WO2020211101A1 - 具有受电功能的汽车行驶方向控制装置及汽车 - Google Patents

具有受电功能的汽车行驶方向控制装置及汽车 Download PDF

Info

Publication number
WO2020211101A1
WO2020211101A1 PCT/CN2019/083707 CN2019083707W WO2020211101A1 WO 2020211101 A1 WO2020211101 A1 WO 2020211101A1 CN 2019083707 W CN2019083707 W CN 2019083707W WO 2020211101 A1 WO2020211101 A1 WO 2020211101A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission arm
control device
guide
direction control
power receiving
Prior art date
Application number
PCT/CN2019/083707
Other languages
English (en)
French (fr)
Inventor
陈治霖
Original Assignee
重庆陈氏清洁服务有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆陈氏清洁服务有限公司 filed Critical 重庆陈氏清洁服务有限公司
Publication of WO2020211101A1 publication Critical patent/WO2020211101A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/18Current collectors for power supply lines of electrically-propelled vehicles using bow-type collectors in contact with trolley wire
    • B60L5/22Supporting means for the contact bow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/18Current collectors for power supply lines of electrically-propelled vehicles using bow-type collectors in contact with trolley wire
    • B60L5/22Supporting means for the contact bow
    • B60L5/24Pantographs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R41/00Non-rotary current collectors for maintaining contact between moving and stationary parts of an electric circuit

