WO2020209283A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2020209283A1
WO2020209283A1 PCT/JP2020/015798 JP2020015798W WO2020209283A1 WO 2020209283 A1 WO2020209283 A1 WO 2020209283A1 JP 2020015798 W JP2020015798 W JP 2020015798W WO 2020209283 A1 WO2020209283 A1 WO 2020209283A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
dci
user terminal
type
pusch
Prior art date
Application number
PCT/JP2020/015798
Other languages
English (en)
French (fr)
Inventor
一樹 武田
優元 ▲高▼橋
聡 永田
リフェ ワン
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2021513666A priority Critical patent/JPWO2020209283A1/ja
Publication of WO2020209283A1 publication Critical patent/WO2020209283A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G plus (+), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
  • 5G 5th generation mobile communication system
  • 5G plus (+) 5th generation mobile communication system
  • NR New Radio
  • 3GPP Rel.15 or later, etc. 3th generation mobile communication system
  • the user terminal lowers the transmission power of the uplink control channel (for example, Physical Uplink Control Channel (PUCCH)).
  • PUCCH Physical Uplink Control Channel
  • Control is performed based on the TPC command indicated by the predetermined field (Transmission Power Control (TPC) field) value in the control information (Downlink Control Information (DCI)).
  • TPC Transmission Power Control
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH does not include a field dedicated to the resource (PUCCH resource) for the uplink control channel, and the TPC command field value is the identifier of the PUCCH resource (Acknowledgement (ACK) / Negative Acknowledgement (NACK) under predetermined conditions. ) Used as a resource identifier (ACK / NACK Resource Indicator (ARI)), ACK / NACK resource offset (ACK / NACK Resource Offset (ARO))).
  • ACK / NACK Resource Indicator (ARI) ACK / NACK resource offset
  • ARO ACK / NACK Resource Offset
  • the DCI that schedules PDSCH is a resource identifier for the uplink control channel (PUCCH resource indicator / indication) separately from the TPC command field. (PRI))), ARI, ARO, etc.) are expected to be included.
  • the DCI that schedules PUSCH includes a TPC command field and a field indicating a PUSCH resource.
  • the problem is how to use the received TPC command field value of DCI.
  • the transmission power of the uplink transmission is appropriately controlled if the TPC command indicated by at least one TPC command field value of the plurality of DCIs is not properly used. It may not be possible.
  • the present invention has been made in view of this point, and one of the objects of the present invention is to provide a user terminal and a wireless communication method capable of appropriately controlling the transmission power of uplink transmission.
  • the user terminal receives the first downlink control information (DCI) for scheduling the first type of uplink transmission, and sets the second DCI for scheduling the second type of uplink transmission.
  • the cumulative value obtained by accumulating the receiving unit to receive and the transmission power control (TPC) command obtained from the first DCI is used to determine the transmission power of the first uplink transmission, and the TPC obtained from the second DCI is used. It has a control unit that uses the addition result obtained by adding the command to the cumulative value to determine the transmission power of the second uplink transmission.
  • the transmission power of uplink transmission can be appropriately controlled.
  • FIG. 1 is a diagram showing an example of In-Order processing.
  • FIG. 2 is a diagram showing an example of Out-Of-Order processing.
  • FIG. 3 is a diagram showing an example of a method for determining the power control adjustment state.
  • FIG. 4 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 5 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • FIG. 6 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • FIG. 7 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the traffic type may be identified at the physical layer based on at least one of the following: -Logical channels with different priorities-Modulation and Coding Scheme (MCS) table (MCS index table) -Channel Quality Indication (CQI) table-DCI format-Used for scramble (mask) of Cyclic Redundancy Check (CRC) bits included (added) in the DCI (DCI format).
  • MCS Modulation and Coding Scheme
  • CQI Channel Quality Indication
  • CRC Cyclic Redundancy Check
  • the traffic type of HARQ-ACK for PDSCH may be determined based on at least one of the following: An MCS index table (for example, MCS index table 3) used to determine at least one of the PDSCH modulation order, target code rate, and transport block size (TBS).
  • An MCS index table for example, MCS index table 3
  • TBS transport block size
  • -RNTI used for CRC scrambling of DCI used for scheduling the PDSCH (for example, whether CRC scrambled by C-RNTI or MCS-C-RNTI).
  • the SR traffic type may be determined based on the upper layer parameter used as the SR identifier (SR-ID).
  • the upper layer parameter may indicate whether the SR traffic type is eMBB or URLLC.
  • the CSI traffic type may be determined based on the configuration information (CSIreportSetting) related to CSI reporting.
  • the configuration information may indicate whether the traffic type of the CSI is eMBB or URLLC.
  • the setting information may be an upper layer parameter.
  • the traffic type of PUSCH may be determined based on at least one of the following.
  • -The MCS index table used to determine at least one of the modulation order, target coding rate, and TBS of the PUSCH (for example, whether or not to use the MCS index table 3).
  • -RNTI used for CRC scrambling of DCI used for scheduling the PUSCH (for example, whether CRC scrambled by C-RNTI or MCS-C-RNTI).
  • the traffic type may be associated with communication requirements (requirements such as delay and error rate, requirements), data type (voice, data, etc.) and the like.
  • the difference between the URLLC requirement and the eMBB requirement may be that the URLLC latency is smaller than the eMBB delay, or the URLLC requirement may include a reliability requirement.
  • the eMBB user (U) plane delay requirement may include that the downlink U-plane delay is 4 ms and the uplink U-plane delay is 4 ms.
  • the URLLC U-plane delay requirement may include that the downlink U-plane delay is 0.5 ms and the uplink U-plane delay is 0.5 ms.
  • the reliability requirement of URLLC may also include a 32-byte error rate of 10-5 for a 1 ms U-plane delay.
  • PUCCH format In NR, a configuration (also referred to as a format, PUCCH format (PF), etc.) for an uplink control channel (for example, PUCCH) used for transmitting uplink control information (UCI) is being studied.
  • PUCCH uplink control information
  • the UCI uses delivery confirmation information (Hybrid Automatic Repeat reQuest-ACKnowledgement (HARQ-ACK), ACKnowledgement / Non-ACK (ACK / NACK)), scheduling for the downlink shared channel (for example, Physical Downlink Shared Channel (PDSCH)).
  • delivery confirmation information Hybrid Automatic Repeat reQuest-ACKnowledgement (HARQ-ACK), ACKnowledgement / Non-ACK (ACK / NACK)
  • ACK/ NACK ACKnowledgement / Non-ACK
  • PDSCH Physical Downlink Shared Channel
  • SR Service Request
  • CSI Channel State Information
  • PUCCH format (also referred to as PF0, short PUCCH, etc.) used for transmission of 1 or 2 bit UCI (eg, at least one of HARQ-ACK and SR) and transmitted with 1 or 2 symbols.
  • PUCCH format (also referred to as PF1, long PUCCH, etc.), which is used for transmission of 1 or 2 bit UCI (for example, at least one of HARQ-ACK and SR) and is transmitted with 4 or more symbols.
  • -PUCCH format (also called PF2, short PUCCH, etc.), which is used to transmit UCI larger than 2 bits and is transmitted with 1 or 2 symbols.
  • -PUCCH format also called PF3, long PUCCH, etc.
  • a PUCCH format (also referred to as PF4, long PUCCH, etc.) that is used to transmit UCI larger than 2 bits, is transmitted with 4 or more symbols, and has a PUCCH resource containing an orthogonal cover code (OCC).
  • OCC orthogonal cover code
  • the PUCCH in the PUCCH format as described above may be transmitted in a specific cell in a group including one or more cells (also referred to as a cell group (CG: Cell Group), PUCCH group, etc.).
  • the specific cell may be, for example, a primary cell (PCell: Primary Cell), a primary secondary cell (PSCell: Primary Secondary Cell), a secondary cell for PUCCH transmission (SCell: Secondary Cell, PUCCH-SCell), or the like. ..
  • the "cell” may also be paraphrased as a serving cell, a component carrier (CC: Component Carrier), a carrier, or the like.
  • a set of one or more resources (PUCCH resources) for PUCCH may be configured by upper layer signaling.
  • the setting by upper layer signaling is from a base station (BS (Base Station), transmission / reception point (TRP: Transmission / Reception Point), eNB (eNodeB), gNB (NR NodeB), etc.) to a user terminal (UE (UE (UE)).
  • UE User Equipment
  • terminals MS (Mobile station), etc.
  • the upper layer signaling may be, for example, at least one of the following: ⁇ RRC (Radio Resource Control) signaling, -MAC (Medium Access Control) signaling (for example, MAC CE (Control Element), MAC PDU (Protocol Data Unit)), -Information transmitted by a broadcast channel (for example, PBCH: Physical Broadcast Channel) (for example, Master Information Block (MIB)), -System information (for example, system information block (SIB), minimum system information (RMSI: Remaining Minimum System Information), other system information (OSI: Other System Information)).
  • RRC Radio Resource Control
  • -MAC Medium Access Control
  • MAC CE Control Element
  • MAC PDU Protocol Data Unit
  • -Information transmitted by a broadcast channel for example, PBCH: Physical Broadcast Channel
  • MIB Master Information Block
  • SIB system information block
  • SIB minimum system information
  • OSI Other System Information
  • a set containing one or more PUCCH resources may be set by upper layer signaling for each partial band (bandwidth part (BWP: Bandwidth Part)) set in the CC. ..
  • BWP Bandwidth Part
  • each PUCCH resource in the PUCCH resource set set by the upper layer signaling is a predetermined field (PUCCH resource identifier (PRI: PUCCH resource indicator / indication) field, ACK / NACK resource identifier (ARI: ACK / NACK) in the DCI. It may be associated with each value of the Resource Indicator) field, the ACK / NACK resource offset (ARO: ACK / NACK Resource Offset) field, the second field, and the like).
  • the DCI may be a DCI (DL assignment, DCI format 1_0 or 1_1) used for PDSCH scheduling.
  • the user terminal determines the PUCCH resource used for UCI transmission based on the value of the PRI field in the DCI.
  • the PUCCH resource for UCI transmission may be determined based on other parameters.
  • the other parameters may include at least one of the following: -A control channel element (CCE) in a control resource set (CORESET: Control Resource Set) p for receiving a downlink control channel (for example, PDCCH: Physical Downlink Control Channel) that transmits DCI including a PRI field. Number ( NCCE, p ) -Index (n CCE, p , CCE index) of CCE (for example, first CCE) for reception of the downlink control channel.
  • CCE control channel element
  • Each PUCCH resource includes, for example, the number of symbols assigned to the PUCCH, the start index of the symbol, the resource block assigned to the PUCCH (also referred to as a physical resource block (PRB)), the start index of the resource block, and the like. It may include at least one such as whether or not frequency hopping is applied in the slot, the start index of the PRB of the second hop when frequency hopping is applied, and the like.
