WO2020212171A1 - Procede de fabrication d'une piece par irradiation localisee d'un materiau par concourance d'au moins deux faisceaux - Google Patents

Procede de fabrication d'une piece par irradiation localisee d'un materiau par concourance d'au moins deux faisceaux Download PDF

Info

Publication number
WO2020212171A1
WO2020212171A1 PCT/EP2020/059578 EP2020059578W WO2020212171A1 WO 2020212171 A1 WO2020212171 A1 WO 2020212171A1 EP 2020059578 W EP2020059578 W EP 2020059578W WO 2020212171 A1 WO2020212171 A1 WO 2020212171A1
Authority
WO
WIPO (PCT)
Prior art keywords
volume
beams
energy
target
powder
Prior art date
Application number
PCT/EP2020/059578
Other languages
English (en)
Inventor
Hugo Sistach
Original Assignee
Safran Aircraft Engines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines filed Critical Safran Aircraft Engines
Priority to CN202080029295.9A priority Critical patent/CN113727793A/zh
Priority to US17/603,638 priority patent/US20220194005A1/en
Priority to EP20714658.0A priority patent/EP3938131A1/fr
Publication of WO2020212171A1 publication Critical patent/WO2020212171A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • B22F12/45Two or more
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/277Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED]
    • B29C64/282Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED] of the same type, e.g. using different energy levels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to the field of manufacturing parts by selective melting or selective sintering of a material in powder form or by photopolymerization of a material of resin type in powder form or with a pasty consistency.
  • the invention can be applied to the manufacture of metal, ceramic or polymer parts.
  • These techniques generally consist of selective melting or selective sintering processes on a powder bed as described in document [1], which usually include a step during which is deposited, on a production plate, a first layer of powder. a metal, a metal alloy, a ceramic or a polymer of controlled thickness, then a step consisting in heating with a heating means (for example a laser or an electron beam) a predefined area of layer of powder, and to proceed by repeating these steps for each additional layer, until obtaining, slice by slice, the final part.
  • a heating means for example a laser or an electron beam
  • the manufacturing time and the possible geometries of the parts are therefore conditioned by the deposit of the powder layer by layer and by the strategy of melting or sintering the powder and the powder support means put in place.
  • the invention firstly relates to a method of manufacturing a part by localized irradiation of a material capable of being sintered, fused or photopolymerized, said method comprising the steps of:
  • step c) for each target volume, maintaining the pressure applied to the volume of material in step a) and simultaneously irradiating the target volume by at least two beams which are concurrent in the target volume and which are continuous, whereby one obtains the room ;
  • the material is partially transparent to said at least two beams; wherein the energy deposited in the target volume by each beam is less than a threshold energy, and the sum of the energies deposited in the target volume by each of the beams is greater than or equal to a threshold transformation energy;
  • the threshold energy is less than a sintering energy of the material and the threshold transformation energy corresponds to the sintering energy of the material, when it is desired to obtain selective sintering in the irradiated target volume, or to the energy of fusion of the material, when it is desired to obtain a selective fusion in the irradiated target volume;
  • the threshold energy is less than a photopolymerization energy of the material and the threshold transformation energy corresponds to the photopolymerization energy of the material, when it is desired to obtain photopolymerization in the irradiated target volume;
  • the volume of material in which the part is made and which is supplied to the part. step a) is deposited all at once and then melting, sintering or photopolymerization is carried out locally in different target volumes within this volume of material.
  • step b) defining several target volumes, the target volumes are irradiated simultaneously with step c).
  • step b) defining several target volumes, the target volumes are irradiated successively in step c).
  • beam is understood to mean an energy beam with electromagnetic radiation, such as for example a laser beam, or a beam of particles, such as for example an electron beam.
  • the at least two beams are focused in the target volume. In this way, we make sure to merge or sinter or light-cure the material locally at the desired location.
  • the at least two beams are concurrent at their focal point. This allows for melting, sintering or photopolymerization at the precise location desired and no risk of melting, sintering or photopolymerization outside the concurrent focal point of the beams.
  • the at least two beams have the same surface energy. This makes it possible to have equivalent and coherent beam sources. This also makes it possible to prevent the supply of energy from one of the two beams from leading to fusion, sintering or photopolymerization, without the supply of energy from the second beam.
  • the at least two beams are three in number. This ensures maximum precision on the location of the melting, sintering or polymerization zone, in the same way that triangulation is used for GPS type services.
  • the compression can for example be an isostatic pressing, that is to say a placing under a press (with a given pressure which does not vary and which is identical in all directions) of the volume of material.
  • the volume of powder supplied in step a) is in powder form.
  • the material in powder form can be sinterable, fusible or light-curing.
  • the photopolymerizable material it may for example be a resin in powder form.
  • the material of the powder volume is in the form of a set of stacked particles, fictitiously divided into an interior volume and a peripheral volume, which surrounds the interior volume, and in the step b), at least one target volume of the plurality of target volumes is defined in the interior volume.
  • the thickness of the peripheral volume may for example correspond to the thickness of a layer of powder deposited in the context of additive manufacturing by depositing powder layer by layer.
  • the powder has an average particle size of between 5 and 65 ⁇ m. It is specified that, in the present description, the expression “comprised between ... and ...” must be understood as including the limits.
  • the volume of powder supplied in step a) is a resin with a pasty consistency, which is photopolymerizable.
  • a resin has a pasty consistency when it has a viscosity of between 150 and 500 Pa.s at 30 ° C (the viscosity being for example measured using a Brookfield type viscometer).
  • the at least two beams are energetic beams of the same nature and are chosen from laser beams, microwave beams, UV beams and IR beams.
  • UV beams will be chosen.
  • FIGS. lc illustrate steps of the manufacturing process according to the invention.
  • At least two beams are used to simultaneously irradiate and thus locally heat a portion of a volume of material, this portion being called “target volume”.
  • the beams are arranged concurrently in the target volume and are continuous.
  • Each target volume of material is intended to form, once in the sintered, fused or photopolymerized state, a part of the part to be produced.
