WO2020209432A1 - Rainfall simulator calibration system, and rainfall simulator calibration method - Google Patents

Rainfall simulator calibration system, and rainfall simulator calibration method Download PDF

Info

Publication number
WO2020209432A1
WO2020209432A1 PCT/KR2019/004749 KR2019004749W WO2020209432A1 WO 2020209432 A1 WO2020209432 A1 WO 2020209432A1 KR 2019004749 W KR2019004749 W KR 2019004749W WO 2020209432 A1 WO2020209432 A1 WO 2020209432A1
Authority
WO
WIPO (PCT)
Prior art keywords
rainfall
simulator
intensity
distribution
nozzle
Prior art date
Application number
PCT/KR2019/004749
Other languages
French (fr)
Korean (ko)
Inventor
김학수
고택조
예성제
곽용석
Original Assignee
대한민국(행정안전부 국립재난안전연구원장)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(행정안전부 국립재난안전연구원장) filed Critical 대한민국(행정안전부 국립재난안전연구원장)
Publication of WO2020209432A1 publication Critical patent/WO2020209432A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/64Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by measuring electrical currents passing through the fluid flow; measuring electrical potential generated by the fluid flow, e.g. by electrochemical, contact or friction effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/14Rainfall or precipitation gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/18Testing or calibrating meteorological apparatus

