WO2020211678A1 - 弹性负重外骨骼 - Google Patents

弹性负重外骨骼 Download PDF

Info

Publication number
WO2020211678A1
WO2020211678A1 PCT/CN2020/083445 CN2020083445W WO2020211678A1 WO 2020211678 A1 WO2020211678 A1 WO 2020211678A1 CN 2020083445 W CN2020083445 W CN 2020083445W WO 2020211678 A1 WO2020211678 A1 WO 2020211678A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
bearing
weight
elastic
leg
Prior art date
Application number
PCT/CN2020/083445
Other languages
English (en)
French (fr)
Inventor
景浩
Original Assignee
景浩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201920522976.3U external-priority patent/CN209868595U/zh
Priority claimed from CN201910310565.2A external-priority patent/CN109968329B/zh
Application filed by 景浩 filed Critical 景浩
Publication of WO2020211678A1 publication Critical patent/WO2020211678A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators

Definitions

  • the present invention relates to a mechanical exoskeleton that increases the weight-bearing effect of the human body.
  • exoskeleton Since the appearance of the concept of exoskeleton, various exoskeleton technologies have been continuously developed. The role of exoskeleton is mainly reflected in the growth of the body, and it has very good prospects in military, medical, industrial, transportation, and civilian use. However, the existing exoskeleton technology has some difficult to solve problems, namely power and energy problems. So that external bone technology cannot be popularized. Even if it is used on a small scale, there are many constraints that make the exoskeleton a bit tasteless.
  • the present invention discards external power supply, and obtains the opportunity of weight-bearing step by maintaining the weight elasticity effect, thereby providing an elastic weight-bearing exoskeleton.
  • 1 represents a weight
  • 2 represents an elastic material
  • 3 represents a support structure.
  • the weight provides weight
  • the upper and lower ends of the elastic material connect the support structure and the weight to provide elasticity
  • the support structure is vertical to the horizontal plane and supports the weight.
  • the weight In an ideal state: Provide the weight with an initial kinetic energy in the up and down direction. Under the action of the elastic material 2, the weight of the weight will be converted into elastic potential energy, so that the weight 1 will bounce back and forth. When the weight bounces downward, the load-bearing capacity of the supporting structure will increase. When heavy When springing upwards, the load-bearing capacity of the supporting structure will be reduced.
  • the heavy object bounces upward under the action of inertia.
  • the load-bearing capacity of the supporting structure is reduced, and the supporting structure 3 is controlled to move forward.
  • the step is completed, and the support structure 3 supports the weight of the spring.
  • the load-bearing capacity decreases for stepping, and when the heavy object falls, the load-bearing capacity increases for support.
  • the present invention is optimized with full reference to the body structure, movement changes of the legs, balance, and other factors.
  • the invention optimizes the problems of difficulty in extension and support of the leg joints in the absence of external power.
  • an elastic weight-bearing exoskeleton which is characterized by: comprising a bearing mechanism, an elastic mechanism, a supporting mechanism and a control mechanism, wherein the bearing mechanism is on the waist and back of the human body to fix the body
  • the support mechanism is a mechanical skeleton attached to the back and leg sides of the body, which can support weight and steps, and is connected to the load bearing mechanism with slide rails that can slide up and down.
  • the elastic mechanism is in the same direction as the slide rail. Connect the bearing mechanism and the supporting mechanism and provide elasticity.
  • the control mechanism is at the joints of the supporting mechanism, and the supporting mechanism can be controlled to support weight and step during movement. Under the support of the supporting mechanism, the bearing mechanism drives the human body and the weight-bearing object. Under the action of the sliding rail, the control mechanism controls the support mechanism to support the weight in the downward spring state, and the human body controls the step in the upward spring state.
  • the carrying mechanism includes a waist and crotch fixing belt, a backrest, and a load-bearing tray.
  • the back of the waist and crotch fixing belt is just connected to the backrest, and the back of the backrest is just connected to the load-bearing tray.
  • the elastic mechanism is composed of an elastic material, connects the supporting mechanism and the bearing mechanism, and under the support of the supporting mechanism, provides elasticity for the bearing mechanism.
  • the support mechanism includes a back support frame and two leg support mechanisms.
  • the back support frame is connected to the elastic mechanism, with a vertical slide rail in the middle, and a leg support mechanism is hinged in the left and right directions below;
  • the leg support mechanism includes a thigh support mechanism, a knee joint structure, a calf and foot mechanism;
  • the thigh support mechanism includes four shafts and four sides, and the four shafts and four sides form a flat
  • a quadrilateral structure is achieved through the deformation of the parallelogram to achieve the effect of swinging back and forth of the thigh.
  • the upper side of the parallelogram mechanism has a cylindrical structure, which is hinged with the back support frame to form a left and right leg lifting shaft.
  • the lower side of the parallelogram mechanism Integral with the knee joint, there is a gear structure concentric with the rotating shaft at the front of the parallelogram mechanism on the downward rotating shaft; the knee joint structure fixes the two rotating shafts on the lower side of the thigh quadrilateral structure and the upward rotating shaft of the calf front support structure. The distance of the three shafts makes the gear structure on the front side of the thigh quadrilateral mechanism and the gear structure on the upper side of the front support structure of the lower leg occlude.
  • Structure; the calf and foot mechanism includes a front calf support structure, a sweeping gear, a rear calf support structure, a foot lever, and a foot fixing structure.
