WO2020211540A1 - 液晶镜片以及液晶眼镜 - Google Patents

液晶镜片以及液晶眼镜 Download PDF

Info

Publication number
WO2020211540A1
WO2020211540A1 PCT/CN2020/076768 CN2020076768W WO2020211540A1 WO 2020211540 A1 WO2020211540 A1 WO 2020211540A1 CN 2020076768 W CN2020076768 W CN 2020076768W WO 2020211540 A1 WO2020211540 A1 WO 2020211540A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
electrode
liquid crystal
substrate
electrodes
Prior art date
Application number
PCT/CN2020/076768
Other languages
English (en)
French (fr)
Inventor
王海燕
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/964,499 priority Critical patent/US20210231978A1/en
Publication of WO2020211540A1 publication Critical patent/WO2020211540A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length
    • G02C7/081Ophthalmic lenses with variable focal length
    • G02C7/083Electrooptic lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/20Diffractive and Fresnel lenses or lens portions

Definitions

  • At least one embodiment of the present disclosure relates to a liquid crystal lens and liquid crystal glasses.
  • Liquid crystal has large photoelectric anisotropy, and has been widely used in various optical devices, such as liquid crystal displays, liquid crystal lenses, liquid crystal phase retarders, etc.
  • Liquid crystal glasses are another research hotspot after liquid crystal displays, including single round electrode liquid crystal glasses, pattern electrode liquid crystal glasses, and embossed shape liquid crystal glasses.
  • At least one embodiment of the present disclosure provides a liquid crystal lens and liquid crystal glasses.
  • At least one embodiment of the present disclosure provides a liquid crystal lens, including: a first substrate, a second substrate opposite to the first substrate, and a liquid crystal layer located between the first substrate and the second substrate; A first electrode located on the side of the first substrate facing the second substrate and a second electrode located on the side of the second substrate facing the first substrate; a Fresnel lens located on the first substrate and Between the liquid crystal layers, the Fresnel lens includes a flat first surface and a second surface provided with tooth patterns, and the liquid crystal layer is located on the second surface away from the first surface.
  • the first electrode is located on a side of the Fresnel lens facing the first substrate, and the first electrode includes a plurality of sub-electrodes separated from each other.
  • the Fresnel lens includes a central part and a plurality of annular parts surrounding the central part, and the orthographic projection of the central part on the first substrate is a circle, pointing from the center of the circle In the direction of the circumference, the thickness of each of the central portion and the plurality of annular portions gradually changes, and the thickness change trend of the two is the same;
  • the plurality of sub-electrodes include a central electrode and a ring surrounding the central electrode And the center of the circle is located in the orthographic projection of the central electrode on the first substrate.
  • the plurality of sub-electrodes are arranged in layers, an insulating layer is arranged between two adjacent layers of sub-electrodes, and the center of the circle points to the direction of the circumference.
  • the thickness of each of the plurality of sub-electrodes gradually decreases, and the distance between the first part of the sub-electrodes corresponding to the center portion and the first substrate in the plurality of sub-electrodes gradually decreases, and the distance between the plurality of sub-electrodes and the ring-shaped
  • the distance between each corresponding second part of the sub-electrode of the part and the first substrate gradually decreases.
  • the plurality of sub-electrodes are arranged in layers, an insulating layer is arranged between two adjacent layers of sub-electrodes, and the center of the circle points to the direction of the circumference.
  • the thickness of each of the plurality of sub-electrodes gradually increases, and the distance between the first part of the sub-electrodes corresponding to the central portion and the first substrate in the plurality of sub-electrodes gradually increases, and among the plurality of sub-electrodes and the ring-shaped The distance between each corresponding second partial sub-electrode of the portion and the first substrate gradually increases.
  • the dielectric constant of the insulating layer is approximately the same as the dielectric constant of the Fresnel lens.
  • the number of layers of the first partial sub-electrodes and the second partial sub-electrodes are both N layers, and along the direction perpendicular to the first substrate, the m-th layer of the first partial sub-electrodes is away from the first
  • the distance of the substrate is equal to the distance between the second partial sub-electrodes of the mth layer and the first substrate, N ⁇ 3, N ⁇ m ⁇ 1.
  • the plurality of sub-electrodes include a plurality of first sub-electrode groups located in the same layer, and each of the plurality of ring-shaped portions and the central portion correspond to the plurality of first sub-electrode groups one-to-one, so
  • Each of the plurality of first sub-electrode groups includes at least two sub-electrodes that are insulated from each other, and are directed from the center of the circle to the circumferential direction, and the thickness of each of the center portion and the plurality of annular portions Are gradually reduced, the at least two sub-electrodes are configured to gradually reduce the applied voltage; or, from the center of the circle to the direction of the circumference, the center part and each of the plurality of ring parts The thicknesses of the at least two sub-electrodes are gradually increased, and the at least two sub-electrodes are configured to gradually increase the applied voltage.
  • each of the plurality of first sub-electrode groups includes two sub-electrodes, and each of the plurality of first sub-electrode groups is provided with a high resistance film on a side facing the Fresnel lens, and the high The barrier film is broken at a gap between two adjacent first sub-electrode groups in the plurality of first sub-electrode groups.
  • the size of the overlapping portion of the sub-electrode and the high-resistance film is 1/2 to 1/5 of the size of the sub-electrode.
  • the size of the sub-electrode is 4.0 ⁇ m-6.5 ⁇ m.
  • the plurality of sub-electrodes include a first electrode group corresponding to the central portion and a second electrode group corresponding to each of the plurality of ring portions, the first electrode group and the second electrode
  • the groups each include at least two second sub-electrode groups, each of the at least two second sub-electrode groups includes at least two third sub-electrodes located in different layers, from the center of the circle to the circumferential direction, The thickness of each of the central portion and the plurality of annular portions gradually decreases, and in each of the second sub-electrode groups, the distance between the at least two third sub-electrodes and the first substrate Gradually decrease, and the at least two third sub-electrodes are configured to apply the same voltage; or from the center of the circle to the direction of the circumference, the center part and each of the plurality of ring parts In each of the second sub-electrode groups, the distance between the at least two third sub-electrodes and the first substrate gradually increases,
  • the number of layers of the third sub-electrodes in the first electrode group and the second electrode group are both P layers, and along a direction perpendicular to the first substrate, the qth sub-electrode in the second electrode group
  • the distance between the third sub-electrode of the first layer and the first substrate is equal to the distance between the third sub-electrode of the qth layer in the first electrode group and the first substrate, P ⁇ 2, P ⁇ q ⁇ 1, from the The center of the circle points in the direction of the circumference, the thickness of each of the central portion and the plurality of annular portions gradually decreases, and the at least two second sub-electrode groups corresponding to the central portion are
  • the applied voltage is configured to gradually decrease, and the at least two second sub-electrode groups corresponding to each of the plurality of ring-shaped portions are configured to gradually decrease the applied voltage; or, from the circular The center of the circle points in the direction of the circumference, the thickness of each of the central part and the pluralit
  • the number of the second sub-electrode groups included in the first electrode group and the second electrode group is the same, and the at least two second sub-electrode groups corresponding to the central portion are different from those corresponding to the
  • the at least two second sub-electrode groups of the plurality of ring portions are electrically connected in a one-to-one correspondence, and correspond to the at least two second sub-electrode groups of the two adjacent ring portions of the plurality of ring portions One to one electrical connection.
  • the refractive index of the liquid crystal in the liquid crystal layer is configured to vary between a first refractive index n1 and a second refractive index n2, and the refractive index n0 of the Fresnel lens satisfies: n1 ⁇ n0 ⁇ n2.
  • At least one embodiment of the present disclosure provides a liquid crystal lens, including: a first substrate, a second substrate opposite to the first substrate, and a liquid crystal layer located between the first substrate and the second substrate; A first electrode located on the side of the first substrate facing the second substrate and a second electrode located on the side of the second substrate facing the first substrate; a Fresnel lens located on the first substrate and Between the liquid crystal layers, the Fresnel lens includes a flat first surface and a second surface provided with tooth patterns, and the liquid crystal layer is located on the second surface away from the first surface. One side.
  • the first electrode is a continuous electrode located on the second surface of the Fresnel lens.
  • the first electrode is conformally formed on the second surface of the Fresnel lens.
  • the thickness of the first electrode in a direction perpendicular to the first substrate is 0.04 ⁇ m-0.07 ⁇ m.
  • At least one embodiment of the present disclosure provides a liquid crystal glasses including any of the above liquid crystal lenses.
  • 1A is a schematic diagram of a partial cross-sectional structure of liquid crystal glasses
  • FIG. 1B is a schematic plan view of the liquid crystal glasses shown in FIG. 1A taken along line AA;
  • 1C is an enlarged schematic view of the deflection state of the liquid crystal in the region 1 above the center of the Fresnel lens when an intermediate state voltage is applied to the first transparent electrode;
  • FIG. 2A is a schematic partial cross-sectional view of a liquid crystal lens provided by an example of an embodiment of the present disclosure
  • FIG. 2B is a schematic plan view of the liquid crystal lens shown in FIG. 2A taken along line BB;
  • FIG. 2C is another schematic diagram of the arrangement of the first electrodes in the area C shown in FIG. 2A;
  • 2D is another schematic diagram of the arrangement of the first electrodes in the area C shown in FIG. 2A;
  • FIG. 2E is a schematic partial cross-sectional view of a liquid crystal lens provided by another example of an embodiment of the present disclosure.
  • 3A is a schematic partial cross-sectional view of a liquid crystal lens provided by another example of an embodiment of the present disclosure.
  • 3B is a schematic partial cross-sectional view of a liquid crystal lens provided by another example of an embodiment of the present disclosure.
  • FIG. 4A is a schematic partial cross-sectional view of a liquid crystal lens provided by another example of an embodiment of the present disclosure.
  • FIG. 4B is an enlarged schematic diagram of area D in FIG. 4A;
  • FIG. 5 is a schematic partial cross-sectional view of a liquid crystal lens provided by another embodiment of the present disclosure.
  • FIGS. 2A-2D and 3A-5 are schematic diagrams of the deflection state of the liquid crystal in the region above the center of the Fresnel lens when the intermediate voltage is applied to the first electrode in the embodiment shown in FIGS. 2A-2D and 3A-5.
  • FIG. 1A is a schematic partial cross-sectional structure diagram of a liquid crystal glasses
  • FIG. 1B is a schematic plan view of the liquid crystal glasses shown in FIG. 1A taken along line AA.
  • the liquid crystal glasses include a first transparent substrate 10, a second transparent substrate 20, and a liquid crystal layer 30 located between the first transparent substrate 10 and the second transparent substrate 20, which are arranged opposite to each other.
  • the side of the first transparent substrate 10 facing the second transparent substrate 20 is provided with a whole-surface first transparent electrode 40
  • the side of the second transparent substrate 20 facing the first transparent substrate 10 is provided with a whole-surface second transparent electrode 50
  • a Fresnel lens 60 is provided on the side of the first transparent electrode 40 facing the liquid crystal layer 30.
  • the first surface 61 of the Fresnel lens 60 facing the first transparent electrode 40 may be a flat surface, and the Fresnel lens 60 is disposed on the second surface 62 facing the liquid crystal layer 30.
  • the Fresnel wave zone is composed of a circle in the center and a plurality of rings arranged concentrically with the circle. The circle and each ring are a wave zone of the Fresnel wave zone.
  • the Fresnel lens 60 includes a center portion 63 corresponding to the circle of the Fresnel zone center and an annular portion 64 corresponding to the ring shape of the Fresnel zone.
  • the liquid crystal in the liquid crystal layer 30 has a birefringence, the refractive index of the liquid crystal in the power-off state is an abnormal light refractive index, and the refractive index in the power-on state is the normal light refractive index.
  • the liquid crystal is a positive light liquid crystal, and its abnormal light refractive index is greater than the normal light refractive index, for example, the normal light refractive index is about 1.5, and the abnormal light refractive index is about 1.6 to 1.8.
  • a material having a refractive index substantially equal to the extraordinary light refractive index of the liquid crystal can be selected.
  • the liquid crystal may be a rod-shaped liquid crystal.
  • the liquid crystal is in a horizontal state when the power is off, that is, the long axis of the liquid crystal is parallel to the first transparent substrate 10 (as shown in FIG. 1A), and the liquid crystal is in a vertical state when the power is on, that is, the length of the liquid crystal.
  • the axis is perpendicular to the first transparent substrate 10.
  • the liquid crystal when the voltages of the first transparent electrode 40 and the second transparent electrode 50 are both 0V, the liquid crystal is in a power-off state, and its refractive index is approximately equal to the refractive index of the Fresnel lens 60, so that the liquid crystal layer 30 and the Fresnel lens
  • the lens 60 is equivalent to a flat dielectric layer.
  • the parallel light (such as linearly polarized light) incident on the liquid crystal glasses from the first transparent substrate 10 will not change the propagation direction, that is, the light emitted from the second transparent substrate 20 is still parallel light.
  • the liquid crystal when a high voltage is applied to the first transparent electrode 40, the liquid crystal is under a strong electric field, the deflection of the liquid crystal is uniform, and the refractive index of the liquid crystal layer 30 is smaller than the refractive index of the Fresnel lens 60.
  • the parallel light incident on the liquid crystal glasses from the first transparent substrate 10 is condensed at the interface between the Fresnel lens 60 and the liquid crystal layer 30, and the liquid crystal glasses at this time function as a condensing lens. In this way, the liquid crystal glasses can be switched between the light gathering and transmission functions.
  • the structure shown in FIG. 1A is equivalent to a Fresnel lens structure, which is equivalent to a Fresnel lens structure by controlling the deflection of the liquid crystal by an electric field to control the arrangement of the liquid crystal, which can avoid the difficulty of forming the Fresnel period by controlling the liquid crystal deflection through the electrode. Achieve precise control and cause great crosstalk problems.
  • the inventor of the present application found that when an intermediate state voltage (for example, a 3.5V voltage) is applied to the first transparent electrode, the difference in the thickness of the Fresnel lens at different positions will cause the electric field acting on the liquid crystal to be different. Evenly distributed. Under the action of the applied electric field generated by the intermediate state voltage, the induced electric field generated at the position of the greater the thickness of the Fresnel lens will have a greater impact on the weakening of the applied electric field. Therefore, the position where the thickness of the Fresnel lens is larger corresponds to the The weaker the electric field strength of the liquid crystal is, which results in uneven deflection of the liquid crystal on the Fresnel lens with different thicknesses.
  • FIG. 1C is an enlarged schematic diagram of the deflection state of the liquid crystal in the region 1 above the center of the Fresnel lens when an intermediate voltage is applied to the first transparent electrode.
  • the liquid crystal in the region 2 above the thinner position (low arch area) in the center is basically in a normal deflection state (perpendicular to the first A transparent substrate), the portion of the liquid crystal in the region 3 above the thicker position (high arch area) in the center is still in an undeflected state (parallel to the first transparent substrate).
  • the refractive index of each position of the liquid crystal layer is not uniform, and stray light will appear, resulting in blurred imaging. Therefore, the liquid crystal in the liquid crystal glasses shown in FIG. 1A can only be at two different refractive indexes, and the continuous change of the refractive index cannot be realized, and the power of the glasses cannot be adjusted.
  • the embodiments of the present disclosure provide a liquid crystal lens and liquid crystal glasses.
  • the liquid crystal lens includes: a first substrate, a second substrate opposed to the first substrate, a liquid crystal layer located between the first substrate and the second substrate, a first electrode located on the side of the first substrate facing the second substrate, and The second electrode on the side of the second substrate facing the first substrate and a Fresnel lens located between the first substrate and the liquid crystal layer.
  • the Fresnel lens includes a flat first surface opposite to each other and a second surface provided with tooth patterns, and the liquid crystal layer is located on the side of the second surface away from the first surface.
  • the first electrode is located on a side of the Fresnel lens facing the first substrate, and the first electrode includes a plurality of sub-electrodes separated from each other.
  • the voltage of a plurality of sub-electrodes can be controlled to achieve a uniform and continuous change in the refractive index of the liquid crystal, thereby achieving continuous adjustment of the power of the liquid crystal lens.