  • PRB physical resource block
  • each PUCCH resource may include the PUCCH format-specific resources associated with the PUCCH format (for example, initial cyclic shift of PF0, OCC in the time domain of PF1, OCC length of PF4, OCC index, etc.). Good.
  • the transmission power of PUCCH is the TPC command (value, increase / decrease value, correction value), indicated value indicated by the value of a predetermined field (also referred to as TPC command field, first field, etc.) in DCI. , Etc.).
  • b, f, c (i , q u, q d, l)) may be represented by the following formula (1).
  • the power control adjustment state may be set by the upper layer parameter whether it has a plurality of states (for example, two states) or a single state. Further, when a plurality of power control adjustment states are set, one of the plurality of power control adjustment states may be identified by the index l (for example, l ⁇ ⁇ 0,1 ⁇ ).
  • the power control adjustment state may be referred to as a PUCCH power control adjustment state (PUCCH power control adjustment state), a first or second state, or the like.
  • the PUCCH transmission opportunity i is a predetermined period during which the PUCCH is transmitted, and may be composed of, for example, one or more symbols, one or more slots, and the like.
  • PCMAX, f, c (i) is, for example, the transmission power (also referred to as the maximum transmission power) of the user terminal set for the carrier f of the cell c in the transmission opportunity i.
  • P O_PUCCH, b, f, c (q u) for example, parameters relating to the target received power is set for BWP b of the carrier f of cell c in the transmission opportunity i (e.g., parameters related to transmission power offset, the transmission power It is also referred to as offset P0 or target received power parameter).
  • M PUCCH RB, b, f, c (i) is, for example, the number of resource blocks (bandwidth) allocated to PUCCH for the transmission opportunity i in the upstream BWP b of the carrier f of the cell c and the subcarrier interval ⁇ .
  • PL b, f, c (q d ) are path losses calculated at the user terminal using, for example, the index q d of the reference signal for the downlink BWP associated with the uplink BWP b of the carrier f in cell c.
  • ⁇ F_PUCCH (F) is an upper layer parameter given for each PUCCH format.
  • ⁇ TF, b, f, c (i) are transmission power adjustment components (offsets) for the upstream BWP b of the carrier f of the cell c.
  • g b, f, c (i, l) are values based on the TPC command of the power control adjustment state index l of the upstream BWP of the carrier f of the cell c and the transmission opportunity i (for example, the power control adjustment state, the TPC command). Cumulative value).
  • the cumulative value of the TPC command may be expressed by the equation (2).
  • ⁇ PUCCH, b, f, c (i last , i, K PUCCH , l) is, for example, the carrier f of the cell c for the transmission opportunity i after the transmission opportunity i last of the immediately preceding PUCCH. It may be the TPC command indicated by the TPC command field value in the DCI (for example, DCI format 1_0 or 1-11) detected by the uplink BWP b of the above, or a specific Radio Network Temporary Identifier (RNTI) (for example, TPC-PUCCH). -The TPC command indicated by the TPC command field value in the DCI (eg, DCI format 2_2) having the CRC parity bit scrambled with (RNTI) may be.
  • RNTI Radio Network Temporary Identifier
  • equations (1) and (2) are merely examples and are not limited to these.
  • the user terminal may control the transmission power of the PUCCH based on at least one parameter exemplified in the equations (1) and (2), may include additional parameters, or omit some parameters. May be done. Further, in the above equations (1) and (2), the transmission power of the PUCCH is controlled for each BWP of a certain carrier of a certain cell, but the present invention is not limited to this. At least some of the cell, carrier, BWP, and power control adjustment states may be omitted.
  • the DCI for scheduling the PUSCH (eg, DCI formats 0_0, 0_1) may specify the PUSCH resource.
  • the DCI may include a frequency domain resource assignment field and a time domain resource assignment field for indicating the PUSCH resource.
  • the UE may set a periodic PUSCH resource by upper layer signaling (configured grant transmission).
  • the UE may initiate transmissions using PUSCH resources only in response to higher layer signaling (type 1), or initiate transmissions using PUSCH resources in response to higher layer signaling and activation (eg DCI). You may (type 2).
  • the transmission power of PUSCH is set to the TPC command (also referred to as value, increase / decrease value, correction value, etc.) indicated by the value of a predetermined field (also referred to as TPC command field, first field, etc.) in DCI. It is controlled based on.
  • TPC command also referred to as value, increase / decrease value, correction value, etc.
  • a predetermined field also referred to as TPC command field, first field, etc.
  • the transmission is transmitted.
  • the transmission power of PUSCH ( PP PUSCH, b, f, c (i, j, q d , l)) in i may be expressed by the following equation (3).
  • the power control adjustment state may be set by the upper layer parameter whether it has a plurality of states (for example, two states) or a single state. Further, when a plurality of power control adjustment states are set, one of the plurality of power control adjustment states may be identified by the index l (for example, l ⁇ ⁇ 0,1 ⁇ ).
  • the power control adjustment state may be referred to as a PUSCH power control adjustment state, a first or second state, or the like.
  • the PUSCH transmission opportunity i is a predetermined period during which the PUSCH is transmitted, and may be composed of, for example, one or more symbols, one or more slots, and the like.
  • PCMAX, f, c (i) are, for example, the transmission power (also referred to as the maximum transmission power) of the user terminal set for the carrier f of the cell c in the transmission opportunity i.
  • PO_PUSCH, b, f, c (j) is, for example, a parameter related to the target received power set for the BWP b of the carrier f of the cell c in the transmission opportunity i (for example, a parameter related to the transmission power offset, a transmission power offset).
  • P0 also referred to as a target received power parameter, etc.).
  • M PUSCH RB, b, f, c (i) is, for example, the number of resource blocks (bandwidth) allocated to the PUSCH for the transmission opportunity i in the upstream BWP b of the carrier f of the cell c and the subcarrier interval ⁇ .
  • ⁇ b, f, c (j) are values provided by the upper layer parameters (eg, also referred to as msg3-Alpha, p0-PUSCH-Alpha, fractional factors, etc.).
  • PL b, f, c (q d ) is, for example, a path loss (path loss compensation) calculated by the user terminal using the index q d of the reference signal for the downlink BWP associated with the uplink BWP b of the carrier f of the cell c. Is.
  • ⁇ TF, b, f, c are transmission power adjustment components (offset, transmission format compensation) for the upstream BWP b of the carrier f of the cell c.
  • f b, f, c (i, l) are values based on the TPC command of the power control adjustment state index l of the upstream BWP of the carrier f of the cell c and the transmission opportunity i (for example, the power control adjustment state, the TPC command).
  • the cumulative value of the TPC command may be expressed by the equation (4).
  • ⁇ PUSCH, b, f, c (i last , i, K PUSCH , l) is, for example, the carrier f of the cell c for the transmission opportunity i after the transmission opportunity i last of the immediately preceding PUSCH. It may be a TPC command indicated by a TPC command field value in the DCI (for example, DCI format 0_0 or 0_1) detected by the uplink BWP b, or a specific RNTI (Radio Network Temporary Identifier) (for example, TPC-PUSCH). -The TPC command indicated by the TPC command field value in the DCI (eg, DCI format 2_2) having the CRC parity bit scrambled with (RNTI) may be.
  • RNTI Radio Network Temporary Identifier
  • equations (3) and (4) are merely examples and are not limited to these.
  • the user terminal may control the transmission power of the PUSCH based on at least one parameter exemplified in the equations (3) and (4), may include additional parameters, or omit some parameters. May be done. Further, in the above equations (3) and (4), the transmission power of the PUSCH is controlled for each BWP of a certain carrier of a certain cell, but the present invention is not limited to this. At least some of the cell, carrier, BWP, and power control adjustment states may be omitted.
  • the transmission power of PUCCH or PUSCH when controlling the transmission power of PUCCH or PUSCH based on the cumulative value of TPC commands, if a plurality of DCIs including the TPC command field value are detected, the TPC indicated by the TPC command field value in which DCI is detected. The question is whether to accumulate commands.
  • TPC accumulation for both PUSCH and PUCCH is specified on the premise that the order of all transmissions follows the order of scheduling. There is only one accumulator for each power control adjustment state of PUCCH or PUSCH.
  • three PUSCHs A, B, and C are scheduled by three DCIs, respectively.
  • the order of the three PUSCHs is equal to the order of the corresponding three DCIs.
  • the transmission opportunities (occasions) of PUSCH A, B, and C are A, B, and C, respectively, and the TPC commands obtained from the DCI for scheduling PUSCH A, B, and C are TPC A , TPC B , and TPC C , respectively.
  • the PUSCH power control state at each transmission opportunity of PUSCH A, B, and C is given by the following equation.
  • only one power control adjustment state follows.
  • the UE receives a new TPC command via the UE-specific DCI or group-specific DCI, it updates the power control adjustment state, uses the updated power control adjustment state, and updates the updated power control adjustment state in the future. Used for.
  • PUSCHs A, B, C, and D are scheduled by four DCIs, respectively.
  • PUSCH B and PUSCH C are OOO processing. It is assumed that the priority of PUSCH C is higher than the priority of PUSCH B, and PUSCH C does not allow a long scheduling latency (latency).
  • the transmission opportunities of PUSCH A, B, and C are set to A, B, C, and D, respectively, and the TPC commands obtained from the DCI for scheduling PUSCH A, B, C, and D are TPC A , TPC B , TPC C , and TPC, respectively. Let it be D. Rel.
  • the power control adjustment state at the transmission opportunity of PUSCH A, B, C, D is given by the following equation.
  • UL power updates independent. This can be achieved by explicitly indicating the priority of the channels in the physical layer and ensuring that OOO's HARQ-ACK and PUSCH scheduling across channels of different priority is restricted.
  • the plurality of transmissions are in order (in-order processing), and Rel. 15 NR TPC accumulation can be used.
  • the present inventors have studied a method for appropriately controlling the transmission power of a plurality of types of UL transmission, and have reached the present invention.
  • the TPC command field value in each DCI may indicate an increase / decrease value (dB) of transmission power.
  • the TPC command field values "0", “1", “2”, and “3” may indicate -1, 0, +1, and +3 [dB], respectively.
  • the increase / decrease value and the correspondence between the values are not limited to these.
  • UL transmission, UL channel, UL signal, PUSCH, PUCCH, SRS may be read as each other.