  • the upper rotation axis of the front calf support structure is concentric with the rotation axis A gear structure
  • the sweeping gear is hinged behind the front support structure of the lower leg and engages with the gear structure of the knee joint
  • the rear support structure of the lower leg is hinged to the rear end of the sweeping gear and the foot lever
  • the foot lever is supported by the front of the lower leg
  • the hinge under the structure is a fulcrum
  • the front end is hinged to the front end of the foot fixing structure
  • the front end of the foot fixing structure fixes the body feet
  • the back end is connected to the hinge under the front support structure of the calf.
  • the control mechanism includes a locking control structure, a pressure plate, and a thigh swinging locking structure.
  • the locking control structure is on the bearing mechanism and corresponds to the pressure plate in the vertical direction.
  • the pressure plate has an elastic structure, and the pressure plate is hinged on the back
  • the supporting frame is hinged on the shaft housing of the thigh quadrilateral structure, the thigh swing locking mechanism includes a pressing cap, a spring, and a gear engagement structure.
  • the thigh swing locking mechanism is inside the cylindrical structure on the thigh quadrilateral, and the pressing cap is The hole of the cylindrical structure under the pressing plate is exposed, and is connected to the gear engagement structure, and the gear engagement structure is connected to the spring, and is fixed on the shaft of the inner wall of the cylindrical structure.
  • FIG. 1 is a front view (left) and effect diagram (right) of the present invention
  • FIG. 2 is a side view (left) and effect diagram (right) of the present invention
  • FIG. 4 is a schematic view of the bearing structure
  • FIG. 5 is a schematic diagram of a deadlock structure
  • FIG. 6 is a schematic diagram of a leg support structure.
  • the present invention is an elastic load-bearing exoskeleton, which includes a bearing mechanism 5, an elastic mechanism 6, a supporting mechanism 7 and a control mechanism 8. It is characterized in that the bearing mechanism 5 is on the waist and back of the human body.
  • the supporting mechanism 7 is a mechanical skeleton attached to the back and leg sides of the body, and is connected to the supporting mechanism 5 with a sliding rail 9 that can slide up and down.
  • the elastic mechanism 6 is connected to the supporting mechanism in the same direction as the sliding rail.
  • the mechanism and the supporting mechanism also provide elasticity.
  • the control mechanism 8 is located at the joints on both sides of the supporting mechanism, which can control the supporting mechanism to support weight and step during movement.
  • the human body provides initial kinetic energy to the bearing mechanism 5, which converts the weight of the body and load-bearing objects into elastic potential energy for up and down movement through the elastic mechanism 6.
  • the weight With the support of the support structure 7, the weight can be moved up and down to reduce or increase the load bearing of the support structure 7 reciprocally.
  • the control mechanism 8 locks the legs of the support mechanism 7 to support the weight of the human body.
  • the weight bearing will be reduced.
  • the control mechanism 8 expands the exoskeleton leg joints to move, and the inertia of the human body and the weight bounces supports the weight and controls the step.
  • One weight up and down movement is a stepping effect, and the weight-bearing movement is achieved by maintaining the weight up and down movement.
  • the carrying mechanism 5 includes a waist and crotch fixing belt 10, a backrest 11, and a load-bearing tray 12.
  • the back of the waist and crotch fixing belt is just connected to the backrest, and the back rests Behind the board and the load-bearing tray just Then, there is a slide rail 13 in the vertical direction in the backrest, which interacts with the slide rail 14 of the back support structure and can only slide up and down.
  • the main function of the bearing mechanism is to make the exoskeleton carry and fix the body and the weight-bearing object.
  • the elastic mechanism 6 is composed of an elastic material 15.
  • the function of the elastic mechanism is to connect the supporting mechanism and the carrying mechanism, and under the support of the supporting mechanism, provide elasticity for the carrying mechanism.
  • the support mechanism 7 includes a back support frame 16, two leg support mechanisms 17, and the back support frame 16, with vertical slide rails 9 in the middle, and each of the lower and left directions
  • a leg support mechanism 17 is hinged.
  • the leg support mechanism 17 includes a thigh support mechanism 18, a knee joint structure 19, and a calf and foot mechanism 20.
  • the thigh support mechanism 18 includes four rotating shafts and four sides. The four rotating shafts and four sides form a parallelogram structure 21. The front and rear leg swinging action of the exoskeleton is completed by the deformation of the parallelogram structure.
  • the upper side of the parallelogram mechanism has a cylindrical structure 22, which is hinged with the back support frame 16 (Figure 1) to form a shaft 23 ( Figure 1) with a side-lifting effect.
  • the lower side of the parallelogram mechanism 21 is integrated with the knee joint structure 19.
  • the knee joint structure 19 fixes the two rotating shafts 24, 25 and the rotating shaft 27 under the thigh quadrilateral structure. The distance between the three rotating shafts is,
  • the gear structure at the shaft 24 is engaged with the gear structure at the shaft 27, the knee joint structure is outside the shaft 27, and there is a sector gear structure 28 that is concentric with the shaft.
  • the calf and foot mechanism includes a calf front support structure 26, Sweeping gear 29, lower leg rear support structure 30, foot lever 31, and foot fixing structure 32.
  • the upward rotating shaft 27 of the lower leg front support structure has a gear structure concentric with the rotating shaft, and the sweeping gear 29 is hinged. Behind the front calf support structure 26, it engages with the knee joint sector gear structure 28.
  • the back calf support structure 30 is hinged to the rear end of the sweep gear 29 and the foot lever 31.