  • FIG. 2A is a schematic partial cross-sectional view of a liquid crystal lens provided by an example of an embodiment of the present disclosure
  • FIG. 2B is a schematic plan view of the liquid crystal lens shown in FIG. 2A taken along line BB.
  • the liquid crystal lens includes: a first substrate 100, a second substrate 200 arranged in parallel with the first substrate 100, a liquid crystal layer 300 located between the first substrate 100 and the second substrate 200, and the first substrate The first electrode 400 on the side of the second substrate 200 facing the second substrate 200 and the second electrode 500 on the side of the second substrate 200 facing the first substrate 100.
  • Both the first substrate 100 and the second substrate 200 in the embodiment of the present disclosure are transparent substrates to achieve light transmission.
  • the material of the first substrate 100 and the second substrate 200 may be a glass substrate, or a transparent material such as polydimethylsiloxane (PDMS) or polymethylmethacrylate (PMMA) may be used to avoid the first substrate 100 and the second substrate 200 affect the transmittance of light.
  • PDMS polydimethylsiloxane
  • PMMA polymethylmethacrylate
  • the first electrode 400 and the second electrode 500 in the embodiment of the present disclosure are both transparent electrodes to achieve light transmission.
  • the material of the first electrode 400 and the second electrode 500 may be a transparent conductive metal oxide or a transparent conductive organic polymer material.
  • the material of the first electrode 400 and the second electrode 500 may be indium tin oxide or indium zinc oxide to ensure the transparency of the two electrodes.
  • the thickness of the first electrode 400 in a direction perpendicular to the first substrate 100 may be 0.04 ⁇ m-0.07 ⁇ m.
  • the liquid crystal lens further includes a Fresnel lens 600 located on the side of the first substrate 100 facing the liquid crystal layer 300.
  • the Fresnel lens 600 includes a flat first surface 610 opposite to each other and a first surface 610 provided with tooth patterns. Two surfaces 620, and the liquid crystal layer 300 is located on the side of the second surface 620 of the Fresnel lens 600 away from the first surface 610.
  • the second surface 620 of the Fresnel lens 600 is provided with tooth patterns at intervals of Fresnel zone Distribution structure.
  • the Fresnel lens 600 includes a center portion 621 corresponding to the center circle of the Fresnel zone and a plurality of ring portions 622 surrounding the center portion 621.
  • the ring portion 622 corresponds to the ring shape of the Fresnel zone. 621 and the ring portion 622 are concentric structures.
  • the orthographic projection of the central portion 621 on the first substrate 100 is a circle, from the center of the circle to the direction of the circumference, the thickness of the central portion 621 gradually changes, and the thickness of each ring portion 622 It changes gradually, and the thickness change trend of the central portion 621 and each annular portion 622 is the same.
  • the thickness change trend of the central portion 621 and each annular portion 622 is the same.
  • the thickness of the Fresnel lens 600 at the position of the center part 621 gradually decreases, that is, the part of the center part 621 closer to the ring part 622
  • the smaller the thickness of, the second surface 620 of the central portion 621 of the Fresnel lens 600 is a spherical surface.
  • the thickness of the Fresnel lens 600 at the position of each ring-shaped portion 622 gradually decreases from approaching the central portion 621 toward the direction away from the central portion 621.
  • the size of the ring portion 622 is not less than 25 ⁇ m.
  • the first electrode 400 is located on a side of the first surface 610 of the Fresnel lens 600 facing the first substrate 100, and the first electrode 400 includes a plurality of sub-electrodes 410 separated from each other.
  • the first electrode is configured to include a plurality of sub-electrodes separated from each other, and the voltage of the plurality of sub-electrodes can be separately controlled to make up for the problem of uneven electric field distribution caused by the thickness of the Fresnel lens. Therefore, the deflection of the liquid crystal is approximately uniform, and the continuous change of the refractive index of the liquid crystal and the continuous adjustment of the degree of the liquid crystal lens are realized.
  • the side of the second electrode 500 facing the liquid crystal layer 300 and the side of the Fresnel lens 600 facing the liquid crystal layer 300 are respectively provided with alignment films with the same alignment direction, so that the optical axis of the liquid crystal is parallel to when the liquid crystal is not subjected to an electric field.
  • the first substrate 100 The first substrate 100.
  • the side of the first electrode 400 away from the Fresnel lens 600 may further include a polarizing layer (not shown), and the polarized light emitted after the incident light passes through the polarizing layer may be modulated by the Fresnel lens 600 and the liquid crystal layer 300. Then, it exits from the second substrate 200.
  • the above-mentioned polarizing layer may be disposed between the first electrode and the first substrate, or may be disposed on the side of the first substrate away from the first electrode, which is not limited in the embodiments of the present disclosure.
  • the embodiments of the present disclosure are not limited to disposing a polarizing layer on the liquid crystal lens, and a matching liquid crystal with exactly the same structure as the liquid crystal lens can be stacked on the side of the second substrate 200 of the liquid crystal lens shown in FIG. 2A far away from the first substrate 100.
  • the difference between the matched liquid crystal lens and the liquid crystal lens shown in FIG. 2A is that the orientation directions of the alignment films of the two are perpendicular to each other to modulate the two polarized light components perpendicular to each other in natural light.
  • the liquid crystals in the liquid crystal layer 300 are anisotropic crystals.
  • liquid crystal as a single-axis crystal as an example, when a beam of polarized light passes through a single-axis crystal, two beams of polarized light will be formed. This phenomenon is called birefringence.
  • the refractive index of uniaxial liquid crystal light is n y and n z when propagating in the x direction, and the refractive indices are n x and n z when propagating in the y direction.
  • n x the refractive index of uniaxial liquid crystal light
  • n x and n z when propagating in the y direction.
  • the propagation direction of light is not on the xyz axis, generally the light whose vibration direction is perpendicular to the optical axis is called normal light, and the light whose vibration direction is parallel to the optical axis is called abnormal light.
  • the refractive index of normal light is defined as n ⁇
  • the refractive index of abnormal light is defined as n ⁇
  • the refractive index of the liquid crystal in the liquid crystal layer 300 is configured to vary between the first refractive index n1 and the second refractive index n2, and one of the first refractive index n1 and the second refractive index n2 is normal light refraction
  • the other is the abnormal optical refractive index, which is described by taking n1>n2 as an example.
  • the embodiment of the present disclosure takes the liquid crystal as a positive light liquid crystal as an example for description, the refractive index of the liquid crystal in the power-off state (the state shown in Figure 2A) It is the abnormal light refractive index, and the refractive index in the energized state is the normal light refractive index.
  • the refractive index n0 of the Fresnel lens 600 satisfies: n1 ⁇ n0 ⁇ n2.
  • the long axis of the liquid crystal is parallel to the first substrate 100 (the state shown in FIG. 2A), and the vibration direction of the incident polarized light is parallel to the light of the liquid crystal.
  • the refractive index of the liquid crystal is n1;
  • the liquid crystal is subjected to a strong electric field, and its long axis is perpendicular to the first substrate 100.
  • the incident polarized light The vibration direction of is perpendicular to the optical axis of the liquid crystal, and the refractive index of the liquid crystal is n2.
  • the refractive index of the Fresnel lens 600 is the same as the refractive index of the liquid crystal layer 300 in the power-off state.
  • the Fresnel lens 600 and the liquid crystal layer 300 can be used as a flat plate structure and has no effect on the propagation direction of incident parallel light.
  • the liquid crystal is in the energized state, since the refractive index of the Fresnel lens 600 is greater than the refractive index of the liquid crystal layer 300 in the energized state, the parallel light incident on the interface between the Fresnel lens 600 and the liquid crystal layer 300 is condensed.
  • the combination of the Er lens 600 and the liquid crystal layer 300 functions as a condensing lens. In this way, the liquid crystal lens can be switched between the light collection and transmission functions.
  • the refractive index of the Fresnel lens 600 is the same as the refractive index of the liquid crystal layer 300 in the energized state.
  • the Fresnel lens 600 and the liquid crystal layer 300 It can be used as a flat plate structure and has no effect on the propagation direction of incident parallel light.
  • the liquid crystal is in the power-off state, since the refractive index of the Fresnel lens 600 is smaller than the refractive index of the liquid crystal layer 300 in the power-off state, the parallel light incident on the interface between the Fresnel lens 600 and the liquid crystal layer 300 is diffused.
  • the combination of the Fresnel lens 600 and the liquid crystal layer 300 functions as a divergent lens. As a result, the liquid crystal lens can switch between divergent light and transmission functions.
  • the refractive index of the Fresnel lens 600 is greater than the refractive index of the liquid crystal layer 300 in the energized state.
  • the Fresnel lens The parallel light at the interface between 600 and the liquid crystal layer 300 is condensed, and the combination of the Fresnel lens 600 and the liquid crystal layer 300 functions as a condensing lens.
  • the liquid crystal When the liquid crystal is in the power-off state, since the refractive index of the Fresnel lens 600 is smaller than the refractive index of the liquid crystal layer 300 in the power-off state, the parallel light incident on the interface between the Fresnel lens 600 and the liquid crystal layer 300 is diverged.
  • the combination of the Nell lens 600 and the liquid crystal layer 300 functions as a divergent lens.
  • the liquid crystal lens can switch between the functions of diverging light and converging light.
  • the refractive index of the Fresnel lens can be matched with the refractive index of the liquid crystal layer to realize the switching of the liquid crystal lens between multiple functions.
  • the plurality of sub-electrodes 410 include a center electrode 411 and a ring electrode 412 surrounding the center electrode 411, and the center electrode 411 corresponds to the center of the circle, that is, the center of the circle is located on the center electrode 411.
  • the center electrode 411 corresponds to the center of the circle, that is, the center of the circle is located on the center electrode 411.
  • the center electrode 411 may be circular
  • the ring electrode 412 may have a circular ring shape
  • the center electrode 411 and the ring electrode 412 may have a concentric structure.
  • a plurality of sub-electrodes 410 are arranged in layers, and an insulating layer 700 is arranged between two adjacent layers of sub-electrodes 410.
  • the multiple sub-electrodes corresponding to the central portion or each ring portion are located in different layers.
  • the distance between the part of the sub-electrodes 410 corresponding to the central portion 621 of the plurality of sub-electrodes 410 and the first substrate 100 gradually decreases.
  • the orthographic projection of a portion of the sub-electrodes 410 corresponding to the central portion 621 of the plurality of sub-electrodes 410 on the first substrate 100 is located within the orthographic projection of the central portion 621 on the first substrate 100.
  • This portion of the sub-electrodes 410 includes a central electrode 411 and There are at least two ring electrodes 412, and these part of the sub-electrodes 410 are located in different layers. In a direction parallel to the first substrate and from close to the central portion 621 to away from the central portion 621, the distance of a part of the sub-electrodes 410 corresponding to each annular portion 622 among the plurality of sub-electrodes 410 from the first substrate 100 gradually decreases.
  • the orthographic projection of a part of the sub-electrodes 410 corresponding to each ring-shaped portion 622 among the plurality of sub-electrodes 410 on the first substrate 100 is within the orthographic projection of a ring-shaped portion 622 on the first substrate 100, and all the sub-electrodes 410 are They are ring-shaped electrodes 412 and are located on different layers.
  • the number of layers of the first partial sub-electrode 410 corresponding to the central portion 621 and the number of layers of the second partial sub-electrode 410 corresponding to the ring portion 622 are both N layers, and they are perpendicular to the first In the direction of the substrate 100, the distance between the m-th layer first partial sub-electrode 410 and the first substrate 100 is equal to the distance between the m-th layer second partial sub-electrode 410 and the first substrate 100, N ⁇ 3, N ⁇ m ⁇ 1. 2A takes N being 3 as an example, but it is not limited to this.
  • the number of layers of the sub-electrode 410 may be 3-8.
  • the number of layers and the width of the sub-electrodes are determined according to the size of the central part and the ring part parallel to the first substrate.
  • multiple sub-electrodes 410 can be electrically connected to reduce the number of leads and reduce the process difficulty.
  • the multiple sub-electrodes 410 may all be applied with the same voltage, which may be an intermediate state voltage (for example, 3.5V) plus 1.5V to 3.2V.
  • the plurality of sub-electrodes may not be limited to being electrically connected to achieve the same voltage application, and the plurality of sub-electrodes may not be electrically connected, but the same voltage may be applied respectively.
  • the embodiments of the present disclosure are not limited to this.
  • the distance between the sub-electrode 410 and the interface between the Fresnel lens 600 and the liquid crystal layer 300 is adjusted so that the liquid crystal at each position is subjected to the electric field and the molecular force between the liquid crystals, and is located at different thicknesses.
  • the degree of deflection of the liquid crystal on the Er lens 600 is approximately the same, thereby improving the phenomenon of uneven deflection of the liquid crystal. Therefore, in the embodiments of the present disclosure, different intermediate state voltages can be applied to the sub-electrodes to achieve continuous changes in the refractive index of the liquid crystal layer, so that the liquid crystal lens can be used as a high-quality continuous zoom lens.
  • the dielectric constant of the insulating layer 700 is approximately the same as the dielectric constant of the Fresnel lens 600 so that the influence of the insulating layer 700 on the electric field is equivalent to the influence of the Fresnel lens 600 on the electric field.
  • FIG. 2A schematically shows that an insulating layer 700 is provided between the sub-electrode 410 closest to the Fresnel lens 600 and the Fresnel lens 600.
  • a flat layer for flattening is provided.
  • the refractive index of the insulating layer 700 may be approximately the same as the refractive index of the Fresnel lens 600.
  • the distance between the center electrode 411 and the second electrode 500 Comprehensive factors such as the distance and the molecular force between the liquid crystals, the distance H1 and the center of the ring electrode 412 from the interface between the Fresnel lens 600 and the liquid crystal layer 300 (the second surface 620 of the Fresnel lens 600) can be obtained through experimental simulation.
  • the distance H0 between the electrode 411 and the second surface 620 is such that the deflection of the liquid crystal corresponding to each position of the central portion 621 is substantially uniform.
  • the distance between the center electrode 411 and the second electrode 500 and the distance between the center electrode 411 and the second surface 620 can be used as reference to set the distance between the other ring electrode 412 and the second electrode 500 and the ring electrode 412 According to the distance from the second surface 620, the thickness of the insulating layer 700 can be obtained according to the above distance.
  • FIG. 2A schematically shows that the orthographic projections of the sub-electrodes 410 in different layers corresponding to the central portion 621 or the annular portion 622 on the first substrate 100 are not overlapped, and the number of layers of the sub-electrodes 410 is three. Case.
  • FIG. 2C is another schematic diagram of the arrangement of the first electrodes in the area C shown in FIG. 2A.
  • the orthographic projection of the sub-electrodes 410 of each layer on the first substrate is connected, that is, along the direction perpendicular to the first substrate, one end of the sub-electrode 410 of each layer is connected to the sub-electrode 410 on one side thereof.
  • One end is aligned, and the other end of the sub-electrode 410 is aligned with one end of the sub-electrode 410 on the other side.
  • FIG. 2D is another schematic diagram of the arrangement of the first electrodes in the area C shown in FIG. 2A.
  • FIG. 2D compared to the example shown in Figure 2A, in order to make the liquid crystal deflection more uniform, more layers can be provided when the distance between the first substrate and the first surface of the Fresnel lens is constant. Sub-electrode.
  • FIG. 2E is a schematic partial cross-sectional view of a liquid crystal lens provided by another example of an embodiment of the disclosure.
  • the difference from the liquid crystal lens shown in FIG. 2A is that the thickness of the central portion 621 gradually increases from the center of the circle to the direction of the circumference, that is, the portion of the central portion 621 closer to the ring portion 622 The greater the thickness of, and the direction from the center of the circle to the circumference, the thickness of each ring portion 622 gradually increases.
  • a plurality of sub-electrodes 410 are arranged in layers, and an insulating layer 700 is arranged between two adjacent layers of sub-electrodes 410.
  • the distance from the first substrate 100 to the part of the sub-electrodes 410 corresponding to the central portion 621 of the plurality of sub-electrodes 410 gradually increases. From the direction closer to the central portion 621 to the direction away from the central portion 621, the distance of a part of the sub-electrodes 410 corresponding to each ring-shaped portion 622 among the plurality of sub-electrodes 410 from the first substrate 100 gradually increases.
  • multiple sub-electrodes 410 may be electrically connected to reduce the number of leads and reduce the process difficulty.
