WO2020210886A2 - Garra robótica complacente baseada em câmaras de compressão - Google Patents

Garra robótica complacente baseada em câmaras de compressão Download PDF

Info

Publication number
WO2020210886A2
WO2020210886A2 PCT/BR2020/050127 BR2020050127W WO2020210886A2 WO 2020210886 A2 WO2020210886 A2 WO 2020210886A2 BR 2020050127 W BR2020050127 W BR 2020050127W WO 2020210886 A2 WO2020210886 A2 WO 2020210886A2
Authority
WO
WIPO (PCT)
Prior art keywords
compression chambers
thick wall
robotic claw
chambers
robotic
Prior art date
Application number
PCT/BR2020/050127
Other languages
English (en)
French (fr)
Other versions
WO2020210886A3 (pt
Inventor
Ananda CRYSTAL SILVA MARQUES DA CUNHA
Pedro Henrique ABRÃO DIAS PAIXÃO
Original Assignee
Instituto Federal De Educação, Ciência E Tecnologia De São Paulo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto Federal De Educação, Ciência E Tecnologia De São Paulo filed Critical Instituto Federal De Educação, Ciência E Tecnologia De São Paulo
Publication of WO2020210886A2 publication Critical patent/WO2020210886A2/pt
Publication of WO2020210886A3 publication Critical patent/WO2020210886A3/pt

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members
    • B25J15/12Gripping heads and other end effectors having finger members with flexible finger members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/14Programme-controlled manipulators characterised by positioning means for manipulator elements fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/02Mechanical layout characterised by the means for converting the movement of the fluid-actuated element into movement of the finally-operated member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/10Characterised by the construction of the motor unit the motor being of diaphragm type