  • the UE may identify the type of UL transmission.
  • the type may correspond to a traffic type, a priority, a UL transmission type, a channel type, a signal type, or a combination thereof.
  • the traffic type may be one of URLLC, eMBB, mMTC, IoT, Industrial Internet of Things (IIoT, Industrial IoT), and eURLLC.
  • the channel may be one of PUCCH, SRS, which carries HARQ-ACK for PUSCH, PDSCH.
  • the UE may distinguish (identify) the priority associated with UL transmission by the physical layer.
  • the UE may recognize the priority based on the DCI for scheduling UL transmissions.
  • the priority may be associated with the information obtained from DCI.
  • the information obtained from the DCI may be at least one of the DCI format, the payload size of the DCI, the RNTI used for scrambling the CRC of the DCI, and the predetermined DCI field.
  • the TPC command for the first traffic type is for the first traffic type. It may be a correction value (for example, ⁇ ) accumulated with respect to the power control adjustment state (for example, the cumulative value of the TPC command).
  • the TPC command for the second traffic type may be a relative value (eg, ⁇ ) to the power control adjustment state for the first traffic type.
  • the UE may have an accumulator for the first traffic type and may not have an accumulator for the second traffic type.
  • the priority of the second traffic type may be higher than the priority of the first traffic type, or may be lower than the priority of the first traffic type.
  • the UE may recognize the first traffic type based on the DCI.
  • the UE may calculate the power control adjustment state for the first traffic type by accumulating the TPC commands (eg, indicated value, correction value, ⁇ ) associated with the TPC command field value in the DCI.
  • the UE may recognize the second traffic type based on the DCI.
  • the UE adds the TPC command (eg, indicated value, relative value, ⁇ ) associated with the TPC command field value in the DCI to the power control adjustment state for the first traffic type to create a second traffic type.
  • the power control adjustment state for use may be calculated.
  • the UE determines the transmission power of the UL transmission of the first traffic type based on the power control adjustment state for UL transmission of the first traffic type, and is based on the power control adjustment state for UL transmission of the first traffic type. , The transmission power of the UL transmission of the second traffic type may be determined.
  • the UL transmission of a specific type of the first traffic type may be an eMBB PUSCH
  • the UL transmission of a specific type of the second traffic type may be a URLLC PUSCH
  • a specific type of UL transmission of the first traffic type may be a PUCCH carrying HARQ-ACK for the eMBB PDSCH
  • a specific type of UL transmission of the second traffic type may be a PUCCH carrying HARQ-ACK for the URLLC PDSCH. ..
  • the first traffic type is eMBB
  • the second traffic type is URLLC
  • UL transmission is PUSCH.
  • the UE calculates (determines) the power control adjustment state for URLLC PUSCH as X + a.
  • a may be any of -3, -1, 0, +3 [dB].
  • the UE does not have to accumulate TPC commands for URLLC PUSCH and does not accumulate TPC commands for URLLC PUSCH.
  • the UE can obtain the cumulative value of the TPC command for another traffic type and the TPC command for the specific traffic type. Based on one value (instantaneous value, spike, burst), the power control tuning state for a particular traffic type can be determined.
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 4 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the wireless communication system 1 may support dual connectivity between a plurality of Radio Access Technology (RAT) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC is a dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and a dual connectivity between NR and LTE (NR-E).
  • -UTRA Dual Connectivity (NE-DC) may be included.
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is MN
  • the LTE (E-UTRA) base station (eNB) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the host station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • downlink shared channels Physical Downlink Shared Channel (PDSCH)
  • broadcast channels Physical Broadcast Channel (PBCH)
  • downlink control channels Physical Downlink Control
  • Channel PDCCH
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • PDSCH User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • MIB Master Information Block
  • PBCH Master Information Block
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • the PDSCH may be read as DL data
  • the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect the PDCCH.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, may be called Hybrid Automatic Repeat reQuest ACK knowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request (Scheduling Request ( Uplink Control Information (UCI) including at least one of SR)
  • the PRACH may transmit a random access preamble for establishing a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" at the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DeModulation Demodulation reference signal
  • Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 5 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • the functional blocks of the feature portion in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmission / reception unit 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, the Packet Data Convergence Protocol (PDCP) layer and the Radio Link Control (RLC) layer for data, control information, etc. acquired from the control unit 110 (for example,).
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted.
  • the base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog transform, and other transmission processing.
  • IFFT inverse fast Fourier transform
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, demapping, demodulating, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measuring unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
  • the transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmitting / receiving unit 120 and the transmitting / receiving antenna 130.
  • FIG. 6 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmission / reception unit 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data, control information, etc. acquired from the control unit 210.
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmission processing unit 2211 described above for transmitting a channel (for example, PUSCH) using the DFT-s-OFDM waveform when the transform precoding is enabled.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. to the radio frequency band on the baseband signal, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmission unit and the reception unit of the user terminal 20 in the present disclosure may be composed of at least one of the transmission / reception unit 220, the transmission / reception antenna 230, and the transmission line interface 240.
  • the transmission / reception unit 220 receives the first downlink control information (DCI) for scheduling the first uplink transmission of the first type (for example, PUCCH carrying HARQ-ACK for eMBB PUSCH, eMBB PDSCH, etc.), and receives the second downlink control information (DCI).
  • DCI downlink control information
  • a second DCI for scheduling a second uplink transmission of type eg, URLLC PUSCH, PUCCH carrying HARQ-ACK for URLLC PDSCH, etc.
  • the control unit 210 uses the cumulative value (for example, the power control adjustment state) obtained by accumulating the transmission power control (TPC) command obtained from the first DCI to determine the transmission power of the first uplink transmission.
  • the addition result for example, power control adjustment state
  • obtained by adding the TPC command obtained from the second DCI to the cumulative value may be used to determine the transmission power of the second uplink transmission.
  • the priority of the second type may be higher than the priority of the first type.
  • At least one of the DCI format, the payload size of the DCI, the radio network temporary identifier (RNTI) used for scrambling the CRC of the DCI, and the predetermined DCI field may be different between the first DCI and the second DCI.
  • RNTI radio network temporary identifier
  • the order of the first uplink transmission and the second uplink transmission may be different from the order of the first DCI and the second DCI (for example, OOO processing).
  • each functional block is realized by using one physically or logically connected device, or directly or indirectly (for example, two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the method of realizing each of them is not particularly limited.
  • the base station, user terminal, etc. in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 7 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, hard disk drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). It may be configured to include.
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings.
  • channels, symbols and signals may be read interchangeably.
  • the signal may be a message.
  • the reference signal may also be abbreviated as RS, and may be referred to as a pilot, a pilot signal, or the like depending on the applied standard.
  • the component carrier (Component Carrier (CC)) may be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
  • the wireless frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • Physical RB Physical RB (PRB)
  • SCG sub-carrier Group
  • REG resource element group
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
  • the common RB may be specified by an index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may be voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to another device.
  • Notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using other methods.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB master information block
  • SIB system information block
  • MAC medium access control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted to mean.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • Network may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • Base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • RP Reception point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio). Communication services can also be provided by Head (RRH))).
  • RRH Head
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • communication between a base station and a user terminal has been replaced with communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the uplink, downlink, and the like may be read as side channels.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New-Radio Access Technology RAT
  • NR New Radio
  • NX New radio access
  • Future generation radio access FX
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • LTE 802.16 WiMAX (registered trademark)
  • a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
  • references to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as “judgment (decision)” such as “accessing” (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” of solving, selecting, choosing, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • the "maximum transmission power" described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal UE maximum transmit power, or may mean the rated maximum transmission power (the). It may mean rated UE maximum transmit power).
  • connection are any direct or indirect connections or connections between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “joined” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