  • the process according to the invention therefore saves time during the manufacture of a part. It also allows the manufacture of parts of all shapes, the complexity of the shape of the part being only limited by the possibility or not of removing the non-irradiated material blocked in internal channels.
  • the material can be in powder form and the material powder can be metallic, ceramic or polymer.
  • the metallic powder can be a metal or an alloy.
  • the powder can be in the form of a photopolymerizable resin.
  • the material can also be in the form of a resin with a pasty and light-curing consistency.
  • the choice of the type of beam to use is made according to the energy that must be deposited in the target volume in order for the material to fuse, sinter or light-cure. It therefore depends on the material, but also on the desired result, namely sintering, melting or photopolymerization. If the material is in powder form and one wishes to obtain sintering of the particles, the sum of the energies deposited by each of the beams in the target volume, when they simultaneously irradiate this target volume while being concurrent therein, must be greater. or equal to a threshold energy necessary for sintering. If the material is in the form of powder and it is desired to obtain fusion of the particles, the sum of these energies in the target volume must be greater than or equal to a threshold energy necessary for the fusion.
  • the material must also be partially transparent to the selected beams so that the beams can reach the desired target volume within the material volume. It is considered that a material is partially transparent to a beam when it absorbs up to 60% of the beam (the value 0% being excluded).
  • energy beams of the same nature will be chosen.
  • microwave beams can be used for melting a metal powder into a nickel-based alloy (for example of the Inconel TM 718 type) or of a titanium alloy (for example TA6V). , so as to obtain a total power of between 200 and 400 W and / or a linear energy of between 0.01 J / mm and 1 J / mm. For example, to obtain a power of 200 W, two 100 W beams can be used. It is thus possible to produce compressor blades, for example.
  • a nickel-based alloy for example of the Inconel TM 718 type
  • titanium alloy for example TA6V
  • thermosetting polymer for example a powder of an epoxy resin, used in the manufacture of acoustic panels or engine trim parts (damping elements for example)
  • UV beams with a power of between 60 and 100 W and / or a surface energy of between 0.001 and 0.05 J / mm 2
  • laser beams with a power of between 20 and 40 W and / or a surface energy of between 0.005 and 0.025 J / mm 2 .
  • the powder is compacted before starting the localized heating of the powder (by simultaneous irradiation using at least two beams of a target volume), in order to prevent the forming part from sinking. 'sags in the powder, due to a higher density and a shrinkage during melting which can be between 1% and 10%. It is the same when the material is in the form of a resin with a pasty consistency.
  • the compression in step a) can be a step of pressing the material (in the form of powder or with a pasty consistency).
  • the material can be poured into a compression die and uniaxially pressed by applying pressure to the upper surface of the volume of material.
  • multiaxial pressing can also be applied (eg six plates around a cubic volume, with equal pressure on each of the six plates). A compact of powder or material with a pasty consistency is then obtained.
  • a constant mechanical pressure will be applied to the volume of material during step c) of irradiating the target volumes leading to localized heating or to photopolymerization of the volume of material.
  • a constant mechanical pressure will be applied to the volume of material during step c) of irradiating the target volumes leading to localized heating or to photopolymerization of the volume of material.
  • three beams of the same nature are used to fuse, sinter or locally photopolymerize a previously sieved and compacted powder.
  • the material could also have been a resin with a pasty consistency, possibly previously compacted.
  • three beams we have ideal precision on the area where we want to fuse, sinter or light-cure the powder, since as in the case of a satellite triangulation, we can describe a precise point in space from three straight lines.
  • the sieved and compacted powder 1 is shown in the form of a cube, and the origins of the three beams 2 are shown by three circles B.
  • the inner powder volume 1 which is surrounded by a volume of peripheral powder l p .
  • the three beams are directed simultaneously towards a target volume 4 so that they are concurrent in this target volume 4.
  • the target volume 4 is here represented as located inside the sifted powder cube and compacted, that is to say located in the interior volume 1 ,.
  • the powder contained in the target volume 4 once fused (or sintered or photopolymerized), and cooled, gives a volume of fused (or sintered or photopolymerized) powder 5 (figure le); then another target volume 4 'is chosen, the beams are directed into this target volume 4' and so on until the complete part is obtained.
  • the three beams are directed simultaneously towards the powder so as to be concurrent and concentrated at the same point, and more precisely at the same target volume of the powder. If three sources are available, they are obviously placed at sufficient distances from each other in order to be able to ensure that the desired area is treated with precision. These three beams are then moved to be concentrated into another target volume of the powder and so on. until the complete production of the part. Preferably, the target volumes treated are adjacent.
  • each of the three beams is configured so that the energy deposited in the target volume is equal to 1/3 of the energy required to fuse the particles of the corresponding target volume.
  • the fusion of the particles will only take place in the event of simultaneous concentration of the three beams in the target volume, thus avoiding any unwanted fusion (or sintering) in the event of poor placement of the beams.
  • the fusion can be done in the volume of powder at the level of the desired specific zone, without requiring a deposit of a new layer to merge another section of the part to be produced, since the beams used are chosen according to the powder so that the powder is partially transparent to the beams (and can therefore reach a target volume located inside the powder volume (in the internal volume li)), on the one hand, and without risking to merge the powder outside of the target volume (for example deeper in the volume of powder), because the fusion only takes place in the target volume where the beams are concurrently concurrent.
  • the method according to the invention has for example been used to produce a part from a compact of polymer resin (obtained by compressing a volume of 50 liters of a thermosetting polymer resin in pasty form or in powder form by exerting on this volume a pressure of 15 MPa for a period of 30 minutes) by directing on this compact three UV beams each having a power of 30 W (i.e. a total power of 90 W) and a beam diameter of 100 ⁇ m at the point of convergence with a speed of 2 mm / s.
  • a power of 30 W i.e. a total power of 90 W
  • the method according to the invention was also used to make a part from an Inconel TM 718 powder compact, obtained by compressing a volume of 100 liters of Inconel TM 718 powder having particles with a smaller particle size. at 65 pm by exerting a pressure of 15 MPa for a period of 2 h, by directing on this compact a power of 300 W, using three beams microwaves each having a power of 100 W and a beam diameter of 100 ⁇ m at the point of convergence with a speed of 1000 mm / s.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