Definitions

  • the present patent document refers to a robotic claw consisting entirely of compliant materials with operation based on the action of compression chambers. Its operation allows you to pick up, release and hold objects of different shapes, sizes and masses.
  • the present patent of privilege of invention is framed in the field of robotics, being particularly focused on the area of soft robotics, in which completely compliant systems are used to interact with any objects.
  • the proposed device is a completely compliant robotic claw that can be used as an instrument to grab, release and hold objects of different shapes and sizes, being possible to control the gripping force by manipulating the pressure of the actuating fluid.
  • Soft Robotics A new paradigm in the field of robotics has been developed, and this new line of research, called Soft Robotics (Soft Robotics), consists of robots built with compliant materials, that is, that incorporate a physical characteristic that makes them more close to being alive, because physically they naturally give in to the efforts that other bodies impose on them. Particularly in the last ten years this new paradigm has been developed.
  • robots are associated with rigid, large structures, with individualized motors and sensors, in addition to a system microprocessed central for movement planning and control (See: VERL, A .; ALBU-SCH ⁇ FFER, A .; BROCK, O .; RAATZ, A. Soft robotics: transferring theory to application. [slj Springer, 2015.).
  • Soft Robotics See: RUS, D .; TOLLEY, MT Design, fabrication and control of soft robots (Nature, v. 521, n. 7553, p. 467-475, 28 May 2015.).
  • This text describes a robotic device that uses only compliant materials and that has a structure based on one or more compression chambers. Its performance can be done by a or more signals in which the pressure applied to the fluid is controlled to adjust the grip strength of the device.
  • the object of the present patent application was developed in order to solve all the above problems.
  • the developed object consists of a completely compliant structure and its entire external surface is made of the same flexible and inert material, providing a shape that guarantees the capture of the object, allowing it to be firmly attached, but maintaining a complacency that is desired when manipulates with fragile objects.
  • the soft robotic gripper with compression chambers revealed in this document provides for a completely compliant body.
  • the materials that compose it must be essentially flexible, which may be rubbers, elastomers or fabrics, enabling the use of the device in areas where non-contamination is required, such as the food industry, the pharmaceutical industry or in medical equipment.
  • the type of material chosen will be associated with the intended application.
  • the soft robotic gripper with compression chambers proposed here has a simple shape, allowing high manufacturing productivity. Said robotic claw provides for one or more internal fluid chambers whose shape can be adjusted according to the type of deformation desired for the internal chamber.
  • the chamber has a smaller volume in the region closest to the flat base, in the uppermost region, and if this volume is increased as the chamber extends in the lower direction, only this region will be deformed considerably when the fluid pressure in the chambers is increased internal. In this case the chambers will have a triangular section, however the chambers can also assume other geometries.
  • the constructive arrangement of the robotic claw revealed in this document has a high static and dynamic load capacity, since the relationship between the load that is capable of holding and the weight of the device assumes high values, considering that the materials used in its construction are essentially light.
  • this proposed device has low inertia, since the mass of its body is negligible when considered in relation to that of the robotic arm to which it will be connected, as well as in relation to the very load that it can hold.
  • Figure 1 shows a perspective view of the soft robotic gripper with compression chambers (10).
  • Figure 2 shows a longitudinal sectional view of the soft robotic gripper with compression chambers (10).
  • Figure 3 shows a bottom view of the soft robotic gripper with compression chambers (10).
  • Figure 4 shows a sequence of operation of the soft robotic gripper with compression chambers (10).
  • Figure 5 shows a longitudinal sectional view of the soft robotic claw with compression chambers (10) in operation, grasping a strawberry.
  • the robotic gripper (10) is comprised of the body (1), built entirely from flexible materials.
  • Said body (1) comprises a flat base (3) from which protrudes a thick wall (2), which describes a geometric shape like a tube, and may have a circular, square or any other cross section, depending on the application desired, without detracting from the invention disclosed herein.
  • Said thick wall (2) provides for at least one internal chamber (21) filled with fluid.
  • Said flat base (3) is fixed at one end of said thick wall (2), resulting in a monobloc body (1) with a central cavity (4).
  • Said thick wall (2) has greater thickness (2 ') on one side of the inner chamber (21), than the other side (2 ") of the inner chamber (21), depending on the application, these sides can be inverted, both to provide the gripping of objects inside and outside.
  • Said body (1) comprises a cavity (4) surrounded by the thick wall (2), and said cavity (4) can provide grooved, smooth texture or any roughness necessary for a specific application, as well as the external face of said wall thick (2).
  • said internal fluid chamber (21) provides a smaller volume in the region closest to the flat base (3), and this volume is increased as the chamber extends in the opposite direction to the lower plane (31) from the base (3) inside the thick wall (2).
  • This shape is related to the need to increase the thickness of the internal cavity wall in the regions closest to the point where the device is attached to the robot flange, and to reduce the deformation barrier in the region where the object will be grasped.
  • the geometry of the chamber section can take other shapes, in view of the possible need to adjust the point of application of the gripping force.
  • the fluid is injected into said chamber through at least one channel (22) that connects the inside of the inner chamber (21) to the outside of said body (1).
  • material (5) can be implanted in the thick wall (2), with the function of ensuring that the pressure applied in the chambers deforms the desired region, internal to the cavity (4) or external to the thick wall (2).
  • the material (5) can be an elastomer that has a greater hardness than the material of the device, but it can also be any other compliant material with differentiated hardness, which has the capacity to contain the expansion of the device body.
  • the insertion of the material (5) is optional, and does not significantly alter the effectiveness of the robotic gripper (10).
  • the use of the material (5) can be achieved without the need to use significant efforts, since the structure of the said claw (10) is entirely made of flexible material, and even allows such material not to contaminate the actuation medium, at least the fact that it is not exposed, allowing the use of the robotic claw (10) in extremely specific applications, such as, for example, submerged in a fluid.
  • the geometry of the device can be changed depending on the application in which it will be used. Your body length can be substantially greater than your diameter.
  • the section of the device can be circular, as shown in the figures in this document, however the actuator can have an oval section, for example, with the possibility of picking up objects that have a rectangular section.
  • the compression chambers can be arranged so as to allow the best application of the gripping forces.
  • figure 3 illustrates the bottom view of said robotic claw (10) with four internal chambers (21), concentric.
  • figure 5 it is possible to see a longitudinal sectional view of the robotic device being used to pick up a fragile object (strawberry), highlighting the complacency of the proposed equipment.
  • strawberry fragile object
  • the proposed device can be equipped with a functionality that increases its ability to capture an eventual object to be caught, characterized by a source of negative pressure to suck in the air present in the cavity, ensuring a better ability to capture and apprehend of objects.
  • the negative pressure can be controlled during the operation of the set formed by the robotic arm that is connected to the proposed device. This control can allow the gradual suction of the object to be caught, ensuring a better grip and greater safety in the operation of the system.
  • the robotic device can be the final element in a robotic arm, but it can also be used in a system composed of several devices working together, to perform simultaneous capture operations of different objects, such as in an application in which two dozen conveniently arranged eggs were caught simultaneously by the system.
  • the chambers have a low volume, the fluid flow will be low, allowing high actuation speeds. In this way the movements of contraction of the internal cavity can be controlled with precision and speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Manipulator (AREA)

