに好ましくは3μm以上10μm以下が良い。これは、合成マイカの平均粒子径が0.5μm以下の場合には、合成マイカ粒子が凝集しやすく、ポリアリーレンエーテルケトン樹脂中における均一分散性が低下するからである。 The average particle size of synthetic mica is 0.5 μm or more and 50 μm or less, preferably 1 μm or less and 30 μm or less, more preferably 2 μm or more and 20 μm or less, and further preferably 3 μm or more and 10 μm or less. This is because when the average particle size of the synthetic mica is 0.5 μm or less, the synthetic mica particles are likely to aggregate and the uniform dispersibility in the polyarylene ether ketone resin is lowered.
 これに対し、合成マイカの平均粒子径が50μmを越える場合には、ポリアリーレンエーテルケトン樹脂と合成マイカの混合物より得られる高周波回路基板用の樹脂フィルム1の靱性が低下することがあるからである。また、合成マイカの平均粒子径が50μmを越える場合には、合成マイカが樹脂フィルム1の表面から突き出し、樹脂フィルム1の表面が粗れて伝送特性に支障を来すからである。 On the other hand, when the average particle size of the synthetic mica exceeds 50 μm, the toughness of the resin film 1 for the high frequency circuit substrate obtained from the mixture of the polyarylene ether ketone resin and the synthetic mica may decrease. .. Further, when the average particle size of the synthetic mica exceeds 50 μm, the synthetic mica protrudes from the surface of the resin film 1, and the surface of the resin film 1 becomes rough, which hinders the transmission characteristics.
 合成マイカのアスペクト比は、5以上100以下が良い。ここで、アスペクト比は、合成マイカが鱗片状粉末の場合、粒子の径を厚みで割った値をいう。合成マイカの具体的なアスペクト比は、5以上100以下、好ましくは10以上90以下、より好ましくは20以上80以下、さらに好ましくは30以上50以下が良い。 The aspect ratio of synthetic mica should be 5 or more and 100 or less. Here, the aspect ratio means a value obtained by dividing the diameter of the particles by the thickness when the synthetic mica is a scaly powder. The specific aspect ratio of the synthetic mica is 5 or more and 100 or less, preferably 10 or more and 90 or less, more preferably 20 or more and 80 or less, and further preferably 30 or more and 50 or less.
 これは、アスペクト比が5未満の場合には、加熱寸法安定性の改良効果が低く、しかも、樹脂フィルム1の押出方向と幅方向の機械的特性、及び加熱寸法安定性の異方性が大きくなり、不適切であるからである。これに対し、アスペクト比が100を越える場合には、ポリアリーレンエーテルケトン樹脂と合成マイカの混合物より得られる樹脂フィルム1の靱性が低下するからである。 This is because when the aspect ratio is less than 5, the effect of improving the heating dimensional stability is low, and the mechanical properties in the extrusion direction and the width direction of the resin film 1 and the anisotropy of the heating dimensional stability are large. This is because it is inappropriate. On the other hand, when the aspect ratio exceeds 100, the toughness of the resin film 1 obtained from the mixture of the polyarylene ether ketone resin and synthetic mica decreases.
 合成マイカは、ポリアリーレンエーテルケトン樹脂100質量部に対して10質量部以上80質量部以下、好ましくは20質量部以上70質量部以下、より好ましくは30質量部以上60質量部以下の範囲で添加される。これは、合成マイカの添加量が10質量部未満の場合には、高周波回路基板用の樹脂フィルム1の加熱寸法安定性の調製効果が不十分となるからである。 Synthetic mica is added in the range of 10 parts by mass or more and 80 parts by mass or less, preferably 20 parts by mass or more and 70 parts by mass or less, and more preferably 30 parts by mass or more and 60 parts by mass or less with respect to 100 parts by mass of the polyarylene ether ketone resin. Will be done. This is because when the amount of synthetic mica added is less than 10 parts by mass, the effect of adjusting the heating dimensional stability of the resin film 1 for the high-frequency circuit board becomes insufficient.
 これに対し、合成マイカの添加量が80質量部を越える場合には、ポリアリーレンエーテルケトン樹脂と合成マイカよりなる成形材料4の調製中、著しく発熱し、ポリアリーレンエーテルケトン樹脂が熱分解するおそれがあるからである。また、この成形材料4より得られる樹脂フィルム1の靱性が失われて著しく脆くなり、樹脂フィルム1が成形中に損傷するおそれがあるからである。さらに、合成マイカの添加量が多くなるため、比誘電率や誘電正接が必要以上に著しく上昇してしまうという理由に基づく。 On the other hand, if the amount of synthetic mica added exceeds 80 parts by mass, the polyarylene ether ketone resin may be thermally decomposed due to significant heat generation during the preparation of the molding material 4 composed of the polyarylene ether ketone resin and the synthetic mica. Because there is. Further, the toughness of the resin film 1 obtained from the molding material 4 is lost and the resin film 1 becomes extremely brittle, and the resin film 1 may be damaged during molding. Furthermore, it is based on the reason that the relative permittivity and the dielectric loss tangent increase significantly more than necessary because the amount of synthetic mica added is large.
 合成マイカは、高周波回路基板用の樹脂フィルム1の特性を損なわない範囲において、例えば、シランカップリング剤〔ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3‐グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3‐メタクリロキシプロピルトリメトキシシラン、3‐メタクリロキシプロピルメチルジエトキシシラン、3‐メタクリロキシプロピルトリエトキシシラン、3-アクロキシプロピルトリメトキシシラン、N-2(アミノエチル)-3-アミノプロピルメチルジメトシキシラン、N-2(アミノエチル)-3-アミノプロピルトリメトシキシラン、3-アミノプロピルトリメトキシシラン、3‐アミノプロピルトリエトキシシラン、3‐トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩、3-ウレイドプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン等〕、シラン剤〔メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルシラン、ジメトキシジフェニルシラン、n-プロピルトリメトキシシラン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン、1,6-ビス(トリメトキシシリルシラン)ヘキサン、トリフルオロプロピルメトキシシラン、テトラエトキシシラン、メチルトリエトキシシラン、ジメチルトリエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、ヘキサメチルジシラザン、イミダゾールシラン等〕、チタネート系カップリング剤〔イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、テトラオクチルビス(ジートリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシ-1-ブチル)ビス(ジートリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート等〕、アルミネート系カップリング剤〔アセトアルコキシアルミニウムジイソプロピレート等〕等からなる各種カップリング剤で処理を施すことができる。 Synthetic mica is a silane coupling agent [vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epylcyclohexyl) ethyltrimethoxy, as long as the characteristics of the resin film 1 for a high-frequency circuit substrate are not impaired. Silane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyl Triethoxysilane, p-stiltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3 -Achroxypropyltrimethoxysilane, N-2 (aminoethyl) -3-aminopropylmethyldimethoxylane, N-2 (aminoethyl) -3-aminopropyltrimethoxylan, 3-aminopropyltrimethoxysilane, 3 -Aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2-aminoethyl Hydrochloride of -3-aminopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-isocyanuppropyltriethoxysilane, tris- (trimethoxysilylpropyl) isocyanurate, 3-mercaptopropylmethyldimethoxysilane, 3-mercapto Propyltrimethoxysilane, etc.], Silane agent [Methyltrimethoxysilane, dimethyldimethoxysilane, phenylsilane, dimethoxydiphenylsilane, n-propyltrimethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane, 1,6-bis (tri) Methoxysilylsilane) hexane, trifluoropropylmethoxysilane, tetraethoxysilane, methyltriethoxysilane, dimethyltriethoxysilane, phenyltriethoxysilane, n-propyltriethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, hexamethyl Disilazan, imidazole silane, etc.], titanate-based coupling agent [isopropyltriisostearoyl titanate, isopropyltris (dioctyl pie) Lophosphate) titanate, isopropyltri (N-aminoethyl-aminoethyl) titanate, tetraoctylbis (ditridecylphosphite) titanate, tetra (2,2-dialyloxy-1-butyl) bis (ditrydecyl) phosphite titanate , Bis (dioctylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) oxyacetate titanate, isopropyltrioctanoyl titanate, isopropyldimethacrylisostearoyl titanate, isopropyltridodecylbenzenesulfonyl titanate, isopropylisostearoyldiacrylic titanate, isopropyltri (Dioctylphosphate) titanate, isopropyltricylphenyl titanate, tetraisopropylbis (dioctylphosphate) titanate, etc.], aluminate-based coupling agent [acetoalkoxyaluminum diisopropirate, etc.], etc. be able to.
 ポリアリーレンエーテルケトン樹脂と合成マイカとは、所定の時間溶融混練されて樹脂フィルム1用の成形材料4となるが、この成形材料4を調製する方法として、(1)ポリアリーレンエーテルケトン樹脂と微粉末の合成マイカとを撹拌混合することなく、溶融したポリアリーレンエーテルケトン中に合成マイカを添加し、これらを溶融混練して成形材料4を調製する方法、(2)ポリアリーレンエーテルケトン樹脂と微粉末の合成マイカとを室温(0℃以上50℃以下程度の温度)で撹拌混合させた後に溶融混練し、成形材料4を調製する方法があげられる。これら(1)、(2)の方法は、いずれでも良いが、分散性や作業性の観点からすると、(1)の方法が好ましい。 The polyarylene ether ketone resin and synthetic mica are melt-kneaded for a predetermined time to form a molding material 4 for the resin film 1. As a method for preparing the molding material 4, (1) polyarylene ether ketone resin and fine A method in which synthetic mica is added to molten polyarylene ether ketone without stirring and mixing with powdered synthetic mica, and these are melt-kneaded to prepare a molding material 4. (2) Polyarylene ether ketone resin and fine Examples thereof include a method of preparing the molding material 4 by stirring and mixing the powdered synthetic mica with the synthetic mica at room temperature (temperature of about 0 ° C. or higher and 50 ° C. or lower) and then melt-kneading. Any of these methods (1) and (2) may be used, but the method (1) is preferable from the viewpoint of dispersibility and workability.
 (1)の方法について具体的に説明すると、成形材料4を調製するには、先ず、ポリアリーレンエーテルケトン樹脂をミキシングロール、加圧ニーダー、バンバリーミキサー単軸押出機、多軸押出機(二軸押出機、三軸押出機、四軸押出機等)等の溶融混練機で溶融し、ポリアリーレンエーテルケトン樹脂に合成マイカを添加して溶融混練分散させることにより、成形材料4を調製する。 To specifically explain the method (1), in order to prepare the molding material 4, first, a polyarylene ether ketone resin is mixed with a mixing roll, a pressure kneader, a Banbury mixer single-screw extruder, and a multi-screw extruder (biaxial). The molding material 4 is prepared by melting with a melt-kneader such as an extruder, a triaxial extruder, a 4-screw extruder, etc., and adding synthetic mica to a polyarylene ether ketone resin to melt-knead and disperse the resin.
 溶融混練機の調製時の温度は、溶融混練分散が可能でポリアリーレンエーテルケトン樹脂が分解しない温度であれば、特に制限されないが、ポリアリーレンエーテルケトン樹脂の融点以上熱分解温度未満の範囲である。具体的には、320℃以上450℃以下、好ましくは360℃以上420℃以下、さらに好ましくは380℃以上400℃以下の範囲が良い。 The temperature at the time of preparation of the melt-kneader is not particularly limited as long as it can be melt-kneaded and dispersed and the polyarylene ether ketone resin does not decompose, but is in the range of the melting point of the polyarylene ether ketone resin and lower than the thermal decomposition temperature. .. Specifically, the range is preferably 320 ° C. or higher and 450 ° C. or lower, preferably 360 ° C. or higher and 420 ° C. or lower, and more preferably 380 ° C. or higher and 400 ° C. or lower.
 これは、ポリアリーレンエーテルケトン樹脂の融点未満の場合には、ポリアリーレンエーテルケトン樹脂が溶融しないので、ポリアリーレンエーテルケトン樹脂含有の成形材料4を溶融押出成形することができず、逆に熱分解温度を越える場合には、ポリアリーレンエーテルケトン樹脂が激しく分解するおそれがあるという理由に基づく。調製された成形材料4は、通常は塊状、ストランド状、シート状、棒状に押し出された後、粉砕機あるいは裁断機で塊状、顆粒状、ペレット状等の成形加工に適した形態で使用される。 This is because if the temperature is lower than the melting point of the polyarylene ether ketone resin, the polyarylene ether ketone resin does not melt, so that the molding material 4 containing the polyarylene ether ketone resin cannot be melt-extruded, and conversely, thermal decomposition occurs. This is based on the reason that the polyarylene ether ketone resin may be violently decomposed when the temperature is exceeded. The prepared molding material 4 is usually extruded into a lump, a strand, a sheet, or a rod, and then used in a crusher or a cutting machine in a form suitable for molding such as a lump, a granule, or a pellet. ..
 次に(2)の方法について具体的に説明すると、ポリアリーレンエーテルケトン樹脂と合成マイカとを攪拌混合して攪拌混合物を得るには、タンブラーミキサー、ヘンシルミキサー、V型混合機、ナウターミキサー、リボンブレンダー、あるいは万能攪拌ミキサー等を使用する。この際、ポリアリーレンエーテルケトン樹脂の形状は、合成マイカとより均一に分散可能な粉体状であるのが好ましい。粉体に粉砕する方法としては、例えばせん断粉砕法、衝撃粉砕法、衝突粉砕法、冷凍粉砕法、溶液粉砕法等があげられる。 Next, the method (2) will be specifically described. In order to obtain a stirring mixture by stirring and mixing the polyarylene ether ketone resin and synthetic mica, a tumbler mixer, a hensyl mixer, a V-type mixer, and a nouter mixer , Ribbon blender, universal stirring mixer, etc. At this time, the shape of the polyarylene ether ketone resin is preferably in the form of a powder that can be more uniformly dispersed with synthetic mica. Examples of the method of crushing into powder include a shear crushing method, an impact crushing method, a collision crushing method, a frozen crushing method, and a solution crushing method.
 成形材料4は、ポリアリーレンエーテルケトン樹脂と合成マイカの攪拌混合物をミキシングロール、加圧ニーダー、バンバリーミキサー、単軸押出機、多軸押出機(二軸押出機、三軸押出機、四軸押出機等)等の溶融混練機で溶融混練し、分散させることで調製される。 The molding material 4 is a mixing roll of a stirred mixture of polyarylene ether ketone resin and synthetic mica, a pressure kneader, a Banbury mixer, a single-screw extruder, and a multi-screw extruder (two-screw extruder, three-screw extruder, four-screw extruder). It is prepared by melt-kneading and dispersing with a melt-kneader such as a machine).
 この調製時における溶融混練機の温度は、溶融混練分散が可能でポリアリーレンエーテルケトン樹脂が分解しない温度であれば、特に制限はないが、ポリアリーレンエーテルケトン樹脂の融点以上熱分解温度未満の範囲である。具体的には、(1)の方法の場合と同様の理由から、320℃以上450℃以下、好ましくは360℃以上420℃以下、より好ましくは380℃以上400℃以下の範囲が良い。調製された成形材料4は、通常は塊状、ストランド状、シート状、棒状に押し出された後、粉砕機あるいは裁断機で塊状、顆粒状、ペレット状等の成形加工に適した形態で使用される。 The temperature of the melt-kneader at the time of this preparation is not particularly limited as long as it can be melt-kneaded and dispersed and the polyarylene ether ketone resin does not decompose, but is in the range of the melting point of the polyarylene ether ketone resin and lower than the thermal decomposition temperature. Is. Specifically, for the same reason as in the method (1), the range is preferably 320 ° C. or higher and 450 ° C. or lower, preferably 360 ° C. or higher and 420 ° C. or lower, and more preferably 380 ° C. or higher and 400 ° C. or lower. The prepared molding material 4 is usually extruded into a lump, a strand, a sheet, or a rod, and then used in a crusher or a cutting machine in a form suitable for molding such as a lump, a granule, or a pellet. ..
 成形材料4は、溶融押出成形法、カレンダー成形法、あるいはキャスティング成形法等の各種成形法により樹脂フィルム1に成形される。これらの成形法の中では、ハンドリング性の向上や設備の簡略化の観点から、溶融押出成形法が最適である。この溶融押出成形法は、図2に示すように、単軸押出成形機や二軸押出成形機等の溶融押出成形機10で成形材料4を溶融混練し、溶融押出成形機10のTダイス13から複数の冷却ロール16と圧着ロール17方向に帯形の樹脂フィルム1を連続的に押出成形する方法である。 The molding material 4 is molded into the resin film 1 by various molding methods such as a melt extrusion molding method, a calender molding method, and a casting molding method. Among these molding methods, the melt extrusion molding method is most suitable from the viewpoint of improving handleability and simplifying equipment. In this melt extrusion molding method, as shown in FIG. 2, the molding material 4 is melt-kneaded by a melt extrusion molding machine 10 such as a single-screw extruder or a twin-screw extrusion machine, and the T-die 13 of the melt extrusion molding machine 10 is used. This is a method of continuously extruding a strip-shaped resin film 1 in the directions of a plurality of cooling rolls 16 and crimping rolls 17.
 溶融押出成形機10は、図2に示すように、例えば単軸押出成形機や二軸押出成形機等からなり、投入された成形材料4を溶融混練するように機能する。この溶融押出成形機10の上流側の上部後方には、成形材料4のポリアリーレンエーテルケトン樹脂用の原料投入口11が設置され、この原料投入口11には、へリウムガス、ネオンガス、アルゴンガス、クリプトンガス、窒素ガス、二酸化炭素ガス等の不活性ガスを必要に応じて供給する不活性ガス供給管12が接続されており、この不活性ガス供給管12による不活性ガスの流入により、成形材料4のポリアリーレンエーテルケトン樹脂の酸化劣化や酸素架橋が有効に防止される。 As shown in FIG. 2, the melt extrusion molding machine 10 includes, for example, a single-screw extrusion molding machine, a twin-screw extrusion molding machine, and the like, and functions to melt-knead the charged molding material 4. A raw material input port 11 for the polyarylene ether ketone resin of the molding material 4 is installed behind the upper part on the upstream side of the melt extrusion molding machine 10, and helium gas, neon gas, argon gas, etc. are installed in the raw material input port 11. An inert gas supply pipe 12 that supplies an inert gas such as krypton gas, nitrogen gas, or carbon dioxide gas as needed is connected, and the inflow of the inert gas through the inert gas supply pipe 12 causes a molding material. Oxidation deterioration and oxygen cross-linking of the polyarylene ether ketone resin of No. 4 are effectively prevented.
 溶融押出成形機10の温度は、樹脂フィルム1の成形が可能で、ポリアリーレンエーテルケトン樹脂が分解しない温度であれば、特に制限されるものでないが、ポリアリーレンエーテルケトン樹脂の融点以上熱分解温度未満の範囲が良い。具体的には、320℃以上450℃以下、好ましくは360℃以上420℃以下、より好ましくは380℃以上400℃以下に調整される。これは、溶融押出成形機10の温度がポリアリーレンエーテルケトン樹脂の融点未満の場合には、ポリアリーレンエーテルケトン樹脂が溶融せずに樹脂フィルム1の成形が困難となり、逆に熱分解温度以上の場合には、ポリアリーレンエーテルケトン樹脂が激しく分解するからである。 The temperature of the melt extrusion molding machine 10 is not particularly limited as long as the resin film 1 can be molded and the polyarylene ether ketone resin does not decompose, but the thermal decomposition temperature is equal to or higher than the melting point of the polyarylene ether ketone resin. The range less than is good. Specifically, the temperature is adjusted to 320 ° C. or higher and 450 ° C. or lower, preferably 360 ° C. or higher and 420 ° C. or lower, and more preferably 380 ° C. or higher and 400 ° C. or lower. This is because when the temperature of the melt extrusion molding machine 10 is lower than the melting point of the polyarylene ether ketone resin, the polyarylene ether ketone resin does not melt and molding of the resin film 1 becomes difficult, and conversely, the temperature is equal to or higher than the thermal decomposition temperature. In this case, the polyarylene ether ketone resin is violently decomposed.