Definitions

  • the present invention relates to the field of automobile technology, in particular to an automobile traveling direction control device with power receiving function.
  • deflection type vehicle power receiving device discloses that a deflection type vehicle power receiving device is provided on the vehicle to cooperate with the power supply device arranged along the roadway to solve the problem of mobile charging of the vehicle .
  • the deflection power receiving device is installed on the vehicle, the deflection of the yaw arm to the outside of the vehicle body during the charging process will affect the driving stability of the vehicle, so this technical problem needs to be solved.
  • the existing car driving method is manually driven by the driver, which is difficult to drive and prone to fatigue after long-term driving.
  • the purpose of the present invention is to provide a vehicle driving direction control device with power receiving function to solve the technical problem that the deflection power receiving device is installed on the vehicle, which will affect the stability of the vehicle and increase the difficulty of driving. And to solve the technical problem that the existing three-dimensional assisted driving road system still requires the driver to control the driving direction of the vehicle.
  • the vehicle driving direction control device with power receiving function of the present invention includes a side swing arm mechanism arranged on the vehicle body.
  • the side swing arm mechanism includes a main force transmission arm, a telescopic slave force transmission arm, and a main drive arm.
  • the vehicle driving direction control device also includes a guide block provided at the end of the main force transmission arm, and a guide slot is provided on the guide block, and the guide slot is used to be locked downward on a guide rail arranged along the carriageway. And slidingly cooperate with the guide rail, the driving direction control device of the automobile with power receiving function limits the driving direction of the automobile by sliding the guide block along the guide rail;
  • the vehicle driving direction control device further includes a positive current collector and a negative current collector arranged on the guide block, the positive current collector is located on the left or right side of the guide block, and the negative current collector is located on the top of the guide slot.
  • one end of the telescopic secondary force transmission arm is hinged with the main force transmission arm through a ball hinge or a universal joint.
  • a first pivot shaft is vertically fixed on the guide block, the first pivot shaft and the main force transmission arm are rotationally matched, and the guide block also has a rotation angle limiting mechanism, and the rotation angle limiting mechanism is used to limit the guide
  • the angle at which the block rotates around the first pivot, and the main force transmission arm is also provided with a first brake for braking the first pivot or the guide block.
  • the rotation angle limiting mechanism includes an arc-shaped slot provided on the top surface of the guide block and a pin located in the arc-shaped slot and slidingly matched with the arc-shaped slot, and the pin is vertically fixed on the main force transmission arm.
  • the front end of the left side of the positive current collector is provided with a front rolling anti-friction ball
  • the rear end of the left side of the positive current collector is provided with a rear rolling anti-friction ball.
  • the front end of the right side of the positive current collector is provided with a front rolling anti-friction ball
  • the rear end of the right side of the positive current collector is provided with a rear rolling anti-friction ball.
  • the positive electrode current collector is fixedly connected to the guide block.
  • the positive current collector is connected to the guide block by a horizontal elastic telescopic element, and the maximum telescopic amount of the horizontal elastic telescopic element is equal to the maximum gap between the guide slot and the guide rail.
  • the mouth of the guide slot is provided with an introduction angle.
  • the horizontal elastic telescopic member includes a transverse guide rod connecting the positive current collector and the guide block, and a first spring sleeved on the transverse guide rod.
  • the positive electrode current collector includes an insulating housing connected with the guide block, a rolling power receiver for contacting with the power supply conductor, and a vertically inclined elastic telescopic member that can be elastically expanded and contracted.
  • the inclined elastic expansion piece is connected with the insulating shell.
  • the vertically inclined elastic telescopic member includes a sleeve, a sliding rod arranged in the sleeve and capable of extending outward, and a second spring sleeved on the sleeve and the sliding rod, and the upper end of the sleeve is hinged On the insulating shell, the second spring is used to apply a thrust to the sliding rod to extend it outward; the insulating shell is also provided with a limit structure that limits the rotation angle of the sleeve.
  • the rolling power receiver includes a wheel frame connected with the vertically inclined elastic telescopic member, a horizontal wheel axle arranged on the wheel frame, a roller arranged on the horizontal wheel axle, and a wire connected with the horizontal wheel axle.
  • the negative electrode current collector includes a vertically inclined elastic telescopic member and a rolling current collector.
  • a tracheal joint is also provided on the insulating shell.
  • the lifting drive mechanism includes a base connected with the vehicle body, a guide post vertically fixed on the base, a lifting seat which is slidably fitted up and down with the guide post, and a straight line arranged on the base to drive the lifting seat to move up and down.
  • the driver, the rotation driving mechanism is arranged on the lifting seat, and the main force transmission arm is connected with the rotation driving mechanism.
  • the main force transmission arm is composed of a forearm and a rear arm connected by a second pivot, the guide block is arranged on the forearm, and the rear arm is provided with a left limit for limiting the rotation angle of the forearm around the second pivot.
  • Mechanism and right limiting mechanism the main force transmission arm is also provided with a third spring or a fourth spring, the third spring is used to apply a torsion force to the forearm to prevent the forearm from rotating to the right, and the fourth spring is used for A torsion force is applied to the forearm to prevent the forearm from rotating to the left, and the telescopic slave arm is hinged with the rear arm; the rear arm is also provided with a second brake for braking the second pivot or the forearm.
  • universal balls are provided on the left and right sides of the guide slot.
  • the telescopic slave force transmission arm is composed of an inner rod and a sleeve, the sleeve is sleeved on the inner rod and slidably fitted with the inner rod, and the extension locking mechanism includes a strip provided on the inner wall of the sleeve Conductor magnet and strip electromagnet arranged on the inner rod.
  • a distance sensor is provided on the top surface of the guide slot, and the distance sensor is used to detect the distance between the top of the guide slot and the top surface of the guide rail.
  • a pressure sensor is arranged between the base of the front rolling anti-friction ball or the rear rolling anti-friction ball and the insulating shell.
  • a pressure plate is sleeved on the horizontal guide rod, the end of the first spring is pressed against the pressure plate, and a pressure sensor is arranged between the pressure plate and the insulating housing or the pressure plate and the guide block.
  • electromagnets are respectively provided on the left and right sides of the guide slot.
  • the invention also discloses an automobile with an automobile driving direction control device, the connecting parts of the main transmission arm and the telescopic secondary transmission arm and the vehicle body are distributed back and forth in the length direction of the vehicle body.
  • the vehicle driving direction control device with power receiving function of the present invention uses the guide slot provided on the guide block to slide and cooperate with the guide rail, and the guide block moves along the guide rail to guide the driving direction of the car, so that the car is moved from the existing
  • the trackless driving becomes a combination of trackless driving and track driving.
  • the guide block is matched with the guide rail, the car travels on a track, and its driving direction is determined by the guide rail, which makes the car easier to drive and solves the problem of driving stability after the deflection power receiving device is installed on the vehicle. In this case, the driver does not need to control the driving direction, so the technical problem that the existing stereo assisted driving road system still requires the driver to control the driving direction of the vehicle is solved.
  • tracked driving can eliminate the side slip problem of existing cars, improve the driving safety of the car, and help increase the maximum speed limit of the car on the highway.
  • the car becomes trackless.
  • the car switches to the existing driving mode, so that the car can derail at intersections and other places that are not suitable for setting guide rails, retaining the mobility and flexibility of existing cars Sex.
  • the rolling power receiver of the positive power receiver is connected to the elastic telescopic member, so that the rolling power receiver can always be pressed on the power supply conductor during the charging process of the vehicle. It ensures that the rolling power receiver and the power supply conductor can always be in close contact, and the charging reliability is good; and the cooperation of the guiding slot and the guide rail also limits the running direction of the positive current collector, thereby ensuring that the positive current collector and the power supply conductor are on the left and right Correct contact in the direction.
  • the sleeve of the vertically inclined elastic telescopic member is hinged on the insulating shell, and a limit structure is provided to limit the angle of the sleeve deflection left and right relative to the forward direction of the positive current collector, so that the rolling power receiver can flexibly follow the power supply conductor Exercise to adapt to the curved road conditions.
  • the vehicle driving direction control device with power receiving function of the present invention arranges the negative current collector in the guide slot, and the negative current collector is in contact with the negative rail in the guide block, so that the overall structure of the device is more compact and the volume is smaller.
  • the guide block is transmitted to the main transmission arm and The force of the telescopic slave arm is reasonably distributed in the front and rear of the car body; when the guide block makes a slight left-to-right deflection on the guide rail (there is a matching gap between the guide slot and the guide rail, so the guide block will be The guide rail has some left and right deflection), the force of the guide block and the guide rail is transmitted to the car body through the main force transmission arm and the telescopic force transmission arm, so that the car body can follow the guide block to deflection synchronously, which can realize the instantaneous fine adjustment of the car driving direction Control, which is the key to control the direction of the car through the cooperation of the guide block and the guide rail.
  • the structure in which the main transmission arm and the telescopic secondary transmission arm and the car body are distributed front and rear in the length direction of the car body can better ensure that the car body and the guide rail remain parallel, and reduce the impact on the hinge part.
  • the torsion force makes the hinge structure more reliable.
  • FIG. 1 is a schematic diagram of the structure of the vehicle traveling direction control device with the power receiving function in the undeflected state in the embodiment
  • Figure 2 is a structural schematic diagram of a vehicle driving direction control device with power receiving function in a deflection state
  • Figure 3 is a schematic diagram of the state when the positive current collector and the guide plate start to contact
  • Figure 4 is a schematic view of the structure when the guide block moves down to the point where the notch of the guide card starts to contact the upper end of the guide rail;
  • Figure 5 is a structural schematic diagram of the guide slot on the guide block locked on the guide rail;
  • Fig. 6 is an enlarged schematic diagram of part P in Fig. 1;
  • Fig. 7 is a schematic diagram of an embodiment in which the positive current collector and the guide block are connected by a horizontal telescopic member;
  • Fig. 8 is an enlarged schematic diagram of part K in Fig. 7;
  • Figure 9 is a schematic structural view of the rotation drive mechanism and the lifting drive mechanism arranged on the vehicle body;
  • Figure 10 is a schematic cross-sectional view of a telescopic slave force transmission arm
  • Figure 11 is a schematic diagram of the structure of the positive power supply and the guide block combination
  • Figure 12 is a schematic longitudinal sectional view of the positive electrode current collector
  • Figure 13 is a schematic longitudinal sectional view of the guide block
  • Figure 14 is a schematic view of the pivotal structure of the forearm and the rear arm.
  • the vehicle driving direction control device with power receiving function of this embodiment includes a side swing arm mechanism arranged on the vehicle body.
  • the side swing arm mechanism includes a main force transmission arm 1, a telescopic slave The force transmission arm 2, a rotary drive mechanism that drives the main force transmission arm to deflect horizontally, and a lift drive mechanism that drives the main force transmission arm to move up and down.
  • one end of the telescopic slave force transmission arm is hinged with the main force transmission arm through a ball hinge
  • the other end of the telescopic slave force transmission arm is hinged with the vehicle body through a ball hinge
  • the spherical hinge can also be replaced by a universal joint.
  • one end of the telescopic slave transfer arm can be hinged with the main transfer arm, and the vehicle body is further articulated with a lifting drive mechanism that drives the active telescopic slave transfer arm.
  • the other end of the slave force transmission arm is connected to the lifting part of the lifting drive mechanism, so that the two sets of lifting drive mechanisms can drive the main force transmission arm and the active telescopic slave force transmission arm to move up and down simultaneously.
  • the telescopic secondary force transmission arm is also provided with an extension locking mechanism, which is used to lock the telescopic secondary force transmission arm in an extended state so as to keep the extension length unchanged.
  • the vehicle driving direction control device further includes a guide block 3 arranged at the end of the main force transmission arm, and a guide slot 4 is provided on the guide block, and the guide slot 4 is used to catch downwardly in the arrangement along the roadway.
  • the driving direction control device of the car with the power receiving function limits the driving direction of the car by sliding the guide block along the guide rail; the guide rail is composed of a guide block that can conduct electricity and can withstand the impact of the guide block. Made of material, such as alloy steel.
  • the vehicle driving direction control device also includes a positive current collector 6 and a negative current collector 7 arranged on the guide block.
  • the positive current collector is located on the left or right side of the guide block, and the negative current collector is located in the guide slot. top.
  • a first pivot 8 is vertically fixed on the guide block, and the first pivot is rotationally matched with the main transmission arm.
  • the guide block also has a rotation angle limiting mechanism 9, and the rotation angle limit The mechanism is used to limit the rotation angle of the guide block around the first pivot, and the main force transmission arm is also provided with a first brake 10 for braking the first pivot or the guide block.
  • the first brake is a magnetic powder actuator that brakes the pivot; of course, in different embodiments, the first brake can also take other forms, for example, the first brake can be set in the main transmission force
  • the electromagnet on the arm and the magnetizer arranged on the guide block and matched with the electromagnet can also brake the guide block through the electromagnet attracting the magnetizer.
  • the rotation angle limiting mechanism includes an arc groove 91 provided on the top surface of the guide block and a pin shaft 92 located in the arc groove and slidingly engaged with the arc groove.
  • the pin shaft is vertically fixed to the main transmission.
  • a torsion spring 93 can also be provided on the main force transmission arm or pin shaft, and the torsion spring applies torsion force to the guide block, so that the guide block can be stabilized in the main transmission force in the non-charged state.
  • the length direction of the guide slot in Figure 6 is parallel to the main force transmission arm.
  • the corner limiting mechanism can also adopt other forms, for example, the arc-shaped groove can also be replaced by two limiting stops.
  • the main force transmission arm is driven by the rotating drive mechanism to the guide rail 5 and the positive electrode which are arranged beside the carriageway and arranged in parallel along the carriageway.
  • the power supply conductor 11 deflects.
  • the side surface of the positive current collector 6 is in contact with the guide plate 13 provided on the support 12, the positive current collector and the guide block will rotate around the first pivot, and the rotary drive mechanism will continue to rotate and drive the main transmission arm Rotate until the side of the positive current collector 6 is parallel to the guide plate. At this time, the positive current collector and the guide block can no longer rotate around the first pivot.
  • the lifting drive mechanism drives the main transmission arm down, and the main transmission arm is Drive the positive electrode receiver and the guide block to descend synchronously.