Abstract

Revela uma nova disposição construtiva de garra robótica mole com câmaras de compressão que prevê um corpo completamente complacente, que tem a capacidade de pegar, soltar e segurar objetos de diversas formas e tamanhos. A dita garra robótica prevê uma ou mais câmaras internas de fluido cujo formato pode ser ajustado de acordo com o tipo de deformação desejada para a câmara interna, de modo que a região com maior volume é a região em que se deseja maior deformação a fim de segurar objetos. A dita garra robótica é compreendida pelo corpo (1), construído inteiramente por materiais flexíveis. Dito corpo (1) compreende uma base plana (3) da qual se projeta uma parede espessa (2), que descreve um formato geométrico como um tubo, podendo ter secção transversal circular, quadrada ou outra qualquer, conforme a aplicação que se desejar, sem descaracterizar o invento aqui revelado. A dita parede espessa (2) prevê pelo menos uma câmara interna (21) preenchida com fluido. As forças de preensão aplicadas no objeto inserido na cavidade (4) serão determinadas pela pressão aplicada nas câmaras (21), considerando que a espessura da parede interna (2") é inferior à espessura da parede externa (2').

Description

GARRA ROBÓTICA COMPLACENTE BASEADA EM CÂMARAS DE COMPRESSÃO
[001 ] Refere-se o presente documento de patente a uma garra robótica constituída completamente por materiais complacentes com funcionamento baseado na ação de câmaras de compressão. Sua operação permite pegar, soltar e segurar objetos de diversas formas, tamanhos e massas.
[002] A presente patente de privilégio de invenção é enquadrada no campo da robótica, sendo particularmente voltada para a área da robótica mole, em que sistemas completamente complacentes são utilizados para a interação com objetos quaisquer. O dispositivo proposto é uma garra robótica completamente complacente que pode ser utilizado como um instrumento para pegar, soltar e segurar objetos de diferentes formas e tamanhos, sendo possível controlar a força de preensão através da manipulação da pressão do fluido atuador.
[003] Um novo paradigma na área de robótica vem sendo desenvolvido, sendo que esta nova linha de pesquisa, denominada Robótica Mole (Soft Robotics), consiste de robôs construídos com materiais complacentes, ou seja, que incorporam uma característica física que os tornam mais próximos de serem vivos, pois fisicamente cedem naturalmente aos esforços que outros corpos lhes impõem. Particularmente nestes últimos dez anos vem se desenvolvendo este novo paradigma. Normalmente robôs são associados a estruturas rígidas, grandes, com motores e sensores individualizados, além de um sistema central microprocessado para planejamento e controle dos movimentos (Veja: VERL, A.; ALBU-SCHÀFFER, A.; BROCK, O.; RAATZ, A. Soft robotics: transferring theory to application. [s.l.j Springer, 2015.). Essa visão associada aos robôs corresponde à realidade que ainda se observa na indústria e em diversas outras aplicações nos dias de hoje. No entanto uma nova abordagem inspirada em elementos observados na natureza surgiu em tempos recentes e possibilitou a criação de uma nova área que vem sendo chamada de Robótica Mole, ou, na língua inglesa: Soft Robotics (Veja: RUS, D.; TOLLEY, M. T. Design, fabrication and control of soft robots. Nature, v. 521 , n. 7553, p. 467-475, 28 maio 2015.).
[004] O desenvolvimento da robótica esteve particularmente associado à construção de máquinas que permitiam a execução de tarefas com grande precisão e velocidade na execução de procedimentos repetitivos. Em tempos recentes a robótica passou a incorporar outras características que poderiam permitir um melhor convívio em atividades em que o ser humano estivesse presente. Daí surgem os robôs colaborativos, assim como os robôs de estrutura flexível, complacente ou mole. Uma ampla revisão sobre dispositivos robóticos complacentes utilizados em manipulação de objetos foi feita recentemente, sendo este o mais completo documento disponível sobre o tema (SFIINTAKE, J. et al. Soft Robotic Grippers. Advanced materiais , p. e1707035, mai. de 2018.).
[005] O presente texto descreve um dispositivo robótico que utiliza apenas materiais complacentes e que possui uma estrutura baseada em uma ou mais câmaras de compressão. Sua atuação pode ser feita por um ou mais sinais em que a pressão aplicada no fluido é controlada para ajustar a força de preensão do dispositivo.