Fabrication d'une pièce par irradiation localisée d'un matériau pouvant être fritté, fusionné ou photopolymérisé, par : fourniture d'un volume (1) du matériau de fabrication de la pièce et compression dudit volume (1) par application d'une pression; définition, dans ce volume (1), d'une pluralité de volumes cibles (4; 4') distincts, l'ensemble des volumes cibles définissant la pièce à fabriquer; pour chaque volume cible (4; 4'), maintien de l'application de la pression sur ledit volume (1) et irradiation simultanée du volume cible par au moins deux faisceaux (2) continus et concourants dans le volume cible; libération de la pièce obtenue du reste de matériau non irradié. Le matériau est partiellement transparent auxdits faisceaux; l'énergie déposée dans le volume cible par chaque faisceau est supérieure à Eseuil, la somme des énergies déposées dans le volume cible par chacun des faisceaux est supérieure ou égale à Eseuil de transformation.

Description

PROCEDE DE FABRICATION D'UNE PIECE PAR IRRADIATION LOCALISEE D'UN MATERIAU PAR CONCOURANCE D'AU MOINS DEUX FAISCEAUX
DOMAINE TECHNIQUE
La présente invention se rapporte au domaine de la fabrication de pièces par fusion sélective ou frittage sélectif d'un matériau sous forme de poudre ou par photopolymérisation d'un matériau de type résine sous forme de poudre ou à consistance pâteuse. En particulier, l'invention peut s'appliquer à la fabrication de pièces métalliques, céramiques ou polymères.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
Les techniques de fabrication de pièces par fusion sélective ou frittage sélectif d'une poudre permettent de réaliser facilement des pièces plastiques, métalliques ou céramiques ayant une géométrie complexe.
Ces techniques consistent généralement en des procédés de fusion sélective ou frittage sélectif sur lit de poudre tels que décrits dans le document [1], qui comprennent habituellement une étape durant laquelle est déposée, sur un plateau de fabrication, une première couche de poudre d'un métal, d'un alliage métallique, d'une céramique ou d'un polymère d'épaisseur contrôlée, puis une étape consistant à chauffer avec un moyen de chauffage (par exemple un laser ou un faisceau d'électrons) une zone prédéfinie de la couche de poudre, et de procéder en répétant ces étapes pour chaque couche supplémentaire, jusqu'à l'obtention, tranche par tranche, de la pièce finale.
Ces procédés de fabrication additive sur lit de poudre présentent toutefois des inconvénients.
Tout d'abord, cela nécessite un temps de construction important puisque la construction de la pièce se fait couche par couche.
Par ailleurs, d'autres inconvénients sont liés au type de fabrication additive utilisée. Par exemple, dans le cas de la fabrication additive SLM (pour « Sélective Laser Melting » en anglais), il est parfois nécessaire de mettre en place des moyens pour supporter la poudre, afin d'éviter qu'elle ne s'effondre au cours de la fabrication ; dans le cas de la fabrication additive EBM (pour « Electron Beam Melting » en anglais), on doit gérer le retrait de la poudre d'éventuels espaces internes de la pièce, tels que des canaux internes par exemple.
Le temps de fabrication et les géométries possibles des pièces sont donc conditionnés par la dépose de la poudre couche par couche et par la stratégie de fusion ou de frittage de la poudre et des moyens de support de la poudre mis en place.
Les mêmes problèmes se posent dans le cadre de la stéréolithographie par photopolymérisation, où le dépôt du matériau se fait également couche par couche, le matériau étant sous forme de poudre ou à consistance pâteuse.
Il existe par conséquent un besoin d'optimisation de la fabrication des pièces, qu'elles soient obtenues par fusion sélective ou frittage sélectif d'une poudre ou par photopolymérisation d'un matériau sous forme de poudre ou à consistance pâteuse.
EXPOSÉ DE L'INVENTION
Pour répondre au moins partiellement à ce besoin, l'invention a tout d'abord pour objet un procédé de fabrication d'une pièce par irradiation localisée d'un matériau apte à être fritté, fusionné ou photopolymérisé, ledit procédé comprenant les étapes de :
a) fourniture d'un volume du matériau, dans lequel est destiné à être fabriqué la pièce dans sa totalité et compression dudit volume de matériau par application d'une pression sur ledit volume de matériau ;
b) définition, dans le volume de matériau, d'une pluralité de volumes cibles distincts, l'ensemble des volumes cibles définissant la pièce à fabriquer ;
c) pour chaque volume cible, maintien de la pression appliquée sur le volume de matériau à l'étape a) et irradiation simultanée du volume cible par au moins deux faisceaux qui sont concourants dans le volume cible et qui sont continus, moyennant quoi on obtient la pièce ;
dans lequel le matériau est partiellement transparent auxdits au moins deux faisceaux ; dans lequel l'énergie déposée dans le volume cible par chaque faisceau est inférieure à une énergie seuil, et la somme des énergies déposées dans le volume cible par chacun des faisceaux est supérieure ou égale à une énergie seuil de transformation ;
et dans lequel :
