WO2020211796A1 - 一种车灯用远/近光灯结构、远近光一体照明装置 - Google Patents

一种车灯用远/近光灯结构、远近光一体照明装置 Download PDF

Info

Publication number
WO2020211796A1
WO2020211796A1 PCT/CN2020/085017 CN2020085017W WO2020211796A1 WO 2020211796 A1 WO2020211796 A1 WO 2020211796A1 CN 2020085017 W CN2020085017 W CN 2020085017W WO 2020211796 A1 WO2020211796 A1 WO 2020211796A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical path
light
low
domain
transmission
Prior art date
Application number
PCT/CN2020/085017
Other languages
English (en)
French (fr)
Inventor
祝贺
仇智平
Original Assignee
华域视觉科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华域视觉科技(上海)有限公司 filed Critical 华域视觉科技(上海)有限公司
Publication of WO2020211796A1 publication Critical patent/WO2020211796A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/322Optical layout thereof the reflector using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • F21W2102/135Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2107/00Use or application of lighting devices on or in particular types of vehicles
    • F21W2107/10Use or application of lighting devices on or in particular types of vehicles for land vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention belongs to the field of automobile lighting, and particularly relates to a far/low beam lamp structure for a vehicle lamp and a far and near beam integrated lighting device.
  • LED light sources in car lights has become a trend.
  • the existing LED light source car lamp modules are mostly composed of reflectors with shading plates and lenses, which not only have low light efficiency utilization, but also have many assembly processes and complicated assembly. Accumulative errors will occur in the process, and the numerous establishment of parts puts great demands on the assembly space, which is a huge challenge for the increasingly tight design space of car lights.
  • the invention application with the application number 201710098243.7 discloses "a lighting module and device with reduced size for a motor vehicle", a module for a motor vehicle for emitting at least one light beam along an optical axis, the device It includes at least one first light source and at least one second light source, at least one first optical collector and at least one second optical collector, the at least one first optical collector and at least one second optical collector are designed separately To collect the light emitted by the at least one first light source and the at least one second light source, and to turn the collected light to be along the converging direction; wherein the at least one first light source and the at least one second light source At least one of them is oriented to emit light in an overall emission direction moving away from the optical axis, and the collector associated with the directional light source at least partially has an asymmetric configuration that extends the collector along the optical axis.
  • the invention application with application number 201810104077.1 discloses "a beam lighting module for motor vehicle headlights", the lighting module includes: a first light source and a first collimator, the first light source and the first collimator The straightener is used to cooperate with the first projection lens to produce a "low beam” type first light beam; and a second light source and a third light source, the second light source cooperates with a second collimator to generate a supplementary light beam The first supplementary beam to form a second beam of the "high beam” type.
  • the third light source cooperates with a third collimator and/or a second projection lens to form a second supplementary light beam at least partially overlapping the cut-off area .
  • the present invention provides a far/low beam structure for vehicle lights and an integrated far and near beam lighting device.
  • the specific technical solutions are as follows:
  • a far/low beam structure for vehicle lights is used to realize the far/low beam illumination of headlights, and is characterized in that it includes:
  • Light source end (1), optical transmission end (2) and emission end (3) are Light source end (1), optical transmission end (2) and emission end (3),
  • the light source end and the optical path transmission end are assembled integrally by a heat sink;
  • the transmission end of the optical path is used to receive the light from the light source end, and complete the light type that can be received and deflected by the emitting end at a time to form a light type that meets the requirements of laws and regulations for road surface illumination.
  • a high/low beam structure for vehicle lamps is characterized in that:
  • the light source end is arranged as an LED light source group with adjustable illuminance.
  • a high/low beam structure for vehicle lamps is characterized in that:
  • a first optical path transmission domain (4); a second optical path transmission domain (5) and a light exit domain (6) are formed at the optical path transmission end (2);
  • the first optical path transmission domain (4) is used to receive the light emitted by the light source and form reflection and/or refraction
  • the light reflected and/or reflected by the first optical path transmission domain (4) reaches the second optical path transmission domain (5),
  • the light transmitted through the second optical path transmission domain (5) to complete the optical path reaches the light exit domain (6);
  • the light reaching the light exit area (6) completes the formation of the light and dark cut-off light type in the light exit area (6), and then exits through the light exit area (6), is received and deflected through the exit end (3), and forms road surface illumination compliance.
  • the required light type is
  • a high/low beam structure for vehicle lamps is characterized in that:
  • an optical path change structure corresponding to the requirements of high beam regulations is formed in the second optical path transmission domain (5);
  • the second optical path transmission domain (5) When used for low beam illumination, the second optical path transmission domain (5) is formed with a light path changing structure corresponding to the measuring point and the measuring area of the low beam law.
  • a high/low beam structure for vehicle lamps is characterized in that:
  • the light entering the second optical path transmission domain (5) is transmitted in three ways,
  • the first path directly passes through the second optical path transmission domain to reach the light exit domain (6);
  • the second path changes the structure through the corresponding optical path in the second optical path transmission domain to form a refractive light divergence, and the light after the divergence changes the illuminance compared to the light before the refractive divergence;
  • the third path passes through the second optical path transmission domain (5) in the area where the bottom surface is located to form total reflection.
  • a high/low beam structure for vehicle lamps is characterized in that:
  • the light entering the second optical path transmission domain (5) is transmitted in two ways,
  • the first path directly passes through the second optical path transmission domain (5) to reach the light exit domain (6);
  • the second path passes through the second optical path transmission domain (5) where the bottom surface is located to form total reflection.
  • a high/low beam structure for vehicle lamps is characterized in that:
  • the light path changing structure formed in the second light path transmission domain (5) includes: light path changing settings corresponding to zone III and 50L one-to-one.
  • a high/low beam structure for vehicle lamps is characterized in that:
  • the light path change setting corresponding to zone III is specifically: a wedge-shaped window is opened at the corresponding position of the bottom surface of the second optical path transmission domain (5), and the light reaching the position in the bottom surface is emitted through the wedge-shaped window.
  • a high/low beam structure for vehicle lamps is characterized in that:
  • the light path change setting corresponding to zone III is specifically: a wedge-shaped window is opened in the corresponding position of the upper table of the second optical path transmission domain (5), and the light reaching the position in the upper table is emitted through the wedge-shaped window.
  • a far and near beam integrated illuminating device is used to realize the illumination of a far and near beam lamp, and is characterized in that it includes:
  • the first light source end, the low beam optical path transmission end, and the light exit end constitute a low beam illumination path
  • the second light source end, the transmission end of the high beam optical path, and the light emission end constitute a high beam illumination path
  • the first light source end and the low beam optical path transmission end are assembled integrally by a heat sink to form a low beam type forming structure
  • the second light source end and the high beam optical path transmission end are assembled integrally by a heat sink to form a high beam type forming structure
  • a light type that can be received and deflected by the light exit end to form a light pattern that meets the requirements of laws and regulations for road illumination is completed at one time;
  • a light pattern that can be received and deflected by the light emitting end to form a road surface illuminating the light type that meets the requirements of the law is completed at one time.
  • the optical axis is perpendicular to the
  • the focal plane of the exit end passes through the axis of the focal point of the exit end; as shown in Figure 7, the upper part is the exit domain surface of the low-beam optical path transmission end, and the lower part is the exit domain surface of the high-beam optical path transmission end.
  • the two touch at the cut-off line Or have a distance/gap ⁇ 2mm.
  • the “a gap that gradually decreases from the rear end to the front end between the transmission end of the low beam optical path and the transmission end of the far beam optical path, and converges on the optical axis at the front end” is:
  • It is formed by deflecting the optical axis by 5°-30° at the transmission end of the low-beam optical path and the transmission end of the high-beam optical path, and the other is arranged parallel to the optical axis;
  • a first low-beam optical path transmission domain, a second low-beam optical path transmission domain, and a low-beam light exit domain are formed at the low-beam optical path transmission end;
  • a first high beam optical path transmission domain, a second high beam optical path transmission domain, and a high beam light exit domain are formed at the transmission end of the high beam optical path;
  • the low-beam optical path transmission end When the low-beam optical path transmission end is separately completed for the light emitting end to receive and deflect to form a light type that meets the requirements of the road surface illumination, it is formed in the second low-beam optical path transmission domain and the second far-beam optical path transmission domain.
  • the second low-beam optical path transmission domain passes through the second high-beam optical path
  • the transmission domain is characterized, and the low-beam light output domain is characterized by the high-beam light output domain.
  • a first low-beam optical path transmission domain, a second low-beam optical path transmission domain, and a low-beam light exit domain are formed at the low-beam optical path transmission end;
  • a first high beam optical path transmission domain, a second high beam optical path transmission domain, and a high beam optical path exit domain are formed at the transmission end of the high beam optical path;
  • the second high beam optical path transmission domain is characterized by a second low beam optical path transmission domain
  • the high beam light exit area is characterized by the low beam light exit area.
  • the light entering the second low-beam optical path transmission domain is transmitted in three ways,
  • the first path directly passes through the second near-beam transmission domain to reach the low-beam light exit domain;
  • the second path changes the structure through the corresponding optical path in the second near-optical path transmission domain to form a refraction light divergence, and the light after the divergence changes the illuminance compared to the light before the refraction divergence;
  • the third path passes through the second near-optical path transmission domain where the bottom surface is located to form total reflection.
  • the transmission end of the low-beam optical path and the transmission end of the high-beam optical path are both arranged in a condenser structure.
  • the transmission end of the low beam optical path is arranged in a reflector structure
  • the transmission end of the high beam optical path is arranged in a condenser structure.
  • the invention has a far/low beam structure for vehicle lights, and a far and near beam integrated lighting device,
  • the one-time molding of the light type required by the process is realized, which eliminates the need for shading plate settings, increases the utilization rate of light efficiency, saves space and reduces the cumulative error between multiple assembly of parts ;
  • the light source end is integrated with the light path transmission end through the radiator, intensive assembly space;
  • the low-beam light exit end forming the cut-off light type and the high-beam light exit end used to form the light-dark cut-off light type are spatially overlapped, so as to provide the driver with seamless visual switching when switching between far and near light Transition with peace; avoid unevenness and dark areas at the junction of far and near beams after switching from low beam to high beam;
  • a car light with a far/low beam structure and an integrated lighting device with far and near beams can form the actual maximum luminous efficiency utilization rate, which reflects the following two aspects: 1.
  • the optical path transmission end is designed as In theory, it is used to receive light in the entire beam angle range of the light source end to form the largest possible range of light source end light reception in practice; 2.
  • the optical path transmission end that is: the low beam optical path transmission end and the far beam optical path transmission end
  • the optical path transmission domain ie: the second low-beam optical path transmission domain and the second high-beam optical path transmission domain
  • this case provides a far/low beam lamp structure for car lights, focusing on the light efficiency utilization and one-time molding and saving assembly space and assembly process considerations; and this case provides a far and near beam integrated lighting device,
  • the transmission process of the far and near light in this case is set to be parallel to the optical axis and deviated from the optical axis at a certain angle Or both of them deviate from the optical axis by a certain angle, which can produce an effect that can not only prevent the far and near light from interfering with each other, but also form a good coupling effect with the cut-off line; the other is in the second near-beam optical path.
  • the light source end is set to a form with adjustable illuminance, through the adjustment of the light source end, a primary illuminance response adapted to the light type is formed; combined with the setting in this case, it is used to form and emit the target light type at a time.
  • Figure 1 is a schematic diagram of a low-beam road surface in a car lamp
  • Figure 2 is a schematic diagram of a high-beam road surface in a car lamp