 Tダイス13は、溶融押出成形機10の先端部に連結管14を介して装着され、帯形の樹脂フィルム1を連続的に下方に押し出すよう機能する。このTダイス13の押出時の温度は、ポリアリーレンエーテルケトン樹脂の融点以上熱分解温度未満の範囲である。具体的には、320℃以上450℃以下、好ましくは360℃以上420℃以下、さらに好ましくは380℃以上400℃以下に調整される。これは、ポリアリーレンエーテルケトン樹脂の融点未満の場合には、ポリアリーレンエーテルケトン樹脂含有の成形材料4の溶融押出成形に支障を来し、逆に熱分解温度を越える場合には、ポリアリーレンエーテルケトン樹脂が激しく分解するおそれがあるという理由に基づく。 The T die 13 is attached to the tip of the melt extrusion molding machine 10 via a connecting pipe 14 and functions to continuously push the strip-shaped resin film 1 downward. The temperature at the time of extrusion of the T-die 13 is in the range of the melting point of the polyarylene ether ketone resin or more and less than the thermal decomposition temperature. Specifically, the temperature is adjusted to 320 ° C. or higher and 450 ° C. or lower, preferably 360 ° C. or higher and 420 ° C. or lower, and more preferably 380 ° C. or higher and 400 ° C. or lower. This hinders melt extrusion molding of the molding material 4 containing the polyarylene ether ketone resin when it is lower than the melting point of the polyarylene ether ketone resin, and conversely, when it exceeds the thermal decomposition temperature, the polyarylene ether It is based on the reason that the ketone resin may be severely decomposed.
 Tダイス13の上流の連結管14には、ギアポンプ15が装着されることが好ましい。このギアポンプ15は、溶融押出成形機10により溶融混練された成形材料4を一定の流量で、かつ高精度にTダイス13に移送する。 It is preferable that the gear pump 15 is mounted on the connecting pipe 14 upstream of the T die 13. The gear pump 15 transfers the molding material 4 melt-kneaded by the melt extrusion molding machine 10 to the T-die 13 at a constant flow rate and with high accuracy.
 複数の冷却ロール16は、例えば圧着ロール17よりも拡径の回転可能な金属ロールからなり、Tダイス13の下方からその下流方向に一列に配列軸支されており、押し出された樹脂フィルム1を隣接する圧着ロール17との間に狭持するとともに、隣接する冷却ロール16と冷却ロール16との間に狭持し、圧着ロール17と共に樹脂フィルム1を冷却しながらその厚さを所定の範囲内に制御する。 The plurality of cooling rolls 16 are made of a rotatable metal roll having a diameter larger than that of the crimping roll 17, for example, and are arranged and axially supported in a row from below the T-die 13 in the downstream direction, and the extruded resin film 1 is provided. It is sandwiched between the adjacent cooling rolls 17 and between the adjacent cooling rolls 16 and the cooling rolls 16, and the thickness of the resin film 1 is kept within a predetermined range while cooling the resin film 1 together with the crimping rolls 17. To control.
 各冷却ロール16は、ポリアリーレンエーテルケトン樹脂の〔ガラス転移点+20℃〕以上ポリアリーレンエーテルケトン樹脂の融点未満、好ましくはポリアリーレンエーテルケトン樹脂の〔ガラス転移点+30℃〕以上ポリアリーレンエーテルケトン樹脂の〔ガラス転移点+160℃〕以下、より好ましくはポリアリーレンエーテルケトン樹脂の〔ガラス転移点+50℃〕以上ポリアリーレンエーテルケトン樹脂の〔ガラス転移点+140℃〕以下、さらに好ましくはポリアリーレンエーテルケトン樹脂の〔ガラス転移点+60℃〕以上ポリアリーレンエーテルケトン樹脂の〔ガラス転移点+120℃〕の温度範囲に調整され、高周波回路基板用の樹脂フィルム1に摺接する。 Each cooling roll 16 has a polyarylene ether ketone resin [glass transition point + 20 ° C.] or more and less than the melting point of the polyarylene ether ketone resin, preferably a polyarylene ether ketone resin [glass transition point + 30 ° C.] or more. [Glass transition point + 160 ° C] or less, more preferably [Glass transition point + 50 ° C] or more of polyarylene ether ketone resin or more, [Glass transition point + 140 ° C] or less of polyarylene ether ketone resin, still more preferably polyarylene ether ketone resin. It is adjusted to the temperature range of [Glass transition point + 60 ° C.] or more of the polyarylene ether ketone resin [Glass transition point + 120 ° C.], and is in sliding contact with the resin film 1 for a high frequency circuit substrate.
 この点について説明すると、各冷却ロール16の温度がポリアリーレンエーテルケトン樹脂の〔ガラス転移点+20℃〕未満の場合には、樹脂フィルム1の相対結晶化度が80%未満となり、はんだ耐熱性が得られないという問題が生じる。これに対し、各冷却ロール16の温度がポリアリーレンエーテルケトン樹脂の融点以上の場合には、樹脂フィルム1の製造中に樹脂フィルム1が冷却ロール16に貼り付き、破断するおそれがある。各冷却ロール16の温度調整や冷却方法は、空気、水、オイル等の熱媒体による方法、あるいは電気ヒータや誘導加熱等があげられる。 Explaining this point, when the temperature of each cooling roll 16 is less than the [glass transition point + 20 ° C.] of the polyarylene ether ketone resin, the relative crystallinity of the resin film 1 is less than 80%, and the solder heat resistance is improved. There is a problem that it cannot be obtained. On the other hand, when the temperature of each cooling roll 16 is equal to or higher than the melting point of the polyarylene ether ketone resin, the resin film 1 may stick to the cooling roll 16 and break during the production of the resin film 1. Examples of the temperature adjustment and cooling method of each cooling roll 16 include a method using a heat medium such as air, water, and oil, an electric heater, induction heating, and the like.
 複数の圧着ロール17は、溶融押出成形機10のTダイス13下方からその下流方向に一対が回転可能に軸支され、一列に並んだ複数の冷却ロール16を挟持し、冷却ロール16に樹脂フィルム1を圧接する。この一対の圧着ロール17は、下流側に位置する圧着ロール17の下流に、樹脂フィルム1用の巻取機18が設置され、この巻取機18の巻取管19との間には、樹脂フィルム1の側部にスリットを形成するスリット刃20が少なくとも昇降可能に配置されており、このスリット刃20と巻取機18との間には、樹脂フィルム1にテンションを作用させて円滑に巻き取るためのテンションロール21が回転可能に必要数軸支される。 A pair of the plurality of pressure-bonding rolls 17 are rotatably supported from below the T-die 13 of the melt extrusion molding machine 10 in the downstream direction, sandwiching the plurality of cooling rolls 16 arranged in a row, and forming a resin film on the cooling rolls 16. 1 is pressed. In the pair of crimping rolls 17, a winding machine 18 for the resin film 1 is installed downstream of the crimping roll 17 located on the downstream side, and a resin is placed between the pair of crimping rolls 17 and the winding pipe 19 of the winding machine 18. A slit blade 20 that forms a slit on the side of the film 1 is arranged so as to be able to move up and down at least, and a tension is applied to the resin film 1 between the slit blade 20 and the winder 18 to smoothly wind the resin film 1. The required number of shafts of tension rolls 21 for taking are rotatably supported.
 各圧着ロール17の周面には、樹脂フィルム1と冷却ロール16との密着性を向上させるため、少なくとも天然ゴム、イソプレンゴム、ブタジエンゴム、ノルボルネンゴム、アクリロニトリルブタジエンゴム、ニトリルゴム、ウレタンゴム、シリコーンゴム、フッ素ゴム等のゴム層が必要に応じて被覆形成され、このゴム層には、シリカやアルミナ等の無機化合物が選択的に添加される。これらの中では、耐熱性に優れるシリコーンゴムやフッ素ゴムの採用が好ましい。 In order to improve the adhesion between the resin film 1 and the cooling roll 16 on the peripheral surface of each pressure-bonding roll 17, at least natural rubber, isoprene rubber, butadiene rubber, norbornene rubber, acrylonitrile butadiene rubber, nitrile rubber, urethane rubber, and silicone A rubber layer such as rubber or fluororubber is formed by coating as needed, and an inorganic compound such as silica or alumina is selectively added to this rubber layer. Among these, it is preferable to use silicone rubber or fluororubber having excellent heat resistance.
 圧着ロール17は、表面が金属の金属弾性ロールが必要に応じて使用され、この金属弾性ロールが使用される場合には、表面が平滑性に優れるポリアリーレンエーテルケトン樹脂フィルム1の成形が可能となる。この金属弾性ロールの具体例としては、金属スリーブロール、エアーロール〔ディムコ社製:製品名〕、UFロール〔日立造船社製:製品名〕等が該当する。 As the pressure-bonding roll 17, a metal elastic roll having a metal surface is used as needed, and when this metal elastic roll is used, it is possible to form a polyarylene ether ketone resin film 1 having an excellent surface smoothness. Become. Specific examples of this metal elastic roll include a metal sleeve roll, an air roll [manufactured by Dimco: product name], a UF roll [manufactured by Hitachi Zosen Corporation: product name], and the like.
 このような圧着ロール17は、冷却ロール16と同様、ポリアリーレンエーテルケトン樹脂の〔ガラス転移点+20℃〕以上ポリアリーレンエーテルケトン樹脂の融点未満、好ましくはポリアリーレンエーテルケトン樹脂の〔ガラス転移点+30℃〕以上ポリアリーレンエーテルケトン樹脂の〔ガラス転移点+160℃〕以下、より好ましくはポリアリーレンエーテルケトン樹脂の〔ガラス転移点+50℃〕以上ポリアリーレンエーテルケトン樹脂の〔ガラス転移点+140℃〕以下、さらに好ましくはポリアリーレンエーテルケトン樹脂の〔ガラス転移点+60℃〕以上ポリアリーレンエーテルケトン樹脂の〔ガラス転移点+120℃〕の温度範囲に調整され、樹脂フィルム1に摺接する。 Like the cooling roll 16, such a pressure-bonding roll 17 has a polyarylene ether ketone resin [glass transition point + 20 ° C.] or more and less than the melting point of the polyarylene ether ketone resin, preferably a polyarylene ether ketone resin [glass transition point +30]. ° C] or higher, polyarylene ether ketone resin [glass transition point + 160 ° C] or lower, more preferably polyarylene ether ketone resin [glass transition point + 50 ° C] or higher, polyarylene ether ketone resin [glass transition point + 140 ° C] or lower, More preferably, it is adjusted to a temperature range of [glass transition point + 60 ° C.] or higher of the polyarylene ether ketone resin [glass transition point + 120 ° C.] of the polyarylene ether ketone resin, and is in sliding contact with the resin film 1.
 圧着ロール17の温度が係る温度範囲に調整されるのは、樹脂フィルム1の相対結晶化を80%以上に調整するためである。すなわち、圧着ロール17の温度がポリアリーレンエーテルケトン樹脂フィルム1の〔ガラス転移点+20℃〕未満の場合には、ポリアリーレンエーテルケトン樹脂フィルム1の相対結晶化度が80%未満となり、はんだ耐熱性が得られないという問題が生じる。また、圧着ロール17の温度がポリアリーレンエーテルケトン樹脂の融点以上の場合には、樹脂フィルム1の製造中に樹脂フィルム1が冷却ロール16に貼り付き、破断のおそれがある。 The temperature of the crimping roll 17 is adjusted to the relevant temperature range in order to adjust the relative crystallization of the resin film 1 to 80% or more. That is, when the temperature of the pressure-bonding roll 17 is less than the [glass transition point + 20 ° C.] of the polyarylene ether ketone resin film 1, the relative crystallinity of the polyarylene ether ketone resin film 1 is less than 80%, and the solder heat resistance. The problem arises that Further, when the temperature of the pressure-bonding roll 17 is equal to or higher than the melting point of the polyarylene ether ketone resin, the resin film 1 may stick to the cooling roll 16 during the production of the resin film 1 and may break.
 各圧着ロール17の温度調整や冷却方法としては、冷却ロール16同様、限定されるものではなく、例えば空気、水、オイル等の熱媒体による方法、あるいは電気ヒータや誘電加熱等があげられる。 As with the cooling roll 16, the temperature adjustment and cooling method of each crimping roll 17 is not limited, and examples thereof include a method using a heat medium such as air, water, and oil, an electric heater, and dielectric heating.
 上記において、高周波回路基板用の樹脂フィルム1を製造する場合には図2に示すように、先ず、溶融押出成形機10の原料投入口11に、成形材料4を同図に矢印で示す不活性ガスを供給しながら投入し、溶融押出成形機10により成形材料4のポリアリーレンエーテルケトン樹脂と合成マイカとを溶融混練し、Tダイス13から樹脂フィルム1を連続的に帯形に押し出す。 In the above, when manufacturing the resin film 1 for a high-frequency circuit board, as shown in FIG. 2, first, the molding material 4 is inactive at the raw material input port 11 of the melt extrusion molding machine 10 as shown by an arrow in the figure. The gas is charged while being supplied, and the polyarylene ether ketone resin of the molding material 4 and the synthetic mica are melt-kneaded by the melt extrusion molding machine 10, and the resin film 1 is continuously extruded from the T die 13 into a strip shape.
 この際、成形材料4の溶融押出前における含水率は、2000ppm以下、好ましくは1000ppm以下、より好ましくは100ppm以上500ppm以下に調整される。これは、含水率が2000ppmを越える場合には、Tダイス13から押し出された直後、ポリアリーレンエーテルケトン樹脂が発泡するおそれがあるからである。 At this time, the water content of the molding material 4 before melt extrusion is adjusted to 2000 ppm or less, preferably 1000 ppm or less, and more preferably 100 ppm or more and 500 ppm or less. This is because when the water content exceeds 2000 ppm, the polyarylene ether ketone resin may foam immediately after being extruded from the T die 13.
 樹脂フィルム1を押し出したら、一対の圧着ロール17、複数の冷却ロール16、テンションロール21、巻取機18の巻取管19に順次巻架し、樹脂フィルム1を冷却ロール16により冷却した後、樹脂フィルム1の両側部をスリット刃20でそれぞれカットするとともに、巻取機18の巻取管19に順次巻き取れば、高周波回路基板用の樹脂フィルム1を製造することができる。この樹脂フィルム1製造の際、樹脂フィルム1の表面には、本発明の効果を失わない範囲で微細な凹凸を形成し、樹脂フィルム1表面の摩擦係数を低下させることができる。 After extruding the resin film 1, the resin film 1 is sequentially wound on a pair of crimping rolls 17, a plurality of cooling rolls 16, a tension roll 21, and a winding pipe 19 of a winding machine 18, and then the resin film 1 is cooled by the cooling roll 16. If both sides of the resin film 1 are cut by the slit blades 20 and the resin film 1 is sequentially wound around the winding tube 19 of the winding machine 18, the resin film 1 for a high-frequency circuit board can be manufactured. During the production of the resin film 1, fine irregularities can be formed on the surface of the resin film 1 without losing the effect of the present invention, and the friction coefficient of the surface of the resin film 1 can be reduced.
 樹脂フィルム1の厚さは、2μm以上1000μm以下であれば特に限定されるものではないが、高周波回路基板の厚さの充分な確保、ハンドリング性や薄型化の観点からすると、好ましくは10μm以上800μm以下、より好ましくは20μm以上500μm以下、さらに好ましくは75μm以上250μm以下が良い。 The thickness of the resin film 1 is not particularly limited as long as it is 2 μm or more and 1000 μm or less, but is preferably 10 μm or more and 800 μm from the viewpoint of ensuring a sufficient thickness of the high-frequency circuit board, handling, and thinning. Below, it is more preferably 20 μm or more and 500 μm or less, and further preferably 75 μm or more and 250 μm or less.
 樹脂フィルム1の周波数800MHz以上100GHz以下、好ましくは1GHz以上90GHz以下、より好ましくは10GHz以上85GHz以下、さらに好ましくは25GHz以上80GHz以下の範囲における比誘電率は、高周波数帯を活用した高速通信の実現の観点から、3.5以下、好ましくは3.3以下、より好ましくは3.1以下、さらに好ましくは3.0以下が良い。この比誘電率の下限は、特に制約されるものではないが、実用上1.5以上である。 The relative permittivity of the resin film 1 in the frequency range of 800 MHz or more and 100 GHz or less, preferably 1 GHz or more and 90 GHz or less, more preferably 10 GHz or more and 85 GHz or less, and further preferably 25 GHz or more and 80 GHz or less, realizes high-speed communication utilizing a high frequency band. From the viewpoint of the above, 3.5 or less, preferably 3.3 or less, more preferably 3.1 or less, still more preferably 3.0 or less is preferable. The lower limit of the relative permittivity is not particularly limited, but is practically 1.5 or more.
 具体的には、樹脂フィルム1の周波数1GHzにおける比誘電率が3.4以下、周波数10GHzにおける比誘電率が3.17以下、周波数28GHz付近における比誘電率が3.29以下、周波数76.5GHzにおける比誘電率が3.42以下が好ましい。これは、樹脂フィルム1の周波数800MHz以上100GHz以下の範囲における比誘電率が3.5を越えると、電気信号の伝搬速度が低下するため、高速通信に不適であるという問題が生じるからである。 Specifically, the relative permittivity of the resin film 1 at a frequency of 1 GHz is 3.4 or less, the relative permittivity at a frequency of 10 GHz is 3.17 or less, the relative permittivity near a frequency of 28 GHz is 3.29 or less, and the frequency is 76.5 GHz. The relative permittivity in is preferably 3.42 or less. This is because if the relative permittivity of the resin film 1 in the frequency range of 800 MHz or more and 100 GHz or less exceeds 3.5, the propagation speed of the electric signal decreases, which causes a problem that it is not suitable for high-speed communication.
 樹脂フィルム1の周波数800MHz以上100GHz以下、好ましくは1GHz以上90GHz以下、より好ましくは10GHz以上85GHz以下、さらに好ましくは25GHz以上80GHz以下の範囲における誘電正接は、高周波数帯を活用した高速通信を実現するため、0.007以下、好ましくは0.005以下、より好ましくは0.004以下、さらに好ましくは0.003以下が良い。この誘電正接の下限は、特に限定されるものではないが、実用上0.0001以上である。 The dielectric loss tangent in the frequency range of 800 MHz or more and 100 GHz or less, preferably 1 GHz or more and 90 GHz or less, more preferably 10 GHz or more and 85 GHz or less, and further preferably 25 GHz or more and 80 GHz or less of the resin film 1 realizes high-speed communication utilizing a high frequency band. Therefore, 0.007 or less, preferably 0.005 or less, more preferably 0.004 or less, still more preferably 0.003 or less is preferable. The lower limit of the dielectric loss tangent is not particularly limited, but is 0.0001 or more in practical use.
 具体的には、樹脂フィルム1の周波数1GHzにおける誘電正接が0.003以下、周波数10GHz付近における誘電正接が0.003以下が望ましい。また、周波数28GHz付近における誘電正接が0.0037以下、周波数76.5GHz付近における誘電正接が0.0050以下が良い。これらは、周波数800MHz以上100GHz以下の範囲における誘電正接が0.007を越える場合は、損失が大きく、信号伝達率が低下するため、大容量通信には不適切であるという理由に基づく。 Specifically, it is desirable that the dielectric loss tangent of the resin film 1 at a frequency of 1 GHz is 0.003 or less, and the dielectric loss tangent at a frequency of around 10 GHz is 0.003 or less. Further, the dielectric loss tangent near the frequency of 28 GHz is preferably 0.0037 or less, and the dielectric loss tangent near the frequency of 76.5 GHz is preferably 0.0050 or less. These are based on the reason that when the dielectric loss tangent in the frequency range of 800 MHz or more and 100 GHz or less exceeds 0.007, the loss is large and the signal transduction rate is lowered, which is not suitable for large-capacity communication.