- lorsque le matériau est frittable et éventuellement fusionnable, l'énergie seuil est inférieure à une énergie de frittage du matériau et l'énergie seuil de transformation correspond à l'énergie de frittage du matériau, lorsqu'on souhaite obtenir un frittage sélectif dans le volume cible irradié, ou à l'énergie de fusion du matériau, lorsqu'on souhaite obtenir une fusion sélective dans le volume cible irradié ;
- lorsque le matériau est photopolymérisable, l'énergie seuil est inférieure à une énergie de photopolymérisation du matériau et l'énergie seuil de transformation correspond à l'énergie de photopolymérisation du matériau, lorsqu'on souhaite obtenir une photopolymérisation dans le volume cible irradié ;
d) libération de la pièce du reste de matériau non irradié.
Contrairement à l'art antérieur, où on dépose couche par couche le matériau sous forme de poudre ou à consistance pâteuse pour une fabrication tranche par tranche de la pièce, le volume de matériau dans lequel on réalise la pièce et qui est fourni à l'étape a), est déposé en une seule fois et on réalise ensuite une fusion, un frittage ou une photopolymérisation localement dans différents volumes cibles au sein de ce volume de matériau.
Selon une première variante, l'étape b) définissant plusieurs volumes cibles, les volumes cibles sont irradiés simultanément à l'étape c).
Selon une seconde variante, l'étape b) définissant plusieurs volumes cibles, les volumes cibles sont irradiés successivement à l'étape c).
Dans le cadre de la présente invention, on entend par « faisceau » un faisceau énergétique à rayonnement électromagnétique, comme par exemple un faisceau laser, ou un faisceau de particules, comme par exemple un faisceau d'électrons.
De préférence, les au moins deux faisceaux sont focalisés dans le volume cible. De cette façon, on s'assure de fusionner ou de fritter ou de photopolymériser le matériau localement à l'endroit souhaité. Avantageusement, les au moins deux faisceaux sont concourants en leur point de focalisation. Cela permet d'avoir une fusion, un frittage ou une photopolymérisation à l'endroit précis souhaité et aucun risque de fusion, de frittage ou de photopolymérisation en dehors du point de focalisation concourant des faisceaux.
Selon un mode de réalisation préféré de l'invention, les au moins deux faisceaux présentent la même énergie surfacique. Cela permet d'avoir des sources de faisceaux équivalents et cohérents. Cela permet également d'éviter que l'apport d'énergie d'un des deux faisceaux ne conduise à une fusion, à un frittage ou à une photopolymérisation, sans l'apport d'énergie du second faisceau.
Selon un autre mode de réalisation préféré de l'invention, les au moins deux faisceaux sont au nombre de trois. Cela permet de s'assurer une précision maximale sur la localisation de la zone de fusion, de frittage ou de polymérisation, au même titre qu'est utilisé la triangulation pour les services de type GPS.
La compression peut par exemple être un pressage isostatique, c'est-à- dire une mise sous presse (avec une pression donnée qui ne varie pas et qui est identique dans toutes les directions) du volume de matériau.
Selon une première variante, le volume de poudre fourni à l'étape a) est sous forme de poudre. Le matériau sous forme de poudre peut être frittable, fusionnable ou photopolymérisable. Pour le matériau photopolymérisablen il peut par exemple s'agir d'une résine sous forme de poudre.
De préférence, à l'étape a), le matériau du volume de poudre se présente sous la forme d'un ensemble de particules empilées, divisé fictivement en un volume intérieur et un volume périphérique, qui entoure le volume intérieur, et à l'étape b), au moins un volume cible de la pluralité de volumes cibles est défini dans le volume intérieur. L'épaisseur du volume périphérique peut par exemple correspondre à l'épaisseur d'une couche de poudre déposée dans le cadre d'une fabrication additive par dépôt de poudre couche par couche. De préférence, la poudre présente une granulométrie moyenne comprise entre 5 et 65 pm. On précise que, dans le présent exposé, l'expression « compris entre ... et ... » doit être entendu comme incluant les bornes.
Selon une seconde variante, le volume de poudre fourni à l'étape a) est une résine à consistance pâteuse, qui est photopolymérisable. Dans le cadre de la présente invention, on considère qu'une résine a une consistance pâteuse lorsqu'elle a une viscosité comprise entre 150 et 500 Pa.s à 30°C (la viscosité étant par exemple mesurée à l'aide d'un viscosimètre de type Brookfield).
De préférence, les au moins deux faisceaux sont des faisceaux énergétiques de même nature et sont choisis parmi les faisceaux laser, les faisceaux micro-ondes, les faisceaux UV et les faisceaux IR. Dans le cas d'un matériau photopolymérisable (sous forme de poudre ou à consistance pâteuse), on choisira des faisceaux UV.
