WO2020213023A1 - Heat exchanger and air conditioner - Google Patents

Heat exchanger and air conditioner Download PDF

Info

Publication number
WO2020213023A1
WO2020213023A1 PCT/JP2019/016103 JP2019016103W WO2020213023A1 WO 2020213023 A1 WO2020213023 A1 WO 2020213023A1 JP 2019016103 W JP2019016103 W JP 2019016103W WO 2020213023 A1 WO2020213023 A1 WO 2020213023A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
transfer tube
heat exchanger
header
insertion hole
Prior art date
Application number
PCT/JP2019/016103
Other languages
French (fr)
Japanese (ja)
Inventor
達郎 永山
智嗣 上山
満貞 早川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021514666A priority Critical patent/JP7086278B2/en
Priority to PCT/JP2019/016103 priority patent/WO2020213023A1/en
Publication of WO2020213023A1 publication Critical patent/WO2020213023A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling

Definitions

  • the present invention relates to a heat exchanger having improved corrosion resistance and an air conditioner in which the heat exchanger is used.
  • the heat exchanger is used, for example, as an outdoor heat exchanger and an indoor heat exchanger of an air conditioner. Since the outdoor heat exchanger is used outdoors, moisture adheres to it. Indoor heat exchangers are used indoors, but when they function as evaporators, condensation causes moisture to adhere to them. When moisture adheres to the heat exchanger and the heat exchanger made of a metal material corrodes, the heat exchange performance deteriorates due to refrigerant leakage. For this reason, heat exchangers are often provided with anticorrosion measures. As an anticorrosion measure, for example, a material having a lower redox potential than the heat transfer tube is provided on the surface of the heat transfer tube of the heat exchanger.
  • a material having a lower redox potential than the heat transfer tube is used as the material that comes into contact with the heat transfer tube of the heat exchanger.
  • a material having a lower redox potential than the heat transfer tube will be simply referred to as a material having a lower redox potential.
  • the heat transfer tube and the parts that come into contact with the heat transfer tube are joined by brazing.
  • the parts that come into contact with the heat transfer tube are, for example, headers and fins.
  • the wax material that melts and becomes liquid flows on the surface of the heat transfer tube and spreads.
  • the brazing material may include a material having a low redox potential as a material constituting the brazing material.
  • the material having a low redox potential constituting the brazing material is also contained in the melted brazing material and diffuses to the surface of the heat transfer tube.
  • a material having a low redox potential diffused on the surface of a heat transfer tube during brazing has an effect of preventing corrosion of the heat transfer tube.
  • the heat exchanger described in Patent Document 1 includes a heat transfer tube which is a flat tube, and a header brazed to the heat transfer tube. Specifically, an insertion hole into which a heat transfer tube is inserted is formed on the side surface of the header. Further, a heat transfer tube is inserted into the insertion hole, and the heat transfer tube and the header are brazed and joined at the periphery of the insertion hole. A groove extending in a direction substantially perpendicular to the insertion direction of the heat transfer tube into the insertion hole is formed on the surface of the heat transfer tube.
  • the heat exchanger described in Patent Document 1 cannot control the flow of the melted brazing material in the range from the brazed portion to the groove between the heat transfer tube and the header during brazing. Therefore, in the heat exchanger described in Patent Document 1, in the range from the brazed portion to the groove between the heat transfer tube and the header, the redox potential is still low and the redox potential is low. The thin part of the material is formed. Therefore, the conventional heat exchanger has a problem that uneven distribution of materials having a low redox potential cannot be suppressed on the surface of the heat transfer tube.
  • the present invention has been made to solve the above-mentioned problems, and obtains a heat exchanger capable of suppressing uneven distribution of a material having a low redox potential generated on the surface of a heat transfer tube during brazing. That is the first purpose.
  • a second object of the present invention is to obtain an air conditioner provided with such a heat exchanger.
  • the heat exchanger has a heat transfer tube through which a refrigerant flows, and an insertion hole into which an end of the heat transfer tube is inserted is formed, and the heat exchanger flows into the heat transfer tube and flows out of the heat transfer tube.
  • a header through which at least one flows and fins attached to the outer peripheral portion of the heat transfer tube are provided, the heat transfer tube and the header are joined by brazing, and the heat transfer tube and the fin are joined by brazing.
  • the heat transfer tube is formed with at least one groove extending from the header toward the fin at a position between the header and the fin.
  • the air conditioner according to the present invention includes a refrigeration cycle circuit having a compressor, an outdoor heat exchanger, an expansion valve and an indoor heat exchanger, and at least one of the outdoor heat exchanger and the indoor heat exchanger.
  • the heat exchanger according to the present invention is used.
  • the heat exchanger according to the present invention can control the flow of the melted brazing material on the surface of the heat transfer tube by the groove formed in the heat transfer tube during brazing. Therefore, the heat exchanger according to the present invention can suppress uneven distribution of the material having a low redox potential generated on the surface of the heat transfer tube during brazing as compared with the conventional case.
  • FIG. 5 is a vertical cross-sectional view showing the vicinity of a joint between a header and a heat transfer tube in the outdoor heat exchanger according to the first embodiment.
  • FIG. 5 is an exploded perspective view showing the vicinity of a joint between a header and a heat transfer tube in the outdoor heat exchanger according to the first embodiment.
  • FIG. 5 is an exploded perspective view showing the vicinity of a joint between a header and a heat transfer tube in the outdoor heat exchanger according to the first embodiment.
  • It is a perspective view which shows another example of the heat transfer tube of the outdoor heat exchanger which concerns on Embodiment 1.
  • FIG. It is a figure which shows the vicinity of the insertion hole of the header of the outdoor heat exchanger which concerns on Embodiment 2.
  • FIG. It is a figure which shows the vicinity of the insertion hole of the header of the outdoor heat exchanger which concerns on Embodiment 3.
  • FIG. 1 is a diagram showing an air conditioner according to the first embodiment.
  • the air conditioner 1 includes a refrigeration cycle circuit 10 in which a refrigerant circulates.
  • the refrigeration cycle circuit 10 includes a compressor 11, a four-way valve 12, an outdoor heat exchanger 20, an expansion valve 13, and an indoor heat exchanger 14. That is, the compressor 11, the four-way valve 12, the outdoor heat exchanger 20, the expansion valve 13, and the indoor heat exchanger 14 are connected by a refrigerant pipe to form a refrigeration cycle circuit 10.
  • These components of the refrigeration cycle circuit 10 are housed in the outdoor unit 2 or the indoor unit 3.
  • the outdoor unit 2 houses a compressor 11, a four-way valve 12, an outdoor heat exchanger 20, and an expansion valve 13.
  • An indoor heat exchanger 14 is housed in the indoor unit 3.
  • the gaseous refrigerant compressed by the compressor 11 flows into the indoor heat exchanger 14 through the four-way valve 12.
  • the gaseous refrigerant that has flowed into the indoor heat exchanger 14 is condensed from the gaseous state to a liquid state by exchanging heat with the air around the indoor heat exchanger 14, and the ambient air is exchanged by the heat exchange at that time. It will warm up.
  • the refrigerant that has become liquid in the indoor heat exchanger 14 is expanded by the expansion valve 13 to become a gas-liquid two-phase state, and flows into the outdoor heat exchanger 20.
  • the gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 20 evaporates by exchanging heat with the air around the outdoor heat exchanger 20 to become a gas state, and the ambient air is exchanged by the heat exchange at that time. It will be cooled.
  • the refrigerant that has become gaseous in the outdoor heat exchanger 20 is sucked into the compressor 11 and compressed.
  • the flow of refrigerant is reversed from that in the case of heating operation by switching the four-way valve 12.
  • the gaseous refrigerant compressed by the compressor 11 flows into the outdoor heat exchanger 20 through the four-way valve 12.
  • the gaseous refrigerant that has flowed into the outdoor heat exchanger 20 is condensed from the gaseous state to a liquid state by exchanging heat with the air around the outdoor heat exchanger 20, and the ambient air is removed by the heat exchange tube at that time. It will warm up.
  • the refrigerant that has become liquid in the outdoor heat exchanger 20 is expanded by the expansion valve 13 to become a gas-liquid two-phase state, and flows into the indoor heat exchanger 14.
  • the gas-liquid two-phase refrigerant that has flowed into the indoor heat exchanger 14 evaporates by exchanging heat with the air around the indoor heat exchanger 14 to become a gas state, and the ambient air is exchanged by the heat exchange at that time. It will be cooled.
  • the refrigerant that has become gaseous in the indoor heat exchanger 14 is sucked into the compressor 11 and compressed.
  • the air conditioner 1 is a dedicated cooling machine or a dedicated heating machine, it is not necessary to provide the four-way valve 12.
  • the compression method and operation method of the compressor 11 are not particularly limited, but for example, an inverter compressor whose capacity can be controlled can be used as the compressor 11.
  • FIG. 2 is a front view showing the outdoor heat exchanger according to the first embodiment.
  • FIG. 3 is a vertical cross-sectional view showing the vicinity of the joint between the header and the heat transfer tube in the outdoor heat exchanger according to the first embodiment.
  • FIG. 4 is an exploded perspective view showing the vicinity of the joint between the header and the heat transfer tube in the outdoor heat exchanger according to the first embodiment.
  • the outdoor heat exchanger 20 includes a heat transfer tube 30, a header 40, and fins 50.
  • the heat transfer tube 30, the header 40, and the fins 50 are made of metal.
  • a flat tube is used as the heat transfer tube 30.
  • the outer peripheral portion of the heat transfer tube 30 which is a flat tube includes a flat surface portion 31, a flat surface portion 32 parallel to the flat surface portion 31, and a pair of end portions 33 connecting the flat surface portion 31 and the flat surface portion. ..
  • a plurality of refrigerant flow paths 34 through which the refrigerant flows are formed in the heat transfer tube 30 which is a flat tube.
  • the outdoor heat exchanger 20 is installed so that the heat transfer tube 30 extends in the horizontal direction.
  • a plurality of heat transfer tubes 30 are provided. These plurality of heat transfer tubes 30 are arranged at predetermined intervals in the vertical direction. The end portion of each heat transfer tube 30 in the tube axial direction is inserted into an insertion hole 41 formed in a side surface portion of the header 40, as will be described later.
  • the insertion direction X is the direction in which the heat transfer tube 30 is inserted into the insertion hole 41 of the header 40.
  • the insertion direction X is the horizontal direction.
  • the first direction Y is perpendicular to the insertion direction X and parallel to the flat surface portion 31 of the heat transfer tube 30.
  • the first direction Y is a horizontal direction perpendicular to the insertion direction X.
  • the second direction Z is perpendicular to the insertion direction X and perpendicular to the first direction Y.
  • the second direction Z is the vertical direction.
  • the header 40 has, for example, a cylindrical shape.
  • the header 40 at least one of the refrigerant flowing into the heat transfer tube 30 and the refrigerant flowing out of the heat transfer tube 30 flows.
  • An insertion hole 41 into which the end portion of the heat transfer tube 30 is inserted is formed in the side surface portion of the header 40.
  • a plurality of heat transfer tubes 30 are arranged in the vertical direction at a predetermined interval. For this reason, a plurality of insertion holes 41 are also formed on the side surface portion of the header 40 at predetermined intervals in the vertical direction.
  • the outdoor heat exchanger 20 includes a pair of headers 40.
  • one header 40 will be referred to as a header 40a and the other header 40 will be referred to as a header 40b.
  • the header 40a is provided with a pipe 42 and a pipe 43.
  • the refrigerant pipe 15 shown in FIG. 1 is connected to the pipe 42.
  • the refrigerant pipe 15 is a refrigerant pipe that connects the four-way valve 12 and the outdoor heat exchanger 20.
  • the refrigerant pipe 16 shown in FIG. 1 is connected to the pipe 43.
  • the refrigerant pipe 16 is a refrigerant pipe that connects the expansion valve 13 and the outdoor heat exchanger 20. Therefore, the inside of the header 40a according to the first embodiment is partitioned into a flow path communicating with the refrigerant pipe 15 and a flow path communicating with the refrigerant pipe 16.
  • the refrigerant flowing into the header 40a from one of the refrigerant pipes 15 and 16 flows through a part of the plurality of heat transfer pipes 30. After that, it flows into the header 40b.
  • the refrigerant that has flowed into the header 40b flows through the remaining part of the plurality of heat transfer tubes 30, then passes through the header 40a, and flows out to the other of the refrigerant pipes 15 and 16.
  • the outdoor heat exchanger 20 according to the first embodiment is a parallel flow type heat exchanger.
  • a corrugated fin is used as the fin 50.
  • the fins 50 are arranged between the heat transfer tubes 30 adjacent to each other in the vertical direction, and are attached to the outer peripheral portions of the heat transfer tubes 30.
  • the fin 50 and the heat transfer tube 30 are brazed and joined at a position where the fin 50 and the heat transfer tube 30 face each other.
  • the end of the fin 50 is bent to form a brazed portion 51 facing the heat transfer tube 30.
  • the heat transfer tube 30 and the brazed portion 51 are brazed and joined.
  • the refrigerant leaks from the hole and the heat exchange performance of the outdoor heat exchanger 20 deteriorates.
  • many heat transfer tubes are provided in the outdoor heat exchanger.
  • the heat transfer tube is thinner than the header because it exchanges heat between the refrigerant and the surrounding air. Therefore, in order to suppress the deterioration of the heat exchange performance of the outdoor heat exchanger 20, it is important to suppress the corrosion of the heat transfer tube 30. Therefore, in the first embodiment, the corrosion of the heat transfer tube 30 is suppressed as follows.
  • a material having a lower redox potential than that of the heat transfer tube 30 is used as the material of the header 40 and the fin 50 that come into contact with the heat transfer tube 30.
  • a material having a lower redox potential than the heat transfer tube 30 may be simply referred to as a material having a lower redox potential. Since the header 40 and the fin 50 are materials having a low redox potential, they corrode preferentially over the heat transfer tube 30. As a result, corrosion of the heat transfer tube 30 is suppressed.
  • the form of water droplets adhering to the heat transfer tube 30 is limited. Specifically, it is necessary that the water droplets adhere to the heat transfer tube 30 in a state where the water droplets are in contact with the heat transfer tube 30 and the header 40, or in a state where the water droplets are in contact with the heat transfer tube 30 and the fins 50. If water droplets adhere to the heat transfer tube 30 only in contact with the heat transfer tube 30, this anticorrosion method does not work and the corrosion of the heat transfer tube 30 cannot be suppressed.
  • a flat tube is used as the heat transfer tube 30. Therefore, water droplets tend to stay on the flat surface portion 31, and water droplets tend to adhere to the heat transfer tube 30 only in contact with the water droplets.
  • the surface of the heat transfer tube 30 is covered with a material having a low redox potential to further suppress the corrosion of the heat transfer tube 30.
  • the surface of the heat transfer tube 30 is covered with a material having a low redox potential when the heat transfer tube 30, the header 40, and the fins 50 are joined by brazing.
  • the brazing material that melts and becomes liquid flows on the surface of the heat transfer tube 30 and spreads.
  • the material having a low redox potential forming the header 40 and the fin 50 is contained in the melted brazing material and diffuses to the surface of the heat transfer tube 30.
  • the brazing material may include a material having a low redox potential as a material constituting the brazing material.
  • a material having a low redox potential constituting the brazing material is also contained in the melted brazing material and diffuses to the surface of the heat transfer tube 30. As a result, the surface of the heat transfer tube 30 is covered with a material having a low redox potential.
  • the anticorrosion method in which the material having a low redox potential covers the surface of the heat transfer tube 30 is an effective method for anticorrosion of the heat transfer tube 30.
  • the surface of the heat transfer tube 30 may have a place where the melted wax material easily flows and a place where the melted wax material does not easily flow.
  • many materials having a low redox potential are diffused in places where the brazing material easily flows, and many materials having a low redox potential are diffused in places where the brazing material does not easily flow. It will not spread.
  • a dark portion of the material having a low redox potential and a thin portion of the material having a low redox potential are formed.
  • At least one groove 35 extending from the header 40 toward the fin 50 is provided in the heat transfer tube 30 at a position between the header 40 and the fin 50. Is formed. Specifically, in the first embodiment, at least one groove 35 is formed in the flat surface portion 31 of the heat transfer tube 30. Further, in the first embodiment, two grooves 35 are formed in the flat surface portion 31 of the heat transfer tube 30. Since at least one groove 35 extending from the header 40 toward the fin 50 is formed in the heat transfer tube 30, the brazing material melted at the time of brazing flows along the groove 35.
  • the flow of the brazing material on the surface of the heat transfer tube 30 can be controlled, and uneven distribution of the material having a low redox potential generated on the surface of the heat transfer tube 30 can be suppressed as compared with the conventional case. Therefore, corrosion of the heat transfer tube 30 can be suppressed, and the corrosion resistance of the outdoor heat exchanger 20 can be improved.
  • two grooves 35 are formed in the heat transfer tube 30, but the number of grooves 35 is not limited to two.
  • one groove 35 may be formed in the heat transfer tube 30.
  • the brazing material melted at the time of brazing along the groove 35