Definitions

  • the present invention relates to a rainfall simulator correction system and a rainfall simulator correction method, and more specifically, a rainfall simulator to establish a method of calibrating a large-scale laboratory rainfall simulator through an automatic rainfall collection system in order to evaluate the reliability and accuracy of the rainfall simulator. It relates to a correction system and a rainfall simulator correction method.
  • Rainfall runoff is an important hydrogeomorphological process that affects several types of environmental factors including soil, topography, vegetation and natural resources within reservoirs. Runoff studies often rely on properties of natural rainfall such as variability in intensity, spatiotemporal distribution, particle size distribution, particle velocity and kinetic energy. Rainfall simulation is a widely used method for hydrological malformation studies, including runoff, flooding, soil properties in watersheds, and other research areas to reproduce the characteristics and processes of natural rainfall.
  • Rainfall simulator or rainfall simulator (RS) is a technology widely used as a research tool to calculate runoff, infiltration and erosion data in field and laboratory-based studies in hydrology and topography courses. 2018.01.25. Announcement) Real-time disaster occurrence time prediction system and method, Korean Patent Publication No. 10-1891237 (2018.09.28. Announcement) Rain Simulator Inspection and Correction Automation Facility, Korean Patent Publication No. 10-1820946 (2018.03. .09. Announcement) A precipitation simulation method using particle-based SPH and a rainfall simulation platform configured to execute it, as known in Korean Patent Publication No. 10-0960850 (2010.06.07. Announcement), as known in the excellent measurement information transmission system. A simulator is being developed.
  • the main purpose of the rainfall simulator is to provide accurate and quick generation of various rainfall systems by controlling rainfall intensity and duration, as well as to provide reproducible rainfall data collection.
  • Data collected from rainfall simulation experiments provide the basic information necessary to understand the dynamic behavior of runoff generation, infiltration and soil erosion. This information focuses on how surface properties such as slopes, soil properties, vegetation cover, and topography within the reservoir affect the processes mentioned above.
  • the first group consists of unheated drop forming simulators in which raindrops are formed at the end of a needle-like conduit (i.e., a drop former) connected to a set of pipes, or directly from a hole in the bottom of the tank.
  • the drop former starts dropping a drop with a speed of 0.
  • the second group consists of pressurized nozzle simulators, where raindrops are produced continuously at significant speeds by single or multiple nozzles.
  • the pressureless fall formation simulator has limitations in reproducing natural rainfall in terms of the size and energy characteristics of the fall. Simulators of this type generally provide evenly distributed raindrops in terms of size. However, unless various sizes or dimensions of the drop former are used, they do not produce a drop distribution. Another drawback of the pressureless drop formation simulator is its limited application to soil erosion studies, especially in field experiments. These simulators are generally impractical for field use because raindrops need a sufficient height from the impact surface to reach the terminal velocity corresponding to the rainfall kinetic energy.
  • the pressurized nozzle simulator produces a wider particle size distribution.
  • Different nozzle types are available for rainfall simulation, and the drop size distribution is determined by the nozzle's shape characteristics and discharge.
  • This type of simulator offers a variety of rainfall intensities. Rainfall intensity can vary depending on nozzle orifice, pump pressure, nozzle spacing and nozzle movement.
  • This simulator provides moderate velocities and kinetic energy values for raindrops with low drop heights, but the droplet velocity is generally exaggerated because the nozzle's raindrops have an initial velocity greater than zero due to pump pressure. Continuous spraying from the nozzle can result in higher rainfall intensity than natural rainfall.
  • Rotating disks, rotating booms, rotating rods or solenoid control simulators can be used as solutions to reduce exaggerated rainfall intensity.
  • a rotating or rotating rod is the simplest way to closely simulate natural rainfall in terms of rainfall intensity.
  • a box around the nozzle is introduced to control the sprayed raindrops, reducing the surface exposure time to artificial rainfall spray, thereby reducing the rainfall intensity compared to natural rainfall.
  • Recent research has focused more on the assessment of the impact of changes in surface properties due to fire, agriculture, urbanization, or other disturbances on the hydrological cycle.
  • This study includes extensive experiments evaluating the properties of the land surface on a hill-to-catch scale to better understand the interaction between surface properties and runoff generation.
  • This requires a laboratory rainfall simulator that is large enough to produce high rainfall intensities and is suitable for capturing the heterogeneity of surface properties on the experimental surface.
  • These measurements in large laboratory rainfall simulators can be used to increase the accuracy of effluents and hydrological models.
  • Further research using large laboratory rainfall simulators is required to evaluate the effect of changes in surface properties on the hydrological cycle, but simple, small rainfall simulators that produce rain in small areas (less than 5 m2 and usually less than 1 m2) are widely available. Is being used. This is because the rainfall simulator covering a relatively large area (about 100 m2 or more) is expensive to install and is not easy to operate.
  • rainfall simulators For accurate runoff experiments, rainfall simulators must adequately simulate natural rainfall and control rainfall intensity and duration. In addition to desirable properties to accurately simulate rainfall, rainfall simulators require other requirements such as efficiency, simplicity and economics. However, it is difficult to meet all the requirements for a rainfall simulator because there is a trade-off between desirable characteristics such as size, cost, mobility, area coverage, ease of use and operation. Desirable characteristics of rainfall simulators depend primarily on the research objectives and rainfall characteristics required for specific research conditions.
  • the main requirements for runoff experiments are reliability and accuracy.
  • Reliability is related to the repeatability of storm events, and accuracy is related to the spatial uniformity of rainfall over the entire test plan.
  • accuracy is related to the spatial uniformity of rainfall over the entire test plan.
  • Stability can also be improved by implementing appropriate instrumentation that accurately monitors storm events in the test plot.
  • Accuracy is assessed by the uniformity of the rainfall distribution in the test plot.
  • the accuracy can be increased, or at least set high, when selecting the appropriate spray nozzle type and placing the nozzles in series at appropriate intervals to avoid overlapping raindrops.
  • the physical movement of the nozzle across the experimental plot can have a notable effect on the uniformity of the rainfall distribution.
  • the rainfall intensity and spatial distribution are controlled by a combination of parameters of the rainfall simulator system such as the nozzle's orifice diameter, the pressure at the nozzle, and the nozzle motion. (For example, the rotational speed of the bar and the delay time at the end of each vibration)
  • conventional measurements based on manual procedures have their own errors due to human error.
  • An object of the present invention is to provide a rainfall simulator correction system and a rainfall simulator correction method to establish a method of calibrating a large-scale laboratory rainfall simulator through an automatic rainfall collection system in order to evaluate the reliability and accuracy of the rainfall simulator. .
  • an embodiment of the present invention implements an automatic rainfall collection system (ARCS) to identify a functional relationship between system variables of a rainfall simulator and rainfall intensity and uniform distribution (i.e., motion model), and the driving model is hydrological and topographic Rainfall simulator and rainfall simulator calibration method that can be used as a guide for intuitively selecting an appropriate range of system variables for rainfall simulators to generate specific rainfall intensities and uniformity for simulated rainfall in laboratory-based studies of the rainfall simulator There is another purpose to provide.
  • AVS automatic rainfall collection system
  • the rainfall simulator correction system is a rainfall simulator installed at a designated height of a laboratory to provide rainfall downward, collects the provided rainfall, and when collecting the rainfall, the rainfall of the rainfall
  • An automated calibration device including a measurement device for measuring intensity and rainfall distribution, and the rainfall provided by the rainfall simulator based on the analysis result of the rainfall intensity and data related to the rainfall distribution provided by the automated calibration device It includes a control device to correct the state of.
  • the calibration automation device comprises: a container forming a space for collecting the rainfall, a first measuring device in which a plurality of is installed by forming a matrix for measuring the rainfall distribution in the space of the container, and the rainfall It may include a second measuring device provided at an outlet for discharging the rainfall collected from the container for measuring the intensity.
  • the first measuring device may include a conductive rainfall meter
  • the second measuring device may include an ultrasonic flow meter
  • the conductive rainfall meter may be installed while being fixed to a designated height from the bottom surface of the space.
  • the control device may correct the condition of the rainfall based on a comparison result of the total rainfall intensity (Itotal) measured by the plurality of first measuring devices and the average rainfall intensity (Iaverrage) averaged the total rainfall intensity. have.
  • the control device may derive the analysis result by applying a Christiansen uniform distribution coefficient that calculates the rainfall distribution.
  • the control device configures the rainfall simulator to provide system variables including nozzle pressure (NP), rotation speed (OV), and delay time (TD) of the nozzle providing the rainfall, and a function between the rainfall intensity and the rainfall distribution.
  • the rainfall state can be corrected by the analysis result derived based on the relationship.
  • the rainfall simulator includes a control motor for controlling the nozzle of the rainfall, an injection angle and a waiting time, and a pressure boosting pump for distributing water pressure to the entire area of the rainfall simulator, and the control device includes the control motor and the pressure booster The condition of the rainfall can be corrected by controlling the pump.
  • the rainfall simulator correction method is a rainfall simulator correction method of a rainfall simulator correction system including a rainfall simulator, an automatic calibration device and a control device, in a rainfall simulator installed at a designated height of a laboratory, Providing rainfall downward, the calibration automation device collecting the provided rainfall and measuring the rainfall intensity and rainfall distribution of the rainfall by a measuring device when collecting the rainfall, and the control device And correcting the condition of the rainfall provided by the rainfall simulator based on the analysis result of the rainfall intensity and data related to the rainfall distribution provided by the automatic calibration device.
  • the calibration automation device comprises: a container forming a space for collecting the rainfall, a first measuring device in which a plurality of is installed by forming a matrix for measuring the rainfall distribution in the space of the container, and the rainfall It may include a second measuring device provided at an outlet for discharging the rainfall collected from the container for measuring the intensity.
  • the first measuring device may include a conductive rainfall meter
  • the second measuring device may include an ultrasonic flow meter
  • the conductive rainfall meter may be installed while being fixed to a designated height from the bottom surface of the space.
  • the rainfall state may be corrected based on a comparison result of the total rainfall intensity measured by the plurality of first measuring devices and the average rainfall intensity obtained by averaging the total rainfall intensity.
  • the correcting may include deriving the analysis result by applying a Christiansen uniform distribution coefficient for calculating the rainfall distribution.
  • the correcting step includes a system variable including a nozzle pressure (NP), a rotational speed (OV), and a delay time (TD) of a nozzle providing the rainfall by configuring the rainfall simulator, and between the rainfall intensity and the rainfall distribution.
  • the rainfall state may be corrected by the analysis result derived based on the functional relationship of.
  • the rainfall simulator includes a control motor for controlling the nozzle of the rainfall, an injection angle, and a waiting time, and a pressure boosting pump for distributing water pressure to the entire area of the rainfall simulator, and the step of correcting includes the control motor and the It is possible to correct the condition of the rainfall by controlling the booster pump.
  • the result of the traditional manual method is applied to the study of fluid topography such as changes in surface properties such as fire, agriculture, urbanization, etc. You may be able to consider the uncertainty problem more carefully than when observing the average rainfall intensity using.
  • FIG. 1 is a view for explaining a rain simulator inspection/correction automation facility of a real-time disaster occurrence time prediction system and method in Republic of Korea Patent Publication No. 10-1821599 (announced on January 25, 2018) to which the present applicant has registered a patent;
  • FIG. 2 is a view showing a conductive small rainfall meter installed in the rainfall simulator inspection and correction automation facility of FIG. 1;
  • 3A is a schematic diagram illustrating a water circulation process of a rainfall simulator in a large-scale laboratory as a rainfall simulator correction system according to an embodiment of the present invention
  • 3B is a photograph showing the interior of the laboratory in which the simulator of FIG. 3A is implemented;
  • FIG. 4A and 4B are views showing a nozzle configuration of the rainfall simulator of FIG. 3A;
  • 5A and 5B are views showing a spray box for reducing rainfall intensity of the rainfall simulator of FIG. 3A;
  • FIGS. 6A and 6B are diagrams showing the design and components of an automatic rainfall collection system according to an embodiment of the present invention.
  • NP nozzle pressure
  • OV rotation speed
  • TD delay time
  • CuC uniformity coefficient
  • FIG. 10 is a diagram showing the spatial distribution of rainfall intensity of 181 mm/h on a 10 ⁇ 10 m plot surface
  • 11 is a graph showing the distribution of the distribution of system variables of the rainfall simulator and the uniformity distribution of rainfall in NP 1.5kg/cm2;
  • FIG. 13 is a flowchart of a rainfall simulator correction method according to an embodiment of the present invention.
  • FIG. 3A is a rainfall simulator correction system according to an embodiment of the present invention, a schematic diagram showing a water circulation process in a large-scale laboratory rainfall simulator, and FIG. 3B is a photograph showing an interior view of a laboratory in which the simulator of FIG. 3A is implemented, FIGS. 4A and 4B. 4B is a view showing a nozzle configuration of the rainfall simulator of FIG. 3A, FIGS. 5A and 5B are views showing a spray box for reducing the rainfall intensity of the rainfall simulator of FIG. 3A, and FIGS. 6A and 6B are diagrams showing an embodiment of the present invention. It is a diagram showing the design and components of the automatic rainfall collection system according to the
  • the rainfall simulator correction system 90 includes a rainfall simulator 100, an automatic calibration device (or automatic rainfall collection system) 110, and a control device ( Or, it includes part or all of the control device (170).
  • the applicant of the present invention developed and registered an automated rain simulator inspection and correction facility as shown in FIG. 1, Korean Patent Application Publication No. 10-1891237 (2018.09. Announcement)
  • Rainfall simulator A large-scale laboratory rainfall simulator (RS) of the National Disaster Management Research Institute (NDMI), which is a facility of automated inspection and correction facilities, can be included, and a vibration-type nozzle system is installed in an experimental area of up to 900m2. It is used to reproduce spatially uniform rainfall.
  • RS large-scale laboratory rainfall simulator
  • NDMI National Disaster Management Research Institute
  • the rainfall simulator 100 is a compression nozzle type simulator equipped with computer-operated oscillating booms, and the rainfall simulator 100 of the National Disaster Research Institute according to an embodiment of the present invention may be composed of several parts.
  • Groundwater storage tank (or underground storage tank, reservoir) 120 (ex: 900m3), submersible pump 130 (ex: 0.25m3/s 4 pump), rooftop water storage tank (or high water tank) 140 (example : 63m3), (submersible pump to nozzle) water supply system, booster pump (or rainfall pump) 150 (eg 1.7m3/min 3 pump), control the vibration pipe 210 with nozzle 210a
  • the rainfall simulator control motor 160, the nozzle 210a, the spray box (or rain gutter) 200, and a computer control operating system include some or all of the control device 170, where "including some or all "To do is the same as the previous meaning.
  • the submersible pump 130 supplies water from the underground storage tank 120 under the laboratory to the rooftop storage tank 140.
  • Water from the rooftop storage tank 140 is supplied to each nozzle 210a of the rainfall simulator 100 through a water delivery system.
  • the booster pump 150 controls the inflow of water from the rooftop storage tank 140 to the water supply system, keeps the pressure constant, and keeps each nozzle 210a having a similar (or the same) discharge rate. Raindrops discharged to the nozzle 210a through the above-ground drainage system are collected again in the underground storage tank 120 for reuse.
  • the size of the rainfall simulator 100 is, for example, 30m (length) x 30m (width).
  • the simulator and experiment area are divided into nine different sub-sections (e.g. 10 ⁇ 10m) that can operate independently, allowing efficient experiments ranging from small models to full-scale testing.
  • the simulator nozzle 210a is at a height of 12 m above the ground to ensure the distal velocity of the raindrop.
  • Four sets of nozzles 210a are installed and evenly spaced at 2.5m intervals along the pipeline of the lower section. Each set consists of two nozzles 210a.
  • the nozzle type is KJ 80150 (eg orifice diameter 7.5mm, flat fan spray type).
  • the nozzle configuration is shown in Figs. 4A and 4B.
  • the spray box 200 under each pair of vibrating nozzles 210a is used to cut the spray to reduce the rainfall intensity. Details of the structure of the spray box 200 are shown in FIGS. 5A and 5B.
  • the spray box 200 has a drain hole 200a at each corner or edge region, and the drain holes 200a on both sides may be connected to drain pipes 201 and 202 having different diameters, respectively.
  • 144 spray boxes 200 are installed in the whole (see FIG. 4A).
  • the number of spray boxes 200 installed in the rainfall simulator 100 is not necessarily limited to the above number, and may be appropriately adjusted according to the scale of the rainfall simulator 100.
  • the vibration nozzle system without the spray box 200 can adjust the simulated rainfall characteristics by changing the type of nozzle used, that is, the water pressure at the nozzle 210a and the sweep vibration frequency of the nozzle 210a.
  • the variable controlling the nozzle movement that affects the rainfall intensity and uniformity is the vibrating nozzle 210a across the spray box 200 It is related to the speed of the spray box 200 as well as the delay time outside the central rectangular opening of the spray box 200.
  • the control motor 160 of the rainfall simulator 100 can control the nozzle 210a of the rainfall, the spray angle, and the waiting time, and in the case of the booster pump 150, the water pressure is uniformly distributed over the entire size of the rainfall simulator. It is a pump that helps you do it.
  • the booster pump 150 and the control motor 160 are controlled by the control device 170 of the control room, for example.
  • the nozzle pressure (NP) in the rainfall simulator (NDMI RS) 100 of the National Disaster Research Institute is 1.3 ⁇ 7.0kg/cm2 In the range, it increases in units of 0.1kg/cm2 and the flow rate is 0.96 ⁇ 3.91m3/min.
  • the rotational speed (OV) of the nozzle 210a varies from 6.25 to 31.25 rpm at 1.25 rpm, and the nozzle delay time (TD) of the spray box varies from 0 to 10 seconds in 0.1 second increments.
  • System variables such as NP, OV and TD can be changed automatically using a computer controlled operating system, such as control unit 170.
  • the automatic calibration device 110 may be referred to as an automatic rainfall (or rainfall) collection system (ARCS), and automatically performs the repeatability and uniformity of the rainfall situation of the large laboratory rainfall simulator 100. It is designed and manufactured to measure with.
  • the size of the automatic rainfall collection system is 10m (length) ⁇ 10m (width).
  • the automatic rainfall collection system can be operated based on 10 mobile units (e.g., each unit is 5m (length) ⁇ 2m (width) in size) for easy assembly and transport inside the laboratory.
  • 6A and 6B show the design and components of the automatic rainfall collection system, that is, the automatic calibration device 110.
  • the main components of the automatic rainfall collection system are a small tipping bucket rain gauge (hereinafter, a conductive small rainfall meter or rainfall meter) 400, a partially filled pipe ultrasonic flow meter 411, a wireless data transmission device, and a real-time data processing system.
  • the real-time data processing system can be considered to mean a system for transmitting measurement data from a container to the control device 170 through a wireless data transmission device such as a zigbee communication module.
  • a wireless data transmission device such as a zigbee communication module.
  • it can be divided into a data transmitting device provided in a container and a data receiving device provided in a control device 170 such as an operating PC.
  • the data transmission device may include a CPU, a memory, a high-speed multi-counter (eg, a data processor, a data logger), a power supply device, and the like.
  • the high-speed multi-counter simultaneously measures the pulse signals of the rain gauge at 10 points, and the rainfall data is converted into a digital signal in the data processing device and transmitted to the operating PC, that is, the control device 170 through Zigbee communication in the 2.4 GHz frequency range.
  • it is configured to supply power stably by preventing leakage and leakage by using a waterproof connector.
  • a small tipping bucket rain gauge e.g., 10 cm diameter with a 20 cm high metal circular container, 1 pulse per 0.25 mm conversion), i.e.
  • rainfall meter 400 is used to efficiently cover the 1 ⁇ 1 m surface below the rainfall simulator 100. It is developed and used (Fig. 6a b). A total of 100 rainfall meters, that is, rainfall meters 400, are uniformly arranged in the entire automatic rainfall collection system plot in a grid pattern (d, e in FIG. 6A) to measure the spatial rainfall distribution.
  • the number of rainfall meters 400 installed in the rainfall simulator 100 is not necessarily limited to the above number, and may be appropriately adjusted according to the size of the rainfall simulator 100.
  • the upper part of each rainfall meter 400 is located about 60 cm above the surface of the automatic rainfall collecting system so that sprayed raindrops do not splash onto the upper part of the collector (FIG. 6A).
  • the rainfall meter 400 may be included in the first measuring device, and the flow meter 411 may be included in the second measuring device. Therefore, in the embodiment of the present invention, a rainfall meter (e.g., a conductive small rainfall meter) 400 and a flow meter (e.g., an ultrasonic flow meter) having a structure as shown in FIG. 2 are used for measuring the rainfall distribution and rainfall intensity ) It is preferable to use 411, but it will not be particularly limited thereto.
  • a rainfall meter e.g., a conductive small rainfall meter
  • a flow meter e.g., an ultrasonic flow meter
  • the total rainfall intensity is determined by a partially filled pipe ultrasonic flow meter 411 installed at the end of the pipe 410 (Fig. 6A, c).
  • the rainfall delivered by the rainfall simulator 100 is collected in an automatic rainfall collection system (d in FIG. 6A), and is collected in the automatic rainfall collection system at the same time as the rain falls on an instrument. Rainfall falls to the bottom of the container of the automatic rainfall collection system through a hole under the sloping bucket (Fig. 6a, b).
  • the collected rainfall is transferred to a PVC pipe 410 having a diameter of 250 mm under the automatic rainfall collection system (FIG. 6B).
  • the flow meter 411 measures the water level of the pipe 410 every minute, and the total rainfall collected by the automatic rainfall collection system is calculated as an equivalent intensity value of rainfall by accumulating the rainfall measured every minute.
  • Data of 100 lane meters, that is, the rainfall meter 400 and the flow meter 411 are transmitted through a wireless data transmission device. Data is stored, processed, and displayed in a real-time data processing system (Fig. 6A).
  • the developed automatic rainfall collection system is implemented to correct the rainfall simulator 100 for rainfall intensity and spatial uniformity.
  • the uniformity of rainfall intensity and spatial rainfall distribution was determined by 75 combinations of three system variables (i.e., 1.3, 1.4 and 1.4, and 1.5 kg/cm 2 NP values) in the rainfall simulator 100 of 10 m (length) ⁇ 10 m (width).
  • the plot sizes are evaluated with OV values of 6.25, 12.50, 18.75, 25.00 and 31.25 rpm, and TD values of 0.0, 0.5, 1.0, 1.5 and 2.0 s.
  • the NP exceeds 1.5 kg/cm 2
  • the maximum value of NP is maintained at 1.5 kg/cm 2 so that excessive water does not overflow from the spray box 200.
  • the TD increases from 0.5 seconds to 2.0 seconds, taking into account the physical characteristics of natural rainfall.
  • the rainfall intensity is measured in two ways.
  • each rainfall intensity over the entire plot (10m x 10m) is measured by 100 small tipping bucket rain gauges, i.e. rainfall meters 400, evenly distributed in a square grid (1m apart from each other).
  • Average rainfall intensity (Iaverage) is determined by averaging the rainfall intensity measurements from the rainfall instrument panel.
  • the volume method is adopted in the second method.
  • the automatic rainfall collection system the total rainfall collected in a container having a capacity of 100 m 2 is measured with a partially filled pipe ultrasonic flow meter 411. The amount of water collected by the automatic rainfall collection system is converted into an equivalent intensity value (total rainfall intensity, Itotal) of rainfall.
  • the accuracy of the average rainfall intensity (measurement error of the average tipping bucket rain meter: 5%) based on the rainfall instrument panel (rainfall amount) is the total rainfall intensity measured using the flow meter 411 (total, measurement error of the flow meter: 2%). Compare and evaluate.
  • the uniformity of simulated rainfall is evaluated using the Christiansen Uniformity Coefficient (CuC) (Christiansen, 1942), the most widely used formula of spatial uniformity in a specific rainfall event.
  • CuC Christiansen Uniformity Coefficient
  • xi is the rainfall at location i
  • x is the average rainfall
  • n is the total number of observations.
  • the Christiansen's uniform distribution coefficient is the deviation from the mean normalized to the average rainfall intensity at each observation point to characterize the variability of spatial rainfall. The closer the value is to 100%, the more uniform the spatial distribution of rainfall.
  • the spatial pattern of rainfall can be considered to be reasonably constant in the experimental plot when the Christiansen uniform distribution coefficient is 80% or more.
  • there are trade-offs between uniformity and other goals such as size and cost.
  • the smaller rainfall simulator 100 has a higher CuC value. For large experimental plots, a CuC value of 70% is considered reasonably acceptable.
  • the motion model of the rainfall simulator 100 is made under the condition of system variables showing a high level of accuracy related to spatial uniformity in order to reproduce the desired rainfall intensity with a reasonably high uniform distribution.
  • the correlation between system variables and rainfall intensity and uniform distribution was investigated to identify possible interdependencies.
  • the correlation between the variables was tested by calculating the linear correlation coefficient.
  • the correlation coefficient in the log-transformed space was examined whether the nonlinear relationship was terminated.
  • a correlation analysis in consideration of the significance level was performed to confirm the dependence on the variables (that is, system variables of the rainfall simulator 100 and simulated rainfall intensity and uniform distribution).
  • the functional relationship between the system variables of the rainfall simulator 100 and the simulated intensity and uniform distribution of rainfall was established based on multiple regression analysis methods for linear and log scales.
  • the coefficient of determination was used to measure the performance of the working model.
  • the driving model with the highest coefficient of determination was selected through model comparison of each scale.
  • FIG. 9 is a comparison graph of the average rainfall intensity measured using the total rainfall intensity measured by a flow meter and the rainfall.
  • FIG. 10 is a variation in rainfall intensity with respect to nozzle pressure (NP), rotational speed (OV), and delay time (TD).
  • 11 is a graph showing the variation of the uniformity coefficient (CuC) value in response to the nozzle pressure (NP), rotational speed (OV) and delay time (TD)
  • FIG. 12 is a 10 ⁇ 10 m plot on the surface.
  • FIG. 13 is a graph showing the distribution of the system variables of the rainfall simulator and the uniformity distribution of the rainfall at NP 1.5kg/cm2
  • FIG. 32 is the system variable of the rainfall simulator. It is a graph showing the change in rainfall intensity (I) and uniformity coefficient (CuC) in response to.
  • the rainfall simulator 100 has been calibrated for the uniformity of rainfall intensity and rainfall distribution in various combinations of system variables (eg, vibrational motion including pressure and velocity and delay time). Before evaluating the reliability and accuracy of the rainfall simulator 100 based on the calibration result, the suitability of the average rainfall intensity (Iaverage) of the instrument for all system variables is compared with that measured with the flow meter 411 and evaluated by graphical comparison. did. As can be seen in Fig. 7, the interaction points between Iaverage and Itotal were evenly distributed on both sides of the 1:1 line in the relatively high rainfall range of 130 to 200 mm/h, but the Iaverage was distributed in the rainfall range at 60 to 130 mm/h. It was a little overrated.
  • system variables eg, vibrational motion including pressure and velocity and delay time.
  • Sousa Junior estimated average rainfall intensity using two different methods was a traditional manual measurement, collected and measured in 63 collection cans arranged in 7 ⁇ 9 mesh at 0.25m intervals over a 3 m2 area.
  • the other was a volumetric measurement method that measures the total rainfall collected in a container (3m2).
  • These authors compared rainfall intensities in two methods for rainfall in the 170-250mm/h range.
  • the mean rainfall intensity differed significantly between 170 and 200 mm/h (the deviation between the values of the two methods was approximately 30 to 35 mm/h), and in this study, the difference between Iaverage and Itotal was approximately 2 to 2 in the same rainfall range. It was 7 mm/h.
  • Table 1 The variability of average rainfall intensity (hereinafter, rainfall intensity) for three system variables (ie, based on 75 combinations of NP, OV and TD) is compared in Table 1 and FIG. 8.
  • Table 1 below provides a statistical summary of the correction results for the rainfall intensity for each system variable, and visually compares the fluctuation of the rainfall intensity for each system variable using the box and whisker diagram of FIG. 8.
  • the rainfall simulator 100 provided rainfall intensity between 44.1 and 181.7 mm/h for three system variables (FIG. 8 ). As can be seen in Fig. 8, a similar range of rainfall intensity was produced across all pressures. (NP values are 1.3, 1.4 and 1.5 kg/cm 2 ). Average rainfall intensity slightly increased with increasing NP.
  • FIG. 11 shows the range of CuC values calculated according to changes in three system variables.
  • Uniformity coefficient for all cases 70.1% (1.3kg / NP for a cm2, refers to OV and the rainfall intensity of TD, 44.1mm / h of 2.0s of 31.25rpm) and 78.4% (1.5kg / cm 2 of NP , OV was 6.25rpm, TD was 0.0 sec, and rainfall intensity was between 181.7mm/h).
  • the uniformity coefficient was mainly influenced by changes in NP and OV.
  • the CuC value of the simulated rainfall was improved as the NP increased, and the RS showed a higher uniformity coefficient value at the NP value of 1.5kg/cm 2 .
  • CuC value is 74.2 to 77.4% in Fig. 9, and rainfall intensity in Fig. 8 is in the range of 49.1 to 181.7 mm/h).
  • the increase in OV is inversely proportional to both the rainfall intensity and the uniformity coefficient (Figs. 8 and 9), and the uniformity coefficient is not significantly affected by the change in TD.
  • a sample plot for the spatial rainfall distribution (rainfall intensity 381.7 mm/h and CuC 78.4%) is presented in FIG. 10.
  • the overall spatial pattern of the distribution for different rainfall intensities was largely similar in terms of high and low rainfall regions despite variations in rainfall intensity.
  • the correction results for rainfall intensity and spatial rainfall uniformity for each system variable showed that OV had a strong correlation with both rainfall intensity and uniformity coefficient. Higher uniformity was observed in response to an NP of 1.5 kg/cm 2, and included the full range of rainfall intensities obtained from all combinations of system variables (NP, OV and TD) of the rainfall simulator 100.
  • the driving model of the rainfall simulator 100 was derived under the pressure condition (NP 1.5kg/cm2) with the highest spatial rainfall uniformity, and the system variables, rainfall intensity and uniform distribution of the rainfall simulator 100 We included a range of rainfall intensities for all combinations of the three system variables according to the correlation between them.
  • the linear and nonlinear motion models used multiple regression to establish an appropriate functional relationship between the system variables of the rainfall simulator 100 and the simulated intensity and the uniform distribution of rainfall of statistical significance.
  • the performance of the computational model for linear and logarithmic scales was measured based on the coefficient of determination.
  • the linear model shows high model performance at rainfall intensity (R2 of 0.93 and 0.83 on the linear and log scale, respectively) and spatial uniformity coefficient (R2 of 0.84 and 0.82 on the linear and log scale, respectively).
  • the operating model with the corresponding coefficient of determination is presented in Table 4 below.
  • the operating model showed good overall performance in both rainfall intensity and uniformity coefficient (R2 value of 0.8 or higher).
  • the simulated rainfall intensity and the uniformity of the distribution affected by the system variables are visually compared in FIG. 12 based on the specific values of the rainfall intensity and coefficient.
  • Rainfall intensity is 50, 90, 130 and 170 mm/h and CuC is 75, 76, 77 and 78).
  • Rainfall intensity increased as OV and TD decreased.
  • the change in TD did not have a significant effect on the CuC value, but the uniformity coefficient improved with a decrease in OV. (I.e., 75, 76 and 77% CuC values were obtained over the entire TD range of 0 to 2 seconds; FIG. 12).
  • an automatic rainfall collection system was developed to overcome the disadvantages of manual measurement in order to obtain rainfall intensity and rainfall distribution in a large-scale experimental area.
  • the developed automatic rainfall collection system was implemented to calibrate the large laboratory rainfall simulator 100 for rainfall intensity and spatial rainfall uniformity at various combinations of system variables such as pressure (NP) and vibrational motion, including speed and delay time. (OV and TD, respectively).
  • NP pressure
  • OV vibrational motion
  • TD delay time
  • the motion model of the rainfall simulator 100 was derived from a functional relationship between the system variables of the rainfall simulator 100 and the rainfall intensity and uniform distribution.
  • a comparative evaluation of the estimation method for rainfall generally indicates that the rain of small conducted rainfall provides accurate and consistent predictions for the high and low range of rainfall of 40-200 mm/h with the average rainfall intensity automatically collected by the meter.
  • the automatic method in the embodiment of the present invention has higher estimation accuracy for rainfall intensity than the traditional manual method when compared with the results reported by Sousa Junior and the like. Therefore, when the results of traditional manual methods are applied to fluid topography studies such as changes in surface properties such as fire, agriculture, urbanization, etc., the uncertainty problem must be carefully considered than when observing average rainfall intensity using traditional methods.
  • the calibration results showed that the simulated rainfall intensity and the uniformity of the rainfall distribution are affected by the system variables of the rainfall simulator 100. (That is, the pressurized oscillation nozzle simulator having the spray box 200)
  • the rainfall intensity was inversely proportional to the increase of OV and TD, but there was no significant difference in the rainfall intensity as NP increased. Rainfall was evenly distributed within the maximum and minimum rainfall values at each NP value (1.3, 1.4, 1.5kg/cm 2 ). This indicates that the rainfall intensity changes more sensitively to changes in system variables related to the vibrational motion of the nozzle 210a compared to the pump pressure.
  • the rainfall intensity of a pressurized nozzle simulator is controlled by the nozzle type, nozzle orifice diameter, and pump pressure at the nozzle. Nozzle pressure primarily affects rainfall intensity under conditions such as nozzle type and nozzle orifice diameter.
  • the improvement in the coefficient of uniformity of the response to a decrease in OV is associated with an increase in the exposure time of the oscillating nozzle to the experimental plot surface. This indicates that as the OV (i.e., increasing the exposure time of the nozzle) is slower, the rainfall increases and the uniformity coefficient increases. This is because the increase in the simulated rainfall contributes to the rainfall distribution in the experimental plot affected by nozzle vibration. Increasing NP also increased the uniformity of the rainfall distribution.
  • the CuC value range was high at the pump pressure of 1.5kg/cm 2 (CuC in FIG. 9 ranged from 74.2 to 78.4%), and the change in the CuC value was small (SD in Table 2 was 1.3), and the CuC value The range of was relatively low (CuC was 70.1 to 76.7% and 71.6 to 77.7%, respectively, at the NP values of 1.3 and 1.4 kg/cm 2 , FIG. 9), and the variability of the CuC value was 1.3 and 1.4 kg/cm 2 1.9 and 1.8 at each NP value; Table 2) shows under the pressure condition of 1.5kg/cm2. Considering these conditions, it would be appropriate to set the pressure condition of the rainfall simulator 100 higher than 1.5 kg/cm 2 in order to ensure a high and consistent performance of the spatial distribution of the simulated rainfall.
  • the operating model of the rainfall simulator 100 (that is, the functional relationship between the system variable of RS and the simulated intensity and the uniform distribution of rainfall) was set to NP of 1.5 kg/cm 2, indicating the highest level of spatial rainfall uniformity. The entire range of rainfall intensities was included simultaneously for all combinations of system variables.
  • the operating model was calculated based on multiple regression analysis, including correlation analysis on linear and logarithmic scales, taking into account significance levels.
  • the driving model showed high accuracy for both rainfall intensity and uniformity coefficient (R2 value was 0.8 or higher, see Table 4).
  • the rainfall intensity and uniformity coefficient increased with decreasing OV and TD. In particular, the change in OV is notable for the simulated rainfall intensity and uniform distribution of rainfall, and the TD change has little effect on the CuC value.
  • the simulated rainfall intensity and rainfall uniformity coefficient for each value were plotted for OV and TD, and the changes in rainfall intensity and uniform distribution affected by system variables were visually inspected.
  • Information on graphical plots can be used as a guide for the appropriate range of system variables that produce specific rainfall intensity and uniformity for simulated rainfall.
  • information on intuitive selection criteria of the range of system variables for calculating specific rainfall and rainfall uniformity for specific applications is provided.
  • FIG. 13 is a flowchart illustrating a rainfall simulator correction method according to an embodiment of the present invention.
  • the rainfall simulator 100 is a simulator installed at a designated height (from the floor surface) of the laboratory, and provides rainfall downward (S1100). .
  • the calibration automation device 110 is an automatic rainfall collection system that collects the provided rainfall and measures the rainfall intensity and distribution of rainfall by a measuring device (e.g., a rainfall meter, a flow meter, etc.) when collecting rainfall. (S1110).
  • a measuring device e.g., a rainfall meter, a flow meter, etc.
  • control device 170 such as a control computer in the control room, is based on the analysis result of the rainfall intensity provided by the calibration automation device 110 and data related to the rainfall distribution, and the rainfall state provided by the rainfall simulator 100 It corrects (S1120).
  • the analysis result of the data includes system variables including the nozzle pressure (NP), rotation speed (OV), and delay time (TD) of the nozzle 210a providing rainfall by configuring the rainfall simulator 100.
  • NP nozzle pressure
  • OV rotation speed
  • TD delay time
  • a value derived based on a functional relationship between rainfall intensity and rainfall distribution may be further included.
  • pump pressure, injection speed, nozzle type, pipe feed water, etc. may be further considered as control variables.
  • control device 170 constitutes the rainfall simulator 100 to control the nozzle of the rainfall, the spray angle and the waiting time, and the control motor 160 to distribute the water pressure to the entire area of the rainfall simulator 100.
  • the control motor 160 By controlling the pump 150, the condition of rainfall may be corrected.
  • the present invention is not necessarily limited to this embodiment. That is, within the scope of the object of the present invention, all the constituent elements may be selectively combined and operated in one or more.
  • all the components may be implemented as one independent hardware, a program module that performs some or all functions combined in one or more hardware by selectively combining some or all of the components. It may be implemented as a computer program having Codes and code segments constituting the computer program may be easily inferred by those skilled in the art of the present invention.
  • Such a computer program is stored in a non-transitory computer readable media that can be read by a computer and is read and executed by a computer, thereby implementing an embodiment of the present invention.
  • the non-transitory readable recording medium is not a medium that stores data for a short moment, such as a register, cache, memory, etc., but a medium that stores data semi-permanently and can be read by a device.
  • the above-described programs may be provided by being stored in a non-transitory readable recording medium such as a CD, DVD, hard disk, Blu-ray disk, USB, memory card, ROM, or the like.
  • the present invention is a rainfall simulator installed at a designated height of a laboratory to provide a downward rainfall (rainfall);
  • a calibration automation device comprising a measuring device for collecting the provided rainfall and measuring the rainfall intensity and distribution of the rainfall when collecting the rainfall;
  • the included rainfall simulator correction system is in a form for implementation of the invention.
  • the present invention is a rainfall simulator correction method of a rainfall simulator correction system including a rainfall simulator, an automatic calibration device and a control device,
  • the results of the traditional manual method are averaged using the traditional method when applied to the study of fluid topography such as changes in surface properties such as fire, agriculture, urbanization, etc. It is possible to carefully consider the uncertainty problem than when observing the rainfall intensity, and also, by carefully considering the uncertainty problem according to an embodiment of the present invention, it is possible to increase the accuracy of the urban flood demonstration experiment. It is possible to establish an accurate disaster prevention system, so it is expected to be used in the industry.

Landscapes

  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

The present invention relates to a rainfall simulator calibration system, and a rainfall simulator calibration method. A rainfall simulator calibration system according to an embodiment of the present invention may comprise: a rainfall simulator installed at a designated height in an experiment room to provide rainfall downwards; a validation/calibration automated apparatus that collects provided rainfall and includes a measurement device for, when the rainfall is collected, measuring the rainfall intensity and the rainfall distribution of the rainfall; and a control device for calibrating a state of rainfall provided by the rainfall simulator, on the basis of a result of analysis of data related to rainfall intensity and rainfall distribution provided by the validation/calibration automated apparatus.