 これら比誘電率と誘電正接の測定方法としては、特に制約されるものではないが、同軸プローブ法、同軸Sパラメータ法、導波管Sパラメータ法、フリースペースSパラメータ法等の反射・伝送(Sパラメータ)法、ストリップライン(リング)共振器を用いた測定法、空洞共振器摂動法、スプリットポスト誘電体共振器を用いた測定法、円筒型(スプリットシリンダー)空洞共振器を用いた測定法、マルチ周波数平衡形円板共振器を用いた測定法、遮断円筒導波管空洞共振器を用いた測定法、ファブリペロー共振器を用いた開放型共振器法等の共振器法等の方法があげられる。 The method for measuring the specific dielectric constant and the dielectric tangent is not particularly limited, but is reflected / transmitted (S) such as the coaxial probe method, the coaxial S parameter method, the waveguide S parameter method, and the free space S parameter method. Parameter) method, measurement method using strip line (ring) resonator, cavity resonator perturbation method, measurement method using split-post waveguide resonator, measurement method using cylindrical (split cylinder) cavity resonator, Measurement methods using a multi-frequency balanced disc resonator, measurement methods using a cut-off cylindrical waveguide cavity resonator, resonator methods such as an open resonator method using a fabric perot resonator, etc. Be done.
 また、干渉計開放型を使用するファブリペロー法、空洞共振器摂動法により高周波数の比誘電率及び誘電正接を求める方法、相互誘導ブリッジ回路による3端子測定法等があげられる。これらの中では、高分解性に優れるファブリペロー法や空洞共振器摂動法の選択が最適である。 In addition, the Fabry-Perot method using an open interferometer, the method of obtaining the relative permittivity and dielectric loss tangent of high frequencies by the cavity resonator perturbation method, the three-terminal measurement method by a mutual induction bridge circuit, etc. can be mentioned. Of these, the Fabry-Perot method and the cavity resonator perturbation method, which are excellent in high resolution, are the most suitable.
 樹脂フィルム1の相対結晶化度は、80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは100%が良い。これは、樹脂フィルム1の相対結晶化度が80%未満の場合には、樹脂フィルム1のはんだ耐熱性に問題が生じるからである。また、相対結晶化度が80%以上であれば、高周波回路基板として使用可能な加熱寸法安定性の確保が期待できるからである。 The relative crystallinity of the resin film 1 is 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 100%. This is because when the relative crystallinity of the resin film 1 is less than 80%, there is a problem in the solder heat resistance of the resin film 1. Further, when the relative crystallinity is 80% or more, it can be expected to secure the heating dimensional stability that can be used as a high frequency circuit board.
 樹脂フィルム1の結晶化度は、相対結晶化度により表すことができる。この樹脂フィルム1の相対結晶化度は、示差走査熱量計を用いて10℃/分の昇温速度で測定した熱分析結果に基づき、以下の式により算出される。 The crystallinity of the resin film 1 can be expressed by the relative crystallinity. The relative crystallinity of the resin film 1 is calculated by the following formula based on the thermal analysis result measured at a heating rate of 10 ° C./min using a differential scanning calorimeter.
 相対結晶化度(%)={1-(ΔHc/ΔHm)}×100
  ΔHc:再結晶化ピークの熱量(J/g)
  ΔHm:融解ピークの熱量(J/g)
Relative crystallinity (%) = {1- (ΔHc / ΔHm)} × 100
ΔHc: calorific value of recrystallization peak (J / g)
ΔHm: Calorific value of melting peak (J / g)
 樹脂フィルム1の加熱寸法安定性は、線膨張係数により表すことができる。この線膨張係数は、樹脂フィルム1の押出方向と幅方向(押出方向と直角方向)共に1ppm/℃以上50ppm/℃以下、好ましくは3ppm/℃以上40ppm/℃以下、より好ましくは5ppm/℃以上35ppm/℃以下、さらに好ましくは10ppm/℃以上30ppm/℃以下が良い。これは、線膨張係数が1ppm/℃以上50ppm/℃以下の範囲から逸脱すると、樹脂フィルム1と導電層3との積層時にカールや反りが生じやすくなり、しかも、樹脂フィルム1と導電層3とが剥離してしまうおそれがあるからである。 The thermal dimensional stability of the resin film 1 can be expressed by the coefficient of linear expansion. The coefficient of linear expansion is 1 ppm / ° C. or higher and 50 ppm / ° C. or lower, preferably 3 ppm / ° C. or higher and 40 ppm / ° C. or lower, and more preferably 5 ppm / ° C. or higher in both the extrusion direction and the width direction (direction perpendicular to the extrusion direction) of the resin film 1. It is preferably 35 ppm / ° C. or lower, more preferably 10 ppm / ° C. or higher and 30 ppm / ° C. or lower. This is because if the coefficient of linear expansion deviates from the range of 1 ppm / ° C. or higher and 50 ppm / ° C. or lower, curling or warpage is likely to occur when the resin film 1 and the conductive layer 3 are laminated, and the resin film 1 and the conductive layer 3 This is because there is a risk of peeling.
 樹脂フィルム1の機械的特性は、23℃における引張弾性率で評価することができる。樹脂フィルム1の23℃における引張弾性率は、3500N/mm以上10000N/mm以下、好ましくは3800N/mm以上9000N/mm以下、より好ましくは3900N/mm以上8880N/mm以下の範囲が最適である。これは、引張弾性率が3500N/mm未満の場合には、樹脂フィルム1が剛性に劣るため、高周波回路基板の製造中に樹脂フィルム1にシワが生じたり、樹脂フィルム1の変形を招くおそれがあるからである。逆に、10000N/mmを越える場合には、樹脂フィルム1の成形に長時間を要し、コストの削減が期待できないという理由に基づく。 The mechanical properties of the resin film 1 can be evaluated by the tensile elastic modulus at 23 ° C. The tensile elastic modulus of the resin film 1 at 23 ° C. is 3500 N / mm 2 or more and 10000 N / mm 2 or less, preferably 3800 N / mm 2 or more and 9000 N / mm 2 or less, more preferably 3900 N / mm 2 or more and 8880 N / mm 2 or less. The range is optimal. This is because when the tensile elastic modulus is less than 3500 N / mm 2 , the resin film 1 is inferior in rigidity, so that the resin film 1 may be wrinkled or the resin film 1 may be deformed during the production of the high frequency circuit substrate. Because there is. On the contrary, when it exceeds 10000 N / mm 2 , it takes a long time to mold the resin film 1, and the cost reduction cannot be expected.
 樹脂フィルム1の耐熱性は、高周波回路基板の製造の便宜を考慮すると、はんだ耐熱性で評価されるのが望ましい。具体的には、JIS規格 C 5016の試験法に準拠し、樹脂フィルム1を288℃のはんだ浴に10秒間浮かべ、樹脂フィルム1に変形やシワの発生が認められた場合には、耐熱性に問題有と評価され、樹脂フィルム1に変形やシワの発生が認められない場合には、耐熱性に問題無と評価される。 The heat resistance of the resin film 1 is preferably evaluated by the solder heat resistance in consideration of the convenience of manufacturing a high frequency circuit board. Specifically, in accordance with the JIS standard C 5016 test method, the resin film 1 is floated in a solder bath at 288 ° C for 10 seconds, and if the resin film 1 is found to be deformed or wrinkled, it becomes heat resistant. If it is evaluated that there is a problem and no deformation or wrinkles are observed in the resin film 1, it is evaluated that there is no problem in heat resistance.
 次に、高周波回路基板を製造する場合には、製造した樹脂フィルム1上に導電層3を形成し、その後、導電層3に導電回路の配線パターンを形成すれば、高周波回路基板を製造することができる。導電層3は、樹脂フィルム1の表裏両面、表面、裏面のいずれかの面に形成され、後から導電回路の配線パターンが形成される。この導電層3に用いられる導電体としては、通常、例えば銅、金、銀、クロム、鉄、アルミニウム、ニッケル、スズ等の金属、あるいはこれら金属からなる合金があげられる。 Next, in the case of manufacturing a high-frequency circuit board, if the conductive layer 3 is formed on the manufactured resin film 1 and then the wiring pattern of the conductive circuit is formed on the conductive layer 3, the high-frequency circuit board can be manufactured. Can be done. The conductive layer 3 is formed on either the front and back surfaces, the front surface, or the back surface of the resin film 1, and the wiring pattern of the conductive circuit is formed later. Examples of the conductor used for the conductive layer 3 include metals such as copper, gold, silver, chromium, iron, aluminum, nickel and tin, or alloys made of these metals.
 導電層3の形成方法としては、(1)樹脂フィルム1と金属箔2とを熱融着して導電層3を形成する方法、(2)樹脂フィルム1と金属箔2とを接着剤で接着することにより、導電層3を形成する方法、(3)樹脂フィルム1上にシード層を形成するとともに、このシード層上に金属層を積層形成し、これらシード層と金属層とから導電層3を形成する方法等があげられる。 The conductive layer 3 is formed by (1) heat-sealing the resin film 1 and the metal foil 2 to form the conductive layer 3, and (2) bonding the resin film 1 and the metal foil 2 with an adhesive. (3) A seed layer is formed on the resin film 1 and a metal layer is laminated on the seed layer, and the conductive layer 3 is formed from the seed layer and the metal layer. The method of forming the above is mentioned.
 (1)の方法は、樹脂フィルム1と金属箔2とをプレス成形機あるいはロール間に挟み、加熱・加圧して導電層3を形成する方法である。この方法の場合、金属箔2の厚さは、1μm以上100μm以下、好ましくは5μm以上80μm以下、より好ましくは10μm以上70μm以下の範囲内が良い。 The method (1) is a method in which a resin film 1 and a metal foil 2 are sandwiched between a press molding machine or a roll and heated and pressurized to form a conductive layer 3. In the case of this method, the thickness of the metal foil 2 is preferably in the range of 1 μm or more and 100 μm or less, preferably 5 μm or more and 80 μm or less, and more preferably 10 μm or more and 70 μm or less.
 樹脂フィルム1あるいは金属箔2の表面は、熱融着時の融着強度を向上させるため、微細な凹凸を形成することができる。また、樹脂フィルム1あるいは金属箔2の表面をコロナ照射処理、紫外線照射処理、プラズマ照射処理、フレーム照射処理、イトロ照射処理、酸化処理、ヘアライン加工、サンドマット加工等で表面処理しても良い。また、樹脂フィルム1あるいは金属箔2の表面をシランカップリング剤、シラン剤、チタンネート系カップリング剤、あるいはアルミネート系カップリング剤で処理することもできる。 The surface of the resin film 1 or the metal foil 2 can form fine irregularities in order to improve the fusion strength at the time of heat fusion. Further, the surface of the resin film 1 or the metal foil 2 may be surface-treated by corona irradiation treatment, ultraviolet irradiation treatment, plasma irradiation treatment, frame irradiation treatment, itro irradiation treatment, oxidation treatment, hairline processing, sand mat processing or the like. Further, the surface of the resin film 1 or the metal foil 2 can be treated with a silane coupling agent, a silane agent, a titaniumate-based coupling agent, or an aluminate-based coupling agent.
 (2)の方法は、樹脂フィルム1と金属箔2の間にエポキシ樹脂系接着剤、フェノール樹脂系接着剤、シロキサン変性ポリアミドイミド樹脂系接着剤等の接着剤を配置し、プレス成形機あるいはロール間に挟んだ後、加熱・加圧して金属箔2を樹脂フィルム1上に形成する方法である。この方法の場合、金属箔2の厚さは、1μm以上100μm以下、好ましくは5μm以上80μm以下、より好ましくは10μm以上70μm以下の範囲内が良い。 In the method (2), an adhesive such as an epoxy resin adhesive, a phenol resin adhesive, or a siloxane-modified polyamide imide resin adhesive is placed between the resin film 1 and the metal foil 2, and a press molding machine or a roll is used. This is a method of forming a metal foil 2 on a resin film 1 by sandwiching it between them and then heating and pressurizing it. In the case of this method, the thickness of the metal foil 2 is preferably in the range of 1 μm or more and 100 μm or less, preferably 5 μm or more and 80 μm or less, and more preferably 10 μm or more and 70 μm or less.
 樹脂フィルム1あるいは金属箔2の表面は、上記同様、接着強度を向上させる観点から、微細な凹凸を形成することができる。また、樹脂フィルム1あるいは金属箔2の表面をコロナ照射処理、紫外線照射処理、プラズマ照射処理、フレーム照射処理、イトロ照射処理、酸化処理、ヘアライン加工、サンドマット加工等で表面処理を施しても構わない。また、樹脂フィルム1あるいは金属箔2の表面を上記同様、シランカップリング剤、シラン剤、チタンネート系カップリング剤、あるいはアルミネート系カップリング剤で処理することも可能である。 Similar to the above, the surface of the resin film 1 or the metal foil 2 can be formed with fine irregularities from the viewpoint of improving the adhesive strength. Further, the surface of the resin film 1 or the metal foil 2 may be surface-treated by corona irradiation treatment, ultraviolet irradiation treatment, plasma irradiation treatment, frame irradiation treatment, itro irradiation treatment, oxidation treatment, hairline processing, sand mat processing, or the like. Absent. Further, the surface of the resin film 1 or the metal foil 2 can be treated with a silane coupling agent, a silane agent, a titaniumate-based coupling agent, or an aluminate-based coupling agent in the same manner as described above.
 (3)の方法は、樹脂フィルム1上にスパッタリング法、蒸着法、あるいはめっき法等の方法により接着用のシード層を形成し、このシード層上に熱融着法や蒸着法、めっき法により金属層を形成し、これらシード層と金属層とを導電層3に形成する方法である。シード層としては、例えば銅、金、銀、クロム、鉄、アルミニウム、ニッケル、スズ、亜鉛等の金属、あるいはこれら金属からなる合金を使用することができる。シード層の厚さは、通常、0.1μm以上2μm以下の範囲である。 In the method (3), a seed layer for adhesion is formed on the resin film 1 by a method such as a sputtering method, a thin film deposition method, or a plating method, and a heat fusion method, a thin film deposition method, or a plating method is used on the seed layer. This is a method of forming a metal layer and forming the seed layer and the metal layer on the conductive layer 3. As the seed layer, for example, a metal such as copper, gold, silver, chromium, iron, aluminum, nickel, tin, zinc, or an alloy composed of these metals can be used. The thickness of the seed layer is usually in the range of 0.1 μm or more and 2 μm or less.
 樹脂フィルム1上にシード層を形成する際、これらの接着強度を改良する目的でアンカー層を形成することが可能である。このアンカー層は、ニッケルあるいはクロム等の金属があげられるが、好ましくは環境性に優れるニッケルが最適である。 When forming a seed layer on the resin film 1, it is possible to form an anchor layer for the purpose of improving the adhesive strength of these layers. Examples of the anchor layer include metals such as nickel and chromium, but nickel having excellent environmental friendliness is preferably preferable.
 金属層としては、例えば銅、金、銀、クロム、鉄、アルミニウム、ニッケル、スズ、亜鉛等の金属あるいはこれら金属からなる合金を使用することができる。この金属層は、1種類の金属からなる単層でも良いし、2種類以上の金属からなる複層や多層でも良い。金属層の厚さは、特に限定されるものではないが、0.1μm以上50μm以下、好ましくは1μm以上30μm以下が良い。 As the metal layer, for example, a metal such as copper, gold, silver, chromium, iron, aluminum, nickel, tin, zinc or an alloy composed of these metals can be used. The metal layer may be a single layer made of one kind of metal, or may be a plurality of layers or multiple layers made of two or more kinds of metals. The thickness of the metal layer is not particularly limited, but is preferably 0.1 μm or more and 50 μm or less, preferably 1 μm or more and 30 μm or less.
 シード層と金属層からなる導電層3は、0.2μm以上50μm以下、好ましくは1μm以上30μm以下、より好ましくは5μm以上20μm以下、さらに好ましくは5μm以上10μm以下の範囲内が良い。シード層と金属層は、同じ金属でも良いし、異なる金属でも良い。また、金属層の表面上には、表面の腐食を防止するため、金やニッケル等の金属保護層を被覆形成しても良い。 The conductive layer 3 composed of the seed layer and the metal layer is preferably in the range of 0.2 μm or more and 50 μm or less, preferably 1 μm or more and 30 μm or less, more preferably 5 μm or more and 20 μm or less, and further preferably 5 μm or more and 10 μm or less. The seed layer and the metal layer may be the same metal or different metals. Further, in order to prevent surface corrosion, a metal protective layer such as gold or nickel may be coated on the surface of the metal layer.
 これらの導電層3の形成方法の中では、樹脂フィルム1と金属箔2とを熱融着する(1)の方法が最適である。これは、(2)の方法の場合には、樹脂フィルム1と金属箔2とを接着剤で接着する必要があるので、接着剤の誘電特性が反映され、高周波回路基板の比誘電率や誘電正接が上昇してしまうという事態が生じるからである。また、(3)の方法の場合には、導電層3の形成工程が煩雑となり、コスト高を招くという理由に基づく。 Among these methods for forming the conductive layer 3, the method (1) in which the resin film 1 and the metal foil 2 are heat-sealed is the most suitable. This is because in the case of the method (2), it is necessary to bond the resin film 1 and the metal foil 2 with an adhesive, so that the dielectric properties of the adhesive are reflected, and the relative permittivity and dielectric constant of the high frequency circuit board are reflected. This is because there is a situation in which the direct contact rises. Further, in the case of the method (3), the process of forming the conductive layer 3 becomes complicated, which leads to an increase in cost.
 導電回路の配線パターンは、エッチング法、めっき法、あるいは印刷法等により必要数形成することができる。この配線パターンの形成方法には、アンダーカットや配線細りの発生を最小限に止め、良好な配線形成を可能とする硫酸‐過酸化水素系、塩化鉄のエッチング剤等の使用が可能である。このような所定形状の配線パターンを形成すれば、低誘電性に優れ、信号の損失を抑制することのできる高周波回路基板を製造することができる。 The required number of wiring patterns for the conductive circuit can be formed by an etching method, a plating method, a printing method, or the like. As a method for forming this wiring pattern, it is possible to use a sulfuric acid-hydrogen peroxide system, an etching agent for iron chloride, or the like, which minimizes the occurrence of undercut and wiring thinning and enables good wiring formation. By forming such a wiring pattern having a predetermined shape, it is possible to manufacture a high-frequency circuit board having excellent low dielectric properties and capable of suppressing signal loss.
 上記によれば、樹脂フィルム1を、非膨潤性の合成マイカ含有の成形材料4により成形するので、線膨張係数を低下させることができる。したがって、樹脂フィルム1の加熱寸法安定性を向上させ、金属箔2等からなる金属層との加熱寸法特性の相違を抑制することができ、導電層3を積層して高周波回路基板を製造する場合に、高周波回路基板がカールしたり、変形するのを防止することができる。 According to the above, since the resin film 1 is molded by the molding material 4 containing non-swellable synthetic mica, the coefficient of linear expansion can be reduced. Therefore, when the heating dimensional stability of the resin film 1 can be improved, the difference in the heating dimensional characteristics from the metal layer made of the metal foil 2 or the like can be suppressed, and the conductive layer 3 is laminated to manufacture the high frequency circuit board. In addition, it is possible to prevent the high frequency circuit board from being curled or deformed.
 また、樹脂フィルム1を、ポリアリーレンエーテルケトン樹脂含有の成形材料4により成形するので、樹脂フィルム1の周波数800MHz以上100GHz以下の範囲における比誘電率が3.5以下で、かつ誘電正接が0.007以下となり、比誘電率と誘電正接の値を従来よりも低くすることができる。したがって、大容量の高周波信号を高速で送受信可能な高周波回路基板を得ることが可能となる。また、この高周波回路基板の使用により、第五世代移動通信システムの実現に大いに寄与することが可能となる。 Further, since the resin film 1 is molded by the molding material 4 containing the polyarylene ether ketone resin, the relative permittivity of the resin film 1 in the frequency range of 800 MHz or more and 100 GHz or less is 3.5 or less, and the dielectric loss tangent is 0. It becomes 007 or less, and the values of the relative permittivity and the dielectric loss tangent can be made lower than before. Therefore, it is possible to obtain a high-frequency circuit board capable of transmitting and receiving a large-capacity high-frequency signal at high speed. Further, the use of this high frequency circuit board makes it possible to greatly contribute to the realization of the fifth generation mobile communication system.