BRÈVE DESCRIPTION DES DESSINS L'invention sera mieux comprise et d'autres détails, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante faite à titre d'exemple non limitatif en référence aux dessins annexés dans lesquels les figures la-lc illustrent des étapes du procédé de fabrication selon l'invention.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS Selon l'invention, on utilise au moins deux faisceaux, de préférence trois faisceaux pour irradier simultanément et ainsi chauffer localement une portion d'un volume de matériau, cette portion étant appelée « volume cible ». Les faisceaux sont disposés concourants dans le volume cible et sont continus. Chaque volume cible de matériau est destiné à former, une fois à l'état fritté, fusionné ou photopolymérisé, une partie de la pièce à réaliser. En chauffant simultanément ou successivement plusieurs volumes cibles de matériau, on arrive donc à réaliser la pièce dans un même volume de matériau, sans avoir à réaliser un dépôt couche par couche du matériau, comme dans l'art antérieur. En évitant ce dépôt couche par couche du matériau, le procédé selon l'invention permet donc un gain de temps au cours de la fabrication d'une pièce. Il permet également la fabrication de pièces de toutes formes, la complexité de la forme de la pièce étant seulement limitée par la possibilité ou non de supprimer le matériau non irradié bloqué dans des canaux internes.
Le matériau peut être sous forme de poudre et la poudre de matériau peut être métallique, céramique ou polymère. La poudre métallique peut être un métal ou un alliage. La poudre peut être sous forme d'une résine photopolymérisable. Le matériau peut également être sous forme d'une résine à consistance pâteuse et photopolymérisable.
Le choix du type de faisceau à utiliser est effectué en fonction de l'énergie qu'il faut déposer dans le volume cible afin que le matériau fusionne, se fritte ou photopolymérise. Cela dépend donc du matériau, mais aussi du résultat que l'on souhaite obtenir, à savoir un frittage, une fusion ou une photopolymérisation. Si le matériau est sous forme de poudre et que l'on souhaite obtenir un frittage des particules, la somme des énergies déposées par chacun des faisceaux dans le volume cible, lorsqu'ils irradient simultanément ce volume cible en y étant concourants, doit être supérieure ou égale à une énergie seuil nécessaire au frittage. Si le matériau est sous forme de poudre et que l'on souhaite obtenir une fusion des particules, la sommes de ces énergies dans le volume cible devra être supérieure ou égale à une énergie seuil nécessaire à la fusion.
Il faut également que la matériau soit partiellement transparent aux faisceaux choisis afin que les faisceaux puissent atteindre le volume cible souhaité au sein du volume de matériau. On considère qu'un matériau est partiellement transparent à un faisceau dès lors qu'il absorbe jusqu'à 60% du faisceau (la valeur 0% étant exclue).
De préférence, on choisira des faisceaux énergétiques de même nature.
A titre d'exemple, on peut utiliser des faisceaux de micro-ondes pour la fusion d'une poudre métallique en un alliage à base de nickel (par exemple de type Inconel™ 718) ou en un alliage de titane (par exemple TA6V), de manière à obtenir une puissance totale comprise entre 200 et 400 W et/ou une énergie linéique comprise entre 0,01 J/mm et 1 J/mm. Par exemple, pour obtenir une puissance de 200 W, on peut utiliser deux faisceaux de 100 W. On peut ainsi réaliser des aubes de compresseur, par exemple. Pour fusionner une poudre d'un polymère thermodurcissable, par exemple une poudre d'une résine époxyde, servant à la fabrication de panneaux acoustiques ou de pièces d'habillage moteur (éléments d'amortissement par exemple), on peut utiliser des faisceaux UV avec une puissance comprise entre 60 et 100 W et/ou une énergie surfacique comprise entre 0,001 et 0,05 J/mm2, ou des faisceaux laser avec une puissance comprise entre 20 et 40 W et/ou une énergie surfacique comprise entre 0,005 et 0,025 J/mm2.
Il est préférable qu'il y ait le moins d'espace possible entre les particules de poudre utilisée, de manière à éviter tout problème de déformations à l'intérieur de la pièce (effondrement dû à un manque matière) ou tout problème de manque de matière (porosités liées au fait qu'il y ait trop d'espace entre les grains de poudre avant la fusion et donc un retrait de matière après fusion). C'est la raison pour laquelle on préfère utiliser une poudre ayant une granulométrie comprise entre 5 pm et 65 pm. La poudre peut être tamisée pour obtenir la granulométrie souhaitée.
Il est également préférable que la poudre soit compactée avant de commencer le chauffage localisé de la poudre (par irradiation simultanée à l'aide d'au moins deux faisceaux d'un volume cible), afin d'éviter que la pièce en formation ne s'affaisse dans la poudre, du fait d'une densité plus importante et d'un retrait lors de la fusion qui peut être compris entre 1% et 10%. Il est en de même lorsque le matériau est sous forme d'une résine à consistance pâteuse.
Pour cela, la compression à l'étape a) peut être une étape de presse du matériau (sous forme de poudre ou à consistance pâteuse). On peut par exemple verser le matériau dans une matrice de compression et réaliser un pressage uniaxial en appliquant une pression sur la surface supérieure du volume de matériau. En variante, on peut également appliquer un pressage multiaxial (par exemple, six plaques autour d'un volume cubique, avec une pression égale sur chacune des six plaques). On obtient alors un compact de poudre ou de matériau à consistance pâteuse.