Description

강우 시뮬레이터 보정 시스템 및 강우 시뮬레이터 보정 방법Rainfall simulator correction system and rainfall simulator correction method
본 발명은 강우 시뮬레이터 보정 시스템 및 강우 시뮬레이터 보정 방법에 관한 것으로서, 더 상세하게는 가령 강우 시뮬레이터의 신뢰성과 정확도를 평가하기 위해 자동 강우량 수집 시스템을 통해 대규모 실험실 강우 시뮬레이터를 교정하는 방법을 확립하려는 강우 시뮬레이터 보정 시스템 및 강우 시뮬레이터 보정 방법에 관한 것이다.The present invention relates to a rainfall simulator correction system and a rainfall simulator correction method, and more specifically, a rainfall simulator to establish a method of calibrating a large-scale laboratory rainfall simulator through an automatic rainfall collection system in order to evaluate the reliability and accuracy of the rainfall simulator. It relates to a correction system and a rainfall simulator correction method.
강우 유출은 토양, 지형, 식생 및 저수지 내의 천연 자원을 포함한 여러 가지 유형의 환경 요인에 영향을 미치는 중요한 유체 지형학(hydrogeomorphological) 공정이다. 유출 연구는 강도, 시공간 분포, 입자 크기 분포, 입자 속도 및 운동 에너지의 변동성과 같은 자연 강우량의 특성에 의존하는 경우가 많다. 강우 시뮬레이션은 유출수, 침수, 유역의 토양 특성 및 자연 강우량의 특징과 과정을 재현하기 위한 다른 연구 영역을 포함하는 수문 기형 연구에 널리 사용되는 방법이다.Rainfall runoff is an important hydrogeomorphological process that affects several types of environmental factors including soil, topography, vegetation and natural resources within reservoirs. Runoff studies often rely on properties of natural rainfall such as variability in intensity, spatiotemporal distribution, particle size distribution, particle velocity and kinetic energy. Rainfall simulation is a widely used method for hydrological malformation studies, including runoff, flooding, soil properties in watersheds, and other research areas to reproduce the characteristics and processes of natural rainfall.
강우 시뮬레이터(혹은 강우 모사기)(RS)는 수문학 및 지형학 과정의 현장 및 실험실 기반 연구에서 유출수, 침투 및 침식 데이터를 산출하는 연구 도구로 널리 사용되는 기술로서 대한민국 등록특허공보 제10-1821599호(2018.01.25. 공고) 실시간 재해 발생 시간 예측 시스템 및 방법, 대한민국 등록특허공보 제10-1891237호(2018.09.28. 공고) 강우 시뮬레이터 검·보정 자동화 시설, 대한민국 등록특허공보 제10-1820946호(2018.03.09. 공고) 파티클 기반의 SPH에 의한 강우 시뮬레이션 방법 및 이를 실행하도록 구성되어진 강우 시뮬레이션 플랫폼, 대한민국 등록특허공보 제10-0960850호(2010.06.07. 공고) 우량 계측정보 전송시스템에 알려진 바와 같이 다양한 시뮬레이터가 개발되고 있다. 강우 시뮬레이터의 주된 목적은 강우강도와 지속 시간을 제어하여 다양한 강우 체계를 정확하고 신속하게 생성할 뿐만 아니라 재현 가능한 강우 자료 수집을 제공하는 것이다. 강우량 시뮬레이션 실험에서 수집된 데이터는 유출수 생성, 침투 및 토양 침식의 역동적인 행동을 이해하는 데 필요한 기본적인 정보를 제공한다. 이 정보는 저수지 내의 사면, 토양 성질, 초목 표지 및 지형과 같은 표면 성질이 위에서 언급한 과정에 어떻게 영향을 미치는지에 초점을 맞춘다.Rainfall simulator (or rainfall simulator) (RS) is a technology widely used as a research tool to calculate runoff, infiltration and erosion data in field and laboratory-based studies in hydrology and topography courses. 2018.01.25. Announcement) Real-time disaster occurrence time prediction system and method, Korean Patent Publication No. 10-1891237 (2018.09.28. Announcement) Rain Simulator Inspection and Correction Automation Facility, Korean Patent Publication No. 10-1820946 (2018.03. .09. Announcement) A precipitation simulation method using particle-based SPH and a rainfall simulation platform configured to execute it, as known in Korean Patent Publication No. 10-0960850 (2010.06.07. Announcement), as known in the excellent measurement information transmission system. A simulator is being developed. The main purpose of the rainfall simulator is to provide accurate and quick generation of various rainfall systems by controlling rainfall intensity and duration, as well as to provide reproducible rainfall data collection. Data collected from rainfall simulation experiments provide the basic information necessary to understand the dynamic behavior of runoff generation, infiltration and soil erosion. This information focuses on how surface properties such as slopes, soil properties, vegetation cover, and topography within the reservoir affect the processes mentioned above.
모든 연구 조건에 적용 가능한 보편적 강우 시뮬레이터는 없다. 많은 종류의 강우 시뮬레이터가 강우의 인공 재생산을 통해 수문 및 지형학적 과정의 다양한 구성 요소를 연구하기 위해 개발되었다. 강우 시뮬레이터는 방울 형성 메커니즘이 비를 생성하는 방법에 따라 두 가지 주요 그룹으로 분류할 수 있다. 첫 번째 그룹은 빗방울이 파이프 세트에 연결된 바늘과 같은 도관(즉, 드롭 형성기)의 끝 부분에 형성되거나 또는 탱크의 바닥에 있는 구멍에서 직접 형성되는 비가열식 드롭 성형 시뮬레이터로 구성된다. 드롭 포머는 속도가 0인 방울 떨어짐을 시작한다. 두 번째 그룹은 가압 노즐 시뮬레이터로 구성되며, 빗방울은 단일 또는 다중 노즐에 의해 상당한 속도로 연속적으로 생산된다.There is no universal rainfall simulator applicable to all study conditions. Many types of rainfall simulators have been developed to study various components of hydrological and topographic processes through artificial reproduction of rainfall. Rainfall simulators can be classified into two main groups depending on how the droplet formation mechanisms generate rain. The first group consists of unheated drop forming simulators in which raindrops are formed at the end of a needle-like conduit (i.e., a drop former) connected to a set of pipes, or directly from a hole in the bottom of the tank. The drop former starts dropping a drop with a speed of 0. The second group consists of pressurized nozzle simulators, where raindrops are produced continuously at significant speeds by single or multiple nozzles.
무압력식 낙하 형성 시뮬레이터는 낙하 크기와 에너지 특성면에서 자연 강우량을 재현하는 데 한계가 있다. 이러한 유형의 시뮬레이터는 일반적으로 크기 측면에서 균일하게 분포된 빗방울을 제공한다. 그러나, 드롭 포머의 다양한 크기 또는 치수가 사용되지 않는 한, 이들은 드롭 분포를 생성하지 않는다. 무압력식 낙하 형성 시뮬레이터의 또 다른 단점은 특히 현장 실험에서 토양 침식 연구에 대한 제한된 적용이다. 이 시뮬레이터는 빗방울이 강우 운동 에너지에 상응하는 종단 속도에 도달하기 위해 충돌 표면으로부터 충분한 높이가 필요하기 때문에 일반적으로 현장 사용에는 비실용적이다.The pressureless fall formation simulator has limitations in reproducing natural rainfall in terms of the size and energy characteristics of the fall. Simulators of this type generally provide evenly distributed raindrops in terms of size. However, unless various sizes or dimensions of the drop former are used, they do not produce a drop distribution. Another drawback of the pressureless drop formation simulator is its limited application to soil erosion studies, especially in field experiments. These simulators are generally impractical for field use because raindrops need a sufficient height from the impact surface to reach the terminal velocity corresponding to the rainfall kinetic energy.
대조적으로, 가압 노즐 시뮬레이터는 더 넓은 입자 크기 분포를 생성한다. 강우량 시뮬레이션에서 다양한 노즐 유형을 사용할 수 있으며 드롭 크기 분포는 노즐의 모양 특징 및 방전에 의해 결정된다. 이러한 유형의 시뮬레이터는 다양한 강우 강도를 제공한다. 강우 강도는 노즐 오리피스, 펌프 압력, 노즐 간격 및 노즐 이동에 따라 달라질 수 있다. 이 시뮬레이터는 낙하 높이가 낮은 빗방울의 적당한 속도와 운동 에너지 값을 제공하지만, 노즐의 빗방울은 펌프 압력으로 인해 0보다 큰 초기 속도를 갖기 때문에 물방울 속도는 일반적으로 과장된다. 노즐에서 계속 분사하면 자연 강우량보다 강우강도가 높아질 수 있다. 회전 디스크, 회전 붐, 회전 막대 또는 솔레노이드 제어 시뮬레이터가 과장된 강우강도를 줄이기 위한 솔루션으로 사용될 수 있다. 회전 또는 회전 막대는 강우강도 측면에서 자연 강우량을 밀접하게 시뮬레이션하는 가장 간단한 방법이다. 또한 분사된 빗방울을 조절하기 위해 노즐 주변의 상자가 도입되어 인공 강우 스프레이에 대한 표면 노출 시간을 줄임으로써 자연 강우량보다 강우강도를 감소시킨다In contrast, the pressurized nozzle simulator produces a wider particle size distribution. Different nozzle types are available for rainfall simulation, and the drop size distribution is determined by the nozzle's shape characteristics and discharge. This type of simulator offers a variety of rainfall intensities. Rainfall intensity can vary depending on nozzle orifice, pump pressure, nozzle spacing and nozzle movement. This simulator provides moderate velocities and kinetic energy values for raindrops with low drop heights, but the droplet velocity is generally exaggerated because the nozzle's raindrops have an initial velocity greater than zero due to pump pressure. Continuous spraying from the nozzle can result in higher rainfall intensity than natural rainfall. Rotating disks, rotating booms, rotating rods or solenoid control simulators can be used as solutions to reduce exaggerated rainfall intensity. A rotating or rotating rod is the simplest way to closely simulate natural rainfall in terms of rainfall intensity. In addition, a box around the nozzle is introduced to control the sprayed raindrops, reducing the surface exposure time to artificial rainfall spray, thereby reducing the rainfall intensity compared to natural rainfall.
또한 이동성에 따라 실내 및 실외 강우 시뮬레이터가 있다. 작고 휴대가 용이한 현장 강우 시뮬레이터는 쉽고 신속한 운송 및 구현으로 인해 유용할 수 있지만 크기가 작으면 일반적으로 플롯 규모에서 표면 특성의 이질성을 포함하여 순 유출 반응을 정확하게 평가하는 데 응용 프로그램이 제한된다. 반면에 실험실 강우 시뮬레이터는 작고 휴대 가능한 필드 강우 시뮬레이터의 단점을 극복하기 위해 사용되었다. 실험실 강우 시뮬레이터는 풍속, 온도 및 습도가 실험에 미치는 파괴적인 영향을 방지한다.There are also indoor and outdoor rainfall simulators depending on mobility. Small, portable in-situ rainfall simulators can be useful because of their easy and rapid transport and implementation, but their small size typically limits their application to accurately assessing net runoff responses, including heterogeneity of surface properties at plot scale. On the other hand, the laboratory rainfall simulator was used to overcome the shortcomings of the small and portable field rainfall simulator. The laboratory rainfall simulator prevents the destructive effects of wind speed, temperature and humidity on the experiment.
최근의 연구는 화재, 농업, 도시화 또는 다른 교란으로 인한 표면 특성 변화가 수문 순환에 미치는 영향에 대한 평가에 더 중점을 두었다. 이 연구는 지표면 특성과 유출수 생성 간의 상호 작용을 더 잘 이해하기 위해 언덕에서 집수까지의 규모로 육지 표면의 특성을 평가하는 광범위한 실험을 포함한다. 이것은 높은 강우강도를 생성하기에 충분히 크고 실험 표면에서 표면 특성의 이질성을 포착하는 데 적합한 실험실 강우 시뮬레이터를 필요로 한다. 대형 실험실 강우 시뮬레이터의 이러한 측정은 유출물의 정확성과 수문 모델의 정확성을 높이기 위해 사용될 수 있다. 수문주기에 대한 지표 성질 변화의 영향을 평가하기 위해 대형 실험실 강우 시뮬레이터를 사용하는 추가 연구가 필요하지만, 작은 지역(5 ㎡ 미만 및 대개 1 ㎡ 미만)에서 비를 생산하는 간단하고 작은 강우 시뮬레이터가 널리 사용되고 있다. 이것은 상대적으로 넓은 지역 (약 100 ㎡ 이상)을 커버하는 강우 시뮬레이터가 설치비용이 높고 작동하기 쉽지 않기 때문이다.Recent research has focused more on the assessment of the impact of changes in surface properties due to fire, agriculture, urbanization, or other disturbances on the hydrological cycle. This study includes extensive experiments evaluating the properties of the land surface on a hill-to-catch scale to better understand the interaction between surface properties and runoff generation. This requires a laboratory rainfall simulator that is large enough to produce high rainfall intensities and is suitable for capturing the heterogeneity of surface properties on the experimental surface. These measurements in large laboratory rainfall simulators can be used to increase the accuracy of effluents and hydrological models. Further research using large laboratory rainfall simulators is required to evaluate the effect of changes in surface properties on the hydrological cycle, but simple, small rainfall simulators that produce rain in small areas (less than 5 m2 and usually less than 1 m2) are widely available. Is being used. This is because the rainfall simulator covering a relatively large area (about 100 m2 or more) is expensive to install and is not easy to operate.
정확한 유출수 실험을 위해 강우 시뮬레이터는 자연 강우량을 적절하게 모의하고 강우 강도와 지속 시간을 제어해야 한다. 강우 시뮬레이터는 강우량을 정확하게 시뮬레이션하기 위한 바람직한 특성 외에도 효율성, 단순성 및 경제성과 같은 다른 요구 사항을 필요로 한다. 그러나 크기, 비용, 이동성, 영역 적용 범위, 사용 편의성 및 작동과 같은 바람직한 특성들 사이에 트레이드 오프가 있기 때문에 강우 시뮬레이터에 대한 모든 요구 사항을 충족시키기는 어렵다. 강우 시뮬레이터의 바람직한 특징은 주로 특정 연구 조건에 필요한 연구 목적 및 강우 특성에 달려있다.For accurate runoff experiments, rainfall simulators must adequately simulate natural rainfall and control rainfall intensity and duration. In addition to desirable properties to accurately simulate rainfall, rainfall simulators require other requirements such as efficiency, simplicity and economics. However, it is difficult to meet all the requirements for a rainfall simulator because there is a trade-off between desirable characteristics such as size, cost, mobility, area coverage, ease of use and operation. Desirable characteristics of rainfall simulators depend primarily on the research objectives and rainfall characteristics required for specific research conditions.
대규모 실내 강우 시뮬레이터의 경우 유출 실험의 주요 요구 사항은 신뢰성과 정확도이다. 신뢰성은 폭풍 사건의 반복성과 관련이 있으며, 정확도는 전체 시험 계획에 대한 강우의 공간적 균일성에 관한 것이다. 폭풍우의 원하는 강도와 지속 시간이 컴퓨터 구동 운영 시스템에 의해 제어될 때 재현성 강우 패턴을 보다 확실하게 제공할 수 있다. 이것은 폭풍 패턴을 변경하는 데 있어 인간의 실수와 관련된 문제를 제거한다. 테스트 플롯에서 폭풍 이벤트를 정확하게 모니터링하는 적절한 계측을 구현하여 안정성을 향상시킬 수도 있다. 정확도는 테스트 플롯에서의 강우 분포의 균일도에 의해 평가된다. 적절한 스프레이 노즐 유형을 선택하고 빗방울이 겹치지 않도록 노즐을 적절한 간격으로 직렬로 배치할 때 정확도를 높이거나 최소한 높게 설정할 수 있다. 또한, 실험 플롯을 가로지르는 노즐의 물리적 이동은 강우 분포의 균일성에 대한 주목할 만한 효과를 가질 수 있다.For large-scale indoor rainfall simulators, the main requirements for runoff experiments are reliability and accuracy. Reliability is related to the repeatability of storm events, and accuracy is related to the spatial uniformity of rainfall over the entire test plan. When the desired intensity and duration of a storm is controlled by a computer-driven operating system, reproducible rainfall patterns can be more reliably provided. This eliminates the problem associated with human error in changing storm patterns. Stability can also be improved by implementing appropriate instrumentation that accurately monitors storm events in the test plot. Accuracy is assessed by the uniformity of the rainfall distribution in the test plot. The accuracy can be increased, or at least set high, when selecting the appropriate spray nozzle type and placing the nozzles in series at appropriate intervals to avoid overlapping raindrops. In addition, the physical movement of the nozzle across the experimental plot can have a notable effect on the uniformity of the rainfall distribution.
일반적으로 강우의 깊이와 공간 분포는 강우량의 재현성과 균질성에 대한 정량적인 정보를 제공하기 위해 전체 실험 계획에 균등하게 분포된 수집 용기로 수동으로 측정된다. 실험 중 각 컨테이너에서 수집된 물의 질량은 시간당 강우 깊이로 변환된 다음 평균 모의 강우강도가 계산된다. 특정 강우 사건의 공간적 동질성은 주로 크리스티안센 등분포계수(Christiansen Uniformity Coefficient, CuC)를 사용하여 평가된다. 이러한 유형의 실험은 강우강도와 강우량에 대해 동일한 강도로 반복된다.In general, rainfall depth and spatial distribution are manually measured with collection vessels evenly distributed over the entire experimental design in order to provide quantitative information on the reproducibility and homogeneity of rainfall. During the experiment, the mass of water collected from each container is converted to the hourly rainfall depth and then the average simulated rainfall intensity is calculated. The spatial homogeneity of a specific rainfall event is mainly evaluated using the Christiansen Uniformity Coefficient (CuC). This type of experiment is repeated with the same intensity for rainfall and rainfall.
이러한 전통적인 측정은 소규모 강우 시뮬레이션에 널리 사용되는 반면 수동 절차는 넓은 지역을 포괄하는 데 필요한 시간 및 인적 자원 측면에서 비효율적이어서 비교적 큰 실험 영역(100 ㎡ 이상)에는 적합하지 않다. 강우 강도 및 공간 분포는 노즐의 오리피스 직경, 노즐에서의 압력 및 노즐 운동과 같은 강우 시뮬레이터 시스템의 변수의 조합에 의해 제어된다. (예를 들어, 바의 회전 속도 및 각 진동의 끝에서의 지연 시간) 강우 시뮬레이터가 클수록 강우 시뮬레이터에 더 많은 시스템 변수가 있기 때문에, 또 강우 시뮬레이터 시스템 변수의 조합 수가 증가하기 때문에 강우 분포의 합리적인 균일성을 갖는 지정된 기간 동안 목표 강도를 맞추기가 더 어려워진다. 또한 수동 절차를 기반으로 하는 기존의 측정에는 사람의 실수로 인해 자체 오류가 있다. 이러한 측정 오류는 강우 시뮬레이터의 시스템 변수와 동일한 조건에서 무작위로 변한다. 강우 시뮬레이터에서 생성된 강우강도의 오류가 분석에 사용되기 전에 고려되지 않으면 연구원은 침투, 도시화된 지역의 포장 효과 및 저수지의 저장 용량과 같은 연구 목표와 관련하여 잘못된 결론을 도출할 수 있다.While these traditional measurements are widely used for small rainfall simulations, manual procedures are inefficient in terms of the time and human resources required to cover a large area, resulting in a relatively large experimental area (100 m2). Above). The rainfall intensity and spatial distribution are controlled by a combination of parameters of the rainfall simulator system such as the nozzle's orifice diameter, the pressure at the nozzle, and the nozzle motion. (For example, the rotational speed of the bar and the delay time at the end of each vibration) The larger the rainfall simulator, the more system variables in the rainfall simulator, and the rational uniformity of the rainfall distribution because the number of combinations of the rainfall simulator system variables increases. It becomes more difficult to hit the target intensity during a specified period of sex. Also, conventional measurements based on manual procedures have their own errors due to human error. These measurement errors change randomly under the same conditions as the system variables of the rainfall simulator. If errors in rainfall intensities generated by rainfall simulators are not taken into account before they are used in the analysis, researchers may draw erroneous conclusions regarding research objectives such as penetration, pavement effects in urbanized areas, and storage capacity of reservoirs.
또한 다양한 강우 시뮬레이터가 실험 지역에서 보정되었는데 종종 강우 시뮬레이터의 시스템 변수의 상호 관계와 강우 강도 및 균일 분포와 같은 문제를 거의 고려하지 않았다. 특히, 대규모 강우 시뮬레이터의 경우, 강우 시뮬레이터의 시스템 변수와 강우 강도 및 균일성 분포 사이의 관계를 파악하는 데 주의가 집중된다. 고정 및 알려진 강도, 그리고 유체 지형학 연구에 큰 강우 시뮬레이터의 사용과 관련된 문제가 증가하고 있다. 대규모 실험 지역에서 강우강도와 강우 분포를 얻기 위해 수동 측정으로 인한 한계를 극복하기 위해서 추가 장치의 필요성이 제기되고 있다.In addition, various rainfall simulators have been calibrated in the experimental area, often not taking into account problems such as the correlation of system variables and rainfall intensity and uniform distribution of rainfall simulators. In particular, in the case of a large-scale rainfall simulator, attention is paid to grasping the relationship between the system variables of the rainfall simulator and the rainfall intensity and uniformity distribution. There are increasing problems associated with the use of large rainfall simulators for fixed and known strength, and fluid topography studies. In order to obtain rainfall intensity and rainfall distribution in a large-scale test area, the need for additional equipment has been raised to overcome the limitation due to manual measurement.
본 발명의 실시예는 가령 강우 시뮬레이터의 신뢰성과 정확도를 평가하기 위해 자동 강우량 수집 시스템을 통해 대규모 실험실 강우 시뮬레이터를 교정하는 방법을 확립하려는 강우 시뮬레이터 보정 시스템 및 강우 시뮬레이터 보정 방법을 제공함에 그 목적이 있다.An object of the present invention is to provide a rainfall simulator correction system and a rainfall simulator correction method to establish a method of calibrating a large-scale laboratory rainfall simulator through an automatic rainfall collection system in order to evaluate the reliability and accuracy of the rainfall simulator. .
또한, 본 발명의 실시예는 자동 강우량 수집 시스템(ARCS)을 강우 시뮬레이터의 시스템 변수와 강우 강도 및 균일 분포 (즉, 동작 모델) 간의 기능적 관계를 식별하기 위해 구현하고, 운전 모델은 수문학적 및 지형학적 과정에 대한 실험실 기반 연구에서 시뮬레이션된 강우량에 대해 특정 강우강도 및 균일성을 생성하기 위해 강우 시뮬레이터의 시스템 변수의 적절한 범위를 직관적으로 선택하기 위한 지침으로 사용할 수 있는 강우 시뮬레이터 및 강우 시뮬레이터의 보정 방법을 제공함에 또 다른 목적이 있다.In addition, an embodiment of the present invention implements an automatic rainfall collection system (ARCS) to identify a functional relationship between system variables of a rainfall simulator and rainfall intensity and uniform distribution (i.e., motion model), and the driving model is hydrological and topographic Rainfall simulator and rainfall simulator calibration method that can be used as a guide for intuitively selecting an appropriate range of system variables for rainfall simulators to generate specific rainfall intensities and uniformity for simulated rainfall in laboratory-based studies of the rainfall simulator There is another purpose to provide.
본 발명의 실시예에 따른 강우 시뮬레이터 보정 시스템은, 실험실의 지정 높이에 설치되어 하방으로 강우(rainfall)를 제공하는 강우 시뮬레이터, 상기 제공한 강우를 수집하며, 상기 강우를 수집할 때 상기 강우의 강우강도 및 강우분포를 측정하기 위한 측정장치를 포함하는 검보정 자동화 장치, 및 상기 검보정 자동화 장치에서 제공하는 상기 강우강도 및 강우분포에 관련되는 데이터의 분석 결과를 토대로 상기 강우 시뮬레이터에서 제공하는 상기 강우의 상태를 보정하는 제어장치를 포함한다.The rainfall simulator correction system according to an embodiment of the present invention is a rainfall simulator installed at a designated height of a laboratory to provide rainfall downward, collects the provided rainfall, and when collecting the rainfall, the rainfall of the rainfall An automated calibration device including a measurement device for measuring intensity and rainfall distribution, and the rainfall provided by the rainfall simulator based on the analysis result of the rainfall intensity and data related to the rainfall distribution provided by the automated calibration device It includes a control device to correct the state of.
상기 검보정 자동화 장치는, 상기 강우를 수집하기 위한 공간을 형성하는 컨테이너, 상기 컨테이너의 상기 공간상에서 상기 강우분포의 측정을 위해 행렬(matrix)을 이루어 복수 개가 설치되는 제1 측정장치, 및 상기 강우강도의 측정을 위해 상기 컨테이너에서 수집한 강우를 배출하는 배출구에 구비되는 제2 측정장치를 포함할 수 있다.The calibration automation device comprises: a container forming a space for collecting the rainfall, a first measuring device in which a plurality of is installed by forming a matrix for measuring the rainfall distribution in the space of the container, and the rainfall It may include a second measuring device provided at an outlet for discharging the rainfall collected from the container for measuring the intensity.
상기 제1 측정장치는 전도성 강우량계를 포함하며, 상기 제2 측정장치는 초음파 유량계를 포함할 수 있다.The first measuring device may include a conductive rainfall meter, and the second measuring device may include an ultrasonic flow meter.
상기 전도성 강우량계는 상기 공간의 바닥면으로부터 지정 높이에 고정되어 설치될 수 있다.The conductive rainfall meter may be installed while being fixed to a designated height from the bottom surface of the space.
상기 제어장치는, 상기 복수 개의 제1 측정장치에 의해 측정된 총 강우강도(Itotal)와 상기 총 강우강도를 평균한 평균 강우강도(Iaverrage)의 비교 결과를 근거로 상기 강우의 상태를 보정할 수 있다.The control device may correct the condition of the rainfall based on a comparison result of the total rainfall intensity (Itotal) measured by the plurality of first measuring devices and the average rainfall intensity (Iaverrage) averaged the total rainfall intensity. have.
상기 제어장치는, 상기 강우분포를 계산하는 크리스티안센 등분포 계수를 적용해 상기 분석 결과를 도출할 수 있다.The control device may derive the analysis result by applying a Christiansen uniform distribution coefficient that calculates the rainfall distribution.
상기 제어장치는 상기 강우 시뮬레이터를 구성하여 상기 강우를 제공하는 노즐의 노즐 압력(NP), 회전 속도(OV) 및 지연 시간(TD)을 포함하는 시스템 변수 및 상기 강우강도와 상기 강우분포 사이의 함수 관계를 근거로 도출되는 상기 분석 결과에 의해 상기 강우의 상태를 보정할 수 있다.The control device configures the rainfall simulator to provide system variables including nozzle pressure (NP), rotation speed (OV), and delay time (TD) of the nozzle providing the rainfall, and a function between the rainfall intensity and the rainfall distribution. The rainfall state can be corrected by the analysis result derived based on the relationship.