 また、ポリアリーレンエーテルケトン樹脂を使用するので、損失が減少し、しかも、高周波回路基板用の樹脂フィルム1の長期使用が可能となり、高周波数帯を活用した高速通信の実現が非常に容易となる。また、ポリイミド樹脂ではなく、ポリアリーレンエーテルケトン樹脂を用いるので、高周波回路基板を簡易に多層化することが可能となる。さらに、耐熱性に優れる相対結晶化度80%以上の樹脂フィルム1を基板材料に用いるので、優れたはんだ耐熱性を得ることができる。 Further, since the polyarylene ether ketone resin is used, the loss is reduced, and the resin film 1 for the high frequency circuit board can be used for a long period of time, which makes it very easy to realize high-speed communication utilizing the high frequency band. .. Further, since the polyarylene ether ketone resin is used instead of the polyimide resin, it is possible to easily multi-layer the high frequency circuit board. Further, since the resin film 1 having a relative crystallinity of 80% or more, which is excellent in heat resistance, is used as the substrate material, excellent solder heat resistance can be obtained.
 次に、図3は本発明の第2の実施形態を示すもので、この場合には、樹脂フィルム1の表裏両面に配線パターン用の金属箔2を熱融着法によりそれぞれ積層し、この一対の金属箔2により導電層3を形成するようにしている。その他の部分については、上記実施形態と同様であるので説明を省略する。 Next, FIG. 3 shows a second embodiment of the present invention. In this case, metal foils 2 for wiring patterns are laminated on both the front and back surfaces of the resin film 1 by a heat fusion method, and the pair is laminated. The conductive layer 3 is formed by the metal foil 2 of the above. Since the other parts are the same as those in the above embodiment, the description thereof will be omitted.
 本実施形態においても上記実施形態と同様の作用効果が期待でき、しかも、樹脂フィルム1の両面に導電層3をそれぞれ形成するので、高周波回路基板の配線の高密度化や高周波回路基板の多層化が容易となるのは明らかである。 In this embodiment as well, the same effects as those in the above embodiment can be expected, and since the conductive layers 3 are formed on both sides of the resin film 1, the wiring of the high frequency circuit board is made denser and the high frequency circuit board is made into multiple layers. Clearly makes it easier.
 なお、上記実施形態では合成マイカ1種類を単独で使用したが、2種以上を併用しても良い。また、一枚の樹脂フィルム1に導電層3を積層したが、何らこれに限定されるものではなく、積層構造の複数枚の樹脂フィルム1に導電層3を新たに積層しても良い。また、樹脂フィルム1の表面に金属箔2を熱融着法により積層し、導電層3を積層形成したが、何らこれに限定されるものではなく、蒸着法やめっき法により積層形成しても良い。さらに、高周波回路基板を、自動車の衝突防止ミリ波レーダ装置、先進運転支援システム(ADAS)、人工知能(AI)等に用いることもできる。 Although one type of synthetic mica was used alone in the above embodiment, two or more types may be used in combination. Further, although the conductive layer 3 is laminated on one resin film 1, the present invention is not limited to this, and the conductive layer 3 may be newly laminated on a plurality of resin films 1 having a laminated structure. Further, the metal foil 2 is laminated on the surface of the resin film 1 by a heat fusion method, and the conductive layer 3 is laminated and formed. However, the present invention is not limited to this, and the metal foil 2 may be laminated and formed by a vapor deposition method or a plating method. good. Further, the high frequency circuit board can also be used for an automobile collision prevention millimeter wave radar device, an advanced driver assistance system (ADAS), artificial intelligence (AI), and the like.
 以下、本発明に係る樹脂フィルム、高周波回路基板及びその製造方法の実施例を比較例と共に説明する。
〔実施例1〕
 先ず、高周波回路基板用の樹脂フィルムを製造するため、ポリアリーレンエーテルケトン樹脂として、市販のポリエーテルエーテルケトン樹脂〔ビクトレック社製、製品名:Victrex Granules 450G(以下、「450G」と略す)〕を用意し、このポリエーテルエーテルケトン樹脂を160℃に加熱した除湿熱風乾燥器で12時間以上乾燥させた。
Hereinafter, examples of the resin film, the high-frequency circuit board, and the method for manufacturing the same according to the present invention will be described together with comparative examples.
[Example 1]
First, in order to manufacture a resin film for a high-frequency circuit board, a commercially available polyetheretherketone resin [manufactured by Victorec, product name: Victorex Granules 450G (hereinafter abbreviated as "450G")] is used as a polyetherketone resin. The mixture was prepared and dried in a dehumidifying hot air dryer heated to 160 ° C. for 12 hours or more.
 ポリエーテルエーテルケトン樹脂を乾燥させたら、このポリエーテルエーテルケトン樹脂を、同方向回転二軸押出機〔φ42mm、L/D=38、ベルストルフ社製 製品名:K660〕のスクリュー根元付近に設けられた第一供給口であるホッパーに投入した。また、非膨潤性の合成マイカは、同方向回転二軸押出機の大気圧に開放されたベント口のすぐ隣のサイドフィーダーの第二供給口より強制圧入した。この合成マイカは、市販のカリウム四ケイ素雲母〔片倉コープアグリ社製、製品名:ミクロマイカMK-100、平均粒子径:4.9μm〕を使用した。 After the polyetheretherketone resin was dried, this polyetheretherketone resin was provided near the screw root of a co-rotating twin-screw extruder [φ42 mm, L / D = 38, product name: K660 manufactured by Belstruf]. It was put into the hopper, which is the first supply port. In addition, the non-swelling synthetic mica was forcibly press-fitted from the second supply port of the side feeder immediately next to the vent port opened to the atmospheric pressure of the co-rotating twin-screw extruder. As this synthetic mica, a commercially available potassium tetrasilicon mica [manufactured by Katakura Corp. Agri, product name: Micromica MK-100, average particle size: 4.9 μm] was used.
 こうしてポリエーテルエーテルケトン樹脂を投入し、非膨潤性の合成マイカを圧入したら、これらを同方向回転二軸押出機のバレルの温度:350℃~370℃、スクリューの回転数:150rpm、時間当たりの吐出量:20kg/hrの条件下で溶融混練し、ストランド状に押出した。 After the polyetheretherketone resin was charged and the non-swellable synthetic mica was press-fitted in this way, the temperature of the barrel of the twin-screw extruder rotating in the same direction: 350 ° C to 370 ° C, the rotation speed of the screw: 150 rpm, per hour. Discharge rate: Melt-kneaded under the condition of 20 kg / hr and extruded into strands.
 ポリエーテルエーテルケトン樹脂の溶融状態は、同方向回転二軸押出機のベント口から目視により観察した。このポリエーテルエーテルケトン樹脂と合成マイカは、ポリエーテルエーテルケトン樹脂100質量部に対して合成マイカ25質量部となるように添加した。同方向回転二軸押出機よりストランド状の押出成形物を押し出したら、この押出成形物を空冷固化した後、ペレット状にカッティングして成形材料を作製した。 The molten state of the polyetheretherketone resin was visually observed from the vent port of the co-rotating twin-screw extruder. The polyetheretherketone resin and synthetic mica were added so as to be 25 parts by mass of synthetic mica with respect to 100 parts by mass of the polyetheretherketone resin. A strand-shaped extruded product was extruded from a co-rotating twin-screw extruder, and the extruded product was air-cooled and solidified, and then cut into pellets to prepare a molding material.
 次いで、得られた成形材料を幅900mmのTダイス付きの単軸押出機に投入して溶融混練し、この溶融混練した成形材料をTダイスから連続的に押し出して高周波回路基板用の樹脂フィルムを帯形に押出成形した。単軸押出成形機は、L/D=32、圧縮比:2.5、スクリュー:フルフライトスクリューのタイプとした。また、単軸押出成形機の温度は380~400℃、Tダイの温度は400℃、単軸押出成形機とTダイとを連結する連結管とギアポンプの温度は400℃に調整した。この単軸押出成形機に成形材料を投入する際、不可性ガス供給管により窒素ガス18L/分を供給した。 Next, the obtained molding material was put into a single-screw extruder with a T-die having a width of 900 mm and melt-kneaded, and the melt-kneaded molding material was continuously extruded from the T-die to obtain a resin film for a high-frequency circuit board. It was extruded into a strip shape. The single-screw extruder was of the type with L / D = 32, compression ratio: 2.5, and screw: full flight screw. The temperature of the single-screw extruder was adjusted to 380 to 400 ° C., the temperature of the T-die was adjusted to 400 ° C., and the temperature of the connecting pipe connecting the single-screw extruder and the T-die and the gear pump was adjusted to 400 ° C. When the molding material was charged into this single-screw extrusion molding machine, nitrogen gas 18 L / min was supplied through a non-volatile gas supply pipe.
 こうして高周波回路基板用の樹脂フィルムを成形したら、この樹脂フィルムを、図2に示すようなシリコーンゴム製の一対の圧着ロール、200℃、230℃、250℃の冷却ロールである複数の金属ロール、及びこれらの下流に位置する巻取機の6インチの巻取管に順次巻架するとともに、圧着ロールと金属ロールとに挟持させ、連続した樹脂フィルムの両側部をスリット刃で裁断して巻取管に順次巻き取ることにより、長さ100m、幅650mmの樹脂フィルムを製造した。圧着ロールと巻取管との間には、樹脂フィルムの両側部を切断するスリット刃を昇降可能に配置し、巻取管とスリット刃との間には、樹脂フィルムにテンションを作用させるテンションロールを回転可能に軸支させた。 After molding the resin film for the high frequency circuit board in this way, the resin film is formed into a pair of pressure-bonding rolls made of silicone rubber as shown in FIG. 2, and a plurality of metal rolls which are cooling rolls at 200 ° C., 230 ° C., and 250 ° C. The 6-inch take-up pipe of the take-up machine located downstream of these is sequentially wound, sandwiched between the crimping roll and the metal roll, and both sides of the continuous resin film are cut with a slit blade and taken up. A resin film having a length of 100 m and a width of 650 mm was produced by sequentially winding it around a tube. A slit blade that cuts both sides of the resin film is arranged so as to be able to move up and down between the crimping roll and the take-up pipe, and a tension roll that applies tension to the resin film is placed between the take-up pipe and the slit blade. Was rotatably supported.
 樹脂フィルムを製造したら、この樹脂フィルムの厚さ、機械的特性、加熱寸法安定性、誘電特性、耐熱性をそれぞれ評価して表1にまとめた。機械的特性は引張弾性率で評価し、加熱寸法安定性は線膨張係数、誘電特性は比誘電率と誘電正接、耐熱性ははんだ耐熱性で評価することとした。 After manufacturing the resin film, the thickness, mechanical properties, heating dimension stability, dielectric properties, and heat resistance of the resin film were evaluated and summarized in Table 1. The mechanical properties were evaluated by the tensile elastic modulus, the thermal dimensional stability was evaluated by the linear expansion coefficient, the dielectric properties were evaluated by the relative permittivity and the dielectric loss tangent, and the heat resistance was evaluated by the solder heat resistance.
・高周波回路基板用樹脂フィルムのフィルム厚
 高周波回路基板用の樹脂フィルムのフィルム厚さについては、マイクロメータ〔ミツトヨ社製 製品名:クーラントプルーフマイクロメータ 符号MDC-25PJ〕を使用して測定した。測定に際しては、ポリアリーレンエーテルケトン樹脂フィルムの幅方向(押出方向の直角方向)の任意の10箇所を測定し、その平均値をフィルム厚とした。
-Film thickness of resin film for high-frequency circuit board The film thickness of the resin film for high-frequency circuit board was measured using a micrometer [Product name manufactured by Mitutoyo Co., Ltd .: Coolant Proof Micrometer Code MDC-25PJ]. At the time of measurement, arbitrary 10 points in the width direction (direction perpendicular to the extrusion direction) of the polyarylene ether ketone resin film were measured, and the average value thereof was taken as the film thickness.
・高周波回路基板用樹脂フィルムの相対結晶化度
高周波回路基板用の樹脂フィルムの相対結晶化度については、樹脂フィルムから測定試料約8mgを秤量し、示差走査熱量計〔エスアイアイ・ナノテクノロジーズ社製 製品名:EXSTAR7000シリーズ X-DSC7000〕を使用して昇温速度10℃/分、測定温度範囲20℃から380℃まで測定した。このときに得られる結晶融解ピークの熱量(J/g)、再結晶化ピークの熱量(J/g)から以下の式を用いて算出した。
-Relative crystallinity of the resin film for high-frequency circuit boards Regarding the relative crystallinity of the resin film for high-frequency circuit boards, weigh about 8 mg of the measurement sample from the resin film and measure it with a differential scanning calorimeter [manufactured by SII Nano Technologies]. Product name: EXSTAR7000 series X-DSC7000] was used to measure the temperature rise rate at 10 ° C./min and the measurement temperature range from 20 ° C. to 380 ° C. It was calculated from the calorific value of the crystal melting peak (J / g) and the calorific value of the recrystallization peak (J / g) obtained at this time using the following formula.
  相対結晶化度(%)={1-(ΔHc/ΔHm)}×100
 ここで、ΔHcは樹脂フィルムの10℃/分の昇温条件下での再結晶化ピークの熱量(J/g)を表し、ΔHmは樹脂フィルムの10℃/分の昇温条件下での結晶融解ピークの熱量(J/g)を表す。
Relative crystallinity (%) = {1- (ΔHc / ΔHm)} × 100
Here, ΔHc represents the calorific value (J / g) of the recrystallization peak of the resin film under the heating condition of 10 ° C./min, and ΔHm is the crystal of the resin film under the heating condition of 10 ° C./min. It represents the calorific value (J / g) of the melting peak.
・高周波回路基板用樹脂フィルムの機械的性質
 高周波回路基板用の樹脂フィルムの機械的性質は、23℃における引張弾性率で評価した。機械的性質は、押出方向と幅方向(押出方向の直角方向)について測定した。測定は、JIS K 7127に準拠し、引張速度50mm/分、温度23℃±2℃、相対湿度50RH±5%RHの条件で測定した。また、引張弾性率については、5回測定してその平均値を引張弾性率とした。
-Mechanical properties of the resin film for high-frequency circuit boards The mechanical properties of the resin film for high-frequency circuit boards were evaluated by the tensile elastic modulus at 23 ° C. The mechanical properties were measured in the extrusion direction and the width direction (direction perpendicular to the extrusion direction). The measurement was carried out in accordance with JIS K 7127 under the conditions of a tensile speed of 50 mm / min, a temperature of 23 ° C. ± 2 ° C., and a relative humidity of 50 RH ± 5% RH. The tensile elastic modulus was measured 5 times and the average value was taken as the tensile elastic modulus.
・高周波回路基板用樹脂フィルムの誘電特性〔周波数:1GHz、10GHz〕
 高周波回路基板用の樹脂フィルムの周波数:1GHz、10GHzにおける誘電特性は、ネットワーク・アナライザー〔アジレント・テクノロジー社製 PNA-Lネットワークアナライザー N5230A〕を用い、空洞共振器摂動法により測定した。1GHzにおける誘電特性の測定は、空洞共振器を空洞共振器1GHz〔関東電子応用開発社製 型式;CP431〕、空洞共振器10GHz〔関東電子応用開発社製 型式;CP531〕に変更した以外は、ASTMD2520に準拠して実施した。誘電特性の測定は、温度:23℃±1℃、湿度50%RH±5%RH環境下で実施した。
Dielectric characteristics of resin film for high-frequency circuit boards [Frequency: 1 GHz, 10 GHz]
The dielectric characteristics of the resin film for a high-frequency circuit board at a frequency of 1 GHz and 10 GHz were measured by a cavity resonator perturbation method using a network analyzer [PNA-L network analyzer N5230A manufactured by Agilent Technologies]. For the measurement of the dielectric property at 1 GHz, ASTMD2520 except that the cavity resonator was changed to the cavity resonator 1 GHz [Kanto Electronics Application Development Co., Ltd. model; CP431] and the cavity resonator 10 GHz [Kanto Electronics Application Development Co., Ltd. model; CP531]. It was carried out in accordance with. The measurement of the dielectric property was carried out in an environment of temperature: 23 ° C. ± 1 ° C. and humidity of 50% RH ± 5% RH.
・高周波回路基板用樹脂フィルムの誘電特性〔周波数:28GHz付近、76.5GHz付近〕
 高周波回路基板用の樹脂フィルムの周波数:28GHz付近、76.5GHz付近の誘電特性は、ベクトルネットワークアナライザーを用い、開放型共振器法の一種であるファブリペロー法により測定した。共振器は、開放型共振器〔キーコム社製:ファブリペロー共振器 Model No.DPS03〕を使用した。
Dielectric characteristics of resin film for high-frequency circuit boards [Frequency: around 28 GHz, around 76.5 GHz]
The frequency of the resin film for a high-frequency circuit board: around 28 GHz and around 76.5 GHz was measured by the Fabry-Perot method, which is a kind of open resonator method, using a vector network analyzer. The resonator is an open type resonator [manufactured by Keycom: Fabry-Perot resonator Model No. DPS03] was used.
 測定に際しては、開放型共振器冶具の試料台上に高周波回路基板用の樹脂フィルムを載せ、ベクトルネットワークアナライザー用いて開放型共振器法の一種であるファブリペロー法で測定した。具体的には、試料台の上に樹脂フィルムを載せない状態と、樹脂フィルムを載せた状態の共振周波数の差を利用する共振法により、比誘電率と誘電正接とを測定した。誘電特性の測定に用いた具体的な周波数は表4に示す通りである。 At the time of measurement, a resin film for a high-frequency circuit board was placed on the sample table of the open resonator jig, and the measurement was performed by the Fabry-Perot method, which is a kind of open resonator method, using a vector network analyzer. Specifically, the relative permittivity and the dielectric loss tangent were measured by a resonance method utilizing the difference in resonance frequency between the state where the resin film was not placed on the sample table and the state where the resin film was placed. The specific frequencies used for measuring the dielectric properties are as shown in Table 4.
 誘電特性の測定、具体的には28GHz付近、及び76.5GHz付近の誘電特性は、温度:24℃、湿度40%環境下で所定の測定装置により測定した。所定の測定装置としては、28GHz付近はベクトルネットワークアナライザE8361A〔アジレント・テクノロジー社製:製品名〕を使用した。76.5GHz付近では、ベクトルネットワークアナライザN5227A〔アジレント・テクノロジー社製:製品名〕を用いた。 Measurement of the dielectric property, specifically, the dielectric property near 28 GHz and 76.5 GHz was measured by a predetermined measuring device under an environment of temperature: 24 ° C. and humidity of 40%. As a predetermined measuring device, a vector network analyzer E8631A [manufactured by Agilent Technologies: product name] was used near 28 GHz. At around 76.5 GHz, a vector network analyzer N5227A [manufactured by Agilent Technologies: product name] was used.
・高周波回路基板用樹脂フィルムの線膨張係数
 高周波回路基板用の樹脂フィルムの線膨張係数は、樹脂フィルムの押出方向と幅方向(押出方向の直角方向)について測定した。具体的には、樹脂フィルムの押出方向の線膨張係数を測定する場合には、押出方向20mm×幅方向4mm、幅方向の線膨張係数を測定する場合には、押出方向4mm×幅方向20mmの大きさに切り出して測定した。線膨張係数の測定に際しては、熱機械分析装置〔日立ハイテクサイエンス社製 製品名:SII//SS7100〕を用いた引張モードにより、荷重:50mN、昇温速度:5℃/min.の割合で25℃から250℃まで昇温速度:5℃/min.の割合で昇温し寸法の温度変化を測定し、25℃から125℃までの範囲の傾きにより線膨張係数を求めた。