ユーザ端末は、第1タイプの第1上り送信のスケジューリング用の第1下り制御情報(DCI)を受信し、第2タイプの第2上り送信のスケジューリング用の第2DCIを受信する受信部と、前記第1DCIから得られる送信電力制御(TPC)コマンドを累積することによって得られる累積値を、前記第1上り送信の送信電力の決定に用い、前記第2DCIから得られるTPCコマンドを前記累積値へ加算することによって得られる加算結果を、前記第2上り送信の送信電力の決定に用いる制御部と、を有する。

Description

ユーザ端末及び無線通信方法
 本開示は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G plus(+)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 また、既存のLTEシステム(例えば、LTE Rel.8-13、以下、単にLTEとも表記する)では、ユーザ端末は、上り制御チャネル(例えば、Physical Uplink Control Channel(PUCCH))の送信電力を、下り制御情報(Downlink Control Information(DCI))内の所定フィールド(送信電力制御(Transmission Power Control(TPC))フィールド)値が示すTPCコマンドに基づいて制御する。
 LTEでは、PDSCHをスケジューリングするDCIは、上り制御チャネル用のリソース(PUCCHリソース)専用のフィールドを含まず、TPCコマンドフィールド値が所定の条件でPUCCHリソースの識別子(Acknowledgement(ACK)/Negative Acknowledgement(NACK)リソース識別子(ACK/NACK Resource Indicator(ARI))、ACK/NACKリソースオフセット(ACK/NACK Resource Offset(ARO)))として利用される。
 一方、将来の無線通信システム(以下、単にNRとも表記する)では、PDSCHをスケジューリングするDCIは、TPCコマンドフィールドとは別に、上り制御チャネル用のリソースの識別子(PUCCHリソース識別子(PUCCH resource indicator/indication(PRI))、ARI、ARO等ともいう)用のフィールドを含むことが想定される。
 また、NRでは、PUSCHをスケジューリングするDCIは、TPCコマンドフィールドと、PUSCHリソースを示すフィールドと、を含むことが想定される。
 NRでは、受信したDCIのTPCコマンドフィールド値をどのように利用するかが問題となる。複数の上りチャネルにそれぞれ関連付けられる複数のDCIが検出される場合、当該複数のDCIの少なくとも一つのTPCコマンドフィールド値が示すTPCコマンドが適切に利用されなければ、上り送信の送信電力を適切に制御できないおそれがある。
 本発明はかかる点に鑑みてなされたものであり、上り送信の送信電力を適切に制御可能なユーザ端末及び無線通信方法を提供することを目的の一つとする。
 本開示の一態様に係るユーザ端末は、第1タイプの第1上り送信のスケジューリング用の第1下り制御情報(DCI)を受信し、第2タイプの第2上り送信のスケジューリング用の第2DCIを受信する受信部と、前記第1DCIから得られる送信電力制御(TPC)コマンドを累積することによって得られる累積値を、前記第1上り送信の送信電力の決定に用い、前記第2DCIから得られるTPCコマンドを前記累積値へ加算することによって得られる加算結果を、前記第2上り送信の送信電力の決定に用いる制御部と、を有する。
 本開示の一態様によれば、上り送信の送信電力を適切に制御できる。
図1は、In-Order処理の一例を示す図である。 図2は、Out-Of-Order処理の一例を示す図である。 図3は、電力制御調整状態の決定方法の一例を示す図である。 図4は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図5は、一実施形態に係る基地局の構成の一例を示す図である。 図6は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図7は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
(サービス(トラフィックタイプ))
 将来の無線通信システム(例えば、NR)では、モバイルブロードバンドのさらなる高度化(例えば、enhanced Mobile Broadband(eMBB))、多数同時接続を実現するマシンタイプ通信(例えば、massive Machine Type Communications(mMTC)、Internet of Things(IoT))、高信頼かつ低遅延通信(例えば、Ultra-Reliable and Low-Latency Communications(URLLC))などのトラフィックタイプ(タイプ、サービス、サービスタイプ、通信タイプ、ユースケース、等ともいう)が想定される。例えば、URLLCでは、eMBBより小さい遅延及びより高い信頼性が要求される。
 トラフィックタイプは、物理レイヤにおいては、以下の少なくとも一つに基づいて識別されてもよい。
・異なる優先度(priority)を有する論理チャネル
・変調及び符号化方式(Modulation and Coding Scheme(MCS))テーブル(MCSインデックステーブル)
・チャネル品質指示(Channel Quality Indication(CQI))テーブル
・DCIフォーマット
・当該DCI(DCIフォーマット)に含まれる(付加される)巡回冗長検査(CRC:Cyclic Redundancy Check)ビットのスクランブル(マスク)に用いられる(無線ネットワーク一時識別子(RNTI:System Information-Radio Network Temporary Identifier))
・RRC(Radio Resource Control)パラメータ
・特定のRNTI(例えば、URLLC用のRNTI、MCS-C-RNTI等)
・サーチスペース
・DCI内の所定フィールド(例えば、新たに追加されるフィールド又は既存のフィールドの再利用)
 具体的には、PDSCHに対するHARQ-ACKのトラフィックタイプは、以下の少なくとも一つに基づいて決定されてもよい。
・当該PDSCHの変調次数(modulation order)、ターゲット符号化率(target code rate)、トランスポートブロックサイズ(TBS:Transport Block size)の少なくとも一つの決定に用いられるMCSインデックステーブル(例えば、MCSインデックステーブル3を利用するか否か)
・当該PDSCHのスケジューリングに用いられるDCIのCRCスクランブルに用いられるRNTI(例えば、C-RNTI又はMCS-C-RNTIのどちらでCRCスクランブルされるか)
 また、SRのトラフィックタイプは、SRの識別子(SR-ID)として用いられる上位レイヤパラメータに基づいて決定されてもよい。当該上位レイヤパラメータは、当該SRのトラフィックタイプがeMBB又はURLLCのいずれであるかを示してもよい。
 また、CSIのトラフィックタイプは、CSI報告に関する設定(configuration)情報(CSIreportSetting)に基づいて決定されてもよい。当該設定情報は、当該CSIのトラフィックタイプがeMBB又はURLLCのいずれであるかを示してもよい。また、当該設定情報は、上位レイヤパラメータであってもよい。
 また、PUSCHのトラフィックタイプは、以下の少なくとも一つに基づいて決定されてもよい。
・当該PUSCHの変調次数、ターゲット符号化率、TBSの少なくとも一つの決定に用いられるMCSインデックステーブル(例えば、MCSインデックステーブル3を利用するか否か)
・当該PUSCHのスケジューリングに用いられるDCIのCRCスクランブルに用いられるRNTI(例えば、C-RNTI又はMCS-C-RNTIのどちらでCRCスクランブルされるか)
 トラフィックタイプは、通信要件(遅延、誤り率などの要件、要求条件)、データ種別(音声、データなど)などに関連付けられてもよい。
 URLLCの要件とeMBBの要件の違いは、URLLCの遅延(latency)がeMBBの遅延よりも小さいことであってもよいし、URLLCの要件が信頼性の要件を含むことであってもよい。
 例えば、eMBBのuser(U)プレーン遅延の要件は、下りリンクのUプレーン遅延が4msであり、上りリンクのUプレーン遅延が4msであること、を含んでもよい。一方、URLLCのUプレーン遅延の要件は、下りリンクのUプレーン遅延が0.5msであり、上りリンクのUプレーン遅延が0.5msであること、を含んでもよい。また、URLLCの信頼性の要件は、1msのUプレーン遅延において、32バイトの誤り率が10-5であることを含んでもよい。
 また、enhanced Ultra Reliable and Low Latency Communications(eURLLC)として、主にユニキャストデータ用のトラフィックの信頼性(reliability)の高度化が検討されている。以下において、URLLC及びeURLLCを区別しない場合、単にURLLCと呼ぶ。
(PUCCHフォーマット)
 NRでは、上り制御情報(Uplink Control Information(UCI))の送信に用いられる上り制御チャネル(例えば、PUCCH)用の構成(フォーマット、PUCCHフォーマット(PF)等ともいう)が検討されている。