상기 강우 시뮬레이터는, 상기 강우의 노즐, 분사각도 및 대기시간을 제어하는 제어 모터, 및 상기 강우 시뮬레이터의 전체 영역에 수압을 분배하는 증압 펌프를 포함하며, 상기 제어장치는, 상기 제어 모터 및 상기 증압 펌프를 제어하여 상기 강우의 상태를 보정할 수 있다.The rainfall simulator includes a control motor for controlling the nozzle of the rainfall, an injection angle and a waiting time, and a pressure boosting pump for distributing water pressure to the entire area of the rainfall simulator, and the control device includes the control motor and the pressure booster The condition of the rainfall can be corrected by controlling the pump.
또한, 본 발명의 실시예에 따른 강우 시뮬레이터 보정 방법은, 강우 시뮬레이터, 검보정 자동화 장치 및 제어장치를 포함하는 강우 시뮬레이터 보정 시스템의 강우 시뮬레이터 보정 방법으로서, 실험실의 지정 높이에 설치되는 강우 시뮬레이터에서, 하방으로 강우를 제공하는 단계, 상기 검보정 자동화 장치가, 상기 제공한 강우를 수집하며 상기 강우를 수집할 때 측정장치에 의해 상기 강우의 강우강도 및 강우분포를 측정하는 단계, 및 상기 제어장치가, 상기 검보정 자동화 장치에서 제공하는 상기 강우강도 및 강우분포에 관련되는 데이터의 분석 결과를 토대로 상기 강우 시뮬레이터에서 제공하는 상기 강우의 상태를 보정하는 단계를 포함한다.In addition, the rainfall simulator correction method according to an embodiment of the present invention is a rainfall simulator correction method of a rainfall simulator correction system including a rainfall simulator, an automatic calibration device and a control device, in a rainfall simulator installed at a designated height of a laboratory, Providing rainfall downward, the calibration automation device collecting the provided rainfall and measuring the rainfall intensity and rainfall distribution of the rainfall by a measuring device when collecting the rainfall, and the control device And correcting the condition of the rainfall provided by the rainfall simulator based on the analysis result of the rainfall intensity and data related to the rainfall distribution provided by the automatic calibration device.
상기 검보정 자동화 장치는, 상기 강우를 수집하기 위한 공간을 형성하는 컨테이너, 상기 컨테이너의 상기 공간상에서 상기 강우분포의 측정을 위해 행렬(matrix)을 이루어 복수 개가 설치되는 제1 측정장치, 및 상기 강우강도의 측정을 위해 상기 컨테이너에서 수집한 강우를 배출하는 배출구에 구비되는 제2 측정장치를 포함할 수 있다.The calibration automation device comprises: a container forming a space for collecting the rainfall, a first measuring device in which a plurality of is installed by forming a matrix for measuring the rainfall distribution in the space of the container, and the rainfall It may include a second measuring device provided at an outlet for discharging the rainfall collected from the container for measuring the intensity.
상기 제1 측정장치는 전도성 강우량계를 포함하며, 상기 제2 측정장치는 초음파 유량계를 포함할 수 있다.The first measuring device may include a conductive rainfall meter, and the second measuring device may include an ultrasonic flow meter.
상기 전도성 강우량계는 상기 공간의 바닥면으로부터 지정 높이에 고정되어 설치될 수 있다.The conductive rainfall meter may be installed while being fixed to a designated height from the bottom surface of the space.
상기 보정하는 단계는, 상기 복수 개의 제1 측정장치에 의해 측정된 총 강우강도와 상기 총 강우강도를 평균한 평균 강우강도의 비교 결과를 근거로 상기 강우의 상태를 보정할 수 있다.In the step of correcting, the rainfall state may be corrected based on a comparison result of the total rainfall intensity measured by the plurality of first measuring devices and the average rainfall intensity obtained by averaging the total rainfall intensity.
상기 보정하는 단계는, 상기 강우분포를 계산하는 크리스티안센 등분포 계수를 적용해 상기 분석 결과를 도출하는 단계를 포함할 수 있다.The correcting may include deriving the analysis result by applying a Christiansen uniform distribution coefficient for calculating the rainfall distribution.
상기 보정하는 단계는, 상기 강우 시뮬레이터를 구성하여 상기 강우를 제공하는 노즐의 노즐 압력(NP), 회전 속도(OV) 및 지연 시간(TD)을 포함하는 시스템 변수 및 상기 강우강도와 상기 강우분포 사이의 함수 관계를 근거로 도출되는 상기 분석 결과에 의해 상기 강우의 상태를 보정할 수 있다.The correcting step includes a system variable including a nozzle pressure (NP), a rotational speed (OV), and a delay time (TD) of a nozzle providing the rainfall by configuring the rainfall simulator, and between the rainfall intensity and the rainfall distribution. The rainfall state may be corrected by the analysis result derived based on the functional relationship of.
상기 강우 시뮬레이터는, 상기 강우의 노즐, 분사각도 및 대기시간을 제어하는 제어 모터, 및 상기 강우 시뮬레이터의 전체 영역에 수압을 분배하는 증압 펌프를 포함하며, 상기 보정하는 단계는, 상기 제어 모터 및 상기 증압 펌프를 제어하여 상기 강우의 상태를 보정할 수 있다.The rainfall simulator includes a control motor for controlling the nozzle of the rainfall, an injection angle, and a waiting time, and a pressure boosting pump for distributing water pressure to the entire area of the rainfall simulator, and the step of correcting includes the control motor and the It is possible to correct the condition of the rainfall by controlling the booster pump.
본 발명의 실시예에 따르면, 전통적인 수동 방법보다 강우 강도에 대한 추정 정확도가 더 높아짐에 따라 전통적인 수동 방법의 결과가 화재, 농업, 도시화 등의 지표 성질 변화와 같은 유체 지형화 연구에 적용될 때 전통적인 수법을 사용하여 평균 강우 강도를 관찰할 때보다 불확실 문제를 신중하게 고려할 수 있을 것이다.According to an embodiment of the present invention, as the estimation accuracy of rainfall intensity is higher than that of the traditional manual method, the result of the traditional manual method is applied to the study of fluid topography such as changes in surface properties such as fire, agriculture, urbanization, etc. You may be able to consider the uncertainty problem more carefully than when observing the average rainfall intensity using.
또한, 본 발명의 실시예에 따라 불확실 문제를 신중하게 고려함으로써 도시홍수 실증실험의 정확도를 높일 수 있고, 그 결과 도시홍수에 대비한 정확한 방재시스템을 구축할 수 있게 될 것이다.In addition, by carefully considering the uncertainty problem according to an embodiment of the present invention, it is possible to increase the accuracy of the urban flood demonstration experiment, and as a result, it will be possible to construct an accurate disaster prevention system for urban flood.
도 1은 본 출원인이 특허등록받은 대한민국 등록특허공보 제10-1821599호(2018.01.25. 공고) 실시간 재해 발생 시간 예측 시스템 및 방법의 강우 시뮬레이터 검·보정 자동화 시설을 설명하기 위한 도면,1 is a view for explaining a rain simulator inspection/correction automation facility of a real-time disaster occurrence time prediction system and method in Republic of Korea Patent Publication No. 10-1821599 (announced on January 25, 2018) to which the present applicant has registered a patent;
도 2는 도 1의 강우 시뮬레이터 검·보정 자동화 시설에 설치된 전도성 소형 강우량계를 나타낸 도면,2 is a view showing a conductive small rainfall meter installed in the rainfall simulator inspection and correction automation facility of FIG. 1;
도 3a는 본 발명의 실시예에 따른 강우 시뮬레이터 보정 시스템으로서, 대규모 실험실 강우 시뮬레이터의 물 순환 과정을 나타내는 개략도,3A is a schematic diagram illustrating a water circulation process of a rainfall simulator in a large-scale laboratory as a rainfall simulator correction system according to an embodiment of the present invention;
도 3b는 도 3a의 시뮬레이터가 구현된 실험실의 내부 모습을 보여주는 사진,3B is a photograph showing the interior of the laboratory in which the simulator of FIG. 3A is implemented;
도 4a 및 도 4b는 도 3a의 강우 시뮬레이터의 노즐 구성을 보여주는 도면,4A and 4B are views showing a nozzle configuration of the rainfall simulator of FIG. 3A;
도 5a 및 도 5b는 도 3a의 강우 시뮬레이터의 강우강도를 감소시키는 스프레이 박스를 보여주는 도면,5A and 5B are views showing a spray box for reducing rainfall intensity of the rainfall simulator of FIG. 3A;
도 6a 및 도 6b는 본 발명의 실시예에 따른 자동 강우량 수집 시스템의 설계 및 구성요소를 나타내는 도면,6A and 6B are diagrams showing the design and components of an automatic rainfall collection system according to an embodiment of the present invention;
도 7은 유량계로 측정한 총 강우강도와 강우량을 사용하여 측정한 평균 강우 강도의 비교 그래프,7 is a comparison graph of the total rainfall intensity measured by a flow meter and the average rainfall intensity measured using rainfall,
도 8은 노즐 압력(NP), 회전 속도(OV) 및 지연 시간(TD)에 대한 강우강도의 변동량을 나타내는 그래프,8 is a graph showing the amount of variation in rainfall intensity with respect to nozzle pressure (NP), rotation speed (OV), and delay time (TD);
도 9는 노즐 압력(NP), 회전 속도(OV) 및 지연 시간(TD)에 대한 응답으로 균일성 계수(CuC) 값의 변동을 나타내는 그래프,9 is a graph showing the variation of the uniformity coefficient (CuC) value in response to nozzle pressure (NP), rotation speed (OV) and delay time (TD);
도 10은 10×10m 플롯 표면에서 181 mm/h의 강우강도의 공간 분포를 보여주는 도면,10 is a diagram showing the spatial distribution of rainfall intensity of 181 mm/h on a 10×10 m plot surface,
도 11은 강우 시뮬레이터의 시스템 변수에 대한 산포도와 NP 1.5kg/㎠에서의 강우량의 균일도 분포를 보여주는 그래프,11 is a graph showing the distribution of the distribution of system variables of the rainfall simulator and the uniformity distribution of rainfall in NP 1.5kg/㎠;
도 12는 강우 시뮬레이터의 시스템 변수에 대한 응답으로 강우강도(I) 및 균일성 계수(CuC)의 변화를 보여주는 그래프, 그리고12 is a graph showing changes in rainfall intensity (I) and uniformity coefficient (CuC) in response to system variables of a rainfall simulator, and
도 13은 본 발명의 실시예에 따른 강우 시뮬레이터 보정 방법의 흐름도이다.13 is a flowchart of a rainfall simulator correction method according to an embodiment of the present invention.
이하, 본 발명의 바람직한 실시예를 첨부된 도면에 의거하여 상세히 설명하며, 도면 1 내지 도면 6에 있어서 동일한 기능을 수행하는 구성 요소에 대해서는 동일한 참조 번호를 병기한다. 한편, 도면의 도시 및 상세한 설명에 있어서 본 발명의 기술적 특징과 직접적으로 연관되지 않는 요소의 구체적인 기술적 구성 및 작용에 대한 상세한 설명 및 도시는 생략하고, 본 발명과 관련되는 기술적 구성만을 간략하게 도시하거나 설명하였다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, and the same reference numerals are designated for components that perform the same function in the drawings 1 to 6. On the other hand, in the illustration and detailed description of the drawings, a detailed description and illustration of a specific technical configuration and operation of elements not directly related to the technical features of the present invention are omitted, and only the technical configuration related to the present invention is briefly shown or Explained.
이하, 도면을 참조하여 본 발명의 실시예에 대하여 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings.
도 3a는 본 발명의 실시예에 따른 강우 시뮬레이터 보정 시스템으로서, 대규모 실험실 강우 시뮬레이터의 물순환 과정을 나타내는 개략도, 도 3b는 도 3a의 시뮬레이터가 구현된 실험실의 내부 모습을 보여주는 사진, 도 4a 및 도 4b는 도 3a의 강우 시뮬레이터의 노즐 구성을 보여주는 도면, 도 5a 및 도 5b는 도 3a의 강우 시뮬레이터의 강우강도를 감소시키는 스프레이 박스를 보여주는 도면, 그리고 도 6a 및 도 6b는 본 발명의 실시예에 따른 자동 강우량 수집 시스템의 설계 및 구성요소를 나타내는 도면이다.3A is a rainfall simulator correction system according to an embodiment of the present invention, a schematic diagram showing a water circulation process in a large-scale laboratory rainfall simulator, and FIG. 3B is a photograph showing an interior view of a laboratory in which the simulator of FIG. 3A is implemented, FIGS. 4A and 4B. 4B is a view showing a nozzle configuration of the rainfall simulator of FIG. 3A, FIGS. 5A and 5B are views showing a spray box for reducing the rainfall intensity of the rainfall simulator of FIG. 3A, and FIGS. 6A and 6B are diagrams showing an embodiment of the present invention. It is a diagram showing the design and components of the automatic rainfall collection system according to the
도 3a 내지 도 6b에 도시된 바와 같이, 본 발명의 실시예에 따른 강우 시뮬레이터 보정 시스템(90)은 강우 시뮬레이터(100), 검보정 자동화 장치(혹은 자동 강우량 수집 시스템)(110) 및 제어장치(혹은 관제장치)(170)의 일부 또는 전부를 포함한다.3A to 6B, the rainfall simulator correction system 90 according to the embodiment of the present invention includes a rainfall simulator 100, an automatic calibration device (or automatic rainfall collection system) 110, and a control device ( Or, it includes part or all of the control device (170).
여기서, "일부 또는 전부를 포함한다"는 것은 제어장치(170)와 같은 일부 구성요소가 생략되어 강우 시뮬레이터 보정 시스템(90)을 구성하거나, 제어장치(170)와 같은 일부 구성요소가 강우 시뮬레이터(100)와 같은 다른 구성요소에 통합되어 구성될 수 있는 것 등을 의미하는 것으로서 발명의 충분한 이해를 돕기 위하여 전부 포함하는 것으로 설명한다.Here, "including some or all" means that some components such as the control device 170 are omitted to configure the rainfall simulator correction system 90, or some components such as the control device 170 are used in the rainfall simulator ( It will be described as including all in order to help a sufficient understanding of the invention as meaning the thing that can be configured by being integrated with other components such as 100).
본 발명의 실시예에 따른 강우 시뮬레이터 보정 시스템(90)은 본 출원인이 도 1에 도시된 바와 같은 강우 시뮬레이터 검·보정 자동화 시설을 개발하여 등록받은 대한민국 등록특허공보 제10-1891237호(2018.09.28. 공고) 강우 시뮬레이터 검·보정 자동화 시설의 시설인 국립재난연구원(NDMI, National Disaster Management Research Institute)의 대규모 실험실 강우 시뮬레이터(RS)를 포함할 수 있으며, 최대 900㎡의 실험 지역에 진동식 노즐 시스템을 사용하여 공간적으로 균일한 강우를 재현한 것이다.In the rainfall simulator correction system 90 according to an embodiment of the present invention, the applicant of the present invention developed and registered an automated rain simulator inspection and correction facility as shown in FIG. 1, Korean Patent Application Publication No. 10-1891237 (2018.09. Announcement) Rainfall simulator A large-scale laboratory rainfall simulator (RS) of the National Disaster Management Research Institute (NDMI), which is a facility of automated inspection and correction facilities, can be included, and a vibration-type nozzle system is installed in an experimental area of up to 900㎡. It is used to reproduce spatially uniform rainfall.
강우 시뮬레이터(100)는 컴퓨터 작동 진동 붐(oscillating booms)이 구비된 압축 노즐형 시뮬레이터로서, 본 발명의 실시예에 따른 국립재난연구원의 강우 시뮬레이터(100)는 여러 부분으로 구성될 수 있다.The rainfall simulator 100 is a compression nozzle type simulator equipped with computer-operated oscillating booms, and the rainfall simulator 100 of the National Disaster Research Institute according to an embodiment of the present invention may be composed of several parts.
지하수 저장 탱크(혹은 지하 저류조, 저수조)(120)(예: 900㎥), 수중 펌프(130)(예: 0.25㎥/s4 펌프), 옥상 물 저장 탱크(혹은 고수조)(140)(예: 63㎥), (수중 펌프에서 노즐로의) 급수 시스템, 증압 펌프(혹은 강우 펌프)(150)(예: 1.7㎥/min3 펌프), 노즐(210a)이 있는 진동 파이프(210)를 제어하는 강우시뮬레이터 제어 모터(160), 노즐(210a), 스프레이 박스(혹은 강우거터)(200) 및 컴퓨터 제어 운영 체제로서 제어장치(170)의 일부 또는 전부를 포함하며, 여기서 "일부 또는 전부를 포함"한다는 것은 앞서서의 의미와 동일하다.Groundwater storage tank (or underground storage tank, reservoir) 120 (ex: 900㎥), submersible pump 130 (ex: 0.25㎥/s 4 pump), rooftop water storage tank (or high water tank) 140 (example : 63㎥), (submersible pump to nozzle) water supply system, booster pump (or rainfall pump) 150 (eg 1.7㎥/min 3 pump), control the vibration pipe 210 with nozzle 210a The rainfall simulator control motor 160, the nozzle 210a, the spray box (or rain gutter) 200, and a computer control operating system include some or all of the control device 170, where "including some or all "To do is the same as the previous meaning.
수중 펌프(130)는 실험실 아래의 지하 저장 탱크(120)에서 옥상 저장 탱크(140)로 물을 공급한다. 옥상 저장 탱크(140)로부터의 물은 물 전달 시스템을 통해 강우 시뮬레이터(100)의 각 노즐(210a)로 공급된다. 증압 펌프(150)는 옥상 저장 탱크(140)에서 급수 시스템으로의 물의 유입을 제어하며, 압력을 일정하게 유지하고 각 노즐(210a)이 유사한(또는 동일한) 배출 속도를 갖는 것을 유지하도록 한다. 지상의 배수 시스템을 통해 노즐(210a)로 방출된 빗방울은 재사용을 위해 지하 저장 탱크(120)에 다시 수집된다.The submersible pump 130 supplies water from the underground storage tank 120 under the laboratory to the rooftop storage tank 140. Water from the rooftop storage tank 140 is supplied to each nozzle 210a of the rainfall simulator 100 through a water delivery system. The booster pump 150 controls the inflow of water from the rooftop storage tank 140 to the water supply system, keeps the pressure constant, and keeps each nozzle 210a having a similar (or the same) discharge rate. Raindrops discharged to the nozzle 210a through the above-ground drainage system are collected again in the underground storage tank 120 for reuse.
강우 시뮬레이터(100)의 크기는 예컨대, 30m (길이) × 30m (너비)이다. 시뮬레이터와 실험 영역은 독립적으로 작동할 수 있는 9개의 서로 다른 하위 섹션 (예: 10×10m)으로 나뉘며 소규모 모델에서 실제 크기 테스트에 이르는 효율적인 실험을 가능하게 한다. 시뮬레이터 노즐(210a)은 빗방울의 말단 속도를 보장하기 위해 지면에서 12m 높이에 있다. 4세트의 노즐(210a)이 설치되고 하위 섹션의 파이프라인을 따라 2.5m 간격으로 균등하게 간격을 둔다. 각 세트는 두 개의 노즐(210a)로 구성된다. 노즐 타입은 KJ 80150(예: 오리피스 지름 7.5mm, 평면 팬 스프레이 타입)이다. 노즐 구성은 도 4a 및 도 4b에 보여주고 있다.The size of the rainfall simulator 100 is, for example, 30m (length) x 30m (width). The simulator and experiment area are divided into nine different sub-sections (e.g. 10×10m) that can operate independently, allowing efficient experiments ranging from small models to full-scale testing. The simulator nozzle 210a is at a height of 12 m above the ground to ensure the distal velocity of the raindrop. Four sets of nozzles 210a are installed and evenly spaced at 2.5m intervals along the pipeline of the lower section. Each set consists of two nozzles 210a. The nozzle type is KJ 80150 (eg orifice diameter 7.5mm, flat fan spray type). The nozzle configuration is shown in Figs. 4A and 4B.
진동 노즐(210a)의 각 쌍 아래의 스프레이 박스(200)는 스프레이를 절단하여 강우강도를 감소시키는 데 사용된다. 스프레이 박스(200) 구조에 대한 자세한 내용은 도 5a 및 도 5b에 보여주고 있다. 스프레이 박스(200)는 모서리 혹은 가장자리 영역에 각각 배수구(200a)를 가지며, 양측의 배수구(200a)는 서로 다른 직경의 배수 파이프(201, 202)에 각각 연결될 수 있다. 강우 시뮬레이터(100)는 전체에 144개의 스프레이 박스(200)가 설치된다(도 4a 참조). 상기 강우 시뮬레이터(100)에 설치되는 스프레이 박스(200)의 갯수는 상기의 갯수에만 반드시 한정되지 아니하고, 강우 시뮬레이터(100) 규모에 따라 적절히 조정되어질 수 있다. 일반적으로 스프레이 박스(200)가 없는 진동 노즐 시스템은 사용된 노즐 유형, 즉 노즐(210a)에서의 수압 및 노즐(210a)의 스윕 진동 주파수를 변경함으로써 모의 강우량 특성을 조정할 수 있다. 반면, 본 발명의 실시예에서와 같이 스프레이 박스(200)가 있는 진동 노즐 시스템의 경우 강우 강도와 균일성에 영향을 주는 노즐 이동을 제어하는 변수가 스프레이 박스(200)를 가로지르는 진동 노즐(210a)의 속도뿐만 아니라 스프레이 박스(200)의 중앙 사각형 개구 외부의 지연 시간과 관련이 있다. 스프레이 박스(200) 모서리에 위치한 노즐(210a)을 사용하면 스프레이 박스(200)의 중앙 사각 구멍을 통과하지 않고 물을 지하 저장 탱크(120)로 옮기는 거터를 통해 물 스프레이가 이동한다.The spray box 200 under each pair of vibrating nozzles 210a is used to cut the spray to reduce the rainfall intensity. Details of the structure of the spray box 200 are shown in FIGS. 5A and 5B. The spray box 200 has a drain hole 200a at each corner or edge region, and the drain holes 200a on both sides may be connected to drain pipes 201 and 202 having different diameters, respectively. In the rainfall simulator 100, 144 spray boxes 200 are installed in the whole (see FIG. 4A). The number of spray boxes 200 installed in the rainfall simulator 100 is not necessarily limited to the above number, and may be appropriately adjusted according to the scale of the rainfall simulator 100. In general, the vibration nozzle system without the spray box 200 can adjust the simulated rainfall characteristics by changing the type of nozzle used, that is, the water pressure at the nozzle 210a and the sweep vibration frequency of the nozzle 210a. On the other hand, in the case of the vibrating nozzle system with the spray box 200 as in the embodiment of the present invention, the variable controlling the nozzle movement that affects the rainfall intensity and uniformity is the vibrating nozzle 210a across the spray box 200 It is related to the speed of the spray box 200 as well as the delay time outside the central rectangular opening of the spray box 200. When the nozzle 210a located at the corner of the spray box 200 is used, the water spray moves through the gutter that moves water to the underground storage tank 120 without passing through the central square hole of the spray box 200.
강우 시뮬레이터(100)의 제어 모터(160)는 강우의 노즐(210a) 및 분사각도, 대기시간 등을 제어할 수 있고, 증압 펌프(150)의 경우는 강우 시뮬레이터 전체 크기에 골고루 수압을 일정하게 분배할 수 있도록 도와주는 펌프이다. 이러한 증압 펌프(150)와 제어 모터(160)는 가령 관제실의 제어장치(170)에서 제어한다.The control motor 160 of the rainfall simulator 100 can control the nozzle 210a of the rainfall, the spray angle, and the waiting time, and in the case of the booster pump 150, the water pressure is uniformly distributed over the entire size of the rainfall simulator. It is a pump that helps you do it. The booster pump 150 and the control motor 160 are controlled by the control device 170 of the control room, for example.
본 발명의 실시예에 따른 국립재난연구원의 강우 시뮬레이터(NDMI RS)(100)에서 노즐 압력(NP)은 1.3~7.0kg/㎠ 범위에서 0.1kg/㎠ 단위로 증가하며 유속은 0.96~3.91㎥/min이다. 노즐(210a)의 회전 속도(OV)는 1.25 rpm으로 6.25에서 31.25rpm까지 다양하며, 분사 상자의 노즐 지연 시간(TD)은 0.1초 단위로 0에서 10초까지 다양하다. NP, OV 및 TD와 같은 시스템 변수는 컴퓨터 제어 작동 시스템, 가령 제어장치(170)를 사용하여 자동으로 변경할 수 있다.The nozzle pressure (NP) in the rainfall simulator (NDMI RS) 100 of the National Disaster Research Institute according to an embodiment of the present invention is 1.3 ~ 7.0kg/㎠ In the range, it increases in units of 0.1kg/㎠ and the flow rate is 0.96~3.91㎥/min. The rotational speed (OV) of the nozzle 210a varies from 6.25 to 31.25 rpm at 1.25 rpm, and the nozzle delay time (TD) of the spray box varies from 0 to 10 seconds in 0.1 second increments. System variables such as NP, OV and TD can be changed automatically using a computer controlled operating system, such as control unit 170.
본 발명의 실시예에 따른 검보정 자동화 장치(110)는, 자동 강우량(혹은 강우) 수집 시스템(ARCS)으로 명명될 수 있으며, 대형 실험실 강우 시뮬레이터(100)의 강우 상황의 반복성과 균일성을 자동으로 측정하도록 설계 및 제작된다. 자동 강우량 수집 시스템의 크기는 10m (길이) × 10m (너비)이다. 자동 강우량 수집 시스템은 실험실 내부에서 쉽게 조립 및 운반할 수 있도록 10개의 이동식 유닛(예: 각 유닛의 크기는 5m (길이) × 2m (폭))을 기준으로 작동될 수 있다. 도 6a 및 도 6b는 자동 강우량 수집 시스템 즉 검보정 자동화 장치(110)의 설계 및 구성 요소를 보여준다.The automatic calibration device 110 according to an embodiment of the present invention may be referred to as an automatic rainfall (or rainfall) collection system (ARCS), and automatically performs the repeatability and uniformity of the rainfall situation of the large laboratory rainfall simulator 100. It is designed and manufactured to measure with. The size of the automatic rainfall collection system is 10m (length) × 10m (width). The automatic rainfall collection system can be operated based on 10 mobile units (e.g., each unit is 5m (length) × 2m (width) in size) for easy assembly and transport inside the laboratory. 6A and 6B show the design and components of the automatic rainfall collection system, that is, the automatic calibration device 110.