De préférence, on appliquera une pression mécanique constante sur le volume de matériau au cours de l'étape c) d'irradiation des volumes cibles conduisant au chauffage localisé ou à la photopolymérisation du volume de matériau. On peut par exemple envisager de verser le volume de matériau dans un récipient configuré avec des parois mobiles aptes à être déplacées afin d'appliquer une pression sur le volume de matériau tout au long du procédé de fabrication. Bien entendu, les parois mobiles sont au moins partiellement transparentes aux faisceaux.
Selon un mode de réalisation préféré de l'invention illustré dans les figures la à le, on utilise trois faisceaux de même nature pour fusionner, fritter ou photopolymériser localement une poudre préalablement tamisée et compactée. Le matériau aurait également pu être une résine à consistance pâteuse, éventuellement préalablement compactée. En utilisant trois faisceaux, on a une précision idéale sur la zone où l'on souhaite fusionner, fritter ou photopolymériser la poudre, puisque comme dans le cas d'une triangulation satellite, on peut décrire un point précis de l'espace à partir de trois droites. Dans la figure la, la poudre 1 tamisée et compactée est représentée sous la forme d'un cube, et les origines des trois faisceaux 2 sont représentées par trois ronds B. Dans la figure la, nous avons également représenté le volume de poudre intérieur 1 qui est entouré par un volume de poudre périphérique lp. Dans la figure lb, les trois faisceaux sont dirigés simultanément vers un volume cible 4 de manière à ce qu'ils soient concourants dans ce volume cible 4. Le volume cible 4 est ici représenté comme situé à l'intérieur du cube de poudre tamisée et compactée, c'est-à- dire situé dans le volume intérieur 1,. La poudre contenue dans le volume cible 4, une fois fusionnée (ou frittée ou photopolymérisé), et refroidie, donne un volume de poudre fusionnée (ou frittée ou photopolymérisée) 5 (figure le) ; on choisit ensuite un autre volume cible 4', on dirige les faisceaux dans ce volume cible 4' et ainsi de suite jusqu'à obtenir la pièce complète.
En résumé, les trois faisceaux sont dirigés simultanément vers la poudre de manière à être concourants et concentrés en un même point, et plus précisément en un même volume cible de la poudre. Si l'on dispose de trois sources, elles sont bien évidemment disposées à distances suffisantes les unes des autres afin de pouvoir s'assurer de traiter avec précision la zone voulue. Ces trois faisceaux sont ensuite déplacés pour être concentrés en un autre volume cible de la poudre et ainsi de suite jusqu'à la réalisation complète de la pièce. De préférence, les volumes cibles traités sont adjacents.
Selon une variante préférée de l'invention, chacun des trois faisceaux est configuré pour que l'énergie déposée dans le volume cible soit égal à 1/3 de l'énergie nécessaire pour fusionner les particules du volume cible correspondant. Ainsi, la fusion des particules n'aura lieu qu'en cas de concentration simultanée des trois faisceaux dans le volume cible, évitant ainsi toute fusion (ou frittage) non souhaitée en cas de mauvais placement des faisceaux. Ainsi, la fusion peut se faire dans le volume de poudre au niveau de la zone spécifique souhaitée, sans nécessiter une dépose d'une nouvelle couche pour fusionner une autre tranche de la pièce à réaliser, puisque les faisceaux utilisés sont choisis en fonction de la poudre afin que la poudre soit partiellement transparente aux faisceaux (et puissent donc atteindre un volume cible situé à l'intérieur du volume de poudre (dans le volume intérieur li)), d'une part, et sans risquer de fusionner la poudre en dehors du volume cible (par exemple plus en profondeur dans le volume de poudre), car la fusion n'a lieu que dans le volume cible où les faisceaux sont simultanément concourants.
Les explications données ci-dessus sont également valables dans le cas d'un matériau de type résine à consistance pâteuse.
Le procédé selon l'invention a par exemple été utilisé pour réaliser une pièce à partir d'un compact de résine polymère (obtenu en compressant un volume de 50 litres d'une résine polymère thermodurcissable sous forme pâteuse ou sous forme de poudre en exerçant sur ce volume une pression de 15 MPa pendant une durée de 30 minutes) en dirigeant sur ce compact trois faisceaux UV ayant chacun une puissance de 30 W (soit une puissance totale de 90 W) et un diamètre de faisceau de 100 pm au point de convergence avec une vitesse de 2 mm/s.
Le procédé selon l'invention a également été utilisé pour réaliser une pièce à partir d'un compact de poudre d'Inconel™ 718, obtenu en compressant un volume de 100 litres de poudre d'Inconel™ 718 ayant des particules avec une granulométrie inférieure à 65 pm en exerçant une pression de 15 MPa pendant une durée de 2 h, en dirigeant sur ce compact une puissance de 300 W, à l'aide de trois faisceaux micro-ondes ayant chacun une puissance de 100 W et un diamètre de faisceau de 100 pm au point de convergence avec une vitesse de 1000 mm/s.
REFERENCE
[1] FR B 030 323 Al