  • the side of the positive current collector begins to separate from the guide plate, and then the guide block and the guide rail are matched to the bottom while the guide block continues to descend.
  • the positive current collector 6 is also in good contact with the positive power supply conductor 11 at the same time, and the car can be mobile charging at this time; at the same time, the guide block is stuck on the guide rail to guide the direction of the car.
  • the driving mode of automobiles has also changed from trackless driving to a combination of trackless driving and track driving.
  • the first brake braking state prevents the guide block from rotating around the first pivot, and the extension locking mechanism locks the telescopic slave arm.
  • the guide block, the main transmission arm and the telescopic slave transmission arm are in a rigid state that cannot be deflected, so that the force between the guide block and the guide rail can be directly transmitted to the car body to change the forward direction of the car body and make the forward direction of the car body forward. Consistent with the guide rails, so that the forward direction of the wheels is automatically changed following the steering of the car body.
  • the steering of the wheels then reacts to the steering system of the car, that is, the car is passively steered in the state of track driving, and its steering force comes from the guide block and the guide rail Between the force, the movement of the guide block along the guide rail determines the direction of the car.
  • the driving direction of the car is determined by the direction in which the guide block moves along the guide rail.
  • the driver does not need to control the steering wheel of the car, which makes the driving of the car easier and solves the existing problems.
  • the three-dimensional assisted driving road system still requires the driver to control the technical problem of the driving direction of the vehicle.
  • tracked driving can eliminate the side slip problem of existing cars, improve the driving safety of the car, and help increase the maximum speed limit of the car on the highway.
  • the first brake is released from the braking state, and the strip electromagnet is de-energized, and then the main transmission arm is driven up by the lifting drive mechanism to move the power receiving device and the guide block upwards.
  • the guide plate 13 is provided with an introduction angle at the lower end, so that the power receiving device and the guide block can move upward smoothly; after the guide block is separated from the guide rail, the main transmission arm is driven to rotate and reset by the rotating drive mechanism.
  • the car becomes trackless. At this time, the car switches to the existing driving mode, so that the car can derail at intersections and other places that are not suitable for setting guide rails, retaining the mobility and flexibility of existing cars Sex.
  • the front end of the left side of the positive current collector is provided with a front rolling anti-friction ball 14, and the rear of the left side of the positive current collector The end is provided with a rear rolling anti-friction ball 15; the installation of the rolling anti-friction ball can greatly reduce the friction force when the positive electrode current collector is in contact with the guide plate, and can realize the guide plate to guide the positive electrode current collector and the guide block.
  • the positive conductor can also be arranged on the right side of the guide block.
  • the positive current collector is located on the right side of the guide slot, the front end of the right side of the positive current collector is provided with a front rolling anti-friction ball, and the rear end of the right side of the positive current collector is provided with a rear rolling anti-friction ball.
  • the positive electrode current collector and the guide block are fixedly connected.
  • the positive current collector can also be connected to the guide block through the horizontal elastic telescopic member 16, and the maximum telescopic amount of the horizontal elastic telescopic member is equal to the maximum between the guide slot and the guide rail.
  • the mouth of the guide slot is provided with an introduction angle.
  • the guide plate 13 can be extended downward, so that the positive electrode current collector and the guide block can be guided by the guide plate during the entire lifting process.
  • the guide rail Since the maximum expansion and contraction of the horizontal elastic telescopic element is equal to the maximum gap between the guide slot and the guide rail, the guide rail is close to the guide slot during the contact between the positive current collector and the guide plate when the horizontal elastic telescopic element is in the maximum extension state When the horizontal elastic telescopic member is in the shortest compression state, the guide rail is close to the right side of the guide slot; and the lead-in angle set at the guide slot ensures that the guide block will guide the slot during the downward movement of the guide plate 13 It can be stuck on the guide rail smoothly, and it is ensured that the direction of the car is always controlled by the cooperation of the guide slot and the guide rail during the driving of the car.
  • the horizontal elastic telescopic member 16 described in the above embodiment includes a horizontal guide rod 161 connecting the positive current collector and the guide block, and a first spring 162 sleeved on the horizontal guide rod.
  • the horizontal elastic expansion member can also take other forms.
  • the lifting drive mechanism includes a base 17 connected with the vehicle body, a guide post 18 vertically fixed on the base, a lifting seat 19 that is slidably fitted up and down with the guide post, and a drive provided on the base.
  • the linear drive 20 for the up and down movement of the lifting base, the rotation driving mechanism 21 is arranged on the lifting base, and the main force transmission arm is connected with the rotation driving mechanism.
  • Linear drives can use electric cylinders, digital hydraulic cylinders, etc.
  • rotary drive mechanisms can use servo motors, stepping motors, etc.
  • the rotary drive mechanism can also be directly connected to the linear drive.
  • the main force transmission arm 1 is composed of a forearm 101 and a rear arm 102 connected by a second pivot shaft 31, the guide block is provided on the forearm, and the rear arm is provided with a restricting forearm around the second pivot.
  • the left limit mechanism 22 and the right limit mechanism 23 of the shaft rotation angle are also provided with a second brake for the second pivot on the rear arm.
  • the second brake may be a magnetic powder brake 32; of course, in different embodiments In the above, the second brake can also be used to brake the forearm. When the car is running on rails, the second brake is in a braking state, so that the forearm cannot rotate around the second pivot.
  • the main force transmission arm is also provided with a third spring or a fourth spring, the third spring is used to apply a torsion force to the forearm to prevent the forearm from rotating to the right, and the fourth spring is used to apply to the forearm to prevent the forearm from rotating to the left
  • the telescopic slave arm is hinged with the rear arm.
  • the side swing arm mechanism when the guide rail and the positive power supply conductor are arranged on the left side of the road, the side swing arm mechanism is deflected to the left.
  • the third spring is arranged on the main force transmission arm; When it is set on the right side of the road, the side swing arm mechanism deflects to the right.
  • the fourth spring is set on the main force transmission arm.
  • the third spring 33 provided on the main force transmitting arm in this embodiment as an example, when the main force transmitting arm deflects to the left so that the positive current collector contacts the guide plate, the forearm will twist to the right due to the reaction force. At this time, under the action of the third spring, it can play a shock-absorbing effect, and can play a protective effect on the side swing arm mechanism and the positive current collector.
  • the left limit mechanism described in the above embodiment is a left baffle provided on the left side of the rear arm, and the right limit mechanism is a right baffle provided on the right side of the rear arm; of course, in different embodiments
  • the left limit mechanism and the right limit mechanism can also adopt other forms.
  • the above-disclosed limit structure of the sliding groove and the pin shaft can be used.
  • the telescopic slave arm 2 is composed of an inner rod 201 and a sleeve 202.
  • the sleeve is sleeved on the inner rod and slidably fitted with the inner rod.
  • the extension locking mechanism 24 includes The strip-shaped conductive magnet 241 on the inner wall of the sleeve and the strip-shaped electromagnet 242 provided on the inner rod. After the guide slot is clamped on the guide rail, the strip electromagnet is energized and the strip guide magnet is adsorbed together to realize the locking of the inner rod and the sleeve, so that the length of the telescopic slave arm is kept stable.
  • the telescopic slave arm and the extension locking mechanism can also adopt other forms.
  • the extension locking mechanism can adopt a hydraulic lock.
  • universal balls 25 are provided on the left side and right side of the guide slot, which can reduce the friction between the guide slot and the guide rail.
  • a distance sensor 26 is provided on the top surface of the guide slot, and the distance sensor is used to detect the distance between the top of the guide slot and the top surface of the guide rail, and the guide block is moved down by the lift drive mechanism. During the process of being stuck on the guide rail or moving the guide block up to separate it from the guide rail, the distance between the top surface of the guide slot and the guide rail is detected by the distance sensor, so that the driver can more intuitively know whether the guide block has moved in place.
  • a pressure sensor 27 is arranged between the base of the front rolling anti-friction ball or the rear rolling anti-friction ball and the insulating shell.
  • the driver can pass the pressure sensor The detection value judges whether the positive electrode receiver has been stably attached to the guide plate.
  • the horizontal guide rod is also covered with a pressure plate 28, so The end of the first spring is pressed against the pressure plate, and the pressure sensor 27 may be arranged between the pressure plate and the insulating housing, or between the pressure plate and the guide block.
  • a controller can also be set instead of the driver to control the rotation driving mechanism, the lifting driving mechanism, the first brake, the second brake, and the bar type.
  • the electromagnet works to realize the automatic docking and separation of the guide block and the guide rail.
  • the working principle of the controller is as follows:
  • the pressure value when the side of the positive current collector is in parallel contact with the guide plate is preset in the controller, and the detection value of the pressure sensor is input to the controller.
  • the controller controls the rotation drive mechanism to work to deflect the main force transmission arm to the guide rail side.
  • the detection value of the pressure sensor 27 is less than the set pressure value during the deflection of the main force transmission arm
  • the controller controls the rotating drive mechanism to drive the main force transmission arm to continue to deflect until the detection value of the pressure sensor 27 reaches or exceeds the set pressure value before stopping the rotating drive mechanism to ensure that the side of the positive current collector and the guide plate are stable The parallel contact state.
  • the safe connection distance between the top of the guide slot and the top of the guide rail when the guide block is stably stuck on the guide rail is preset, and the safety between the top of the guide slot and the top of the guide rail when the guide block is separated from the guide rail is preset.
  • the derailment distance value and the detection value of the distance sensor are input to the controller.
  • the controller controls the lifting drive mechanism to continue to drive the main transmission arm down until the distance sensor
  • the controller controls the lifting drive mechanism to stop working, and at the same time, the controller controls the first brake and the second brake to be in the braking state, and the bar electromagnet to be in the energized state, thereby Make the guide block, the main force transmission arm, and the telescopic slave force transmission arm in a non-rotatable rigid state.
  • the controller In the process of separating the control guide block from the guide rail, the controller first controls the first brake and the second brake to release the braking state, and controls the strip electromagnet to power off.
  • the distance sensor detects the guide slot The distance between the top surface and the top of the guide rail is less than the value of the safe derailment distance, then the controller controls the lifting drive mechanism to continue to drive the main transmission arm to rise until the detection value of the distance sensor is greater than or equal to the set safe derailment distance value, and then the controller controls again The lifting drive mechanism stops working; finally, the rotation drive mechanism is controlled to drive the main transmission arm to rotate and reset.
  • electromagnets 29 are respectively arranged on the left and right sides of the guide slot.
  • the magnetic force generated by the electromagnet and the magnetic force of the permanent magnet are in a repulsive relationship. In this way, when the guide block slides along the guide rail, the pair of magnetic forces in opposite directions can prevent the guide block from colliding with the guide rail, thereby reducing the noise of the guide block moving along the guide rail.
  • the positive electrode current collector 6 includes an insulating housing 61 connected to the guide block, a rolling current receiver 62 for contact with the power supply conductor, and a vertically inclined elastic telescopic member 63 that can be elastically expanded and contracted.
  • the rolling power receiver is connected with the insulating shell through a vertically inclined elastic telescopic member.
  • the elastic expansion and contraction function of the vertically inclined elastic expansion member ensures that the rolling power receiving body can make good contact with the power supply conductor during the charging process.
  • the vertically inclined elastic telescopic member 63 includes a sleeve 631, a sliding rod 632 arranged in the sleeve and capable of extending outward, and a second spring 633 sleeved on the sleeve and the sliding rod,
  • the upper end of the sleeve is hinged on the insulating housing, and the second spring is used to apply a thrust to the sliding rod to extend it outward;
  • the insulating housing is also provided with a limiter for the rotation angle of the sleeve Limit structure 30.
  • the limiting structure is a stop rod provided on the top of the insulating housing and located on the left and right sides of the sleeve.
  • the limiting structure may also adopt the foregoing limiting structure in which the arc-shaped sliding groove and the pin are matched.
  • the telescopic function of the vertically inclined elastic telescopic part ensures the close contact between the rolling power receiver and the power supply conductor, and the hinged relationship between the sleeve and the insulating shell also enables the rolling power receiver to deflect a certain angle left and right during the advancement process, thereby making the rolling
  • the conductor can adapt to the bending state of the guide rail, and even the rolling power receiving body can follow the positive power supply conductor to turn flexibly.
  • the rolling power receiver 62 includes a wheel frame 621 connected to the vertically inclined elastic telescopic member, a horizontal wheel axle 622 arranged on the wheel frame, a roller 623 arranged on the horizontal wheel axle, and a horizontal wheel axle connected to the horizontal axle.
  • the wire 624 is provided with a threading hole for the wire to pass through.
  • the rolling power receiver can also adopt other structural forms.
  • the negative electrode current collector includes a vertically inclined elastic telescopic member and a rolling current collector.
  • the insulating housing is also provided with a tracheal joint 64.
  • an exhaust fan is provided on the vehicle body or the main force transmission arm, and the tracheal joint and the exhaust fan are connected through a pipe, and the exhaust fan is used to The ventilation in the insulating shell can quickly extinguish the arc, and can cool the rolling current receiver to maintain its good conductivity.
  • the connecting parts of the main transmission arm and the telescopic slave transmission arm and the vehicle body are distributed back and forth in the length direction of the vehicle body.
  • the connecting parts of the main transmission arm and the telescopic slave transmission arm and the car body are distributed back and forth in the length direction of the car body, so that the force transmitted from the guide block to the main transmission arm and the telescopic slave transmission arm is at the front and rear of the car body Reasonable distribution; when the guide block makes a slight left-to-right deflection on the guide rail (there is a matching gap between the guide slot and the guide rail, so the guide block will deflection on the guide rail when the vehicle is running), the guide block and the guide rail
  • the acting force is transmitted to the vehicle body through the main force transmission arm and the telescopic force transmission arm, so that the vehicle body can follow the guide block to deflection synchronously, which can realize the instantaneous fine-tuning control of the driving direction of the car, which is achieved by the cooperation of the guide block and the guide rail.
  • the structure in which the main transmission arm and the telescopic secondary transmission arm and the car body are distributed front and rear in the length direction of the car body can better ensure that the car body and the guide rail remain parallel, and reduce the impact of the hinge
  • the torsion force makes the hinge structure more reliable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