  • the flow of the brazing material on the surface of the heat transfer tube 30 can be controlled, and the redox potential generated on the surface of the heat transfer tube 30 is low. Uneven distribution of materials can be suppressed more than before.
  • the brazing material is excessively accumulated in the groove 35, the brazing material and the material for forming the heat transfer tube 30 are mixed, so that the melting point of the material for forming the heat transfer tube 30 is lowered, and a hole is formed at the place where the melting point is lowered. There is also the possibility that it will end up. Therefore, it is preferable that the number of grooves 35 formed in the heat transfer tube 30 is a plurality.
  • three or more grooves 35 may be formed.
  • the larger the number of grooves 35 the more evenly the wax material melted on the surface of the heat transfer tube 30 can flow. That is, when the number of grooves 35 is large, the material having a low redox potential can be evenly diffused on the surface of the heat transfer tube 30, and the distribution unevenness of the material having a low redox potential generated on the surface of the heat transfer tube 30. Can be further suppressed.
  • FIG. 5 is a perspective view showing another example of the heat transfer tube of the outdoor heat exchanger according to the first embodiment.
  • the heat transfer tube 30 of the outdoor heat exchanger 20 shown in FIG. 5 has a plurality of grooves 35 formed in the flat surface portion 31. These plurality of grooves 35 are arranged at intervals in the first direction Y.
  • the range including the central position in the first direction Y is defined as the first range 38.
  • the range that is closer to the end portion 33 than the first range 38 in the first direction Y is defined as the second range 39.
  • the grooves 35 are densely arranged in the first range 38 as compared with the second range 39.
  • the brazing material melted during brazing is likely to be supplied to the flat portion constituting the outer peripheral portion of the flat tube. That is, in the flat surface portion 31 shown in FIG. 5, the brazing material melted in the first range 38 is more likely to be supplied than in the second range 39. Therefore, by arranging the plurality of grooves 35 as shown in FIG. 5, the brazing material in the first range 38 of the flat surface portion 31 to which a large amount of the brazing material is supplied can be easily flowed along the grooves 35. Therefore, when a flat tube is used as the heat transfer tube 30, by arranging a plurality of grooves 35 as shown in FIG. 5, it is possible to further suppress uneven distribution of materials having a low redox potential generated on the surface of the heat transfer tube 30. ..
  • the groove 35 is formed only in the flat surface portion 31 of the heat transfer tube 30, but the groove 35 may be formed in the flat surface portion 32 or the groove 35 is formed in the end portion 33. You may. Since the melted wax material flows through the groove 35, many materials have a low redox potential. Therefore, if there is a portion on the surface of the heat transfer tube 30 where corrosion is likely to occur, it is possible to provide a groove 35 in the portion to improve the corrosion resistance of the portion.
  • the cross-sectional shape of the groove 35 is not particularly mentioned, but the cross-sectional shape of the groove 35 is not particularly limited.
  • the cross-sectional shape referred to here is a cross-sectional shape when the groove 35 is cut in a cross section perpendicular to the direction in which the groove 35 extends.
  • the cross-sectional shape of the groove 35 may be a semicircular shape, a triangular shape, a quadrangular shape, or a polygonal shape of a pentagon or more.
  • the groove 35 extends parallel to the insertion direction X, but the extending direction of the groove 35 does not have to be parallel to the insertion direction X.
  • the groove 35 may extend from the header 40 toward the fin 50 and may be inclined with respect to the insertion direction X.
  • the cross-sectional area of the groove 35 satisfies the following conditions.
  • the cross-sectional area of the groove 35 is the area of the cross-sectional shape when the groove 35 is cut in a cross section perpendicular to the direction in which the groove 35 extends.
  • the cross-sectional area of the grooves 35 shall indicate the average of the cross-sectional areas of each groove 35.
  • the volume of the brazing material required for brazing the peripheral edge of the insertion hole 41 and the outer peripheral portion of the heat transfer tube 30 is defined as V1.
  • the volume of the brazing material supplied for brazing the peripheral edge of the insertion hole 41 and the outer peripheral portion of the heat transfer tube 30 is defined as V2.
  • N be the number of grooves 35 formed in the heat transfer tube 30.
  • L be the average length of the grooves 35 formed in the heat transfer tube 30.
  • the cross-sectional area of the groove 35 is preferably smaller than (V2-V1) / NL.
  • the position of the end portion 36 of the groove 35 on the header 40 side is not limited to the position shown in FIG. Specifically, as shown in FIG. 3, the end portion 36 of the groove 35 on the header 40 side is arranged at a position facing the peripheral wall of the insertion hole 41 of the header 40. In other words, the groove 35 extends to a position facing the peripheral wall of the insertion hole 41.
  • the end portion 36 on the header 40 side of the groove 35 will be the outer periphery of the header 40. It may be arranged on the fin 50 side with respect to the surface.
  • the brazing material can easily flow into the groove 35. That is, when the groove 35 extends to a position facing the peripheral wall of the insertion hole 41, it is easier to suppress uneven distribution of the material having a low redox potential generated on the surface of the heat transfer tube 30. Therefore, it is preferable that at least one groove 35 extends to a position facing the peripheral wall of the insertion hole 41.
  • the position of the end portion 37 on the fin 50 side of the groove 35 is not limited to the position shown in FIG. Specifically, as shown in FIG. 3, the end portion 37 of the groove 35 on the fin 50 side is arranged at a position facing the brazed portion 51 of the fin 50. In other words, the groove 35 extends to a position facing the fin 50. However, when the fin 50 and the outer peripheral portion of the heat transfer tube 30 are brazed and joined, if the brazing material can flow into the groove 35, the end portion 37 on the fin 50 side of the groove 35 is closer to the header 40 than the fin 50. It may be arranged in. However, if the groove 35 extends to a position facing the fin 50, the brazing material can easily flow into the groove 35.
  • the groove 35 extends to a position facing the fin 50, it is easier to suppress uneven distribution of the material having a low redox potential generated on the surface of the heat transfer tube 30. Therefore, it is preferable that at least one groove 35 extends to a position facing the fin 50.
  • a flat tube is used as the heat transfer tube 30, but the heat transfer tube 30 is not limited to the flat tube.
  • various heat transfer tubes such as a circular heat transfer tube, an elliptical heat transfer tube, a polygonal heat transfer tube, and an uneven heat transfer tube can be used as the heat transfer tube 30.
  • the header 40 is not limited to such a configuration.
  • the header 40 may have a rectangular parallelepiped shape.
  • a laminated header in which plate-shaped members are laminated to form a flow path inside may be used as the header 40.
  • the fin 50 is not limited to the above configuration.
  • the fin 50 does not have to be provided with the brazing portion 51.
  • the points where the fins 50 and the heat transfer tube 30 face each other may be brazed and joined.
  • the fin 50 when the fin 50 is a corrugated fin, the folded-back portion is a portion facing the heat transfer tube 30. Therefore, the fin 50 and the heat transfer tube 30 may be brazed and joined at the folded portion.
  • a plate-shaped fin into which the heat transfer tube 30 is inserted into the opening may be used as the fin 50.
  • the specific materials of the heat transfer tube 30, the header 40, the fins 50, and the brazing material are not particularly limited.
  • specific materials for the heat transfer tube 30, the header 40, the fins 50, and the brazing material for example, the following materials can be used.
  • aluminum or an aluminum alloy can be used as the material of the heat transfer tube 30.
  • the header 40 and the fin 50 are formed of a material having a lower oxidation-reduction potential than the heat transfer tube 30, for example, the material having a lower oxidation-reduction potential is made of pure aluminum as the material of the header 40 and the fin 50.
  • the added aluminum alloy, zinc, zinc alloy, magnesium, magnesium alloy, lithium, lithium alloy, silicon, and a material obtained by adding a material other than silicon to silicon can be used.
  • a material in which these materials are combined may be used.
  • the brazing material for example, an aluminum alloy containing silicon can be used.
  • a material other than an aluminum alloy containing silicon, which has a lower redox potential than the heat transfer tube 30, may be used.
  • at least one of the heat transfer tube 30, the header 40 and the fin 50 may be formed of a clad material having a brazing material on its surface.
  • a heat transfer tube using aluminum or an aluminum alloy as a base material and having a material having a lower redox potential than the base material on the surface of the base material may be used.
  • Such a heat transfer tube 30 can be obtained, for example, by spraying a material having a lower redox potential than the base material on the surface of the base material.
  • such a heat transfer tube 30 can be formed of a clad material in which a material having a lower redox potential than the base material is provided on the surface of the base material.
  • the material having a lower redox potential than the heat transfer tube 30 is a material having a lower redox potential than the base material.
  • the outdoor heat exchanger 20 in which the heat transfer tube 30 is provided in the horizontal direction is illustrated, but the configuration of the outdoor heat exchanger 20 is not limited to the configuration.
  • the outdoor heat exchanger 20 may be configured such that the heat transfer tube 30 is vertically provided.
  • the outdoor heat exchanger 20 may have a configuration in which the heat transfer tubes 30 are provided at different angles.
  • the outdoor heat exchanger 20 is a parallel flow type heat exchanger, but the outdoor heat exchanger 20 is a heat exchanger in which a refrigerant flows in series through each of the heat transfer tubes 30. There may be.
  • the groove 35 is formed in the heat transfer tube 30 of the outdoor heat exchanger 20, but the indoor heat exchanger 14 may have the same configuration as the outdoor heat exchanger 20.
  • the corrosion resistance of the indoor heat exchanger 14 can be improved.
  • the heat transfer tube 30 through which the refrigerant flows and the insertion hole 41 into which the end of the heat transfer tube 30 is inserted are formed, and the refrigerant and the heat transfer tube 30 flowing into the heat transfer tube 30 are formed. It includes a header 40 through which at least one of the refrigerants flowing out of the heat transfer tube 30 flows, and fins 50 attached to the outer peripheral portion of the heat transfer tube 30. Further, in the heat exchanger according to the first embodiment, the heat transfer tube 30 and the header 40 are joined by brazing, and the heat transfer tube 30 and the fins 50 are joined by brazing. Then, at least one groove 35 extending from the header 40 toward the fin 50 is formed in the heat transfer tube 30 at a position between the header 40 and the fin 50.
  • the flow of the melted brazing material on the surface of the heat transfer tube 30 can be controlled by the groove 35 formed in the heat transfer tube 30 at the time of brazing. Therefore, the heat exchanger according to the first embodiment can suppress uneven distribution of the material having a low redox potential generated on the surface of the heat transfer tube 30 during brazing as compared with the conventional case.
  • Embodiment 2 When a flat tube is used as the heat transfer tube 30, the insertion hole 41 of the header 40 may be formed in the following shape, for example.
  • items not particularly described will be the same as those in the first embodiment, and the same functions and configurations as those in the first embodiment will be described using the same reference numerals.
  • FIG. 6 is a diagram showing the vicinity of the insertion hole of the header of the outdoor heat exchanger according to the second embodiment.
  • FIG. 6 is a view of the insertion hole 41 of the header 40 observed in the insertion direction X.
  • the opening width W of the insertion hole 41 in the second direction Z is viewed in the first direction Y, it becomes wider from the end toward the center. Therefore, in the outdoor heat exchanger 20 according to the second embodiment, when the flat heat transfer tube 30 and the insertion hole 41 are viewed in the first direction Y, they are inserted into the outer peripheral portion of the heat transfer tube 30. The distance between the hole 41 and the peripheral wall increases from the end to the center.
  • the distance between the header 40 and the fin 50 becomes smaller toward the center position in the first direction Y.
  • a flat tube is used as the heat transfer tube 30
  • a large amount of brazed material melted during brazing is likely to be supplied to the vicinity of the center of the heat transfer tube 30 in the first direction Y. That is, a material having a low redox potential tends to diffuse near the center of the heat transfer tube 30 in the first direction Y.
  • the insertion hole 41 as in the second embodiment, the amount of brazing material required for brazing the vicinity of the center of the first direction Y of the heat transfer tube 30 and the peripheral edge of the insertion hole 41 increases.
  • the present embodiment 2 By forming the insertion hole 41 as described above, uneven distribution of the material having a low redox potential generated on the surface of the heat transfer tube 30 can be suppressed. That is, even when a flat tube is used as the heat transfer tube 30 under the condition that the brazing material melted at the time of brazing is easily supplied to the vicinity of the center of the first direction Y of the heat transfer tube 30, as in the second embodiment.
  • corrosion of the heat transfer tube 30 can be suppressed, and the corrosion resistance of the outdoor heat exchanger 20 can be improved.
  • the amount of diffusion of the material having a low redox potential to the outer peripheral portion of the heat transfer tube 30 is insufficient, and the corrosion resistance of the heat transfer tube 30 is lowered. You might think that. However, when the uneven distribution of the material having a low redox potential is remarkable on the surface of the heat transfer tube 30, there is a high possibility that corrosion will occur locally in the dark portion of the material having a low redox potential. In addition, once local corrosion occurs, the site often continues to corrode.
  • the melting point of the material forming the heat transfer tube 30 decreases in a place where a large amount of material having a low redox potential accumulates, and a hole is formed in the place where the melting point decreases. From the viewpoint of suppressing this local dissolution, the configuration of suppressing the diffusion amount of the material having a low redox potential to the outer peripheral portion of the heat transfer tube 30 as in the second embodiment is effective.
  • the shape of the insertion hole 41 shown in FIG. 6 is an example.
  • the shape of the insertion hole 41 is arbitrary as long as the opening width W becomes wider from the end toward the center when viewed in the first direction Y.
  • the opening width W is constant near the center of the first direction Y.
  • the size of the opening width W may be different even near the center of the first direction Y.
  • the opening width W of the end portion in the first direction Y is not zero, but the opening width W of the end portion in the first direction Y may be zero.
  • the outer peripheral edge of the insertion hole 41 shown in FIG. 6 is configured by combining straight lines, at least a part of the outer peripheral edge of the insertion hole 41 may be curved.
  • Embodiment 3 When a flat tube is used as the heat transfer tube 30, the insertion hole 41 of the header 40 may be formed in the following shape, for example.
  • items not particularly described are the same as those of the first embodiment or the second embodiment, and the same reference numerals are used for the same functions and configurations as those of the first embodiment or the second embodiment. Will be described.
  • FIG. 7 is a diagram showing the vicinity of the insertion hole of the header of the outdoor heat exchanger according to the third embodiment.
  • FIG. 7 is a view of the insertion hole 41 of the header 40 observed in the insertion direction X.
  • the header 40 according to the third embodiment when the opening width W of the insertion hole 41 in the second direction Z is viewed in the first direction Y, it becomes wider from the center toward the end. Therefore, in the outdoor heat exchanger 20 according to the third embodiment, when the flat heat transfer tube 30 and the insertion hole 41 are viewed in the first direction Y, they are inserted into the outer peripheral portion of the heat transfer tube 30. The distance between the hole 41 and the peripheral wall increases from the center to the end.
  • the distance between the header 40 and the fin 50 is from the center position in the first direction to the end side.
  • a flat tube is used as the heat transfer tube 30
  • a large amount of the brazing material melted at the time of brazing is supplied to the vicinity of the end portion of the heat transfer tube 30 in the first direction Y, for example, when the header 40 that becomes smaller toward the direction of Easy to be done. That is, the material having a low redox potential tends to diffuse near the end of the heat transfer tube 30 in the first direction Y.
  • the amount of brazing material required for brazing the vicinity of the end of the heat transfer tube 30 in the first direction Y and the peripheral edge of the insertion hole 41 is large. Therefore, it is possible to prevent the melted brazing material from flowing near the end of the heat transfer tube 30 in the first direction Y. That is, it is possible to suppress the diffusion of a material having a low redox potential near the end of the heat transfer tube 30 in the first direction Y.
  • the third embodiment By forming the insertion hole 41 as described above, uneven distribution of the material having a low redox potential generated on the surface of the heat transfer tube 30 can be suppressed.
  • the present embodiment 3 By forming the insertion hole 41 as described above, corrosion of the heat transfer tube 30 can be suppressed, and the corrosion resistance of the outdoor heat exchanger 20 can be improved.
  • the shape of the insertion hole 41 shown in FIG. 7 is an example.
  • the shape of the insertion hole 41 is arbitrary as long as the opening width W becomes wider from the center toward the end when viewed in the first direction Y.
  • the opening width W is constant near the center of the first direction Y.
  • the size of the opening width W may be different even near the center of the first direction Y.
  • the outer peripheral edge of the insertion hole 41 shown in FIG. 6 is configured by combining straight lines, at least a part of the outer peripheral edge of the insertion hole 41 may be curved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