[006] As garras robóticas complacentes amplamente conhecidas, principalmente em documentos de patentes, possuem diversas formas e mecanismos de funcionamento. A solução revelada no documento EP3285976 procura reproduzir a anatomia humana, mas há uma grande dificuldade em desenvolver sistemas de sensoriamento para estas garras que possuem atuadores na forma de dedos com atuação através de materiais rígidos. Esta dificuldade implica em mecanismos em que não se pode definir e controlar a pressão aplicada na preensão de objetos, principalmente quando estes objetos são frágeis. A aplicação de força de preensão não homogénea ocasiona falhas na ação desejada, prejudicando a eficiência e eficácia da dita garra.
[007] Há soluções alternativas, como, por exemplo, o documento US9120230, que visam resolver as limitações quanto às garras com disposição construtiva com elementos que têm forma de dedos. Neste caso o dispositivo é uma esfera preenchida com material granular, que se deforma ao ser pressionado contra o objeto que se deseja agarrar. Aplicando-se uma pressão negativa no interior da garra esta mantém a forma complementar àquela do objeto a ser pego, possibilitando que o dispositivo o agarre. Apesar dessa disposição construtiva possuir uma ótima característica de aplicação de pressão no objeto sem danificá-lo, sua repetitividade depende das características da superfície externa do material que é aplicado, assim como depende do formato externo do objeto a ser agarrado.
[008] A solução revelada em US9464642 apresenta os atuadores robóticos completamente complacentes que possuem formas de dedos. Neste documento são descritas as garras produzidas com materiais elastoméricos que atuam como dedos formados por múltiplas câmaras alinhadas. O controle da pressão aplicada às câmaras que formam a estrutura construtiva do atuador proposto deforma os dedos, permitindo que estes envolvam o objeto a ser pego. [009] O desafio no campo técnico de referência, é unir as vantagens presentes nas soluções conhecidas, obtendo uma garra eficaz na execução da tarefa de pegar objetos frágeis sem danificá-los e de forma eficiente, produzindo uma boa repetitividade independente do objeto que se deseja agarrar. Outro desafio, é o fato de produzir um dispositivo de baixo custo, que possa ser aplicado em diversas áreas.
[010] O objeto do presente pedido de patente foi desenvolvido a fim de resolver todos os problemas supracitados. O objeto desenvolvido consiste de uma estrutura completamente complacente e toda a sua superfície externa é fabricada de um mesmo material flexível e inerte, prevendo um formato que garante a captura do objeto, permitindo que este seja firmemente preso, mas mantendo uma complacência que é desejada quando se manipula com objetos frágeis.
[01 1 ] A garra robótica mole com câmaras de compressão revelada neste documento prevê um corpo completamente complacente. Os materiais que a compõem devem ser essencialmente flexíveis, podendo ser borrachas, elastômeros ou tecidos, possibilitando o uso do dispositivo em áreas em que se exige não contaminação, como indústria alimentícia, indústria farmacêutica ou em equipamentos médicos. O tipo do material escolhido estará associado à aplicação pretendida. A garra robótica mole com câmaras de compressão aqui proposta possui formato simples, permitindo alta produtividade de fabricação. A dita garra robótica prevê uma ou mais câmaras internas de fluido cujo formato pode ser ajustado de acordo com o tipo de deformação desejada para a câmara interna. Se a câmara tiver um menor volume na região mais próxima à base plana, na região mais superior, e se este volume for acrescido conforme a câmara se prolonga na direção inferior, apenas esta região será deformada consideravelmente quando é aumentada a pressão do fluido nas câmaras internas. Neste caso as câmaras terão secção triangular, no entanto as câmaras também podem assumir outras geometrias.