一种具有受电功能的汽车行驶方向控制装置,包括侧偏摆臂机构,侧偏摆臂机构包括主传力臂(1)、伸缩式从传力臂(2)、驱动主传力臂(1)水平偏转的旋转驱动机构和驱动主传力臂(1)上下移动的升降驱动机构,伸缩式从传力臂(2)的一端与主传力臂(1)铰接;还包括设置在主传力臂(1)端部的导向块(3),导向块(3)上设置有与导轨(5)滑动配合的导向卡槽(4);还包括设置在导向块(3)上的正极受电器(6)和负极受电器(7)。通过导向块(3)沿导轨(5)移动来对汽车行驶方向进行导向,使汽车由现有的无轨行驶变为无轨行驶和有轨行驶相结合,解决了车辆上设置偏转受电装置影响行驶稳定性及需要驾驶员控制行驶方向的技术问题。

Description

具有受电功能的汽车行驶方向控制装置及汽车 技术领域
本发明涉及汽车技术领域,特别涉及一种具有受电功能的汽车行驶方向控制装置。
背景技术
在申请号为:2018114281780,名称为偏转式车辆受电装置的专利中,公开了在车辆上设置偏转式车辆受电装置与沿车行道设置的供电装置配合,解决对车辆进行移动充的难题。但是在车辆上设置偏转受电装置后,充电过程中偏摆臂水平偏至车身外侧会影响车辆行驶的稳定性,因此需要对该技术问题进行解决。
现有汽车的驾驶方式是靠驾驶员人工驾驶,驾驶难度大,长久驾驶容易疲劳。
在申请号为:2019101815002,名称为立体辅助行驶道路系统,以及申请号为:2019102335765,名称为车辆抗侧滑系统的这两件专利中,虽然其公开了可通过导轨和偏摆臂对车辆施加横向推力或拉力,来解决车辆横向偏移问题,在一定程度上降低了驾驶难度,但是车辆在行驶过程中仍然是靠驾驶员控制车辆行驶方向,驾驶难度依然较大。
发明内容
有鉴于此,本发明的目的是提供一种具有受电功能的汽车行驶方向控制装置,以解决在汽车上设置了偏转受电装置后会影响车辆行驶稳定性,增大驾驶难度的技术问题,以及解决现有的立体辅助行驶道路系统仍然需要驾驶员控制车辆行驶方向的技术问题。
本发明具有受电功能的汽车行驶方向控制装置,包括用于设置在车体上的侧偏摆臂机构,所述侧偏摆臂机构包括主传力臂、伸缩式从传力臂、驱动主传力臂水平偏转的旋转驱动机构和驱动主传力臂上下移动的升降驱动机构,所述伸缩式从传力臂的一端与主传力臂铰接;所述伸缩式从传力臂上还设置有伸长锁定机构,所述伸长锁定机构用于对处于伸长状态的伸缩式从传力臂进行锁定以使其保持该伸长长度不变;
所述汽车行驶方向控制装置还包括设置在主传力臂端部的导向块,所述导向块上设置有导向卡槽,所述导向卡槽用于向下卡在沿车行道布置的导轨上、并与导轨滑动配合,所述具有受电功能的汽车行驶方向控制装置通过导向块沿导轨滑动对汽车行驶方向进行限定;
所述汽车行驶方向控制装置还包括设置在导向块上的正极受电器和负极受电器,所述正极受电器位于导向块的左侧或右侧,所述负极受电器位于导向卡槽的顶部。
进一步,所述伸缩式从传力臂的一端通过球铰或万向节与主传力臂铰接。
进一步,所述导向块上垂直固定有第一枢轴,所述第一枢轴和主传力臂转动配合,所述导向块上还具有转角限定机构,所述转角限位机构用于限定导向块绕第一枢轴转动的角度,所述主传力臂还上设置有对第一枢轴或导向块进行制动的第一制动器。
进一步,所述转角限定机构包括设置在导向块顶面上的弧形槽和位于位于弧形槽中与弧形槽滑动配合的销轴,所述销轴垂直固定在主传力臂上。
进一步,当正极受电器位于导向卡槽的左侧时,所述正极受电器的左侧面的前端设置有前滚动减摩球,正极受电器的左侧面的后端设置有后滚动减摩球;当正极受电器位于导向卡槽的右侧时,所述正极受电器的右侧面的前端设置有前滚动减摩球,正极受电器的右侧面的后端设置有后滚动减摩球。
进一步,所述正极受电器与导向块固定连接。
进一步,所述正极受电器通过水平弹性伸缩件与导向块连接,且水平弹性伸缩件的最大伸缩量等于导向卡槽与导轨之间的最大间隙量,所述导向卡槽 的口部设置有导入角。
进一步,所述水平弹性伸缩件包括连接正极受电器与导向块的横导杆和套在横导杆上的第一弹簧。
进一步,所述正极受电器包括与导向块连接的绝缘壳体、用于与供电导体接触的滚动受电体、以及能弹性伸缩的竖向倾斜弹性伸缩件,所述滚动受电体通过竖向倾斜弹性伸缩件与绝缘壳体连接。
进一步,所述竖向倾斜弹性伸缩件包括套筒、设置在套筒中并能向外伸出的滑杆、以及套在套筒及滑杆上的第二弹簧,所述套筒的上端铰接在绝缘壳体上,所述第二弹簧用于对滑杆施加使其向外伸出的推力;所述绝缘壳体上还设置有对套筒旋转角度进行限定的限位结构。
进一步,所述滚动受电体包括与竖向倾斜弹性伸缩件连接的轮架、设置在轮架上的水平轮轴、设置在水平轮轴上的滚轮、以及与水平轮轴连接的导线。
进一步,所述负极受电器包括竖向倾斜弹性伸缩件和滚动受电体。
进一步,所述绝缘壳体上还设置有气管接头。
进一步,所述升降驱动机构包括与车体连接的基座、竖直固定在基座上的导柱、与导柱上下滑动配合的升降座、以及设置在基座上驱动升降座上下运动的直线驱动器,所述旋转驱动机构设置在升降座上,所述主传力臂与旋转驱动机构连接。
进一步,所述主传力臂由前臂和后臂通过第二枢轴连接组成,所述导向块设置在前臂上,所述后臂上设置有限定前臂绕第二枢轴转动角度的左限位机构和右限位机构,所述主传力臂上还设置有第三弹簧或第四弹簧,所述第三弹簧用于对前臂施加阻止前臂向右旋转的扭力,所述第四弹簧用于对前臂施加阻止前臂向左旋转的扭力,所述伸缩式从传力臂与后臂铰接;所述后臂上还设置有对第二枢轴或前臂制动的第二制动器。
进一步,所述导向卡槽的左侧面和右侧面上设置有万向球。
进一步,所述伸缩式从传力臂由内杆和套管组成,所述套管套在内杆上并与内杆滑动配合,所述伸长锁定机构包括设置在套管内壁上的条形导磁体 和设置在内杆上的条形电磁铁。
进一步,所述导向卡槽的顶面上设置有距离传感器,所述距离传感器用于检测导向卡槽顶部与导轨顶面之间的距离。
进一步,所述前滚动减摩球或后滚动减摩球的底座和绝缘壳体之间设置有压力传感器。
进一步,所述横导杆上还套有压板,所述第一弹簧的端部顶在压板上,所述压板和绝缘壳体或者压板和导向块之间设置有压力传感器。
进一步,所述导向卡槽的左侧和右侧分别设置有电磁铁。
本发明还公开了一种具有汽车行驶方向控制装置的汽车,其主传力臂和伸缩式从传力臂与车体的连接部在车体长度方向上前后分布。
本发明的有益效果:
1、本发明具有受电功能的汽车行驶方向控制装置,其利用设置在导向块上的导向卡槽与导轨滑动配合,通过导向块沿导轨移动来对汽车行驶方向进行导向,使汽车由现有的无轨行驶变为无轨行驶和有轨行驶相结合。当导向块与导轨配合时,汽车为有轨行驶,其行驶方向由导轨决定,从而使得汽车驾驶更简单,解决了在车辆上设置偏转受电装置后的行驶稳定性问题,同时由于在这种情况下不需要驾驶员控制行驶方向,因此也解决了现有立体辅助行驶道路系统仍然需要驾驶员控制车辆行驶方向的技术问题。并且有轨行驶能消除现有汽车的侧滑问题,提高了汽车行驶安全性,有利于提高车辆在高速路上行驶的最高限速。当导向块与导轨分离时,汽车变为无轨行驶,这时汽车切换为现有的驾驶方式,从而使汽车能在路口等不适合设置导轨的地方进行脱轨行驶,保留了现有汽车的机动灵活性。
2、本发明具有受电功能的汽车行驶方向控制装置,其正极受电器的滚动受电体连接在弹性伸缩件上,使得在车辆移动充电过程中滚动受电体始终能压在供电导体上,保证了滚动受电体和供电导体能始终紧密接触,充电可靠性好;并且导向卡槽与导轨配合还对正极受电器的运行方向进行了限位,从而保证了正极受电器与供电导体在左右方向上的正确接触。同时竖向倾斜弹性伸缩 件的套筒铰接在绝缘壳体上,并设置了限位结构去限定套筒相对于正极受电器前进方向左右偏转的角度,使得滚动受电体能够灵活的沿供电导体运动,适应道路弯曲状况。
3、本发明具有受电功能的汽车行驶方向控制装置,其将负极受电器设置在导向卡槽内,负极受电器在导向块内与作为负极的导轨接触,从而使装置整体结构更紧凑,体积更小。