 ここで、UCIは、下り共有チャネル(例えば、Physical Downlink Shared Channel(PDSCH))に対する送達確認情報(Hybrid Automatic Repeat reQuest-ACKnowledgement(HARQ-ACK)、ACKnowledgement/Non-ACK(ACK/NACK))、スケジューリング要求(Scheduling Request(SR))、チャネル状態情報(Channel State Information(CSI))の少なくとも一つを含んでもよい。
 例えば、NRでは、以下のPUCCHフォーマットが検討されている:
・1又は2ビットのUCI(例えば、HARQ-ACK及びSRの少なくとも一つ)の送信に用いられ、1又は2シンボルで送信されるPUCCHフォーマット(PF0、ショートPUCCH等ともいう)、
・1又は2ビットのUCI(例えば、HARQ-ACK及びSRの少なくとも一つ)の送信に用いられ、4シンボル以上で送信されるPUCCHフォーマット(PF1、ロングPUCCH等ともいう)、
・2ビットより大きいUCIの送信に用いられ、1又は2シンボルで送信されるPUCCHフォーマット(PF2、ショートPUCCH等ともいう)、
・2ビットより大きいUCIの送信に用いられ、4シンボル以上で送信されるPUCCHフォーマット(PF3、ロングPUCCH等ともいう)、
・2ビットより大きいUCIの送信に用いられ、4シンボル以上で送信され、PUCCHリソースが直交カバーコード(OCC:Orthogonal Cover Code)を含むPUCCHフォーマット(PF4、ロングPUCCH等ともいう)。
 以上のようなPUCCHフォーマットのPUCCHは、一以上のセルを含むグループ(セルグループ(CG:Cell Group)、PUCCHグループ等ともいう)内の特定のセルで送信されてもよい。当該特定のセルは、例えば、プライマリセル(PCell:Primary Cell)、プライマリセカンダリセル(PSCell:Primary Secondary Cell)、PUCCH送信用のセカンダリセル(SCell:Secondary Cell、PUCCH-SCell)等であってもよい。なお、「セル」は、サービングセル、コンポーネントキャリア(CC:Component Carrier)、キャリア等とも言い換えられてもよい。
(PUCCHリソース)
 また、NRでは、PUCCH用の一以上のリソース(PUCCHリソース)のセットが上位レイヤシグナリングによりに設定(configure)されてもよい。なお、上位レイヤシグナリングによる設定とは、基地局(BS(Base Station)、送受信ポイント(TRP:Transmission/Reception Point)、eNB(eNodeB)、gNB(NR NodeB)等ともいう)からユーザ端末(UE(User Equipment)、端末、MS(Mobile station)等ともいう)に対して設定(configuration)情報を通知することであってもよい。
 また、上位レイヤシグナリングは、例えば、以下の少なくとも一つであればよい:
・RRC(Radio Resource Control)シグナリング、
・MAC(Medium Access Control)シグナリング(例えば、MAC制御要素(MAC CE(Control Element))、MAC PDU(Protocol Data Unit))、
・ブロードキャストチャネル(例えば、PBCH:Physical Broadcast Channel)によって伝送される情報(例えば、マスタ情報ブロック(MIB:Master Information Block))、
・システム情報(例えば、システム情報ブロック(SIB:System Information Block)、最低限のシステム情報(RMSI:Remaining Minimum System Information)、他のシステム情報(OSI:Other System Information))。
 例えば、一以上のPUCCHリソースを含むセット(PUCCHリソースセット)は、CC内に設定される部分的な帯域(帯域幅部分(BWP:Bandwidth Part))毎に、上位レイヤシグナリングにより設定されてもよい。
 また、上位レイヤシグナリングにより設定されるPUCCHリソースセット内の各PUCCHリソースは、DCI内の所定フィールド(PUCCHリソース識別子(PRI:PUCCH resource indicator/indication)フィールド、ACK/NACKリソース識別子(ARI:ACK/NACK Resource Indicator)フィールド、ACK/NACKリソースオフセット(ARO:ACK/NACK Resource Offset)フィールド、第2のフィールド等ともいう)の各値に関連付けられてもよい。当該DCIは、PDSCHのスケジューリングに用いられるDCI(DLアサインメント、DCIフォーマット1_0又は1_1)であってもよい。
 ユーザ端末は、DCI内のPRIフィールドの値に基づいて、UCIの送信に用いられるPUCCHリソースを決定する。当該PRIフィールドはxビット(例えば、x=3)であってもよい。PUCCHリソースセットが2のx乗(例えば、x=3なら8)以下のPUCCHリソースを含む場合、ユーザ端末は、PRIフィールドの値に関連付けられるPUCCHリソースをUCIの送信用に決定してもよい。
 一方、PUCCHリソースセットが2のx乗(例えば、x=3なら8)を超えるPUCCHリソースを含む場合、ユーザ端末は、PRIフィールドの値(ΔPRI、PRI、ARI、ARO等ともいう)に加えて、他のパラメータに基づいて、UCIの送信用のPUCCHリソースを決定してもよい。当該他のパラメータは、以下の少なくとも一つを含んでもよい。
・PRIフィールドを含むDCIを伝送する下り制御チャネル(例えば、PDCCH:Physical Downlink Control Channel)の受信用の制御リソースセット(CORESET:Control Resource Set)p内の制御チャネル要素(CCE:Control Channel Element)の数(NCCE,p
・当該下り制御チャネルの受信用のCCE(例えば、最初のCCE)のインデックス(nCCE,p、CCEインデックス)
 なお、各PUCCHリソースは、例えば、PUCCHに割り当てられるシンボル数、シンボルの開始インデックス、PUCCHに割り当てられるリソースブロック(物理リソースブロック(PRB:Physical Resource Block)等ともいう)、当該リソースブロックの開始インデックス、スロット内で周波数ホッピングを適用するか否か、周波数ホッピングが適用される場合の第2ホップのPRBの開始インデックス等の少なくとも一つを含んでもよい。
 また、各PUCCHリソースには、上記PUCCHフォーマットが関連付けられ、関連付けられるPUCCHフォーマット固有のリソース(例えば、PF0の初期巡回シフト、PF1の時間領域のOCC、PF4のOCC長、OCCインデックス等)を含んでもよい。
(PUCCH用の送信電力制御)
 また、NRでは、PUCCHの送信電力は、DCI内の所定フィールド(TPCコマンドフィールド、第1のフィールド等ともいう)の値が示すTPCコマンド(値、増減値、補正値(correction value)、指示値、等ともいう)に基づいて制御される。
 例えば、電力制御調整状態(power control adjustment state)のインデックスlを用いたセルcのキャリアfのBWP bについての送信機会(transmission occasion)(送信期間等ともいう)iにおけるPUCCHの送信電力(PPUCCH、b,f,c(i,q,q,l))は、下記式(1)で表されてもよい。
 ここで、電力制御調整状態は、上位レイヤパラメータによって複数の状態(例えば、2状態)を有するか、又は、単一の状態を有するかが設定されてもよい。また、複数の電力制御調整状態が設定される場合、インデックスl(例えば、l∈{0,1})によって当該複数の電力制御調整状態の一つが識別されてもよい。電力制御調整状態は、PUCCH電力制御調整状態(PUCCH power control adjustment state)、第1又は第2の状態等と呼ばれてもよい。
 また、PUCCHの送信機会iは、PUCCHが送信される所定期間であり、例えば、一以上のシンボル、一以上のスロット等で構成されてもよい。
Figure JPOXMLDOC01-appb-M000001
 式(1)において、PCMAX,f,c(i)は、例えば、送信機会iにおけるセルcのキャリアf用に設定されるユーザ端末の送信電力(最大送信電力等ともいう)である。PO_PUCCH,b,f,c(q)は、例えば、送信機会iにおけるセルcのキャリアfのBWP b用に設定される目標受信電力に係るパラメータ(例えば、送信電力オフセットに関するパラメータ、送信電力オフセットP0、又は、目標受信電力パラメータ等ともいう)である。
 MPUCCH RB,b,f,c(i)は、例えば、セルc及びサブキャリア間隔μのキャリアfの上りBWP bにおける送信機会i用にPUCCHに割り当てられるリソースブロック数(帯域幅)である。PLb,f,c(q)は、例えば、セルcのキャリアfの上りBWP bに関連付けられる下りBWP用の参照信号のインデックスqを用いてユーザ端末で計算されるパスロスである。