[012] Desta maneira, a disposição construtiva da garra robótica revelada neste documento possui uma alta capacidade de carga estática e dinâmica, pois a relação entre a carga que é capaz de segurar e o próprio peso do dispositivo assume altos valores, considerando que os materiais utilizados em sua construção são essencialmente leves. Além disso, dito dispositivo proposto possui baixa inércia, pois a massa de seu corpo é desprezível quando considerada em relação àquela do braço robótico em que estará conectada bem como em relação à própria carga que este poderá segurar. Estas características garantem alto desempenho para o robô, pois este poderá operar com menores esforços e em maiores velocidades, garantindo precisão na operação.
[013] Outro fator relevante, é o fato de que a atuação da dita garra robótica pode ocorrer em aplicações em que se exige o uso de dispositivos a prova de explosão ou intrinsecamente seguros, considerando que não existem meios de provocar a ignição de um ambiente explosivo presente em área classificadas através do uso de um dispositivo com as características reveladas. Dependendo do material complacente especificado, é possível atuar em ambientes em que a temperatura atinge uma ampla faixa. Cabe ressaltar que o dispositivo desenvolvido combina todas as vantagens e benefícios supracitados, aliado a um extremo baixo custo.
[014] A descrição que segue e as figuras associadas, a título de exemplo, farão compreender o objeto do presente pedido. [015] A figura 1 apresenta uma vista em perspectiva da garra robótica mole com câmaras de compressão (10).
[016] A figura 2 apresenta uma vista em corte longitudinal da garra robótica mole com câmaras de compressão (10).
[017] A figura 3 apresenta uma vista inferior da garra robótica mole com câmaras de compressão (10).
[018] A figura 4 apresenta uma sequência de funcionamento da garra robótica mole com câmaras de compressão (10). [019] A figura 5 apresenta uma vista em corte longitudinal da garra robótica mole com câmaras de compressão (10) em funcionamento, agarrando um morango.
[020] Conforme ilustrado na figura 1 , a garra robótica (10) é compreendida pelo corpo (1 ), construído inteiramente com materiais flexíveis. Dito corpo (1 ) compreende uma base plana (3) da qual se projeta uma parede espessa (2), que descreve um formato geométrico como um tubo, podendo ter secção transversal circular, quadrada ou outra qualquer, conforme a aplicação que se desejar, sem descaracterizar o invento aqui revelado. A dita parede espessa (2) prevê pelo menos uma câmara interna (21 ) preenchida com fluido.
[021 ] Dita base plana (3) é fixada em uma das extremidades da dita parede espessa (2), resultando em um corpo (1 ) monobloco com uma cavidade (4) central. A dita parede espessa (2) possui espessura maior (2’) de um lado da câmara interna (21 ), do que o outro lado (2”) da câmara interna (21 ), conforme a aplicação, estes lados podem ser invertidos, tanto para proporcionar o agarramento de objetos pelo seu interior, quanto pelo seu exterior. Dito corpo (1 ) compreende uma cavidade (4) cercada pela parede espessa (2), e a dita cavidade (4) pode prever textura com ranhuras, lisa ou qualquer rugosidade necessária a uma aplicação específica, bem como a face externa da dita parede espessa (2).
[022] Como ilustrado na figura 2, a dita câmara interna (21 ) de fluido prevê formato com menor volume na região mais próxima à base plana (3), e este volume é acrescido conforme a câmara se prolonga na direção oposta ao plano inferior (31 ) da base (3) no interior da parede espessa (2). Este formato está relacionado com a necessidade de aumento da espessura da parede interna da cavidade nas regiões mais próximas do ponto em que o dispositivo é preso ao flange do robô, e a redução da barreira de deformação na região em que o objeto será agarrado. A geometria da secção das câmaras pode assumir outros formatos, tendo em vista a eventual necessidade de ajuste do ponto de aplicação da força de preensão. O fluido é injetado na dita câmara por meio de pelo menos um canal (22) que liga o interior da câmara interna (21 ) ao exterior do dito corpo (1 ).