4、本发明汽车行驶方向控制装置的汽车,由于主传力臂和伸缩式从传力臂与车体的连接部在车体长度方向上前后分布,使得从导向块传递给主传力臂和伸缩式从传力臂的作用力在车体前后合理分布;当导向块在导轨上做微小的左右偏转时(导向卡槽与导轨之间存在配合间隙,因此在车辆行驶过程中导向块会在导轨上有一些左右偏转),导向块与导轨的作用力通过主传力臂和伸缩式从传力臂传递至车体,使车体能跟随导向块同步偏转,能实现对汽车行驶方向的瞬时微调控制,这即是通过导向块与导轨配合能实现控制汽车行驶方向的关键。同时采用主传力臂和伸缩式从传力臂与车体的连接部在车体长度方向上前后分布的结构,能更好的保证车体与导轨保持平行状态,减小铰接部所受的扭转力,使得铰接部结构可靠性更好。
附图说明
图1为实施例中具有受电功能的汽车行驶方向控制装置在未偏转状态下的结构示意图;
图2为具有受电功能的汽车行驶方向控制装置在偏转状态下的结构示意图;
图3为正极受电器与导向板开始接触时的状态示意图;
图4为导向块下移至导向卡槽口部与导轨上端开始接触时的结构示意图;
图5为导向块上的导向卡槽卡在导轨上的结构示意图;
图6为图1中P部的放大示意图;
图7为正极受电器与导向块采用水平伸缩件连接的实施方式示意图;
图8为图7中K部的放大示意图;
图9为旋转驱动机构和升降驱动机构设置在车体上的结构示意图;
图10为伸缩式从传力臂的横截面示意图;
图11为正极供电器和导向块组合的结构示意图;
图12为正极受电器的纵向剖视结构示意图;
图13为导向块的纵向剖视结构示意图;
图14为前臂和后臂枢接结构示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步描述。
实施例1,本实施例具有受电功能的汽车行驶方向控制装置,包括用于设置在车体上的侧偏摆臂机构,所述侧偏摆臂机构包括主传力臂1、伸缩式从传力臂2、驱动主传力臂水平偏转的旋转驱动机构和驱动主传力臂上下移动的升降驱动机构。
本实施例中,所述伸缩式从传力臂的一端通过球铰与主传力臂铰接,伸缩式从传力臂的另一端通过球铰与车体铰接。当然在不同实施例中,所述球铰还可由万向节替换。当然在具体实施中还可以是所述伸缩式从传力臂的一端与主传力臂铰接,所述车体上再铰接一个驱动主动伸缩式从传力臂升降的升降驱动机构,主动伸缩式从传力臂的另一端再与该升降驱动机构的升降部连接,这样两套升降驱动机构能驱动主传力臂和主动伸缩式从传力臂同步升降。
所述伸缩式从传力臂上还设置有伸长锁定机构,所述伸长锁定机构用于对处于伸长状态的伸缩式从传力臂进行锁定以使其保持该伸长长度不变。
所述汽车行驶方向控制装置还包括设置在主传力臂端部的导向块3,所述导向块上设置有导向卡槽4,所述导向卡槽用于向下卡在沿车行道布置的导轨5上、并与导轨滑动配合,所述具有受电功能的汽车行驶方向控制装置通过导向块沿导轨滑动对汽车行驶方向进行限定;导轨由既能导电、又能承受导向块冲击力的材料制成,如可采用合金钢。
所述汽车行驶方向控制装置还包括设置在导向块上的正极受电器6和负极受电器7,所述正极受电器位于导向块的左侧或右侧,所述负极受电器位于导向卡槽的顶部。
本实施例中,所述导向块上垂直固定有第一枢轴8,所述第一枢轴和主传力臂转动配合,所述导向块上还具有转角限定机构9,所述转角限位机构用于限定导向块绕第一枢轴转动的角度,所述主传力臂还上设置有对第一枢轴或导向块进行制动的第一制动器10。本实施例中,所述的第一制动器为对枢轴进行制动的磁粉动器;当然在不同实施例中,第一制动器还可采用其它形式,如第一制动器可以为设置在主传力臂上的电磁铁和设置在导向块上与电磁铁配合的导磁体,通过电磁铁吸附导磁体同样能实现对导向块制动。
本实施例中,所述转角限定机构包括设置在导向块顶面上的弧形槽91和位于位于弧形槽中与弧形槽滑动配合的销轴92,所述销轴垂直固定在主传力臂上。并且在具体实施中,如图6所示,还可在主传力臂或销轴上设置扭簧93,通过扭簧对导向块施加扭力,使得在不充电状态导向块能稳定在主传力臂的端部,图6中导向卡槽的长度方向与主传力臂平行。当然在不同实施例中,转角限定机构还可采用其它形式,如弧形槽还可由两块限位挡块替代。
本实施例具有受电功能的汽车行驶方向控制装置的工作原理如下:
在车辆行驶过程中,当需要对车辆进行充电时,如图3-5所示,通过旋转驱动机构驱动主传力臂向设在车行道旁边并沿车行道平行布置的导轨5及正极供电导体11偏转,当正极受电器6的侧面与设置在支架12上的导向板13接触时,正极受电器和导向块便会绕第一枢轴旋转,旋转驱动机构继续旋转驱动主传力臂旋转至使正极受电器6的侧面与导向板平行贴靠,此时正极受电器和导向块便不能再绕第一枢轴旋转,同时升降驱动机构驱动主传力臂下降,主传力臂即带动正极受电器和导向块同步下降。当导向块下降至导向卡槽的口部开始卡在导轨上时,正极受电器的侧面便开始与导向板脱离,然后在导向块继续下降过程中则由导向块与导轨之间的配合对下移进行导向,在导向块下降到位时,正极受电器6也同时与正极供电导体11良好接触,此 时汽车便能进行移动充电;同时因导向块卡在导轨上实现对汽车行驶方向进行导向,汽车行驶方式也由无轨行驶变为无轨行驶和有轨行驶相结合。在汽车变为无轨行驶和有轨行驶相结合这种状态下,第一制动器制动状态使导向块不能绕第一枢轴转动,伸长锁定机构对伸缩式从传力臂处于锁定状态,这样导向块、主传力臂和伸缩式从传力臂处于不可偏转的刚性状态,使得导向块与导轨之间的作用力能直接传给车体,以改变车体前进方向,使车体前进方向与导轨保持一致,进而使车轮的前进方向跟随车体转向而自动改变,车轮转向再反作用于汽车的转向系统,即汽车在有轨行驶状态下为被动转向,其转向力来自于导向块和导轨之间的作用力,导向块沿导轨运动决定了汽车的行驶方向。
汽车在无轨行驶和有轨行驶相结合的行驶状态下,汽车的行驶方向由导向块沿导轨移动的方向决定,此时不需要驾驶员控制汽车方向盘,从而使得汽车驾驶更简单,解决了现有立体辅助行驶道路系统仍然需要驾驶员控制车辆行驶方向的技术问题。并且有轨行驶能消除现有汽车的侧滑问题,提高了汽车行驶安全性,有利于提高车辆在高速路上行驶的最高限速。
而当需要结束有轨行驶时,使第一制动器解除制动状态,并使条形电磁铁断电,再通过升降驱动机构驱动主传力臂上升,使受电装置和导向块向上移动,在向上移动过程中由于导向板13的下端设置有导入角,使得受电装置和导向块能顺利的向上运动;在导向块与导轨分离后,再通过旋转驱动机构驱动主传力臂回转复位。当导向块与导轨分离后,汽车变为无轨行驶,这时汽车切换为现有的驾驶方式,从而使汽车能在路口等不适合设置导轨的地方进行脱轨行驶,保留了现有汽车的机动灵活性。
作为对以上实施例的改进,当正极受电器位于导向卡槽的左侧时,所述正极受电器的左侧面的前端设置有前滚动减摩球14,正极受电器的左侧面的后端设置有后滚动减摩球15;设置滚动减摩球能很大的降低正极受电器与导向板接触时的摩擦力,能实现导向板对正极受电器和导向块进行导向。在导向卡槽长度方向与车身长度方向平行状态下,过第一枢轴8的中心并同时与主 传力臂和第一枢轴垂直的力,该力的作用线位于前滚动减摩球和后滚动减摩球之间,能可靠的保证正极受电器平行靠在导向板上。
当然在不同实施例中,正极导体还可设置在导向块的右侧。当正极受电器位于导向卡槽的右侧时,所述正极受电器的右侧面的前端设置有前滚动减摩球,正极受电器的右侧面的后端设置有后滚动减摩球。
以上实施例中,所述正极受电器与导向块之间为固定连接。当然在不同实施例中,如图7所示,所述正极受电器还可通过水平弹性伸缩件16与导向块连接,且水平弹性伸缩件的最大伸缩量等于导向卡槽与导轨之间的最大间隙量,所述导向卡槽的口部设置有导入角。在正极受电器与导向块采用水平弹性伸缩件连接情况下,导向板13则可向下延长,使得正极受电器和导向块在整个升降过程中都能由导向板进行导向。由于水平弹性伸缩件的最大伸缩量等于导向卡槽与导轨之间的最大间隙量,使得正极受电器与导向板接触过程中,当水平弹性伸缩件处于最大伸长状态时,导轨靠近导向卡槽的左侧;当水平弹性伸缩件处于最短压缩状态时,导轨靠近导向卡槽的右侧;而导向卡槽口部设置的导入角保证了导向块沿导向板13下移过程中,导向卡槽能顺利的卡在导轨上,并保证了在汽车行驶过程中始终由导向卡槽与导轨的配合来控制汽车行驶方向。
以上实施例中所述的水平弹性伸缩件16包括连接正极受电器与导向块的横导杆161和套在横导杆上的第一弹簧162。当然在不同实施例中,水平弹性伸缩件还可采用其它形式。