The present invention provides a heat exchanger, comprising: a heat transfer tube that channels a refrigerant; a header in which an insertion hole, into which an end part of the heat transfer tube is inserted, is formed, the header channeling the refrigerant flowing into the heat transfer tube and/or the refrigerant flowing out of the heat transfer tube; and a fin attached to the outer periphery part of the heat transfer tube, the heat transfer tube and the header being joined by brazing, and the heat transfer tube and the fin being joined by brazing, wherein the heat transfer tube has at least one groove formed at a position between the header and the fin, the groove extending from the header towards the fin.

Description

熱交換器及び空気調和機Heat exchanger and air conditioner
 本発明は、耐食性の向上を図った熱交換器、及び該熱交換器が用いられた空気調和機に関する。 The present invention relates to a heat exchanger having improved corrosion resistance and an air conditioner in which the heat exchanger is used.
 熱交換器は、例えば、空気調和機の室外熱交換器及び室内熱交換器として用いられる。室外熱交換器は、屋外で使用されるため、水分が付着する。室内熱交換器は、室内で使用されるが、蒸発器として機能する際には結露によって水分が付着する。熱交換器に水分が付着し、金属材料で形成された熱交換器が腐食すると、冷媒漏れによって熱交換性能が低下する。このため、熱交換器には、防食対策が施されることが多い。防食対策としては、例えば、熱交換器の伝熱管の表面等に、該伝熱管よりも酸化還元電位が卑である材料が設けられる。また例えば、防食対策として、熱交換器の伝熱管に接触する材料には、伝熱管よりも酸化還元電位が卑である材料が用いられる。以下、伝熱管よりも酸化還元電位が卑である材料を、単に、酸化還元電位が卑である材料と称する。 The heat exchanger is used, for example, as an outdoor heat exchanger and an indoor heat exchanger of an air conditioner. Since the outdoor heat exchanger is used outdoors, moisture adheres to it. Indoor heat exchangers are used indoors, but when they function as evaporators, condensation causes moisture to adhere to them. When moisture adheres to the heat exchanger and the heat exchanger made of a metal material corrodes, the heat exchange performance deteriorates due to refrigerant leakage. For this reason, heat exchangers are often provided with anticorrosion measures. As an anticorrosion measure, for example, a material having a lower redox potential than the heat transfer tube is provided on the surface of the heat transfer tube of the heat exchanger. Further, for example, as an anticorrosion measure, a material having a lower redox potential than the heat transfer tube is used as the material that comes into contact with the heat transfer tube of the heat exchanger. Hereinafter, a material having a lower redox potential than the heat transfer tube will be simply referred to as a material having a lower redox potential.
 伝熱管と、該伝熱管と接触する部品とは、ロウ付けにより接合される。伝熱管と接触する部品とは、例えば、ヘッダ及びフィン等である。ロウ付け時、溶けて液状となったロウ材は、伝熱管の表面を流れて広がっていく。この際、酸化還元電位が卑である材料によって伝熱管と接触する部品が形成されている場合には、酸化還元電位が卑である材料は、溶けたロウ材中に含まれて、伝熱管の表面に拡散していく。また、ロウ材には、該ロウ材を構成する材料として、酸化還元電位が卑である材料が含まれている場合もある。ロウ材を構成する酸化還元電位が卑である材料もまた、溶けたロウ材中に含まれて、伝熱管の表面に拡散していく。ロウ付け時に、伝熱管の表面に拡散した酸化還元電位が卑である材料は、伝熱管を防食する効果を有する。 The heat transfer tube and the parts that come into contact with the heat transfer tube are joined by brazing. The parts that come into contact with the heat transfer tube are, for example, headers and fins. At the time of brazing, the wax material that melts and becomes liquid flows on the surface of the heat transfer tube and spreads. At this time, when a part having contact with the heat transfer tube is formed by a material having a base redox potential, the material having a base redox potential is contained in the melted brazing material and is contained in the heat transfer tube. It diffuses to the surface. Further, the brazing material may include a material having a low redox potential as a material constituting the brazing material. The material having a low redox potential constituting the brazing material is also contained in the melted brazing material and diffuses to the surface of the heat transfer tube. A material having a low redox potential diffused on the surface of a heat transfer tube during brazing has an effect of preventing corrosion of the heat transfer tube.
 伝熱管の表面に凹凸又は析出物がある場合等、伝熱管の表面には、溶けたロウ材が流れやすい場所及び溶けたロウ材が流れにくい場所が存在することがある。このような場合、伝熱管の表面では、ロウ材が流れやすい場所に酸化還元電位が卑である材料が多く拡散し、ロウ材が流れにくい場所には酸化還元電位が卑である材料があまり拡散しない状態となる。その結果、伝熱管の表面には、酸化還元電位が卑である材料の濃い部分と、酸化還元電位が卑である材料の薄い部分とができることになる。すなわち、伝熱管の表面において、酸化還元電位が卑である材料の分布ムラが生じてしまう。このような場合、酸化還元電位が卑である材料の濃い部分が腐食し易くなり、結局は伝熱管の耐食性を低下させる可能性がある。 When there are irregularities or deposits on the surface of the heat transfer tube, there may be places where the melted wax material easily flows and places where the melted wax material does not easily flow on the surface of the heat transfer tube. In such a case, on the surface of the heat transfer tube, many materials having a low redox potential are diffused in places where the brazing material easily flows, and many materials having a low redox potential are diffused in places where the brazing material is difficult to flow. It will not be in a state. As a result, on the surface of the heat transfer tube, a dark portion of the material having a low redox potential and a thin portion of the material having a low redox potential are formed. That is, uneven distribution of materials having a low redox potential occurs on the surface of the heat transfer tube. In such a case, the dark portion of the material having a low redox potential is likely to be corroded, which may eventually reduce the corrosion resistance of the heat transfer tube.
 このような課題を解決する方法として、伝熱管に、特許文献1に記載の構成を採用することが考えられる。特許文献1に記載の熱交換器は、扁平管である伝熱管と、該伝熱管とロウ付け接合されたヘッダとを備えている。具体的には、ヘッダの側面部には、伝熱管が挿入される挿入孔が形成されている。また、挿入孔に伝熱管が挿入され、挿入孔周縁において、伝熱管とヘッダとがロウ付け接合されている。そして、伝熱管の表面には、挿入孔への伝熱管の挿入方向と略垂直な方向に延びる溝が形成されている。特許文献1に記載の熱交換器においては、ロウ付け時に溶けたロウ材が伝熱管の表面を流れる際、溝まで流れてきたロウ材が溝に留まる。これにより、特許文献1に記載の熱交換器は、ロウ材の留まる場所の制御を図っている。 As a method for solving such a problem, it is conceivable to adopt the configuration described in Patent Document 1 for the heat transfer tube. The heat exchanger described in Patent Document 1 includes a heat transfer tube which is a flat tube, and a header brazed to the heat transfer tube. Specifically, an insertion hole into which a heat transfer tube is inserted is formed on the side surface of the header. Further, a heat transfer tube is inserted into the insertion hole, and the heat transfer tube and the header are brazed and joined at the periphery of the insertion hole. A groove extending in a direction substantially perpendicular to the insertion direction of the heat transfer tube into the insertion hole is formed on the surface of the heat transfer tube. In the heat exchanger described in Patent Document 1, when the brazing material melted during brazing flows on the surface of the heat transfer tube, the brazing material that has flowed to the groove stays in the groove. As a result, the heat exchanger described in Patent Document 1 controls the place where the brazing material stays.
特開2016-217587号公報Japanese Unexamined Patent Publication No. 2016-217587
 特許文献1に記載の熱交換器は、ロウ付け時、伝熱管とヘッダとのロウ付け部から溝までの範囲において、溶けたロウ材の流れを制御できない。このため、特許文献1に記載の熱交換器は、伝熱管とヘッダとのロウ付け部から溝までの範囲において、依然として、酸化還元電位が卑である材料の濃い部分と、酸化還元電位が卑である材料の薄い部分とができることになる。したがって、従来の熱交換器は、伝熱管の表面において、酸化還元電位が卑である材料の分布ムラを抑制できないという課題があった。 The heat exchanger described in Patent Document 1 cannot control the flow of the melted brazing material in the range from the brazed portion to the groove between the heat transfer tube and the header during brazing. Therefore, in the heat exchanger described in Patent Document 1, in the range from the brazed portion to the groove between the heat transfer tube and the header, the redox potential is still low and the redox potential is low. The thin part of the material is formed. Therefore, the conventional heat exchanger has a problem that uneven distribution of materials having a low redox potential cannot be suppressed on the surface of the heat transfer tube.
 本発明は、上述の課題を解決するためになされたものであり、ロウ付け時に伝熱管の表面において発生する酸化還元電位が卑である材料の分布ムラを従来よりも抑制できる熱交換器を得ることを第1の目的とする。また、本発明は、このような熱交換器を備えた空気調和機を得ることを第2の目的とする。 The present invention has been made to solve the above-mentioned problems, and obtains a heat exchanger capable of suppressing uneven distribution of a material having a low redox potential generated on the surface of a heat transfer tube during brazing. That is the first purpose. A second object of the present invention is to obtain an air conditioner provided with such a heat exchanger.
 本発明に係る熱交換器は、冷媒が流れる伝熱管と、前記伝熱管の端部が挿入された挿入孔が形成され、前記伝熱管に流入する冷媒及び前記伝熱管から流出する冷媒のうちの少なくとも一方が流れるヘッダと、前記伝熱管の外周部に取り付けられたフィンと、を備え、前記伝熱管と前記ヘッダとがロウ付けにより接合され、前記伝熱管と前記フィンとがロウ付けにより接合された熱交換器であって、前記伝熱管には、前記ヘッダと前記フィンとの間となる位置に、前記ヘッダから前記フィンに向かって延びる少なくとも1つの溝が形成されている。 The heat exchanger according to the present invention has a heat transfer tube through which a refrigerant flows, and an insertion hole into which an end of the heat transfer tube is inserted is formed, and the heat exchanger flows into the heat transfer tube and flows out of the heat transfer tube. A header through which at least one flows and fins attached to the outer peripheral portion of the heat transfer tube are provided, the heat transfer tube and the header are joined by brazing, and the heat transfer tube and the fin are joined by brazing. In the heat exchanger, the heat transfer tube is formed with at least one groove extending from the header toward the fin at a position between the header and the fin.
 また、本発明に係る空気調和機は、圧縮機、室外熱交換器、膨張弁及び室内熱交換器を有する冷凍サイクル回路を備え、前記室外熱交換器及び前記室内熱交換器のうちの少なくとも一方に、本発明に係る熱交換器が用いられている。 Further, the air conditioner according to the present invention includes a refrigeration cycle circuit having a compressor, an outdoor heat exchanger, an expansion valve and an indoor heat exchanger, and at least one of the outdoor heat exchanger and the indoor heat exchanger. The heat exchanger according to the present invention is used.
 本発明に係る熱交換器は、ロウ付け時、伝熱管に形成された溝によって、伝熱管表面での溶けたロウ材の流れを制御することができる。このため、本発明に係る熱交換器は、ロウ付け時に伝熱管の表面において発生する酸化還元電位が卑である材料の分布ムラを従来よりも抑制できる。 The heat exchanger according to the present invention can control the flow of the melted brazing material on the surface of the heat transfer tube by the groove formed in the heat transfer tube during brazing. Therefore, the heat exchanger according to the present invention can suppress uneven distribution of the material having a low redox potential generated on the surface of the heat transfer tube during brazing as compared with the conventional case.
実施の形態1に係る空気調和機を示す図である。It is a figure which shows the air conditioner which concerns on Embodiment 1. FIG. 実施の形態1に係る室外熱交換器を示す正面図である。It is a front view which shows the outdoor heat exchanger which concerns on Embodiment 1. FIG. 実施の形態1に係る室外熱交換器におけるヘッダと伝熱管との接合部近傍を示す縦断面図である。FIG. 5 is a vertical cross-sectional view showing the vicinity of a joint between a header and a heat transfer tube in the outdoor heat exchanger according to the first embodiment. 実施の形態1に係る室外熱交換器におけるヘッダと伝熱管との接合部近傍を示す分解斜視図である。FIG. 5 is an exploded perspective view showing the vicinity of a joint between a header and a heat transfer tube in the outdoor heat exchanger according to the first embodiment. 実施の形態1に係る室外熱交換器の伝熱管の別の一例を示す斜視図である。It is a perspective view which shows another example of the heat transfer tube of the outdoor heat exchanger which concerns on Embodiment 1. FIG. 実施の形態2に係る室外熱交換器のヘッダの挿入孔近傍を示す図である。It is a figure which shows the vicinity of the insertion hole of the header of the outdoor heat exchanger which concerns on Embodiment 2. FIG. 実施の形態3に係る室外熱交換器のヘッダの挿入孔近傍を示す図である。It is a figure which shows the vicinity of the insertion hole of the header of the outdoor heat exchanger which concerns on Embodiment 3. FIG.
 以下の各実施の形態において、図面を参照しながら、熱交換器の一例及び空気調和機の一例について説明する。 In each of the following embodiments, an example of a heat exchanger and an example of an air conditioner will be described with reference to the drawings.
実施の形態1.
 図1は、実施の形態1に係る空気調和機を示す図である。
 空気調和機1は、冷媒が循環する冷凍サイクル回路10を備えている。また、冷凍サイクル回路10は、圧縮機11、四方弁12、室外熱交換器20、膨張弁13、及び室内熱交換器14を備えている。すなわち、圧縮機11、四方弁12、室外熱交換器20、膨張弁13、及び室内熱交換器14が冷媒配管で接続されて、冷凍サイクル回路10が構成されている。冷凍サイクル回路10のこれらの構成要素は、室外機2又は室内機3に収納されている。本実施の形態1では、室外機2には、圧縮機11、四方弁12、室外熱交換器20及び膨張弁13が収納されている。室内機3には、室内熱交換器14が収納されている。
Embodiment 1.
FIG. 1 is a diagram showing an air conditioner according to the first embodiment.
The air conditioner 1 includes a refrigeration cycle circuit 10 in which a refrigerant circulates. Further, the refrigeration cycle circuit 10 includes a compressor 11, a four-way valve 12, an outdoor heat exchanger 20, an expansion valve 13, and an indoor heat exchanger 14. That is, the compressor 11, the four-way valve 12, the outdoor heat exchanger 20, the expansion valve 13, and the indoor heat exchanger 14 are connected by a refrigerant pipe to form a refrigeration cycle circuit 10. These components of the refrigeration cycle circuit 10 are housed in the outdoor unit 2 or the indoor unit 3. In the first embodiment, the outdoor unit 2 houses a compressor 11, a four-way valve 12, an outdoor heat exchanger 20, and an expansion valve 13. An indoor heat exchanger 14 is housed in the indoor unit 3.
 空気調和機1の基本的な動作について説明する。まず暖房運転の場合、圧縮機11により圧縮された気体状態の冷媒は、四方弁12を通って室内熱交換器14に流入する。室内熱交換器14に流入した気体状態の冷媒は、室内熱交換器14の周囲の空気と熱交換を行うことで気体状態から凝縮して液体状態となり、その際の熱交換により周囲の空気を暖めることとなる。室内熱交換器14で液体状態となった冷媒は、膨張弁13で膨張されて気液二相状態となり、室外熱交換器20に流入する。室外熱交換器20に流入した気液二相状態の冷媒は、室外熱交換器20の周囲の空気と熱交換を行うことで蒸発して気体状態となり、その際の熱交換により周囲の空気を冷やすこととなる。室外熱交換器20で気体状態となった冷媒は、圧縮機11に吸入されて圧縮される。 The basic operation of the air conditioner 1 will be explained. First, in the case of heating operation, the gaseous refrigerant compressed by the compressor 11 flows into the indoor heat exchanger 14 through the four-way valve 12. The gaseous refrigerant that has flowed into the indoor heat exchanger 14 is condensed from the gaseous state to a liquid state by exchanging heat with the air around the indoor heat exchanger 14, and the ambient air is exchanged by the heat exchange at that time. It will warm up. The refrigerant that has become liquid in the indoor heat exchanger 14 is expanded by the expansion valve 13 to become a gas-liquid two-phase state, and flows into the outdoor heat exchanger 20. The gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 20 evaporates by exchanging heat with the air around the outdoor heat exchanger 20 to become a gas state, and the ambient air is exchanged by the heat exchange at that time. It will be cooled. The refrigerant that has become gaseous in the outdoor heat exchanger 20 is sucked into the compressor 11 and compressed.
 冷房運転の場合は、四方弁12を切り替えることで冷媒の流れが暖房運転の場合と逆となる。詳しくは、圧縮機11により圧縮された気体状態の冷媒は、四方弁12を通って室外熱交換器20に流入する。室外熱交換器20に流入した気体状態の冷媒は、室外熱交換器20の周囲の空気と熱交換を行うことで気体状態から凝縮して液体状態となり、その際の熱交管により周囲の空気を暖めることとなる。室外熱交換器20で液体状態となった冷媒は、膨張弁13で膨張されて気液二相状態となり、室内熱交換器14に流入する。室内熱交換器14に流入した気液二相状態の冷媒は、室内熱交換器14の周囲の空気と熱交換を行うことで蒸発して気体状態となり、その際の熱交換により周囲の空気を冷やすこととなる。室内熱交換器14で気体状態となった冷媒は、圧縮機11に吸入されて圧縮される。 In the case of cooling operation, the flow of refrigerant is reversed from that in the case of heating operation by switching the four-way valve 12. Specifically, the gaseous refrigerant compressed by the compressor 11 flows into the outdoor heat exchanger 20 through the four-way valve 12. The gaseous refrigerant that has flowed into the outdoor heat exchanger 20 is condensed from the gaseous state to a liquid state by exchanging heat with the air around the outdoor heat exchanger 20, and the ambient air is removed by the heat exchange tube at that time. It will warm up. The refrigerant that has become liquid in the outdoor heat exchanger 20 is expanded by the expansion valve 13 to become a gas-liquid two-phase state, and flows into the indoor heat exchanger 14. The gas-liquid two-phase refrigerant that has flowed into the indoor heat exchanger 14 evaporates by exchanging heat with the air around the indoor heat exchanger 14 to become a gas state, and the ambient air is exchanged by the heat exchange at that time. It will be cooled. The refrigerant that has become gaseous in the indoor heat exchanger 14 is sucked into the compressor 11 and compressed.
 なお、空気調和機1を冷房専用機又は暖房専用機とする場合、四方弁12を設ける必要はない。また、圧縮機11の圧縮方式及び運転方式は特に限定しないが、例えば容量制御可能なインバータ圧縮機を圧縮機11として用いることができる。 If the air conditioner 1 is a dedicated cooling machine or a dedicated heating machine, it is not necessary to provide the four-way valve 12. The compression method and operation method of the compressor 11 are not particularly limited, but for example, an inverter compressor whose capacity can be controlled can be used as the compressor 11.
 次に、室外熱交換器20についてより詳しく説明する。
 図2は、実施の形態1に係る室外熱交換器を示す正面図である。図3は、実施の形態1に係る室外熱交換器におけるヘッダと伝熱管との接合部近傍を示す縦断面図である。図4は、実施の形態1に係る室外熱交換器におけるヘッダと伝熱管との接合部近傍を示す分解斜視図である。
Next, the outdoor heat exchanger 20 will be described in more detail.