  • the multiple sub-electrodes 410 may all be applied with the same voltage, and the voltage may be an intermediate state voltage (for example, 3.5V) plus 1.5V ⁇ 3.2V.
  • the plurality of sub-electrodes may not be limited to being electrically connected to achieve the same voltage application, and the plurality of sub-electrodes may not be electrically connected, but the same voltage may be applied respectively.
  • the embodiments of the present disclosure are not limited to this.
  • the distance between the sub-electrode 410 and the interface between the Fresnel lens 600 and the liquid crystal layer 300 is adjusted so that the electric field received by the liquid crystal at each position and the molecular force between the liquid crystals are placed in the Fresnel lens.
  • the degree of deflection of the liquid crystal at different thickness positions of 600 is approximately the same, thereby improving the phenomenon of uneven deflection of the liquid crystal. Therefore, in the embodiments of the present disclosure, different intermediate state voltages can be applied to the sub-electrodes to achieve continuous changes in the refractive index of the liquid crystal layer, so that the liquid crystal lens can be used as a high-quality continuous zoom lens.
  • FIG. 3A is a schematic partial cross-sectional view of a liquid crystal lens provided by another example of an embodiment of the present disclosure. As shown in FIG. 3A, the difference from the liquid crystal lens shown in FIG. 2A is the distribution of multiple sub-electrodes. As shown in FIG. 3A, the plurality of sub-electrodes 410 in this example includes a plurality of first sub-electrode groups 420 located in the same layer, and each first sub-electrode group 420 includes a first sub-electrode 421 and a second sub-electrode that are insulated from each other. 422.
  • the first sub-electrode 421 includes a center electrode 411 and a ring electrode 412 located at one end of the ring portion 622 close to the center portion 621.
  • the second sub electrode 422 includes a circular orthographic projection on the first substrate 100 located at the center portion 621.
  • the ring electrode 412 located at the end of the ring portion 622 away from the center portion 621. That is, the central portion 621 and each ring-shaped portion 622 respectively correspond to a first sub-electrode group 420, and the second sub-electrode 422 in each first sub-electrode group 420 is farther away from the central portion than the first sub-electrode 421 The center of 621.
  • the first sub-electrode 421 is located at a position where the thickness of the Fresnel lens 600 is relatively thick
  • the second sub-electrode 422 is located at a position where the thickness of the Fresnel lens 600 is relatively thin.
  • the thickness of the center portion 621 of the Fresnel lens 600 gradually decreases, and the thickness of each ring portion 622 gradually decreases
  • the first sub-electrode 421 and the second sub-electrode 422 included in each first sub-electrode group 420 are configured to apply different voltages, and the voltage applied to the first sub-electrode 421 is greater than the voltage applied to the second sub-electrode 422 .
  • the second sub-electrode 422 is configured to apply the same voltage as the intermediate state voltage applied by the structure shown in FIG. 1A, and the voltage applied to the first sub-electrode 421 is 1.5V ⁇ 3.2 more than the voltage applied to the second sub-electrode 422 V.
  • the voltage applied to the first sub-electrode 421 may be determined according to the influence of the thickness of the Fresnel lens 600 on the electric field. At this time, compared to the structure shown in FIG.
  • the voltage applied to the second sub-electrode 422 of the embodiment of the present disclosure is still the original intermediate state voltage, and the first sub-electrode located at the thicker position of the Fresnel lens 600
  • the voltage applied to the electrode 421 is slightly greater than the original intermediate state voltage, which can make up for the influence of the Fresnel lens 600 on the electric field as much as possible.
  • the thickness of the center part of the Fresnel lens gradually increases, and the thickness of each ring part gradually increases (as shown in the figure)
  • the Fresnel lens shown in 2E) the first sub-electrode and the second sub-electrode included in each first sub-electrode group are configured to apply different voltages, and the voltage applied to the first sub-electrode is smaller than that of the second sub-electrode The voltage being applied.
  • the first sub-electrode is configured to apply the same voltage as the intermediate state voltage applied by the structure shown in FIG.
  • the voltage applied to the second sub-electrode is 1.5V ⁇ 3.2V more than the voltage applied to the first sub-electrode.
  • the voltage applied to the second sub-electrode can be determined according to the influence of the thickness of the Fresnel lens on the electric field.
  • the voltage applied to the first sub-electrode of the embodiment of the present disclosure is still the original intermediate state voltage, and the second sub-electrode located at the thicker Fresnel lens is The applied voltage is slightly larger than the original intermediate state voltage, which can make up for the influence of the Fresnel lens on the electric field as much as possible.
  • the group 420 is provided with a high-resistance film 800 on the side facing the Fresnel lens 600, and the material of the high-resistance film 800 is a transparent material with high resistance.
  • the material of the high resistance film 800 may include one or more of silicon oxide, silicon nitride, silicon carbide, aluminum oxide, or transparent polymer materials.
  • the sheet resistance of the high resistance film 800 is 10 3 to 10 7 ⁇ /sq.
  • the high-resistance film 800 disposed between the first sub-electrode 421 and the second sub-electrode 422 can realize a voltage gradient change in a direction in which the center of the circle points to the circumference.
  • the planar shape of the high-resistance film in the embodiment of the present disclosure is determined according to the shape of the sub-electrode, for example, it is also a circular ring.
  • the high-resistance film 800 is disconnected at the gap between two adjacent first sub-electrode groups 420, that is, the high-resistance film 800 includes a plurality of sub-high-resistance films, and a plurality of sub-high-resistance films and a plurality of first The sub-electrode groups 420 have a one-to-one correspondence, and there is an interval between two adjacent sub-high resistance films.
  • the high-resistance film 800 is located in the gap between the sub-electrodes in each first sub-electrode group 420 (refers to the high-resistance film can fill the gap between the two sub-electrodes in the first sub-electrode group, or it can overlap Two sub-electrodes), and along the direction perpendicular to the first substrate 100, the high-resistance film 800 only overlaps the first sub-electrode 421 and the second sub-electrode 422.
  • the first sub-electrode 421 and the second sub-electrode 422 are respectively located on both sides of the high-resistance film 800, and the orthographic projection of the high-resistance film 800 on the first substrate 100 covers part of the first sub-electrode 421 and part of the second sub-electrode The orthographic projection of 422 on the first substrate 100.
  • the embodiment of the present disclosure is not limited to this.
  • the high-resistance film 800 can also completely cover the first sub-electrode 421 and the second sub-electrode 422, as long as the high-resistance film 800 corresponding to the adjacent first sub-electrode group 420 is disconnected.
  • FIG. 3A schematically shows the disconnection of the high-resistance film 800 on the center electrode 411. This example is not limited to this.
  • the high-resistance film 800 on the center electrode 411 may also be continuous.
  • the size of the first sub-electrode 421 and the second sub-electrode 422 is 4.0 ⁇ m-6.5 ⁇ m.
  • the size of the overlapping portion of the first sub-electrode 421 and the high-resistance film 800 may be 1/2 to 1/5 of the size of the first sub-electrode 421, and the second sub-electrode
  • the size of the portion where the 422 and the high-resistance film 800 overlap may be 1/2 ⁇ 1/5 of the size of the second sub-electrode 422 to prevent two adjacent sub-high-resistance films from contacting.
  • the size of the high resistance film 800 may be 0.4 ⁇ m smaller than the size of the ring portion 622.
  • FIG. 3B is a schematic partial cross-sectional view of a liquid crystal lens provided by another example of this embodiment. As shown in FIG. 3B, the difference from the liquid crystal lens shown in FIG. 3B is the distribution of multiple sub-electrodes. As shown in FIG. 3B, the multiple sub-electrodes 410 in this example include multiple first sub-electrode groups 420 located in the same layer, and each first sub-electrode group 420 includes at least three sub-electrodes 410 insulated from each other.
  • Each ring-shaped portion 622 and central portion 621 corresponds to a plurality of first sub-electrode groups 420 one-to-one, and each first sub-electrode group 420 includes at least two sub-electrodes 410 insulated from each other and directed from the center of the circle to the circumference.
  • each first sub-electrode group 420 includes at least two sub-electrodes 410 insulated from each other and directed from the center of the circle to the circumference.
  • at least three sub-electrodes 410 are configured to gradually decrease the applied voltage. Compared with the example shown in FIG.
  • a plurality of sub-electrodes disposed between the first sub-electrode and the second sub-electrode are used instead of the high-resistance film, and the high-resistance film is located between the first sub-electrode and the second sub-electrode.
  • the applied voltage of the plurality of sub-electrodes is gradually changed to make the electric field at the interface between the Fresnel lens and the liquid crystal layer substantially uniform.
  • the number and size of the sub-electrodes in this example can be determined according to the size of the central portion and the ring portion parallel to the first substrate.
  • This example is not limited to this, it can also be a direction from the center of the circle to the circumference, when the thickness of the center part of the Fresnel lens gradually increases, and the thickness of each ring part gradually increases (such as In the Fresnel lens shown in FIG. 2E, at least three sub-electrodes are configured to gradually increase the applied voltage.
  • FIG. 4A is a schematic partial cross-sectional view of a liquid crystal lens provided by another example of an embodiment of the disclosure. As shown in FIG. 4A, the difference from the liquid crystal lens shown in FIG. 2A is the distribution of multiple sub-electrodes. As shown in FIG. 4A, the plurality of sub-electrodes 410 in this example includes a plurality of electrode groups 430 respectively corresponding to the central portion 621 and each ring portion 622, that is, the plurality of sub-electrodes 410 includes a first electrode corresponding to the central portion 621 The group 4301 and the second electrode group 4302 corresponding to each ring portion 622.
  • Each electrode group 430 includes at least two second sub-electrode groups 431, and each second sub-electrode group 431 includes at least two third sub-electrodes 433 in different layers.
  • Each second sub-electrode group 431 in FIG. 4A is circled by a dashed frame.
  • the thickness of the central portion 621 of the Fresnel lens 600 gradually decreases, and the thickness of each annular portion 622 gradually decreases.
  • the distance between the at least two third sub-electrodes 433 and the first substrate 100 gradually decreases, and the at least two third sub-electrodes 433 are configured to apply the same voltage.
  • the number of layers of the third sub-electrodes 433 in the first electrode group 4301 and the second electrode group 4302 are both P layers, and along the direction perpendicular to the first substrate 100, the second electrode group 4302
  • the distance between the q-th layer third sub-electrode 433 and the first substrate 100 is equal to the distance between the q-th layer third sub-electrode 433 and the first substrate 100 in the first electrode group 4301, P ⁇ 2, P ⁇ q ⁇ 1.
  • each second sub-electrode group 431 includes two third sub-electrodes 433, and the first electrode has a double-layer electrode structure.
  • the first electrode may also be three or more layers.
  • FIG. 4B is an enlarged schematic diagram of area D in FIG. 4A.
  • the voltage applied to the second sub-electrode group 431 corresponding to the central portion 621 gradually decreases, and the second sub-electrode group 431 corresponding to each ring portion 622 gradually decreases.
  • the voltage applied to the sub-electrode group 431 is gradually reduced, so that after the electric field received by the liquid crystal at each position and the molecular force between the liquid crystals, the degree of deflection of the liquid crystal on the Fresnel lens 600 of different thicknesses is approximately the same , Thereby improving the phenomenon of uneven liquid crystal deflection.
  • each second sub-electrode group in the direction from the center of the circle to the circumference, the thickness of the center part of the Fresnel lens gradually increases, and the thickness of each ring part is equal to
  • the distance between at least two third sub-electrodes and the first substrate gradually increases, and at least two third sub-electrodes are configured to apply the same Voltage.
  • the voltage applied to the second sub-electrode group corresponding to the central portion gradually increases, and the voltage applied to the second sub-electrode group corresponding to each ring portion gradually increases to After the electric field received by the liquid crystal at each position and the molecular force between the liquid crystals are applied, the degree of deflection of the liquid crystal at different thickness positions of the Fresnel lens is approximately the same, thereby improving the phenomenon of uneven deflection of the liquid crystal.
  • the third sub-electrode 433 at the position corresponding to the thinnest thickness of the Fresnel lens 600 is configured to apply the same voltage as the intermediate state voltage applied by the structure shown in FIG. 1A, and with the thickness of the Fresnel lens 600 With the increase of, the voltage applied to the third sub-electrode 433 of the Fresnel lens 600 gradually increases, which can compensate for the influence of the Fresnel lens 600 on the electric field as much as possible.
  • the number of the second sub-electrode groups 431 corresponding to the central portion 621 and each annular portion 622 is equal, and FIG. 4A schematically shows that the number of the second sub-electrode groups 431 is 4.
  • the degree of deflection of the liquid crystals located on the Fresnel lens 600 of different thicknesses is approximately the same as possible, so as to improve the phenomenon of uneven deflection of the liquid crystals.
  • the second sub-electrode group 431 corresponding to the central portion 621 is electrically connected to the second sub-electrode group 431 corresponding to the at least one ring portion 622 in a one-to-one correspondence, and corresponds to adjacent
  • the second sub-electrode groups 431 of the two ring portions 622 are electrically connected in a one-to-one correspondence. That is, the second sub-electrode group 431 corresponding to the central portion 621 and the ring portion 622 has the same voltage application rules so that the degree of deflection of the liquid crystal on the Fresnel lens 600 of different thicknesses is approximately the same, thereby improving the liquid crystal deflection.
  • the phenomenon of uniformity. This example can also simplify the process and control the number of leads.
  • FIG. 5 is a schematic partial cross-sectional view of a liquid crystal lens provided by another embodiment of the disclosure. As shown in FIG. 5, the difference between this embodiment and the embodiment shown in FIG. 2A lies in the position and structure of the first electrode 400.
  • the first electrode 400 is a continuous line on the second surface 620 of the Fresnel lens 600. electrode.
  • the shape of the Fresnel lens in this example may be the shape shown in FIG. 2A or the shape shown in FIG. 2E, which is not limited here.
  • the first electrode 400 is conformally formed on the second surface 620 of the Fresnel lens 600, that is, the first electrode 400 is formed as a layer deposited on the second surface 620 of the Fresnel lens 600.
  • the thickness of the first electrode 400 is approximately the same everywhere, and the shape of the surface of the first electrode 400 away from the Fresnel lens 600 is the same as the shape of the second surface of the Fresnel lens 600.
  • the thickness of the first electrode 400 along the direction perpendicular to the first substrate 100 can be 0.04 ⁇ m-0.07 ⁇ m, so as to ensure that the first electrode 400 will not be on the second surface of the Fresnel lens 600 due to its thin thickness.
  • the groove on the 620 is broken, which can ensure that the first electrode 400 is not thick and affects the electric field.
  • the first electrode in this embodiment is arranged on the side of the Fresnel lens facing the liquid crystal layer to prevent the influence of the Fresnel lens on the electric field.
  • the first electrode is applied with the same intermediate voltage as the structure shown in FIG. 1A.
  • the voltage of the Fresnel lens is under the combined action of the electric field and the intermolecular force, the deflection of the liquid crystal at different thickness positions of the Fresnel lens can be approximately the same, thereby improving the liquid crystal deflection Uneven phenomenon. Therefore, in the embodiments of the present disclosure, different intermediate state voltages can be applied to the first electrode to achieve continuous changes in the refractive index of the liquid crystal layer, so that the liquid crystal lens can be used as a high-quality continuous zoom lens.
  • FIGS. 2A-2D and 3A-5 are schematic diagram of the deflection state of the liquid crystal in the region above the center of the Fresnel lens when the intermediate voltage is applied to the first electrode in the embodiments shown in FIGS. 2A-2D and 3A-5.
  • the area D above the thinner position (low arch area) at the center and the thicker position at the center (high arch) are basically in a normal deflection state (perpendicular to the first transparent substrate).
  • the refractive index of each position of the liquid crystal layer is approximately uniform, and there is no image blur caused by stray light. Therefore, the liquid crystal in the liquid crystal glasses shown in FIGS. 2A to 5 can achieve continuous changes in refractive index, thereby realizing the adjustable power of the glasses.
  • the deflection of the liquid crystal at each position in the example shown in FIG. 2E is also uniform.
  • Another embodiment of the present disclosure provides a liquid crystal glasses including the liquid crystal lens provided in any of the above embodiments.
  • the liquid crystal in the liquid crystal glasses provided by the embodiment of the present disclosure is uniformly deflected under the action of an electric field generated by an intermediate state voltage. Realize the continuous change of refractive index, so as to realize the adjustable degree of glasses.
  • the liquid crystal glasses provided by the embodiments of the present disclosure can also realize multi-functional transformations such as concave lens and convex lens to meet the needs of various users.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