Claims

Revendications
1. Procédé de fabrication d'une pièce par irradiation localisée d'un matériau apte à être fritté, fusionné ou photopolymérisé, ledit procédé comprenant les étapes de :
a) fourniture d'un volume (1) du matériau, dans lequel est destiné à être fabriqué la pièce dans sa totalité et compression dudit volume de matériau par application d'une pression sur ledit volume de matériau ;
b) définition, dans le volume de matériau, d'une pluralité de volumes cibles (4 ; 4') distincts, l'ensemble des volumes cibles définissant la pièce à fabriquer ;
c) pour chaque volume cible (4 ; 4'), maintien de la pression appliquée sur le volume (1) de matériau à l'étape a) et irradiation simultanée du volume cible par au moins deux faisceaux (2) qui sont concourants dans le volume cible et qui sont continus, moyennant quoi on obtient la pièce ;
dans lequel le matériau est partiellement transparent auxdits au moins deux faisceaux ;
dans lequel l'énergie déposée dans le volume cible par chaque faisceau est inférieure à une énergie seuil, et la somme des énergies déposées dans le volume cible par chacun des faisceaux est supérieure ou égale à une énergie seuil de transformation ;
et dans lequel :
- lorsque le matériau est frittable et éventuellement fusionnable, l'énergie seuil est inférieure à une énergie de frittage du matériau et l'énergie seuil de transformation correspond à l'énergie de frittage du matériau, lorsqu'on souhaite obtenir un frittage sélectif dans le volume cible irradié, ou à l'énergie de fusion du matériau, lorsqu'on souhaite obtenir une fusion sélective dans le volume cible irradié ;
- lorsque le matériau est photopolymérisable, l'énergie seuil est inférieure à une énergie de photopolymérisation du matériau et l'énergie seuil de transformation correspond à l'énergie de photopolymérisation du matériau, lorsqu'on souhaite obtenir une photopolymérisation dans le volume cible irradié ; d) libération de la pièce du reste de matériau non irradié.
2. Procédé selon la revendication 1, dans lequel l'étape b) définissant plusieurs volumes cibles, les volumes cibles sont irradiés simultanément à l'étape c).
3. Procédé selon la revendication 1, dans lequel l'étape b) définissant plusieurs volumes cibles, les volumes cibles sont irradiés successivement à l'étape c).
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel les au moins deux faisceaux sont focalisés dans le volume cible.
5. Procédé selon la revendication 4, dans lequel les au moins deux faisceaux sont concourants en leur point de focalisation.
6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel les au moins deux faisceaux présentent la même énergie surfacique.
7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel les au moins deux faisceaux sont au nombre de trois.
8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel le volume de matériau fourni à l'étape a) est sous forme de poudre.
9. Procédé selon la revendication 8, dans lequel la poudre présente une granulométrie moyenne comprise entre 5 et 65 pm.
10. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel le volume de matériau fourni à l'étame a) est une résine à consistance pâteuse, qui est photopolymérisable.
11. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel les au moins deux faisceaux sont des faisceaux énergétiques de même nature et sont choisis parmi les faisceaux laser, les faisceaux micro-ondes, les faisceaux UV et les faisceaux IR.
PCT/EP2020/059578 2019-04-16 2020-04-03 Procede de fabrication d'une piece par irradiation localisee d'un materiau par concourance d'au moins deux faisceaux WO2020212171A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080029295.9A CN113727793A (zh) 2019-04-16 2020-04-03 通过用至少两束会聚束局部照射材料来制造零件的方法
US17/603,638 US20220194005A1 (en) 2019-04-16 2020-04-03 Process for manufacturing a part by local irradiation of a material by at least two converging beams
EP20714658.0A EP3938131A1 (fr) 2019-04-16 2020-04-03 Procede de fabrication d'une piece par irradiation localisee d'un materiau par concourance d'au moins deux faisceaux

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1904035 2019-04-16
FR1904035A FR3095143B1 (fr) 2019-04-16 2019-04-16 Procédé de fabrication d’une pièce par irradiation localisée d’un matériau par concourance d’au moins deux faisceaux

Publications (1)

Publication Number Publication Date
WO2020212171A1 true WO2020212171A1 (fr) 2020-10-22

Family

ID=67999774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/059578 WO2020212171A1 (fr) 2019-04-16 2020-04-03 Procede de fabrication d'une piece par irradiation localisee d'un materiau par concourance d'au moins deux faisceaux

Country Status (5)

Country Link
US (1) US20220194005A1 (fr)
EP (1) EP3938131A1 (fr)
CN (1) CN113727793A (fr)
FR (1) FR3095143B1 (fr)
WO (1) WO2020212171A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013114003A1 (de) * 2013-12-13 2015-06-18 Bundesanstalt für Materialforschung und -Prüfung (BAM) Verfahren zur Sinterherstellung eines dreidimensionalen strukturierten Objektes und Sintervorrichtung hierzu
US20160067922A1 (en) * 2014-09-09 2016-03-10 Disney Enterprises, Inc. Three dimensional (3d) printing by volumetric addition through selective curing of a fluid matrix
FR3030323A1 (fr) 2014-12-23 2016-06-24 Snecma Plateau de fabrication pour la fabrication de pieces par fusion selective ou frittage selectif sur lit de poudre, outillage et procede de fabrication mettant en oeuvre un tel plateau
US20180015672A1 (en) * 2016-07-15 2018-01-18 Lawrence Livermore National Security, Llc Multi-beam resin curing system and method for whole-volume additive manufacturing
US20180250890A1 (en) * 2017-03-01 2018-09-06 Siemens Energy, Inc. Systems and methods of volumetric 3d printing
US20190016052A1 (en) * 2017-07-11 2019-01-17 Daniel S. Clark 5d part growing machine with volumetric display technology