  • the foot lever 31 is based on the front calf support structure 26
  • the lower shaft 33 is a fulcrum, and the front end is hinged to the front end of the foot fixing structure 32. In the foot fixing structure, the rear end is connected to the shaft 33 under the lower leg support structure.
  • the leg support mechanism 17 of the support mechanism 7 is divided into two states of “locked support” and “controlled stepping” in the load-bearing motion, corresponding to the external
  • the weight of the bones is in the two states of rebounding and weighting.
  • the deadlock support is for the deadlock structure to provide support and support for the uplift when the weight quickly drops to the lowest critical point. Step control is the basic requirement of exoskeleton weight-bearing exercise.
  • the present invention adds a "dynamic support" optimization effect to the leg support mechanism.
  • the thigh support mechanism constitutes a parallelogram structure 21.
  • the thigh parallelogram structure moves, it can be deformed to achieve leg swings back and forth, and can keep the upper body in a vertical state, because the upper side 22 is hinged on the back support frame.
  • the thigh support mechanism raises the leg, the angles of the front and lower sides of the parallelogram mechanism will become smaller.
  • the front side at the knee joint 24 interacts with the front leg support structure at the knee joint 27 by gears.
  • the upper and lower leg support mechanism will be combined to the knee joint, and the relative amplitude of the action of the upper and lower leg support mechanism is affected by the radius of the rotating shaft 24 and the rotating shaft 27.
  • the upper and lower leg support mechanism will be closed to the knee joint. Therefore, when the leg is raised, the angle between the front support structure 26 and the knee joint will change.
  • the sweeping gear 28 on the joint will engage and interact with the sweeping gear 29 hinged to the front support structure of the lower leg, so when the leg is raised, the sweeping gear 29 will rotate counterclockwise, and at the same time drive the hinged rear support structure 30 of the lower leg.
  • the back leg support structure 30 will drive the foot lever 31 connected to it and the foot fixing structure 32 connected to it to change. Therefore, when raising the leg, the parallelogram structure 21 deforms the thigh and raises the leg.
  • the upper and lower leg support mechanisms are combined at the knee joint, and the angle of the foot fixing mechanism 32 and the front lower leg support structure 26 becomes larger. Because the entire exoskeleton leg support mechanism is interactive, the control mechanism only needs to lock one of the rotating shafts of the parallelogram structure 21, and the entire leg is locked to provide support.
  • the sweep gear 29 will not rotate, and the upper and lower leg support mechanisms will not close together at the knee joint.
  • the leg support mechanism can provide support.
  • the "forward force supply” effect is mainly designed to match the dynamic support effect.
  • dynamic support when the leg moves forward in the unlocked state, one leg is lifted forward and the hind leg does not move during the step, but the leg will tilt forward.
  • the foot fixing structure 32 and the calf front support The angle of the structure 26 becomes smaller (as shown in the lower left diagram of Fig. 6).
  • the sweep gear 29 is pulled through the rear support structure 30 to provide extension tension for the knee joint, which solves the problem of joint extension without external power.
  • Difficult problems provide support for the exoskeleton. And when you step, it will continue to follow the changes in the angle of the leg structure and foot mechanism. The support changes to achieve the effect of "dynamic support”.
  • the control mechanism 8 includes a control locking structure 34, a pressing plate 35, and a thigh front and rear swing locking structure 36.
  • the control locking structure 34 is on the supporting structure 5, and the upper and lower directions correspond to the pressing plate 35.
  • the pressure plate has an elastic structure 37, the pressure plate is hinged on the back support frame and the thigh quadrilateral structure hinged on the shaft housing 38, the thigh swing locking mechanism 36 includes a pressure cap 39, a spring 40, and a gear engagement structure 41
  • the thigh swing locking mechanism is inside the cylindrical structure 22 on the upper quadrilateral of the thigh, the pressure cap is exposed in the hole of the cylindrical structure 22 under the pressure plate, and the gear engaging structure 41 is connected, and the gear engaging structure is connected to the spring 40, and is fixed to the cylindrical structure The inner wall of the shaft 42.
  • the main function of the control mechanism is to press the pressure plate 35 when the weight is moved downwards during the load-bearing movement, and increase the friction between the pressure plate and the shaft 22 to control the side leg raising movement.
  • the pressure plate presses the pressure cap 39 to drive the gear engagement structure 41 locks the rotating shaft 43, and locks the leg support mechanism 17 to provide support for the weight of the lower bomb.
  • Exoskeleton use mode under the support of the supporting mechanism 7, the human body provides initial kinetic energy, and the carrying mechanism 5 that carries the weight of the body and the weight of the object is transformed into the up and down movement along the direction of the sliding rail 9 through the elastic mechanism 6.
  • Elastic potential energy the upward or downward movement of the weight, can reciprocally reduce or increase the weight of the exoskeleton.
  • the load-bearing capacity will increase, and the pressure plate 35 of the control mechanism 8 will be forced to lock the supporting mechanism 7 to support the weight of the human body.
  • the load-bearing capacity is reduced and the control mechanism is opened.
  • the inertia of the human body and the weight bounces supports the weight and controls the step. As long as the human body maintains the inertia of the exoskeleton bearing mechanism 5 up and down and controls the step, the exoskeleton can achieve the effect of effective weight-bearing motion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Rehabilitation Tools (AREA)