FIG. 2 is a front view showing the outdoor heat exchanger according to the first embodiment. FIG. 3 is a vertical cross-sectional view showing the vicinity of the joint between the header and the heat transfer tube in the outdoor heat exchanger according to the first embodiment. FIG. 4 is an exploded perspective view showing the vicinity of the joint between the header and the heat transfer tube in the outdoor heat exchanger according to the first embodiment.
 室外熱交換器20は、伝熱管30、ヘッダ40及びフィン50を備えている。伝熱管30、ヘッダ40及びフィン50は、金属製である。 The outdoor heat exchanger 20 includes a heat transfer tube 30, a header 40, and fins 50. The heat transfer tube 30, the header 40, and the fins 50 are made of metal.
 本実施の形態1では、伝熱管30として、扁平管を用いている。詳しくは、扁平管である伝熱管30の外周部は、平面部31、平面部31と平行な平面部32、及び、平面部31と平面部とを接続する一対の端部33を備えている。そして、扁平管である伝熱管30には、冷媒の流れる冷媒流路34が、複数形成されている。また、本実施の形態1では、伝熱管30が水平方向に延びるように、室外熱交換器20が設置される。また、本実施の形態1では、複数の伝熱管30を備えている。これら複数の伝熱管30は、上下方向に規定の間隔を空けて配置されている。各伝熱管30の管軸方向の端部は、後述のように、ヘッダ40の側面部に形成された挿入孔41に挿入されている。 In the first embodiment, a flat tube is used as the heat transfer tube 30. Specifically, the outer peripheral portion of the heat transfer tube 30 which is a flat tube includes a flat surface portion 31, a flat surface portion 32 parallel to the flat surface portion 31, and a pair of end portions 33 connecting the flat surface portion 31 and the flat surface portion. .. A plurality of refrigerant flow paths 34 through which the refrigerant flows are formed in the heat transfer tube 30 which is a flat tube. Further, in the first embodiment, the outdoor heat exchanger 20 is installed so that the heat transfer tube 30 extends in the horizontal direction. Further, in the first embodiment, a plurality of heat transfer tubes 30 are provided. These plurality of heat transfer tubes 30 are arranged at predetermined intervals in the vertical direction. The end portion of each heat transfer tube 30 in the tube axial direction is inserted into an insertion hole 41 formed in a side surface portion of the header 40, as will be described later.
 なお、以下では、室外熱交換器20の各構成の方向を説明する際、挿入方向X、第1方向Y、及び第2方向Zを用いて説明する場合がある。挿入方向Xは、伝熱管30がヘッダ40の挿入孔41に挿入される方向である。本実施の形態1では、挿入方向Xは、水平方向となっている。第1方向Yは、挿入方向Xと垂直で、伝熱管30の平面部31と平行な方向である。本実施の形態1では、第1方向Yは、挿入方向Xに対して垂直な水平方向となっている。第2方向Zは、挿入方向Xと垂直で、第1方向Yと垂直な方向である。本実施の形態1では、第2方向Zは、垂直方向となっている。 In the following, when explaining the directions of each configuration of the outdoor heat exchanger 20, the insertion direction X, the first direction Y, and the second direction Z may be used for explanation. The insertion direction X is the direction in which the heat transfer tube 30 is inserted into the insertion hole 41 of the header 40. In the first embodiment, the insertion direction X is the horizontal direction. The first direction Y is perpendicular to the insertion direction X and parallel to the flat surface portion 31 of the heat transfer tube 30. In the first embodiment, the first direction Y is a horizontal direction perpendicular to the insertion direction X. The second direction Z is perpendicular to the insertion direction X and perpendicular to the first direction Y. In the first embodiment, the second direction Z is the vertical direction.
 ヘッダ40は、例えば円筒形状をしている。ヘッダ40は、伝熱管30に流入する冷媒及び伝熱管30から流出する冷媒のうちの少なくとも一方が流れるものである。ヘッダ40の側面部には、伝熱管30の端部が挿入される挿入孔41が形成されている。上述のように、本実施の形態1では、複数の伝熱管30が上下方向に規定の間隔を空けて配置されている。このため、ヘッダ40の側面部にも、上下方向に規定の間隔を空けて、複数の挿入孔41が形成されている。ヘッダ40と伝熱管30とは、ヘッダ40の挿入孔41に伝熱管30の端部が挿入された状態で、挿入孔41の周縁と伝熱管30の外周部とがロウ付け接合されている。なお、上述のように、本実施の形態1に係る室外熱交換器20は、一対のヘッダ40を備えている。以下では、これらのヘッダ40を区別して示したい場合、一方のヘッダ40をヘッダ40aと称し、他方のヘッダ40をヘッダ40bと称することとする。 The header 40 has, for example, a cylindrical shape. In the header 40, at least one of the refrigerant flowing into the heat transfer tube 30 and the refrigerant flowing out of the heat transfer tube 30 flows. An insertion hole 41 into which the end portion of the heat transfer tube 30 is inserted is formed in the side surface portion of the header 40. As described above, in the first embodiment, a plurality of heat transfer tubes 30 are arranged in the vertical direction at a predetermined interval. For this reason, a plurality of insertion holes 41 are also formed on the side surface portion of the header 40 at predetermined intervals in the vertical direction. The header 40 and the heat transfer tube 30 are brazed and joined to the peripheral edge of the insertion hole 41 and the outer peripheral portion of the heat transfer tube 30 in a state where the end portion of the heat transfer tube 30 is inserted into the insertion hole 41 of the header 40. As described above, the outdoor heat exchanger 20 according to the first embodiment includes a pair of headers 40. In the following, when it is desired to distinguish between these headers 40, one header 40 will be referred to as a header 40a and the other header 40 will be referred to as a header 40b.
 ヘッダ40aには、配管42及び配管43が設けられている。配管42には、図1に示す冷媒配管15が接続される。冷媒配管15は、四方弁12と室外熱交換器20とを接続する冷媒配管である。また、配管43には、図1に示す冷媒配管16が接続される。冷媒配管16は、膨張弁13と室外熱交換器20とを接続する冷媒配管である。このため、本実施の形態1に係るヘッダ40aの内部は、冷媒配管15と連通する流路と、冷媒配管16と連通する流路と、に仕切られている。 The header 40a is provided with a pipe 42 and a pipe 43. The refrigerant pipe 15 shown in FIG. 1 is connected to the pipe 42. The refrigerant pipe 15 is a refrigerant pipe that connects the four-way valve 12 and the outdoor heat exchanger 20. Further, the refrigerant pipe 16 shown in FIG. 1 is connected to the pipe 43. The refrigerant pipe 16 is a refrigerant pipe that connects the expansion valve 13 and the outdoor heat exchanger 20. Therefore, the inside of the header 40a according to the first embodiment is partitioned into a flow path communicating with the refrigerant pipe 15 and a flow path communicating with the refrigerant pipe 16.
 そして、本実施の形態1に係る室外熱交換器20においては、冷媒配管15及び冷媒配管16のうちの一方からヘッダ40aに流入した冷媒は、複数の伝熱管30のうちの一部を流れた後、ヘッダ40bへ流入する。ヘッダ40bへ流入した冷媒は、複数の伝熱管30のうちの残りの一部を流れた後、ヘッダ40aを通り、冷媒配管15及び冷媒配管16のうちの他方へ流出する。すなわち、本実施の形態1に係る室外熱交換器20は、パラレルフロー型の熱交換器となっている。 Then, in the outdoor heat exchanger 20 according to the first embodiment, the refrigerant flowing into the header 40a from one of the refrigerant pipes 15 and 16 flows through a part of the plurality of heat transfer pipes 30. After that, it flows into the header 40b. The refrigerant that has flowed into the header 40b flows through the remaining part of the plurality of heat transfer tubes 30, then passes through the header 40a, and flows out to the other of the refrigerant pipes 15 and 16. That is, the outdoor heat exchanger 20 according to the first embodiment is a parallel flow type heat exchanger.
 本実施の形態1では、フィン50として、コルゲート型のフィンを用いている。フィン50は、上下方向に隣接する伝熱管30の間に配置され、これら伝熱管30の外周部に取り付けられている。フィン50と伝熱管30とは、フィン50と伝熱管30とが対向する箇所でロウ付け接合されている。例えば、フィン50は、端部が折り曲げられ、伝熱管30と対向するロウ付け部51が形成されている。フィン50の端部では、伝熱管30とロウ付け部51とがロウ付け接合されている。 In the first embodiment, a corrugated fin is used as the fin 50. The fins 50 are arranged between the heat transfer tubes 30 adjacent to each other in the vertical direction, and are attached to the outer peripheral portions of the heat transfer tubes 30. The fin 50 and the heat transfer tube 30 are brazed and joined at a position where the fin 50 and the heat transfer tube 30 face each other. For example, the end of the fin 50 is bent to form a brazed portion 51 facing the heat transfer tube 30. At the end of the fin 50, the heat transfer tube 30 and the brazed portion 51 are brazed and joined.
 伝熱管30又はヘッダ40に腐食によって孔が空くと、その孔から冷媒が漏れ、室外熱交換器20の熱交換性能が低下してしまう。ここで、一般的に、室外熱交換器には多くの伝熱管が設けられる。また、一般的に、伝熱管は、冷媒と周囲の空気とを熱交換させるため、ヘッダと比べて肉厚が薄い。このため、室外熱交換器20の熱交換性能の低下を抑制するためには、伝熱管30の腐食を抑制することが重要である。このため、本実施の形態1では、次のように、伝熱管30の腐食を抑制している。 If a hole is formed in the heat transfer tube 30 or the header 40 due to corrosion, the refrigerant leaks from the hole and the heat exchange performance of the outdoor heat exchanger 20 deteriorates. Here, in general, many heat transfer tubes are provided in the outdoor heat exchanger. Further, in general, the heat transfer tube is thinner than the header because it exchanges heat between the refrigerant and the surrounding air. Therefore, in order to suppress the deterioration of the heat exchange performance of the outdoor heat exchanger 20, it is important to suppress the corrosion of the heat transfer tube 30. Therefore, in the first embodiment, the corrosion of the heat transfer tube 30 is suppressed as follows.
 伝熱管30に接触するヘッダ40及びフィン50の材料には、伝熱管30よりも酸化還元電位が卑である材料が用いられる。以下、伝熱管30よりも酸化還元電位が卑である材料を、単に、酸化還元電位が卑である材料と称する場合がある。ヘッダ40及びフィン50は酸化還元電位が卑である材料であるため、伝熱管30より優先的に腐食する。その結果、伝熱管30の腐食が抑制されることとなる。 As the material of the header 40 and the fin 50 that come into contact with the heat transfer tube 30, a material having a lower redox potential than that of the heat transfer tube 30 is used. Hereinafter, a material having a lower redox potential than the heat transfer tube 30 may be simply referred to as a material having a lower redox potential. Since the header 40 and the fin 50 are materials having a low redox potential, they corrode preferentially over the heat transfer tube 30. As a result, corrosion of the heat transfer tube 30 is suppressed.
 ただし、この防食方法が作用するためには、伝熱管30への水滴の付着形態が限定される。具体的には、伝熱管30とヘッダ40とに水滴が接触する状態で、あるいは、伝熱管30とフィン50とに水滴が接触する状態で、伝熱管30へ水滴が付着する必要がある。伝熱管30のみに接触する状態で水滴が付着した場合、この防食方法は作用せず、伝熱管30の腐食を抑制できない。ここで、上述のように、本実施の形態1では、伝熱管30として扁平管を用いている。このため、平面部31上に水滴が滞留しやすく、伝熱管30のみに接触する状態で水滴が付着しやすい。 However, in order for this anticorrosion method to work, the form of water droplets adhering to the heat transfer tube 30 is limited. Specifically, it is necessary that the water droplets adhere to the heat transfer tube 30 in a state where the water droplets are in contact with the heat transfer tube 30 and the header 40, or in a state where the water droplets are in contact with the heat transfer tube 30 and the fins 50. If water droplets adhere to the heat transfer tube 30 only in contact with the heat transfer tube 30, this anticorrosion method does not work and the corrosion of the heat transfer tube 30 cannot be suppressed. Here, as described above, in the first embodiment, a flat tube is used as the heat transfer tube 30. Therefore, water droplets tend to stay on the flat surface portion 31, and water droplets tend to adhere to the heat transfer tube 30 only in contact with the water droplets.
 したがって、本実施の形態1に係る室外熱交換器20では、伝熱管30の表面を酸化還元電位が卑である材料で覆い、伝熱管30の腐食のさらなる抑制を図っている。伝熱管30の表面は、伝熱管30、ヘッダ40及びフィン50をロウ付けにより接合する際、酸化還元電位が卑である材料で覆われる。 Therefore, in the outdoor heat exchanger 20 according to the first embodiment, the surface of the heat transfer tube 30 is covered with a material having a low redox potential to further suppress the corrosion of the heat transfer tube 30. The surface of the heat transfer tube 30 is covered with a material having a low redox potential when the heat transfer tube 30, the header 40, and the fins 50 are joined by brazing.
 具体的には、ロウ付け時、溶けて液状となったロウ材は、伝熱管30の表面を流れて広がっていく。この際、ヘッダ40及びフィン50を形成する酸化還元電位が卑である材料は、溶けたロウ材中に含まれて、伝熱管30の表面に拡散していく。また、ロウ材には、該ロウ材を構成する材料として、酸化還元電位が卑である材料が含まれている場合もある。ロウ材を構成する酸化還元電位が卑である材料もまた、溶けたロウ材中に含まれて、伝熱管30の表面に拡散していく。これにより、伝熱管30の表面は、酸化還元電位が卑である材料で覆われる。 Specifically, at the time of brazing, the brazing material that melts and becomes liquid flows on the surface of the heat transfer tube 30 and spreads. At this time, the material having a low redox potential forming the header 40 and the fin 50 is contained in the melted brazing material and diffuses to the surface of the heat transfer tube 30. Further, the brazing material may include a material having a low redox potential as a material constituting the brazing material. A material having a low redox potential constituting the brazing material is also contained in the melted brazing material and diffuses to the surface of the heat transfer tube 30. As a result, the surface of the heat transfer tube 30 is covered with a material having a low redox potential.
 この防食方法は、酸化還元電位が卑である材料が伝熱管30の表面を均一に覆っていれば、伝熱管30への水滴の付着形態に影響されることなく、伝熱管30の腐食を抑制できる。室外熱交換器20が収納された室外機2の設置環境は様々であり、室外機2の設置後に室外熱交換器20への水滴の付着形態を制御することは困難である。このため、酸化還元電位が卑である材料が伝熱管30の表面を覆う防食方法は、伝熱管30の防食に有効な方法である。 In this anticorrosion method, if a material having a low redox potential uniformly covers the surface of the heat transfer tube 30, corrosion of the heat transfer tube 30 is suppressed without being affected by the form of water droplets adhering to the heat transfer tube 30. it can. The installation environment of the outdoor unit 2 in which the outdoor heat exchanger 20 is housed varies, and it is difficult to control the form of water droplets adhering to the outdoor heat exchanger 20 after the outdoor unit 2 is installed. Therefore, the anticorrosion method in which the material having a low redox potential covers the surface of the heat transfer tube 30 is an effective method for anticorrosion of the heat transfer tube 30.
 しかしながら、伝熱管30の表面に凹凸又は析出物がある場合等、伝熱管30の表面には、溶けたロウ材が流れやすい場所及び溶けたロウ材が流れにくい場所が存在することがある。このような場合、伝熱管30の表面では、ロウ材が流れやすい場所に酸化還元電位が卑である材料が多く拡散し、ロウ材が流れにくい場所には酸化還元電位が卑である材料があまり拡散しない状態となる。その結果、伝熱管30の表面には、酸化還元電位が卑である材料の濃い部分と、酸化還元電位が卑である材料の薄い部分とができることになる。すなわち、伝熱管30の表面において、酸化還元電位が卑である材料の分布ムラが生じてしまう。このような場合、酸化還元電位が卑である材料の濃い部分が腐食し易くなり、結局は伝熱管30の耐食性を低下させる可能性がある。 However, when the surface of the heat transfer tube 30 has irregularities or deposits, the surface of the heat transfer tube 30 may have a place where the melted wax material easily flows and a place where the melted wax material does not easily flow. In such a case, on the surface of the heat transfer tube 30, many materials having a low redox potential are diffused in places where the brazing material easily flows, and many materials having a low redox potential are diffused in places where the brazing material does not easily flow. It will not spread. As a result, on the surface of the heat transfer tube 30, a dark portion of the material having a low redox potential and a thin portion of the material having a low redox potential are formed. That is, uneven distribution of the material having a low redox potential occurs on the surface of the heat transfer tube 30. In such a case, the dark portion of the material having a low redox potential is likely to be corroded, which may eventually reduce the corrosion resistance of the heat transfer tube 30.
 そこで、本実施の形態1に係る室外熱交換器20においては、伝熱管30には、ヘッダ40とフィン50との間となる位置に、ヘッダ40からフィン50に向かって延びる少なくとも1つの溝35が形成されている。詳しくは、本実施の形態1では、伝熱管30の平面部31に、少なくとも1つの溝35が形成されている。また、本実施の形態1では、伝熱管30の平面部31に、2つの溝35が形成されている。ヘッダ40からフィン50に向かって延びる少なくとも1つの溝35が伝熱管30に形成されていることにより、ロウ付け時に溶けたロウ材は、溝35に沿って流れる。これにより、伝熱管30の表面におけるロウ材の流れを制御することができ、伝熱管30の表面において発生する酸化還元電位が卑である材料の分布ムラを従来よりも抑制できる。このため、伝熱管30の腐食を抑制でき、室外熱交換器20の耐食性を向上させることができる。 Therefore, in the outdoor heat exchanger 20 according to the first embodiment, at least one groove 35 extending from the header 40 toward the fin 50 is provided in the heat transfer tube 30 at a position between the header 40 and the fin 50. Is formed. Specifically, in the first embodiment, at least one groove 35 is formed in the flat surface portion 31 of the heat transfer tube 30. Further, in the first embodiment, two grooves 35 are formed in the flat surface portion 31 of the heat transfer tube 30. Since at least one groove 35 extending from the header 40 toward the fin 50 is formed in the heat transfer tube 30, the brazing material melted at the time of brazing flows along the groove 35. As a result, the flow of the brazing material on the surface of the heat transfer tube 30 can be controlled, and uneven distribution of the material having a low redox potential generated on the surface of the heat transfer tube 30 can be suppressed as compared with the conventional case. Therefore, corrosion of the heat transfer tube 30 can be suppressed, and the corrosion resistance of the outdoor heat exchanger 20 can be improved.
 なお、本実施の形態1では、伝熱管30に2つの溝35が形成されていたが、溝35の数は2つに限定されない。例えば、伝熱管30に1つの溝35が形成されていてもよい。ロウ付け時に溶けたロウ材がこの溝35に沿って流れることにより、伝熱管30の表面におけるロウ材の流れを制御することができ、伝熱管30の表面において発生する酸化還元電位が卑である材料の分布ムラを従来よりも抑制できる。ただし、溝35にロウ材が溜まり過ぎると、ロウ材と伝熱管30の形成材料とが混ざり合うことで、伝熱管30の形成材料の融点が低下し、融点が低下した箇所で孔が空いてしまうという可能性もある。このため、伝熱管30に形成される溝35は、複数であることが好ましい。 In the first embodiment, two grooves 35 are formed in the heat transfer tube 30, but the number of grooves 35 is not limited to two. For example, one groove 35 may be formed in the heat transfer tube 30. By flowing the brazing material melted at the time of brazing along the groove 35, the flow of the brazing material on the surface of the heat transfer tube 30 can be controlled, and the redox potential generated on the surface of the heat transfer tube 30 is low. Uneven distribution of materials can be suppressed more than before. However, if the brazing material is excessively accumulated in the groove 35, the brazing material and the material for forming the heat transfer tube 30 are mixed, so that the melting point of the material for forming the heat transfer tube 30 is lowered, and a hole is formed at the place where the melting point is lowered. There is also the possibility that it will end up. Therefore, it is preferable that the number of grooves 35 formed in the heat transfer tube 30 is a plurality.