자동 강우량 수집 시스템의 주요 구성 요소는 소형 티핑 버킷 레인 게이지(이하, 전도성 소형 강우량계 또는 강우량계)(400), 부분적으로 채워진 파이프 초음파 유량계(411), 무선 데이터 전송 장치 및 실시간 데이터 처리 시스템이다. 여기서, 실시간 데이터 처리 시스템은 가령 지그비(zigbee) 통신모듈 등의 무선 데이터 전송 장치를 통해 측정 데이터를 컨테이너에서 제어장치(170)로 전송하기 위한 시스템을 의미한다고 볼 수 있다. 예를 들어, 컨테이너에 구비되는 데이터송신장치와 운영 PC와 같은 제어장치(170)에 구비되는 데이터수신장치로 구분해 볼 수 있다. 이때, 데이터송신장치는 CPU, 메모리, 고속 멀티카운터(예: 자료처리기, 데이터로거), 전원공급장치 등을 포함할 수 있다. 고속 멀티카운터는 10개 지점의 우량계 펄스신호를 동시에 측정하고, 강우자료는 자료처리장치에서 디지털 신호로 변환하여 2.4㎓ 주파수 영역대의 지그비 통신으로 운영 PC 즉 제어장치(170)로 전송한다. 또한, 방수커넥터를 사용하여 누전 및 누수를 방지하여 안정적으로 전원이 공급되도록 구성된다. 강우 시뮬레이터(100)의 아래 1 × 1m 표면을 효율적으로 덮기 위해 소형 팁핑 버킷 레인 게이지(예: 20cm 높이의 금속 원형 용기가 있는 직경 10cm, 0.25mm 당 1 펄스의 전환) 즉 강우량계(400)가 개발되어 사용된다(도 6a의 b). 총 100개의 강우 계량기 즉 강우량계(400)가 공간적 강우 분포를 측정하기 위해 격자 패턴(도 6a의 d, e)으로 전체 자동 강우량 수집 시스템 플롯에 동일하게 배치된다. 상기 강우 시뮬레이터(100)에 설치되는 강우량계(400)의 갯수는 상기의 갯수에만 반드시 한정되지 아니하고, 강우 시뮬레이터(100) 규모에 따라 적절히 조정되어질 수 있다. 각 강우량계(400)의 상부는 분무된 빗방울이 수집기의 상부로 튀지 않도록 자동 강우량 수집 시스템의 표면보다 약 60cm 위에 위치한다(도 6a의 f). 본 발명의 실시예에 따라 강우량계(400)는 제1 측정장치에 포함될 수 있고, 또 유량계(411)는 제2 측정장치에 포함될 수 있다. 따라서, 본 발명의 실시예에서는 강우분포와 강우강도를 측정할 수 있는 장치를 도 2에 도시된 바와 같은 구조를 갖는 강우량계(예: 전도성 소형 강우량계)(400)와 유량계(예: 초음파 유량계)(411)를 사용하는 것이 바람직하지만, 특별히 이에 한정하지는 않을 것이다.The main components of the automatic rainfall collection system are a small tipping bucket rain gauge (hereinafter, a conductive small rainfall meter or rainfall meter) 400, a partially filled pipe ultrasonic flow meter 411, a wireless data transmission device, and a real-time data processing system. Here, the real-time data processing system can be considered to mean a system for transmitting measurement data from a container to the control device 170 through a wireless data transmission device such as a zigbee communication module. For example, it can be divided into a data transmitting device provided in a container and a data receiving device provided in a control device 170 such as an operating PC. In this case, the data transmission device may include a CPU, a memory, a high-speed multi-counter (eg, a data processor, a data logger), a power supply device, and the like. The high-speed multi-counter simultaneously measures the pulse signals of the rain gauge at 10 points, and the rainfall data is converted into a digital signal in the data processing device and transmitted to the operating PC, that is, the control device 170 through Zigbee communication in the 2.4 GHz frequency range. In addition, it is configured to supply power stably by preventing leakage and leakage by using a waterproof connector. A small tipping bucket rain gauge (e.g., 10 cm diameter with a 20 cm high metal circular container, 1 pulse per 0.25 mm conversion), i.e. rainfall meter 400, is used to efficiently cover the 1 × 1 m surface below the rainfall simulator 100. It is developed and used (Fig. 6a b). A total of 100 rainfall meters, that is, rainfall meters 400, are uniformly arranged in the entire automatic rainfall collection system plot in a grid pattern (d, e in FIG. 6A) to measure the spatial rainfall distribution. The number of rainfall meters 400 installed in the rainfall simulator 100 is not necessarily limited to the above number, and may be appropriately adjusted according to the size of the rainfall simulator 100. The upper part of each rainfall meter 400 is located about 60 cm above the surface of the automatic rainfall collecting system so that sprayed raindrops do not splash onto the upper part of the collector (FIG. 6A). According to an embodiment of the present invention, the rainfall meter 400 may be included in the first measuring device, and the flow meter 411 may be included in the second measuring device. Therefore, in the embodiment of the present invention, a rainfall meter (e.g., a conductive small rainfall meter) 400 and a flow meter (e.g., an ultrasonic flow meter) having a structure as shown in FIG. 2 are used for measuring the rainfall distribution and rainfall intensity ) It is preferable to use 411, but it will not be particularly limited thereto.
총 강우강도는 파이프(410)의 끝에 설치된 부분적으로 채워진 파이프 초음파 유량계(411)로 결정된다(도 6a의 c). 강우 시뮬레이터(100)에 의해 전달된 강우량은 자동 강우량 수집 시스템에서 수집되고(도 6a의 d), 비가 계기로 떨어지는 동시에 자동 강우량 수집 시스템에서 수집된다. 비가 내리는 강우량은 경사지는 물통 아래의 구멍을 통해 자동 강우량 수집 시스템의 컨테이너 바닥으로 떨어진다(도 6a의 b). 수집된 강우량은 자동 강우량 수집 시스템 아래의 직경 250mm의 PVC 파이프(410)로 옮겨진다(도 6b의 f). 유량계(411)는 1분마다 파이프(410)의 수위를 측정하고, 자동 강우량 수집 시스템에서 수집한 총 강우량은 1분마다 측정한 강우량을 누적하여 강우량의 등가 강도 값으로 계산한다. 100개의 레인 측정기 즉 강우량계(400)와 유량계(411)의 데이터는 무선 데이터 전송 장치를 통해 전송된다. 데이터는 실시간 데이터 처리 시스템에 저장, 처리 및 표시된다(도 6a의 a).The total rainfall intensity is determined by a partially filled pipe ultrasonic flow meter 411 installed at the end of the pipe 410 (Fig. 6A, c). The rainfall delivered by the rainfall simulator 100 is collected in an automatic rainfall collection system (d in FIG. 6A), and is collected in the automatic rainfall collection system at the same time as the rain falls on an instrument. Rainfall falls to the bottom of the container of the automatic rainfall collection system through a hole under the sloping bucket (Fig. 6a, b). The collected rainfall is transferred to a PVC pipe 410 having a diameter of 250 mm under the automatic rainfall collection system (FIG. 6B). The flow meter 411 measures the water level of the pipe 410 every minute, and the total rainfall collected by the automatic rainfall collection system is calculated as an equivalent intensity value of rainfall by accumulating the rainfall measured every minute. Data of 100 lane meters, that is, the rainfall meter 400 and the flow meter 411 are transmitted through a wireless data transmission device. Data is stored, processed, and displayed in a real-time data processing system (Fig. 6A).
개발된 자동 강우량 수집 시스템은 강우강도와 공간 균일성에 대해 강우 시뮬레이터(100)를 보정하기 위해 구현된다. 강우강도와 공간 강우 분포의 균일성은 3가지 시스템 변수의 75가지 조합 (즉, 1.3, 1.4 및 1.4 및 1.5 kg/㎠ NP 값)으로 강우 시뮬레이터(100)에서 10m(길이)×10m(폭)의 플롯 크기에서 6.25, 12.50, 18.75, 25.00 및 31.25rpm의 OV 값과, 0.0, 0.5, 1.0, 1.5 및 2.0 s의 TD 값으로 평가된다. NP가 1.5 kg/㎠를 초과할 때 스프레이 박스(200)에서 과량의 물이 넘치지 않도록 NP의 최대값은 1.5kg/㎠로 유지된다. 비강우 기간에 자연 강우량의 물리적 특성을 고려하여 TD는 0.5초에서 2.0초로 증가한다.The developed automatic rainfall collection system is implemented to correct the rainfall simulator 100 for rainfall intensity and spatial uniformity. The uniformity of rainfall intensity and spatial rainfall distribution was determined by 75 combinations of three system variables (i.e., 1.3, 1.4 and 1.4, and 1.5 kg/cm 2 NP values) in the rainfall simulator 100 of 10 m (length) × 10 m (width). The plot sizes are evaluated with OV values of 6.25, 12.50, 18.75, 25.00 and 31.25 rpm, and TD values of 0.0, 0.5, 1.0, 1.5 and 2.0 s. When the NP exceeds 1.5 kg/cm 2, the maximum value of NP is maintained at 1.5 kg/cm 2 so that excessive water does not overflow from the spray box 200. During the non-rainfall period, the TD increases from 0.5 seconds to 2.0 seconds, taking into account the physical characteristics of natural rainfall.
강우 강도는 두 가지 방법으로 측정한다. 첫 번째 방법에서, 전체 플롯(10m × 10m)에 걸친 각 강우 강도는 정사각형 그리드(서로 1m 간격)로 균등하게 분포된 100개의 소형 팁핑 버킷 레인 게이지 즉 강우량계(400)에 의해 측정된다. 평균 강우 강도(Iaverage)는 강우 계기판의 강우 강도 측정값을 평균하여 결정된다. 체적 방법은 두 번째 방법에서 채택된다. 자동 강우량 수집 시스템에서 100㎡ 용량의 컨테이너에 수집된 총 강우량은 부분적으로 채워진 파이프 초음파 유량계(411)로 측정한다. 자동 강우량 수집 시스템에서 수집된 물의 양은 강우량의 등가 강도값(총 강우 강도, Itotal)으로 변환된다. 강우 계기판(강우량)에 기초한 평균 강우 강도(평균 팁핑 버킷 레인 측정기의 측정 오차: 5%)의 정확도는 유량계(411)를 사용하여 측정한 총 강우 강도(총계, 유량계의 측정 오차 : 2%)와 비교하여 평가한다. The rainfall intensity is measured in two ways. In the first method, each rainfall intensity over the entire plot (10m x 10m) is measured by 100 small tipping bucket rain gauges, i.e. rainfall meters 400, evenly distributed in a square grid (1m apart from each other). Average rainfall intensity (Iaverage) is determined by averaging the rainfall intensity measurements from the rainfall instrument panel. The volume method is adopted in the second method. In the automatic rainfall collection system, the total rainfall collected in a container having a capacity of 100 m 2 is measured with a partially filled pipe ultrasonic flow meter 411. The amount of water collected by the automatic rainfall collection system is converted into an equivalent intensity value (total rainfall intensity, Itotal) of rainfall. The accuracy of the average rainfall intensity (measurement error of the average tipping bucket rain meter: 5%) based on the rainfall instrument panel (rainfall amount) is the total rainfall intensity measured using the flow meter 411 (total, measurement error of the flow meter: 2%). Compare and evaluate.
모의 강우량의 균일성은 특정 강우 사건에서 공간 균일성의 가장 널리 사용되는 공식인 크리스티안센 등분포계수(Christiansen Uniformity Coefficient, CuC)(Christiansen, 1942)를 사용하여 평가한다. CuC 식은 아래 [수학식 1]과 같다.The uniformity of simulated rainfall is evaluated using the Christiansen Uniformity Coefficient (CuC) (Christiansen, 1942), the most widely used formula of spatial uniformity in a specific rainfall event. The CuC equation is shown in [Equation 1] below.
Figure PCTKR2019004749-appb-M000001
Figure PCTKR2019004749-appb-M000001
여기서 xi는 위치 i의 강우량이며, x는 평균 강우량이며 n은 관측의 총 수이다. 크리스티안센 등분포계수는 공간 강우의 변동성을 특성화하기 위해 각 관측 지점의 평균 강우강도로 정규화한 평균으로부터의 편차이다. 값이 100%에 가까울수록 강우량의 공간 분포가 균일하다. 강우량의 공간 패턴은 크리스티안센 등분포계수가 80% 이상일 때 실험 플롯에서 합리적으로 일정한 것으로 간주 될 수 있다. 그러나 크기와 비용과 같은 다른 목표와 균일성 사이에는 절충점이 있다. 일반적으로 보다 작은 강우 시뮬레이터(100)는 더 높은 CuC 값을 갖는다. 큰 실험 플롯의 경우, 70%의 CuC 값은 합리적으로 수용 가능한 것으로 간주된다.Where xi is the rainfall at location i, x is the average rainfall, and n is the total number of observations. The Christiansen's uniform distribution coefficient is the deviation from the mean normalized to the average rainfall intensity at each observation point to characterize the variability of spatial rainfall. The closer the value is to 100%, the more uniform the spatial distribution of rainfall. The spatial pattern of rainfall can be considered to be reasonably constant in the experimental plot when the Christiansen uniform distribution coefficient is 80% or more. However, there are trade-offs between uniformity and other goals such as size and cost. In general, the smaller rainfall simulator 100 has a higher CuC value. For large experimental plots, a CuC value of 70% is considered reasonably acceptable.
강우 시뮬레이터(100)의 신뢰성과 정확성을 평가하기 위해 강우강도와 공간 균일성의 가변성(또는 일관성)을 조사했다. 강우 시뮬레이터(100)의 동작 모델은 합리적으로 높은 균일 분포를 갖는 바람직한 강우강도를 재생산하기 위해 공간 균일성과 관련된 높은 수준의 정확도를 보여주는 시스템 변수의 조건에서 만들어진다. 가능한 상호 의존성을 확인하기 위해 시스템 변수와 강우 강도 및 균일 분포 사이의 상관관계를 조사했다. 변수 간의 상관관계는 선형 상관 계수를 계산하여 테스트되었다. 또한 로그 변환된 공간에서의 상관 계수를 비선형 관계가 종료되었는지 여부를 조사했다. 유의 수준을 고려한 상관 분석을 수행하여 변수(즉, 강우 시뮬레이터(100)의 시스템 변수 및 모의 강우강도 및 균일 분포)에 대한 의존도를 확인하였다. 강우 시뮬레이터(100)의 시스템 변수와 강우의 모의 강도 및 균일 분포 사이의 함수 관계는 선형 및 로그 스케일에 대한 다중 회귀 분석법을 기반으로 설정되었다. 결정 계수는 작업 모델의 성능을 측정하는 데 사용되었다. 가장 높은 결정 계수를 갖는 운전 모델은 각 규모의 모델 비교를 통해 선택되었다.In order to evaluate the reliability and accuracy of the rainfall simulator 100, the variability (or consistency) of rainfall intensity and spatial uniformity was investigated. The motion model of the rainfall simulator 100 is made under the condition of system variables showing a high level of accuracy related to spatial uniformity in order to reproduce the desired rainfall intensity with a reasonably high uniform distribution. The correlation between system variables and rainfall intensity and uniform distribution was investigated to identify possible interdependencies. The correlation between the variables was tested by calculating the linear correlation coefficient. In addition, the correlation coefficient in the log-transformed space was examined whether the nonlinear relationship was terminated. A correlation analysis in consideration of the significance level was performed to confirm the dependence on the variables (that is, system variables of the rainfall simulator 100 and simulated rainfall intensity and uniform distribution). The functional relationship between the system variables of the rainfall simulator 100 and the simulated intensity and uniform distribution of rainfall was established based on multiple regression analysis methods for linear and log scales. The coefficient of determination was used to measure the performance of the working model. The driving model with the highest coefficient of determination was selected through model comparison of each scale.
계속해서, 상기의 시스템 구성 및 방법에 따른 결과를 설명하고자 한다.Subsequently, results of the above system configuration and method will be described.
도 9은 유량계로 측정한 총 강우강도와 강우량을 사용하여 측정한 평균 강우 강도의 비교 그래프, 도 10은 노즐 압력(NP), 회전 속도(OV) 및 지연 시간(TD)에 대한 강우강도의 변동량을 나타내는 그래프, 도 11은 노즐 압력(NP), 회전 속도(OV) 및 지연 시간(TD)에 대한 응답으로 균일성 계수(CuC) 값의 변동을 나타내는 그래프, 도 12는 10×10m 플롯 표면에서 181mm/h의 강우강도의 공간 분포를 보여주는 도면, 도 13은 강우 시뮬레이터의 시스템 변수에 대한 산포도와 NP 1.5kg/㎠에서의 강우량의 균일도 분포를 보여주는 그래프, 그리고 도 32는 강우 시뮬레이터의 시스템 변수에 대한 응답으로 강우강도(I) 및 균일성 계수(CuC)의 변화를 보여주는 그래프이다.9 is a comparison graph of the average rainfall intensity measured using the total rainfall intensity measured by a flow meter and the rainfall. FIG. 10 is a variation in rainfall intensity with respect to nozzle pressure (NP), rotational speed (OV), and delay time (TD). 11 is a graph showing the variation of the uniformity coefficient (CuC) value in response to the nozzle pressure (NP), rotational speed (OV) and delay time (TD), and FIG. 12 is a 10×10 m plot on the surface. A diagram showing the spatial distribution of the rainfall intensity of 181mm/h, FIG. 13 is a graph showing the distribution of the system variables of the rainfall simulator and the uniformity distribution of the rainfall at NP 1.5kg/㎠, and FIG. 32 is the system variable of the rainfall simulator. It is a graph showing the change in rainfall intensity (I) and uniformity coefficient (CuC) in response to.
강우 시뮬레이터(100)는 시스템 변수의 다양한 조합에서 강우강도 및 강우 분포의 균일성에 대해 보정되었다(예: 압력과 속도 및 지연 시간을 포함한 진동 운동). 교정 결과를 바탕으로 강우 시뮬레이터(100)의 신뢰성과 정확성을 평가하기 전에 모든 시스템 변수에 대한 비가 계기의 평균 강우강도(Iaverage)의 적합성을 유량계(411)로 측정한 것과 비교하여 그래픽으로 비교하여 평가했다. 도 7에서 볼 수 있듯이, Iaverage와 Itotal 사이의 상호 작용 지점은 130 ~ 200mm/h의 상대적으로 높은 강우량 범위에서 1:1 라인의 양쪽에 균등하게 분배되었지만 Iaverage는 60~ 130mm/h에서 강우 범위에 대해 약간 과대 평가되었다. 그러나 평균 강우강도는 일반적으로 유량계(411)로 측정한 총 강우강도와 잘 일치했다. Iaverage와 Itotal의 값 사이의 일치 선은 1:1 대응에 매우 가깝다. 성능 통계는 또한 Iaverage가 강우강도를 추정하는 데 높은 정확성을 나타냄을 보여준다 (Iaverage와 Itotal 값 사이의 R2는 0.97).The rainfall simulator 100 has been calibrated for the uniformity of rainfall intensity and rainfall distribution in various combinations of system variables (eg, vibrational motion including pressure and velocity and delay time). Before evaluating the reliability and accuracy of the rainfall simulator 100 based on the calibration result, the suitability of the average rainfall intensity (Iaverage) of the instrument for all system variables is compared with that measured with the flow meter 411 and evaluated by graphical comparison. did. As can be seen in Fig. 7, the interaction points between Iaverage and Itotal were evenly distributed on both sides of the 1:1 line in the relatively high rainfall range of 130 to 200 mm/h, but the Iaverage was distributed in the rainfall range at 60 to 130 mm/h. It was a little overrated. However, the average rainfall intensity generally agrees well with the total rainfall intensity measured by the flow meter 411. The line of agreement between the values of Iaverage and Itotal is very close to a 1:1 correspondence. Performance statistics also show that Iaverage has a high degree of accuracy in estimating rainfall intensity (R2 between Iaverage and Itotal values is 0.97).
소우사 주니오르(Sousa Junior)는 두 가지 다른 방법을 사용하여 평균 강우 강도를 추정했다. 하나는 3㎡ 지역에서 0.25m 간격으로 7×9 메쉬로 배열된 63개의 수집 캔에서 수집하여 측정하는 전통적인 수작업 측정이었다. 다른 하나는 컨테이너(3㎡)에 수집된 총 강우량을 측정하는 용적 측정 방법이었다. 이 저자들은 170~250mm/h 범위의 강우량에 대한 두 가지 방법에서 강우 강도를 비교하였다. 평균 강우 강도는 170에서 200mm/h 사이에 큰 차이가 있었고(두 방법의 값 사이의 편차는 약 30 ~ 35mm/h 임), 이 연구에서, Iaverage와 Itotal의 차이는 같은 강우 범위에서 약 2 ~ 7mm/h였다.Sousa Junior estimated average rainfall intensity using two different methods. One was a traditional manual measurement, collected and measured in 63 collection cans arranged in 7×9 mesh at 0.25m intervals over a 3 m2 area. The other was a volumetric measurement method that measures the total rainfall collected in a container (3㎡). These authors compared rainfall intensities in two methods for rainfall in the 170-250mm/h range. The mean rainfall intensity differed significantly between 170 and 200 mm/h (the deviation between the values of the two methods was approximately 30 to 35 mm/h), and in this study, the difference between Iaverage and Itotal was approximately 2 to 2 in the same rainfall range. It was 7 mm/h.
3개의 시스템 변수 (즉, NP, OV 및 TD의 75가지 조합에 기초한)에 대한 평균 강우 강도 (이하, 강우 강도)의 변동성을 [표 1] 및 도 8에서 비교한다. 아래 [표 1]은 각 시스템 변수에 대한 강우 강도에 대한 보정 결과의 통계 요약을 제공하고 도 8의 상자 및 위스커 다이어그램을 사용하여 각 시스템 변수에 대한 강우 강도의 변동을 시각적으로 비교된다. 강우 시뮬레이터(100)는 3가지 시스템 변수에 대해 44.1에서 181.7mm/h 사이의 강우 강도를 제공했다(도 8). 도 8에서 볼 수 있듯이, 유사한 범위의 강우 강도가 모든 압력에 걸쳐 생성되었다. (NP 값은 1.3, 1.4 및 1.5kg/cm2). 평균 강우 강도는 NP 증가와 함께 약간 증가했다. (각각 1.3, 1.4 및 1.5kg/cm2의 NP 값에 대한 응답으로 평균 104.5, 108.4 및 112.1mm / h; 표 1), NP 값의 증가와 함께 실질적인 차이는 발견되지 않았다. 대조적으로, OV와 TD 값의 증가는 강우 강도를 현저하게 감소시켰다 (OV와 TD에 각각 반응하여 평균 82.6에서 140.5mm/h 및 72.8에서 162.6mm/h까지 범위, 표 1). OV와 TD가 낮을수록 강우 시뮬레이터(100)의 강우 강도가 높다.The variability of average rainfall intensity (hereinafter, rainfall intensity) for three system variables (ie, based on 75 combinations of NP, OV and TD) is compared in Table 1 and FIG. 8. Table 1 below provides a statistical summary of the correction results for the rainfall intensity for each system variable, and visually compares the fluctuation of the rainfall intensity for each system variable using the box and whisker diagram of FIG. 8. The rainfall simulator 100 provided rainfall intensity between 44.1 and 181.7 mm/h for three system variables (FIG. 8 ). As can be seen in Fig. 8, a similar range of rainfall intensity was produced across all pressures. (NP values are 1.3, 1.4 and 1.5 kg/cm 2 ). Average rainfall intensity slightly increased with increasing NP. (Average 104.5, 108.4 and 112.1 mm/h in response to NP values of 1.3, 1.4 and 1.5 kg/cm 2 , respectively; Table 1), and no substantial difference was found with an increase in NP values. In contrast, increases in OV and TD values significantly decreased rainfall intensity (ranging from 82.6 to 140.5 mm/h on average and from 72.8 to 162.6 mm/h in response to OV and TD, respectively, Table 1). The lower the OV and TD, the higher the rainfall intensity of the rainfall simulator 100.
Figure PCTKR2019004749-appb-T000001
Figure PCTKR2019004749-appb-T000001
공간 강우 균일성에 대한 보정 결과의 통계 요약이 아래 [표 2]에 나와 있으며, 도 11은 세 시스템 변수의 변화에 따라 계산된 CuC 값의 범위를 나타낸다. 모든 경우에 대한 균일 계수는 70.1%(1.3kg/㎠의 NP에 대해, 31.25rpm의 OV 및 2.0s의 TD, 44.1mm/h의 강우강도를 나타냄)와 78.4%(NP의 1.5kg/cm2, OV는 6.25rpm, TD는 0.0 초, 강우강도는 181.7mm/h) 사이였다.A statistical summary of the correction results for spatial rainfall uniformity is shown in Table 2 below, and FIG. 11 shows the range of CuC values calculated according to changes in three system variables. Uniformity coefficient for all cases, 70.1% (1.3kg / NP for a ㎠, refers to OV and the rainfall intensity of TD, 44.1mm / h of 2.0s of 31.25rpm) and 78.4% (1.5kg / cm 2 of NP , OV was 6.25rpm, TD was 0.0 sec, and rainfall intensity was between 181.7mm/h).
Figure PCTKR2019004749-appb-T000002
Figure PCTKR2019004749-appb-T000002
균일 계수는 주로 NP와 OV의 변화에 영향을 받았다. 모의 강우량의 CuC 값은 NP가 증가함에 따라 향상되었고, RS는 1.5kg/cm2의 NP 값에서 더 높은 균일 계수값을 나타내었다. (CuC 값은 도 9에서 74.2~78.4%로, 도 8에서 강우 강도는 49.1~181.7mm/h 범위). 시뮬레이션된 강우의 공간 분포는 OV의 감소로 개선되는 것으로 나타났다. OV의 증가는 강우 강도와 균일 계수 모두에 반비례하며(도 8 및 도 9), 균일성 계수는 TD의 변화에 의해 유의한 영향을 받지 않는다. 공간 강우 분포 (강우 강도 381.7mm/h 및 CuC 78.4%)에 대한 표본 플롯이 도 10에 제시되어 있다. 다른 강우 강도에 대한 분포의 전반적인 공간 패턴은 강우 강도의 변화에도 불구하고 높고 낮은 강우량 영역의 관점에서 대체적으로 유사했다.The uniformity coefficient was mainly influenced by changes in NP and OV. The CuC value of the simulated rainfall was improved as the NP increased, and the RS showed a higher uniformity coefficient value at the NP value of 1.5kg/cm 2 . (CuC value is 74.2 to 77.4% in Fig. 9, and rainfall intensity in Fig. 8 is in the range of 49.1 to 181.7 mm/h). It was found that the spatial distribution of the simulated rainfall is improved with a decrease in OV. The increase in OV is inversely proportional to both the rainfall intensity and the uniformity coefficient (Figs. 8 and 9), and the uniformity coefficient is not significantly affected by the change in TD. A sample plot for the spatial rainfall distribution (rainfall intensity 381.7 mm/h and CuC 78.4%) is presented in FIG. 10. The overall spatial pattern of the distribution for different rainfall intensities was largely similar in terms of high and low rainfall regions despite variations in rainfall intensity.
각 시스템 변수에 대한 강우강도 및 공간 강우 균일성에 대한 보정 결과는 OV가 강우강도와 균일성 계수 모두와 강한 상관 관계가 있음을 보여 주었다. 더 높은 균일성은 1.5kg/㎠의 NP에 반응하여 관찰되었으며, 강우 시뮬레이터(100)의 시스템 변수 (NP, OV 및 TD)의 모든 조합으로부터 얻은 강우강도의 전체 범위를 포함했다. 본 발명의 실시예에서 강우 시뮬레이터(100)의 운전 모델은 공간 강우량 균일성이 가장 높은 압력 조건 (NP 1.5kg/㎠) 하에서 도출되었으며, 그리고 강우 시뮬레이터(100)의 시스템 변수와 강우 강도 및 균일 분포 사이의 상호 관계에 따라 3가지 시스템 변수의 모든 조합에 대한 강우 강도의 범위를 포함하였다.The correction results for rainfall intensity and spatial rainfall uniformity for each system variable showed that OV had a strong correlation with both rainfall intensity and uniformity coefficient. Higher uniformity was observed in response to an NP of 1.5 kg/cm 2, and included the full range of rainfall intensities obtained from all combinations of system variables (NP, OV and TD) of the rainfall simulator 100. In the embodiment of the present invention, the driving model of the rainfall simulator 100 was derived under the pressure condition (NP 1.5kg/㎠) with the highest spatial rainfall uniformity, and the system variables, rainfall intensity and uniform distribution of the rainfall simulator 100 We included a range of rainfall intensities for all combinations of the three system variables according to the correlation between them.
아래 [표 3]은 각 TD에 대한 OV와 강우 강도 및 균일 분포 사이의 선형 및 로그 스케일에 대한 상관 관계를 보여준다. 도 11에서 볼 수 있듯이, 강우량과 균일도의 상관 관계가 5개의 TD로 분류될 때 OV가 0에 가까울수록 시뮬레이션된 강우강도가 높아진다. 강우량의 강도가 증가하는 조건 하에서 강우 분포의 균일성은 약간 향상되었다. 그러나 TD가 감소할수록 강우강도가 증가하는 반면 TD의 변화는 CuC 값의 변화에 유의한 영향을 미치지 않았다. 모든 TD 값에서 OV는 강우강도와 강우 분포의 공간 균일성 모두와 강한 음의 상관 관계를 보였다(표 3). 특히, 상관 관계는 선형 및 로그 변환된 스케일 1% ~ 5% 수준에서 유의미했다.[Table 3] below shows the correlation between OV and rainfall intensity and uniform distribution for each TD on linear and log scales. As can be seen in FIG. 11, when the correlation between rainfall and uniformity is classified into five TDs, the closer the OV is to 0, the higher the simulated rainfall intensity. Under the condition of increasing rainfall intensity, the uniformity of rainfall distribution was slightly improved. However, as the TD decreased, the rainfall intensity increased, whereas the change in TD did not significantly affect the change in the CuC value. In all TD values, OV showed a strong negative correlation with both rainfall intensity and spatial uniformity of rainfall distribution (Table 3). In particular, the correlation was significant at the linear and logarithmic scale 1% to 5% level.