提供一种液晶镜片,包括:第一基板(100)与对置的第二基板(200)、位于第一基板(100)与第二基板(200)之间的液晶层(300)、位于第一基板(100)面向第二基板(200)一侧的第一电极(400)、位于第二基板(200)面向第一基板(100)一侧的第二电极(500)以及位于第一基板(100)与液晶层(300)之间的菲涅尔透镜(600)。菲涅尔透镜(600)包括彼此相对的平坦的第一表面(610)和设置有齿纹的第二表面(620),液晶层(300)位于第二表面(620)远离第一表面(610)的一侧。第一电极(400)位于菲涅尔透镜(600)面向第一基板(100)的一侧,且第一电极(400)包括彼此分隔的多个子电极(410)。通过控制多个子电极的电压以实现液晶折射率均匀且连续的变化,进而实现液晶镜片度数的连续调节。还提供一种液晶眼镜。

Description

液晶镜片以及液晶眼镜
本申请要求于2019年4月19日递交的中国专利申请第201910320240.2号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开至少一个实施例涉及一种液晶镜片以及液晶眼镜。
背景技术
液晶具有较大的光电各向异性,目前已经广泛的应用于各种光学器件,如液晶显示器、液晶镜片、液晶相位延迟器等。液晶眼镜是继液晶显示器后的又一研究热点,包括单圆孔电极液晶眼镜、模式电极液晶眼镜以及浮雕外形液晶眼镜等。
发明内容
本公开的至少一实施例提供一种液晶镜片以及液晶眼镜。
本公开的至少一实施例提供一种液晶镜片,包括:第一基板、与所述第一基板对置的第二基板以及位于所述第一基板与所述第二基板之间的液晶层;位于所述第一基板面向所述第二基板一侧的第一电极以及位于所述第二基板面向所述第一基板一侧的第二电极;菲涅尔透镜,位于所述第一基板与所述液晶层之间,所述菲涅尔透镜包括彼此相对的平坦的第一表面和设置有齿纹的第二表面,且所述液晶层位于所述第二表面远离所述第一表面的一侧。所述第一电极位于所述菲涅尔透镜面向所述第一基板的一侧,且所述第一电极包括彼此分隔的多个子电极。
例如,所述菲涅尔透镜包括中心部以及围绕所述中心部的多个环状部,所述中心部在所述第一基板上的正投影为圆形,从所述圆形的圆心指向圆周的方向,所述中心部与所述多个环状部的每个的厚度均逐渐变化,且两者的厚度变化趋势相同;所述多个子电极包括中心电极和围绕所述中心电极的环状电极,且所述圆心位于所述中心电极在所述第一基板上的正投影内。
例如,所述多个子电极分层设置,相邻两层子电极之间设置有绝缘层,且从所述圆形的圆心指向圆周的方向,所述中心部与所述多个环状部的每个的厚度均逐渐减小,所述多个子电极中与所述中心部对应的第一部分子电极距所述第一基板的距离逐渐减小,且所述多个子电极中与所述环状部的每个对应的第二部分子电极距所述第一基板的距离逐渐减小。
例如,所述多个子电极分层设置,相邻两层子电极之间设置有绝缘层,且从所述圆形的圆心指向圆周的方向,所述中心部与所述多个环状部的每个的厚度均逐渐增大,所述多个子电极中与所述中心部对应的第一部分子电极距所述第一基板的距离逐渐增大,且所述多个子电极中与所述环状部的每个对应的第二部分子电极距所述第一基板的距离逐渐增大。
例如,所述绝缘层的介电常数与所述菲涅尔透镜的介电常数大致相同。
例如,所述第一部分子电极和所述第二部分子电极的层数均为N层,且沿垂直于所述第一基板的方向,第m层所述第一部分子电极距所述第一基板的距离与第m层所述第二部分子电极距所述第一基板的距离相等,N≥3,N≥m≥1。
例如,所述多个子电极包括位于同层的多个第一子电极组,所述多个环状部的每个和所述中心部与所述多个第一子电极组一一对应,所述多个第一子电极组的每个包括彼此绝缘的至少两个子电极,且从所述圆形的圆心指向圆周的方向,所述中心部与所述多个环状部的每个的厚度均逐渐减小,所述至少两个子电极被配置为施加的电压逐渐减小;或者,从所述圆形的圆心指向圆周的方向,所述中心部与所述多个环状部的每个的厚度均逐渐增大,所述至少两个子电极被配置为施加的电压逐渐增大。
例如,所述多个第一子电极组的每个包括两个子电极,所述多个第一子电极组的每个面向所述菲涅尔透镜的一侧设置有高阻膜,所述高阻膜在对应所述多个第一子电极组中相邻的两个第一子电极组之间的空隙处断开。
例如,从所述圆形的圆心指向圆周的方向,所述子电极与所述高阻膜交叠的部分的尺寸为所述子电极的尺寸的1/2~1/5。
例如,从所述圆形的圆心指向圆周的方向,所述子电极的尺寸为4.0μm-6.5μm。
例如,所述多个子电极包括对应于所述中心部的第一电极组以及对应于所述多个环状部的每个的第二电极组,所述第一电极组和所述第二电极组均包括 至少两个第二子电极组,所述至少两个第二子电极组的每个包括位于不同层的至少两个第三子电极,从所述圆形的圆心指向圆周的方向,所述中心部与所述多个环状部的每个的厚度均逐渐减小,每个所述第二子电极组中,所述至少两个第三子电极距所述第一基板的距离逐渐减小,且所述至少两个第三子电极被配置为施加相同的电压;或者从所述圆形的圆心指向圆周的方向,所述中心部与所述多个环状部的每个的厚度均逐渐增大,每个所述第二子电极组中,所述至少两个第三子电极距所述第一基板的距离逐渐增大,且所述至少两个第三子电极被配置为施加相同的电压。
例如,所述第一电极组和所述第二电极组中的第三子电极的层数均为P层,且沿垂直于所述第一基板的方向,所述第二电极组中第q层第三子电极距所述第一基板的距离与所述第一电极组中第q层第三子电极距所述第一基板的距离相等,P≥2,P≥q≥1,从所述圆形的圆心指向圆周的方向,所述中心部与所述多个环状部的每个的厚度均逐渐减小,与所述中心部对应的所述至少两个第二子电极组被配置为施加的电压逐渐减小,与所述多个环状部的每个对应的所述至少两个第二子电极组被配置为施加的电压逐渐减小;或者,从所述圆形的圆心指向圆周的方向,所述中心部与所述多个环状部的每个的厚度逐渐增大,与所述中心部对应的所述至少两个第二子电极组被配置为施加的电压逐渐增大,与所述多个环状部的每个对应的所述至少两个第二子电极组被配置为施加的电压逐渐增大。
例如,所述第一电极组和所述第二电极组包括的所述第二子电极组的数量相同,对应于所述中心部的所述至少两个第二子电极组与对应于所述多个环状部的所述至少两个第二子电极组一一对应电连接,且对应于所述多个环状部相邻两个环状部的所述至少两个第二子电极组一一对应电连接。
例如,所述液晶层中的液晶的折射率被配置为在第一折射率n1和第二折射率n2之间变化,所述菲涅尔透镜的折射率n0满足:n1≥n0≥n2。
本公开的至少一实施例提供一种液晶镜片,包括:第一基板、与所述第一基板对置的第二基板以及位于所述第一基板与所述第二基板之间的液晶层;位于所述第一基板面向所述第二基板一侧的第一电极以及位于所述第二基板面向所述第一基板一侧的第二电极;菲涅尔透镜,位于所述第一基板与所述液晶层之间,所述菲涅尔透镜包括彼此相对的平坦的第一表面和设置有齿纹的第二表面,且所述液晶层位于所述第二表面远离所述第一表面的一侧。所述第一电 极为位于所述菲涅尔透镜的所述第二表面上的连续电极。
例如,所述第一电极共形地形成在所述菲涅尔透镜的所述第二表面上。
例如,所述第一电极沿垂直于所述第一基板的方向的厚度为0.04μm-0.07μm。
本公开的至少一实施例提供一种液晶眼镜,包括上述任一种液晶镜片。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A为一种液晶眼镜的局部剖面结构示意图;
图1B为图1A所示的液晶眼镜沿AA线所截的平面示意图;
图1C为对第一透明电极施加中间态电压时,位于菲涅尔透镜的中心部上方的区域1内的液晶的偏转状态放大示意图;
图2A为本公开一实施例的一示例提供的液晶镜片的局部剖面示意图;
图2B为图2A所示的液晶镜片沿BB线所截的平面示意图;
图2C为图2A所示的区域C的内的第一电极的另一种排布示意图;
图2D为图2A所示的区域C的内的第一电极的另一种排布示意图;
图2E为本公开一实施例的另一示例提供的液晶镜片的局部剖面示意图;
图3A为本公开一实施例的另一示例提供的液晶镜片的局部剖面示意图;
图3B为本公开一实施例的另一示例提供的液晶镜片的局部剖面示意图;
图4A为本公开一实施例的另一示例提供的液晶镜片的局部剖面示意图;
图4B为图4A中的D区域的放大示意图;
图5为本公开另一实施例提供的液晶镜片的局部剖面示意图;以及
图6为图2A-图2D、图3A-图5所示实施例对第一电极施加中间态电压时,位于菲涅尔透镜的中心部上方的区域的液晶的偏转状态示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的 本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
图1A为一种液晶眼镜的局部剖面结构示意图,图1B为图1A所示的液晶眼镜沿AA线所截的平面示意图。如图1A所示,液晶眼镜包括彼此相对设置的第一透明基板10、第二透明基板20以及位于第一透明基板10和第二透明基板20之间的液晶层30。第一透明基板10面向第二透明基板20的一侧设置有整面的第一透明电极40,第二透明基板20面向第一透明基板10的一侧设置有整面的第二透明电极50,第一透明电极40面向液晶层30的一侧设置有菲涅尔透镜60。
如图1A和图1B所示,菲涅尔透镜60面向第一透明电极40一侧的第一表面61可以为平坦的表面,菲涅尔透镜60面向液晶层30一侧的第二表面62设置有齿纹,即该菲涅尔透镜60面向液晶层30一侧设有按菲涅尔波带间隔分布的凸起。菲涅尔波带由中心的圆形和与该圆形同心设置的多个环形组成,圆形和每个环形均为菲涅尔波带的一个波带。菲涅尔透镜60包括与菲涅尔波带中心的圆形对应的中心部63以及与菲涅尔波带的环形对应的环状部64。
液晶层30中的液晶具有双折射率,液晶在断电状态时的折射率为异常光折射率,在通电状态时的折射率为正常光折射率。例如,液晶为正光性液晶,其异常光折射率大于正常光折射率,例如正常光折射率在1.5左右,异常光折射率在1.6~1.8左右。菲涅尔透镜60例如可以选用折射率大致等于液晶的异常光折射率的材质。
例如,液晶可以为棒状液晶,液晶在断电状态时处于水平状态,即液晶的长轴平行第一透明基板10(如图1A所示),液晶在通电状态时处于垂直状态,即液晶的长轴垂直于第一透明基板10。
例如,在第一透明电极40和第二透明电极50的电压均为0V时,液晶处于断电状态,其折射率大致等于菲涅尔透镜60的折射率,由此液晶层30和菲 涅尔透镜60相当于一块平板介质层,从第一透明基板10入射到液晶眼镜的平行光(例如线偏振光)不会改变传播方向,即从第二透明基板20出射的光依然为平行光。
例如,在第一透明电极40被施加高电压时,液晶处于强电场作用下,液晶的偏转均匀,液晶层30的折射率小于菲涅尔透镜60的折射率。从第一透明基板10入射到液晶眼镜的平行光在菲涅尔透镜60与液晶层30的界面会聚,此时的液晶眼镜起到会聚透镜的作用。由此,液晶眼镜可以在聚光和透射功能之间切换。
图1A所示的结构相比于通过电场控制液晶偏转以实现控制液晶的排布形状等效为菲涅尔透镜的结构,可以避免通过电极控制液晶偏转形成菲涅尔周期的过程中由于很难做到精确控制而产生极大串扰的问题。
在研究中,本申请的发明人发现:在对第一透明电极施加中间态电压(例如3.5V电压)时,由于菲涅尔透镜不同位置处的厚度不同会导致作用在液晶上的电场的不均匀分布。在中间态电压产生的外加电场的作用下,菲涅尔透镜厚度越大的位置产生的感应电场对外加电场的削弱影响越大,由此,菲涅尔透镜厚度越大位置处对应的作用于液晶的电场强度越弱,从而导致位于具有不同厚度的菲涅尔透镜上的液晶偏转不均匀。图1C为对第一透明电极施加中间态电压时,位于菲涅尔透镜的中心部上方的区域1内的液晶的偏转状态放大示意图。如图1C所示,以位于菲涅尔透镜的中心部的液晶为例,位于中心部的厚度较薄的位置(低拱区)上方的区域2内的液晶基本处于正常偏转状态(垂直于第一透明基板),位于中心部的厚度较厚的位置(高拱区)上方的区域3内的液晶的部分还处于未偏转状态(平行于第一透明基板)。此时,液晶层各位置的折射率不均匀,会出现杂散光,导致成像模糊。由此,图1A所示的液晶眼镜中的液晶只能处于两个不同折射率,不能实现折射率的连续变化,不能实现眼镜度数的可调节。
本公开的实施例提供一种液晶镜片以及液晶眼镜。液晶镜片包括:第一基板、与第一基板对置的第二基板、位于第一基板与第二基板之间的液晶层、位于第一基板面向第二基板一侧的第一电极、位于第二基板面向第一基板一侧的第二电极以及位于第一基板与液晶层之间的菲涅尔透镜。菲涅尔透镜包括彼此相对的平坦的第一表面和设置有齿纹的第二表面,液晶层位于第二表面远离第一表面的一侧。第一电极位于菲涅尔透镜面向第一基板的一侧,且第一电极包 括彼此分隔的多个子电极。本公开实施例可以通过控制多个子电极的电压以实现液晶折射率均匀且连续的变化,进而实现液晶镜片度数的连续调节。
下面结合附图对本公开实施例提供的液晶镜片以及液晶眼镜进行描述。
图2A为本公开一实施例的一示例提供的液晶镜片的局部剖面示意图,图2B为图2A所示的液晶镜片沿BB线所截的平面示意图。如图2A所示,液晶镜片包括:第一基板100、与第一基板100相对平行设置的第二基板200、位于第一基板100与第二基板200之间的液晶层300、位于第一基板100面向第二基板200一侧的第一电极400以及位于第二基板200面向第一基板100一侧的第二电极500。