以上实施例中,所述升降驱动机构包括与车体连接的基座17、竖直固定在基座上的导柱18、与导柱上下滑动配合的升降座19、以及设置在基座上驱动升降座上下运动的直线驱动器20,所述旋转驱动机构21设置在升降座上,所述主传力臂与旋转驱动机构连接。直线驱动器可采用电动缸、数字液压缸等,旋转驱动机构可采用伺服电机、步进电机等。当然在不同实施例中,旋转驱动机构也可直接与直线驱动器连接。
以上实施例中,所述主传力臂1由前臂101和后臂102通过第二枢轴31 连接组成,所述导向块设置在前臂上,所述后臂上设置有限定前臂绕第二枢轴转动角度的左限位机构22和右限位机构23,所述后臂上还设置有对第二枢轴第二制动器,所述的第二制动器可以为磁粉制动器32;当然在不同实施例中,所述的第二制动器还可是对前臂进行制动。在汽车处于有轨行驶状态时,第二制动器处于制动状态,使得前臂不能绕第二枢轴转动。所述主传力臂上还设置有第三弹簧或第四弹簧,所述第三弹簧用于对前臂施加阻止前臂向右旋转的扭力,所述第四弹簧用于对前臂施加阻止前臂向左旋转的扭力,所述伸缩式从传力臂与后臂铰接。在具体实施中,当导轨及正极供电导体设置在道路左侧时,侧偏摆臂机构向左侧偏转,这种情况下主传力臂上设置的为第三弹簧;当导轨及正极供电导体设置在道路右侧时,侧偏摆臂机构向右侧偏转,这种情况下主传力臂上设置的为第四弹簧。以本实施例中主传力臂上设置的为第三弹簧33为例进行说明,当主传力臂向左偏转使正极受电器与导向板接触过程中,前臂受到反作用力会发生向右的扭转,这时在第三弹簧的作用下能起到减震作用,对侧偏摆臂机构及正极受电器都可起到保护作用。
以上实施例中所述的左限位机构为设置在后臂左侧上的左挡板,所述的右限位机构为设置在后臂右侧上的右挡板;当然在不同实施例中左限位机构和右限位机构还可采用其它形式。如可采用上述公开的滑槽和销轴配合的限位结构。
以上实施例中,所述伸缩式从传力臂2由内杆201和套管202组成,所述套管套在内杆上并与内杆滑动配合,所述伸长锁定机构24包括设置在套管内壁上的条形导磁体241和设置在内杆上的条形电磁铁242。在导向卡槽卡在导轨上后,条形电磁铁通电与条形导磁体吸附在一起,即可实现对内杆和套管的锁定,使伸缩式从传力臂的长度保持稳定不变。当然在不同实施例中,伸缩式从传力臂以及伸长锁定机构也可采用其它形式,如当伸缩式从传力臂采用液压伸缩杆时,伸长锁定机构可采用液压锁。
以上实施例中,所述导向卡槽的左侧面和右侧面上设置有万向球25,设置万向球可以减小导向卡槽与导轨间的摩擦力。
以上实施例中,所述导向卡槽的顶面上设置有距离传感器26,所述距离传感器用于检测导向卡槽顶部与导轨顶面之间的距离,在通过升降驱动机构将导向块下移卡在导轨上、或将导向块上移使其与导轨分离过程中,通过距离传感器检测导向卡槽顶面与导轨之间的距离,能使驾驶员更直观的知道导向块是否移动到位。
以上实施例中,所述前滚动减摩球或后滚动减摩球的底座和绝缘壳体之间设置有压力传感器27,在正极受电器与导向板接触过程中,驾驶员能通过压力传感器的检测值判断正极受电器是否已经稳定的贴靠在导向板上。当然在具体实施中,若正极受电器和导向块是采用水平伸缩件连接,这时压力传感器的设置位置可相应调整,如图8所示,所述横导杆上还套有压板28,所述第一弹簧的端部顶在压板上,所述压力传感器27可设置在压板和绝缘壳体之间、或者压板和导向块之间。
在具体实施中,若汽车行驶方向控制装置设置了距离传感器26和压力传感器27,则还可通过设置控制器代替驾驶员控制旋转驱动机构、升降驱动机构、第一制动器、第二制动器、条形电磁铁工作,实现导向块与导轨的自动对接与分离,控制器的工作原理如下:
在控制器中预先设定出正极受电器侧面与导向板平行接触时的压力值,压力传感器的检测值输入控制器。在需要将导向块与导轨结合时,控制器控制旋转驱动机构工作使主传力臂向导轨侧偏转,在主传力臂偏转过程中当压力传感器27的检测值小于该设定压力值时,控制器便控制旋转驱动机构驱动主传力臂继续偏转,直到压力传感器27的检测值达到或超过该设定压力值才控制旋转驱动机构停止工作,从而能保证正极受电器侧面与导向板处于稳定的平行接触状态。
在控制器中预先设定出导向块稳定卡在导轨上时导向卡槽顶部与导轨顶部间的安全接轨距离值,以及预先设定出导向块脱离导轨时导向卡槽顶部与导轨顶部间的安全脱轨距离值,距离传感器的检测值输入控制器。
在导向块与导轨结合过程中,当距离传感器检测到导向卡槽顶面距离导 轨顶部的距离大于安全接轨距离值时,则控制器控制升降驱动机构继续驱动主传力臂下降,直到距离传感器的检测值小于或等于设定的安全接轨距离值,控制器才控制升降驱动机构停止工作,同时控制器再控制第一制动器和第二制动器处于制动状态、控制条形电磁铁处于通电状态,从而使导向块、主传力臂、伸缩式从传力臂处于不可转动的刚性状态。
在控制导向块与导轨分离过程中,控制器先控制第一制动器和第二制动器解除制动状态,并控制条形电磁铁断电,在导向块向上移动过程中当距离传感器检测到导向卡槽顶面距离导轨顶部的距离小于安全脱轨距离值,则控制器控制升降驱动机构继续驱动主传力臂上升,直至距离传感器的检测值大于或等于设定的安全脱轨距离值时,控制器再控制升降驱动机构停止工作;最后再控制旋转驱动机构驱动主传力臂回转复位。
以上实施例中,所述导向卡槽的左侧和右侧分别设置有电磁铁29,在实施过程中通过在导轨上设置永磁体,电磁铁产生的磁力和永磁体的磁力为相斥关系,这样在导向块沿导轨滑动过程中,这对方向相反的磁力能阻止导向块与导轨发生碰撞,从而能降低导向块沿导轨移动的噪声。
以上实施例中,所述正极受电器6包括与导向块连接的绝缘壳体61、用于与供电导体接触的滚动受电体62、以及能弹性伸缩的竖向倾斜弹性伸缩件63,所述滚动受电体通过竖向倾斜弹性伸缩件与绝缘壳体连接。竖向倾斜弹性伸缩件的弹性伸缩功能保证了在充电过程中滚动受电体能与供电导体良好接触。
以上实施例中,所述竖向倾斜弹性伸缩件63包括套筒631、设置在套筒中并能向外伸出的滑杆632、以及套在套筒及滑杆上的第二弹簧633,所述套筒的上端铰接在绝缘壳体上,所述第二弹簧用于对滑杆施加使其向外伸出的推力;所述绝缘壳体上还设置有对套筒旋转角度进行限定的限位结构30。本实施例中,限位结构为设置在绝缘壳体顶部并位于套筒左右两侧的挡杆,由于套筒是倾斜布置的,其绕铰接中心左右转动的角度受到挡杆的限制。当然在不同实施例中,限位结构也可采用前述弧形滑槽和销轴配合的限位结构。 竖向倾斜弹性伸缩件的伸缩功能保证了滚动受电体与供电导体的紧密接触,套筒与绝缘壳体的铰接关系又使得滚动受电体在前进过程中可以左右偏转一定角度,从而使滚动导体能适应导轨弯曲状态,也即使滚动受电体能跟随正极供电导体灵活转弯。
以上实施例中,所述滚动受电体62包括与竖向倾斜弹性伸缩件连接的轮架621、设置在轮架上的水平轮轴622、设置在水平轮轴上的滚轮623、以及与水平轮轴连接的导线624,绝缘壳体上设置有供导线穿出的穿线孔。当然在不同实施例中,滚动受电体也可采用其它结构形式。
以上实施例中,所述负极受电器包括竖向倾斜弹性伸缩件和滚动受电体。
以上实施例中,所述绝缘壳体上还设置有气管接头64,在具体实施中,在车体或主传力臂上设置抽风风机,将气管接头和抽风风机通过管道连接,利用抽风风机对绝缘壳体内抽风,能起到快速灭弧的作用,并能对滚动受电体进行冷却,以保持其良好的导电性。
本实施例具有汽车行驶方向控制装置的汽车,主传力臂和伸缩式从传力臂与车体的连接部在车体长度方向上前后分布。
主传力臂和伸缩式从传力臂与车体的连接部在车体长度方向上前后分布,使得从导向块传递给主传力臂和伸缩式从传力臂的作用力在车体前后合理分布;当导向块在导轨上做微小的左右偏转时(导向卡槽与导轨之间存在配合间隙,因此在车辆行驶过程中导向块会在导轨上有一些左右偏转),导向块与导轨的作用力通过主传力臂和伸缩式从传力臂传递至车体,使车体能跟随导向块同步偏转,能实现对汽车行驶方向的瞬时微调控制,这即是通过导向块与导轨配合能实现控制汽车行驶方向的关键。同时采用主传力臂和伸缩式从传力臂与车体的连接部在车体长度方向上前后分布的结构,能更好的保证车体与导轨保持平行状态,减小铰接部所受的扭转力,使得铰接部结构可靠性更好。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的 宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (22)

