CN110270986B - 一种气动软体致动器及其制造方法 - Google Patents

一种气动软体致动器及其制造方法 Download PDF

Info

Publication number
CN110270986B
CN110270986B CN201910539047.8A CN201910539047A CN110270986B CN 110270986 B CN110270986 B CN 110270986B CN 201910539047 A CN201910539047 A CN 201910539047A CN 110270986 B CN110270986 B CN 110270986B
Authority
CN
China
Prior art keywords
spiral
actuator
pneumatic soft
soft actuator
air pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910539047.8A
Other languages
English (en)
Other versions
CN110270986A (zh
Inventor
王学谦
张志远
徐峰
梁斌
王松涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Graduate School Tsinghua University
Original Assignee
Shenzhen Graduate School Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Graduate School Tsinghua University filed Critical Shenzhen Graduate School Tsinghua University
Priority to CN201910539047.8A priority Critical patent/CN110270986B/zh
Publication of CN110270986A publication Critical patent/CN110270986A/zh
Application granted granted Critical
Publication of CN110270986B publication Critical patent/CN110270986B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0009Constructional details, e.g. manipulator supports, bases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0009Constructional details, e.g. manipulator supports, bases
    • B25J9/0015Flexure members, i.e. parts of manipulators having a narrowed section allowing articulation by flexion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor

Abstract

本发明提供种气动软体致动器,其为螺线构型,基体由超弹性材料制作成形,基体内部有一个充气气腔,利用输入的气压作为驱动,实现展开运动;气压越大其曲率越小,曲率减小到0之后可以实现负曲率展开运动,基体外侧粘贴有应变限制层,用于限制轴向的伸展运动并且增强展开运动,基体末端密封阻塞头用于堵塞气腔,防止漏气。本发明由于采用螺线构型,随着输入气压的增大可以实现正负曲率两个方向的展开运动,并且能实现在较小的输入气压下实现较大范围的展开运动。本螺线型气动软致动器具有良好的展开运动性能,具有多种潜在应用领域,如医疗领域,开发新型康复手套,等等。