本公开实施例中的第一基板100和第二基板200均为透明基板,以实现透光作用。例如,第一基板100和第二基板200的材质可以为玻璃基板,也可以采用聚二甲基硅氧烷(PDMS)或者聚甲基丙烯酸甲酯(PMMA)等透明材料,以避免第一基板100和第二基板200影响光线的透光率。
本公开实施例中的第一电极400和第二电极500均为透明电极以实现透光作用。例如,第一电极400和第二电极500的材料可以为透明导电金属氧化物或透明导电有机高分子材料。例如,第一电极400和第二电极500的材料可以为氧化铟锡或者铟锌氧化物等以保证两个电极的透明度。例如,第一电极400沿垂直于第一基板100的方向的厚度可以为0.04μm-0.07μm。
如图2A所示,液晶镜片还包括位于第一基板100面向液晶层300的一侧菲涅尔透镜600,菲涅尔透镜600包括彼此相对的平坦的第一表面610和设置有齿纹的第二表面620,且液晶层300位于菲涅尔透镜600的第二表面620远离第一表面610的一侧,菲涅尔透镜600的第二表面620设置的齿纹为按菲涅尔波带间隔分布的结构。菲涅尔透镜600包括与菲涅尔波带中心圆形对应的中心部621以及围绕中心部621的多个环状部622,该环状部622与菲涅尔波带的环形对应,中心部621和环状部622为同心结构。
例如,如图2A所示,中心部621在第一基板100上的正投影为圆形,从圆形的圆心指向圆周的方向,中心部621的厚度逐渐变化,每个环状部622的厚度逐渐变化,且中心部621和每个环状部622的厚度变化趋势相同。例如,图2A所示的示例中,从圆形的圆心指向圆周的方向,中心部621所在位置处的菲涅尔透镜600的厚度逐渐减小,即中心部621中越靠近环状部622的部分的厚度越小,菲涅尔透镜600的中心部621的第二表面620为球状表面。从靠 近中心部621向远离中心部621的方向,每个环状部622所在位置处的菲涅尔透镜600的厚度逐渐减小。
例如,从圆形的圆心指向圆周的方向,环状部622的尺寸不小于25μm。例如,菲涅尔波带中圆形的半径满足r i=(ifλ) 1/2,i为菲涅尔波带中圆形的序号(由菲涅尔波带中心向圆周的方向,该序号逐渐增大),f为菲涅尔透镜的焦距,λ为入射光波长,则第i-1个(第二个圆形对应第一个环状部)环状部622的尺寸d=r i-r i-1
如图2A所示,第一电极400位于菲涅尔透镜600的第一表面610面向第一基板100的一侧,且第一电极400包括彼此分隔的多个子电极410。本公开实施例将第一电极设置为包括彼此分隔的多个子电极的结构,可以通过对多个子电极的电压进行分别控制以尽量弥补菲涅尔透镜的厚度带来的电场分布不均匀的问题,从而使液晶偏转大致均匀,进而实现液晶折射率的连续变化以及液晶镜片的度数可连续调节的目的。
例如,在第二电极500面向液晶层300的一侧以及菲涅尔透镜600面向液晶层300的一侧分别设置有取向方向一致的取向膜,以使液晶没有受到电场作用时其光轴平行于第一基板100。
例如,在第一电极400远离菲涅尔透镜600的一侧还可以包括偏振层(未示出),入射光经过偏振层后出射的偏振光可以经过菲涅尔透镜600以及液晶层300的调制后从第二基板200出射。上述偏振层可以设置在第一电极与第一基板之间,也可以设置在第一基板远离第一电极的一侧,本公开实施例对此不作限制。本公开实施例不限于在液晶镜片上设置偏振层,也可以在图2A所示的液晶镜片的第二基板200远离第一基板100的一侧叠设一个与该液晶镜片结构完全相同的匹配液晶镜片,该匹配液晶镜片与图2A所示的液晶镜片的区别在于两者的取向膜的取向方向垂直以分别对自然光中互相垂直的两个偏振光分量进行调制。
例如,液晶层300中的液晶为异方性晶体。以液晶为单光轴晶体为例,当一束偏振光经过一个单光轴晶体时,会形成两束偏振光,此现象称为双折射。单光轴性液晶的光在x方向传播时折射率为n y和n z,在y方向传播时折射率为n x和n z,在z方向传播时只有一种折射率n x(=n y),所以把单光轴液晶的z轴称为光轴。如果光的传播方向不在xyz轴上,一般把振动方向与光轴垂直的光称为正常光,把振动方向与光轴平行的光称为异常光。正常光的折射率定义为 n ,异常光的折射率定义为n ,双折射率定义为Δn=n -n 。本公开实施例中液晶层300内的液晶的折射率被配置为在第一折射率n1和第二折射率n2之间变化,第一折射率n1和第二折射率n2之一为正常光折射率,另一个为异常光折射率,以n1>n2为例进行描述。在液晶为正光性液晶时,n >n ,Δn>0,本公开实施例以液晶为正光性液晶为例进行描述,液晶在断电状态时(图2A所示的状态)的折射率为异常光折射率,在通电状态时的折射率为正常光折射率。
例如,菲涅尔透镜600的折射率n0满足:n1≥n0≥n2。
例如,第一电极400和第二电极500施加电压为0V时,液晶的长轴平行于第一基板100(图2A所示的状态),此时入射的偏振光的振动方向平行于液晶的光轴,液晶的折射率为n1;在第一电极400被施加高电压,第二电极500施加0V电压时,液晶受到强电场作用,其长轴垂直于第一基板100,此时入射的偏振光的振动方向垂直于液晶的光轴,液晶的折射率为n2。
例如,以菲涅尔透镜600的折射率n0=n1为例,菲涅尔透镜600的折射率与液晶层300处于断电状态下的折射率相同,此时,菲涅尔透镜600和液晶层300可以作为平板结构,对入射的平行光的传播方向没有影响。而在液晶处于通电状态下,由于菲涅尔透镜600的折射率大于液晶层300处于通电状态下的折射率,所以入射到菲涅尔透镜600和液晶层300界面的平行光被会聚,菲涅尔透镜600和液晶层300的组合起到会聚透镜的作用。由此,液晶镜片可以在聚光和透射功能之间切换。
例如,以菲涅尔透镜600的折射率n0=n2为例,菲涅尔透镜600的折射率与液晶层300处于通电状态下的折射率相同,此时,菲涅尔透镜600和液晶层300可以作为平板结构,对入射的平行光的传播方向没有影响。而在液晶处于断电状态下,由于菲涅尔透镜600的折射率小于液晶层300处于断电状态下的折射率,所以入射到菲涅尔透镜600和液晶层300界面的平行光被发散,菲涅尔透镜600和液晶层300的组合起到发散透镜的作用。由此,液晶镜片可以在发散光和透射功能之间切换。
例如,以菲涅尔透镜600的折射率n0满足n1>n0>n2为例,菲涅尔透镜600的折射率大于液晶层300处于通电状态下的折射率,此时,入射到菲涅尔透镜600和液晶层300界面的平行光被会聚,菲涅尔透镜600和液晶层300的组合起到会聚透镜的作用。而液晶在断电状态下,由于菲涅尔透镜600的折射率小于液晶层300处于断电状态下的折射率,所以入射到菲涅尔透镜600和液 晶层300界面的平行光被发散,菲涅尔透镜600和液晶层300的组合起到发散透镜的作用。由此,液晶镜片可以在发散光和会聚光的功能之间切换。
本公开实施例可以通过将菲涅尔透镜的折射率与液晶层的折射率进行匹配以实现液晶镜片在多种功能之间切换。
例如,如图2A和图2B所示,多个子电极410包括中心电极411和围绕中心电极411的环状电极412,且中心电极411对应于圆形的圆心,即圆形的圆心位于中心电极411在第一基板100上的正投影内。
例如,如图2A和图2B所示,中心电极411可以为圆形,环状电极412为圆环形,中心电极411和环状电极412为同心结构。
例如,如图2A和图2B所示,多个子电极410分层设置,相邻两层子电极410之间设置有绝缘层700。本公开实施例中以对应于中心部或者每个环形部的多个子电极均位于不同层为例。
例如,如图2A和图2B所示,从圆形的圆心指向圆周的方向,多个子电极410中与中心部621对应的部分子电极410距第一基板100的距离逐渐减小。多个子电极410中与中心部621对应的部分子电极410在第一基板100上的正投影位于中心部621在第一基板100上的正投影内,这部分子电极410包括一个中心电极411和至少两个环状电极412,且这部分子电极410均位于不同层。在平行于第一基板且从靠近中心部621向远离中心部621的方向上,多个子电极410中与每个环状部622对应的部分子电极410距第一基板100的距离逐渐减小。多个子电极410中与每个环状部622对应的部分子电极410在第一基板100上的正投影位于一个环状部622在第一基板100上的正投影内,这部分子电极410均为环状电极412,且分别位于不同层。
例如,如图2A所示,对应于中心部621的第一部分子电极410的层数与对应于环状部622的第二部分子电极410的层数均为N层,且沿垂直于第一基板100的方向,第m层第一部分子电极410距第一基板100的距离与第m层第二部分子电极410距第一基板100的距离相等,N≥3,N≥m≥1。图2A以N为3为例,但不限于此,例如,子电极410的层数可以为3~8层。本公开实施例中子电极的层数以及宽度根据中心部与环状部的平行于第一基板的尺寸而定。
例如,如图2A所示的多个子电极的排布情况下,多个子电极410可以电连接以减少引线数量,降低工艺难度。多个子电极410可以均被施加相同的电 压,该电压可以为中间态电压(例如3.5V)加1.5V~3.2V。当然,多个子电极可以不限于通过电连接而实现被施加相同的电压,也可以多个子电极不电连接,但分别被施加相同电压。本公开实施例不限于此,还可以对每层的子电极施加相同电压,但对不同层的子电极施加不同的电压,通过调整子电极与菲涅尔透镜第二表面的距离以使位于菲涅尔透镜上的各位置处的液晶偏转均匀。
相比于图1A所示的结构,在对本公开实施例的子电极410施加的电压略大于原来施加的中间态电压时,可以尽量弥补菲涅尔透镜600对电场的影响。
本示例通过调整子电极410距离菲涅尔透镜600与液晶层300之间的界面的距离以使各位置处的液晶受到的电场以及液晶之间的分子作用力的作用后,位于不同厚度菲涅尔透镜600上的液晶的偏转程度大致相同,从而改善了液晶偏转不均的现象。由此,本公开实施例中可以通过对子电极施加不同的中间态电压以实现液晶层的折射率连续变化,以使该液晶镜片作为一个高像质的可连续变焦的透镜。
例如,如图2A所示,绝缘层700的介电常数与菲涅尔透镜600的介电常数大致相同以使绝缘层700对电场的影响与菲涅尔透镜600对电场的影响相当。图2A示意性示出最靠近菲涅尔透镜600的子电极410与菲涅尔透镜600之间设置有绝缘层700。但不限于此,该最靠近菲涅尔透镜的子电极与菲涅尔透镜之间还可以没有绝缘层,此时该最靠近菲涅尔透镜的一层子电极中相邻的两个之间设置有用于平坦化的平坦层。
例如,绝缘层700的折射率可以与菲涅尔透镜600的折射率大致相同。
例如,以与中心部621对应的中心电极411和与该中心电极411相邻的环状电极412为例,根据环状电极412距第二电极500的距离、中心电极411距第二电极500的距离以及液晶之间分子作用力等综合因素,可以通过实验模拟得到环状电极412距菲涅尔透镜600与液晶层300的界面(菲涅尔透镜600的第二表面620)的距离H1以及中心电极411距第二表面620的距离H0,以使与中心部621的各位置处对应的液晶的偏转大致均匀。本公开实施例可以中心电极411距第二电极500的距离以及中心电极411距第二表面620的距离为基准来设定其他环状电极412与第二电极500之间的距离以及环状电极412与第二表面620之间的距离,根据上述距离可以得到绝缘层700的厚度。
例如,图2A示意性的示出与中心部621或者环状部622对应的位于不同层的子电极410在第一基板100上的正投影没有交叠,且子电极410的层数为 三层的情况。
例如,图2C为图2A所示的区域C的内的第一电极的另一种排布示意图。如图2C所示,各层的子电极410在第一基板上的正投影相接,即沿垂直于第一基板的方向,每层子电极410的一端与位于其一侧的子电极410的一端对齐,该子电极410的另一端与位于其另一侧的子电极410的一端对齐。
例如,图2D为图2A所示的区域C的内的第一电极的另一种排布示意图。如图2D所示,相比于图2A所示的示例,为了使液晶可以偏转的更加均匀,可以在第一基板距菲涅尔透镜的第一表面距离一定的情况下设置更多层数的子电极。
图2E为本公开一实施例的另一示例提供的液晶镜片的局部剖面示意图。如图2E所示,与图2A所示的液晶镜片不同之处在于:从圆形的圆心指向圆周的方向,中心部621的厚度逐渐增大,即中心部621中越靠近环状部622的部分的厚度越大;且从圆形的圆心指向圆周的方向,每个环状部622的厚度也逐渐增大。多个子电极410分层设置,相邻两层子电极410之间设置有绝缘层700。从圆形的圆心指向圆周的方向,多个子电极410中与中心部621对应的部分子电极410距第一基板100的距离逐渐增大。从靠近中心部621向远离中心部621的方向,多个子电极410中与每个环状部622对应的部分子电极410距第一基板100的距离逐渐增大。
例如,如图2E所示的多个子电极的排布情况下,多个子电极410可以电连接以减少引线数量,降低工艺难度。多个子电极410可以均被施加相同的电压,该电压可以为中间态电压(例如3.5V)加1.5V~3.2V。当然,多个子电极可以不限于通过电连接而实现被施加相同的电压,也可以多个子电极不电连接,但分别被施加相同电压。本公开实施例不限于此,还可以对每层的子电极施加相同电压,但对不同层的子电极施加不同的电压,通过调整子电极与菲涅尔透镜第二表面的距离以使位于菲涅尔透镜上的各位置处的液晶偏转均匀。