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041476A (en) * 1971-07-23 1977-08-09 Wyn Kelly Swainson Method, medium and apparatus for producing three-dimensional figure product
WO1990003893A1 (fr) * 1988-10-05 1990-04-19 Michael Feygin Procede et appareil ameliore de formation d'un objet integral a partir de laminages
US6766691B2 (en) * 2002-01-08 2004-07-27 California Institute Of Technology Method and apparatus for optical acoustic molding
TWI686290B (zh) * 2014-03-31 2020-03-01 光引研創股份有限公司 三維物件形成裝置與方法
US9908288B2 (en) * 2014-07-29 2018-03-06 The Boeing Company Free-form spatial 3-D printing using part levitation
US20160318129A1 (en) * 2015-05-01 2016-11-03 General Electric Company System and method for multi-laser additive manufacturing
TWI674964B (zh) * 2015-10-22 2019-10-21 揚明光學股份有限公司 立體列印裝置及立體列印方法
US10583529B2 (en) * 2015-12-17 2020-03-10 Eos Of North America, Inc. Additive manufacturing method using a plurality of synchronized laser beams
WO2018145194A1 (fr) * 2017-02-07 2018-08-16 Valorbec Société en Commandite Procédés et systèmes de fabrication additive

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013114003A1 (de) * 2013-12-13 2015-06-18 Bundesanstalt für Materialforschung und -Prüfung (BAM) Verfahren zur Sinterherstellung eines dreidimensionalen strukturierten Objektes und Sintervorrichtung hierzu
US20160067922A1 (en) * 2014-09-09 2016-03-10 Disney Enterprises, Inc. Three dimensional (3d) printing by volumetric addition through selective curing of a fluid matrix
FR3030323A1 (fr) 2014-12-23 2016-06-24 Snecma Plateau de fabrication pour la fabrication de pieces par fusion selective ou frittage selectif sur lit de poudre, outillage et procede de fabrication mettant en oeuvre un tel plateau
US20180015672A1 (en) * 2016-07-15 2018-01-18 Lawrence Livermore National Security, Llc Multi-beam resin curing system and method for whole-volume additive manufacturing
US20180250890A1 (en) * 2017-03-01 2018-09-06 Siemens Energy, Inc. Systems and methods of volumetric 3d printing
US20190016052A1 (en) * 2017-07-11 2019-01-17 Daniel S. Clark 5d part growing machine with volumetric display technology

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BRETT E. KELLY ET AL: "Volumetric additive manufacturing via tomographic reconstruction", SCIENCE, 31 January 2019 (2019-01-31), XP055550929, ISSN: 0036-8075, DOI: 10.1126/science.aau7114 *

Also Published As

Publication number Publication date
US20220194005A1 (en) 2022-06-23
EP3938131A1 (fr) 2022-01-19
FR3095143B1 (fr) 2021-12-17
CN113727793A (zh) 2021-11-30
FR3095143A1 (fr) 2020-10-23

Similar Documents

Publication Publication Date Title
WO2013092997A1 (fr) Procede et appareil pour realiser des objets tridimensionnels
EP2925470B1 (fr) Procédé de fabrication additive d'une pièce par fusion sélective ou frittage sélectif de lits de poudre à compacité optimisée par faisceau de haute énergie
EP2819797B1 (fr) Procede pour realiser des objets tridimensionnels a proprietes ameliorees
EP2699369B1 (fr) Procédé de fabrication d'un objet par solidification d'une poudre à l'aide d'un laser
US9902113B2 (en) Method for manufacturing three-dimensional shaped object and three-dimensional shaped object
EP2156942B1 (fr) Procédé de réalisation d'une pièce par fusion ou frittage sélectif par laser de poudres de matériaux différents
EP3860785B1 (fr) Procédé de fabrication de pièce de forme complexe par frittage sous pression à partir d'une préforme
WO2014083292A1 (fr) Procédé de fusion de poudre avec chauffage de la zone adjacente au bain
EP2156941A1 (fr) Procédé de production d'un filtre, en particulier pour un séparateur rotatif
WO2013092994A1 (fr) Procede et appareil pour realiser des objets tridimensionnels
CN108472728B (zh) 一种由堆叠粉末层制造三维物体的方法及三维物体
EP3860783B1 (fr) Procede de realisation de contre-forme et procede de fabrication de piece de forme complexe utilisant une telle contre-forme
JP2006257463A (ja) レーザ焼結処理用の粉状材料及びその製造方法、並びに、3次元構造物及びその製造方法
WO2020212171A1 (fr) Procede de fabrication d'une piece par irradiation localisee d'un materiau par concourance d'au moins deux faisceaux
EP3511093A1 (fr) Procédé d'élimination d'un matériau en excès à partir d'une cavité, procédé de fabrication additive et pièce
US8292982B2 (en) Process for producing a filter, in particular for a rotary separator
FR2786928A1 (fr) Dispositif de focalisation comprenant une lentille de type de luneberg comprenant un volume homogene de materiau dielectrique et procede de fabrication d'une telle lentille
EP2909153B1 (fr) Pièce en matériau céramique avec une base et un voile
FR3055230A3 (fr) Procede de fabrication additive d'une piece metallique ou ceramique
FR3026034A1 (fr) Procede de fabrication d'une piece creuse par fusion selective de poudre

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20714658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020714658

Country of ref document: EP

Effective date: 20211011