Description

一种气动软体致动器及其制造方法
技术领域
本发明涉及软体机器人技术领域,尤其涉及气驱动的软体致动器及其制造方法。
背景技术
气动软体致动器是一种新型的气驱动致动器,具有质轻、柔顺性好、响应迅速、抗压能力强、安全性高等优点。因而在连续型机械臂、软体手爪、辅助康复手套以及仿生鱼等研究方向应用广泛。气动软体致动器成为了软体机器人领域的重要研究对象之一。几种典型的气动软体致动器是:上世纪50年代,J.L.Mckibben发明的McKibben气动肌肉、Jamming-based致动器、Pneumatic-nets气动网格、纯扭转致动器以及不同类型的致动器的组合。现阶段,气动软体致动器具有如下结构特点:
1)致动器的基体由弹性材料制成,内部留有气腔或气动网格。利用输入的高压气体作为驱动,可以实现收缩、伸长、弯曲、扭转等高柔顺、高冗余的复杂运动;2)致动器的初始构型多是直线拉伸型,截面是圆形、半圆形或矩形;3)现有的致动器多是通过保持输入气压不变来保持形状不变。
但现有技术的这些气动软体致动器还存在着保持形状所需要气压较大、能耗较多、以及不能实现在较小的输入气压下实现较大范围的展开运动等问题。
发明内容
本发明的目的是为了解决现有技术中的问题,提出一种气动软体致动器及其制造方法,能在初始状态无须气压而保持一种合适的形状,并且能实现在较小的输入气压下实现较大范围的展开运动。
为解决上述技术问题,本发明提出一种气动软体致动器,其为螺线构型,其极坐标方程式和笛卡尔坐标方程式的关系如下式所示:
Figure BDA0002101989440000011
其中φ角为螺线角度;r为螺线半径,不同螺线类型,r与φ之间的函数关系不同;x和y分别为相应的笛卡尔坐标系下坐标值。
在本发明的一些实施例,还包括如下技术特征:
其为圆形、阿基米德螺线和对数螺线三种螺线中的一种,其中,阿基米德螺线的极坐标方程式为:
r=R0+C0φ
其中,R0为螺线起点与极坐标原点的距离;C0为螺线半径r随螺线角度变化的速率。对于确定的螺线构型,螺线的极坐标方程表达式唯一,此时R0和C0均为常系数;
圆形为阿基米德螺线的一种极端特殊,其极坐标方程式为:
r=R0+C0φ,C0=0
对数螺线的极坐标方程式为:
Figure BDA0002101989440000021
致动器的基体由超弹性材料制作成形,基体内部有一个充气气腔。
基体横截面与气腔横截面是如下形状中的一种:圆形截面、半圆形截面、方形截面、矩形截面。
利用输入的气压作为驱动,实现展开运动;气压越大其曲率越小,曲率减小到0之后可以实现负曲率展开运动。
基体外侧粘贴有应变限制层,用于限制轴向的伸展运动并且增强展开运动。
基体末端密封阻塞头用于堵塞气腔,防止漏气。
制造致动器基体的材料包括如下材料之一:树脂材料、橡胶材料、硅胶材料等,硬度小于等于50A;螺线型致动器的外侧应变限制层由弹性材料制作。
本发明还提出一种气动软体致动器制造方法,用于制造上述的气动软体致动器,包括如下步骤:S1、制造致动器的基体;S2、选择应变限制层材料,裁剪应变限制层;S3、将应变限制层均匀地粘贴在致动器外侧表面,将密封阻塞头粘贴在致动器末端。
其中,步骤S1可包括如下步骤:首先组装模具,包括底槽、中间弯曲杆和末端端盖;然后注入超弹性材料;在上表面覆盖钢板使得基体壁厚均匀平整,并在室温下等待其固化;在步骤S2中还可包括:在应变限制层上等间距的刻画若干形状刻度线。
与现有技术相比,本发明的有益效果有:本发明由于采用螺线构型,区别于已有的软体致动器的弯曲运动,螺线型气动软体致动器随着输入气压的增大可以实现正负曲率两个方向的展开运动,而且其初始状态即保持在螺线型而无须气压,并且能实现在较小的输入气压下实现较大范围的展开运动。实验结果表明,所设计的螺线型气动软致动器具有良好的展开运动性能。螺线型致动器具有多种潜在应用领域,如医疗领域,开发新型康复手套,等等。
附图说明
图1a、1b、1c分别是三种螺线型气动软体致动器模型图。
图2a、2b分别是螺线型致动器的制造工艺中浇铸弹性基体和粘贴应变限制层示意图。
图3a、3b、3c分别是三种螺线型致动器样机实物图。
图4a、4b、4c分别是三种螺线型致动器展开运动实验结果示意图。
具体实施方式
为了使本发明实施例所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。另外,连接即可以是用于固定作用也可以是用于电路连通作用。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多该特征。在本发明实施例的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
实施例1
自然界中存在多种螺线形式的生物构型,如鹦鹉螺、货币虫、植物藤蔓、海马尾巴[17]等,其中,海马的尾巴通常保持为对数螺线构型,当海马尝试抓住海藻、珊瑚等物体以抵抗海水冲击时,尾巴会先进行展开运动,然后再进行弯曲运动以环抱物体;生活中唱片音槽、蚊香、凸轮等物体也是螺线构型。这些生物或物品的构型大多符合阿基米德螺线或对数螺线等螺线构型。
受此启示,本申请针对螺线构型的气动软体致动器的设计方案和工作方式进行研究,提出如下实施方式,现说明如下:
螺线型致动器结构:
根据解析几何基础知识,螺线的数学表达式有极坐标方程式和笛卡尔坐标方程式,两者的关系如公式(1)所示:
Figure BDA0002101989440000041
其中φ角为螺线角度;r为螺线半径,不同螺线类型,r与φ之间的函数关系不同;x和y分别为相应的笛卡尔坐标系下坐标值。
特别的,针对圆形、阿基米德螺线和对数螺线三种常见的具有代表意义的螺线,公式(1)中,阿基米德螺线的极坐标方程式为:
r=R0+C0φ (2)
其中,R0为螺线起点与极坐标原点的距离;C0为螺线半径r随螺线角度变化的速率。对于确定的螺线构型,螺线的极坐标方程表达式唯一,此时R0和C0均为常系数。
圆形可以看作特殊的阿基米德螺线,其极坐标方程式为:
r=R0+C0φ,C0=0 (3)