-Linear expansion coefficient of resin film for high-frequency circuit board The linear expansion coefficient of the resin film for high-frequency circuit board was measured in the extrusion direction and width direction (direction perpendicular to the extrusion direction) of the resin film. Specifically, when measuring the linear expansion coefficient in the extrusion direction of the resin film, the extrusion direction is 20 mm × 4 mm in the width direction, and when measuring the linear expansion coefficient in the width direction, the extrusion direction is 4 mm × 20 mm in the width direction. It was cut out to a size and measured. When measuring the coefficient of linear expansion, a load: 50 mN and a heating rate: 5 ° C./min were used in a tension mode using a thermomechanical analyzer [Product name: SII // SS7100 manufactured by Hitachi High-Tech Science Co., Ltd.]. From 25 ° C to 250 ° C at the rate of temperature rise: 5 ° C / min. The temperature was raised at the rate of 1 and the temperature change of the dimensions was measured, and the coefficient of linear expansion was determined by the inclination in the range of 25 ° C. to 125 ° C.
・高周波回路基板用樹脂フィルムのはんだ耐熱性
 高周波回路基板用の樹脂フィルムのはんだ耐熱性は、JIS C 5016の試験法に準拠し、樹脂フィルムを288℃のはんだ浴に10秒間浮かべ、室温まで冷却した後、樹脂フィルムの変形やシワの発生の有無を目視により観察した。
  ○:樹脂フィルムに変形やシワの発生が認められない場合
  ×:樹脂フィルムに変形やシワの発生が認められた場合
-Solder heat resistance of resin film for high-frequency circuit boards The solder heat resistance of resin films for high-frequency circuit boards conforms to the JIS C 5016 test method, and the resin film is floated in a solder bath at 288 ° C for 10 seconds and cooled to room temperature. After that, the presence or absence of deformation and wrinkles of the resin film was visually observed.
◯: When the resin film is not deformed or wrinkled ×: When the resin film is not deformed or wrinkled
〔実施例2〕
 先ず、高周波回路基板用の樹脂フィルムを製造するため、ポリアリーレンエーテルケトン樹脂として、市販のポリエーテルエーテルケトン樹脂〔ソルベイスペシャルティポリマーズ社製、製品名:キータスパイアPEEK KT-851NL SP(以下、「KT-851NL SP」と略す)〕を用意し、このポリエーテルエーテルケトン樹脂を160℃に加熱した除湿熱風乾燥器で12時間以上乾燥させた。非膨潤性の合成マイカについては、市販されているカリウム四ケイ素雲母〔片倉コープアグリ社製 製品名:ミクロマイカMK‐100DS、平均粒子径:3.3μm〕を使用した。
[Example 2]
First, in order to manufacture a resin film for a high-frequency circuit board, a commercially available polyetheretherketone resin [manufactured by Solvay Specialty Polymers, product name: Ketaspire PEEK KT-851NL SP (hereinafter, "KT") is used as a polyetherketone resin. -851NL SP ")] was prepared, and this polyetheretherketone resin was dried for 12 hours or more in a dehumidifying hot air dryer heated to 160 ° C. For non-swelling synthetic mica, commercially available potassium tetrasilicon mica [Product name: Micromica MK-100DS, average particle size: 3.3 μm] manufactured by Katakura Corp. Agri Co., Ltd. was used.
 次いで、ポリエーテルエーテルケトン樹脂と合成マイカとを実施例1と同様の方法により、高周波回路基板用の樹脂フィルムの成形材料に調製した。ポリエーテルエーテルケトン樹脂と合成マイカとは、ポリエーテルエーテルケトン樹脂100質量部に対して合成マイカ35質量部となるように混合した。 Next, the polyetheretherketone resin and synthetic mica were prepared as a molding material for a resin film for a high-frequency circuit substrate by the same method as in Example 1. The polyetheretherketone resin and synthetic mica were mixed so as to be 35 parts by mass of synthetic mica with respect to 100 parts by mass of the polyetheretherketone resin.
 成形材料を調製したら、この成形材料を使用して実施例1と同様の方法により、高周波回路基板用の樹脂フィルムを押出成形した。樹脂フィルムを押出成形したら、この樹脂フィルムの厚さ、機械的特性、加熱寸法安定性、誘電特性、耐熱性をそれぞれ実施例1と同様の方法により評価し、表1にまとめた。 After preparing the molding material, the resin film for the high frequency circuit board was extruded using this molding material by the same method as in Example 1. After the resin film was extruded, the thickness, mechanical properties, heating dimension stability, dielectric properties, and heat resistance of the resin film were evaluated by the same methods as in Example 1 and summarized in Table 1.
〔実施例3〕
 先ず、高周波回路基板用の樹脂フィルムを製造するため、ポリアリーレンエーテルケトン樹脂として、実施例2で使用したポリエーテルエーテルケトン樹脂〔ソルベイスペシャルティポリマーズ社製、製品名:キータスパイアPEEK KT-851NL SP(以下、「KT-851NL SP」と略す)〕を用意し、このポリエーテルエーテルケトン樹脂と非膨潤性の合成マイカを実施例1と同様の方法により、高周波回路基板用の樹脂フィルムの成形材料に製造した。ポリエーテルエーテルケトン樹脂と合成マイカとは、ポリエーテルエーテルケトン樹脂100質量部に対して合成マイカ45質量部となるように合成マイカを添加した。合成マイカは、実施例1のカリウム四ケイ素雲母とした。
[Example 3]
First, in order to manufacture a resin film for a high-frequency circuit board, the polyetheretherketone resin used in Example 2 as the polyetherketone resin [manufactured by Solvay Specialty Polymers, product name: Ketaspire PEEK KT-851NL SP ( Hereinafter, it is abbreviated as “KT-851NL SP”)], and this polyetheretherketone resin and non-swellable synthetic mica are used as a molding material for a resin film for a high-frequency circuit substrate by the same method as in Example 1. Manufactured. As for the polyetheretherketone resin and synthetic mica, synthetic mica was added so as to be 45 parts by mass of synthetic mica with respect to 100 parts by mass of the polyetheretherketone resin. The synthetic mica was the potassium tetrasilicon mica of Example 1.
 成形材料を調製したら、この成形材料を使用して実施例1と同様の方法により、高周波回路基板用の樹脂フィルムを押出成形した。樹脂フィルムを押出成形したら、この樹脂フィルムの厚さ、機械的特性、加熱寸法安定性、誘電特性、耐熱性をそれぞれ実施例1と同様の方法により評価して表1にまとめた。 After preparing the molding material, the resin film for the high frequency circuit board was extruded using this molding material by the same method as in Example 1. After the resin film was extruded, the thickness, mechanical properties, heating dimension stability, dielectric properties, and heat resistance of the resin film were evaluated by the same methods as in Example 1 and summarized in Table 1.
〔実施例4〕
 高周波回路基板用の樹脂フィルムを製造するため、ポリアリーレンエーテルケトン樹脂として、市販のポリエーテルエーテルケトン樹脂〔ビクトレック社製、製品名:Victrex Granules 381G(以下、「381G」と略す)〕を用意し、このポリエーテルエーテルケトン樹脂を160℃に加熱した除湿熱風乾燥器で12時間以上乾燥させた。合成マイカは、実施例1のカリウム四ケイ素雲母を使用した。
[Example 4]
In order to manufacture a resin film for a high-frequency circuit board, a commercially available polyetheretherketone resin [manufactured by Victorec, product name: Victorex Granules 381G (hereinafter abbreviated as "381G")] is prepared as a polyetherketone resin. , This polyetheretherketone resin was dried for 12 hours or more in a dehumidifying hot air dryer heated to 160 ° C. As the synthetic mica, the potassium tetrasilicon mica of Example 1 was used.
 次いで、ポリエーテルエーテルケトン樹脂に非膨潤性の合成マイカを、ポリエーテルエーテルケトン樹脂100質量部に対して合成マイカが45質量部となるように添加し、ポリエーテルエーテルケトン樹脂と合成マイカを実施例1と同様の方法により、高周波回路基板用の樹脂フィルムの成形材料に製造した。 Next, non-swelling synthetic mica was added to the polyetheretherketone resin so that the amount of synthetic mica was 45 parts by mass with respect to 100 parts by mass of the polyetheretherketone resin, and the polyetheretherketone resin and synthetic mica were carried out. It was produced as a molding material for a resin film for a high-frequency circuit substrate by the same method as in Example 1.
 成形材料を調製したら、この成形材料を使用して実施例1と同様の方法により、高周波回路基板用の樹脂フィルムを押出成形した。樹脂フィルムを押出成形したら、この樹脂フィルムの厚さ、機械的特性、加熱寸法安定性、誘電特性、耐熱性をそれぞれ実施例1と同様の方法により評価して表2に記載した。 After preparing the molding material, the resin film for the high frequency circuit board was extruded using this molding material by the same method as in Example 1. After the resin film was extruded, the thickness, mechanical properties, heating dimension stability, dielectric properties, and heat resistance of the resin film were evaluated by the same methods as in Example 1 and shown in Table 2.
〔実施例5〕
 高周波回路基板用の樹脂フィルムを製造するため、ポリアリーレンエーテルケトン樹脂として、実施例4で用いたポリエーテルエーテルケトン樹脂〔ビクトレック社製、製品名:Victrex Granules 381G(以下、「381G」と略す)〕を用意し、このポリエーテルエーテルケトン樹脂を160℃に加熱した除湿熱風乾燥器で12時間以上乾燥させた。
[Example 5]
Polyetheretherketone resin used in Example 4 as a polyarylene ether ketone resin for producing a resin film for a high-frequency circuit board [manufactured by Victorec, product name: Victorex Granules 381G (hereinafter abbreviated as "381G"). ] Was prepared, and this polyetheretherketone resin was dried for 12 hours or more in a dehumidifying hot air dryer heated to 160 ° C.
 次いで、ポリエーテルエーテルケトン樹脂と非膨潤性の合成マイカとを実施例1と同様の方法で高周波回路基板用の樹脂フィルムの成形材料に製造した。非膨潤性の合成マイカは、市販のカリウム四ケイ素雲母〔片倉コープアグリ社製、製品名:ミクロマイカMK-300、平均粒子径:11.9μm〕を使用した。また、ポリエーテルエーテルケトン樹脂と合成マイカとは、ポリエーテルエーテルケトン樹脂100質量部に対して合成マイカ65質量部となるように添加した。 Next, a polyetheretherketone resin and a non-swellable synthetic mica were produced as a molding material for a resin film for a high-frequency circuit board by the same method as in Example 1. As the non-swelling synthetic mica, a commercially available potassium tetrasilicon mica [manufactured by Katakura Corp. Agri, product name: Micromica MK-300, average particle size: 11.9 μm] was used. Further, the polyetheretherketone resin and synthetic mica were added so as to be 65 parts by mass of synthetic mica with respect to 100 parts by mass of the polyetheretherketone resin.
 成形材料を調製したら、この成形材料を使用して実施例1と同様の方法で高周波回路基板用の樹脂フィルムを押出成形した。樹脂フィルムを押出成形したら、この樹脂フィルムの厚さ、機械的特性、加熱寸法安定性、誘電特性、耐熱性をそれぞれ実施例1と同様の方法により評価して表2に記載した。 After preparing the molding material, the resin film for the high frequency circuit board was extruded by the same method as in Example 1 using this molding material. After the resin film was extruded, the thickness, mechanical properties, heating dimension stability, dielectric properties, and heat resistance of the resin film were evaluated by the same methods as in Example 1 and shown in Table 2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
〔比較例1〕
 実施例1で使用したポリエーテルエーテルケトン樹脂を用意し、このポリエーテルエーテルケトン樹脂を160℃に加熱した除湿乾燥機で12時間以上乾燥させた。ポリエーテルエーテルケトン樹脂を乾燥させたら、このポリエーテルエーテルケトン樹脂を幅900mmのTダイスを備えたφ40mm押出成形機にセットして溶融混練し、この溶融混練したポリエーテルエーテルケトン樹脂を単軸押出成形機のTダイスから連続的に押し出し、その後、単軸押出機側から200℃、230℃、250℃に加熱した金属ロールで冷却することにより、高周波回路基板用の樹脂フィルムを押出成形した。φ40mm単軸押出成形機の温度は380℃~400℃(確認)、Tダイスの温度は400℃とした。
[Comparative Example 1]
The polyetheretherketone resin used in Example 1 was prepared, and the polyetheretherketone resin was dried in a dehumidifying dryer heated to 160 ° C. for 12 hours or more. After the polyetheretherketone resin is dried, the polyetheretherketone resin is set in a φ40 mm extrusion molding machine equipped with a 900 mm wide T-die and melt-kneaded, and the melt-kneaded polyetheretherketone resin is uniaxially extruded. A resin film for a high-frequency circuit substrate was extruded by continuously extruding from the T-die of the molding machine and then cooling with a metal roll heated to 200 ° C., 230 ° C., and 250 ° C. from the single-screw extruder side. The temperature of the φ40 mm single-screw extruder was 380 ° C to 400 ° C (confirmed), and the temperature of the T die was 400 ° C.
 こうして高周波回路基板用の樹脂フィルムを押出成形したら、この樹脂フィルムを、図2に示すようなシリコーンゴム製の一対の圧着ロール、単軸押出機側から200℃、230℃、250℃の金属ロール、及びこれらの下流に位置する巻取機の6インチの巻取管に順次巻架するとともに、圧着ロールと金属ロールとに挟持させ、連続した樹脂フィルムの両側部をスリット刃で裁断して巻取管に順次巻き取ることで、長さ100m、幅650mmの樹脂フィルムを製造した。樹脂フィルムが得られたら、この樹脂フィルムの厚さ、機械的特性、加熱寸法安定性、誘電特性、耐熱性をそれぞれ実施例1と同様の方法により評価して表3にまとめた。 After the resin film for the high-frequency circuit board is extruded in this way, the resin film is subjected to a pair of crimping rolls made of silicone rubber as shown in FIG. 2, and metal rolls at 200 ° C., 230 ° C. , And the 6-inch take-up pipe of the take-up machine located downstream of these, and sandwiched between the crimping roll and the metal roll, and both sides of the continuous resin film are cut with a slit blade and wound. A resin film having a length of 100 m and a width of 650 mm was produced by sequentially winding it around a pipe. Once the resin film was obtained, the thickness, mechanical properties, heating dimensional stability, dielectric properties, and heat resistance of the resin film were evaluated by the same methods as in Example 1 and summarized in Table 3.
〔比較例2〕
 実施例2で使用したポリエーテルエーテルケトン樹脂を用意し、このポリエーテルエーテルケトン樹脂を160℃に加熱した除湿乾燥機で12時間以上乾燥させた。こうしてポリエーテルエーテルケトン樹脂を12時間以上乾燥させたら、このポリエーテルエーテルケトン樹脂と炭酸カルシウム〔東洋ファインケミカル社製、製品名:ホワイトンP-10、平均粒子径:2.5μm〕とを実施例1と同様の方法により、高周波回路基板用の樹脂フィルムの成形材料に調製した。ポリエーテルエーテルケトン樹脂と炭酸カルシウムとは、ポリエーテルエーテルケトン樹脂100質量部に対し、炭酸カルシウム43質量部となるように混合した。
[Comparative Example 2]
The polyetheretherketone resin used in Example 2 was prepared, and the polyetheretherketone resin was dried in a dehumidifying dryer heated to 160 ° C. for 12 hours or more. After drying the polyetheretherketone resin for 12 hours or more in this way, this polyetheretherketone resin and calcium carbonate [manufactured by Toyo Fine Chemicals, product name: Whiten P-10, average particle size: 2.5 μm] are used as examples. It was prepared as a molding material for a resin film for a high-frequency circuit substrate by the same method as in 1. The polyetheretherketone resin and calcium carbonate were mixed so as to be 43 parts by mass of calcium carbonate with respect to 100 parts by mass of the polyetheretherketone resin.
 次いで、成形材料を使用して実施例1と同様の方法により、高周回路基板用の樹脂フィルムを押出成形した。樹脂フィルムを押出成形したら、この樹脂フィルムの厚さ、機械的特性、加熱寸法安定性、誘電特性、耐熱性をそれぞれ実施例1と同様の方法により評価し、表3にまとめた。 Next, the resin film for the high frequency circuit board was extruded by the same method as in Example 1 using the molding material. After the resin film was extruded, the thickness, mechanical properties, heating dimension stability, dielectric properties, and heat resistance of the resin film were evaluated by the same methods as in Example 1 and summarized in Table 3.
〔比較例3〕
 実施例4で使用したポリエーテルエーテルケトン樹脂を用意し、このポリエーテルエーテルケトン樹脂を160℃に加熱した除湿乾燥機で12時間以上乾燥させた。ポリエーテルエーテルケトン樹脂を12時間以上乾燥させたら、このポリエーテルエーテルケトン樹脂と非晶質シリカ〔アドマテックス社製、製品名:SC5500-SQ、平均粒子径:1.4μm〕とを、ポリエーテルエーテルケトン樹脂100質量部に対して非晶質シリカ37質量部となるように混合した。
[Comparative Example 3]
The polyetheretherketone resin used in Example 4 was prepared, and the polyetheretherketone resin was dried in a dehumidifying dryer heated to 160 ° C. for 12 hours or more. After the polyetheretherketone resin has been dried for 12 hours or more, the polyetheretherketone resin and amorphous silica [manufactured by Admatex, product name: SC5500-SQ, average particle size: 1.4 μm] are added to the polyether. Amorphous silica was mixed so as to be 37 parts by mass with respect to 100 parts by mass of the ether ketone resin.
 次いで、成形材料を調製したら、この成形材料を使用して実施例1と同様の方法により、高周波回路基板用の樹脂フィルムを押出成形した。樹脂フィルムが得られたら、この樹脂フィルムの厚さ、機械的特性、加熱寸法安定性、誘電特性、耐熱性をそれぞれ実施例と同様の方法により評価し、表3に記載した。 Next, after preparing the molding material, a resin film for a high-frequency circuit board was extruded using this molding material by the same method as in Example 1. Once the resin film was obtained, the thickness, mechanical properties, heating dimension stability, dielectric properties, and heat resistance of the resin film were evaluated by the same methods as in Examples, and are shown in Table 3.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
〔結  果〕
 各実施例の高周波回路基板用の樹脂フィルムは、比誘電率が3.5以下であり、誘電正接が0.005以下であった。また、機械的特性は、引張弾性率が3500N/mm以上で高い剛性を有しているため、高周波回路基板の組み立て時のハンドリング性に優れていた。加熱寸法安定性は、線膨張係数が50ppm/℃以下となり、従来よりも優れた結果を得た。さらに、耐熱性についても、288℃のはんだ浴に10秒間浮かべても、全く変形やシワの発生が認められず、高周波回路基板として使用可能な耐熱性を有していた。
[Result]
The resin film for the high-frequency circuit board of each embodiment had a relative permittivity of 3.5 or less and a dielectric loss tangent of 0.005 or less. Further, as for the mechanical properties, since the tensile elastic modulus is 3500 N / mm 2 or more and has high rigidity, the handleability at the time of assembling the high frequency circuit board is excellent. Regarding the thermal dimensional stability, the coefficient of linear expansion was 50 ppm / ° C or less, and better results than before were obtained. Further, regarding heat resistance, no deformation or wrinkles were observed even when the product was floated in a solder bath at 288 ° C. for 10 seconds, and it had heat resistance that could be used as a high-frequency circuit board.
 これに対して、比較例の高周波回路基板用樹脂フィルムは、非膨潤性の合成マイカを添加しなかったので、線膨張係数が55ppm/℃以上となり、不十分な結果となった。これらの測定結果から、各実施例の樹脂フィルムは、誘電特性に優れ、MHz帯域からGHz帯域の高周波帯域で用いられる高周波回路基板に最適であるのが判明した。 On the other hand, the resin film for the high-frequency circuit board of the comparative example did not contain the non-swellable synthetic mica, so the coefficient of linear expansion was 55 ppm / ° C or higher, which was an insufficient result. From these measurement results, it was found that the resin film of each example has excellent dielectric properties and is most suitable for a high frequency circuit board used in a high frequency band from the MHz band to the GHz band.
 本発明に係る樹脂フィルム、高周波回路基板及びその製造方法は、情報通信や自動車機器等の分野で使用される。 The resin film, high frequency circuit board and its manufacturing method according to the present invention are used in the fields of information communication, automobile equipment and the like.
1    樹脂フィルム
2    金属箔(金属層)
3    導電層
4    成形材料
10   溶融押出成形機(押出成形機)
11   原料投入口
13   Tダイス(ダイス)
16   冷却ロール
17   圧着ロール
18   巻取機
19   巻取管
20   スリット刃
 