Abstract

一种弹性负重外骨骼,其舍弃了外部动力供给,通过维持重量弹动效果,来得到承重迈步的机会,它不需要外部动力和能源。负重越重,势能就越大动力就越强。弹动的频率越快,机动性就越强。该弹性负重外骨骼的机械结构简单稳定,在降低了技术门槛的同时,也使造价变得低廉。

Description

弹性负重外骨骼
技术领域
[0001] 本发明涉及一种增加人体负重效果的机械外骨骼。
背景技术
[0002] 自从外骨骼概念的出现, 各种外骨骼技术都在不断发展。 外骨骼的作用主要体 现在对身体的增幅, 在军用、 医疗、 工业、 运输、 民用都有非常好的前景。 但 是现有的外骨骼技术存在一些难以解决的问题, 就是动力和能源问题。 让外骨 骼技术无法普及。 就算小规模使用, 也衍生出了很多制约因素, 让外骨骼变得 有些鸡肋。
发明概述
技术问题
[0003] 现有外骨骼的操纵和动力系统, 主要是通过传感器接收控制指令, 计算机辅助 运算进行操控, 再通过液压系统或电力系统提供动力, 来达到外骨骼的增幅效 果。 但是而要想大范围推广外骨骼, 就需要让外骨骼做到自载动力和能源系统 。 但是电池的体积、 重量、 容量和补充的问题是短时间难以解决的。 而且操控 和动力系统的效果直接和造价挂钩。 高昂的价格、 保养和维护费用, 也是外骨 骼技术的制约因素。
问题的解决方案
技术解决方案
[0004] 为了克服上述存在的问题, 本发明舍弃了外部动力供给, 通过维持重量弹动效 果, 来得到承重迈步的机会, 从而提供的一种弹性负重外骨骼。
[0005] 本发明的原型和总构思: 如图 3所示, 1表示重物, 2表示弹性材料, 3表示支撑 结构。 重物提供重量, 弹性材料的上下两端连接连接支撑结构与重物并提供弹 性, 支撑结构竖直于水平面并支撑重量。 在理想状态下: 给重物提供一个上下 方向的初始动能, 在弹性材料 2的作用下, 重物的重量会转化为弹性势能, 使重 物 1来回的上下的弹动。 当重物向下弹动时, 支撑结构的承重会增加。 当重物向 上弹动时, 支撑结构的承重会减少。 在 4的状态, 重物在惯性的作用下, 向上弹 起, 此时支撑结构承重会减少, 这时控制支撑结构 3迈步前进。 当重物在惯性的 作用下向下弹动, 进入 5的状态, 迈步完成, 支撑结构 3支撑下弹时的重量。 然 后在惯性的作用下, 再次重物弹起时承重减少进行迈步, 重物落下时承重增加 进行支撑。 通过持续维持重量的弹动提供动力, 不断重复上弹迈步, 下弹支撑 这两个状态, 来达到有效负重运动的效果。
[0006] 而本发明就是在此的基础上充分参考身体的结构、 腿部的运动变化、 平衡性、 等要素进行优化。 同时通过专门设计的腿部“前倾供力”和“动态支撑”这两 个效果, 优化了该发明在没有外部动力情况下, 腿部关节伸张困难和支撑困难 的问题。 从而发明出来的一种弹性负重外骨骼。
[0007] 本发明所采用的技术方案: 一种弹性负重外骨骼, 其特征在于: 包括承载机构 、 弹性机构、 支撑机构和控制机构, 其中: 承载机构在人体的腰胯部与背部, 固定身体与负重物体并承载重量, 支撑机构是依附于身体背部和腿侧的机械骨 架, 可以支撑重量和迈步, 且与承载机构有可以上下滑动的滑轨连接, 弹性机 构在与滑轨相同的方向, 连接承载机构与支撑机构并提供弹性, 控制机构在支 撑机构的关节处, 可以控制支撑机构在运动时支撑重量和迈步, 在支撑机构的 支撑下, 承载机构带动人体与负重物体, 可以在弹性机构和滑轨的作用下上下 弹动, 控制机构控制支撑机构在向下弹动状态可以支撑重量, 在向上弹动状态 可以由人体控制迈步。
[0008] 进一步, 所述的承载机构包括腰胯部固定带、 背部靠板、 承重托盘, 腰胯部固 定带后面与背部靠板刚接, 背部靠板后面与承重托盘刚接, 所述的背部靠板中 间有上下方向的滑轨, 与背部支撑结构的滑轨相互作用。
[0009] 所述的弹性机构由弹性材料构成, 连接支撑机构与承载机构, 在支撑机构的支 撑下, 为承载机构提供弹性。
[0010] 所述的支撑机构包括背部支撑框架、 两个腿部支撑机构, 所述背部支撑框架, 连接弹性机构, 中间有上下方向的滑轨, 下面的左右方向各铰接一个腿部支撑 机构; 所述的腿部支撑机构包括大腿支撑机构、 膝关节结构、 小腿与脚部机构 ; 所述大腿支撑机构包括四个转轴和四条边, 四个转轴和四条边构成了一个平 行四边形结构, 通过平行四边形的变形来达到大腿的前后摆动的效果, 平行四 边形机构的上边有圆柱形结构, 与背部支撑框架铰接组成一个左右侧抬腿效果 的转轴, 平行四边型机构的下面边与膝关节一体, 平行四边形机构前面边向下 的转轴处, 有与转轴同圆心的齿轮结构; 所述膝关节结构, 固定大腿四边形结 构下边的两个转轴与小腿前支撑结构向上处转轴, 这三个转轴的距离, 使大腿 四边形机构前边向下处的齿轮结构与小腿前支撑结构向上处的齿轮结构咬合, 膝关节结构在小腿前支撑结构上面的转轴外, 有与其转轴同圆心的扇形齿轮结 构; 所述小腿与脚部机构包括小腿前支撑结构、 扫动齿轮、 小腿后支撑结构、 脚部杠杆、 脚部固定结构, 所述小腿前支撑结构向上的转轴处, 有与转轴同圆 心的齿轮结构, 所述扫动齿轮铰接在小腿前支撑结构后, 与膝关节齿轮结构咬 合, 小腿后支撑结构铰接扫动齿轮和脚部杠杆的后端, 所述的脚部杠杆, 以小 腿前支撑结构下面的转轴为支点, 前端铰接脚部固定结构的前端, 所述的脚部 固定结构, 前端固定身体脚部, 后端与小腿前支撑结构下面的转轴连接。