  1. 一种具有受电功能的汽车行驶方向控制装置,其特征在于:包括用于设置在车体上的侧偏摆臂机构,所述侧偏摆臂机构包括主传力臂、伸缩式从传力臂、驱动主传力臂水平偏转的旋转驱动机构和驱动主传力臂上下移动的升降驱动机构,所述伸缩式从传力臂的一端与主传力臂铰接;所述伸缩式从传力臂上还设置有伸长锁定机构,所述伸长锁定机构用于对处于伸长状态的伸缩式从传力臂进行锁定以使其保持该伸长长度不变;
    所述汽车行驶方向控制装置还包括设置在主传力臂端部的导向块,所述导向块上设置有导向卡槽,所述导向卡槽用于向下卡在沿车行道布置的导轨上、并与导轨滑动配合,所述具有受电功能的汽车行驶方向控制装置通过导向块沿导轨滑动对汽车行驶方向进行限定;
    所述汽车行驶方向控制装置还包括设置在导向块上的正极受电器和负极受电器,所述正极受电器位于导向块的左侧或右侧,所述负极受电器位于导向卡槽的顶部。
  2. 根据权利要求1所述的具有受电功能的汽车行驶方向控制装置,其特征在于:所述伸缩式从传力臂的一端通过球铰或万向节与主传力臂铰接。
  3. 根据权利要求1所述的具有受电功能的汽车行驶方向控制装置,其特征在于:所述导向块上垂直固定有第一枢轴,所述第一枢轴和主传力臂转动配合,所述导向块上还具有转角限定机构,所述转角限位机构用于限定导向块绕第一枢轴转动的角度,所述主传力臂还上设置有对第一枢轴或导向块进行制动的第一制动器。
  4. 根据权利要求3所述的具有受电功能的汽车行驶方向控制装置,其特征在于:所述转角限定机构包括设置在导向块顶面上的弧形槽和位于位于弧形槽中与弧形槽滑动配合的销轴,所述销轴垂直固定在主传力臂上。
  5. 根据权利要求1所述的具有受电功能的汽车行驶方向控制装置,其特征在于:当正极受电器位于导向卡槽的左侧时,所述正极受电器的左侧面的前 端设置有前滚动减摩球,正极受电器的左侧面的后端设置有后滚动减摩球;当正极受电器位于导向卡槽的右侧时,所述正极受电器的右侧面的前端设置有前滚动减摩球,正极受电器的右侧面的后端设置有后滚动减摩球。
  6. 根据权利要求1所述的具有受电功能的汽车行驶方向控制装置,其特征在于:所述正极受电器与导向块固定连接。
  7. 根据权利要求1所述的具有受电功能的汽车行驶方向控制装置,其特征在于:所述正极受电器通过水平弹性伸缩件与导向块连接,且水平弹性伸缩件的最大伸缩量等于导向卡槽与导轨之间的最大间隙量,所述导向卡槽的口部设置有导入角。
  8. 根据权利要求7所述的具有受电功能的汽车行驶方向控制装置,其特征在于:所述水平弹性伸缩件包括连接正极受电器与导向块的横导杆和套在横导杆上的第一弹簧。
  9. 根据权利要求1所述的具有受电功能的汽车行驶方向控制装置,其特征在于:所述正极受电器包括与导向块连接的绝缘壳体、用于与供电导体接触的滚动受电体、以及能弹性伸缩的竖向倾斜弹性伸缩件,所述滚动受电体通过竖向倾斜弹性伸缩件与绝缘壳体连接。
  10. 根据权利要求9所述的具有受电功能的汽车行驶方向控制装置,其特征在于:所述竖向倾斜弹性伸缩件包括套筒、设置在套筒中并能向外伸出的滑杆、以及套在套筒及滑杆上的第二弹簧,所述套筒的上端铰接在绝缘壳体上,所述第二弹簧用于对滑杆施加使其向外伸出的推力;所述绝缘壳体上还设置有对套筒旋转角度进行限定的限位结构。
  11. 根据权利要求9所述的具有受电功能的汽车行驶方向控制装置,其特征在于:所述滚动受电体包括与竖向倾斜弹性伸缩件连接的轮架、设置在轮架上的水平轮轴、设置在水平轮轴上的滚轮、以及与水平轮轴连接的导线。
  12. 根据权利要求1所述的具有受电功能的汽车行驶方向控制装置,其特征在于:所述负极受电器包括竖向倾斜弹性伸缩件和滚动受电体。
  13. 根据权利要求9所述的具有受电功能的汽车行驶方向控制装置,其特征 在于:所述绝缘壳体上还设置有气管接头。
  14. 根据权利要求1所述的具有受电功能的汽车行驶方向控制装置,其特征在于:所述升降驱动机构包括与车体连接的基座、竖直固定在基座上的导柱、与导柱上下滑动配合的升降座、以及设置在基座上驱动升降座上下运动的直线驱动器,所述旋转驱动机构设置在升降座上,所述主传力臂与旋转驱动机构连接。
  15. 根据权利要求1所述的具有受电功能的汽车行驶方向控制装置,其特征在于:所述主传力臂由前臂和后臂通过第二枢轴连接组成,所述导向块设置在前臂上,所述后臂上设置有限定前臂绕第二枢轴转动角度的左限位机构和右限位机构,所述主传力臂上还设置有第三弹簧或第四弹簧,所述第三弹簧用于对前臂施加阻止前臂向右旋转的扭力,所述第四弹簧用于对前臂施加阻止前臂向左旋转的扭力,所述伸缩式从传力臂与后臂铰接;所述后臂上还设置有对第二枢轴或前臂制动的第二制动器。
  16. 根据权利要求1所述的具有受电功能的汽车行驶方向控制装置,其特征在于:所述导向卡槽的左侧面和右侧面上设置有万向球。
  17. 根据权利要求1所述的具有受电功能的汽车行驶方向控制装置,其特征在于:所述伸缩式从传力臂由内杆和套管组成,所述套管套在内杆上并与内杆滑动配合,所述伸长锁定机构包括设置在套管内壁上的条形导磁体和设置在内杆上的条形电磁铁。
  18. 根据权利要求1所述的具有受电功能的汽车行驶方向控制装置,其特征在于:所述导向卡槽的顶面上设置有距离传感器,所述距离传感器用于检测导向卡槽顶部与导轨顶面之间的距离。
  19. 根据权利要求5所述的具有受电功能的汽车行驶方向控制装置,其特征在于:所述前滚动减摩球或后滚动减摩球的底座和绝缘壳体之间设置有压力传感器。
  20. 根据权利要求8所述的具有受电功能的汽车行驶方向控制装置,其特征在于:所述横导杆上还套有压板,所述第一弹簧的端部顶在压板上,所述压 板和绝缘壳体或者压板和导向块之间设置有压力传感器。
  21. 根据权利要求1所述的具有受电功能的汽车行驶方向控制装置,其特征在于:所述导向卡槽的左侧和右侧分别设置有电磁铁。
  22. 一种具有权利要求1-21中任一所述汽车行驶方向控制装置的汽车,其特征在于:主传力臂和伸缩式从传力臂与车体的连接部在车体长度方向上前后分布。
PCT/CN2019/083707 2019-04-14 2019-04-22 具有受电功能的汽车行驶方向控制装置及汽车 WO2020211101A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910296736.0A CN109968988A (zh) 2019-04-14 2019-04-14 具有受电功能的汽车行驶方向控制装置及汽车
CN201910296736.0 2019-04-14