1 Resin film 2 Metal foil (metal layer)
3 Conductive layer 4 Molding material 10 Melt extrusion molding machine (extrusion molding machine)
11 Raw material input port 13 T die (dice)
16 Cooling roll 17 Crimping roll 18 Winding machine 19 Winding pipe 20 Slit blade

Claims (7)

  1.  ポリアリーレンエーテルケトン樹脂100質量部と、非膨潤性の合成マイカ10質量部以上80質量部以下とを含有することを特徴とする樹脂フィルム。 A resin film characterized by containing 100 parts by mass of a polyarylene ether ketone resin and 10 parts by mass or more and 80 parts by mass or less of non-swelling synthetic mica.
  2.  相対結晶化度が80%以上である請求項1記載の樹脂フィルム。 The resin film according to claim 1, wherein the relative crystallinity is 80% or more.
  3.  線膨張係数が1ppm/℃以上50ppm/℃以下である請求項1又は2記載の樹脂フィルム。 The resin film according to claim 1 or 2, wherein the coefficient of linear expansion is 1 ppm / ° C. or higher and 50 ppm / ° C. or lower.
  4.  非膨潤性の合成マイカは、フッ素金雲母、カリウム四ケイ素雲母、及びカリウムテニオライトの少なくともいずれかである請求項1、2、又は3記載の樹脂フィルム。 The resin film according to claim 1, 2 or 3, wherein the non-swellable synthetic mica is at least one of phlogopite fluorine, tetrasilicon mica potassium, and potassium teniolite.
  5.  請求項1ないし4のいずれかに記載された樹脂フィルムを有することを特徴とする高周波回路基板。 A high-frequency circuit board having the resin film according to any one of claims 1 to 4.
  6.  樹脂フィルムに熱融着して積層される金属層を含んでなる請求項5記載の高周波回路基板。 The high-frequency circuit board according to claim 5, which includes a metal layer that is heat-sealed and laminated on a resin film.
  7.  請求項5又は6に記載した高周波回路基板の製造方法であって、少なくともポリアリーレンエーテルケトン樹脂100質量部と、非膨潤性の合成マイカ10質量部以上80質量部以下とを含有する成形材料を溶融混練し、この成形材料を押出成形機のダイスにより樹脂フィルムに押出成形し、この樹脂フィルムを冷却ロールに接触させて冷却することにより、樹脂フィルムの相対結晶化度を80%以上とするとともに、この樹脂フィルムの線膨張係数を1ppm/℃以上50ppm/℃以下とすることを特徴とする高周波回路基板の製造方法。
     