[0011] 所述的控制机构包括锁死控制结构、 压板、 大腿前后摆动锁死结构, 所述锁死 控制结构在承载机构上, 上下方向对应压板, 所述压板有弹性结构, 压板铰接 在背部支撑框架与大腿四边形结构铰接的转轴外壳上, 所述大腿前后摆锁死机 构包括压帽、 弹簧, 和齿轮咬合结构, 大腿前后摆锁死机构在大腿四边形上边 的圆柱形结构内部, 压帽在压板下圆柱形结构的孔中露出, 连接齿轮咬合结构 , 齿轮咬合结构接弹簧, 固定在圆柱形结构内壁转轴上。
[0012] 外骨骼的使用效果: 在支撑机构的支撑下, 人体提供初始动能, 通过弹性机构 把身体和负重物体的重量, 沿着滑轨的方向转化为上下弹动的弹性势能, 在重 量向下弹动时承重会增加, 控制机构会受力锁死支撑机构, 替人体支撑重量。 在重量向上弹动时承重减少、 控制机构张开, 由人体和重量弹起时的惯性支撑 重量并控制迈步。 人体只需要维持上下弹动的惯性、 控制迈步, 就能使外骨骼 达到有效的负重运动效果。
发明的有益效果
有益效果
[0013] 不需要外部动力和能源, 同时也减少动力和能源问题了对外骨骼的限制。 身体 与负重物体的重量由外骨骼承载, 直接有效的减少了负重对人体力的消耗。 负 重越重, 弹性势能就越大, 动力越强。 每次弹动为一次迈步机会, 弹动的频率 越快, 机动性就越强。 机械结构简单稳定, 在降低了技术门槛的同时, 也使造 价变得低廉。
对附图的简要说明
附图说明
[0014] 图 1是本发明的主视图 (左) 和效果图 (右)
[0015] 图 2是本发明的侧视图 (左) 和效果图 (右)
[0016] 图 3原型的示意图
[0017] 图 4是承载结构的不意图
[0018] 图 5是锁死结构的示意图
[0019] 图 6是腿部支撑结构的示意图。
发明实施例
具体实施方式
[0020] 本发明如附图所示, 一种弹性负重外骨骼, 包括承载机构 5、 弹性机构 6、 支 撑机构 7和控制机构 8组成, 其特征是承载机构 5在人体的腰胯部与背部, 固定身 体与负重的物体, 支撑机构 7是依附于身体背部和腿侧的机械骨架, 与承载机构 5有可以上下滑动的滑轨 9连接, 弹性机构 6在与滑轨相同的方向, 连接承载机构 与支撑机构并提供弹性, 控制机构 8在支撑机构的两侧的关节处, 可以控制支撑 机构在运动时支撑重量和迈步。 人体提供初始动能给承载机构 5, 把身体和负重 物体的重量通过弹性机构 6, 转化为上下弹动的弹性势能。 在支撑结构 7的支撑 下, 重量的上下弹动, 可以往复性的减少或增加支撑结构 7的承重。 在重量向下 弹动时承重增加, 控制机构 8锁死支撑机构 7的腿部, 替人体支撑重量。 在重量 弹起时承重会减少, 控制机构 8张开外骨骼腿部关节可以活动, 由人体和重量弹 起时的惯性支撑重量和控制迈步。 以一次重量的上下弹动, 为一次迈步效果, 通过维持重量的上下弹动, 来达到负重运动的效果。
[0021] 进一步, 所述的承载机构 5如附图 4所示, 包括腰胯部固定带 10、 背部靠板 11、 承重托盘 12, 腰胯部固定带后面与背部靠板刚接, 背部靠板后面与承重托盘刚 接, 所述的背部靠板中有上下方向的滑轨 13, 与背部支撑结构的滑轨 14相互作 用, 只能上下滑动。 承载机构的主要作用是使外骨骼承载并固定身体与负重物 体。
[0022] 所述的弹性机构 6如图 4所示, 由弹性材料 15构成。 弹性机构的作用是连接支撑 机构与承载机构, 在支撑机构的支撑下, 为承载机构提供弹性。
[0023] 所述的支撑机构 7如图 1所示, 包括背部支撑框架 16、 两个腿部支撑机构 17, 所 述背部支撑框架 16, 中间有上下方向的滑轨 9, 下面的左右方向各铰接一个腿部 支撑机构 17。 所述的腿部支撑机构 17如图 6所示, 包括大腿支撑机构 18、 膝关节 结构 19、 小腿与脚部机构 20。 所述大腿支撑机构 18包括四个转轴和四条边, 四 个转轴和四条边组成了一个平行四边形结构 21, 外骨骼的前后摆腿动作通过平 行四边形结构的变形来完成。 平行四边形机构的上边有圆柱形结构 22, 与背部 支撑框架 16 (图一) 铰接组成一个侧抬腿效果的转轴 23 (图一) , 平行四边型 机构 21的下面边与膝关节结构 19一体, 平行四边形机构前边向下的转轴 24处, 有与转轴同圆心的齿轮结构, 所述膝关节结构 19, 固定大腿四边形结构下边的 两个转轴 24、 25与转轴 27, 这三个转轴的距离, 使转轴 24处的齿轮结构与转轴 2 7处的齿轮结构咬合, 膝关节结构在转轴 27外, 有与其转轴同圆心的扇形齿轮结 构 28, 所述小腿与脚部机构包括小腿前支撑结构 26、 扫动齿轮 29、 小腿后支撑 结构 30、 脚部杠杆 31、 脚部固定结构 32, 所述小腿前支撑结构向上的转轴 27处 , 有与转轴同圆心的齿轮结构, 所述扫动齿轮 29铰接在小腿前支撑结构 26后面 , 与膝关节扇形齿轮结构 28咬合, 小腿后支撑结构 30铰接扫动齿轮 29和脚部杠 杆 31的后端, 所述的脚部杠杆 31, 以小腿前支撑结构 26下面的转轴 33为支点, 前端铰接脚部固定结构 32的前端, 所述的脚部固定结构, 后端与小腿支撑结构 下面的转轴 33连接。