Figure PCTKR2019004749-appb-T000003
Figure PCTKR2019004749-appb-T000003
선형 및 비선형 동작 모델은 다중 회귀를 사용하여 강우 시뮬레이터(100)의 시스템 변수와 모의 강도 및 통계적 중요성이 있는 강우의 균일 분포 사이의 적절한 기능적 관계를 수립했다. 선형 및 로그 스케일에 대한 연산 모델의 성능은 결정 계수를 기반으로 측정되었다. 선형 모델은 강우강도(선형 및 로그 스케일에서 각각 0.93 및 0.83의 R2) 및 공간 균일성 계수(선형 및 로그 스케일에서 각각 0.84 및 0.82의 R2)에서 높은 모델 성능을 나타내고 있다. 대응 결정 계수를 갖는 운영 모델은 아래 [표 4]에 제시되어 있다. 운영 모델은 강우강도와 균일 계수(R2 값이 0.8 이상) 모두에서 전반적으로 양호한 성능을 보였다. The linear and nonlinear motion models used multiple regression to establish an appropriate functional relationship between the system variables of the rainfall simulator 100 and the simulated intensity and the uniform distribution of rainfall of statistical significance. The performance of the computational model for linear and logarithmic scales was measured based on the coefficient of determination. The linear model shows high model performance at rainfall intensity (R2 of 0.93 and 0.83 on the linear and log scale, respectively) and spatial uniformity coefficient (R2 of 0.84 and 0.82 on the linear and log scale, respectively). The operating model with the corresponding coefficient of determination is presented in Table 4 below. The operating model showed good overall performance in both rainfall intensity and uniformity coefficient (R2 value of 0.8 or higher).
Figure PCTKR2019004749-appb-T000004
Figure PCTKR2019004749-appb-T000004
개발된 운전 모델에서 시뮬레이션된 강우 강도와 시스템 변수 (OV 및 TD)의 영향을 받는 분포의 균일성은 강우 강도 및 계수의 특정 값을 기반으로 도 12에서 시각적으로 비교된다. (강우 강도는 50, 90, 130 및 170mm/h이고 CuC는 75, 76, 77 및 78 임). 강우 강도는 OV와 TD가 감소함에 따라 증가했다. TD의 변화는 CuC 값에 유의한 영향을 미치지 않았지만 균일성 계수는 OV의 감소로 개선되었다. (즉, 75, 76 및 77%의 CuC 값은 0 내지 2초의 TD 범위 전체에 걸쳐 얻어졌다; 도 12).In the developed driving model, the simulated rainfall intensity and the uniformity of the distribution affected by the system variables (OV and TD) are visually compared in FIG. 12 based on the specific values of the rainfall intensity and coefficient. (Rain intensity is 50, 90, 130 and 170 mm/h and CuC is 75, 76, 77 and 78). Rainfall intensity increased as OV and TD decreased. The change in TD did not have a significant effect on the CuC value, but the uniformity coefficient improved with a decrease in OV. (I.e., 75, 76 and 77% CuC values were obtained over the entire TD range of 0 to 2 seconds; FIG. 12).
상기의 내용들을 종합해 보면, 본 발명의 실시예에서는 대규모의 실험 지역에서 강우 강도와 강우 분포를 얻기 위해 수동 측정의 단점을 극복하기 위해 자동 강우량 수집 시스템을 개발하였다. 개발된 자동 강우량 수집 시스템은 속도 및 지연 시간을 포함하여 압력(NP) 및 진동 운동과 같은 시스템 변수의 다양한 조합에서 강우 강도 및 공간 강우량 균일성에 대한 대규모 실험실 강우 시뮬레이터(100)를 보정하기 위해 구현되었다(각각 OV 및 TD). 마지막으로, 강우 시뮬레이터(100)의 동작 모델은 강우 시뮬레이터(100)의 시스템 변수와 강우 강도 및 균일 분포 사이의 함수 관계로부터 도출되었다.In summary, in the embodiment of the present invention, an automatic rainfall collection system was developed to overcome the disadvantages of manual measurement in order to obtain rainfall intensity and rainfall distribution in a large-scale experimental area. The developed automatic rainfall collection system was implemented to calibrate the large laboratory rainfall simulator 100 for rainfall intensity and spatial rainfall uniformity at various combinations of system variables such as pressure (NP) and vibrational motion, including speed and delay time. (OV and TD, respectively). Finally, the motion model of the rainfall simulator 100 was derived from a functional relationship between the system variables of the rainfall simulator 100 and the rainfall intensity and uniform distribution.
강우 시뮬레이터(100)의 신뢰성과 정확성을 평가하기 전에 유량계(411)를 사용한 용적 측정법과 비교하여 소형 전도식 강우량계(400)의 비가 계측기에서 자동으로 수집한 평균 강우 강도의 적절성을 평가하였다. 강우량에 대한 추정 방법의 비교 평가는 일반적으로 소형 전도 강우량의 비가 계측기에서 자동으로 수집한 평균 강우 강도가 40-200mm/h의 강우량의 높고 낮음 범위에 대해 정확하고 일관된 예측을 제공함을 나타낸다. 특히, 본 발명의 실시예에서의 자동 방법은 소우사 주니오르(Sousa Junior) 등이 보고한 결과와 비교할 때 전통적인 수동 방법보다 강우 강도에 대한 추정 정확도가 더 높았다. 따라서 전통적인 수동 방법의 결과가 화재, 농업, 도시화 등의 지표 성질 변화와 같은 유체 지형학 연구에 적용될 때 전통적인 수법을 사용하여 평균 강우 강도를 관찰할 때보다 불확실 문제를 신중하게 고려해야 한다.Before evaluating the reliability and accuracy of the rainfall simulator 100, it was compared with the volume measurement method using the flow meter 411 to evaluate the appropriateness of the average rainfall intensity automatically collected by the rain meter 400 of the small conduction type rainfall meter. A comparative evaluation of the estimation method for rainfall generally indicates that the rain of small conducted rainfall provides accurate and consistent predictions for the high and low range of rainfall of 40-200 mm/h with the average rainfall intensity automatically collected by the meter. In particular, the automatic method in the embodiment of the present invention has higher estimation accuracy for rainfall intensity than the traditional manual method when compared with the results reported by Sousa Junior and the like. Therefore, when the results of traditional manual methods are applied to fluid topography studies such as changes in surface properties such as fire, agriculture, urbanization, etc., the uncertainty problem must be carefully considered than when observing average rainfall intensity using traditional methods.
교정 결과는 시뮬레이션된 강우 강도와 강우 분포의 균일성은 강우 시뮬레이터(100)의 시스템 변수에 의해 영향을 받는다는 것을 보여 주었다. (즉, 스프레이 박스(200)를 갖는 가압 발진 노즐 시뮬레이터) 강우 강도는 OV와 TD의 증가에 반비례하였지만 NP가 증가함에 따라 강우 강도에는 큰 차이가 없었다. 강우량은 각 NP 값 (1.3, 1.4, 1.5kg/cm2)에서 강우량의 최대값과 최소값 내에서 균등하게 분포하였다. 이는 강우 강도가 펌프 압력에 비해 노즐(210a)의 진동 운동과 관련된 시스템 변수의 변화에 보다 민감하게 변화함을 나타낸다. 일반적으로 가압 노즐 시뮬레이터의 강우 강도는 노즐 유형, 노즐 오리피스 직경 및 노즐에서의 펌프 압력에 의해 제어된다. 노즐 압력은 노즐 유형 및 노즐 오리피스 직경과 같은 조건 하에서 강우 강도에 주로 영향을 미친다.The calibration results showed that the simulated rainfall intensity and the uniformity of the rainfall distribution are affected by the system variables of the rainfall simulator 100. (That is, the pressurized oscillation nozzle simulator having the spray box 200) The rainfall intensity was inversely proportional to the increase of OV and TD, but there was no significant difference in the rainfall intensity as NP increased. Rainfall was evenly distributed within the maximum and minimum rainfall values at each NP value (1.3, 1.4, 1.5kg/cm 2 ). This indicates that the rainfall intensity changes more sensitively to changes in system variables related to the vibrational motion of the nozzle 210a compared to the pump pressure. In general, the rainfall intensity of a pressurized nozzle simulator is controlled by the nozzle type, nozzle orifice diameter, and pump pressure at the nozzle. Nozzle pressure primarily affects rainfall intensity under conditions such as nozzle type and nozzle orifice diameter.
강우 분포의 균일성은 OV를 감소시키고 NP를 증가시킴에 따라 향상되었다. OV의 감소에 대한 반응의 균일성 계수의 향상은 발진 노즐의 실험 플롯 표면에 대한 노출 시간의 증가와 관련이 있다. 이것은 OV (즉, 노즐의 노출 시간이 증가)가 느릴수록 강우량이 증가하여 균일 계수가 증가함을 나타낸다. 이는 시뮬레이션된 강우량의 증가가 노즐 진동에 의해 영향을 받는 실험 플롯에서의 강우 분포에 기여하기 때문이다. NP 증가는 또한 강우 분포의 균일성을 증가시켰다.The uniformity of rainfall distribution improved with decreasing OV and increasing NP. The improvement in the coefficient of uniformity of the response to a decrease in OV is associated with an increase in the exposure time of the oscillating nozzle to the experimental plot surface. This indicates that as the OV (i.e., increasing the exposure time of the nozzle) is slower, the rainfall increases and the uniformity coefficient increases. This is because the increase in the simulated rainfall contributes to the rainfall distribution in the experimental plot affected by nozzle vibration. Increasing NP also increased the uniformity of the rainfall distribution.
노즐(210a)에서의 펌프 압력이 증가함에 따라 빗방울이 보다 균일하게 분무되는 것으로 보인다. 또한, 펌프 압력 1.5kg/cm2에서 CuC 값의 범위는 높았으며(도 9에서 CuC는 74.2에서 78.4%까지 범위를 가짐) CuC 값의 변화는 작았으며(표 2에서 SD는 1.3), CuC 값의 범위는 상대적으로 낮았다(CuC는 NP 값 1.3 및 1.4kg/cm2에서 각각 70.1 내지 76.7% 및 71.6 내지 77.7%로 나타났으며, 도 9), CuC 값의 가변성은 1.3 및 1.4kg/㎠의 각각의 NP 값에서 1.9 및 1.8; 표 2)은 1.5kg/㎠의 압력 조건 아래를 나타낸다. 이러한 조건을 고려할 때, 시뮬레이션된 강우량의 공간 분포의 높고 일관된 성능을 보장하기 위해 강우 시뮬레이터(100)의 압력 조건을 1.5kg/㎠보다 높게 설정하는 것이 적절할 것이다.As the pump pressure in the nozzle 210a increases, it seems that raindrops are sprayed more uniformly. In addition, the CuC value range was high at the pump pressure of 1.5kg/cm 2 (CuC in FIG. 9 ranged from 74.2 to 78.4%), and the change in the CuC value was small (SD in Table 2 was 1.3), and the CuC value The range of was relatively low (CuC was 70.1 to 76.7% and 71.6 to 77.7%, respectively, at the NP values of 1.3 and 1.4 kg/cm 2 , FIG. 9), and the variability of the CuC value was 1.3 and 1.4 kg/cm 2 1.9 and 1.8 at each NP value; Table 2) shows under the pressure condition of 1.5kg/cm2. Considering these conditions, it would be appropriate to set the pressure condition of the rainfall simulator 100 higher than 1.5 kg/cm 2 in order to ensure a high and consistent performance of the spatial distribution of the simulated rainfall.
강우 시뮬레이터(100)의 운영 모델 (즉, RS의 시스템 변수와 시뮬레이션 된 강도와 강우의 균일 분포 사이의 기능적 관계)은 1.5kg/㎠의 NP로 설정되어 가장 높은 수준의 공간 강우량 균일성을 나타냈다. 시스템 변수의 모든 조합에 대해 강우 강도의 전체 범위를 동시에 포함시켰다. 운영 모델은 유의 수준을 고려하여 선형 및 로그 스케일에 대한 상관 분석을 포함하는 다중 회귀 분석법을 기반으로 산출되었다. 운전 모델은 강우 강도와 균일 계수 모두에 대해 높은 정확도를 보였다 (R2 값은 0.8 이상임, 표 4 참조). 강우 강도와 균일 계수는 OV와 TD가 감소함에 따라 증가했다. 특히, OV의 변화는 시뮬레이션된 강우 강도와 강우의 균일 분포에 주목할 만하며, TD 변화가 CuC 값에 미치는 영향은 적다.The operating model of the rainfall simulator 100 (that is, the functional relationship between the system variable of RS and the simulated intensity and the uniform distribution of rainfall) was set to NP of 1.5 kg/cm 2, indicating the highest level of spatial rainfall uniformity. The entire range of rainfall intensities was included simultaneously for all combinations of system variables. The operating model was calculated based on multiple regression analysis, including correlation analysis on linear and logarithmic scales, taking into account significance levels. The driving model showed high accuracy for both rainfall intensity and uniformity coefficient (R2 value was 0.8 or higher, see Table 4). The rainfall intensity and uniformity coefficient increased with decreasing OV and TD. In particular, the change in OV is notable for the simulated rainfall intensity and uniform distribution of rainfall, and the TD change has little effect on the CuC value.
각각의 값에 대한 모의 강우 강도와 강우의 균일 계수를 OV와 TD에 대해 플롯하여 시스템 변수에 의해 영향을 받는 강우 강도와 균일 분포의 변화를 육안으로 검사하였다. 그래픽 플롯에 대한 정보는 시뮬레이션된 강우량에 대해 특정 강우 강도 및 균일성을 생성하는 시스템 변수의 적절한 범위에 대한 지침으로 사용할 수 있다. 또한 특정 적용을 위한 특정 강우량 및 강우량 균일도를 산출하기 위한 시스템 변수 범위의 직관적인 선정 기준에 대한 정보가 제공된다.The simulated rainfall intensity and rainfall uniformity coefficient for each value were plotted for OV and TD, and the changes in rainfall intensity and uniform distribution affected by system variables were visually inspected. Information on graphical plots can be used as a guide for the appropriate range of system variables that produce specific rainfall intensity and uniformity for simulated rainfall. In addition, information on intuitive selection criteria of the range of system variables for calculating specific rainfall and rainfall uniformity for specific applications is provided.
그러나 다양한 강우 조건에 대해 강우 시뮬레이터(100)의 운전 모델을 일반화하기 위해서는 다양한 유형의 노즐(210a)과 펌프 압력에 대해 자동 강우량 수집 시스템을 사용하는 추가 실험이 필요하다. 특히, 본 발명의 실시예에서 사용된 노즐(1.3 ~ 1.5kg/cm2)의 펌프 압력을 높이기 위해서는 노즐 압력이 1.5kg/㎠을 초과할 때 과량의 물을 배출하기 위해 스프레이 박스(200)의 배수 용량을 개선할 필요가 있다. 강우 강도의 공간적 다양성을 더욱 향상시키기 위해서는 급수 시스템 (증압 펌프에서 노즐까지)의 압력 강하와 각 노즐(210a)의 압력 변화를 측정해야 한다. 또한 컨테이너 크기, 그리드 크기 및 강우량 범위와 같은 다양한 조건을 기반으로 하는 수동 및 자동 방법의 비교에 대한 추가 연구나 개발이 기존의 수작업 방식으로 인한 강우량의 크기를 계량화하는 데 필요할 것이다.However, in order to generalize the driving model of the rainfall simulator 100 for various rainfall conditions, additional experiments using an automatic rainfall collection system for various types of nozzles 210a and pump pressures are required. In particular, in order to increase the pump pressure of the nozzle (1.3 ~ 1.5kg/cm 2 ) used in the embodiment of the present invention, the spray box 200 is used to discharge excess water when the nozzle pressure exceeds 1.5 kg/cm 2. There is a need to improve the drainage capacity. In order to further improve the spatial diversity of rainfall intensity, it is necessary to measure the pressure drop in the water supply system (from the booster pump to the nozzle) and the pressure change in each nozzle 210a. In addition, further research or development of the comparison of manual and automatic methods based on various conditions such as container size, grid size and rainfall range will be needed to quantify the size of rainfall due to the existing manual method.
도 13은 본 발명의 실시예에 따른 강우 시뮬레이터 보정 방법을 나타내는 흐름도이다.13 is a flowchart illustrating a rainfall simulator correction method according to an embodiment of the present invention.
설명의 편의상 도 13을 도 3과 함께 참조하면, 본 발명의 실시예에 따른 강우 시뮬레이터(100)는 실험실의 (바닥면으로부터) 지정 높이에 설치되는 시뮬레이터로서, 하방으로 강우를 제공한다(S1100).Referring to FIG. 13 together with FIG. 3 for convenience of explanation, the rainfall simulator 100 according to an embodiment of the present invention is a simulator installed at a designated height (from the floor surface) of the laboratory, and provides rainfall downward (S1100). .
또한, 검보정 자동화 장치(110)는 자동 강우량 수집 시스템으로서, 제공한 강우를 수집하며 강우를 수집할 때 측정장치(예: 강우량계, 유량계 등)에 의해 강우의 강우강도 및 강우분포를 측정한다(S1110).In addition, the calibration automation device 110 is an automatic rainfall collection system that collects the provided rainfall and measures the rainfall intensity and distribution of rainfall by a measuring device (e.g., a rainfall meter, a flow meter, etc.) when collecting rainfall. (S1110).
이어, 가령 관제실의 관제 컴퓨터와 같은 제어장치(170)는 검보정 자동화 장치(110)에서 제공하는 강우강도 및 강우분포에 관련되는 데이터의 분석 결과를 토대로 강우 시뮬레이터(100)에서 제공하는 강우의 상태를 보정한다(S1120).Subsequently, the control device 170, such as a control computer in the control room, is based on the analysis result of the rainfall intensity provided by the calibration automation device 110 and data related to the rainfall distribution, and the rainfall state provided by the rainfall simulator 100 It corrects (S1120).
여기서, 데이터의 분석 결과는, 강우 시뮬레이터(100)를 구성하여 강우를 제공하는 노즐(210a)의 노즐 압력(NP), 회전 속도(OV) 및 지연 시간(TD)을 포함하는 시스템 변수를 포함할 수 있고, 강우강도와 강우분포 사이의 함수 관계를 근거로 도출되는 값을 더 포함할 수 있다. 이외에도 펌프 압력, 분사속도, 노즐 종류, 배관 송수 등도 제어 변수로서 더 고려될 수도 있을 것이다.Here, the analysis result of the data includes system variables including the nozzle pressure (NP), rotation speed (OV), and delay time (TD) of the nozzle 210a providing rainfall by configuring the rainfall simulator 100. In addition, a value derived based on a functional relationship between rainfall intensity and rainfall distribution may be further included. In addition, pump pressure, injection speed, nozzle type, pipe feed water, etc. may be further considered as control variables.
이에 따라, 제어장치(170)는 강우 시뮬레이터(100)를 구성하여 강우의 노즐, 분사각도 및 대기시간을 제어하는 제어 모터(160), 그리고 강우 시뮬레이터(100)의 전체 영역에 수압을 분배하는 증압 펌프(150)를 제어함으로써 강우의 상태를 보정할 수 있을 것이다.Accordingly, the control device 170 constitutes the rainfall simulator 100 to control the nozzle of the rainfall, the spray angle and the waiting time, and the control motor 160 to distribute the water pressure to the entire area of the rainfall simulator 100. By controlling the pump 150, the condition of rainfall may be corrected.
상기한 내용 이외에 기타 강우 시뮬레이터(100)의 구체적인 보정 방법과 관련해서는 앞서 충분히 설명하였으므로 그 내용들로 대신하고자 한다.In addition to the above, other detailed correction methods of the rainfall simulator 100 have been sufficiently described above, and thus the contents will be substituted.
한편, 본 발명의 실시예를 구성하는 모든 구성 요소들이 하나로 결합하거나 결합하여 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시 예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다. 또한, 그 모든 구성요소들이 각각 하나의 독립적인 하드웨어로 구현될 수 있지만, 각 구성 요소들의 그 일부 또는 전부가 선택적으로 조합되어 하나 또는 복수 개의 하드웨어에서 조합된 일부 또는 전부의 기능을 수행하는 프로그램 모듈을 갖는 컴퓨터 프로그램으로서 구현될 수도 있다. 그 컴퓨터 프로그램을 구성하는 코드들 및 코드 세그먼트들은 본 발명의 기술 분야의 당업자에 의해 용이하게 추론될 수 있을 것이다. 이러한 컴퓨터 프로그램은 컴퓨터가 읽을 수 있는 비일시적 저장매체(non-transitory computer readable media)에 저장되어 컴퓨터에 의하여 읽혀지고 실행됨으로써, 본 발명의 실시 예를 구현할 수 있다.On the other hand, even if all the constituent elements constituting an embodiment of the present invention are described as being combined into one or operating in combination, the present invention is not necessarily limited to this embodiment. That is, within the scope of the object of the present invention, all the constituent elements may be selectively combined and operated in one or more. In addition, although all the components may be implemented as one independent hardware, a program module that performs some or all functions combined in one or more hardware by selectively combining some or all of the components. It may be implemented as a computer program having Codes and code segments constituting the computer program may be easily inferred by those skilled in the art of the present invention. Such a computer program is stored in a non-transitory computer readable media that can be read by a computer and is read and executed by a computer, thereby implementing an embodiment of the present invention.
여기서 비일시적 판독 가능 기록매체란, 레지스터, 캐시(cache), 메모리 등과 같이 짧은 순간 동안 데이터를 저장하는 매체가 아니라, 반영구적으로 데이터를 저장하며, 기기에 의해 판독(reading)이 가능한 매체를 의미한다. 구체적으로, 상술한 프로그램들은 CD, DVD, 하드 디스크, 블루레이 디스크, USB, 메모리 카드, ROM 등과 같은 비일시적 판독가능 기록매체에 저장되어 제공될 수 있다.Here, the non-transitory readable recording medium is not a medium that stores data for a short moment, such as a register, cache, memory, etc., but a medium that stores data semi-permanently and can be read by a device. . Specifically, the above-described programs may be provided by being stored in a non-transitory readable recording medium such as a CD, DVD, hard disk, Blu-ray disk, USB, memory card, ROM, or the like.
이상에서는 본 발명의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안 될 것이다.In the above, preferred embodiments of the present invention have been illustrated and described, but the present invention is not limited to the specific embodiments described above, and is generally used in the technical field to which the present invention pertains without departing from the gist of the present invention claimed in the claims. Various modifications are possible by those skilled in the art of course, and these modifications should not be individually understood from the technical idea or perspective of the present invention.
본 발명은 실험실의 지정 높이에 설치되어 하방으로 강우(rainfall)를 제공하는 강우 시뮬레이터;The present invention is a rainfall simulator installed at a designated height of a laboratory to provide a downward rainfall (rainfall);
상기 제공한 강우를 수집하며, 상기 강우를 수집할 때 상기 강우의 강우강도 및 강우분포를 측정하기 위한 측정장치를 포함하는 검보정 자동화 장치; 및A calibration automation device comprising a measuring device for collecting the provided rainfall and measuring the rainfall intensity and distribution of the rainfall when collecting the rainfall; And
상기 검보정 자동화 장치에서 제공하는 상기 강우강도 및 강우분포에 관련되는 데이터의 분석 결과를 토대로 상기 강우 시뮬레이터에서 제공하는 상기 강우의 상태를 보정하는 제어장치;를A control device for correcting the condition of the rainfall provided by the rainfall simulator based on the analysis result of the data related to the rainfall intensity and rainfall distribution provided by the automatic calibration device;
포함하는 강우 시뮬레이터 보정 시스템을 발명의 실시를 위한 형태로 한다. The included rainfall simulator correction system is in a form for implementation of the invention.
그리고 본 발명은 강우 시뮬레이터, 검보정 자동화 장치 및 제어장치를 포함하는 강우 시뮬레이터 보정 시스템의 강우 시뮬레이터 보정 방법으로서,In addition, the present invention is a rainfall simulator correction method of a rainfall simulator correction system including a rainfall simulator, an automatic calibration device and a control device,
실험실의 지정 높이에 설치되는 강우 시뮬레이터에서, 하방으로 강우를 제공하는 단계;In a rainfall simulator installed at a designated height of the laboratory, providing rainfall downward;
상기 검보정 자동화 장치가, 상기 제공한 강우를 수집하며 상기 강우를 수집할 때 측정장치에 의해 상기 강우의 강우강도 및 강우분포를 측정하는 단계; 및Measuring, by the calibration automation device, the rainfall intensity and distribution of the rainfall by a measuring device when collecting the provided rainfall and collecting the rainfall; And
상기 제어장치가, 상기 검보정 자동화 장치에서 제공하는 상기 강우강도 및 강우분포에 관련되는 데이터의 분석 결과를 토대로 상기 강우 시뮬레이터에서 제공하는 상기 강우의 상태를 보정하는 단계;를 포함하는 강우 시뮬레이터 보정 방법을 발명의 실시를 위한 다른 형태로 한다. Compensating, by the control device, the condition of the rainfall provided by the rainfall simulator based on the analysis result of the rainfall intensity and data related to the rainfall distribution provided by the automatic calibration device. To another form for the implementation of the invention.
본 발명은, 전통적인 수동 방법보다 강우 강도에 대한 추정 정확도가 더 높아짐에 따라 전통적인 수동 방법의 결과가 화재, 농업, 도시화 등의 지표 성질 변화와 같은 유체 지형화 연구에 적용될 때 전통적인 수법을 사용하여 평균 강우 강도를 관찰할 때보다 불확실 문제를 신중하게 고려할 수 있고, 또한, 본 발명의 실시예에 따라 불확실 문제를 신중하게 고려함으로써 도시홍수 실증실험의 정확도를 높일 수 있고, 그 결과 도시홍수에 대비한 정확한 방재시스템을 구축할 수 있어 산업상 이용 가능성이 기대된다. According to the present invention, as the estimation accuracy of rainfall intensity is higher than that of the traditional manual method, the results of the traditional manual method are averaged using the traditional method when applied to the study of fluid topography such as changes in surface properties such as fire, agriculture, urbanization, etc. It is possible to carefully consider the uncertainty problem than when observing the rainfall intensity, and also, by carefully considering the uncertainty problem according to an embodiment of the present invention, it is possible to increase the accuracy of the urban flood demonstration experiment. It is possible to establish an accurate disaster prevention system, so it is expected to be used in the industry.