Publications (1)

Publication Number Publication Date
WO2020211101A1 true WO2020211101A1 (zh) 2020-10-22

Family

ID=67084403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083707 WO2020211101A1 (zh) 2019-04-14 2019-04-22 具有受电功能的汽车行驶方向控制装置及汽车

Country Status (2)

Country Link
CN (1) CN109968988A (zh)
WO (1) WO2020211101A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110549888A (zh) * 2019-10-15 2019-12-10 重庆陈氏清洁服务有限公司 伸缩式车辆受电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1514722A2 (en) * 2003-09-01 2005-03-16 Bombardier Transportation GmbH Electric current collector for transmitting electrical energy between an electrical line and a vehicle
KR101034038B1 (ko) * 2009-12-23 2011-05-11 한국과학기술원 비접촉 자기 유도 충전 방식의 전기자동차 집전모듈
CN203381514U (zh) * 2013-08-19 2014-01-08 颜建华 道路行驶车辆连续供电系统
CN203651491U (zh) * 2013-10-31 2014-06-18 北京赛德高科铁道电气科技有限责任公司 一种电力汽车用受电弓
CN104890520A (zh) * 2015-06-16 2015-09-09 南车株洲电力机车有限公司 一种侧向受电器及电动车辆
CN206155190U (zh) * 2016-09-27 2017-05-10 高卫国 一种电力交通系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1514722A2 (en) * 2003-09-01 2005-03-16 Bombardier Transportation GmbH Electric current collector for transmitting electrical energy between an electrical line and a vehicle
KR101034038B1 (ko) * 2009-12-23 2011-05-11 한국과학기술원 비접촉 자기 유도 충전 방식의 전기자동차 집전모듈
CN203381514U (zh) * 2013-08-19 2014-01-08 颜建华 道路行驶车辆连续供电系统
CN203651491U (zh) * 2013-10-31 2014-06-18 北京赛德高科铁道电气科技有限责任公司 一种电力汽车用受电弓
CN104890520A (zh) * 2015-06-16 2015-09-09 南车株洲电力机车有限公司 一种侧向受电器及电动车辆
CN206155190U (zh) * 2016-09-27 2017-05-10 高卫国 一种电力交通系统

Also Published As

Publication number Publication date
CN109968988A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
US2952842A (en) Safety device for automatic guiding of road vehicles
RU2750400C2 (ru) Устройство позиционирования и способ образования контакта
KR101013126B1 (ko) 철도 차량용 자기 조향 장치
KR19990077303A (ko) 벽면 흡착식 이동장치 및 벽면 흡착식 이동장치의 자석구동방법
CN110496397B (zh) 一种轨道自适应导向小车
JP2009514716A (ja) 車両の軌道作動型磁気的切換方法
CN108394310B (zh) 一种中低速磁浮列车直线电机的驱动和保护装置
WO2020211101A1 (zh) 具有受电功能的汽车行驶方向控制装置及汽车
CN111547098B (zh) 一种多功能轨道交通刹车制动系统及方法
JP2014172427A (ja) 壁面走行台車
WO2020211100A1 (zh) 能在行驶中受电的汽车行驶方向控制装置及汽车
CN111845370B (zh) 一种主动导向的磁浮轨道交通系统
CN110027589B (zh) 自动插头装置及机车车辆电源自动连接器
CN202439717U (zh) 铁路列车辅助制动装置
CN210821861U (zh) 伸缩式车辆受电装置
CN214653075U (zh) 防脱轨装置
JP2007022513A (ja) 列車の浮上及び脱線防止装置
CN115214592A (zh) 一种轨道车辆制动机检测装置
JP2007022508A (ja) 列車の浮上及び脱線防止装置
WO2020103595A1 (zh) 车行道充电装置、车辆受电装置及车辆移动充电方法
CN211139032U (zh) 车行道充电装置和车辆受电装置
EP3957540B1 (en) Railway vehicle and braking assembly thereof
CN210310339U (zh) 一种智能巡逻设备
CN112092829B (zh) 变轨装置、车辆以及轨道交通系统
CN112590824A (zh) 一种无人驾驶汽车用小车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924826

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19924826

Country of ref document: EP

Kind code of ref document: A1