  • Fig. 3 is a schematic diagram of the structure relationship of a far/low beam structure for vehicle lamps in the present invention.
  • Figure 4 is a schematic diagram of the structural relationship of a far and near beam integrated lighting device in the present invention.
  • FIG. 5 is a schematic diagram of the light path of the low beam structure in Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of the light path of the high-beam headlight structure of the car in Embodiment 1 of the present invention.
  • FIG. 7 is a schematic diagram of the structural relationship between the low-beam light exit end and the high-beam light exit end of a high-beam integrated lighting device in the present invention.
  • Embodiment 8 is a schematic diagram of the light path of the low beam structure in Embodiment 2 of the present invention.
  • Figure 9 is a cross-sectional view of Figure 8.
  • Embodiment 10 is a schematic diagram of the light path of the high beam structure in Embodiment 2 of the present invention.
  • Figure 11 is a cross-sectional view of Figure 10
  • FIG. 12 is a schematic diagram of the light source end with adjustable illuminance in an embodiment of the present invention.
  • Fig. 13 is a schematic diagram of a plano-convex lens set at the exit end in an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of the emitting end configured as a double convex lens in an embodiment of the present invention.
  • 6- is the light exit domain.
  • a low/high beam for vehicle lights shown in Fig. 3 is used to realize the high/low beam illumination of headlights, including:
  • Light source end (1), optical transmission end (2) and emission end (3) are Light source end (1), optical transmission end (2) and emission end (3),
  • the light source end and the optical path transmission end are assembled integrally by a heat sink;
  • the transmission end of the optical path is used to receive the light from the light source end, and complete the light type that can be received and deflected by the emitting end at a time to form a light type that meets the requirements of laws and regulations for road surface illumination.
  • the light source end is arranged as an LED light source group with adjustable illuminance.
  • a first optical path transmission domain (4); a second optical path transmission domain (5) and a light exit domain (6) are formed at the optical path transmission end (2);
  • the first optical path transmission domain (4) is used to receive the light emitted by the light source and form reflection and/or refraction
  • the light reflected and/or refracted by the first optical path transmission domain (4) reaches the second optical path transmission domain (5),
  • the light transmitted through the second optical path transmission domain (5) to complete the optical path reaches the light exit domain (6);
  • the light reaching the light exit area (6) completes the formation of the light and dark cut-off light type in the light exit area (6), and then exits through the light exit area (6), is received and deflected through the exit end (3), and forms road surface illumination compliance.
  • the required light type is
  • an optical path change structure corresponding to the requirements of high beam regulations is formed in the second optical path transmission domain (5);
  • the second optical path transmission domain (5) When used for low beam illumination, the second optical path transmission domain (5) is formed with a light path changing structure corresponding to the measuring point and the measuring area of the low beam law.
  • the light entering the second optical path transmission domain (5) is transmitted in three ways,
  • the first path directly passes through the second optical path transmission domain to reach the light exit domain (6);
  • the second path changes the structure through the corresponding optical path in the second optical path transmission domain to form a refractive light divergence, and the light after the divergence changes the illuminance compared to the light before the refractive divergence;
  • the third path passes through the second optical path transmission domain (5) at the bottom surface of the domain to form total reflection; it can be clearly seen in Figure 5;
  • the light entering the second optical path transmission domain (5) directly passes through the corresponding optical path changing structure in the second optical path transmission domain to form an exit.
  • the light entering the second optical path transmission domain (5) is transmitted in two ways,
  • the first path directly passes through the second optical path transmission domain to reach the light exit domain (6);
  • the second path passes through the second optical path transmission domain (5) in the upper surface of the domain to form total reflection; it can be clearly seen in FIG. 6 and FIG. 10.
  • the light path changing structure formed in the second light path transmission domain (5) includes: light path changing settings corresponding to zone III and 50L one-to-one.
  • the light path change setting corresponding to zone III is specifically: a wedge-shaped window is opened at the corresponding position of the bottom surface area of the second optical path transmission domain (5), and the light reaching the position in the bottom surface area exits through the wedge-shaped window.
  • the light path change setting corresponding to zone III is specifically: a wedge-shaped window is opened in the corresponding position of the upper table of the second optical path transmission domain (5), and the light reaching the position in the upper table is emitted through the wedge-shaped window.
  • a far and near beam integrated lighting device is used to illuminate the far and near beam lamps, including:
  • the first light source end, the low beam optical path transmission end, and the light exit end constitute a low beam illumination path
  • the second light source end, the transmission end of the high beam optical path, and the light emission end constitute a high beam illumination path
  • the first light source end and the low beam optical path transmission end are assembled integrally by a heat sink to form a low beam type forming structure
  • the second light source end and the high beam optical path transmission end are assembled integrally by a heat sink to form a high beam type forming structure
  • a light type that can be received and deflected by the light exit end to form a light pattern that meets the requirements of laws and regulations for road illumination is completed at one time;
  • a light pattern that can be received and deflected by the light emitting end to form a road surface illuminating the light type that meets the requirements of the law is completed at one time.
  • the “a gap that gradually decreases from the rear end to the front end between the transmission end of the low beam optical path and the transmission end of the far beam optical path, and converges on the optical axis at the front end” is:
  • a first low-beam optical path transmission domain, a second low-beam optical path transmission domain, and a low-beam light exit domain are formed at the low-beam optical path transmission end;
  • a first high beam optical path transmission domain, a second high beam optical path transmission domain, and a high beam light exit domain are formed at the transmission end of the high beam optical path;
  • the low-beam optical path transmission end When the low-beam optical path transmission end is separately completed for the light emitting end to receive and deflect to form a light type that meets the requirements of the road surface illumination, it is formed in the second low-beam optical path transmission domain and the second far-beam optical path transmission domain.
  • the second low-beam optical path transmission domain passes through the second high-beam optical path
  • the transmission domain is characterized, and the low-beam light output domain is characterized by the high-beam light output domain.
  • a first low-beam optical path transmission domain, a second low-beam optical path transmission domain, and a low-beam light exit domain are formed at the low-beam optical path transmission end;
  • a first high beam optical path transmission domain, a second high beam optical path transmission domain, and a high beam optical path exit domain are formed at the transmission end of the high beam optical path;
  • the second high beam optical path transmission domain is characterized by a second low beam optical path transmission domain
  • the high beam light exit area is characterized by the low beam light exit area.
  • the light entering the second low-beam optical path transmission domain is transmitted in three ways,
  • the first path directly passes through the second near-beam transmission domain to reach the low-beam light exit domain;
  • the second path changes the structure through the corresponding optical path in the second near-optical path transmission domain to form a refraction light divergence, and the light after the divergence changes the illuminance compared to the light before the refraction divergence;
  • the third path passes through the second near-optical path transmission domain where the bottom surface is located to form total reflection.
  • the transmission end of the low-beam optical path and the transmission end of the high-beam optical path are both arranged in a condenser structure.
  • the transmission end of the low beam optical path is arranged in a reflector structure
  • the transmission end of the high beam optical path is arranged in a condenser structure.
  • Figure 1 and Figure 2 show a schematic diagram of a low-beam road and a high-beam road respectively; that is, the light distribution of the low beam and the high beam respectively
  • the low beam structure, the high beam structure, and the module structure based on both in this embodiment are all implemented using a condenser structure, and the details are as follows:
  • a low-beam headlight structure for vehicle lights includes a light source end 1, a light path transmission end 2 and an emission end 3, wherein the light source end is set as an LED light source, and the light path transmission formed by the light source end and the light path transmission end follows similar
  • the optical characteristics of an ellipse (the similar ellipse mentioned here refers to: the shape or structure is not elliptical, but conforms to the characteristic of the ellipse that the light passing through the first focal point converges to the second focal point); the LED light source is arranged on one of the ellipse At the focal point (and on the basis of this setting, an allowable tolerance of 0-2mm radius can be formed to form the actual setting area within the tolerance range);
  • the optical path transmission end is integrated with the light source end through the heat sink, and the optical path The transmission end is formed with a first optical path transmission domain 4, a second optical path transmission domain 5, and a light emission domain 6; a wedge-shaped window is opened at the corresponding position of the bottom
  • the first path directly passes through the second optical path transmission domain to reach the light exit domain 6; the second path is set through the wedge-shaped window in the second optical path transmission domain to form a refraction-type light divergence, thereby revealing a part of the light, reducing This area finally forms the light-type illuminance; the third path passes through the second optical path transmission domain 5 where the bottom surface forms total reflection; wherein, the wedge-shaped window is opened in the light path transmission end of the bottom surface area.
  • the second optical path transmission domain 5 is also provided with concave cavities or protrusions, which are used to change the light path propagating here to form divergent light, thereby reducing the illuminance of the light type deflected by the lens, that is, the exit end 3 there.
  • the light and dark cutoff structure provided in the light emission domain 6 completes the light and dark cutoff light type ( The light shape with cut-off line) is formed (the cut-off structure is set at the other focal point of the condenser similar to the elliptical structure), and then propagates through the exit surface of the light exit domain 6 to the entrance surface of the exit end 3, and then After being deflected by the exit end 3, it is projected to the front via the light exit surface of the exit end 3 to form a low beam type for illumination, as shown in FIG. 5.
  • a high-beam headlight structure for vehicle lights includes a light source end 1, a light path transmission end 2 and an emission end 3, wherein the light source end is set as an LED light source, and the light path transmission formed by the light source end and the light path transmission end follows similar
  • the optical characteristics of an ellipse (the similar ellipse mentioned here refers to: the shape or structure is not elliptical, but conforms to the characteristic of the ellipse that the light passing through the first focal point converges to the second focal point); the LED light source is arranged on one of the ellipse
  • the focal point and on the basis of this setting, an allowable tolerance of 0-2cm radius can be formed to form the actual setting area within the tolerance range);
  • the optical path transmission end 2 is integrated with the light source end through a heat sink, and the The optical path transmission end is formed with a first optical path transmission domain 4, a second optical path transmission domain 5, and a light exit domain 6; the first optical path transmission domain 4 reflects and/or
  • a far and near beam integrated lighting device is composed of a low beam structure and a high beam structure.
  • the low beam structure includes a low beam light source (that is, a first light source end), a low beam optical path transmission end and an emission end;
  • the high-beam light structure includes a high-beam light source (ie, a second light source end), a high-beam optical path transmission end, and an emission end; wherein the low-beam light source and the high-beam light source are composed of two separate LED light source groups; One group of LED light source groups is assembled integrally with the low beam optical path transmission end through the radiator, and the other group of LED light source groups are assembled integrally with the high beam optical path transmission end through the radiator, the exit end is a common exit end, and the near The transmission end of the optical optical path and the transmission end of the far-beam optical path are separated and spaced apart from each other at the incident position, and each deflection optical axis is 0°-30° to form a wedge-shaped spatial relationship.
  • the transmission end of the near-beam optical path can be formed: One of the transmission ends of the high-beam optical path and the transmission end of the high-beam optical path are set to deflect the optical axis at 5°-30°, and the other is set parallel to the optical axis; or both the transmission end of the low-beam optical path and the transmission end of the high-beam optical path are both deflected optical axes 5°—30° setting; the above two settings can form three different settings for specific operations.
  • the high-beam light source circuit board and the low-beam light source circuit board and the radiator are coated with thermally conductive glue.
  • the high-beam light source circuit board and the low-beam light source circuit board are respectively positioned by cylindrical pins and screwed to the radiator, low-beam condenser (The transmission end of the low-beam optical path) and the high-beam concentrator (the transmission end of the high-beam optical path) are respectively positioned in the X, Y and Z directions through circular positioning holes and waist holes, and are fixed to the heat sink by screws