 また、伝熱管30に複数の溝35を形成する場合、3つ以上の溝35を形成してもよい。溝35の数が多い方が、伝熱管30の表面に溶けたロウ材がより均等に流れていくことができる。すなわち、溝35の数が多い方が、酸化還元電位が卑である材料が伝熱管30の表面に均等に拡散でき、伝熱管30の表面において発生する酸化還元電位が卑である材料の分布ムラをより抑制できる。 Further, when forming a plurality of grooves 35 in the heat transfer tube 30, three or more grooves 35 may be formed. The larger the number of grooves 35, the more evenly the wax material melted on the surface of the heat transfer tube 30 can flow. That is, when the number of grooves 35 is large, the material having a low redox potential can be evenly diffused on the surface of the heat transfer tube 30, and the distribution unevenness of the material having a low redox potential generated on the surface of the heat transfer tube 30. Can be further suppressed.
 また、伝熱管30の平面部31に複数の溝35を形成する場合、これらの溝35を図5のように配置するのが好ましい。 Further, when a plurality of grooves 35 are formed in the flat surface portion 31 of the heat transfer tube 30, it is preferable to arrange these grooves 35 as shown in FIG.
 図5は、実施の形態1に係る室外熱交換器の伝熱管の別の一例を示す斜視図である。
 図5に示す室外熱交換器20の伝熱管30は、平面部31に、複数の溝35が形成されている。これら複数の溝35は、第1方向Yに間隔を空けて配置されている。ここで、平面部31において、第1方向Yの中央位置を含む範囲を第1範囲38とする。また、平面部31において、第1方向Yにおいて第1範囲38よりも端部33側となる範囲を第2範囲39とする。この場合、第1範囲38には、第2範囲39と比べ、溝35が密に配置されている。
FIG. 5 is a perspective view showing another example of the heat transfer tube of the outdoor heat exchanger according to the first embodiment.
The heat transfer tube 30 of the outdoor heat exchanger 20 shown in FIG. 5 has a plurality of grooves 35 formed in the flat surface portion 31. These plurality of grooves 35 are arranged at intervals in the first direction Y. Here, in the flat surface portion 31, the range including the central position in the first direction Y is defined as the first range 38. Further, in the flat surface portion 31, the range that is closer to the end portion 33 than the first range 38 in the first direction Y is defined as the second range 39. In this case, the grooves 35 are densely arranged in the first range 38 as compared with the second range 39.
 伝熱管30として扁平管を用いる場合、ロウ付け時に溶けたロウ材は、扁平管の外周部を構成する平面部に供給されやすい。すなわち、図5に示す平面部31においては、第2範囲39と比べ、第1範囲38に溶けたロウ材が供給されやすい。このため、図5のように複数の溝35を配置することにより、ロウ材が多く供給される平面部31の第1範囲38のロウ材を溝35に沿って流れやすくすることができる。したがって、伝熱管30として扁平管を用いる場合、図5のように複数の溝35を配置することにより、伝熱管30の表面において発生する酸化還元電位が卑である材料の分布ムラをより抑制できる。 When a flat tube is used as the heat transfer tube 30, the brazing material melted during brazing is likely to be supplied to the flat portion constituting the outer peripheral portion of the flat tube. That is, in the flat surface portion 31 shown in FIG. 5, the brazing material melted in the first range 38 is more likely to be supplied than in the second range 39. Therefore, by arranging the plurality of grooves 35 as shown in FIG. 5, the brazing material in the first range 38 of the flat surface portion 31 to which a large amount of the brazing material is supplied can be easily flowed along the grooves 35. Therefore, when a flat tube is used as the heat transfer tube 30, by arranging a plurality of grooves 35 as shown in FIG. 5, it is possible to further suppress uneven distribution of materials having a low redox potential generated on the surface of the heat transfer tube 30. ..
 また、本実施の形態1では、伝熱管30の平面部31にのみ溝35を形成しているが、平面部32に溝35を形成してもよいし、端部33に溝35を形成してもよい。溝35には、溶けたロウ材が流れるため、酸化還元電位が卑である材料が多くなる。このため、伝熱管30の表面において腐食が発生しやすい箇所がある場合、当該箇所に溝35を設け、当該箇所の耐食性を向上させることも可能である。 Further, in the first embodiment, the groove 35 is formed only in the flat surface portion 31 of the heat transfer tube 30, but the groove 35 may be formed in the flat surface portion 32 or the groove 35 is formed in the end portion 33. You may. Since the melted wax material flows through the groove 35, many materials have a low redox potential. Therefore, if there is a portion on the surface of the heat transfer tube 30 where corrosion is likely to occur, it is possible to provide a groove 35 in the portion to improve the corrosion resistance of the portion.
 また、本実施の形態1では、溝35の断面形状について特に言及しなかったが、溝35の断面形状は特に限定されない。なお、ここでいう断面形状とは、溝35が延びる方向と垂直な断面で該溝35を切断した際の断面形状である。例えば、溝35の断面形状は、半円形状であってもよいし、三角形状であってもよいし、四角形状であってもよいし、五角形以上の多角形状であってもよい。また、溝35の内部に突起があってもよいし、溝35の内部にさらに溝が形成されていてもよい。また、本実施の形態1では、溝35は挿入方向Xと平行に延びているが、溝35の延びる方向は、挿入方向Xと平行である必要はない。溝35は、ヘッダ40からフィン50に向かって延びていればよく、挿入方向Xに対して傾いていてもよい。 Further, in the first embodiment, the cross-sectional shape of the groove 35 is not particularly mentioned, but the cross-sectional shape of the groove 35 is not particularly limited. The cross-sectional shape referred to here is a cross-sectional shape when the groove 35 is cut in a cross section perpendicular to the direction in which the groove 35 extends. For example, the cross-sectional shape of the groove 35 may be a semicircular shape, a triangular shape, a quadrangular shape, or a polygonal shape of a pentagon or more. Further, there may be a protrusion inside the groove 35, or a groove may be further formed inside the groove 35. Further, in the first embodiment, the groove 35 extends parallel to the insertion direction X, but the extending direction of the groove 35 does not have to be parallel to the insertion direction X. The groove 35 may extend from the header 40 toward the fin 50 and may be inclined with respect to the insertion direction X.
 なお、溝35の断面積は、次の条件を満たしていることが好ましい。なお、溝35の断面積とは、溝35が延びる方向と垂直な断面で該溝35を切断した際の断面形状の面積である。また、溝35を複数有る場合、溝35の断面積は、各溝35の断面積の平均を示すものとする。ここで、挿入孔41の周縁と伝熱管30の外周部とのロウ付けに必要なロウ材の体積を、V1とする。挿入孔41の周縁と伝熱管30の外周部とのロウ付けに供給されるロウ材の体積を、V2とする。伝熱管30に形成されている溝35の本数を、Nとする。伝熱管30に形成されている溝35の長さの平均を、Lとする。このように定義した場合、溝35の断面積は、(V2-V1)/NLより小さいことが好ましい。このように溝35の断面積を規定することにより、挿入孔41の周縁と伝熱管30の外周部とのロウ付け時、ロウ材が不足して接合不良となることを防止できる。なお、溝35の断面形状が正方形状の場合、断面の各辺を(V2-V1)/NLの平方根よりも小さくすれば、溝35の断面積が(V2-V1)/NLよりも小さくなる。 It is preferable that the cross-sectional area of the groove 35 satisfies the following conditions. The cross-sectional area of the groove 35 is the area of the cross-sectional shape when the groove 35 is cut in a cross section perpendicular to the direction in which the groove 35 extends. When there are a plurality of grooves 35, the cross-sectional area of the grooves 35 shall indicate the average of the cross-sectional areas of each groove 35. Here, the volume of the brazing material required for brazing the peripheral edge of the insertion hole 41 and the outer peripheral portion of the heat transfer tube 30 is defined as V1. The volume of the brazing material supplied for brazing the peripheral edge of the insertion hole 41 and the outer peripheral portion of the heat transfer tube 30 is defined as V2. Let N be the number of grooves 35 formed in the heat transfer tube 30. Let L be the average length of the grooves 35 formed in the heat transfer tube 30. When defined in this way, the cross-sectional area of the groove 35 is preferably smaller than (V2-V1) / NL. By defining the cross-sectional area of the groove 35 in this way, it is possible to prevent a shortage of brazing material and poor joining when brazing the peripheral edge of the insertion hole 41 and the outer peripheral portion of the heat transfer tube 30. When the cross-sectional shape of the groove 35 is square, if each side of the cross section is made smaller than the square root of (V2-V1) / NL, the cross-sectional area of the groove 35 becomes smaller than (V2-V1) / NL. ..
 また、溝35のヘッダ40側の端部36の位置も、図3に示す位置に限定されない。具体的には、図3に示すように、溝35のヘッダ40側の端部36は、ヘッダ40の挿入孔41の周壁と対向する位置に配置されている。換言すると、溝35は、挿入孔41の周壁と対向する位置まで延びている。しかしながら、挿入孔41の周縁と伝熱管30の外周部とがロウ付け接合される際、溝35にロウ材が流れ込むことができれば、溝35のヘッダ40側の端部36は、ヘッダ40の外周面よりもフィン50側に配置されていてもよい。ただし、溝35が挿入孔41の周壁と対向する位置まで延びているほうが、ロウ材が溝35に流れ込みやすい。すなわち、溝35が挿入孔41の周壁と対向する位置まで延びているほうが、伝熱管30の表面において発生する酸化還元電位が卑である材料の分布ムラを抑制しやすい。このため、少なくとも1つの溝35は、挿入孔41の周壁と対向する位置まで延びているのが好ましい。 Further, the position of the end portion 36 of the groove 35 on the header 40 side is not limited to the position shown in FIG. Specifically, as shown in FIG. 3, the end portion 36 of the groove 35 on the header 40 side is arranged at a position facing the peripheral wall of the insertion hole 41 of the header 40. In other words, the groove 35 extends to a position facing the peripheral wall of the insertion hole 41. However, when the peripheral edge of the insertion hole 41 and the outer peripheral portion of the heat transfer tube 30 are brazed and joined, if the brazing material can flow into the groove 35, the end portion 36 on the header 40 side of the groove 35 will be the outer periphery of the header 40. It may be arranged on the fin 50 side with respect to the surface. However, if the groove 35 extends to a position facing the peripheral wall of the insertion hole 41, the brazing material can easily flow into the groove 35. That is, when the groove 35 extends to a position facing the peripheral wall of the insertion hole 41, it is easier to suppress uneven distribution of the material having a low redox potential generated on the surface of the heat transfer tube 30. Therefore, it is preferable that at least one groove 35 extends to a position facing the peripheral wall of the insertion hole 41.
 また、溝35のフィン50側の端部37の位置も、図3に示す位置に限定されない。具体的には、図3に示すように、溝35のフィン50側の端部37は、フィン50のロウ付け部51と対向する位置に配置されている。換言すると、溝35は、フィン50と対向する位置まで延びている。しかしながら、フィン50と伝熱管30の外周部とがロウ付け接合される際、溝35にロウ材が流れ込むことができれば、溝35のフィン50側の端部37は、フィン50よりもヘッダ40側に配置されていてもよい。ただし、溝35がフィン50と対向する位置まで延びているほうが、ロウ材が溝35に流れ込みやすい。すなわち、溝35がフィン50と対向する位置まで延びているほうが、伝熱管30の表面において発生する酸化還元電位が卑である材料の分布ムラを抑制しやすい。このため、少なくとも1つの溝35は、フィン50と対向する位置まで延びているのが好ましい。 Further, the position of the end portion 37 on the fin 50 side of the groove 35 is not limited to the position shown in FIG. Specifically, as shown in FIG. 3, the end portion 37 of the groove 35 on the fin 50 side is arranged at a position facing the brazed portion 51 of the fin 50. In other words, the groove 35 extends to a position facing the fin 50. However, when the fin 50 and the outer peripheral portion of the heat transfer tube 30 are brazed and joined, if the brazing material can flow into the groove 35, the end portion 37 on the fin 50 side of the groove 35 is closer to the header 40 than the fin 50. It may be arranged in. However, if the groove 35 extends to a position facing the fin 50, the brazing material can easily flow into the groove 35. That is, when the groove 35 extends to a position facing the fin 50, it is easier to suppress uneven distribution of the material having a low redox potential generated on the surface of the heat transfer tube 30. Therefore, it is preferable that at least one groove 35 extends to a position facing the fin 50.
 また、本実施の形態1では伝熱管30として扁平管を用いたが、伝熱管30は扁平管に限定されるものではない。例えば、円管の伝熱管、楕円形状の伝熱管、多角形状の伝熱管、凹凸のある伝熱管等、種々の伝熱管を伝熱管30として用いることができる。 Further, in the first embodiment, a flat tube is used as the heat transfer tube 30, but the heat transfer tube 30 is not limited to the flat tube. For example, various heat transfer tubes such as a circular heat transfer tube, an elliptical heat transfer tube, a polygonal heat transfer tube, and an uneven heat transfer tube can be used as the heat transfer tube 30.
 また、本実施の形態1では円筒形状のヘッダ40を用いたが、ヘッダ40はこのような構成に限定されない。例えば、ヘッダ40を直方体形状としてもよい。また例えば、板状部材を積層して内部に流路を形成した積層ヘッダを、ヘッダ40として用いてもよい。 Further, although the cylindrical header 40 is used in the first embodiment, the header 40 is not limited to such a configuration. For example, the header 40 may have a rectangular parallelepiped shape. Further, for example, a laminated header in which plate-shaped members are laminated to form a flow path inside may be used as the header 40.
 また、フィン50も、上述の構成に限定されない。例えば、フィン50に、ロウ付け部51を設けなくてもよい。フィン50と伝熱管30との対向箇所をロウ付け接合すればよい。例えば、フィン50がコルゲートフィンの場合、折り返し部が伝熱管30との対向箇所となる。このため、当該折り返し部で、フィン50と伝熱管30とをロウ付け接合すればよい。また例えば、開口部に伝熱管30が挿入される板状フィンを、フィン50として用いてもよい。 Further, the fin 50 is not limited to the above configuration. For example, the fin 50 does not have to be provided with the brazing portion 51. The points where the fins 50 and the heat transfer tube 30 face each other may be brazed and joined. For example, when the fin 50 is a corrugated fin, the folded-back portion is a portion facing the heat transfer tube 30. Therefore, the fin 50 and the heat transfer tube 30 may be brazed and joined at the folded portion. Further, for example, a plate-shaped fin into which the heat transfer tube 30 is inserted into the opening may be used as the fin 50.
 また、本実施の形態1では、伝熱管30、ヘッダ40、フィン50及びロウ材の具体的な材料について特に限定しなかった。伝熱管30、ヘッダ40、フィン50及びロウ材の具体的な材料として、例えば以下の材料を用いることができる。例えば、伝熱管30の材料として、アルミニウム又はアルミニウム合金を用いることができる。この場合、伝熱管30よりも酸化還元電位が卑である材料でヘッダ40及びフィン50を形成する場合、ヘッダ40及びフィン50の材料として、例えば、酸化還元電位を卑にする材料を純アルミニウムに添加したアルミニウム合金、亜鉛、亜鉛合金、マグネシウム、マグネシウム合金、リチウム、リチウム合金、シリコン、及び、シリコンにシリコン以外の材料を添加した材料等を用いることができる。ヘッダ40及びフィン50の材料として、これらの材料を組み合わせた材料を用いてもよい。また、ロウ材材料としては、例えば、シリコンを含むアルミニウム合金を用いることができる。ロウ材材料として、シリコンを含むアルミニウム合金以外の、伝熱管30よりも酸化還元電位が卑である材料を用いてもよい。また、伝熱管30、ヘッダ40及びフィン50のうちの少なくとも1つを、表面にロウ材が設けられたクラッド材料で形成してもよい。また、伝熱管30として、アルミニウム又はアルミニウム合金を母材とし、該母材の表面に該母材よりも酸化還元電位が卑である材料が設けられた伝熱管を用いてもよい。このような伝熱管30は、例えば、母材の表面に、該母材よりも酸化還元電位が卑である材料を溶射することにより得られる。また例えば、このような伝熱管30は、母材の表面に該母材よりも酸化還元電位が卑である材料が設けられたクラッド材料で形成することができる。なお、このような伝熱管30を用いる場合、伝熱管30よりも酸化還元電位が卑である材料とは、母材よりも酸化還元電位が卑である材料となる。 Further, in the first embodiment, the specific materials of the heat transfer tube 30, the header 40, the fins 50, and the brazing material are not particularly limited. As specific materials for the heat transfer tube 30, the header 40, the fins 50, and the brazing material, for example, the following materials can be used. For example, aluminum or an aluminum alloy can be used as the material of the heat transfer tube 30. In this case, when the header 40 and the fin 50 are formed of a material having a lower oxidation-reduction potential than the heat transfer tube 30, for example, the material having a lower oxidation-reduction potential is made of pure aluminum as the material of the header 40 and the fin 50. The added aluminum alloy, zinc, zinc alloy, magnesium, magnesium alloy, lithium, lithium alloy, silicon, and a material obtained by adding a material other than silicon to silicon can be used. As the material of the header 40 and the fin 50, a material in which these materials are combined may be used. Further, as the brazing material, for example, an aluminum alloy containing silicon can be used. As the brazing material, a material other than an aluminum alloy containing silicon, which has a lower redox potential than the heat transfer tube 30, may be used. Further, at least one of the heat transfer tube 30, the header 40 and the fin 50 may be formed of a clad material having a brazing material on its surface. Further, as the heat transfer tube 30, a heat transfer tube using aluminum or an aluminum alloy as a base material and having a material having a lower redox potential than the base material on the surface of the base material may be used. Such a heat transfer tube 30 can be obtained, for example, by spraying a material having a lower redox potential than the base material on the surface of the base material. Further, for example, such a heat transfer tube 30 can be formed of a clad material in which a material having a lower redox potential than the base material is provided on the surface of the base material. When such a heat transfer tube 30 is used, the material having a lower redox potential than the heat transfer tube 30 is a material having a lower redox potential than the base material.
 また、本実施の形態1では、伝熱管30が水平方向に設けられた室外熱交換器20を例示したが、室外熱交換器20の構成は当該構成に限定しない。例えば、室外熱交換器20は、伝熱管30を垂直に設けた構成としてもよい。また例えば、室外熱交換器20は、伝熱管30のそれぞれが異なる角度に設けられた構成であってもよい。また例えば、本実施の形態1では室外熱交換器20はパラレルフロー型の熱交換器となっていたが、室外熱交換器20は、伝熱管30のそれぞれを冷媒が直列に流れる熱交換器であってもよい。 Further, in the first embodiment, the outdoor heat exchanger 20 in which the heat transfer tube 30 is provided in the horizontal direction is illustrated, but the configuration of the outdoor heat exchanger 20 is not limited to the configuration. For example, the outdoor heat exchanger 20 may be configured such that the heat transfer tube 30 is vertically provided. Further, for example, the outdoor heat exchanger 20 may have a configuration in which the heat transfer tubes 30 are provided at different angles. Further, for example, in the first embodiment, the outdoor heat exchanger 20 is a parallel flow type heat exchanger, but the outdoor heat exchanger 20 is a heat exchanger in which a refrigerant flows in series through each of the heat transfer tubes 30. There may be.
 また、本実施の形態1では、室外熱交換器20の伝熱管30に溝35を形成したが、室内熱交換器14を室外熱交換器20と同じ構成にしてもよい。室内熱交換器14の耐食性を向上させることができる。 Further, in the first embodiment, the groove 35 is formed in the heat transfer tube 30 of the outdoor heat exchanger 20, but the indoor heat exchanger 14 may have the same configuration as the outdoor heat exchanger 20. The corrosion resistance of the indoor heat exchanger 14 can be improved.