对数螺线的极坐标方程式为:
Figure BDA0002101989440000042
根据公式(1)-(4)可知,螺线的构型参数有螺线角度φ、螺线起点与极坐标原点的距离R0;螺线半径r随螺线角度变化的速率C0。可以用于设计螺线型致动器的螺线数学表达式包括但不限于圆形、阿基米德螺线和对数螺线以及不同螺线的组合等。
螺线型气动软体致动器具有以下特点:
1)致动器的基体由超弹性材料制作成形,基体内部有一个充气气腔。基体横截面与气腔横截面包括但不限于圆形截面、半圆形截面、方形截面、矩形截面等;
2)致动器利用输入的气压作为驱动,实现展开运动。气压越大其曲率越小,曲率减小到0之后可以实现一定程度的负曲率展开运动(正曲率方向是指致动器在二三象限内的展开运动,负曲率是指致动器在四一象限内的展开运动)。
3)基体外侧粘贴有应变限制层,用于限制轴向的伸展运动并且增强展开运动。
4)基体末端密封阻塞头用于堵塞气腔,防止漏气。
三种常见的具有代表意义的圆形、阿基米德螺线和对数螺线构型的螺线型致动器,如图1a、1b、1c所示。
螺线型致动器材料:
螺线型致动器的基体由超弹性材料制作,可以用于制造致动器基体的材料包括但不限于树脂材料、橡胶材料、硅胶材料等(硬度小于等于50A)。
螺线型致动器的外侧应变限制层由弹性材料制作,可以用于制造应变限制层的材料包括但不限于普通纸张、纤维编织物(硬度大于普通A4纸张)等。弹性材料与超弹性材料的区别在于:弹性材料的应力应变曲线通常呈线性状态,常用杨氏模量和泊松比表示;超弹性是指材料的应力和应变不再是线性对应的关系,而是以应变能密度函数表示。
螺线型致动器制造方法:
螺线型致动器的制造工艺分为三步:
1)制造致动器的基体。首先组装利用3D打印技术制造的模具,包括底槽、中间弯曲杆和末端端盖;然后注入超弹性材料;最后优选可在上表面覆盖钢板使得基体壁厚均匀平整,并在室温下等待其固化;
2)选择合适材料,裁剪适合尺寸的应变限制层(宽度等于A,长度等于L);为了便于标记展开后的形状,在应变限制层上等间距的刻画若干形状刻度线;
3)将应变限制层均匀地粘贴在致动器外侧表面(用专门的硅胶处理胶水),将密封阻塞头粘贴在致动器末端。
以对数螺线型方形横截面的螺线型致动器为例,其制造过程如图2a、2b所示。其中图2a是浇铸弹性基体,图2b是粘贴应变限制层。
制造完成的圆形、阿基米德螺线和对数螺线构型的螺线型致动器分别如图3a、3b、3c所示。
为了突出不同螺线构型对致动器性能的影响,本实例中,三种螺线型致动器的外侧弧长长度统一选为150mm。根据公式(2)-(4)和模具制备的难易程度,计算得到的其他结构参数如表1所示。各组分的制备材料,如表2所示。
表1螺线型气动软体致动器结构参数
Figure BDA0002101989440000061
表2螺线型气动软体致动器制备材料
Figure BDA0002101989440000062
实验及结果:
实验步骤分为三步:
1)每种螺线型致动器分别制造5个,同一批致动器利用相同的注塑模具进行制造,因此样机符合同一标准具有可比性。
2)对每个螺线型致动器,依次进行在不同输入气压P作用下的展开运动实验,输入气压范围是0~39KPa,增量步长为5KPa;
3)每次实验根据应变限制层上的形状刻度线在坐标纸上的垂直投影,依次采集各个展开状态的坐标数据,然后计算每种致动器的平均展开运动数据如图4a、4b、4c所示,分别为圆形螺线构型、阿基米德螺线构型和对数螺线构型,所示为气压范围在0~39KPa变化时的形状。图4a、4b、4c中,9组线分别代表不同输入气压下致动器的展开形状,每组线中的5条线分别代表5个样机,每条样机的指示线已经标识在图中方框内。
图4显示,在较小的输入气压下,三种螺线构型的螺线型致动器都可以实现较大范围的展开运动,当P<25KPa时,随着输入气压的增大,展开角也增大;当P>25KPa时,随着输入气压的增大,致动器逐渐向负曲率方向弯曲;当P≈25KPa时,致动器此时接近于直线构型,此时致动器对气压变化的敏感度较高。其中,圆形螺线型致动器随着气压的增长,展开变形增量较为均匀,运动范围最大,但是初始构型的矩形包络体积也是最大;对数螺线型致动器初始构型占据体积最小,并且对气压的利用效率比阿基米德螺线型致动器高。
同时,样机实验结果也显示,随输入气压的增大,螺线型致动器在负曲率方向展开角度逐渐趋于平缓。不能产生更大角度的展开的主要原因是:致动器初始状态下的内侧弧长小于外侧弧长。致动器到达第四象限后,内侧弧长变成外侧弧长,致动器内侧弹性基体达到弹性变形极限,无法产生更大程度的展开运动;在世界坐标系{W}中,致动器外侧弧长长度统一选为150mm的情况下,当输入气压P=0~39KPa时,圆形螺线型致动器的展开角度变化范围是135°~369°、阿基米德螺线型致动器的展开角度变化范围是185°~345°、对数螺线型致动器的展开角度变化范围是188°~350°;上述实验表明了该致动器设计方案的可行性、展开运动特点和展开效率。
实验结果表明,所设计的螺线型气动软致动器具有良好的展开运动性能,在致动器外侧弧长长度相同的情况下,对数螺线型致动器的展开运动性能最优。实验结果与海马尾巴常保持为对数螺线构型以减小身体所占的空间和获取更快的展开响应的现象相符。同时,实验结果显示选用的致动器初始构型对比参数足够说明三种类型的螺线致动器之间的异同点,因此实验结果对于通用的螺线型致动器具有普适性。
未来,螺线型致动器具有多种潜在应用领域,如医疗领域,开发新型康复手套。已有文献中所设计的康复手套初始构型多是直线,通过充气产生弯曲变形带动手指关节弯曲,但是多数病患的手指初始构型并不是直线,而是各种无规则的形状。根据病患手指的形状选择螺线型致动器的构型空间参数,可以更有效更舒适地帮助病患展开僵硬的弯曲的手指;仓储和物流领域,设计新型抓手,抓取轻质易碎的物体,同时减少自身占用的空间;应急和安防领域,设计新型弹射装置,利用致动器末端在展开运动过程中产生的动能弹射物体。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围。