  • the lens (the exit end) is snap-fitted by the clamp ring, and the assembly is completed by fixing the clamp ring to the radiator.
  • the bottom surface of the second low-beam optical path transmission domain is formed with a left and right height difference setting to respond to the requirements of the left and right height shape of the cut-off line;
  • the height difference setting can be from the beginning (in The optical end) is set all the way to the end (light-emitting end), or it can be set only at the end, and then transitions to the beginning of the consistent setting through a continuous curvature.
  • the wedge-shaped window in the second optical path transmission domain 5 is a plate-shaped protrusion that spans the left and right height difference (the corresponding drop size is set to 0.4mm-0.8mm) and is formed on the bottom surface of the second optical path transmission domain.
  • the corresponding size of the structure is 11-17mm in width and 0.45-1.2mm in height; in order to further disperse the illuminance, the front side of the convex structure is arranged in the shape of an inner concave arc, and the arc radius is 4-9mm.
  • the second optical path transmission area 5 is also provided with concave cavities or protrusions, which can be arranged in a triangular shape or a pattern, which is formed in the area of the bottom surface of the second optical path transmission end 5, close to the light
  • the corresponding dimensions are set as length: 4-8mm; width: 0.4-1.2mm; height: 0.9-1.6mm.
  • the area where the bottom surface of the second low-beam optical path transmission domain is located is made in an arc shape
  • the area where the upper surface of the second high-beam optical path transmission area is located is made in an arc shape, and the arc-shaped settings are used to adapt to the light incident end.
  • the shape of the first optical path transmission domain 4 causes the collected light to be emitted to the light exit surface through the arc section (that is, the light efficiency can be further improved).
  • the overall size of the above-mentioned lighting module is set to be 20-100mm in length; 25-95mm in width; and 10-60mm in height.
  • This setting can provide a basis for collecting light in the area where the bottom surface of the second optical path transmission domain 5 is located; and It also provides guarantee and foundation for the one-time molding of the optical transmission end of the optical path.
  • the transmission end of the low beam optical path of the low beam structure in this embodiment is composed of a reflector and a condenser in the high beam structure;
  • the high beam structure is realized by the condenser structure; the corresponding module structure is composed of the high and low beam structure with the above characteristics; the details are as follows:
  • a low-beam headlight structure for vehicle lights includes a light source end 1, a light path transmission end 2 and an emission end 3, wherein the light source end is set as an LED light source, and the light path transmission formed by the light source end and the light path transmission end follows similar
  • the optical characteristics of an ellipse (the similar ellipse mentioned here refers to: the shape or structure is not elliptical, but conforms to the characteristic of the ellipse that the light passing through the first focal point converges to the second focal point); the LED light source is arranged on one of the ellipse
  • the focal point and on the basis of this setting, an allowable tolerance of 0-2mm in radius can be formed to form the actual setting area within the tolerance range);
  • the optical path transmission end is integrated with the light source end through the radiator, and the low beam
  • the optical path transmission end is constituted by a reflector and a light path changing structure (wedge-shaped window, concave cavity or protrusion) and a light-dark cut
  • the end is matched with the low-beam optical path transmission end to complete the one-time molding and emission of the low-beam type required by regulations); the reflector is used to form the widened portion of the low-beam type and the illumination enhancement portion of the area around the HV; the wedge-shaped window It is used to form zone III of the low-beam light type while meeting the illuminance requirements of the 50L measuring point; wherein, the wedge-shaped window is opened in the area of the upper surface of the transmission end of the far light path; the light-dark cut-off structure is formed in the high-beam condenser The upper end surface (the other focal point of the elliptical condenser) is used to form a low-beam light-dark cut-off line; then it propagates to the incident surface of the exit end 3, and then is deflected by the exit end 3 and passes through the exit end The light-emitting surface is projected to the front to form a low-beam type for illumination, as shown in Figures 8 and 9.
  • a high-beam headlight structure for vehicle lights includes a light source end 1, a light path transmission end 2 and an emission end 3, wherein the light source end is set as an LED light source, and the light path transmission formed by the light source end and the light path transmission end follows similar
  • the optical characteristics of an ellipse (the similar ellipse mentioned here refers to: the shape or structure is not elliptical, but conforms to the characteristic of the ellipse that the light passing through the first focal point converges to the second focal point); the LED light source is arranged on one of the ellipse At the focal point (and on the basis of this setting, an allowable tolerance of 0-2cm radius can be formed to form the actual setting area within the tolerance range);
  • the optical path transmission end is integrated with the light source end through the heat sink, and the optical path The transmission end is formed with a first optical path transmission domain 4, a second optical path transmission domain 5, and a light exit domain 6; the first optical path transmission domain 4 reflects and/or refrac
  • a far and near beam integrated lighting device is composed of a low beam structure and a high beam structure.
  • the low beam structure includes a low beam light source (that is, a first light source end), a low beam optical path transmission end and an emission end;
  • the high-beam light structure includes a high-beam light source (ie, a second light source end), a high-beam optical path transmission end, and an emission end; wherein, the low-beam light source and the high-beam light source are composed of two separate sets of LED light sources;
  • the LED light source group is assembled integrally with the low-beam optical path transmission end through the radiator, and the other group of LED light source groups are assembled integrally with the high-beam optical path transmission end through the radiator.
  • the exit end is a common exit end, and the low-beam optical path
  • the transmission end is composed of two parts, one part is a reflector to complete the light pattern of the low beam type widening part and the light intensity enhancement part around the HV, and the other part is set on the high beam optical path transmission end (high beam condenser)
  • the light path changing structure (wedge-shaped window, concave cavity or convex) and light and dark cut-off structure are used to form the low-beam type III zone and the low-beam light type cut-off line, while meeting the illuminance requirements of the 50L measuring point.
  • the wedge-shaped window is opened in the area where the upper surface of the transmission end of the high-beam optical path is located; the light-dark cutoff structure is formed on the upper end surface of the high-beam condenser (the other focal point of the elliptical condenser) for A low-beam light-type cut-off line is formed; the transmission end (concentrator) of the high-beam optical path is arranged along the optical axis; the high-beam light source circuit board and the low-beam light source circuit board and the heat sink are coated with thermally conductive glue, and the high beam The light source circuit board and the low beam light source circuit board are respectively positioned by cylindrical pins and screwed to the radiator.
  • the reflector is positioned and fixed relative to the radiator through the positioning hole and the fixing hole; the high beam concentrator (high beam optical path transmission End) through the opened circular positioning holes and waist holes to complete the X-, Y-, and Z-direction positioning, and fix it to the radiator by screws; the lens (the output end) is snap-fitted by the clamp ring, and the The clamp ring is fixed to the radiator to complete the assembly.
  • the upper surface of the second high beam optical path transmission domain is formed with a left and right height difference setting to respond to the shape requirements of the left and right height of the cut-off line;
  • the height difference setting may be from the beginning (the first The light-in end of the second far-beam optical path transmission domain) is set to the end (the light-out end of the second far-beam optical path transmission domain), or it may be set only at the end, and then transition to the beginning of the consistent setting through continuous curvature.
  • the wedge-shaped window in the second optical path transmission domain 5 is a plate-shaped convex structure that spans the left and right height and is formed on the upper surface of the second high-beam optical path transmission domain.
  • the corresponding size is 11-17mm in width.
  • the height is 0.45-1.2mm; in order to further disperse the illuminance, the front side of the convex structure is arranged in the shape of an inner concave arc, and the radius of the arc is 4-9mm.
  • the area where the upper surface of the second high beam optical path transmission domain is located is made into an arc setting, and the arc setting is used to adapt to the shape of the light entrance end, that is, the first optical path transmission domain 4, so that the concentrated light passes through the middle section.
  • the light emitting surface that is, to further improve the light effect.
  • the overall size of the above-mentioned lighting module is set to be 20-100mm in length; 25-95mm in width; and 10-60mm in height.
  • This setting can provide a basis for collecting light in the area where the bottom surface of the second optical path transmission domain 5 is located; and It also provides guarantee and basis for the optical type required for one-time molding of the optical transmission end
  • this case also sets the light source end to a form with adjustable illuminance, as shown in Figure 12, through the adjustment of the light source end, a primary illuminance response adapted to the light type is formed; combined with this case setting The far/near beam structure is used to form and emit the target light type at one time to form a secondary illuminance adaptation to form a satisfying light type and maximize the use of light efficiency, forming a maximum saving of the light source at the light source Put into use with adaptability.
  • the light type adjustment and adaptation are formed separately through the far/near beam structure of the exit target light type set in this case for one-time molding;
  • the rectangular light source is arrayed at the light source end, the rectangular light source can form 5 rows ⁇ 5 columns to 9 rows ⁇ 12 columns Matrix
  • Each unit in the array can be individually adjusted through the set control unit to individually drive each LED on or off;
  • an input mode response unit which is used to establish a connection between the current mode of external regulation and the corresponding control unit;
  • the current working mode is notified to the control unit.
  • the control unit receives the current working mode, it does not enable the individual adjustment of the LED light source at the light source end, but uses the power-on and power-off method to control the LED light source in a unified way;
  • the current working mode When the current mode of the external input is a working mode with high requirements or special requirements for saving car light sources, the current working mode will be notified to the control unit. After receiving the current working mode, the control unit will enable the establishment of independent adjustment of the LED light source at the light source.
  • the sub-control unit which controls each LED in the matrix array according to the specific brightness requirements of high configuration requirements or the specific brightness requirements of saving car light sources.
  • the control is composed of brightness control and brightness control. Partial composition.
  • the exit end suitable for the above can be a plano-convex lens setting (as shown in Figure 13) or a biconvex lens setting (as shown in Figure 14).
  • the invention has a far/low beam structure for vehicle lights, and a far and near beam integrated lighting device,
  • the one-time molding of the light type required by the process is realized, which eliminates the need for shading plate settings, increases the utilization rate of light efficiency, saves space and reduces the cumulative error between multiple assembly of parts ;
  • the light source end is integrated with the light path transmission end through the radiator, intensive assembly space;
  • the low-beam light exit end forming the cut-off light type and the high-beam light exit end used to form the light-dark cut-off light type are spatially overlapped, so as to provide the driver with seamless visual switching when switching between far and near light Transition with peace; avoid unevenness and dark areas at the junction of far and near beams after switching from low beam to high beam;
  • a car light with a far/low beam structure and an integrated lighting device with far and near beams can form the actual maximum luminous efficiency utilization rate, which reflects the following two aspects: 1.
  • the optical path transmission end is designed as In theory, it is used to receive light in the entire beam angle range of the light source end to form the largest possible range of light source end light reception in practice; 2.
  • the optical path transmission end that is: the low beam optical path transmission end and the far beam optical path transmission end
  • the optical path transmission domain ie: the second low-beam optical path transmission domain and the second high-beam optical path transmission domain
  • this case provides a far/low beam lamp structure for car lights, focusing on the light efficiency utilization and one-time molding and saving assembly space and assembly process considerations; and this case provides a far and near beam integrated lighting device,
  • the transmission process of the far and near light in this case is set to be parallel to the optical axis and deviated from the optical axis at a certain angle Or both of them deviate from the optical axis by a certain angle, which can produce an effect that can not only prevent the far and near light from interfering with each other, but also form a good coupling effect with the cut-off line; the other is in the second near-beam optical path.
  • the light source end is set to a form with adjustable illuminance, through the adjustment of the light source end, a primary illuminance response adapted to the light type is formed; combined with the setting in this case, it is used to form and emit the target light type at a time.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