Claims (9)

  1. 실험실의 지정 높이에 설치되어 하방으로 강우(rainfall)를 제공하는 강우 시뮬레이터;A rainfall simulator installed at a designated height in the laboratory to provide rainfall downward;
    상기 제공한 강우를 수집하며, 상기 강우를 수집할 때 상기 강우의 강우강도 및 강우분포를 측정하기 위한 측정장치를 포함하는 검보정 자동화 장치; 및A calibration automation device comprising a measuring device for collecting the provided rainfall and measuring the rainfall intensity and distribution of the rainfall when collecting the rainfall; And
    상기 검보정 자동화 장치에서 제공하는 상기 강우강도 및 강우분포에 관련되는 데이터의 분석 결과를 토대로 상기 강우 시뮬레이터에서 제공하는 상기 강우의 상태를 보정하는 제어장치;를A control device for correcting the condition of the rainfall provided by the rainfall simulator based on the analysis result of the data related to the rainfall intensity and rainfall distribution provided by the automatic calibration device;
    포함하는 강우 시뮬레이터 보정 시스템.Rainfall simulator correction system including.
  2. 제1항에 있어서,The method of claim 1,
    상기 검보정 자동화 장치는,The calibration automation device,
    상기 강우를 수집하기 위한 공간을 형성하는 컨테이너;A container forming a space for collecting the rainfall;
    상기 컨테이너의 상기 공간상에서 상기 강우분포의 측정을 위해 행렬(matrix)을 이루어 복수 개가 설치되는 제1 측정장치; 및A first measuring device configured to form a matrix for measuring the rainfall distribution in the space of the container and to have a plurality of installed ones; And
    상기 강우강도의 측정을 위해 상기 컨테이너에서 수집한 강우를 배출하는 배출구에 구비되는 제2 측정장치;를A second measuring device provided at an outlet for discharging the rainfall collected from the container for measuring the rainfall intensity;
    포함하는 강우 시뮬레이터 보정 시스템.Rainfall simulator correction system including.
  3. 제2항에 있어서,The method of claim 2,
    상기 제1 측정장치는 전도성 강우량계를 포함하며, 상기 제2 측정장치는 초음파 유량계를 포함하는 강우 시뮬레이터 보정 시스템.The first measuring device includes a conductive rainfall meter, and the second measuring device includes an ultrasonic flow meter.
  4. 제3항에 있어서,The method of claim 3,
    상기 전도성 강우량계는 상기 공간의 바닥면으로부터 지정 높이에 고정되어 설치되는 강우 시뮬레이터 보정 시스템.The conductive rainfall meter is a rainfall simulator correction system that is fixed and installed at a designated height from the floor surface of the space.
  5. 제2항에 있어서,The method of claim 2,
    상기 제어장치는, 상기 복수 개의 제1 측정장치에 의해 측정된 총 강우강도(Itotal)와 상기 총 강우강도를 평균한 평균 강우강도(Iaverrage)의 비교 결과를 근거로 상기 강우의 상태를 보정하는 강우 시뮬레이터 보정 시스템.The control device is a rainfall for correcting the condition of the rainfall based on a comparison result of the total rainfall intensity (Itotal) measured by the plurality of first measuring devices and the average rainfall intensity (Iaverrage) averaged the total rainfall intensity. Simulator calibration system.
  6. 제2항에 있어서,The method of claim 2,
    상기 제어장치는, 상기 강우분포를 계산하는 크리스티안센 등분포 계수(Christiansen Uniformity Coefficient)를 적용해 상기 분석 결과를 도출하는 강우 시뮬레이터 보정 시스템.The control device is a rainfall simulator correction system that derives the analysis result by applying a Christiansen Uniformity Coefficient for calculating the rainfall distribution.
  7. 제1항에 있어서,The method of claim 1,
    상기 제어장치는 상기 강우 시뮬레이터를 구성하여 상기 강우를 제공하는 노즐의 노즐 압력(NP), 회전 속도(OV) 및 지연 시간(TD)을 포함하는 시스템 변수 및 상기 강우강도와 상기 강우분포 사이의 함수 관계를 근거로 도출되는 상기 분석 결과에 의해 상기 강우의 상태를 보정하는 강우 시뮬레이터 보정 시스템.The control device configures the rainfall simulator to provide system variables including nozzle pressure (NP), rotation speed (OV), and delay time (TD) of the nozzle providing the rainfall, and a function between the rainfall intensity and the rainfall distribution. A rainfall simulator correction system for correcting the condition of the rainfall based on the analysis result derived based on the relationship.
  8. 제7항에 있어서,The method of claim 7,
    상기 강우 시뮬레이터는,The rainfall simulator,
    상기 강우의 노즐, 분사각도 및 대기시간을 제어하는 제어 모터; 및A control motor for controlling the rainfall nozzle, spray angle and waiting time; And
    상기 강우 시뮬레이터의 전체 영역에 수압을 분배하는 증압 펌프;를 포함하며,Includes; a pressure boosting pump for distributing water pressure to the entire area of the rainfall simulator,
    상기 제어장치는, 상기 제어 모터 및 상기 증압 펌프를 제어하여 상기 강우의 상태를 보정하는 강우 시뮬레이터 보정 시스템.The control device is a rainfall simulator correction system for correcting the state of the rainfall by controlling the control motor and the boosting pump.
  9. 강우 시뮬레이터, 검보정 자동화 장치 및 제어장치를 포함하는 강우 시뮬레이터 보정 시스템의 강우 시뮬레이터 보정 방법으로서,A rainfall simulator correction method of a rainfall simulator correction system including a rainfall simulator, an automatic calibration device and a control device,
    실험실의 지정 높이에 설치되는 강우 시뮬레이터에서, 하방으로 강우를 제공하는 단계;In a rainfall simulator installed at a designated height of the laboratory, providing rainfall downward;
    상기 검보정 자동화 장치가, 상기 제공한 강우를 수집하며 상기 강우를 수집할 때 측정장치에 의해 상기 강우의 강우강도 및 강우분포를 측정하는 단계; 및Measuring, by the calibration automation device, the rainfall intensity and distribution of the rainfall by a measuring device when collecting the provided rainfall and collecting the rainfall; And
    상기 제어장치가, 상기 검보정 자동화 장치에서 제공하는 상기 강우강도 및 강우분포에 관련되는 데이터의 분석 결과를 토대로 상기 강우 시뮬레이터에서 제공하는 상기 강우의 상태를 보정하는 단계;를Compensating, by the control device, the condition of the rainfall provided by the rainfall simulator based on the analysis result of the data related to the rainfall intensity and the rainfall distribution provided by the automatic calibration device.
    포함하는 강우 시뮬레이터 보정 방법.Rainfall simulator calibration method to include.
PCT/KR2019/004749 2019-04-12 2019-04-19 Rainfall simulator calibration system, and rainfall simulator calibration method WO2020209432A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0043164 2019-04-12
KR20190043164 2019-04-12