[0024] 腿部支撑机构动态支撑和前倾供力的效果: 支撑机构 7的腿部支撑机构 17在负 重运动中分为“锁死支撑”和“控制迈步”这两种状态, 分别对应外骨骼的重 量下弹和重量上弹这两种状态。 锁死支撑是为了重量快下弹到最低的临界点时 锁死结构提供支撑和上弹的支撑力。 控制迈步是外骨骼负重运动的基础要求。 但是经过模拟, 重量向上弹起时腿部解锁后, 仍会受到一部分重量和支撑结构 本身重量的影响, 需要人体腿部去支撑重量, 而且在重量向下弹动时, 控制机 构 8进行下压锁死的时候, 依旧需要人体腿部提供一种向上的力量进行支撑才方 便锁死, 不然负重效果很一般。
[0025] 为了解决这个问题本发明在腿部支撑机构中添加了一种“动态支撑” 的优化效 果。 如图 6所示, 大腿支撑机构组成了一个平行四边形结构 21。 大腿平行四边形 结构在运动时, 可以通过变形达到前后摆腿的动作, 而且可以保持上半身处于 竖直状态, 因为在上面边 22铰接在背部支撑框架上。 同时大腿支撑机构在抬腿 时, 平行四边形机构的前面边和下面边角度会变小, 前面边在膝关节 24处与小 腿前支撑结构在膝关节 27处受齿轮咬合相互作用, 所以抬腿的时候, 大小腿支 撑机构会向膝关节合起来, 大小腿支撑机构作用的相对幅度受转轴 24和转轴 27 半径的大小影响。 又同时因为平行四边形结构的下边在膝关节上, 抬腿的时候 大小腿支撑机构会向膝关节合起来, 所以抬腿的时候小腿前支撑结构 26和膝关 节的角度会发生变化, 而在膝关节上的扫动齿轮 28会和与小腿前支撑结构铰接 的扫动齿轮 29咬合并相互作用, 所以抬腿时扫动齿轮 29会逆时针转动, 同时带 动与之铰接的小腿后支撑结构 30发生变化, 小腿后支撑结构 30会带动与之连接 的脚部杠杆 31和与 31连接的脚部固定结构 32发生变化。 所以抬腿的时候平行四 边形结构 21变形大腿抬腿, 大小腿支撑机构在膝关节合起来, 脚部固定机构 32 和小腿前支撑结构 26角度变大。 因为整个外骨骼腿部支撑机构是相互作用的, 控制机构只要锁死平行四边形结构 21的其中一个转轴, 整条腿都会锁死提供支 持。 同理脚部固定机构在落地的时候, 只要脚部固定机构 33和小腿前支撑机构 2 6的角度不变, 扫动齿轮 29就不会转动, 大小腿支撑机构在膝关节就不会合起来 , 腿部支撑机构就可以提供支撑力。
[0026] “前倾供力”效果主要是为了搭配动态支撑效果设计的。 搭配动态支撑, 就是 腿部在解锁状态迈步前进时, 一条腿向前抬腿迈步, 后腿在迈步时脚部不动, 但腿会向前倾斜, 此时脚部固定结构 32和小腿前支撑结构 26的角度变小 (如图 6 左下图所示) , 在杠杆 31的作用下, 通过后支撑结构 30拉动扫动齿轮 29为膝关 节提供伸张力, 解决在没有外部动力的情况下关节伸张困难的问题, 为外骨骼 提供支撑力。 而且迈步时会随着腿部结构和脚部机构的角度的变化, 进行持续 的支撑变化, 达到“动态支撑” 的效果。
[0027] 所述的控制机构 8如图 5所示, 包括控制锁死结构 34、 压板 35、 大腿前后摆动锁 死结构 36, 所述控制锁死结构 34在承载结构 5上, 上下方向对应压板 35, 所述压 板有弹性结构 37, 压板铰接在背部支撑框架与大腿四边形结构铰接的转轴外壳 3 8上, 所述大腿前后摆锁死机构 36包括压帽 39、 弹簧 40, 和齿轮咬合结构 41, 大 腿前后摆锁死机构在大腿四边形上边的圆柱形结构 22内部, 压帽在压板下圆柱 形结构 22的孔中露出, 连接齿轮咬合结构 41, 齿轮咬合结构接弹簧 40, 固定在 圆柱形结构内壁转轴 42上。 控制机构的主要作用就是在负重运动中, 负重机构 带动重物向下弹动时压住压板 35, 加大压板与转轴 22的摩擦控制侧抬腿运动, 压板压住压帽 39带动齿轮咬合结构 41锁死转轴 43, 锁死腿部支撑机构 17为下弹 的重量提供支持。
[0028] 外骨骼使用方式: 在支撑机构 7的支撑下, 人体提供初始动能, 通过弹性机构 6 把承载身体和负重物体重量的承载机构 5, 沿着滑轨 9的方向转化为上下弹动的 弹性势能, 重量向上或向下的弹动, 可以往复性的减少或增加外骨骼的承重。 在重量向下弹动时承重会增加, 控制机构 8的压板 35会受力锁死支撑机构 7, 替 人体支撑重量。 在重量向上弹动时承重减少、 控制机构张开, 由人体和重量弹 起时的惯性支撑重量并控制迈步。 人体只要维持外骨骼承载机构 5上下弹动的惯 性、 控制迈步, 就能使外骨骼达到有效负重运动的效果。