一种车灯用远/近光灯结构,包括有光源端、光路传输端及出射端,光源端与光路传输端通过散热器形成一体装配;光路传输端用于接收光源端发出的光线,并一次性完成可供符合出射端接收并形成路面照射的法规要求的光型;以及据此设立的一种远近光一体照明装置;其可省却遮光板实现法规要求光型的一次性成型,同时增大光效利用率,节约空间、减少零部件的多重装配产生的累积误差;将近光光路传输端设置为与远光光路传输端呈间距式布设用以避免远近光光线的窜光;将近光光线出射端与远光光线出射端在空间上形成重叠型布设,以使得在远近光切换时,给驾驶员提供无缝式视觉切换与平和过渡;避免由近光切换到远光后,远近光衔接处的不均匀和暗区。

Description

一种车灯用远/近光灯结构、远近光一体照明装置 技术领域
本发明属于汽车照明领域,具体涉及一种车灯用远/近光灯结构、远近光一体照明装置。
背景技术
LED光源在车灯上的应用已成为一种趋势,现有LED光源车灯模组多采用反射镜配合遮光板外加透镜构成,不仅光效利用率低,且装配工序较多,装配复杂,装配过程中会产生累积误差,同时零件的纷繁设立对装配空间提出很大的要求,这对于日益紧缩的车灯设计空间是一个巨大的挑战。
申请号为201710098243.7的发明申请,公开了“用于机动车的具有减少尺寸的照明模块和装置”,一种用于机动车的用于发射沿着光学轴线的至少一个光束的模块,所述装置包括至少一个第一光源和至少一个第二光源、至少一个第一光学收集器和至少一个第二光学收集器,所述至少一个第一光学收集器和至少一个第二光学收集器被分别地设计成收集由所述至少一个第一光源和至少一个第二光源发出的光,并且将所收集的光转向成沿着会聚方向;其中,所述至少一个第一光源和所述至少一个第二光源中的至少一者被定向成在远离光学轴线移动的整体发射方向上发光,并且与所述定向光源相关联的收集器至少部分地具有使收集器沿着光学轴线延伸的不对称构造。
申请号201810104077.1的发明申请,公开了“一种用于机动车辆前照灯的光束照明模块”,所述照明模块包括:第一光源和第一准直器,所述第一光源和第一准直器用于与第一投射透镜协作产生“近光束”类型的第一光束;和第二光源和第三光源,所述第二光源与第二准直器协作以产生补充所述第一光束的第一补充光束,以便形成“远光束”类型的第二光束。为了降低所述第二光束中的截止区域的可见度,所述第三光源与第三准直器和/或第二投射透镜协作,以便形成与所述截止区域至少部分地重叠的第二补充光束。
发明内容
为解决以上问题,本发明提供了一种车灯用远/近光灯结构、远近光一体照明装置, 其技术方案具体如下:
一种车灯用远/近光灯结构,用于实现前照灯的远/近光照明,其特征在于包括有:
光源端(1)、光路传输端(2)及出射端(3),
所述光源端与光路传输端通过散热器形成一体装配;
所述光路传输端用于接收光源端的光线,并一次性完成可供出射端接收并偏转、形成路面照射的符合法规要求的光型。
根据本发明的一种车灯用远/近光灯结构,其特征在于:
所述光源端布设为光照度可调的LED光源组。
根据本发明的一种车灯用远/近光灯结构,其特征在于:
于所述光路传输端(2)形成有第一光路传输域(4);第二光路传输域(5)及光线出射域(6);
所述第一光路传输域(4)用于接收光源发出的光线并形成反射和/或折射;
经由第一光路传输域(4)反射和/或的光线到达第二光路传输域(5),
于第二光路传输域(5)内形成有与法规要求相对应的光路改变结构;
经由第二光路传输域(5)完成光路传输的光线到达光线出射域(6);
到达光线出射域(6)的光线于光线出射域(6)完成明暗截止光型的形成,而后经由光线出射域(6)出射、经由出射端(3)接收并偏转、形成路面照射的符合法规要求的光型。
根据本发明的一种车灯用远/近光灯结构,其特征在于:
当用于远光照明时,所述第二光路传输域(5)内形成有与远光法规要求相对应的光路改变结构;
当用于近光照明时,所述第二光路传输域(5)内形成有与近光法规的测点及测区相对应的光路改变结构。
根据本发明的一种车灯用远/近光灯结构,其特征在于:
进入第二光路传输域(5)的光线分三路传输,
第一路直接通过第二光路传输域到达光线出射域(6);
第二路经由第二光路传输域内相应的光路改变结构、形成折射式的光线发散,经由发散后的光线较之折射式的发散之前的光线,改变光照度;
第三路经由第二光路传输域(5)的底表所在域形成全反射。
根据本发明的一种车灯用远/近光灯结构,其特征在于:
当用于远光照明时,
进入第二光路传输域(5)的光线分二路传输,
第一路直接通过第二光路传输域(5)到达光线出射域(6);
第二路经由第二光路传输域(5)的底表所在域形成全反射。
根据本发明的一种车灯用远/近光灯结构,其特征在于:
当用于近光照明时,所述第二光路传输域(5)内形成的光路改变结构包括有:与Ⅲ区、50L一一对应的光路改变设置。
根据本发明的一种车灯用远/近光灯结构,其特征在于:
所述与Ⅲ区对应的光路改变设置,具体为:于第二光路传输域(5)的底表所在域的相应位置开设楔形窗口,到达底表所在域内该位置的光线经由楔形窗口出射。
根据本发明的一种车灯用远/近光灯结构,其特征在于:
所述与Ⅲ区对应的光路改变设置,具体为:于第二光路传输域(5)的上表所在域的相应位置开设楔形窗口,到达上表所在域内该位置的光线经由楔形窗口出射。
一种远近光一体照明装置,用于实现远近光灯的照明,其特征在于包括有:
第一光源端、第二光源端、近光光路传输端、远光光路传输端及光线出射端;
所述第一光源端、近光光路传输端及光线出射端,构成近光的照明路径;
所述的第二光源端、远光光路传输端及光线出射端,构成远光的照明路径;
所述第一光源端与近光光路传输端通过散热器实现一体装配,形成近光光型形成结构;
所述第二光源端与远光光路传输端通过散热器实现一体装配,形成远光光型形成结构;
于所述的近光光路传输端一次性完成可供光线出射端接收并偏转、形成路面照射的符合法规要求的光型;
于所述的远光光路传输端一次性完成可供光线出射端接收并偏转、形成路面照射的符合法规要求的光型。
根据本发明的一种远近光一体照明装置,其特征在于:
所述的“于所述的近光光路传输端一次性完成可供光线出射端接收并偏转、形成路面照射的符合法规要求的光型”,
通过近光光路传输端单独完成,或通过远光光路传输端配合近光光路传输端完成。
根据本发明的一种远近光一体照明装置,其特征在于:
所述的“于所述的远光光路传输端一次性完成可供光线出射端接收并偏转、形成路 面照射的符合法规要求的光型”,通过远光光路传输端单独完成,或通过近光光路传输端配合远光光路传输端完成。
根据本发明的一种远近光一体照明装置,其特征在于:
所述近光光路传输端与远光光路传输端之间存在由后端向前端逐渐减小的间隙,并于前端汇聚于光轴(允许偏差0-2mm);所述光轴为垂直于所述出射端的焦平面,通过所述出射端的焦点的轴;如图7所示,上方为近光光路传输端的出射域表面,下方为远光光路传输端的出射域表面,二者在截止线处接触或具有距离/间隙≤2mm。
所述的“近光光路传输端与远光光路传输端之间存在由后端向前端逐渐减小的间隙,并于前端汇聚于光轴”为:
通过近光光路传输端与远光光路传输端两者中的一个偏转光轴5°-30°,另一个平行光轴设置形成;
或通过近光光路传输端与远光光路传输端两者均偏转光轴5°-30°形成。
根据本发明的一种远近光一体照明装置,其特征在于:
于所述近光光路传输端形成有第一近光光路传输域、第二近光光路传输域及近光光线出射域;
于所述远光光路传输端形成有第一远光光路传输域、第二远光光路传输域及远光光线出射域;
于所述第一近光光路传输域及第一远光光路传输域内各自完成对光源发出的光线的反射和/或折射;
当通过近光光路传输端单独完成可供光线出射端接收并偏转、形成路面照射的符合法规要求的光型时,于所述第二近光光路传输域及第二远光光路传输域内各自形成有与法规的测点及测区相对应的光路改变结构;于所述近光光线的出射域及远光光线出射域各自完成明暗截止光型的形成;
当通过远光光路传输端配合近光光路传输端完成可供光线出射端接收并偏转、形成路面照射的符合法规要求的光型时,所述第二近光光路传输域通过第二远光光路传输域表征,所述近光光线出射域通过远光光线出射域表征。
根据本发明的一种远近光一体照明装置,其特征在于:
于所述近光光路传输端形成有第一近光光路传输域、第二近光光路传输域及近光光线出射域;
于所述远光光路传输端形成有第一远光光路传输域、第二远光光路传输域及远光光路出射域;
于所述第一近光光路传输域及第一远光光路传输域内各自完成对光源发出的光线的反射和/或折射;
当通过远光光路传输端单独完成可供光线出射端接收并偏转、形成路面照射的符合法规要求的光型时,
于所述第二近光光路传输域及第二远光光路传输域内各自形成有与法规的测点及测区相对应的光路改变结构;