 以上、本実施の形態1に係る熱交換器は、冷媒が流れる伝熱管30と、伝熱管30の端部が挿入された挿入孔41が形成され、伝熱管30に流入する冷媒及び伝熱管30から流出する冷媒のうちの少なくとも一方が流れるヘッダ40と、伝熱管30の外周部に取り付けられたフィン50と、を備えている。また、本実施の形態1に係る熱交換器は、伝熱管30とヘッダ40とがロウ付けにより接合され、伝熱管30とフィン50とがロウ付けにより接合されている。そして、伝熱管30には、ヘッダ40とフィン50との間となる位置に、ヘッダ40からフィン50に向かって延びる少なくとも1つの溝35が形成されている。 As described above, in the heat exchanger according to the first embodiment, the heat transfer tube 30 through which the refrigerant flows and the insertion hole 41 into which the end of the heat transfer tube 30 is inserted are formed, and the refrigerant and the heat transfer tube 30 flowing into the heat transfer tube 30 are formed. It includes a header 40 through which at least one of the refrigerants flowing out of the heat transfer tube 30 flows, and fins 50 attached to the outer peripheral portion of the heat transfer tube 30. Further, in the heat exchanger according to the first embodiment, the heat transfer tube 30 and the header 40 are joined by brazing, and the heat transfer tube 30 and the fins 50 are joined by brazing. Then, at least one groove 35 extending from the header 40 toward the fin 50 is formed in the heat transfer tube 30 at a position between the header 40 and the fin 50.
 本実施の形態1に係る熱交換器は、ロウ付け時、伝熱管30に形成された溝35によって、伝熱管30の表面での溶けたロウ材の流れを制御することができる。このため、本実施の形態1に係る熱交換器は、ロウ付け時に伝熱管30の表面において発生する酸化還元電位が卑である材料の分布ムラを従来よりも抑制できる。 In the heat exchanger according to the first embodiment, the flow of the melted brazing material on the surface of the heat transfer tube 30 can be controlled by the groove 35 formed in the heat transfer tube 30 at the time of brazing. Therefore, the heat exchanger according to the first embodiment can suppress uneven distribution of the material having a low redox potential generated on the surface of the heat transfer tube 30 during brazing as compared with the conventional case.
実施の形態2.
 伝熱管30として扁平管を用いる場合、ヘッダ40の挿入孔41を例えば以下のような形状に形成してもよい。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、実施の形態1と同一の機能及び構成については同一の符号を用いて述べることとする。
Embodiment 2.
When a flat tube is used as the heat transfer tube 30, the insertion hole 41 of the header 40 may be formed in the following shape, for example. In the second embodiment, items not particularly described will be the same as those in the first embodiment, and the same functions and configurations as those in the first embodiment will be described using the same reference numerals.
 図6は、実施の形態2に係る室外熱交換器のヘッダの挿入孔近傍を示す図である。この図6は、ヘッダ40の挿入孔41を挿入方向Xに観察した図となっている。
 本実施の形態2に係るヘッダ40においては、挿入孔41の第2方向Zの開口幅Wを第1方向Yに見ていった際、端部から中央へ向かうにしたがって広くなっている。このため、本実施の形態2に係る室外熱交換器20においては、扁平管である伝熱管30と挿入孔41とを第1方向Yに見ていった際、伝熱管30の外周部と挿入孔41の周壁との間の距離が端部から中央へ向かうにしたがって広くなっている。したがって、挿入孔41の周縁と伝熱管30とをロウ付け接合する際、伝熱管30の第1方向Y側の端部近傍と比べ、伝熱管30の第1方向Yの中央付近で用いられるロウ材の量が多くなる。
FIG. 6 is a diagram showing the vicinity of the insertion hole of the header of the outdoor heat exchanger according to the second embodiment. FIG. 6 is a view of the insertion hole 41 of the header 40 observed in the insertion direction X.
In the header 40 according to the second embodiment, when the opening width W of the insertion hole 41 in the second direction Z is viewed in the first direction Y, it becomes wider from the end toward the center. Therefore, in the outdoor heat exchanger 20 according to the second embodiment, when the flat heat transfer tube 30 and the insertion hole 41 are viewed in the first direction Y, they are inserted into the outer peripheral portion of the heat transfer tube 30. The distance between the hole 41 and the peripheral wall increases from the end to the center. Therefore, when brazing and joining the peripheral edge of the insertion hole 41 and the heat transfer tube 30, the wax used near the center of the heat transfer tube 30 in the first direction Y as compared with the vicinity of the end of the heat transfer tube 30 on the first direction Y side. The amount of material increases.
 例えば円筒形状のヘッダ40を用いた場合等には、ヘッダ40とフィン50との間の距離は、第1方向Yの中央位置に行くほど小さくなる。このような場合、伝熱管30として扁平管を用いると、ロウ付け時に溶けたロウ材は、伝熱管30の第1方向Yの中央付近に多く供給されやすい。すなわち、伝熱管30の第1方向Yの中央付近に、酸化還元電位が卑である材料が拡散しやすい。しかしながら、本実施の形態2のように挿入孔41を形成することにより、伝熱管30の第1方向Yの中央付近と挿入孔41の周縁とのロウ付けに必要なロウ材の量が多くなるため、溶けたロウ材が伝熱管30の第1方向Yの中央付近に流れることを抑制できる。すなわち、伝熱管30の第1方向Yの中央付近に酸化還元電位が卑である材料が拡散することを抑制できる。 For example, when a cylindrical header 40 is used, the distance between the header 40 and the fin 50 becomes smaller toward the center position in the first direction Y. In such a case, if a flat tube is used as the heat transfer tube 30, a large amount of brazed material melted during brazing is likely to be supplied to the vicinity of the center of the heat transfer tube 30 in the first direction Y. That is, a material having a low redox potential tends to diffuse near the center of the heat transfer tube 30 in the first direction Y. However, by forming the insertion hole 41 as in the second embodiment, the amount of brazing material required for brazing the vicinity of the center of the first direction Y of the heat transfer tube 30 and the peripheral edge of the insertion hole 41 increases. Therefore, it is possible to prevent the melted brazing material from flowing near the center of the heat transfer tube 30 in the first direction Y. That is, it is possible to suppress the diffusion of a material having a low redox potential near the center of the heat transfer tube 30 in the first direction Y.
 このため、ロウ付け時に溶けたロウ材が伝熱管30の第1方向Yの中央付近に供給されやすい条件において、伝熱管30として扁平管を用いた場合であっても、本実施の形態2のように挿入孔41を形成することにより、伝熱管30の表面において発生する酸化還元電位が卑である材料の分布ムラを抑制できる。すなわち、ロウ付け時に溶けたロウ材が伝熱管30の第1方向Yの中央付近に供給されやすい条件において、伝熱管30として扁平管を用いた場合であっても、本実施の形態2のように挿入孔41を形成することにより、伝熱管30の腐食を抑制でき、室外熱交換器20の耐食性を向上させることができる。 Therefore, even when a flat tube is used as the heat transfer tube 30 under the condition that the brazing material melted at the time of brazing is easily supplied to the vicinity of the center of the first direction Y of the heat transfer tube 30, the present embodiment 2 By forming the insertion hole 41 as described above, uneven distribution of the material having a low redox potential generated on the surface of the heat transfer tube 30 can be suppressed. That is, even when a flat tube is used as the heat transfer tube 30 under the condition that the brazing material melted at the time of brazing is easily supplied to the vicinity of the center of the first direction Y of the heat transfer tube 30, as in the second embodiment. By forming the insertion hole 41 in the heat transfer tube 30, corrosion of the heat transfer tube 30 can be suppressed, and the corrosion resistance of the outdoor heat exchanger 20 can be improved.
 ここで、本実施の形態2のように挿入孔41を形成することにより、伝熱管30の外周部への酸化還元電位が卑である材料の拡散量が不足し、伝熱管30の耐食性が低下すると考えられるかもしれない。しかしながら、伝熱管30の表面において酸化還元電位が卑である材料の分布ムラが顕著な場合は、酸化還元電位が卑である材料の濃い部分で局所的に腐食が発生する可能性が高い。また、局所的な腐食は、一旦発生すると、その箇所が腐食し続けることも多い。このため、伝熱管30の表面において酸化還元電位が卑である材料の分布ムラが顕著になりやすい場合は、伝熱管30の外周部への酸化還元電位が卑である材料の拡散量を本実施の形態2のように抑制することで、伝熱管30の腐食を抑制でき、室外熱交換器20の耐食性を向上させることができる。 Here, by forming the insertion hole 41 as in the second embodiment, the amount of diffusion of the material having a low redox potential to the outer peripheral portion of the heat transfer tube 30 is insufficient, and the corrosion resistance of the heat transfer tube 30 is lowered. You might think that. However, when the uneven distribution of the material having a low redox potential is remarkable on the surface of the heat transfer tube 30, there is a high possibility that corrosion will occur locally in the dark portion of the material having a low redox potential. In addition, once local corrosion occurs, the site often continues to corrode. Therefore, when the uneven distribution of the material having a low redox potential tends to be remarkable on the surface of the heat transfer tube 30, the amount of diffusion of the material having a low redox potential to the outer periphery of the heat transfer tube 30 is carried out. By suppressing the heat transfer tube 30 as in Form 2, the corrosion resistance of the outdoor heat exchanger 20 can be improved.
 また、酸化還元電位が卑である材料が多く溜まる箇所では、伝熱管30の形成材料の融点が低下し、融点が低下した箇所で孔が空いてしまうという可能性もある。この局所的な溶解を抑制する点でも、伝熱管30の外周部への酸化還元電位が卑である材料の拡散量を本実施の形態2のように抑制する構成は有効である。 Further, there is a possibility that the melting point of the material forming the heat transfer tube 30 decreases in a place where a large amount of material having a low redox potential accumulates, and a hole is formed in the place where the melting point decreases. From the viewpoint of suppressing this local dissolution, the configuration of suppressing the diffusion amount of the material having a low redox potential to the outer peripheral portion of the heat transfer tube 30 as in the second embodiment is effective.
 なお、図6で示した挿入孔41の形状は、一例である。開口幅Wを第1方向Yに見ていった際に端部から中央へ向かうにしたがって広くなっていれば、挿入孔41の形状は任意である。例えば、図6で示した挿入孔41においては、第1方向Yの中央付近では、開口幅Wが一定となっている。しかしながら、第1方向Yの中央付近でも、開口幅Wの大きさを異ならせてもよい。また、図6で示した挿入孔41においては、第1方向Yの端部の開口幅Wはゼロとなっていないが、第1方向Yの端部の開口幅Wをゼロとしてもよい。また、図6で示した挿入孔41の外周縁は直線を組み合わせた構成となっているが、挿入孔41の外周縁の少なくとも一部が曲線であってもよい。 The shape of the insertion hole 41 shown in FIG. 6 is an example. The shape of the insertion hole 41 is arbitrary as long as the opening width W becomes wider from the end toward the center when viewed in the first direction Y. For example, in the insertion hole 41 shown in FIG. 6, the opening width W is constant near the center of the first direction Y. However, the size of the opening width W may be different even near the center of the first direction Y. Further, in the insertion hole 41 shown in FIG. 6, the opening width W of the end portion in the first direction Y is not zero, but the opening width W of the end portion in the first direction Y may be zero. Further, although the outer peripheral edge of the insertion hole 41 shown in FIG. 6 is configured by combining straight lines, at least a part of the outer peripheral edge of the insertion hole 41 may be curved.
実施の形態3.
 伝熱管30として扁平管を用いる場合、ヘッダ40の挿入孔41を例えば以下のような形状に形成してもよい。なお、本実施の形態3において、特に記述しない項目については実施の形態1又は実施の形態2と同様とし、実施の形態1又は実施の形態2と同一の機能及び構成については同一の符号を用いて述べることとする。
Embodiment 3.
When a flat tube is used as the heat transfer tube 30, the insertion hole 41 of the header 40 may be formed in the following shape, for example. In the third embodiment, items not particularly described are the same as those of the first embodiment or the second embodiment, and the same reference numerals are used for the same functions and configurations as those of the first embodiment or the second embodiment. Will be described.
 図7は、実施の形態3に係る室外熱交換器のヘッダの挿入孔近傍を示す図である。この図7は、ヘッダ40の挿入孔41を挿入方向Xに観察した図となっている。
 本実施の形態3に係るヘッダ40においては、挿入孔41の第2方向Zの開口幅Wを第1方向Yに見ていった際、中央から端部へ向かうにしたがって広くなっている。このため、本実施の形態3に係る室外熱交換器20においては、扁平管である伝熱管30と挿入孔41とを第1方向Yに見ていった際、伝熱管30の外周部と挿入孔41の周壁との間の距離が中央から端部へ向かうにしたがって広くなっている。したがって、挿入孔41の周縁と伝熱管30とをロウ付け接合する際、伝熱管30の第1方向Y側の中央近傍と比べ、伝熱管30の第1方向Yの端部付近で用いられるロウ材の量が多くなる。
FIG. 7 is a diagram showing the vicinity of the insertion hole of the header of the outdoor heat exchanger according to the third embodiment. FIG. 7 is a view of the insertion hole 41 of the header 40 observed in the insertion direction X.
In the header 40 according to the third embodiment, when the opening width W of the insertion hole 41 in the second direction Z is viewed in the first direction Y, it becomes wider from the center toward the end. Therefore, in the outdoor heat exchanger 20 according to the third embodiment, when the flat heat transfer tube 30 and the insertion hole 41 are viewed in the first direction Y, they are inserted into the outer peripheral portion of the heat transfer tube 30. The distance between the hole 41 and the peripheral wall increases from the center to the end. Therefore, when brazing and joining the peripheral edge of the insertion hole 41 and the heat transfer tube 30, the wax used near the end of the heat transfer tube 30 in the first direction Y as compared with the vicinity of the center of the heat transfer tube 30 on the first direction Y side. The amount of material increases.
 例えば、ヘッダ40とフィン50との間の距離が第1方向において変化しない直方体形状のヘッダ40を用いた場合、ヘッダ40とフィン50との間の距離が第1方向の中央位置から端部側に向かうにしたがって小さくなるヘッダ40を用いた場合等には、伝熱管30として扁平管を用いると、ロウ付け時に溶けたロウ材は、伝熱管30の第1方向Yの端部付近に多く供給されやすい。すなわち、伝熱管30の第1方向Yの端部付近に、酸化還元電位が卑である材料が拡散しやすい。しかしながら、本実施の形態3のように挿入孔41を形成することにより、伝熱管30の第1方向Yの端部付近と挿入孔41の周縁とのロウ付けに必要なロウ材の量が多くなるため、溶けたロウ材が伝熱管30の第1方向Yの端部付近に流れることを抑制できる。すなわち、伝熱管30の第1方向Yの端部付近に酸化還元電位が卑である材料が拡散することを抑制できる。 For example, when a rectangular header 40 in which the distance between the header 40 and the fin 50 does not change in the first direction is used, the distance between the header 40 and the fin 50 is from the center position in the first direction to the end side. When a flat tube is used as the heat transfer tube 30, a large amount of the brazing material melted at the time of brazing is supplied to the vicinity of the end portion of the heat transfer tube 30 in the first direction Y, for example, when the header 40 that becomes smaller toward the direction of Easy to be done. That is, the material having a low redox potential tends to diffuse near the end of the heat transfer tube 30 in the first direction Y. However, by forming the insertion hole 41 as in the third embodiment, the amount of brazing material required for brazing the vicinity of the end of the heat transfer tube 30 in the first direction Y and the peripheral edge of the insertion hole 41 is large. Therefore, it is possible to prevent the melted brazing material from flowing near the end of the heat transfer tube 30 in the first direction Y. That is, it is possible to suppress the diffusion of a material having a low redox potential near the end of the heat transfer tube 30 in the first direction Y.
 このため、ロウ付け時に溶けたロウ材が伝熱管30の第1方向Yの端部付近に供給されやすい条件において、伝熱管30として扁平管を用いた場合であっても、本実施の形態3のように挿入孔41を形成することにより、伝熱管30の表面において発生する酸化還元電位が卑である材料の分布ムラを抑制できる。すなわち、ロウ付け時に溶けたロウ材が伝熱管30の第1方向Yの端部付近に供給されやすい条件において、伝熱管30として扁平管を用いた場合であっても、本実施の形態3のように挿入孔41を形成することにより、伝熱管30の腐食を抑制でき、室外熱交換器20の耐食性を向上させることができる。 Therefore, even when a flat tube is used as the heat transfer tube 30 under the condition that the brazing material melted at the time of brazing is easily supplied to the vicinity of the end portion of the heat transfer tube 30 in the first direction Y, the third embodiment By forming the insertion hole 41 as described above, uneven distribution of the material having a low redox potential generated on the surface of the heat transfer tube 30 can be suppressed. That is, even when a flat tube is used as the heat transfer tube 30 under the condition that the brazing material melted at the time of brazing is easily supplied to the vicinity of the end portion of the heat transfer tube 30 in the first direction Y, the present embodiment 3 By forming the insertion hole 41 as described above, corrosion of the heat transfer tube 30 can be suppressed, and the corrosion resistance of the outdoor heat exchanger 20 can be improved.
 なお、図7で示した挿入孔41の形状は、一例である。開口幅Wを第1方向Yに見ていった際に中央から端部へ向かうにしたがって広くなっていれば、挿入孔41の形状は任意である。例えば、図7で示した挿入孔41においては、第1方向Yの中央付近では、開口幅Wが一定となっている。しかしながら、第1方向Yの中央付近でも、開口幅Wの大きさを異ならせてもよい。また、図6で示した挿入孔41の外周縁は直線を組み合わせた構成となっているが、挿入孔41の外周縁の少なくとも一部が曲線であってもよい。 The shape of the insertion hole 41 shown in FIG. 7 is an example. The shape of the insertion hole 41 is arbitrary as long as the opening width W becomes wider from the center toward the end when viewed in the first direction Y. For example, in the insertion hole 41 shown in FIG. 7, the opening width W is constant near the center of the first direction Y. However, the size of the opening width W may be different even near the center of the first direction Y. Further, although the outer peripheral edge of the insertion hole 41 shown in FIG. 6 is configured by combining straight lines, at least a part of the outer peripheral edge of the insertion hole 41 may be curved.
 1 空気調和機、2 室外機、3 室内機、10 冷凍サイクル回路、11 圧縮機、12 四方弁、13 膨張弁、14 室内熱交換器、15 冷媒配管、16 冷媒配管、20 室外熱交換器、30 伝熱管、31 平面部、32 平面部、33 端部、34 冷媒流路、35 溝、36 端部、37 端部、38 第1範囲、39 第2範囲、40 ヘッダ、40a ヘッダ、40b ヘッダ、41 挿入孔、42 配管、43 配管、50 フィン、51 ロウ付け部、X 挿入方向、Y 第1方向、Z 第2方向。 1 air conditioner, 2 outdoor unit, 3 indoor unit, 10 refrigeration cycle circuit, 11 compressor, 12 four-way valve, 13 expansion valve, 14 indoor heat exchanger, 15 refrigerant piping, 16 refrigerant piping, 20 outdoor heat exchanger, 30 heat transfer pipe, 31 flat part, 32 flat part, 33 end part, 34 refrigerant flow path, 35 groove, 36 end part, 37 end part, 38 first range, 39 second range, 40 header, 40a header, 40b header , 41 insertion hole, 42 piping, 43 piping, 50 fins, 51 brazing part, X insertion direction, Y 1st direction, Z 2nd direction.