 ΔF_PUCCH(F)は、PUCCHフォーマット毎に与えられる上位レイヤパラメータである。ΔTF,b,f,c(i)は、セルcのキャリアfの上りBWP b用の送信電力調整成分(transmission power adjustment component)(オフセット)である。
 gb,f,c(i,l)は、セルc及び送信機会iのキャリアfの上りBWPの上記電力制御調整状態インデックスlのTPCコマンドに基づく値(例えば、電力制御調整状態、TPCコマンドの累積値)である。例えば、TPCコマンドの累積値は、式(2)によって表されてもよい。
Figure JPOXMLDOC01-appb-M000002
 式(2)において、δPUCCH,b,f,c(ilast,i,KPUCCH,l)は、例えば、直前のPUCCHの送信機会ilastの後の送信機会i用にセルcのキャリアfの上りBWP bで検出されるDCI(例えば、DCIフォーマット1_0又は1_1)内のTPCコマンドフィールド値が示すTPCコマンドであってもよいし、特定のRadio Network Temporary Identifier(RNTI)(例えば、TPC-PUCCH-RNTI)でスクランブルされるCRCパリティビットを有する(CRCスクランブルされる)DCI(例えば、DCIフォーマット2_2)内のTPCコマンドフィールド値が示すTPCコマンドであってもよい。
 なお、式(1)、(2)は例示にすぎず、これに限られない。ユーザ端末は、式(1)(2)に例示される少なくとも一つのパラメータに基づいて、PUCCHの送信電力を制御すればよく、追加のパラメータが含まれてもよいし、一部のパラメータが省略されてもよい。また、上記式(1)、(2)では、あるセルのあるキャリアのBWP毎にPUCCHの送信電力が制御されるが、これに限られない。セル、キャリア、BWP、電力制御調整状態の少なくとも一部が省略されてもよい。
(PUSCHリソース)
 NRでは、PUSCHのスケジューリングのためのDCI(例えば、DCIフォーマット0_0、0_1)がPUSCHリソースを指定してもよい。このDCIは、PUSCHリソースを指示するための、周波数ドメインリソース割り当て(frequency domain resource assignment)フィールド、時間ドメインリソース割り当て(time domain resource assignment)フィールドを含んでもよい。
 また、UEが上位レイヤシグナリングによって周期的なPUSCHリソースを設定されてもよい(設定グラント(configured grant)送信)。UEは、上位レイヤシグナリングのみに応じて、PUSCHリソースを用いる送信を開始してもよいし(タイプ1)、上位レイヤシグナリング及びアクティベーション(例えば、DCI)に応じて、PUSCHリソースを用いる送信を開始してもよい(タイプ2)。
(PUSCH用の送信電力制御)
 NRでは、PUSCHの送信電力は、DCI内の所定フィールド(TPCコマンドフィールド、第1のフィールド等ともいう)の値が示すTPCコマンド(値、増減値、補正値(correction value)等ともいう)に基づいて制御される。
 例えば、UEが、インデックスjを有するパラメータセット(オープンループパラメータセット)、電力制御調整状態のインデックスlを用いて、セルcのキャリアfのBWP b上でPUSCHを送信する場合、PUSCH送信機会(transmission occasion)(送信期間等ともいう)iにおけるPUSCHの送信電力(PPUSCH、b,f,c(i,j,q,l))は、下記式(3)で表されてもよい。
 ここで、電力制御調整状態は、上位レイヤパラメータによって複数の状態(例えば、2状態)を有するか、又は、単一の状態を有するかが設定されてもよい。また、複数の電力制御調整状態が設定される場合、インデックスl(例えば、l∈{0,1})によって当該複数の電力制御調整状態の一つが識別されてもよい。電力制御調整状態は、PUSCH電力制御調整状態(PUSCH power control adjustment state)、第1又は第2の状態等と呼ばれてもよい。
 また、PUSCHの送信機会iは、PUSCHが送信される所定期間であり、例えば、一以上のシンボル、一以上のスロット等で構成されてもよい。
Figure JPOXMLDOC01-appb-M000003
 式(3)において、PCMAX,f,c(i)は、例えば、送信機会iにおけるセルcのキャリアf用に設定されるユーザ端末の送信電力(最大送信電力等ともいう)である。PO_PUSCH,b,f,c(j)は、例えば、送信機会iにおけるセルcのキャリアfのBWP b用に設定される目標受信電力に係るパラメータ(例えば、送信電力オフセットに関するパラメータ、送信電力オフセットP0、目標受信電力パラメータ等ともいう)である。
 MPUSCH RB,b,f,c(i)は、例えば、セルc及びサブキャリア間隔μのキャリアfの上りBWP bにおける送信機会i用にPUSCHに割り当てられるリソースブロック数(帯域幅)である。αb,f,c(j)は、上位レイヤパラメータによって提供される値(例えば、msg3-Alpha、p0-PUSCH-Alpha、フラクショナル因子等ともいう)である。
 PLb,f,c(q)は、例えば、セルcのキャリアfの上りBWP bに関連付けられる下りBWP用の参照信号のインデックスqを用いてユーザ端末で計算されるパスロス(パスロス補償)である。
 ΔTF,b,f,c(i)は、セルcのキャリアfの上りBWP b用の送信電力調整成分(transmission power adjustment component)(オフセット、送信フォーマット補償)である。
 fb,f,c(i,l)は、セルc及び送信機会iのキャリアfの上りBWPの上記電力制御調整状態インデックスlのTPCコマンドに基づく値(例えば、電力制御調整状態、TPCコマンドの累積値、クローズドループによる値)である。例えば、TPCコマンドの累積値は、式(4)によって表されてもよい。
Figure JPOXMLDOC01-appb-M000004
 式(4)において、δPUSCH,b,f,c(ilast,i,KPUSCH,l)は、例えば、直前のPUSCHの送信機会ilastの後の送信機会i用にセルcのキャリアfの上りBWP bで検出されるDCI(例えば、DCIフォーマット0_0又は0_1)内のTPCコマンドフィールド値が示すTPCコマンドであってもよいし、特定のRNTI(Radio Network Temporary Identifier)(例えば、TPC-PUSCH-RNTI)でスクランブルされるCRCパリティビットを有する(CRCスクランブルされる)DCI(例えば、DCIフォーマット2_2)内のTPCコマンドフィールド値が示すTPCコマンドであってもよい。
 なお、式(3)、(4)は例示にすぎず、これに限られない。ユーザ端末は、式(3)(4)に例示される少なくとも一つのパラメータに基づいて、PUSCHの送信電力を制御すればよく、追加のパラメータが含まれてもよいし、一部のパラメータが省略されてもよい。また、上記式(3)、(4)では、あるセルのあるキャリアのBWP毎にPUSCHの送信電力が制御されるが、これに限られない。セル、キャリア、BWP、電力制御調整状態の少なくとも一部が省略されてもよい。
 以上のように、TPCコマンドの累積値に基づいてPUCCH又はPUSCHの送信電力を制御する場合、TPCコマンドフィールド値を含む複数のDCIが検出されると、どのDCI内のTPCコマンドフィールド値が示すTPCコマンドを累積するかが問題となる。
(TPCコマンドに対するUE動作)
 Rel.15 NRにおいては、全ての送信の順序がスケジューリングの順序に従うという前提の下に、PUSCH及びPUCCHの両方に対するTPC累積(accumulation)が規定されている。PUCCH又はPUSCHのそれぞれの電力制御調整状態に対し、1つのみの累積器(accumlator)がある。
 図1の例においては、3つのDCIによって3つのPUSCH A、B、Cがそれぞれスケジュールされる。3つのPUSCHの順序は、対応する3つのDCIの順序と等しい。
 PUSCH A、B、Cの送信機会(occasion)をそれぞれA、B、Cとし、PUSCH A、B、Cのスケジューリング用のDCIから得られるTPCコマンドをそれぞれTPCA、TPCB、TPCCとする。セルcのキャリアfのアクティブUL BWP bに対し、PUSCH A、B、Cのそれぞれの送信機会におけるPUSCH電力制御状態は、次式によって与えられる。
fb,f,c(A,l)=TPCA
fb,f,c(B,l)=fb,f,c(A,l)+TPCB
fb,f,c(C,l)=fb,f,c(B,l)+TPCC
 PUSCH A、B、Cの送信機会において、1つのみの電力制御調整状態が追従する。UEは、UE固有DCI又はグループ固有DCIを介して新たなTPCコマンドを受信すると、電力制御調整状態を更新し、更新された電力制御調整状態を用い、更新された電力制御調整状態を将来の更新に用いる。
 ある信号又はチャネル(信号/チャネルと表記されてもよい)を受信し、当該信号/チャネルに対応した別の信号/チャネルの送受信を行う処理について考える。第1の当該処理を開始してから完了するまでに、別の第2の当該処理を開始して完了する、というケースは、処理の開始と完了の順番が逆転しているため、アウトオブオーダ(Out-Of-Order(OOO))処理とも呼ばれる。NRでは、このようなOOO処理の導入が検討されている。処理の開始と完了の順番が等しい処理は、インオーダ(In-Order)処理とも呼ばれる。
 複数の送信がOOO処理である場合、Rel.15 NRのTPC累積は動作しない。例えば、OOO PUSCHスケジューリングにおけるTPC累積は動作しない。