相比于图1A所示的结构,在对本公开实施例的子电极410施加的电压略大于原来施加的中间态电压时,可以尽量弥补菲涅尔透镜600对电场的影响。
本示例通过调整子电极410距离菲涅尔透镜600与液晶层300之间的界面的距离以使各位置处的液晶受到的电场以及液晶之间的分子作用力的作用后,位于菲涅尔透镜600的不同厚度位置处上的液晶的偏转程度大致相同,从而改善了液晶偏转不均的现象。由此,本公开实施例中可以通过对子电极施加不同 的中间态电压以实现液晶层的折射率连续变化,以使该液晶镜片作为一个高像质的可连续变焦的透镜。
图3A为本公开一实施例的另一示例提供的液晶镜片的局部剖面示意图。如图3A所示,与图2A所示的液晶镜片不同之处在于多个子电极的分布。如图3A所示,本示例中的多个子电极410包括位于同层的多个第一子电极组420,每个第一子电极组420包括彼此绝缘的第一子电极421和第二子电极422。第一子电极421包括中心电极411以及位于环状部622中靠近中心部621的一端的环状电极412,第二子电极422包括位于中心部621的在第一基板100上的圆形正投影的圆周以及位于环状部622中远离中心部621的一端的环状电极412。也就是,中心部621以及每个环状部622分别对应一个第一子电极组420,且每个第一子电极组420中的第二子电极422相对于第一子电极421更远离中心部621的中心。也就是,第一子电极421位于菲涅尔透镜600的厚度较厚的位置,第二子电极422位于菲涅尔透镜600的厚度较薄的位置。
例如,如图3A所示,在从圆形的圆心指向圆周的方向,菲涅尔透镜600的中心部621的厚度逐渐减小,且每个环状部622的厚度均逐渐减小的情况下,每个第一子电极组420包括的第一子电极421和第二子电极422被配置为施加不同的电压,且第一子电极421被施加的电压大于第二子电极422被施加的电压。
例如,第二子电极422被配置为施加与图1A所示结构施加的中间态电压相同的电压,第一子电极421被施加的电压比第二子电极422被施加的电压多1.5V~3.2V。第一子电极421被施加的电压可以根据菲涅尔透镜600的厚度对电场造成的影响而定。此时,相比于图1A所示的结构,在对本公开实施例的第二子电极422施加的电压还是原来的中间态电压,而位于菲涅尔透镜600厚度较厚位置处的第一子电极421被施加的电压略大于原有的中间态电压,可以尽量弥补菲涅尔透镜600对电场的影响。
本示例不限于此,例如,在从圆形的圆心指向圆周的方向,菲涅尔透镜的中心部的厚度逐渐增大,且每个环状部的厚度均逐渐增大的情况下(如图2E所示的菲涅尔透镜),每个第一子电极组包括的第一子电极和第二子电极被配置为施加不同的电压,且第一子电极被施加的电压小于第二子电极被施加的电压。第一子电极被配置为施加与图1A所示结构施加的中间态电压相同的电压,第二子电极被施加的电压比第一子电极被施加的电压多1.5V~3.2V。第二子电 极被施加的电压可以根据菲涅尔透镜的厚度对电场造成的影响而定。此时,相比于图1A所示的结构,在对本公开实施例的第一子电极施加的电压还是原来的中间态电压,而位于菲涅尔透镜厚度较厚位置处的第二子电极被施加的电压略大于原有的中间态电压,可以尽量弥补菲涅尔透镜对电场的影响。
例如,为了实现第一子电极421与第二子电极422之间的电势递变以使菲涅尔透镜600与液晶层300之间的界面处的电场大致均匀,可以在每个第一子电极组420面向菲涅尔透镜600的一侧设置高阻膜800,该高阻膜800的材质为透明且电阻较大的材料。例如,该高阻膜800的材料可以包括硅氧化物、硅氮化物、硅碳化物、铝氧化物或透明高分子材料中的一种或几种。例如,高阻膜800的方块电阻为10 3~10 7Ω/sq。设置在第一子电极421与第二子电极422之间的高阻膜800可以在圆心指向圆周的方向实现电压梯度变化。本公开实施例中的高阻膜的平面形状根据子电极的形状而定,例如也为圆环形。
例如,高阻膜800在对应相邻的两个第一子电极组420之间的空隙处断开,即,高阻膜800包括多个子高阻膜,多个子高阻膜与多个第一子电极组420一一对应,且相邻两个子高阻膜之间有间隔。
例如,高阻膜800位于每个第一子电极组420中的子电极之间的空隙(指高阻膜可以填充第一子电极组中的两个子电极之间的空隙,也可以搭接在两个子电极上),且沿垂直于第一基板100的方向,高阻膜800仅与第一子电极421的部分和第二子电极422的部分有交叠。也就是,第一子电极421和第二子电极422分别位于高阻膜800的两侧,高阻膜800在第一基板100上的正投影覆盖部分第一子电极421和部分第二子电极422在第一基板100上的正投影。本公开实施例不限于此,高阻膜800也可以完全覆盖第一子电极421和第二子电极422,只要与相邻第一子电极组420对应的高阻膜800是断开的就可以实现第一子电极421与第二子电极422之间电势的递变。图3A示意性的示出位于中心电极411上的高阻膜800的断开的,本示例不限于此,位于中心电极411上的高阻膜800也可以是连续的。
例如,从圆形的圆心指向圆周的方向,第一子电极421和第二子电极422的尺寸为4.0μm-6.5μm。
例如,从圆形的圆心指向圆周的方向,第一子电极421与高阻膜800交叠的部分的尺寸可以为第一子电极421的尺寸的1/2~1/5,第二子电极422与高阻膜800交叠的部分的尺寸可以为第二子电极422的尺寸的1/2~1/5以防止相 邻两个子高阻膜接触。
例如,从圆形的圆心指向圆周的方向,高阻膜800的尺寸可以比环状部622的尺寸小0.4μm。
图3B为本实施例的另一示例提供的液晶镜片的局部剖面示意图。如图3B所示,与图3B所示的液晶镜片不同之处在于多个子电极的分布。如图3B所示,本示例中的多个子电极410包括位于同层的多个第一子电极组420,每个第一子电极组420包括彼此绝缘的至少三个子电极410。每个环状部622和中心部621与多个第一子电极组420一一对应,每个第一子电极组420包括彼此绝缘的至少两个子电极410,且从圆形的圆心指向圆周的方向,在菲涅尔透镜600的中心部621的厚度逐渐减小,且每个环状部622的厚度均逐渐减小的情况下,至少三个子电极410被配置为施加的电压逐渐减小。相比于图3A所示的示例,本示例中采用设置在第一子电极和第二子电极之间的多个子电极替换了高阻膜,且位于第一子电极和第二子电极之间的多个子电极被施加的电压递变,以使菲涅尔透镜与液晶层之间的界面处的电场大致均匀。本示例中子电极的数量和尺寸可以根据中心部与环状部的平行于第一基板的尺寸而定。本示例不限于此,还可以是从圆形的圆心指向圆周的方向,在菲涅尔透镜的中心部的厚度逐渐增大,且每个环状部的厚度均逐渐增大的情况下(如图2E所示的菲涅尔透镜),至少三个子电极被配置为施加的电压逐渐增大。
图4A为本公开一实施例的另一示例提供的液晶镜片的局部剖面示意图。如图4A所示,与图2A所示的液晶镜片不同之处在于多个子电极的分布。如图4A所示,本示例中的多个子电极410包括分别对应于中心部621以及每个环状部622的多个电极组430,即多个子电极410包括对应于中心部621的第一电极组4301以及对应于每个环状部622的第二电极组4302。每个电极组430包括至少两个第二子电极组431,每个第二子电极组431包括位于不同层的至少两个第三子电极433。图4A的每个第二子电极组431由虚线框圈出。每个第二子电极组431中,从圆形的圆心指向圆周的方向,在菲涅尔透镜600的中心部621的厚度逐渐减小,且每个环状部622的厚度均逐渐减小的情况下,至少两个第三子电极433距第一基板100的距离逐渐减小,且至少两个第三子电极433被配置为施加相同的电压。
例如,如图4A所示,第一电极组4301和第二电极组4302中的第三子电极433的层数均为P层,且沿垂直于第一基板100的方向,第二电极组4302 中第q层第三子电极433距第一基板100的距离与第一电极组4301中第q层第三子电极433距第一基板100的距离相等,P≥2,P≥q≥1。例如,图4A所示的第三子电极433分布在两层,即每个第二子电极组431包括两个第三子电极433,则第一电极为双层电极结构。本示例不限于此,第一电极还可以是三层或者更多层。
例如,图4B为图4A中的D区域的放大示意图。如图4A和图4B所示,从圆形的圆心指向圆周的方向,与中心部621对应的第二子电极组431被施加的电压逐渐减小,与每个环状部622对应的第二子电极组431被施加的电压逐渐减小,以使各位置处的液晶受到的电场以及液晶之间的分子作用力的作用后,位于不同厚度菲涅尔透镜600上的液晶的偏转程度大致相同,从而改善了液晶偏转不均的现象。
本示例不限于此,例如,每个第二子电极组中,在从圆形的圆心指向圆周的方向,菲涅尔透镜的中心部的厚度逐渐增大,且每个环状部的厚度均逐渐增大的情况下(如图2E所示的菲涅尔透镜),至少两个第三子电极距第一基板的距离逐渐增大,且至少两个第三子电极被配置为施加相同的电压。从圆形的圆心指向圆周的方向,与中心部对应的第二子电极组被施加的电压逐渐增大,与每个环状部对应的第二子电极组被施加的电压逐渐增大,以使各位置处的液晶受到的电场以及液晶之间的分子作用力的作用后,位于菲涅尔透镜的不同厚度位置处的液晶的偏转程度大致相同,从而改善了液晶偏转不均的现象。
例如,在对应菲涅尔透镜600的厚度最薄的位置的第三子电极433被配置为施加与图1A所示结构施加的中间态电压相同的电压,而随着菲涅尔透镜600的厚度的增加,对应于菲涅尔透镜600的第三子电极433被施加的电压逐渐增大,可以尽量弥补菲涅尔透镜600对电场的影响。
例如,如图4A所示,与中心部621和每个环状部622对应的第二子电极组431的数量相等,图4A示意性的示出第二子电极组431的数量为4个,但不限于此,可根据环状部622的尺寸以及第三子电极433的尺寸而定。只要能够尽量使位于不同厚度菲涅尔透镜600上的液晶的偏转程度大致相同,从而改善了液晶偏转不均的现象即可。
例如,如图4A和图4B所示,对应于中心部621的第二子电极组431与对应于至少一个环状部622的第二子电极组431一一对应电连接,且对应于相邻两个环状部622的第二子电极组431一一对应电连接。也就是,对应于中心 部621和环状部622的第二子电极组431施加电压的规律相同以使位于不同厚度菲涅尔透镜600上的液晶的偏转程度大致相同,从而改善了液晶偏转不均的现象。本示例还可以简化工艺,控制引线数量。
图5为本公开另一实施例提供的液晶镜片的局部剖面示意图。如图5所示,本实施例与图2A所示的实施例的不同之处在于第一电极400的位置以及结构,第一电极400为位于菲涅尔透镜600的第二表面620上的连续电极。本示例中的菲涅尔透镜的形状可以是图2A所示的形状,也可以是图2E所示的形状,在此不作限制。
例如,第一电极400共形(conformal)地形成在菲涅尔透镜600的第二表面620上,即形成的第一电极400是一层沉积在菲涅尔透镜600的第二表面620上的整层透明电极,第一电极400各处厚度大致相同,则第一电极400远离菲涅尔透镜600一侧表面形状与菲涅尔透镜600的第二表面形状相同。
例如,第一电极400沿垂直于第一基板100的方向的厚度可以为0.04μm-0.07μm,从而既可以保证第一电极400不会由于厚度较薄而在菲涅尔透镜600的第二表面620上的凹槽处发生断裂,又可以保证第一电极400不会较厚而影响电场。
本实施例中的第一电极设置在菲涅尔透镜面向液晶层的一侧可以防止菲涅尔透镜对电场产生的影响,在第一电极被施加与图1A所示结构施加的中间态电压相同的电压时,菲涅尔透镜各位置上的液晶受到电场与分子间作用力的共同作用后,可以实现位于菲涅尔透镜的不同厚度位置处的液晶的偏转程度大致相同,从而改善了液晶偏转不均的现象。由此,本公开实施例中可以通过对第一电极施加不同的中间态电压以实现液晶层的折射率连续变化,以使该液晶镜片作为一个高像质的可连续变焦的透镜。
图6为图2A-图2D、图3A-图5所示各实施例对第一电极施加中间态电压时,位于菲涅尔透镜的中心部上方的区域的液晶的偏转状态示意图。如图6所示,以位于菲涅尔透镜的中心部的液晶为例,位于中心部的厚度较薄位置(低拱区)的上方的区域D和位于中心部的厚度较厚位置(高拱区)的上方的区域E内的液晶均基本处于正常偏转状态(垂直于第一透明基板)。此时,液晶层各位置的折射率大致均匀,不会出现杂散光导致的成像模糊。由此,图2A-图5所示的液晶眼镜中的液晶可以实现折射率的连续变化,从而实现眼镜度数的可调节。当然,图2E所示的示例中的各位置处液晶偏转也是均匀的。
本公开另一实施例提供一种液晶眼镜,包括上述任一实施例提供的液晶镜片,本公开实施例提供的液晶眼镜中的液晶在被施加中间态电压产生的电场作用下的偏转均匀,可以实现折射率的连续变化,从而实现眼镜度数的可调节。此外,本公开实施例提供的液晶眼镜还可以实现凹透镜和凸透镜等多功能变换,以满足各种用户的需求。
有以下几点需要说明:
(1)本公开的实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的同一实施例及不同实施例中的特征可以相互组合。
以上仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (19)