[023] Opcionalmente, pode ser implantado material (5) na parede espessa (2), com função de garantir que a pressão aplicada nas câmaras deforme a região desejada, interna à cavidade (4) ou externa à parede espessa (2). O material (5) pode ser um elastômero que possui uma dureza maior do que o material do dispositivo, mas pode ser também qualquer outro material complacente com dureza diferenciada, que tenha a capacidade de conter a expansão do corpo de dispositivo. A inserção do material (5) é opcional, e não altera de forma significativa a eficácia da garra robótica (10). A utilização do material (5) pode ser alcançada sem a necessidade de empregar esforços significativos, já que a estrutura da dita garra (10) é totalmente fabricada em material flexível, e possibilita inclusive, que tal material não contamine o meio de atuação, pelo fato do mesmo não estar exposto, possibilitando a utilização da garra robótica (10) em aplicações extremamente específicas, como por exemplo, submerso em um fluido. [024] A geometria do dispositivo pode ser alterada em função da aplicação em que ele será utilizado. O comprimento de seu corpo pode ser substancialmente maior do que o seu diâmetro. A secção do dispositivo pode ser circular, como apresentado nas figuras deste documento, no entanto o atuador pode ter uma secção oval, por exemplo, com a possibilidade de pegar objetos que possuam uma secção retangular. Neste caso as câmaras de compressão podem ser dispostas de modo a permitir a melhor aplicação das forças de preensão.
[025] A fim de apresentar uma materialização, a figura 3 ilustra a vista inferior da dita garra robótica (10) com quatro câmaras internas (21 ), concêntricas. Na figura 5 é possível visualizar uma vista em corte longitudinal do dispositivo robótico sendo utilizado para pegar um objeto frágil (morango), destacando a complacência do equipamento proposto.
[026] O dispositivo proposto pode ser dotado de uma funcionalidade que aumenta sua capacidade de capturar um eventual objeto a ser pego, caracterizando-se por uma fonte de pressão negativa para succionar o ar presente na cavidade, garantindo uma melhor capacidade de captura e apreensão dos objetos. A pressão negativa pode ser controlada durante a operação do conjunto formado pelo braço robótico que está conectado ao dispositivo proposto. Este controle pode permitir a sucção gradual do objeto a ser pego, garantindo uma melhor preensão e maior segurança na operação do sistema.
[027] Fazendo desta maneira, obtém-se garra robótica subatuada, ou seja, sua atuação na captura dos objetos pode ser controlada por um único sinal, no caso do uso de uma única câmara interna (21 ). Na eventualidade do uso de mais câmaras internas (21 ), a atuação se mantém simplificada, pois as câmaras, apesar de poderem ser acionadas independentemente, também poderão ser acionadas por um único sinal de controle, se assim se desejar.
[028] Desta forma, para o perfeito funcionamento da garra robótica mole com câmaras de compressão (10), deve-se posicionar a mesma em torno do objeto que se deseja agarrar, de modo que esteja inserido na cavidade (4) enquanto as câmaras internas (21 ) estão inertes, em seguida, aumenta-se a pressão do fluido no interior das câmaras internas (21 ) até que a parede espessa interna (2") se deforme a ponto de aplicar forças de preensão no objeto a ser pego, conforme ilustrado nas figuras 4 e 5. Opcionalmente, a deformação pode ocorrer na parte externa da dita parede espessa (2'), dependendo da relação entre as espessuras das paredes interna e externa, possibilitando a captura de materiais a partir da inserção da garra no interior de uma cavidade no material que se deseja pegar.
[029] Cabe ressaltar que o dispositivo robótico pode ser o elemento final num braço robótico, mas também pode ser utilizado em um sistema composto por diversos dispositivos trabalhando em conjunto, para executar operações de captura simultânea de diversos objetos, tal como numa aplicação em que duas dúzias de ovos convenientemente arranjados fossem pegos simultaneamente pelo sistema. Considerando que as câmaras possuem baixo volume, a vazão de fluido será baixa, permitindo altas velocidades de atuação. Dessa forma os movimentos de contração da cavidade interna poderão ser controlados com precisão e velocidade.
[030] Pequenas variações no formato podem haver, todavia sem descaracterizar a ideia inventiva aqui apresentada que consiste em uma garra robótica construída totalmente em materiais complacentes, com um corpo inteiriço que agarra materiais frágeis sem danificá-los e com excelente confiabilidade de operação e baixo custo.