Claims (9)

  1.  冷媒が流れる伝熱管と、
     前記伝熱管の端部が挿入された挿入孔が形成され、前記伝熱管に流入する冷媒及び前記伝熱管から流出する冷媒のうちの少なくとも一方が流れるヘッダと、
     前記伝熱管の外周部に取り付けられたフィンと、
     を備え、
     前記伝熱管と前記ヘッダとがロウ付けにより接合され、前記伝熱管と前記フィンとがロウ付けにより接合された熱交換器であって、
     前記伝熱管には、前記ヘッダと前記フィンとの間となる位置に、前記ヘッダから前記フィンに向かって延びる少なくとも1つの溝が形成されている
     熱交換器。
    The heat transfer tube through which the refrigerant flows and
    An insertion hole into which the end of the heat transfer tube is inserted is formed, and a header through which at least one of the refrigerant flowing into the heat transfer tube and the refrigerant flowing out of the heat transfer tube flows.
    The fins attached to the outer peripheral portion of the heat transfer tube and
    With
    A heat exchanger in which the heat transfer tube and the header are joined by brazing, and the heat transfer tube and the fins are joined by brazing.
    A heat exchanger in which at least one groove extending from the header toward the fin is formed in the heat transfer tube at a position between the header and the fin.
  2.  少なくとも1つの前記溝は、前記挿入孔の周壁と対向する位置まで延びている
     請求項1に記載の熱交換器。
    The heat exchanger according to claim 1, wherein at least one of the grooves extends to a position facing the peripheral wall of the insertion hole.
  3.  少なくとも1つの前記溝は、前記フィンと対向する位置まで延びている
     請求項1又は請求項2に記載の熱交換器。
    The heat exchanger according to claim 1 or 2, wherein the at least one groove extends to a position facing the fin.
  4.  前記伝熱管には、複数の前記溝が形成されている
     請求項1~請求項3のいずれか一項に記載の熱交換器。
    The heat exchanger according to any one of claims 1 to 3, wherein a plurality of the grooves are formed in the heat transfer tube.
  5.  前記伝熱管は、少なくとも1つの前記溝が形成された平面部を前記外周部に有する扁平管である
     請求項1~請求項4のいずれか一項に記載の熱交換器。
    The heat exchanger according to any one of claims 1 to 4, wherein the heat transfer tube is a flat tube having a flat surface portion on which at least one of the grooves is formed on the outer peripheral portion.
  6.  前記平面部には、複数の前記溝が形成されており、
     前記挿入孔への前記伝熱管の挿入方向と垂直で、前記平面部と平行な方向を第1方向とした場合、
     複数の前記溝は、前記第1方向に間隔を空けて配置されており、
     複数の前記溝を前記第1方向に見ていった際、
     前記平面部における前記第1方向の中央位置を含む第1範囲には、前記第1方向において該第1範囲よりも端部側となる第2範囲と比べ、前記溝が密に配置されている
     請求項5に記載の熱交換器。
    A plurality of the grooves are formed in the flat surface portion.
    When the direction perpendicular to the insertion direction of the heat transfer tube into the insertion hole and parallel to the flat surface portion is set as the first direction.
    The plurality of grooves are arranged at intervals in the first direction.
    When looking at the plurality of grooves in the first direction,
    In the first range including the central position in the first direction on the flat surface portion, the grooves are densely arranged as compared with the second range which is on the end side of the first range in the first direction. The heat exchanger according to claim 5.
  7.  前記挿入孔への前記伝熱管の挿入方向と垂直で、前記平面部と平行な方向を第1方向とし、
     前記挿入孔への前記伝熱管の挿入方向と垂直で、前記第1方向と垂直な方向を第2方向とした場合、
     前記挿入孔の前記第2方向の開口幅を前記第1方向に見ていった際、端部から中央へ向かうにしたがって広くなっている
     請求項5又は請求項6に記載の熱交換器。
    The first direction is the direction perpendicular to the insertion direction of the heat transfer tube into the insertion hole and parallel to the flat surface portion.
    When the direction perpendicular to the insertion direction of the heat transfer tube into the insertion hole and the direction perpendicular to the first direction is the second direction,
    The heat exchanger according to claim 5 or 6, wherein when the opening width of the insertion hole in the second direction is viewed in the first direction, the width becomes wider from the end toward the center.
  8.  前記挿入孔への前記伝熱管の挿入方向と垂直で、前記平面部と平行な方向を第1方向とし、
     前記挿入孔への前記伝熱管の挿入方向と垂直で、前記第1方向と垂直な方向を第2方向とした場合、
     前記挿入孔の前記第2方向の開口幅を前記第1方向に見ていった際、中央から端部へ向かうにしたがって広くなっている
     請求項5又は請求項6に記載の熱交換器。
    The first direction is the direction perpendicular to the insertion direction of the heat transfer tube into the insertion hole and parallel to the flat surface portion.
    When the direction perpendicular to the insertion direction of the heat transfer tube into the insertion hole and the direction perpendicular to the first direction is the second direction,
    The heat exchanger according to claim 5 or 6, wherein when the opening width of the insertion hole in the second direction is viewed in the first direction, the width becomes wider from the center toward the end.
  9.  圧縮機、室外熱交換器、膨張弁及び室内熱交換器を有する冷凍サイクル回路を備え、
     前記室外熱交換器及び前記室内熱交換器のうちの少なくとも一方に、請求項1~請求項8のいずれか一項に記載の熱交換器が用いられている
     空気調和機。
    Equipped with a refrigeration cycle circuit with a compressor, outdoor heat exchanger, expansion valve and indoor heat exchanger,
    An air conditioner in which the heat exchanger according to any one of claims 1 to 8 is used in at least one of the outdoor heat exchanger and the indoor heat exchanger.
PCT/JP2019/016103 2019-04-15 2019-04-15 Heat exchanger and air conditioner WO2020213023A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021514666A JP7086278B2 (en) 2019-04-15 2019-04-15 Heat exchanger and air conditioner
PCT/JP2019/016103 WO2020213023A1 (en) 2019-04-15 2019-04-15 Heat exchanger and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/016103 WO2020213023A1 (en) 2019-04-15 2019-04-15 Heat exchanger and air conditioner