    The molding material according to claim 5 or 6, wherein the molding material contains at least 100 parts by mass of a polyarylene ether ketone resin and 10 parts by mass or more and 80 parts by mass or less of a non-swellable synthetic mica. By melt-kneading, the molding material is extruded into a resin film by a die of an extrusion molding machine, and the resin film is brought into contact with a cooling roll to be cooled, the relative crystallinity of the resin film is increased to 80% or more. , A method for manufacturing a high-frequency circuit board, characterized in that the linear expansion coefficient of this resin film is 1 ppm / ° C. or higher and 50 ppm / ° C. or lower.
PCT/JP2020/016123 2019-04-19 2020-04-10 Resin film, high-frequency circuit board, and production method for high-frequency circuit board WO2020213527A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080029888.5A CN113784838A (en) 2019-04-19 2020-04-10 Resin film, high-frequency circuit board and method for producing same
KR1020217034273A KR20220005466A (en) 2019-04-19 2020-04-10 Resin film, high frequency circuit board and manufacturing method thereof
JP2021514923A JP7515961B2 (en) 2019-04-19 2020-04-10 Manufacturing method of resin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019080405 2019-04-19
JP2019-080405 2019-04-19

Publications (1)

Publication Number Publication Date
WO2020213527A1 true WO2020213527A1 (en) 2020-10-22