Claims

REIVINDICAÇÕES
1. GARRA ROBÓTICA COMPLACENTE BASEADA EM CÂMARAS DE COMPRESSÃO caracterizada por ser construída inteiramente por materiais flexíveis; e compreendida pelo corpo (1 ) que prevê uma base plana (3) da qual se projeta uma parede espessa (2), que descreve um formato geométrico com uma cavidade (4) central, e a dita parede espessa (2) prever pelo menos uma câmara interna (21 ) e um lado (2’) da dita parede espessa (2) possui espessura maior do que o outro lado (2”) da parede espessa (2); e a dita câmara interna (21 ) de fluido prevê formato com menor volume na região mais próxima à base plana (3), e este volume é acrescido conforme a câmara se prolonga na direção oposta ao plano inferior (31 ) da base (3) no interior da parede espessa (2).
2. GARRA ROBÓTICA COMPLACENTE BASEADA EM CÂMARAS DE COMPRESSÃO, conforme reivindicação 1 , caracterizado pela parede espessa (2), descrever um formato geométrico com secção transversal circular.
3. GARRA ROBÓTICA COMPLACENTE BASEADA EM CÂMARAS DE COMPRESSÃO, conforme reivindicação 1 , caracterizado pela parede espessa (2), descrever um formato geométrico com secção transversal quadrada.
4. GARRA ROBÓTICA COMPLACENTE BASEADA EM CÂMARAS DE COMPRESSÃO, conforme reivindicação 1 , caracterizado pela parede espessa (2), receber um material (5) menos flexível que o material do corpo (1 ) no seu interior.
5. GARRA ROBÓTICA COMPLACENTE BASEADA EM CÂMARAS DE COMPRESSÃO, conforme reivindicação 1 , caracterizado pela câmara interna (21 ) ser preenchida com fluido.
6. GARRA ROBÓTICA COMPLACENTE BASEADA EM CÂMARAS DE COMPRESSÃO, conforme reivindicação 1 , caracterizado pela cavidade (4) prever textura em suas paredes.
7. GARRA ROBÓTICA COMPLACENTE BASEADA EM CÂMARAS DE COMPRESSÃO, conforme reivindicação 1 , caracterizado pela câmara interna (21 ) prever pelo menos um canal (22) que liga o interior da câmara interna (21 ) ao exterior do dito corpo (1 ).
8. GARRA ROBÓTICA COMPLACENTE BASEADA EM CÂMARAS DE COMPRESSÃO, conforme reivindicação 1 , caracterizado pela cavidade (4) prever meios para promover sucção.
PCT/BR2020/050127 2019-04-16 2020-04-14 Garra robótica complacente baseada em câmaras de compressão WO2020210886A2 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102019007721-2A BR102019007721B1 (pt) 2019-04-16 2019-04-16 Garra robótica complacente baseada em câmaras de compressão
BRBR1020190077212 2019-04-16

Publications (2)