 図2の例においては、4つのDCIによって4つのPUSCH A、B、C、Dがそれぞれスケジュールされる。ここで、PUSCH B及びPUSCH CはOOO処理である。PUSCH Cの優先度は、PUSCH Bの優先度よりも高く、PUSCH Cは長いスケジューリングレイテンシ(latency)を許容しないとする。
 PUSCH A、B、Cの送信機会をそれぞれA、B、C、Dとし、PUSCH A、B、C、Dのスケジューリング用のDCIから得られるTPCコマンドをそれぞれTPCA、TPCB、TPCC、TPCDとする。Rel.15 NRのTPC累積を用いる場合、PUSCH A、B、C、Dの送信機会における電力制御調整状態は次式によって与えられる。
fb,f,c(A,l)=TPCA
fb,f,c(B,l)=fb,f,c(A,l)+TPCB
fb,f,c(C,l)=fb,f,c(A,l)+TPCC
fb,f,c(D,l)=fb,f,c(B,l)+TPCC+TPCD
 これらの式によれば、次の2つの問題がある。
(1)1つの電力制御調整状態に対して並列に動作する複数の累積器があること
(2)TPCコマンドが二重にカウントされること
 異なる優先度の複数のチャネルが多様なレイテンシ及び信頼性(reliability)の要件を有することを考慮すると、UL電力更新を独立に保つことが好ましい。これは、物理レイヤにおけるチャネルの優先度を明示的に示し、異なる優先度のチャネルにわたるOOOのHARQ-ACK及びPUSCHスケジューリングが制限されることを保証することによって実現できる。それぞれの優先度内において、複数の送信は順序通り(インオーダ処理)であり、Rel.15 NRのTPC累積を用いることができる。
 しかしながら、高い優先度を有するチャネル(例えば、URLLC PUSCH)が散発的にしか発生しない環境において、当該チャネル用のTPC累積が十分追従できないことが考えられる。
 そこで、本発明者らは、複数のタイプのUL送信の送信電力を適切に制御する方法を検討し、本発明に至った。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 本開示において、各DCI内のTPCコマンドフィールド値は、送信電力の増減値(dB)を示してもよい。例えば、TPCコマンドフィールド値「0」、「1」、「2」、「3」は、それぞれ、-1、0、+1、+3[dB]を示してもよい。なお、増減値及び値の対応づけはこれらに限られない。
 本開示において、UL送信、ULチャネル、UL信号、PUSCH、PUCCH、SRS、は互いに読み替えられてもよい。
(無線通信方法)
 UEは、UL送信のタイプを識別してもよい。タイプは、トラフィックタイプ、優先度、UL送信の種別、チャネルの種別、信号の種別、又は、それらの組み合わせに対応していてもよい。
 トラフィックタイプは、URLLC、eMBB、mMTC、IoT、Industrial Internet of Things(IIoT、産業用IoT)、eURLLC、の1つであってもよい。チャネルは、PUSCH、PDSCHに対するHARQ-ACKを運ぶPUCCH、SRS、の1つであってもよい。
 UEは、UL送信に関連付けられた優先度を物理レイヤによって区別(識別)してもよい。UEは、UL送信のスケジューリングのためのDCIに基づいて優先度を認識してもよい。優先度は、DCIから得られる情報に関連付けられてもよい。DCIから得られる情報は、DCIフォーマット、DCIのペイロードサイズ、DCIのCRCのスクランブリングに用いられるRNTI、所定DCIフィールド、の少なくとも1つであってもよい。
 互いに異なる優先度に関連付けられた第1トラフィックタイプの特定の種別のUL送信及び第2トラフィックタイプの特定の種別のUL送信に対し、第1トラフィックタイプ用のTPCコマンドは、第1トラフィックタイプ用の電力制御調整状態(例えば、TPCコマンドの累積値)に対して累積される補正値(例えば、δ)であってもよい。第2トラフィックタイプ用のTPCコマンドは、第1トラフィックタイプ用の電力制御調整状態に対する相対値(例えば、Δ)であってもよい。UEは、第1トラフィックタイプ用の累積器を有し、第2トラフィックタイプ用の累積器を有しなくてもよい。
 第2トラフィックタイプの優先度は、第1トラフィックタイプの優先度より高くてもよいし、第1トラフィックタイプの優先度より低くてもよい。
 UEは、第1トラフィックタイプのUL送信のスケジューリング用のDCIを受信すると、当該DCIに基づいて第1トラフィックタイプを認識してもよい。UEは、当該DCI内のTPCコマンドフィールド値に関連付けられたTPCコマンド(例えば、指示値、補正値、δ)を累積することによって第1トラフィックタイプ用の電力制御調整状態を算出してもよい。
 UEは、第2トラフィックタイプのUL送信のスケジューリング用のDCIを受信すると、当該DCIに基づいて第2トラフィックタイプを認識してもよい。UEは、当該DCI内のTPCコマンドフィールド値に関連付けられたTPCコマンド(例えば、指示値、相対値、Δ)を、第1トラフィックタイプ用の電力制御調整状態に加算することによって、第2トラフィックタイプ用の電力制御調整状態を算出してもよい。
 UEは、第1トラフィックタイプのUL送信用の電力制御調整状態に基づいて、第1トラフィックタイプのUL送信の送信電力を決定し、第1トラフィックタイプのUL送信用の電力制御調整状態に基づいて、第2トラフィックタイプのUL送信の送信電力を決定してもよい。
 第1トラフィックタイプの特定の種別のUL送信がeMBB PUSCHであり、第2トラフィックタイプの特定の種別のUL送信がURLLC PUSCHであってもよい。第1トラフィックタイプの特定の種別のUL送信がeMBB PDSCHに対するHARQ-ACKを運ぶPUCCHであり、第2トラフィックタイプの特定の種別のUL送信がURLLC PDSCHに対するHARQ-ACKを運ぶPUCCHであってもよい。
 例えば、図3に示すように、第1トラフィックタイプがeMBBであり、第2トラフィックタイプがURLLCであり、UL送信がPUSCHであるとする。最新のeMBB PUSCHまでの、eMBB PUSCH用の電力制御調整状態がXであり、URLLC PUSCH用のTPCコマンドがaである場合、UEは、URLLC PUSCH用の電力制御調整状態をX+aと算出(決定)する。aは、-3、-1、0、+3[dB]のいずれかであってもよい。UEは、URLLC PUSCHに対するTPCコマンドを累積し、URLLC PUSCHに対するTPCコマンドを累積しなくてもよい。
 以上の実施形態によれば、特定のトラフィックタイプのUL送信の頻度が低い場合であっても、UEは、別のトラフィックタイプ用のTPCコマンドの累積値と、特定のトラフィックタイプ用のTPCコマンドの1つの値(瞬時値、スパイク、バースト)と、に基づいて、特定のトラフィックタイプ用の電力制御調整状態を決定できる。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図4は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図5は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120及び送受信アンテナ130の少なくとも1つによって構成されてもよい。
(ユーザ端末)
 図6は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220、送受信アンテナ230及び伝送路インターフェース240の少なくとも1つによって構成されてもよい。
 また、送受信部220は、第1タイプ(例えば、eMBB PUSCH、eMBB PDSCHに対するHARQ-ACKを運ぶPUCCHなど)の第1上り送信のスケジューリング用の第1下り制御情報(DCI)を受信し、第2タイプ(例えば、URLLC PUSCH、URLLC PDSCHに対するHARQ-ACKを運ぶPUCCHなど)の第2上り送信のスケジューリング用の第2DCIを受信してもよい。制御部210は、前記第1DCIから得られる送信電力制御(TPC)コマンドを累積することによって得られる累積値(例えば、電力制御調整状態)を、前記第1上り送信の送信電力の決定に用い、前記第2DCIから得られるTPCコマンドを前記累積値へ加算することによって得られる加算結果(例えば、電力制御調整状態)を、前記第2上り送信の送信電力の決定に用いてもよい。
 前記第2タイプの優先度は前記第1タイプの優先度よりも高くてもよい。
 前記第1DCI及び前記第2DCIの間において、DCIフォーマット、DCIのペイロードサイズ、DCIのCRCのスクランブリングに用いられる無線ネットワーク一時識別子(RNTI)、所定DCIフィールド、の少なくとも1つが異なってもよい。
 前記第1上り送信及び前記第2上り送信の順序は、前記第1DCI及び前記第2DCIの順序と異なってもよい(例えば、OOO処理)。
 前記第2タイプに要求されるレイテンシは前記第1タイプに要求されるレイテンシよりも低い、又は前記第2タイプに要求される誤り率は前記第1タイプに要求される誤り率よりも低くてもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図7は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。
 本出願は、2019年4月9日出願の特願2019-084683に基づく。この内容は、全てここに含めておく。