Family

ID=72837120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016123 WO2020213527A1 (en) 2019-04-19 2020-04-10 Resin film, high-frequency circuit board, and production method for high-frequency circuit board

Country Status (5)

Country Link
JP (1) JP7515961B2 (en)
KR (1) KR20220005466A (en)
CN (1) CN113784838A (en)
TW (1) TWI809265B (en)
WO (1) WO2020213527A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338823A (en) * 2001-05-21 2002-11-27 Mitsubishi Plastics Ind Ltd Heat-resistant film for substrate and printed wiring board obtained using the same
JP2018109090A (en) * 2016-12-28 2018-07-12 株式会社クラレ Thermoplastic liquid crystal polymer film and circuit board using the same
JP2019046980A (en) * 2017-09-01 2019-03-22 信越ポリマー株式会社 Electromagnetic wave shielding film and manufacturing method thereof and electromagnetic wave shielding film-equipped printed wiring board and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1020708C (en) 1988-01-21 1993-05-19 希欧欧匹化学株式会社 Method for producing fluorine mica
DE60022539T2 (en) * 1999-11-30 2006-06-29 Otsuka Chemical Co., Ltd. RESIN COMPOSITION AND FLEXIBLE PCB ASSEMBLY
JP4094211B2 (en) 2000-08-10 2008-06-04 三菱樹脂株式会社 Method for producing metal foil laminate
JP4073631B2 (en) * 2001-01-22 2008-04-09 三菱樹脂株式会社 Polyarylketone resin film and metal laminate using the same
CN104753627A (en) 2013-12-26 2015-07-01 中兴通讯股份有限公司 Multipath transmission method, multipath transmission system, data transmission device and data receiving device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338823A (en) * 2001-05-21 2002-11-27 Mitsubishi Plastics Ind Ltd Heat-resistant film for substrate and printed wiring board obtained using the same
JP2018109090A (en) * 2016-12-28 2018-07-12 株式会社クラレ Thermoplastic liquid crystal polymer film and circuit board using the same
JP2019046980A (en) * 2017-09-01 2019-03-22 信越ポリマー株式会社 Electromagnetic wave shielding film and manufacturing method thereof and electromagnetic wave shielding film-equipped printed wiring board and manufacturing method thereof

Also Published As

Publication number Publication date
CN113784838A (en) 2021-12-10
TWI809265B (en) 2023-07-21
KR20220005466A (en) 2022-01-13
JPWO2020213527A1 (en) 2020-10-22
TW202104392A (en) 2021-02-01
JP7515961B2 (en) 2024-07-16

Similar Documents

Publication Publication Date Title
US11917753B2 (en) Circuit board for use at 5G frequencies
US20210070927A1 (en) Polymer Composition and Film for Use in 5G Applications
JP6408763B2 (en) Electromagnetic wave shielding material and laminated body for electromagnetic wave shielding
WO2006134774A1 (en) High frequency electronic component
JP7141275B2 (en) high frequency circuit board
WO2022071525A1 (en) Liquid crystal polymer film, flexible copper-clad laminate, and method for producing liquid crystal polymer film
JP2008307893A (en) Laminated porous film
CN114600567A (en) Heat radiating fin and preparation method thereof
WO2020213527A1 (en) Resin film, high-frequency circuit board, and production method for high-frequency circuit board
JP7344789B2 (en) High frequency circuit board and its manufacturing method
WO2021256340A1 (en) Resin film, method for producing same, printed wiring board, coverlay, and multilayer body
JP2021195518A (en) Resin film and method for producing the same, printed wiring board, cover lay, and laminate
JP2007323918A (en) Shielded flat cable and its manufacturing method
JP7519745B2 (en) Laminate and manufacturing method thereof
JP2020177987A (en) High-frequency circuit board and method for manufacturing the same
WO2022019252A1 (en) Powder composition and composite particles
US11760932B2 (en) Liquid crystal polymer film and laminate
JP2005213317A (en) Low-dielectric/heat-resistant resin composition, and molded product, copper-clad laminate and flexible printed wiring board using the composition
WO2024095728A1 (en) Conductive film
JP2022115620A (en) Laminate and manufacturing method thereof
JP2023050376A (en) Resin film, conductive laminate, and circuit board
JP2023050160A (en) Biaxially-oriented polyarylene sulfide film
CN115891344A (en) Biaxially oriented polyphenylene sulfide film and preparation method thereof
JP2024053909A (en) Resin film, circuit board material, circuit board and electronic apparatus
WO2022091993A1 (en) Multilayer body for electronic curcuit boards

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791592

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514923

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20791592

Country of ref document: EP

Kind code of ref document: A1