Claims

权利要求书
[权利要求 1] 一种弹性负重外骨骼, 其特征在于: 包括承载机构、 弹性机构、 支撑 机构和控制机构, 其中: 承载机构在人体的腰胯部与背部, 固定身体 与负重物体并承载重量, 支撑机构是依附于身体背部和腿侧的机械骨 架, 可以支撑重量和迈步, 且与承载机构有可以上下滑动的滑轨连接 , 弹性机构在与滑轨相同的方向, 连接承载机构与支撑机构并提供弹 性, 控制机构在支撑机构的关节处, 可以控制支撑机构在运动时支撑 重量和迈步, 在支撑机构的支撑下, 承载机构带动人体与负重物体, 可以在弹性机构和滑轨的作用下上下弹动, 控制机构控制支撑机构在 向下弹动状态可以支撑重量, 在向上弹动状态可以由人体控制迈步。
[权利要求 2] 根据权利要求 1所述的弹性负重外骨骼, 其特征在于: 所述的承载机 构包括腰胯部固定带、 背部靠板、 承重托盘, 腰胯部固定带后面与背 部靠板刚接, 背部靠板后面与承重托盘刚接, 所述的背部靠板中间有 上下方向的滑轨, 与背部支撑结构的滑轨相互作用。
[权利要求 3] 根据权利要求 1所述的弹性负重外骨骼, 其特征在于: 所述的弹性机 构由弹性材料构成, 连接支撑机构与承载机构, 在支撑机构的支撑下 , 为承载机构提供弹性。
[权利要求 4] 根据权利要求 1所述的弹性负重外骨骼, 其特征在于: 所述的支撑机 构包括背部支撑框架、 两个腿部支撑机构, 所述背部支撑框架, 连接 弹性机构, 中间有上下方向的滑轨, 下面的左右方向各铰接一个腿部 支撑机构; 所述的腿部支撑机构包括大腿支撑机构、 膝关节结构、 小 腿与脚部机构; 所述大腿支撑机构包括四个转轴和四条边, 四个转轴 和四条边构成了一个平行四边形结构, 通过平行四边形的变形来达到 大腿的前后摆动的效果, 平行四边形机构的上边有圆柱形结构, 与背 部支撑框架铰接组成一个左右侧抬腿效果的转轴, 平行四边型机构的 下面边与膝关节一体, 平行四边形机构前面边向下的转轴处, 有与转 轴同圆心的齿轮结构; 所述膝关节结构, 固定大腿四边形结构下边的 两个转轴与小腿前支撑结构向上处转轴, 这三个转轴的距离, 使大腿 四边形机构前边向下处的齿轮结构与小腿前支撑结构向上处的齿轮结 构咬合, 膝关节结构在小腿前支撑结构上面的转轴外, 有与其转轴同 圆心的扇形齿轮结构; 所述小腿与脚部机构包括小腿前支撑结构、 扫 动齿轮、 小腿后支撑结构、 脚部杠杆、 脚部固定结构, 所述小腿前支 撑结构向上的转轴处, 有与转轴同圆心的齿轮结构, 所述扫动齿轮铰 接在小腿前支撑结构后, 与膝关节齿轮结构咬合, 小腿后支撑结构铰 接扫动齿轮和脚部杠杆的后端, 所述的脚部杠杆, 以小腿前支撑结构 下面的转轴为支点, 前端铰接脚部固定结构的前端, 所述的脚部固定 结构, 前端固定身体脚部, 后端与小腿前支撑结构下面的转轴连接。
[权利要求 5] 根据权利要求 1所述的弹性负重外骨骼, 其特征在于: 所述的控制机 构包括锁死控制结构、 压板、 大腿前后摆动锁死结构, 所述锁死控制 结构在承载机构上, 上下方向对应压板, 所述压板有弹性结构, 压板 铰接在背部支撑框架与大腿四边形结构铰接的转轴外壳上, 所述大腿 前后摆锁死机构包括压帽、 弹簧, 和齿轮咬合结构, 大腿前后摆锁死 机构在大腿四边形上边的圆柱形结构内部, 压帽在压板下圆柱形结构 的孔中露出, 连接齿轮咬合结构, 齿轮咬合结构接弹簧, 固定在圆柱 形结构内壁转轴上。
PCT/CN2020/083445 2019-04-17 2020-04-07 弹性负重外骨骼 WO2020211678A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201920522976.3 2019-04-17
CN201920522976.3U CN209868595U (zh) 2019-04-17 2019-04-17 弹性负重外骨骼
CN201910310565.2A CN109968329B (zh) 2019-04-17 2019-04-17 弹性负重外骨骼
CN201910310565.2 2019-04-17