  1. 一种液晶镜片,包括:
    第一基板、与所述第一基板对置的第二基板以及位于所述第一基板与所述第二基板之间的液晶层;
    位于所述第一基板面向所述第二基板一侧的第一电极以及位于所述第二基板面向所述第一基板一侧的第二电极;
    菲涅尔透镜,位于所述第一基板与所述液晶层之间,所述菲涅尔透镜包括彼此相对的平坦的第一表面和设置有齿纹的第二表面,且所述液晶层位于所述第二表面远离所述第一表面的一侧,
    其中,所述第一电极位于所述菲涅尔透镜面向所述第一基板的一侧,且所述第一电极包括彼此分隔的多个子电极。
  2. 根据权利要求1所述的液晶镜片,其中,所述菲涅尔透镜包括中心部以及围绕所述中心部的多个环状部,所述中心部在所述第一基板上的正投影为圆形,从所述圆形的圆心指向圆周的方向,所述中心部与所述多个环状部的每个的厚度均逐渐变化,且两者的厚度变化趋势相同;
    所述多个子电极包括中心电极和围绕所述中心电极的环状电极,且所述圆心位于所述中心电极在所述第一基板上的正投影内。
  3. 根据权利要求2所述的液晶镜片,其中,所述多个子电极分层设置,相邻两层子电极之间设置有绝缘层,且从所述圆形的圆心指向圆周的方向,所述中心部与所述多个环状部的每个的厚度均逐渐减小,所述多个子电极中与所述中心部对应的第一部分子电极距所述第一基板的距离逐渐减小,且所述多个子电极中与所述环状部的每个对应的第二部分子电极距所述第一基板的距离逐渐减小。
  4. 根据权利要求2所述的液晶镜片,其中,所述多个子电极分层设置,相邻两层子电极之间设置有绝缘层,且从所述圆形的圆心指向圆周的方向,所述中心部与所述多个环状部的每个的厚度均逐渐增大,所述多个子电极中与所述中心部对应的第一部分子电极距所述第一基板的距离逐渐增大,且所述多个子电极中与所述环状部的每个对应的第二部分子电极距所述第一基板的距离逐渐增大。
  5. 根据权利要求3或4所述的液晶镜片,其中,所述多个子电极被配置为施加相同的电压。
  6. 根据权利要求5所述的液晶镜片,其中,所述绝缘层的介电常数与所述菲涅尔透镜的介电常数大致相同。
  7. 根据权利要求5或6所述的液晶镜片,其中,所述第一部分子电极和所述第二部分子电极的层数均为N层,且沿垂直于所述第一基板的方向,第m层所述第一部分子电极距所述第一基板的距离与第m层所述第二部分子电极距所述第一基板的距离相等,N≥3,N≥m≥1。
  8. 根据权利要求2所述的液晶镜片,其中,所述多个子电极包括位于同层的多个第一子电极组,所述多个环状部的每个和所述中心部与所述多个第一子电极组一一对应,所述多个第一子电极组的每个包括彼此绝缘的至少两个子电极;
    从所述圆形的圆心指向圆周的方向,所述中心部与所述多个环状部的每个的厚度均逐渐减小,所述至少两个子电极被配置为施加的电压逐渐减小;或者
    从所述圆形的圆心指向圆周的方向,所述中心部与所述多个环状部的每个的厚度均逐渐增大,所述至少两个子电极被配置为施加的电压逐渐增大。
  9. 根据权利要求8所述的液晶镜片,其中,所述多个第一子电极组的每个包括两个子电极,所述多个第一子电极组的每个面向所述菲涅尔透镜的一侧设置有高阻膜,所述高阻膜在对应所述多个第一子电极组中相邻的两个第一子电极组之间的空隙处断开。
  10. 根据权利要求9所述的液晶镜片,其中,从所述圆形的圆心指向圆周的方向,所述子电极与所述高阻膜交叠的部分的尺寸为所述子电极的尺寸的1/2~1/5。
  11. 根据权利要求9或10所述的液晶镜片,其中,从所述圆形的圆心指向圆周的方向,所述子电极的尺寸为4.0μm-6.5μm。
  12. 根据权利要求2所述的液晶镜片,其中,所述多个子电极包括对应于所述中心部的第一电极组以及对应于所述多个环状部的每个的第二电极组,所述第一电极组和所述第二电极组均包括至少两个第二子电极组,所述至少两个第二子电极组的每个包括位于不同层的至少两个第三子电极;
    从所述圆形的圆心指向圆周的方向,所述中心部与所述多个环状部的每个的厚度均逐渐减小,每个所述第二子电极组中,所述至少两个第三子电极距所 述第一基板的距离逐渐减小,且所述至少两个第三子电极被配置为施加相同的电压;或者
    从所述圆形的圆心指向圆周的方向,所述中心部与所述多个环状部的每个的厚度均逐渐增大,每个所述第二子电极组中,所述至少两个第三子电极距所述第一基板的距离逐渐增大,且所述至少两个第三子电极被配置为施加相同的电压。
  13. 根据权利要求12所述的液晶镜片,其中,所述第一电极组和所述第二电极组中的第三子电极的层数均为P层,且沿垂直于所述第一基板的方向,所述第二电极组中第q层第三子电极距所述第一基板的距离与所述第一电极组中第q层第三子电极距所述第一基板的距离相等,P≥2,P≥q≥1;
    从所述圆形的圆心指向圆周的方向,所述中心部与所述多个环状部的每个的厚度均逐渐减小,与所述中心部对应的所述至少两个第二子电极组被配置为施加的电压逐渐减小,与所述多个环状部的每个对应的所述至少两个第二子电极组被配置为施加的电压逐渐减小;或者
    从所述圆形的圆心指向圆周的方向,所述中心部与所述多个环状部的每个的厚度逐渐增大,与所述中心部对应的所述至少两个第二子电极组被配置为施加的电压逐渐增大,与所述多个环状部的每个对应的所述至少两个第二子电极组被配置为施加的电压逐渐增大。
  14. 根据权利要求13所述的液晶镜片,其中,所述第一电极组和所述第二电极组包括的所述第二子电极组的数量相同,对应于所述中心部的所述至少两个第二子电极组与对应于所述多个环状部的所述至少两个第二子电极组一一对应电连接,且对应于所述多个环状部中相邻两个环状部的所述至少两个第二子电极组一一对应电连接。
  15. 根据权利要求1-14任一项所述的液晶镜片,其中,所述液晶层中的液晶的折射率被配置为在第一折射率n1和第二折射率n2之间变化,所述菲涅尔透镜的折射率n0满足:n1≥n0≥n2。
  16. 一种液晶镜片,包括:
    第一基板、与所述第一基板对置的第二基板以及位于所述第一基板与所述第二基板之间的液晶层;
    位于所述第一基板面向所述第二基板一侧的第一电极以及位于所述第二基板面向所述第一基板一侧的第二电极;
    菲涅尔透镜,位于所述第一基板与所述液晶层之间,所述菲涅尔透镜包括彼此相对的平坦的第一表面和设置有齿纹的第二表面,且所述液晶层位于所述第二表面远离所述第一表面的一侧,
    其中,所述第一电极为位于所述菲涅尔透镜的所述第二表面上的连续电极。
  17. 根据权利要求16所述的液晶镜片,其中,所述第一电极共形地形成在所述菲涅尔透镜的所述第二表面上。
  18. 根据权利要求16或17所述的液晶镜片,其中,所述第一电极沿垂直于所述第一基板的方向的厚度为0.04μm-0.07μm。
  19. 一种液晶眼镜,包括权利要求1-18任一项所述的液晶镜片。
PCT/CN2020/076768 2019-04-19 2020-02-26 液晶镜片以及液晶眼镜 WO2020211540A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/964,499 US20210231978A1 (en) 2019-04-19 2020-02-26 Liquid Crystal Lens and Liquid Crystal Glasses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910320240.2 2019-04-19
CN201910320240.2A CN111830756B (zh) 2019-04-19 2019-04-19 液晶镜片以及液晶眼镜