Claims (9)

1.一种气动软体致动器,其特征在于,其为螺线构型,其极坐标方程式和笛卡尔坐标方程式的关系如下式所示:
Figure FDA0002595044610000011
其中φ角为螺线角度;r为螺线半径,不同螺线类型,r与φ之间的函数关系不同;x和y分别为相应的笛卡尔坐标系下坐标值;
所述螺线构型为圆形、阿基米德螺线和对数螺线三种螺线中的一种,其中,阿基米德螺线的极坐标方程式为:
r=R0+C0φ
其中,R0为螺线起点与极坐标原点的距离;C0为螺线半径r随螺线角度变化的速率;对于确定的螺线构型,螺线的极坐标方程表达式唯一,此时R0和C0均为常系数;
圆形为阿基米德螺线的一种极端特殊,其极坐标方程式为:
r=R0+C0φ,C0=0
对数螺线的极坐标方程式为:
Figure FDA0002595044610000012
2.如权利要求1所述的气动软体致动器,其特征在于,致动器的基体由超弹性材料制作成形,基体内部有一个充气气腔。
3.如权利要求2所述的气动软体致动器,其特征在于,基体横截面与气腔横截面是如下形状中的一种:圆形截面、半圆形截面、方形截面、矩形截面。
4.如权利要求2所述的气动软体致动器,其特征在于,利用输入的气压作为驱动,实现展开运动;气压越大其曲率越小,曲率减小到0之后可以实现负曲率展开运动。
5.如权利要求2所述的气动软体致动器,其特征在于,基体外侧粘贴有应变限制层,用于限制轴向的伸展运动并且增强展开运动。
6.如权利要求2所述的气动软体致动器,其特征在于,基体末端密封阻塞头用于堵塞气腔,防止漏气。
7.如权利要求5所述的气动软体致动器,其特征在于,制造致动器基体的材料包括如下材料之一:树脂材料、橡胶材料、硅胶材料等,硬度小于等于50A;螺线型致动器的外侧应变限制层由弹性材料制作。
8.一种气动软体致动器制造方法,用于制造如权利要求1-7中任一项所述的气动软体致动器,其特征在于,包括如下步骤:
S1、制造致动器的基体;
S2、选择应变限制层材料,裁剪应变限制层;
S3、将应变限制层均匀地粘贴在致动器外侧表面,将密封阻塞头粘贴在致动器末端。
9.如权利要求8所述的气动软体致动器制造方法,其特征在于,步骤S1包括如下步骤:首先组装模具,包括底槽、中间弯曲杆和末端端盖;然后注入超弹性材料;在上表面覆盖钢板使得基体壁厚均匀平整,并在室温下等待其固化;在步骤S2中还包括:在应变限制层上等间距的刻画若干形状刻度线。
CN201910539047.8A 2019-06-20 2019-06-20 一种气动软体致动器及其制造方法 Active CN110270986B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910539047.8A CN110270986B (zh) 2019-06-20 2019-06-20 一种气动软体致动器及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910539047.8A CN110270986B (zh) 2019-06-20 2019-06-20 一种气动软体致动器及其制造方法

Publications (2)