Claims (6)

  1.  第1タイプの第1上り送信のスケジューリング用の第1下り制御情報(DCI)を受信し、第2タイプの第2上り送信のスケジューリング用の第2DCIを受信する受信部と、
     前記第1DCIから得られる送信電力制御(TPC)コマンドを累積することによって得られる累積値を、前記第1上り送信の送信電力の決定に用い、前記第2DCIから得られるTPCコマンドを前記累積値へ加算することによって得られる加算結果を、前記第2上り送信の送信電力の決定に用いる制御部と、を有するユーザ端末。
  2.  前記第2タイプの優先度は前記第1タイプの優先度よりも高い、請求項1に記載のユーザ端末。
  3.  前記第1DCI及び前記第2DCIの間において、DCIフォーマット、DCIのペイロードサイズ、DCIのCRCのスクランブリングに用いられる無線ネットワーク一時識別子(RNTI)、所定DCIフィールド、の少なくとも1つが異なる、請求項1又は請求項2に記載のユーザ端末。
  4.  前記第1上り送信及び前記第2上り送信の順序は、前記第1DCI及び前記第2DCIの順序と異なる、請求項1から請求項3のいずれかに記載のユーザ端末。
  5.  前記第2タイプに要求されるレイテンシは前記第1タイプに要求されるレイテンシよりも低い、又は前記第2タイプに要求される誤り率は前記第1タイプに要求される誤り率よりも低い、請求項1から請求項4のいずれかに記載のユーザ端末。
  6.  第1タイプの第1上り送信のスケジューリング用の第1下り制御情報(DCI)を受信し、第2タイプの第2上り送信のスケジューリング用の第2DCIを受信するステップと、
     前記第1DCIから得られる送信電力制御(TPC)コマンドを累積することによって得られる累積値を、前記第1上り送信の送信電力の決定に用い、前記第2DCIから得られるTPCコマンドを前記累積値へ加算することによって得られる加算結果を、前記第2上り送信の送信電力の決定に用いるステップと、を有するユーザ端末の無線通信方法。
PCT/JP2020/015798 2019-04-09 2020-04-08 ユーザ端末及び無線通信方法 WO2020209283A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021513666A JPWO2020209283A1 (ja) 2019-04-09 2020-04-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019084683 2019-04-09
JP2019-084683 2019-04-09

Publications (1)

Publication Number Publication Date
WO2020209283A1 true WO2020209283A1 (ja) 2020-10-15

Family

ID=72751880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015798 WO2020209283A1 (ja) 2019-04-09 2020-04-08 ユーザ端末及び無線通信方法

Country Status (2)

Country Link
JP (1) JPWO2020209283A1 (ja)
WO (1) WO2020209283A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157152A1 (ja) * 2022-02-16 2023-08-24 株式会社Nttドコモ 端末及び無線通信方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Enhancements to scheduling/HARQ for URLLC", 3GPP TSG RAN WG1 #96B R1-1904960, 3 April 2019 (2019-04-03), XP051707354, Retrieved from the Internet <URL:https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_96b/Docs/R1-1904960.zip> [retrieved on 20200605] *
CMCC: "Discussion on PUSCH enhancements for URLLC", 3GPP TSG RAN WG1 ADHOC-NR-AH-1901 R1-1900416, 12 January 2019 (2019-01-12), XP051576025, Retrieved from the Internet <URL:https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_AH/NR_AH_1901/Docs/R1-1900416.zip> [retrieved on 20200605] *
NOKIA ET AL.: "Summary of Friday offline discussion on UL/ DL intra-UE prioritization/multiplexing", 3GPP TSG RAN WG1 #96 R1-1903818, 5 March 2019 (2019-03-05), XP051687664, Retrieved from the Internet <URL:https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_96/Docs/R1-1903818.zip> [retrieved on 20200605] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157152A1 (ja) * 2022-02-16 2023-08-24 株式会社Nttドコモ 端末及び無線通信方法

Also Published As

Publication number Publication date
JPWO2020209283A1 (ja) 2020-10-15

Similar Documents

Publication Publication Date Title
JPWO2020066025A1 (ja) 端末、無線通信方法、基地局及びシステム
WO2021100530A1 (ja) 端末及び無線通信方法
WO2020255263A1 (ja) 端末及び無線通信方法
WO2020261389A1 (ja) 端末及び無線通信方法
WO2020222275A1 (ja) ユーザ端末及び無線通信方法
JPWO2020065977A1 (ja) 端末、無線通信方法及びシステム
JPWO2020144824A1 (ja) ユーザ端末及び無線通信方法
JPWO2020059148A1 (ja) 端末、無線通信方法、基地局及びシステム
JPWO2020144818A1 (ja) ユーザ端末及び無線通信方法
WO2020255401A1 (ja) 端末及び無線通信方法
WO2022039164A1 (ja) 端末、無線通信方法及び基地局
WO2020202478A1 (ja) ユーザ端末及び無線通信方法
WO2020166022A1 (ja) ユーザ端末
JPWO2020095457A1 (ja) ユーザ端末
WO2021117109A1 (ja) 端末及び無線通信方法
WO2020202448A1 (ja) ユーザ端末及び無線通信方法
WO2020188666A1 (ja) ユーザ端末及び無線通信方法
WO2020209283A1 (ja) ユーザ端末及び無線通信方法
WO2021100531A1 (ja) 端末及び無線通信方法
JP7431179B2 (ja) 端末、無線通信方法及びシステム
WO2021229819A1 (ja) 端末、無線通信方法及び基地局
WO2020153210A1 (ja) ユーザ端末及び無線通信方法
WO2020230196A1 (ja) ユーザ端末及び無線通信方法
WO2020202477A1 (ja) ユーザ端末及び無線通信方法
WO2020170419A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20788610

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021513666

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20788610

Country of ref document: EP

Kind code of ref document: A1