Publications (1)

Publication Number Publication Date
WO2020209432A1 true WO2020209432A1 (en) 2020-10-15

Family

ID=72751864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/004749 WO2020209432A1 (en) 2019-04-12 2019-04-19 Rainfall simulator calibration system, and rainfall simulator calibration method

Country Status (1)

Country Link
WO (1) WO2020209432A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112393847A (en) * 2020-10-22 2021-02-23 重庆阿泰可科技股份有限公司 Rain box capable of accurately controlling rainfall and test method for accurately controlling rainfall by rain box
CN112764131A (en) * 2020-12-28 2021-05-07 天津三电汽车空调有限公司 Test method for rainfall calibration
CN113686591A (en) * 2021-08-24 2021-11-23 中国第一汽车股份有限公司 Rainfall simulation method for intelligent networked automobile
CN113899410A (en) * 2021-12-13 2022-01-07 中国飞机强度研究所 Rainfall intensity and uniformity calibration system and calibration method for aircraft test
CN113959645A (en) * 2021-12-21 2022-01-21 中国飞机强度研究所 Airplane test rain simulation device and simulation method
CN117312746A (en) * 2023-08-08 2023-12-29 中国科学院地理科学与资源研究所 Rainfall erosion force calculation method based on satellite rainfall data

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264110A (en) * 2003-02-28 2004-09-24 Yokogawa Denshikiki Co Ltd Rain gage
KR20160106976A (en) * 2015-03-03 2016-09-13 (주)웸스 Movable Type Field Rainfall Simulator For LID Verification
KR101891237B1 (en) * 2017-12-01 2018-09-28 대한민국 Rain simulator Automatic equipment for sword and correction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264110A (en) * 2003-02-28 2004-09-24 Yokogawa Denshikiki Co Ltd Rain gage
KR20160106976A (en) * 2015-03-03 2016-09-13 (주)웸스 Movable Type Field Rainfall Simulator For LID Verification
KR101891237B1 (en) * 2017-12-01 2018-09-28 대한민국 Rain simulator Automatic equipment for sword and correction

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LASSU ET AL.: "The Wageningen Rainfall Simulator: Set-up and Calibration of an Indoor Nozzle-Type Rainfall Simulator for Soil Erosion Studies", LAND DEGRADATION & DEVELOPMENT, vol. 26, no. 6, March 2015 (2015-03-01), pages 604 - 612, XP055748624 *
WILSON ET AL.: "Development and Testing of a Large, Transportable Rainfall Simulator for Plot-scale Runoff and Parameter Estimation", HYDROLOGY AND EARTH SYSTEM SCIENCES, vol. 18, no. 10, 22 October 2014 (2014-10-22), pages 4169 - 4183, XP055748626 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112393847A (en) * 2020-10-22 2021-02-23 重庆阿泰可科技股份有限公司 Rain box capable of accurately controlling rainfall and test method for accurately controlling rainfall by rain box
CN112764131A (en) * 2020-12-28 2021-05-07 天津三电汽车空调有限公司 Test method for rainfall calibration
CN112764131B (en) * 2020-12-28 2023-03-10 天津三电汽车空调有限公司 Test method for rainfall calibration
CN113686591A (en) * 2021-08-24 2021-11-23 中国第一汽车股份有限公司 Rainfall simulation method for intelligent networked automobile
CN113686591B (en) * 2021-08-24 2023-08-18 中国第一汽车股份有限公司 Rainfall simulation method for intelligent network-connected automobile
CN113899410A (en) * 2021-12-13 2022-01-07 中国飞机强度研究所 Rainfall intensity and uniformity calibration system and calibration method for aircraft test
CN113959645A (en) * 2021-12-21 2022-01-21 中国飞机强度研究所 Airplane test rain simulation device and simulation method
CN113959645B (en) * 2021-12-21 2022-03-15 中国飞机强度研究所 Airplane test rain simulation device and simulation method
CN117312746A (en) * 2023-08-08 2023-12-29 中国科学院地理科学与资源研究所 Rainfall erosion force calculation method based on satellite rainfall data
CN117312746B (en) * 2023-08-08 2024-03-22 中国科学院地理科学与资源研究所 Rainfall erosion force calculation method based on satellite rainfall data

Similar Documents

Publication Publication Date Title
WO2020209432A1 (en) Rainfall simulator calibration system, and rainfall simulator calibration method
Mertens et al. Sensitivity of soil parameters in unsaturated zone modelling and the relation between effective, laboratory and in situ estimates
Iserloh et al. A small portable rainfall simulator for reproducible experiments on soil erosion
CN106706475B (en) In-situ rainfall infiltration and runoff distribution measurement system and method
KR101354449B1 (en) Verification method for hydrologic effectiveness performance of low impact development
Lascelles et al. Spatial and temporal variation in two rainfall simulators: implications for spatially explicit rainfall simulation experiments
CN107817207B (en) Method for calculating foundation pit permeability coefficient and automatic monitoring device thereof
Shigeta et al. Capacitive-touch-based soil monitoring device with exchangeable sensor probe
CN107063539B (en) Device for measuring roof greening live load
CN109559098A (en) A kind of low influence development facility analogy method in sponge city pilot area
CN103968883A (en) Sludge detection method and instrument
Vergni et al. Setup and calibration of the rainfall simulator of the Masse experimental station for soil erosion studies
Yu et al. Spatial and temporal scale effect in simulating hydrologic processes in a watershed
Castellini et al. Rapid and accurate measurement methods for determining soil hydraulic properties: A review
Nielsen et al. Automated rainfall simulator for variable rainfall on urban green areas
He et al. Predicting plant available water holding capacity of soils from crop yield
Sharma et al. Evaluation of soil moisture sensing technologies in silt loam and loamy sand soils: Assessment of performance, temperature sensitivity, and site-and sensor-specific calibration functions
Kesgin et al. Rainfall simulator for investigating sports field drainage processes
CN104237095B (en) Airborne dust discharge measuring system and measuring method during a kind of road-cleaning
CN111947596A (en) Quick measuring device of original place physiognomy topography under plant covers
CN109709305B (en) Slope interflow simulation device and method for simulating interflow
Toll et al. Climate change and the role of unsaturated soil mechanics
Sumitra et al. Design and deployment of wireless sensor networks for flood detection in Indonesia
KR102288433B1 (en) Integrated operation system for urban flood demonstration experiment capable of reproducing moving rainfall and time distribution
Tombul Mapping field surface soil moisture for hydrological modeling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924089

Country of ref document: EP

Kind code of ref document: A1