于所述近光光线的出射域及远光光线出射域各自完成明暗截止光型的形成;
当通过近光光路传输端配合远光光路传输端完成法规要求的远光光型的一次性成型及出射时,
所述第二远光光路传输域通过第二近光光光路传输域表征,
所述远光光线出射域通过近光光线出射域表征。
根据本发明的一种远近光一体照明装置,其特征在于:
当通过近光光路传输端单独完成时,
进入第二近光光路传输域的光线分三路传输,
第一路直接通过第二近光路传输域到达近光光线出射域;
第二路经由第二近光路传输域内相应的光路改变结构、形成折射式的光线发散,经由发散后的光线较之折射式的发散之前的光线,改变光照度;
第三路经由第二近光路传输域的底表所在域形成全反射。
根据本发明的一种远近光一体照明装置,其特征在于:
所述近光光路传输端与远光光路传输端均为聚光器结构设置。
根据本发明的一种远近光一体照明装置,其特征在于:
所述近光光路传输端为反射镜结构设置;
所述远光光路传输端为聚光器结构设置。
本发明的一种车灯用远/近光灯结构、远近光一体照明装置,
首先,通过设置的光路传输端,实现工艺要求的光型的一次性成型,省却遮光板设置、增大了光效利用率的同时,节约了空间及减少了零部件的多重装配间的累积误差;
其次,光源端通过散热器与光路传输端形成一体设置,集约了装配空间;
再次,将光路传输端的设计理念与远近光灯一体设计的理念相结合,设计出具有光路传输端的远近光一体照明装置,并且,近光灯与远光灯各自独立使用各自的光学系统,而后共用一个出光;
然后,在具体空间布设时,将近光光路传输端设置为与远光光路传输端呈间距式布 设,用以避免远、近光光线相互的窜光;并在此基础上,进一步地将用以形成明暗截止光型的近光光线出射端与用以形成明暗截止光型的远光光线出射端在空间上形成重叠型布设,以使得在远近光切换时,给驾驶员提供无缝式视觉切换与平和过渡;避免由近光切换到远光后,远近光衔接处的不均匀和暗区;
本案的一种车灯用远/近光灯结构、远近光一体照明装置;可形成实际中的最大光效利用率,该最大光效利用率体现以下两方面:1.将光路传输端设计成理论上用于接收光源端全域光束角范围的光线,以形成实际中尽量大范围的光源端光线接收;2.将光路传输端(也即:近光光路传输端与远光光路传输端)设计成一定长度,以响应入射到第二光路传输域(也即:第二近光光路传输域与第二远光光路传输域)的光线,并使其于第二光路传输域的底表所在域形成全反射,以此形成光线的更多有效利用。
同时,本案提供的一种车灯用远/近光灯结构,重点指向光效利用率及一次性成型及节约装配空间及装配工序这些考量因素;而本案提供的一种远近光一体照明装置,在满足以上考量因素的基础上,还基于车灯模组的结构关系形成因素两个方面的考量,一则将本案中的远近光光线传输过程设置为一个平行于光轴一个偏离光轴一定角度或两者均偏离光轴一定角度的方式,可产生既能既能防止远近光相互间窜光,又能与截止线处形成很好的耦合效应的效应;另则在第二近光光路传输域单独完成法规要求的近光光型的一次性成型及出射的基础上,扩展并形成通过远光光路传输端配合近(光光路传输端完成法规要求的近光光型的一次性成型及出射;以此为形成不同光传输器的搭配与使用提供了拓展的友好适应,提供了器件的拓展性;
最后,本案还将光源端设置为光照度可调的形式,通过光源端的可调形成与光型适配的初级光照度响应;再结合本案设置的用以一次性成型及出射目标光型的远/近光结构,形成二级光照度适配,以形成满足光型及最大化利用光效的基础上,形成对光源端光源的极大化节约与适配性投入使用。
附图说明
图1为车灯中近光光型路面示意图;
图2为车灯中远光光型路面示意图;
图3为本发明中的一种车灯用远/近光灯结构的结构关系示意图;
图4为本发明中的一种远近光一体照明装置的结构关系示意图;
图5为本发明实施例1中近光灯结构的光线路径示意图;
图6为本发明实施例1中车远光灯结构的光线路径示意图;
图7为本发明中的一种远近光一体照明装置的近光光线出射端与远光光线出射端 的结构关系示意图;
图8为本发明实施例2中近光灯结构的光线路径示意图;
图9为图8的截面剖视图;
图10为本发明实施例2中远光灯结构的光线路径示意图;
图11为图10的截面剖视图;
图12为本发明的实施例中的光照度可调的光源端示意图;
图13为本发明实施例中的出射端设置为平凸透镜的示意图;
图14为本发明实施例中的出射端设置为双凸透镜的示意图。
图中,
1-为光源端;
2-为光路传输端;
3-为出射端;
4-为第一光路传输域;
5-为第二光路传输域;
6-为光线出射域。
具体实施方式
下面,根据说明书附图和具体实施方式对本发明的一种车灯用远/近光灯结构、远近光一体照明装置作进一步具体说明。
图3所示的一种车灯用远/近光灯结构,用于实现前照灯的远/近光照明,包括有:
光源端(1)、光路传输端(2)及出射端(3),
所述光源端与光路传输端通过散热器形成一体装配;
所述光路传输端用于接收光源端的光线,并一次性完成可供出射端接收并偏转、形成路面照射的符合法规要求的光型。
其中,
所述光源端布设为光照度可调的LED光源组。
其中,
于所述光路传输端(2)形成有第一光路传输域(4);第二光路传输域(5)及光线出射域(6);
所述第一光路传输域(4)用于接收光源发出的光线并形成反射和/或折射;
经由第一光路传输域(4)反射和/或折射的光线到达第二光路传输域(5),
于第二光路传输域(5)内形成有与法规要求相对应的光路改变结构;
经由第二光路传输域(5)完成光路传输的光线到达光线出射域(6);
到达光线出射域(6)的光线于光线出射域(6)完成明暗截止光型的形成,而后经由光线出射域(6)出射、经由出射端(3)接收并偏转、形成路面照射的符合法规要求的光型。
其中,
当用于远光照明时,所述第二光路传输域(5)内形成有与远光法规要求相对应的光路改变结构;
当用于近光照明时,所述第二光路传输域(5)内形成有与近光法规的测点及测区相对应的光路改变结构。
其中,
当用于近光照明时,
进入第二光路传输域(5)的光线分三路传输,
第一路直接通过第二光路传输域到达光线出射域(6);
第二路经由第二光路传输域内相应的光路改变结构、形成折射式的光线发散,经由发散后的光线较之折射式的发散之前的光线,改变光照度;
第三路经由第二光路传输域(5)的底表所在域形成全反射;于图5中可清晰看出;
或当用于近光照明时,
进入第二光路传输域(5)的光线直接经由第二光路传输域内相应的光路改变结构形成出射。
其中,
当用于远光照明时,
进入第二光路传输域(5)的光线分二路传输,
第一路直接通过第二光路传输域到达光线出射域(6);
第二路经由第二光路传输域(5)的上表所在域形成全反射;于图6与图10中均可清晰看出。
其中,
当用于近光照明时,所述第二光路传输域(5)内形成的光路改变结构包括有:与Ⅲ区、50L一一对应的光路改变设置。
其中,
所述与Ⅲ区对应的光路改变设置,具体为:于第二光路传输域(5)的底表所在域 的相应位置开设楔形窗口,到达底表所在域内该位置的光线经由楔形窗口出射。
其中,
所述与Ⅲ区对应的光路改变设置,具体为:于第二光路传输域(5)的上表所在域的相应位置开设楔形窗口,到达上表所在域内该位置的光线经由楔形窗口出射。
如图4所示的一种远近光一体照明装置,用于实现远近光灯的照明,包括有:
第一光源端、第二光源端、近光光路传输端、远光光路传输端及光线出射端;
所述第一光源端、近光光路传输端及光线出射端,构成近光的照明路径;
所述的第二光源端、远光光路传输端及光线出射端,构成远光的照明路径;
所述第一光源端与近光光路传输端通过散热器实现一体装配,形成近光光型形成结构;
所述第二光源端与远光光路传输端通过散热器实现一体装配,形成远光光型形成结构;
于所述的近光光路传输端一次性完成可供光线出射端接收并偏转、形成路面照射的符合法规要求的光型;
于所述的远光光路传输端一次性完成可供光线出射端接收并偏转、形成路面照射的符合法规要求的光型。
其中,
所述的“于所述的近光光路传输端一次性完成可供光线出射端接收并偏转、形成路面照射的符合法规要求的光型”,
通过近光光路传输端单独完成,或通过远光光路传输端配合近光光路传输端完成。
其中,
所述的“于所述的远光光路传输端一次性完成可供光线出射端接收并偏转、形成路面照射的符合法规要求的光型”,通过远光光路传输端单独完成,或通过近光光路传输端配合远光光路传输端完成。
其中,
所述近光光路传输端与远光光路传输端之间存在由后端向前端逐渐减小的间隙,并于前端汇聚于光轴(允许偏差0-2mm);所述光轴为垂直于所述出射端的焦平面,通过所述出射端的焦点的轴;
所述的“近光光路传输端与远光光路传输端之间存在由后端向前端逐渐减小的间隙,并于前端汇聚于光轴”为:
通过近光光路传输端与远光光路传输端两者中的一个偏转光轴5°-30°,另一个平 行光轴设置形成;
或通过近光光路传输端与远光光路传输端两者均偏转光轴5°-30°形成。
其中,
于所述近光光路传输端形成有第一近光光路传输域、第二近光光路传输域及近光光线出射域;
于所述远光光路传输端形成有第一远光光路传输域、第二远光光路传输域及远光光线出射域;
于所述第一近光光路传输域及第一远光光路传输域内各自完成对光源发出的光线的反射和/或折射;
当通过近光光路传输端单独完成可供光线出射端接收并偏转、形成路面照射的符合法规要求的光型时,于所述第二近光光路传输域及第二远光光路传输域内各自形成有与法规的测点及测区相对应的光路改变结构;于所述近光光线的出射域及远光光线出射域各自完成明暗截止光型的形成;
当通过远光光路传输端配合近光光路传输端完成可供光线出射端接收并偏转、形成路面照射的符合法规要求的光型时,所述第二近光光路传输域通过第二远光光路传输域表征,所述近光光线出射域通过远光光线出射域表征。
其中,
于所述近光光路传输端形成有第一近光光路传输域、第二近光光路传输域及近光光线出射域;
于所述远光光路传输端形成有第一远光光路传输域、第二远光光路传输域及远光光路出射域;
于所述第一近光光路传输域及第一远光光路传输域内各自完成对光源发出的光线的反射和/或折射;
当通过远光光路传输端单独完成可供光线出射端接收并偏转、形成路面照射的符合法规要求的光型时,
于所述第二近光光路传输域及第二远光光路传输域内各自形成有与法规的测点及测区相对应的光路改变结构;
于所述近光光线的出射域及远光光线出射域各自完成明暗截止光型的形成;
当通过近光光路传输端配合远光光路传输端完成法规要求的远光光型的一次性成型及出射时,
所述第二远光光路传输域通过第二近光光光路传输域表征,
所述远光光线出射域通过近光光线出射域表征。
其中,
当通过近光光路传输端单独完成时,
进入第二近光光路传输域的光线分三路传输,
第一路直接通过第二近光路传输域到达近光光线出射域;
第二路经由第二近光路传输域内相应的光路改变结构、形成折射式的光线发散,经由发散后的光线较之折射式的发散之前的光线,改变光照度;
第三路经由第二近光路传输域的底表所在域形成全反射。
其中,
所述近光光路传输端与远光光路传输端均为聚光器结构设置。
其中,
所述近光光路传输端为反射镜结构设置;
所述远光光路传输端为聚光器结构设置。
工作过程及实施例(图1、图2示出的分别是近光光型路面示意图及远光光型路面示意图;也即近光与远光分别配光的光型)
实施例1
本实施例中的近光灯结构、远光灯结构及基于两者的模组结构,均使用聚光器结构实现,具体如下:
一种车灯用近光灯结构,包括有光源端1、光路传输端2以及出射端3,其中,所述光源端设置为LED光源,所述光源端及光路传输端构成的光路传输遵循类似椭圆的光学特性(这里所述的类似椭圆指:造型或结构不是呈椭圆形,但是符合椭圆的从第一焦点经过的光线汇聚于第二焦点的特性);所述LED光源设置在椭圆的一个焦点处(并可在该设置基础上,形成半径0-2mm的允许公差,以形成公差范围内的实际设置区域);所述光路传输端通过散热器与光源端实现一体装配,于所述光路传输端形成有第一光路传输域4,第二光路传输域5及光线出射域6;于第二光路传输域5的底表所在域的相应位置开设楔形窗口;于第二光路传输域5的光线分三路传输,第一路直接通过第二光路传输域到达光线出射域6;第二路经由第二光路传输域内的楔形窗口设置,形成折射式的光线发散,从而透出一部分光线,减少该区域最终成型光型的光照度;第三路经由第二光路传输域5的底表所在域形成全反射;其中,所述楔形窗口开设于光路传输端的底表所在域。于所述的第二光路传输域5内还设有凹型空腔或凸起,用于改变传播至此 的光路,形成发散光线,从而降低该处经透镜即出射端3偏转后的光型的光照度,用以与50L测点的要求相对应;经由第二光路传输域5的三路光路传输的光线到达光线出射域6后,经由设于光线出射域6的明暗截止结构完成明暗截止光型(具有明暗截止线的光形)的形成(所述明暗截止结构设置在类似椭圆结构的聚光器另一个焦点处),而后经由光线出射域6的出射面传播至出射端3的入射面,再经由出射端3偏转后,经由出射端3的出光面投射到前方,形成照明用近光光型,如图5所示。
一种车灯用远光灯结构,包括有光源端1、光路传输端2以及出射端3,其中,所述光源端设置为LED光源,所述光源端及光路传输端构成的光路传输遵循类似椭圆的光学特性(这里所述的类似椭圆指:造型或结构不是呈椭圆形,但是符合椭圆的从第一焦点经过的光线汇聚于第二焦点的特性);所述LED光源设置在椭圆的一个焦点处(并可在该设置基础上,形成半径0-2cm的允许公差,以形成公差范围内的实际设置区域);所述光路传输端2通过散热器与光源端实现一体装配,于所述光路传输端形成有第一光路传输域4,第二光路传输域5及光线出射域6;所述第一光路传输域4将接收的光源发射出的全域光束角范围的光线通过反射和/或折射的方式传输至第二光路传输域5及光线出射域6;所述第二光路传输域5及光线出射域6共同完成对光线的传输,并通过设置在光线出射域6的明暗截止结构(所述明暗截止结构设置在椭圆的另一个焦点处),完成明暗截止光型的形成,而后经由光线出射域6的出射面传播至出射端3的入射面,再经由出射端3偏转后,经由出射端3的出光面投射到前方,形成照明用远光光型,如图6所示。
一种远近光一体照明装置,由设置的近光灯结构及远光灯结构构成,所述近光灯结构包括有近光光源(即第一光源端)、近光光路传输端及出射端;所述远光灯结构包括有远光光源(即第二光源端)、远光光路传输端及出射端;其中,所述近光光源与远光光源由分立设置的两组LED光源组构成;一组LED光源组通过散热器与近光光路传输端形成一体装配,另一组LED光源组通过散热器与远光光路传输端形成一体装配,所述出射端为共用的出射端,所述近光光路传输端与所述远光光路传输端为入射处分立且相距设置,并各自以偏转光轴0°—30°的方向,形成楔形状空间关系,据此可形成:近光光路传输端与所述远光光路传输端两者中的一个偏转光轴5°—30°设置,另一个平行光轴设置;或近光光路传输端与所述远光光路传输端两者均偏转光轴5°—30°设置;以上两种设置可形成具体操作时的三种不同设置,此三种不同设置,既能防止远近光相互间窜光,又能与截止线处形成很好的耦合效应;远光光源电路板与近光光源电路板和散热器间涂覆导热胶,远光光源电路板与近光光源电路板分别通过圆柱销定位,并 螺固于散热器,近光聚光器(近光光路传输端)与远光聚光器(远光光路传输端)分别通过开设的圆形定位孔及腰孔完成X向、Y向及Z向的定位,并通过螺钉固接于散热器;透镜(所述出射端)通过卡圈卡扣配合,并通过将卡圈固设于散热器完成装配。
上述中,所述第二近光光路传输域的底表所在域形成有左右高低落差式的设置,用以响应明暗截止线的左右高低形状要求;所述高低落差式设置可以是从始端(入光端)一直设置至末端(出光端),也可以是仅仅设置在末端,然后通过曲率连续的方式过渡到设置一致的始端。
基于以上而设置的第二光路传输域5内的楔形窗口为跨越左右高低落差(相应落差尺寸设置为0.4mm-0.8mm)两部分且形成于第二光路传输域下底表面的板状凸起结构,其相应尺寸为宽度11-17mm,高度0.45-1.2mm;为进一步分散光照度,该凸起结构的前侧面呈内凹弧形状设置,圆弧半径为4-9mm。
其中,设于所述第二光路传输域5内还设有凹型空腔或凸起,可呈三角形状设置或纹路状设置,其形成在第二光路传输端5的底表所在域,靠近光线出射域,相应尺寸设为长:4-8mm;宽:0.4-1.2mm;高:0.9-1.6mm。
其中,第二近光光路传输域的底表所在域制成弧形设置,第二远光光路传输域的上表所在域制成弧形设置,所述弧形设置用以适应入光端即第一光路传输域4的造型形状,使其聚集的光通过弧形段射向出光面(即:能够进一步提高光效)。
以上所述照明模组的总体尺寸设为长20-100mm;宽25-95mm;高10-60mm的设置,此种设置能够为第二光路传输域5的底表所在域收集光线提供依据;且也为光路传输端一次性成型所需光型提供保障及基础。
实施例2
本实施例中的近光灯结构的近光光路传输端由反射镜配合远光灯结构中的聚光器构成;
远光灯结构通过聚光器结构实现;相应模组结构由上述特性的远近光灯结构构成;具体如下:
一种车灯用近光灯结构,包括有光源端1、光路传输端2以及出射端3,其中,所述光源端设置为LED光源,所述光源端及光路传输端构成的光路传输遵循类似椭圆的光学特性(这里所述的类似椭圆指:造型或结构不是呈椭圆形,但是符合椭圆的从第一焦点经过的光线汇聚于第二焦点的特性);所述LED光源设置在椭圆的一个焦点处(并可在该设置基础上,形成半径0-2mm的允许公差,以形成公差范围内的实际设置区域); 所述光路传输端通过散热器与光源端实现一体装配,所述近光光路传输端通过反射镜及设置在远光聚光器即远光光路传输端上的光路改变结构(楔形窗口、凹型空腔或凸起)及明暗截止结构构成(即上述的通过远光光路传输端配合近光光路传输端完成法规要求的近光光型的一次性成型及出射);所述反射镜用于形成近光光型的展宽部分及HV周围区域的光照度增强部分;所述楔形窗口用于形成近光光型的Ⅲ区,同时满足50L测点的光照度要求;其中,所述楔形窗口开设于远光路传输端的上表所在域;所述明暗截止结构形成在远光聚光器的上侧端面(类似椭圆的聚光器的另一个焦点处),用以形成近光光型的明暗截止线;而后传播至出射端3的入射面,再经由出射端3偏转后,经由出射端的出光面投射到前方,形成照明用近光光型,如图8、9所示。
一种车灯用远光灯结构,包括有光源端1、光路传输端2以及出射端3,其中,所述光源端设置为LED光源,所述光源端及光路传输端构成的光路传输遵循类似椭圆的光学特性(这里所述的类似椭圆指:造型或结构不是呈椭圆形,但是符合椭圆的从第一焦点经过的光线汇聚于第二焦点的特性);所述LED光源设置在椭圆的一个焦点处(并可在该设置基础上,形成半径0-2cm的允许公差,以形成公差范围内的实际设置区域);所述光路传输端通过散热器与光源端实现一体装配,于所述光路传输端形成有第一光路传输域4,第二光路传输域5及光线出射域6;所述第一光路传输域4将接收的光源发射出的全域光束角范围的光线通过反射和/或折射的方式传输至第二光路传输域5及光线出射域6;所述第二光路传输域5及光线出射域6共同完成对光线的传输,并通过设置在光线出射域6的明暗截止结构(所述明暗截止结构设置在类似椭圆的聚光器的另一个焦点处),完成明暗截止光型的形成,而后经由光线出射域6的出射面传播至出射端3的入射面,再经由出射端3偏转后,经由出射端3的出光面投射到前方,形成照明用远光光型,如图10、11所示。
一种远近光一体照明装置,由设置的近光结构及远光结构构成,所述近光灯结构包括有近光光源(即第一光源端)、近光光路传输端及出射端;所述远光灯结构包括有远光光源(即第二光源端)、远光光路传输端及出射端;其中,所述近光光源与远光光源由分立设置的两组LED光源组构成;一组LED光源组通过散热器与近光光路传输端形成一体装配,另一组LED光源组通过散热器与远光光路传输端形成一体装配,所述出射端为共用的出射端,所述近光光路传输端由两部分构成,一部分为反射镜,用以完成近光光型展宽部及HV周围光强增强部分的光型,另一部分通过设置在远光光路传输端(远光聚光器)上的光路改变结构(楔形窗口、凹型空腔或凸起)及明暗截止结构构成,用以形成近光光型的Ⅲ区和近光光型的明暗截止线,同时满足50L测点的光照度要求, 其中,所述楔形窗口开设于远光光路传输端的上表所在域;所述明暗截止结构形成在远光聚光器的上侧端面(类似椭圆的聚光器的另一个焦点处),用以形成近光光型的明暗截止线;所述远光光路传输端(聚光器)沿光轴方向设置;远光光源电路板与近光光源电路板和散热器间涂覆导热胶,远光光源电路板与近光光源电路板分别通过圆柱销定位,并螺固于散热器,反射镜通过定位孔与固定孔实现相对于散热器的定位与固定;远光聚光器(远光光路传输端)通过开设的圆形定位孔及腰孔完成X向、Y向及Z向的定位,并通过螺钉固接于散热器;透镜(所述出射端)通过卡圈卡扣配合,并通过将卡圈固设于散热器完成装配。
上述中,所述第二远光光路传输域的上表所在域形成有左右高低落差式的设置,用以响应明暗截止线的左右高低形状要求;所述高低落差式设置可以是从始端(第二远光光路传输域的入光端)一直设置至末端(第二远光光路传输域的出光端),也可以是仅仅设置在末端,然后通过曲率连续的方式过渡到设置一致的始端。
基于以上而设置的第二光路传输域5内的楔形窗口为跨越左右高低落差两部分且形成于第二远光光路传输域上表面的板状凸起结构,其相应尺寸为宽度11-17mm,高度0.45-1.2mm;为进一步分散光照度,该凸起结构的前侧面呈内凹弧形状设置,圆弧半径为4-9mm。
其中,第二远光光路传输域的上表所在域制成弧形设置,所述弧形设置用以适应入光端即第一光路传输域4的造型形状,使其聚集的光通过中间段射向出光面(即:能够进一步提高光效)。
以上所述照明模组的总体尺寸设为长20-100mm;宽25-95mm;高10-60mm的设置,此种设置能够为第二光路传输域5的底表所在域收集光线提供依据;且也为光路传输端一次性成型所需光型提供保障及基础
实施例扩展
为更好地形成拓展与多功能集成,本案还将光源端设置为光照度可调的形式,如图12所示,通过光源端的可调形成与光型适配的初级光照度响应;再结合本案设置的用以一次性成型及出射目标光型的远/近光结构,形成二级光照度适配,以形成满足光型及最大化利用光效的基础上,形成对光源端光源的极大化节约与适配性投入使用。
通过上述初级光照度及二级光照度建立的调节,具体通过下述过程实现:
在低配要求情况下,单独通过由本案设置的用以一次性成型的出射目标光型的远/近光结构形成光型调节及适配;
在高配要求情况或为节约车灯光源情况下,开启基于光源端的可调形成的二级光照度调节;于光源端阵列矩形光源,所述矩形光源可构成5行×5列至9行×12列的矩阵;
阵列中的每个单元可通过设置的控制单元形成单独调节,用以单独驱动每颗LED的开或灭;
与之配套建立的,还有输入模式响应单元,所述输入模式响应单元用以建立外部调节的当前模式与相应控制单元之间的联系;
当外部输入当前模式为低配要求工作模式时,将当前工作模式通知到控制单元。控制单元在接收到当前工作模式后,不启用对光源端LED光源的单独调节,而采用通断电形式对LED光源进行统一亮灭控制;
当外部输入当前模式为高配要求或有特殊节约车灯光源要求的工作模式时,将当前工作模式通知到控制单元,控制单元在接收到当前工作模式后,启用对光源端LED光源建立单独调节的子控制单元,由该子控制单元分别根据高配要求的具体亮度要求或节约车灯光源要求的具体亮度要求,对矩阵阵列中的每颗LED进行控制,所述控制由亮灭控制与亮度控制两部分构成。
以上所述法规指向GB25991或ECER112或其他相应法规;
适用于以上的出射端可为平凸透镜设置(如图13所示)或双凸透镜设置(如图14所示)。
本发明的一种车灯用远/近光灯结构、远近光一体照明装置,
首先,通过设置的光路传输端,实现工艺要求的光型的一次性成型,省却遮光板设置、增大了光效利用率的同时,节约了空间及减少了零部件的多重装配间的累积误差;
其次,光源端通过散热器与光路传输端形成一体设置,集约了装配空间;
再次,将光路传输端的设计理念与远近光灯一体设计的理念相结合,设计出具有光路传输端的远近光一体照明装置,并且,近光灯与远光灯各自独立使用各自的光学系统,而后共用一个出光;
然后,在具体空间布设时,将近光光路传输端设置为与远光光路传输端呈间距式布设,用以避免远、近光光线相互的窜光;并在此基础上,进一步地将用以形成明暗截止光型的近光光线出射端与用以形成明暗截止光型的远光光线出射端在空间上形成重叠型布设,以使得在远近光切换时,给驾驶员提供无缝式视觉切换与平和过渡;避免由近光切换到远光后,远近光衔接处的不均匀和暗区;
本案的一种车灯用远/近光灯结构、远近光一体照明装置;可形成实际中的最大光效利用率,该最大光效利用率体现以下两方面:1.将光路传输端设计成理论上用于接收 光源端全域光束角范围的光线,以形成实际中尽量大范围的光源端光线接收;2.将光路传输端(也即:近光光路传输端与远光光路传输端)设计成一定长度,以响应入射到第二光路传输域(也即:第二近光光路传输域与第二远光光路传输域)的光线,并使其于第二光路传输域的底表所在域形成全反射,以此形成光线的更多有效利用。
同时,本案提供的一种车灯用远/近光灯结构,重点指向光效利用率及一次性成型及节约装配空间及装配工序这些考量因素;而本案提供的一种远近光一体照明装置,在满足以上考量因素的基础上,还基于车灯模组的结构关系形成因素两个方面的考量,一则将本案中的远近光光线传输过程设置为一个平行于光轴一个偏离光轴一定角度或两者均偏离光轴一定角度的方式,可产生既能既能防止远近光相互间窜光,又能与截止线处形成很好的耦合效应的效应;另则在第二近光光路传输域单独完成法规要求的近光光型的一次性成型及出射的基础上,扩展并形成通过远光光路传输端配合近光光路传输端完成法规要求的近光光型的一次性成型及出射;以此为形成不同光传输器的搭配与使用提供了拓展的友好适应,提供了器件的拓展性;
最后,本案还将光源端设置为光照度可调的形式,通过光源端的可调形成与光型适配的初级光照度响应;再结合本案设置的用以一次性成型及出射目标光型的远/近光结构,形成二级光照度适配,以形成满足光型及最大化利用光效的基础上,形成对光源端光源的极大化节约与适配性投入使用。