Publications (1)

Publication Number Publication Date
WO2020211540A1 true WO2020211540A1 (zh) 2020-10-22

Family

ID=72836859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076768 WO2020211540A1 (zh) 2019-04-19 2020-02-26 液晶镜片以及液晶眼镜

Country Status (3)

Country Link
US (1) US20210231978A1 (zh)
CN (1) CN111830756B (zh)
WO (1) WO2020211540A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115373187A (zh) * 2022-08-29 2022-11-22 京东方科技集团股份有限公司 液晶透镜

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023505287A (ja) * 2019-12-06 2023-02-08 イー-ビジョン スマート オプティックス, インク. 多深度液晶電極層レンズ
CN112433411B (zh) * 2020-12-03 2023-05-09 南昌虚拟现实研究院股份有限公司 液晶透镜
CN113376926A (zh) * 2021-06-22 2021-09-10 纵深视觉科技(南京)有限责任公司 一种可切换液晶光学器件
US20230058115A1 (en) * 2021-08-23 2023-02-23 Wicue, Inc. Focus-adjustable liquid crystal eyeglasses
US20240085756A1 (en) * 2022-09-01 2024-03-14 Meta Platforms Technologies, Llc Gradient-index liquid crystal lens having lens segments with optical power gradient
US11733547B1 (en) * 2022-09-27 2023-08-22 Pixieray Oy Modulating impedance to segments of ground plane

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1947055A (zh) * 2004-04-30 2007-04-11 旭硝子株式会社 液晶透镜元件和激光头装置
JP2009069486A (ja) * 2007-09-13 2009-04-02 Citizen Holdings Co Ltd 液晶光学素子
US20130128334A1 (en) * 2011-11-18 2013-05-23 Vuzix Corporation Beam Steering Device
CN104900683A (zh) * 2015-06-10 2015-09-09 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示装置
CN105929619A (zh) * 2016-07-11 2016-09-07 宁波万维显示科技有限公司 蓝相液晶菲涅尔透镜及其制备方法
CN108037598A (zh) * 2017-11-23 2018-05-15 京东方科技集团股份有限公司 液晶盒及拍摄系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107219573B (zh) * 2017-07-31 2019-05-07 京东方科技集团股份有限公司 菲涅尔透镜及眼镜
CN108957754B (zh) * 2018-07-27 2021-08-24 京东方科技集团股份有限公司 增强现实设备及显示方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1947055A (zh) * 2004-04-30 2007-04-11 旭硝子株式会社 液晶透镜元件和激光头装置
JP2009069486A (ja) * 2007-09-13 2009-04-02 Citizen Holdings Co Ltd 液晶光学素子
US20130128334A1 (en) * 2011-11-18 2013-05-23 Vuzix Corporation Beam Steering Device
CN104900683A (zh) * 2015-06-10 2015-09-09 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示装置
CN105929619A (zh) * 2016-07-11 2016-09-07 宁波万维显示科技有限公司 蓝相液晶菲涅尔透镜及其制备方法
CN108037598A (zh) * 2017-11-23 2018-05-15 京东方科技集团股份有限公司 液晶盒及拍摄系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115373187A (zh) * 2022-08-29 2022-11-22 京东方科技集团股份有限公司 液晶透镜
CN115373187B (zh) * 2022-08-29 2024-04-02 京东方科技集团股份有限公司 液晶透镜

Also Published As

Publication number Publication date
CN111830756B (zh) 2022-02-01
CN111830756A (zh) 2020-10-27
US20210231978A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
WO2020211540A1 (zh) 液晶镜片以及液晶眼镜
JP4057597B2 (ja) 光学素子
US20160202573A1 (en) Tunable electro-optic liquid crystal lenses and methods for forming the lenses
US8451408B2 (en) Electrically tunable liquid crystal lens set with central electrode
US11378862B2 (en) Optical axis tunable liquid crystal lens, electronic apparatus, display apparatus, and method of operating optical axis tunable liquid crystal lens
GB2318201A (en) Liquid crystal displays
CN107219573B (zh) 菲涅尔透镜及眼镜
WO2005073760A1 (en) Adaptive liquid crystal lenses
TW201426143A (zh) 電容性耦合電場控制裝置
CN109856867B (zh) 液晶透镜及液晶眼镜
TWI709790B (zh) 液晶透鏡
CN108490702B (zh) 一种显示面板及其驱动方法、显示装置
US10914999B2 (en) Lens, method for fabricating the same, glasses and optical system
EP3489747B1 (en) Liquid crystal lens, manufacturing method therefor, and display device
JP5906366B2 (ja) 液晶光学デバイス
TW201823772A (zh) 變焦液晶透鏡組件及其液晶透鏡結構
CN111090209B (zh) 可变焦的液晶透镜、液晶透镜的驱动方法及显示装置
CN109709739B (zh) 一种短焦距液晶透镜
WO2020248720A1 (zh) 液晶镜片以及液晶眼镜
JP7064256B1 (ja) 液晶レンズ
TWI408417B (zh) 液晶變焦透鏡
US20230130327A1 (en) Optical element and optical device having the same
CN108761884B (zh) 一种大调焦范围的蓝相液晶透镜
WO2018132980A1 (zh) 显示装置
CN110703513A (zh) 一种可变焦球形空腔结构液晶透镜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20790580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20790580

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20790580

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06.05.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20790580

Country of ref document: EP

Kind code of ref document: A1