Publications (1)

Publication Number Publication Date
WO2020213023A1 true WO2020213023A1 (en) 2020-10-22

Family

ID=72837087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016103 WO2020213023A1 (en) 2019-04-15 2019-04-15 Heat exchanger and air conditioner

Country Status (2)

Country Link
JP (1) JP7086278B2 (en)
WO (1) WO2020213023A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145591A (en) * 1994-11-24 1996-06-07 Zexel Corp Heat exchanger
JPH10137877A (en) * 1996-11-05 1998-05-26 Zexel Corp Manufacture of tube heat exchanger
JPH10246592A (en) * 1997-03-07 1998-09-14 Furukawa Electric Co Ltd:The Extruded porous tube for brazing material of heat-exchanger and production thereof
JPH10318695A (en) * 1997-05-19 1998-12-04 Zexel Corp Heat exchanger
JP2001071177A (en) * 1999-09-08 2001-03-21 Mitsubishi Alum Co Ltd Manufacture of brazing-material coated pipe and manufacturing device
JP2001194080A (en) * 2000-01-07 2001-07-17 Zexel Valeo Climate Control Corp Heat exchanger
JP2001263860A (en) * 2000-03-23 2001-09-26 Denso Corp Brazed product and brazing method
JP2002103027A (en) * 2000-09-22 2002-04-09 Mitsubishi Alum Co Ltd Method of manufacturing heat exchanger
JP2002181480A (en) * 2000-12-12 2002-06-26 Zexel Valeo Climate Control Corp Heat exchanger
US20050067142A1 (en) * 2003-09-26 2005-03-31 Lg Cable Ltd. Heat exchanger
JP2013015233A (en) * 2011-06-30 2013-01-24 Daikin Industries Ltd Heat exchanger

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145591A (en) * 1994-11-24 1996-06-07 Zexel Corp Heat exchanger
JPH10137877A (en) * 1996-11-05 1998-05-26 Zexel Corp Manufacture of tube heat exchanger
JPH10246592A (en) * 1997-03-07 1998-09-14 Furukawa Electric Co Ltd:The Extruded porous tube for brazing material of heat-exchanger and production thereof
JPH10318695A (en) * 1997-05-19 1998-12-04 Zexel Corp Heat exchanger
JP2001071177A (en) * 1999-09-08 2001-03-21 Mitsubishi Alum Co Ltd Manufacture of brazing-material coated pipe and manufacturing device
JP2001194080A (en) * 2000-01-07 2001-07-17 Zexel Valeo Climate Control Corp Heat exchanger
JP2001263860A (en) * 2000-03-23 2001-09-26 Denso Corp Brazed product and brazing method
JP2002103027A (en) * 2000-09-22 2002-04-09 Mitsubishi Alum Co Ltd Method of manufacturing heat exchanger
JP2002181480A (en) * 2000-12-12 2002-06-26 Zexel Valeo Climate Control Corp Heat exchanger
US20050067142A1 (en) * 2003-09-26 2005-03-31 Lg Cable Ltd. Heat exchanger
JP2013015233A (en) * 2011-06-30 2013-01-24 Daikin Industries Ltd Heat exchanger

Also Published As

Publication number Publication date
JPWO2020213023A1 (en) 2021-10-14
JP7086278B2 (en) 2022-06-17

Similar Documents

Publication Publication Date Title
US20130292098A1 (en) Heat exchanger and air conditioner
US10627175B2 (en) Heat exchanger and refrigeration cycle apparatus
WO2016009713A1 (en) Refrigeration cycle device and manufacturing method for cross fin tube-type heat exchanger used by refrigeration cycle device
WO2015045105A1 (en) Heat exchanger and air conditioner using same
US11002489B2 (en) Heat exchanger and air conditioning apparatus
JP6980117B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle device
JP6826133B2 (en) Heat exchanger and refrigeration cycle equipment
WO2020012549A1 (en) Heat exchanger, heat exchange device, heat exchanger unit, and refrigeration system
JP7086278B2 (en) Heat exchanger and air conditioner
JP6318371B2 (en) Outdoor unit and refrigeration cycle apparatus using the same
EP3699538B1 (en) Heat exchanger and refrigeration cycle device
JP6198976B2 (en) Heat exchanger and refrigeration cycle apparatus
US20220299246A1 (en) Heat exchanger, indoor unit for air-conditioner, and refrigeration device
WO2012098915A1 (en) Heat exchanger and air conditioner
WO2012098913A1 (en) Heat exchanger and air conditioner
WO2021234961A1 (en) Heat exchanger, outdoor unit for air conditioning device, and air conditioning device
JP5664272B2 (en) Heat exchanger and air conditioner
WO2021014603A1 (en) Heat exchanger and air conditioning device using same
JP5573698B2 (en) Heat exchanger and air conditioner
CN221055293U (en) Microchannel heat exchanger and air conditioner
JP7313529B1 (en) Heat exchanger and air conditioner provided with the same
JP7038892B2 (en) Manufacturing method of laminated header, heat exchanger, and heat exchanger
JP6873252B2 (en) Heat exchanger, outdoor unit of air conditioner and air conditioner
JP7106814B2 (en) Heat exchanger
JP2024074416A (en) Heat exchanger and air conditioner equipped with same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514666

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924656

Country of ref document: EP

Kind code of ref document: A1