Claims (18)

  1. 一种车灯用远/近光灯结构,用于实现前照灯的远/近光照明,其特征在于包括有:
    光源端(1)、光路传输端(2)及出射端(3),
    所述光源端与光路传输端通过散热器形成一体装配;
    所述光路传输端用于接收光源端的光线,并一次性完成可供出射端接收并偏转、形成路面照射的符合法规要求的光型。
  2. 根据权利要求1所述的一种车灯用远/近光灯结构,其特征在于:
    所述光源端布设为光照度可调的LED光源组。
  3. 根据权利要求1所述的一种车灯用远/近光灯结构,其特征在于:
    于所述光路传输端(2)形成有第一光路传输域(4);第二光路传输域(5)及光线出射域(6);
    所述第一光路传输域(4)用于接收光源发出的光线并形成反射和/或折射;
    经由第一光路传输域(4)反射和/或折射的光线到达第二光路传输域(5),
    于第二光路传输域(5)内形成有与法规要求相对应的光路改变结构;
    经由第二光路传输域(5)完成光路传输的光线到达光线出射域(6);
    到达光线出射域(6)的光线于光线出射域(6)完成明暗截止光型的形成,而后经由光线出射域(6)出射、经由出射端(3)接收并偏转、形成路面照射的符合法规要求的光型。
  4. 根据权利要求3所述的一种车灯用远/近光灯结构,其特征在于:
    当用于远光照明时,所述第二光路传输域(5)内形成有与远光法规要求相对应的光路改变结构;
    当用于近光照明时,所述第二光路传输域(5)内形成有与近光法规的测点及测区相对应的光路改变结构。
  5. 根据权利要求3或4所述的一种车灯用远/近光灯结构,其特征在于:
    当用于近光照明时,
    进入第二光路传输域(5)的光线分三路传输,
    第一路直接通过第二光路传输域到达光线出射域(6);
    第二路经由第二光路传输域内相应的光路改变结构、形成折射式的光线发散,经由发散后的光线较之折射式的发散之前的光线,改变光照度;
    第三路经由第二光路传输域(5)的底表所在域形成全反射;
    或当用于近光照明时,
    进入第二光路传输域(5)的光线直接经由第二光路传输域内相应的光路改变结构形成出射。
  6. 根据权利要求3或4所述的一种车灯用远/近光灯结构,其特征在于:
    当用于远光照明时,
    进入第二光路传输域(5)的光线分二路传输,
    第一路直接通过第二光路传输域(5)到达光线出射域(6);
    第二路经由第二光路传输域(5)的上表所在域形成全反射。
  7. 根据权利要求4所述的一种车灯用远/近光灯结构,其特征在于:
    当用于近光照明时,所述第二光路传输域(5)内形成的光路改变结构包括有:与Ⅲ区、50L一一对应的光路改变设置。
  8. 根据权利要求7所述的一种车灯用远/近光灯结构,其特征在于:
    所述与Ⅲ区对应的光路改变设置,具体为:于第二光路传输域(5)的底表所在域的相应位置开设楔形窗口,到达底表所在域内该位置的光线经由楔形窗口出射。
  9. 根据权利要求7所述的一种车灯用远/近光灯结构,其特征在于:
    所述与Ⅲ区对应的光路改变设置,具体为:于第二光路传输域(5)的上表所在域的相应位置开设楔形窗口,到达上表所在域内该位置的光线经由楔形窗口出射。
  10. 一种远近光一体照明装置,用于实现远近光灯的照明,其特征在于包括有:
    第一光源端、第二光源端、近光光路传输端、远光光路传输端及光线出射端;
    所述第一光源端、近光光路传输端及光线出射端,构成近光的照明路径;
    所述的第二光源端、远光光路传输端及光线出射端,构成远光的照明路径;
    所述第一光源端与近光光路传输端通过散热器实现一体装配,形成近光光型形成结构;
    所述第二光源端与远光光路传输端通过散热器实现一体装配,形成远光光型形成结构;
    于所述的近光光路传输端一次性完成可供光线出射端接收并偏转、形成路面照射的符合法规要求的光型;
    于所述的远光光路传输端一次性完成可供光线出射端接收并偏转、形成路面照射的符合法规要求的光型。
  11. 根据权利要求10所述的一种远近光一体照明装置,其特征在于:
    所述的“于所述的近光光路传输端一次性完成可供光线出射端接收并偏转、形成路面照射的符合法规要求的光型”,
    通过近光光路传输端单独完成,或通过远光光路传输端配合近光光路传输端完成。
  12. 根据权利要求10所述的一种远近光一体照明装置,其特征在于:
    所述的“于所述的远光光路传输端一次性完成可供光线出射端接收并偏转、形成路面照射的符合法规要求的光型”,通过远光光路传输端单独完成,或通过近光光路传输端配合远光光路传输端完成。
  13. 根据权利要求10所述的一种远近光一体照明装置,其特征在于:
    所述近光光路传输端与远光光路传输端之间存在由后端向前端逐渐减小的间隙,并于前端汇聚于光轴;
    所述的“近光光路传输端与远光光路传输端之间存在由后端向前端逐渐减小的间隙,并于前端汇聚于光轴”为:
    通过近光光路传输端与远光光路传输端两者中的一个偏转光轴5°-30°,另一个平行光轴设置形成;
    或通过近光光路传输端与远光光路传输端两者均偏转光轴5°-30°形成。
  14. 根据权利要求11所述的一种远近光一体照明装置,其特征在于:
    于所述近光光路传输端形成有第一近光光路传输域、第二近光光路传输域及近光光线出射域;
    于所述远光光路传输端形成有第一远光光路传输域、第二远光光路传输域及远光光线出射域;
    于所述第一近光光路传输域及第一远光光路传输域内各自完成对光源发出的光线的反射和/或折射;
    当通过近光光路传输端单独完成可供光线出射端接收并偏转、形成路面照射的符合法规要求的光型时,于所述第二近光光路传输域及第二远光光路传输域内各自形成有与法规的测点及测区相对应的光路改变结构;于所述近光光线的出射域及远光光线出射域各自完成明暗截止光型的形成;
    当通过远光光路传输端配合近光光路传输端完成可供光线出射端接收并偏转、形成路面照射的符合法规要求的光型时,所述第二近光光路传输域通过第二远光光路传输域表征,所述近光光线出射域通过远光光线出射域表征。
  15. 根据权利要求12所述的一种远近光一体照明装置,其特征在于:
    于所述近光光路传输端形成有第一近光光路传输域、第二近光光路传输域及近光光 线出射域;
    于所述远光光路传输端形成有第一远光光路传输域、第二远光光路传输域及远光光路出射域;
    于所述第一近光光路传输域及第一远光光路传输域内各自完成对光源发出的光线的反射和/或折射;
    当通过远光光路传输端单独完成可供光线出射端接收并偏转、形成路面照射的符合法规要求的光型时,
    于所述第二近光光路传输域及第二远光光路传输域内各自形成有与法规的测点及测区相对应的光路改变结构;
    于所述近光光线的出射域及远光光线出射域各自完成明暗截止光型的形成;
    当通过近光光路传输端配合远光光路传输端完成法规要求的远光光型的一次性成型及出射时,
    所述第二远光光路传输域通过第二近光光光路传输域表征,
    所述远光光线出射域通过近光光线出射域表征。
  16. 根据权利要求14所述的一种远近光一体照明装置,其特征在于:
    当通过近光光路传输端单独完成时,
    进入第二近光光路传输域的光线分三路传输,
    第一路直接通过第二近光路传输域到达近光光线出射域;
    第二路经由第二近光路传输域内相应的光路改变结构、形成折射式的光线发散,经由发散后的光线较之折射式的发散之前的光线,改变光照度;
    第三路经由第二近光路传输域的底表所在域形成全反射。
  17. 根据权利要求10所述的一种远近光一体照明装置,其特征在于:
    所述近光光路传输端与远光光路传输端均为聚光器结构设置。
  18. 根据权利要求10所述的一种远近光一体照明装置,其特征在于:
    所述近光光路传输端为反射镜结构设置;
    所述远光光路传输端为聚光器结构设置。
PCT/CN2020/085017 2019-04-16 2020-04-16 一种车灯用远/近光灯结构、远近光一体照明装置 WO2020211796A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910302653.8A CN111828928A (zh) 2019-04-16 2019-04-16 一种车灯用远/近光灯结构、远近光一体照明装置
CN201910302653.8 2019-04-16

Publications (1)

Publication Number Publication Date
WO2020211796A1 true WO2020211796A1 (zh) 2020-10-22

Family

ID=72836999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085017 WO2020211796A1 (zh) 2019-04-16 2020-04-16 一种车灯用远/近光灯结构、远近光一体照明装置

Country Status (2)

Country Link
CN (1) CN111828928A (zh)
WO (1) WO2020211796A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078034A (ja) * 2006-09-22 2008-04-03 Stanley Electric Co Ltd 車両用灯具
CN205424732U (zh) * 2015-12-01 2016-08-03 重庆稼砷光电科技有限公司 双光源远近光一体化led车灯
CN205842461U (zh) * 2016-07-29 2016-12-28 珠海市正远光电科技有限公司 双光源系统一体式led车灯
CN206130804U (zh) * 2016-10-31 2017-04-26 江苏洪昌科技股份有限公司 远近光一体式汽车led前照灯的光学系统
CN108278572A (zh) * 2018-02-23 2018-07-13 重庆舜辉庆驰光电科技有限公司 Led双焦点双光透镜汽车前大灯
CN108488756A (zh) * 2018-06-01 2018-09-04 江苏信利电子有限公司 机动车前大灯及机动车

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078034A (ja) * 2006-09-22 2008-04-03 Stanley Electric Co Ltd 車両用灯具
CN205424732U (zh) * 2015-12-01 2016-08-03 重庆稼砷光电科技有限公司 双光源远近光一体化led车灯
CN205842461U (zh) * 2016-07-29 2016-12-28 珠海市正远光电科技有限公司 双光源系统一体式led车灯
CN206130804U (zh) * 2016-10-31 2017-04-26 江苏洪昌科技股份有限公司 远近光一体式汽车led前照灯的光学系统
CN108278572A (zh) * 2018-02-23 2018-07-13 重庆舜辉庆驰光电科技有限公司 Led双焦点双光透镜汽车前大灯
CN108488756A (zh) * 2018-06-01 2018-09-04 江苏信利电子有限公司 机动车前大灯及机动车

Also Published As

Publication number Publication date
CN111828928A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
CN113227645B (zh) 光学元件、光学模块和车辆
CN106439672B (zh) 一种led光源车灯模组
JP5361289B2 (ja) 車両用ヘッドライトの投光モジュール
CN108534078B (zh) 一种led阵列远近光双功能模组系统
KR20060107307A (ko) 허상 점광원
CN103261781A (zh) Led光模块
CN108036277B (zh) 一种车灯及其光路传导装置
WO2020173444A1 (zh) 远近光一体车灯照明装置、车灯及车辆
CN112771305A (zh) 包括多个光引导件的机动车辆光模块
CN105402669A (zh) 一种远近光一体的led前照灯
JP2018116934A (ja) ピクセル化された光ビームを投射するための装置、当該装置を装備したヘッドランプ
CN112097215A (zh) 一种窄开口投射式汽车前大灯光学系统
WO2020211796A1 (zh) 一种车灯用远/近光灯结构、远近光一体照明装置
CN109990247B (zh) 一种远近光同体式汽车前照灯总成
CN109973931B (zh) 一种车灯近光照明分光反射器、光学装置及汽车前照灯总成
CN104279481A (zh) 车用灯具及包括该车用灯具的车辆
CN208139171U (zh) 一种阵列式led智能汽车头灯
WO2022134456A1 (zh) Adb车灯模组、车灯及车辆
WO2022001239A1 (zh) 一种车灯光学组件、车灯模组、车灯及车辆
CN209839953U (zh) 一种具有多种工作状态的照明装置
CN211146370U (zh) 一种前照灯投射式照明系统
CN213299956U (zh) 车灯用光导体、远光照明模组及车灯
CN212339144U (zh) 一种多像素远光系统、车灯及车辆
CN109973930B (zh) 一种车灯近光照明分光反射器、光学装置及汽车前照灯总成
WO2021093234A1 (zh) 光路处理元件、前照灯模组、车灯及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20791405

Country of ref document: EP

Kind code of ref document: A1