Publication Number Publication Date
WO2020210886A2 true WO2020210886A2 (pt) 2020-10-22
WO2020210886A3 WO2020210886A3 (pt) 2020-12-24

Family

ID=72836898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2020/050127 WO2020210886A2 (pt) 2019-04-16 2020-04-14 Garra robótica complacente baseada em câmaras de compressão

Country Status (2)

Country Link
BR (1) BR102019007721B1 (pt)
WO (1) WO2020210886A2 (pt)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011130475A2 (en) * 2010-04-15 2011-10-20 Cornell University Gripping and releasing apparatus and method
WO2012148472A2 (en) * 2010-11-19 2012-11-01 President And Fellows Of Harvard College Soft robotic actuators
WO2016154355A1 (en) * 2015-03-23 2016-09-29 Soft Robotics, Inc. Improvements to soft robotic actuators and methods of manufacturing the same
WO2016172670A1 (en) * 2015-04-23 2016-10-27 Soft Robotics, Inc. Enhancement of soft robotic grippers through integration of stiff structures
CN108698285A (zh) * 2016-01-19 2018-10-23 哈佛学院院长及董事 软体机器人致动器以及夹持器
ES2897940T3 (es) * 2016-01-20 2022-03-03 Soft Robotics Inc Pinzas robóticas blandas para entornos de agarre desordenados y sistemas de almacenamiento y recuperación automatizados, con movimientos de aceleración elevada y de manipulación de alimentos
WO2018232386A1 (en) * 2017-06-16 2018-12-20 Temple University-Of The Commonwealth System Of Higher Education Climbing soft robotics
EP3694690A1 (en) * 2017-10-13 2020-08-19 Soft Robotics, Inc. End of arm tools for soft robotic systems

Also Published As

Publication number Publication date
BR102019007721A2 (pt) 2020-10-27
WO2020210886A3 (pt) 2020-12-24
BR102019007721B1 (pt) 2021-06-29

Similar Documents

Publication Publication Date Title
Lee et al. Origami-based vacuum pneumatic artificial muscles with large contraction ratios
Robinson et al. Continuum robots-a state of the art
US9506455B2 (en) Flexible robotic actuators
Liu et al. Soft humanoid hands with large grasping force enabled by flexible hybrid pneumatic actuators
US5156081A (en) Gripping actuator with independently flexible cylinders
Choi et al. Tendon-driven jamming mechanism for configurable variable stiffness
Brancadoro et al. Preliminary experimental study on variable stiffness structures based on fiber jamming for soft robots
Fatahillah et al. A novel soft bending actuator using combined positive and negative pressures
Fras et al. Fluidical bending actuator designed for soft octopus robot tentacle
JP2993506B2 (ja) アクチュエータ
CN111727109A (zh) 具有混合结构和抓握可靠性的软机器人抓手
Bao et al. Trunk-like soft actuator: design, modeling, and experiments
Cai et al. Pneumatic webbed soft gripper for unstructured grasping
WO2020210886A2 (pt) Garra robótica complacente baseada em câmaras de compressão
Liu et al. Design of a 3D-printed polymeric compliant constant-force buffering gripping mechanism
Jeong et al. Echinoderm inspired variable stiffness soft actuator with connected ossicle structure
Schmitt et al. Inverted honeycomb cell as a reinforcement structure for building soft pneumatic linear actuators
Backus et al. A prismatic-revolute-revolute joint hand for grasping from unmanned aerial vehicles and other minimally constrained vehicles
Liu et al. Soft actuator using sponge units with constrained film and layer jamming
CN110270986B (zh) 一种气动软体致动器及其制造方法
JP3226219B2 (ja) アクチュエータ
Cao et al. A novel pneumatic gripper driven by combination of soft fingers and bellows actuator for flexible grasping
CN113967922B (zh) 一种全柔性气动式软体仿生机械手
US20230159144A1 (en) Smart soft actuation unit for underwater applications
Himaruwan et al. Development and characterization of an origami-based vacuum-driven bending actuator for soft gripping

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20790737

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20790737

Country of ref document: EP

Kind code of ref document: A2