Publications (1)

Publication Number Publication Date
WO2020211678A1 true WO2020211678A1 (zh) 2020-10-22

Family

ID=72836980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083445 WO2020211678A1 (zh) 2019-04-17 2020-04-07 弹性负重外骨骼

Country Status (1)

Country Link
WO (1) WO2020211678A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991000755A1 (en) * 1989-07-05 1991-01-24 Applied Motion Human bipedal locomotion device
KR20140010736A (ko) * 2012-07-16 2014-01-27 대우조선해양 주식회사 착용로봇 무릎관절 토크지원용 탄성기구
CN105437219A (zh) * 2016-01-26 2016-03-30 哈尔滨工业大学 基于双四边形重力平衡原理的变负载上肢助力外骨骼
CN105479438A (zh) * 2015-12-29 2016-04-13 哈尔滨工业大学 弹簧储能弹跳外骨骼
CN205660711U (zh) * 2016-06-03 2016-10-26 河北工业大学 一种辅助负重人体下肢外骨骼
CN106078702A (zh) * 2016-08-23 2016-11-09 哈尔滨工业大学 一种轻型化主被动结合的下肢助力外骨骼机器人
CN109968329A (zh) * 2019-04-17 2019-07-05 景浩 弹性负重外骨骼
CN209868595U (zh) * 2019-04-17 2019-12-31 景浩 弹性负重外骨骼

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991000755A1 (en) * 1989-07-05 1991-01-24 Applied Motion Human bipedal locomotion device
KR20140010736A (ko) * 2012-07-16 2014-01-27 대우조선해양 주식회사 착용로봇 무릎관절 토크지원용 탄성기구
CN105479438A (zh) * 2015-12-29 2016-04-13 哈尔滨工业大学 弹簧储能弹跳外骨骼
CN105437219A (zh) * 2016-01-26 2016-03-30 哈尔滨工业大学 基于双四边形重力平衡原理的变负载上肢助力外骨骼
CN205660711U (zh) * 2016-06-03 2016-10-26 河北工业大学 一种辅助负重人体下肢外骨骼
CN106078702A (zh) * 2016-08-23 2016-11-09 哈尔滨工业大学 一种轻型化主被动结合的下肢助力外骨骼机器人
CN109968329A (zh) * 2019-04-17 2019-07-05 景浩 弹性负重外骨骼
CN209868595U (zh) * 2019-04-17 2019-12-31 景浩 弹性负重外骨骼

Similar Documents

Publication Publication Date Title
CN109968329B (zh) 弹性负重外骨骼
RU2547690C2 (ru) Узел сиденья
US20080290743A1 (en) Energy efficient robotic system
CN106828654B (zh) 一种四足仿生机器人
CN203780643U (zh) 一种机器人足部结构
CN103707951A (zh) 基于人工肌肉驱动的双腿机器人腿部机构
JP2017514640A (ja) 足構造を有するエクソスケルトン
CN108836583B (zh) 一种变杆长齿轮五杆机构主被动型踝关节假肢
CN103505330A (zh) 压力反馈式自动翻身床
CN111906752A (zh) 一种用于增强人体负载运输能力的无源外骨骼机器人
CN209868595U (zh) 弹性负重外骨骼
CN102050156A (zh) 两自由度仿生弹跳机器人
US6705917B2 (en) Self-phase synchronized walking and turning quadruped apparatus
WO2020211678A1 (zh) 弹性负重外骨骼
CN109820358A (zh) 一种智能躺椅
CN107625565A (zh) 基于变胞机构的可穿戴式主动型仿生假肢踝关节机构
CN216781814U (zh) 无源下肢外骨骼的助力装置
CN207012269U (zh) 仿生膝关节及假肢
CN110623817A (zh) 一种无动力髋关节储能助行外骨骼
CN102670368B (zh) 一种基于全向移动底盘的床椅一体化机器人
CN112843615B (zh) 一种可自行调节训练强度的高防护骨科下肢康复锻炼装置
CN211382480U (zh) 一种双平行四边形机构的垂直振动健身装置
CN110897415A (zh) 床板与电动床
CN201767550U (zh) 一种用于儿童使用的床、车、椅的摇摆机构
CN211984642U (zh) 一种多功能摇摇椅

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20790618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20790618

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20790618

Country of ref document: EP

Kind code of ref document: A1