Publication Number Publication Date
CN110270986A CN110270986A (zh) 2019-09-24
CN110270986B true CN110270986B (zh) 2021-02-09

Family

ID=67961320

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910539047.8A Active CN110270986B (zh) 2019-06-20 2019-06-20 一种气动软体致动器及其制造方法

Country Status (1)

Country Link
CN (1) CN110270986B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110269776B (zh) * 2019-06-28 2021-09-07 清华大学深圳研究生院 一种基于气动软体致动器的手指辅助康复指套及其制造方法
CN114770585B (zh) * 2022-05-24 2023-10-20 中国科学技术大学 一种螺旋缠绕机器人

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103742755A (zh) * 2013-12-17 2014-04-23 西南石油大学 一种软体履带式管道机器人
CN104665711A (zh) * 2015-02-02 2015-06-03 梁金水 一种转盘式螺旋结构清洁装置
CN106272458A (zh) * 2016-08-31 2017-01-04 哈尔滨工业大学 一种螺旋式扭转软体机器人模块
CN109676630A (zh) * 2019-03-04 2019-04-26 西南科技大学 仿蛇缠绕软体执行器
CN109732588A (zh) * 2019-01-18 2019-05-10 哈尔滨工业大学 一种可螺旋变形的软体机器人
CN109730664A (zh) * 2019-01-18 2019-05-10 哈尔滨工业大学 基于热变形的预设形状的测血压软体机器人

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013130760A2 (en) * 2012-02-28 2013-09-06 President And Fellows Of Harvard College Apparatus, system, and method for providing fabric-elastomer composites as pneumatic actuators
CN109877864B (zh) * 2019-03-31 2022-05-17 西南科技大学 灵敏软体执行器及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103742755A (zh) * 2013-12-17 2014-04-23 西南石油大学 一种软体履带式管道机器人
CN104665711A (zh) * 2015-02-02 2015-06-03 梁金水 一种转盘式螺旋结构清洁装置
CN106272458A (zh) * 2016-08-31 2017-01-04 哈尔滨工业大学 一种螺旋式扭转软体机器人模块
CN109732588A (zh) * 2019-01-18 2019-05-10 哈尔滨工业大学 一种可螺旋变形的软体机器人
CN109730664A (zh) * 2019-01-18 2019-05-10 哈尔滨工业大学 基于热变形的预设形状的测血压软体机器人
CN109676630A (zh) * 2019-03-04 2019-04-26 西南科技大学 仿蛇缠绕软体执行器

Also Published As

Publication number Publication date
CN110270986A (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
Gorissen et al. Elastic inflatable actuators for soft robotic applications
Hu et al. Bioinspired three-dimensional-printed helical soft pneumatic actuators and their characterization
KR102044052B1 (ko) 공기압식 액츄에이터로서 패브릭-엘라스토머 복합체를 제공하기 위한 장치, 시스템 및 방법
CN110270986B (zh) 一种气动软体致动器及其制造方法
Goh et al. 3d printing of robotic soft grippers: Toward smart actuation and sensing
CN108466276A (zh) 一种基于弹性体软材料的多自由度运动手指及其制备方法
Fras et al. Soft fluidic rotary actuator with improved actuation properties
CN113172640B (zh) 一种软体驱动器
WO2016011345A1 (en) Soft actuators and soft actuating devices
Chen et al. Pneumatically actuated soft robotic arm for adaptable grasping
WO2012148472A2 (en) Soft robotic actuators
US10882195B2 (en) Method for making a soft actuator device
Shahid et al. Design of a soft composite finger with adjustable joint stiffness
Bao et al. Trunk-like soft actuator: design, modeling, and experiments
Zhang et al. A gas–ribbon-hybrid actuated soft finger with active variable stiffness
Zhang et al. A herringbone soft pneu-net actuator for enhanced conformal gripping
Wang et al. A kind of soft pneumatic actuator based on multi-material 3D print technology
Zhang et al. From two-dimensional to three-dimensional: Diversified bending modality of a cable-driven actuator and its grasping characteristics
CN110269776B (zh) 一种基于气动软体致动器的手指辅助康复指套及其制造方法
Hao et al. Flexible and stable grasping by multi-jointed pneumatic actuator mimicking the human finger-impacts of structural parameters on performance
CN111975808A (zh) 一种气控软体仿生机械手指
Park et al. Development of a hybrid gripper with soft material and rigid structures
Yuan et al. Soft tactile sensor and curvature sensor for caterpillar-like soft robot's adaptive motion
CN110276127B (zh) 一种螺线型气动软体致动器静力学控制方法
CN110276158B (zh) 一种螺线型致动器重建展开形状的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant