WO2020209127A1 - Substrate processing method and substrate processing system - Google Patents

Substrate processing method and substrate processing system Download PDF

Info

Publication number
WO2020209127A1
WO2020209127A1 PCT/JP2020/014571 JP2020014571W WO2020209127A1 WO 2020209127 A1 WO2020209127 A1 WO 2020209127A1 JP 2020014571 W JP2020014571 W JP 2020014571W WO 2020209127 A1 WO2020209127 A1 WO 2020209127A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
wafer
liquid
protective film
supplying
Prior art date
Application number
PCT/JP2020/014571
Other languages
French (fr)
Japanese (ja)
Inventor
正一 寺田
淳司 中村
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2020209127A1 publication Critical patent/WO2020209127A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • This disclosure relates to a substrate processing method and a substrate processing system.
  • Patent Document 1 discloses a method for cleaning a wafer after dicing.
  • the wafer is cleaned by rotating the wafer and supplying cleaning water to the wafer from a nozzle that reciprocates along the surface of the wafer.
  • the technology related to this disclosure improves the yield of products after dicing.
  • One aspect of the present disclosure is a substrate processing method for processing a substrate, which comprises a step of forming a protective layer on the surface of the substrate, a step of dicing the substrate on which the protective layer is formed, and then a step of dicing the substrate. It has a step of removing the protective layer from the surface.
  • the yield of the product after dicing can be improved.
  • a semiconductor wafer (hereinafter referred to as "wafer") in which devices such as a plurality of electronic circuits are formed on the surface is diced.
  • Dicing is a process of cutting a wafer using, for example, a dicing saw, cutting it out, and converting it into chips.
  • the cutting chips generated in the dicing step are discharged using grinding water during dicing, and after dicing, a cleaning step is added to remove the cutting chips from the wafer.
  • the rotation speed of the wafer is switched between the first rotation speed and the second rotation speed higher than the first rotation speed, and the wafer is repeatedly washed a plurality of times. To do. Then, a load is applied to the cutting chips adhering to the wafer during acceleration / deceleration of the rotation speed to remove the cutting chips.
  • a protective film as a protective layer is formed in advance on the surface (device surface) of the wafer before dicing to eliminate the exposure of the device surface, and then in the cleaning step after dicing, it is protected together with the generated grinding dust. Peel off the film.
  • FIG. 1 is a plan view schematically showing an outline of the configuration of the wafer processing system 1.
  • the wafer W as a substrate is processed as shown in FIGS. 2 and 3.
  • the wafer W is a semiconductor wafer such as a silicon wafer, and a device layer (not shown) including a plurality of devices is formed on the surface Wa.
  • the wafer W is fixed to the dicing frame F via the dicing tape P.
  • the wafer W is arranged in the opening Fa of the dicing frame F, and the dicing tape P is attached to the back surface Wb of the wafer W and the back surface of the dicing frame F so as to close the opening Fa from the back surface.
  • the wafer W is in a state of being fixed (held) to the dicing frame F.
  • the dicing frame F is a substantially annular member having an opening Fa having a diameter larger than that of the wafer W in the center, and is made of a metal such as stainless steel.
  • the thickness of the dicing frame F is, for example, about 1 mm.
  • an organic resin such as PVC (polyvinyl chloride), PET (polyethylene terephthalate), PO (polyolefin) and the like are used.
  • the wafer processing system 1 includes a protective film forming device 10 for forming a protective film on the surface of the wafer W before dicing, and a protective film removing device 20 for removing the protective film from the surface of the wafer W after dicing. ing.
  • the wafer processing system 1 is provided with a control device 30.
  • the control device 30 is, for example, a computer equipped with a CPU, a memory, or the like, and has a program storage unit (not shown).
  • the program storage unit stores a program that controls the processing of the wafer W in the wafer processing system 1. Further, the program storage unit also stores a program for controlling the operation of the wafer processing system 1 to realize the wafer processing described later in the wafer processing system 1.
  • the program may be recorded on a computer-readable storage medium H and may be installed on the control device 30 from the storage medium H.
  • the protective film forming apparatus 10 includes, for example, an loading / unloading station 40 in which a cassette C capable of accommodating a plurality of wafers W is loaded / unloaded from the outside, and various processing modules that process the wafer W. It has a configuration in which the processing station 41 provided with the above is integrally connected.
  • the loading / unloading station 40 is provided with a cassette mounting stand 42.
  • a plurality of cassettes C for example, four cassettes C can be freely mounted in a row in the X-axis direction on the cassette mounting table 42.
  • the number of cassettes C mounted on the cassette mounting table 42 is not limited to this embodiment and can be arbitrarily determined.
  • the loading / unloading station 40 is provided with a wafer transport area 43 adjacent to the cassette mounting table 42.
  • a wafer transfer mechanism 44 that transfers the wafer W is arranged.
  • the wafer transfer mechanism 44 includes a transfer arm portion (not shown) capable of moving in the horizontal direction, raising and lowering in the vertical direction, and turning around the vertical direction, and a wafer holding attached to the tip of the transfer arm portion. It is provided with a part (not shown).
  • the wafer transfer mechanism 44 is configured to transfer the wafer W to the cassette C of the cassette mounting table 42, the coating module 50, the heat treatment module 60, and the ultraviolet irradiation module 70, which will be described later.
  • the coating module 50, the heat treatment module 60, and the ultraviolet irradiation module 70 are arranged side by side in the X-axis direction on the Y-axis positive direction side of the wafer transfer region 43.
  • the number and arrangement of the coating module 50, the heat treatment module 60, and the ultraviolet irradiation module 70 are not limited to this embodiment, and can be arbitrarily determined.
  • a protective liquid is applied to the surface Wa of the wafer W to form a protective film by a so-called capillary coating method.
  • the capillary coating method the protective liquid discharged from the coating nozzle as the coating portion is brought into contact with the surface Wa of the wafer W, and the coating nozzle and the wafer W are relatively moved in the horizontal direction to protect the surface Wa. This is a method of applying a liquid.
  • a known coating device that executes a capillary coating method is used for the coating module 50.
  • An alkali-soluble resin such as acrylic or styrene is used for the protective film of the present embodiment.
  • the protective film can be used as long as the dicing tape P does not dissolve in the release liquid.
  • an organic solvent-soluble resin can be used as the protective film.
  • an alkali-soluble resin for the protective film it is preferable to use an alkali-soluble resin for the protective film.
  • the heat treatment module 60 heat-treats the wafer W.
  • the heat treatment module 60 has, for example, a hot plate that holds the wafer W, and the wafer W is heat-treated by the hot plate. As a result, the protective film on the wafer W is fired.
  • a known heat treatment apparatus is used for the heat treatment module 60.
  • the surface Wa of the wafer W is irradiated with ultraviolet rays.
  • the ultraviolet irradiation module 70 has an ultraviolet irradiation unit provided above the wafer W, and irradiates the surface Wa of the wafer W with ultraviolet rays from the ultraviolet irradiation unit. As a result, the protective film on the wafer W is cured.
  • a known ultraviolet irradiation device is used for the ultraviolet irradiation module 70.
  • the protective film removing device 20 includes, for example, an loading / unloading station 80 in which a cassette C capable of accommodating a plurality of wafers W is carried in / out from the outside, and a cleaning module that peels and removes the protective film from the surface Wa of the wafer W. It has a configuration in which the processing station 81 provided is integrally connected.
  • the loading / unloading station 80 is provided with a cassette mounting stand 82.
  • a cassette mounting stand 82 In the illustrated example, a plurality of cassettes C, for example, four cassettes C can be freely mounted in a row in the X-axis direction on the cassette mounting table 82.
  • the number of cassettes C mounted on the cassette mounting table 82 is not limited to this embodiment and can be arbitrarily determined.
  • the loading / unloading station 80 is provided with a wafer transport area 83 adjacent to the cassette mounting table 82.
  • a wafer transfer mechanism 84 that transfers the wafer W is arranged in the wafer transfer region 83.
  • the wafer transfer mechanism 84 includes a transfer arm portion (not shown) capable of moving in the horizontal direction, ascending / descending in the vertical direction, and turning around the vertical direction, and a wafer holding attached to the tip of the transfer arm portion. It is provided with a part (not shown).
  • the wafer transfer mechanism 84 is configured to transfer the wafer W to the cassette C of the cassette mounting table 82 and the cleaning module 90 described later.
  • the processing station 81 is provided with a plurality, for example, four cleaning modules 90 on the Y-axis positive direction side of the wafer transfer region 43.
  • Two cleaning modules 90 are arranged side by side in the X-axis direction, and are arranged in two stages in the vertical direction.
  • the number and arrangement of the cleaning modules 90 are not limited to this embodiment, and can be arbitrarily determined. The detailed configuration of the cleaning module 90 will be described later.
  • FIG. 4 is a side view showing an outline of the configuration of the cleaning module 90.
  • the cleaning module 90 cleans the surface Wa of the wafer W held by the dicing frame F via the dicing tape P. Specifically, the protective film is peeled off and removed from the surface Wa of the wafer W after dicing.
  • the cleaning module 90 has a processing container 100 whose inside can be closed.
  • a wafer W carry-in outlet (not shown) is formed on the side surface of the processing container 100 on the wafer transport region 83 side, and an open / close shutter (not shown) is provided at the carry-in outlet.
  • a wafer holding portion 110 for holding the wafer W and a frame holding portion 120 for holding the dicing frame F are provided in the central portion of the processing container 100.
  • the wafer holding unit 110 sucks and holds the back surface Wb side of the wafer W via the dicing tape P.
  • a porous chuck is used for the wafer holding portion 110.
  • the wafer holding portion 110 includes a disk-shaped main body portion 111 and a support column member 112 that supports the main body portion 111.
  • the main body 111 is made of a metal member such as aluminum.
  • a suction surface 113 is provided on the surface of the main body 111.
  • the suction surface 113 has substantially the same diameter as the wafer W, and is formed of, for example, a porous body such as silicon carbide or a porous ceramic.
  • a suction space 114 that communicates with the outside is formed via the suction surface 113.
  • the suction space 114 communicates with an intake device (not shown) such as a vacuum pump.
  • the wafer holding unit 110 sucks and holds the wafer W by sucking the back surface Wb of the wafer W to the suction surface 113 via the dicing tape P by utilizing the negative pressure generated by the intake of the intake device.
  • a frame holding portion 120 that holds the dicing frame F from below is arranged on the side of the wafer holding portion 110.
  • the frame holding portion 120 includes a plurality of suction pads 121 that suck and hold the dicing frame F, a support member 122 that supports the suction pad 121, and a moving mechanism 123 that moves the support member 122 in the vertical direction.
  • the suction pad 121 is formed of an elastic member such as rubber, and is provided at positions corresponding to the four corners of the dicing frame F shown in FIG. 3, for example.
  • a suction port (not shown) is formed on the suction pad 121.
  • the suction port communicates with an intake device (not shown) such as a vacuum pump.
  • the frame holding unit 120 holds the dicing frame F by adsorbing the dicing frame F by utilizing the negative pressure generated by the intake air of the intake device. Further, the frame holding portion 120 moves the support member 122 and the suction pad 121 in the vertical direction by the moving mechanism 123, thereby moving the dicing frame F sucked and held by the suction pad 121 in the vertical direction.
  • the wafer holding portion 110 and the frame holding portion 120 are supported from below by the lower base portion 130. Further, the lower base portion 130 is supported by a rotary elevating mechanism 131 fixed to the floor surface of the processing container 100.
  • the rotary elevating mechanism 131 rotates the lower base portion 130 around the vertical axis to integrally rotate the wafer holding portion 110 and the frame holding portion 120 supported by the lower base portion 130. Further, the rotary elevating mechanism 131 integrally raises and lowers the wafer holding portion 110 and the frame holding portion 120 supported by the lower base portion 130 by moving the lower base portion 130 in the vertical direction.
  • a cup (not shown) is provided around the wafer holding portion 110 and the frame holding portion 120 to receive and collect the liquid scattered or dropped from the wafer W.
  • An exhaust pipe (not shown) for discharging the collected liquid and an exhaust pipe (not shown) for exhausting the atmosphere inside the cup are connected to the lower surface of the cup.
  • a nozzle block 140 that supplies various liquids and gases to the surface Wa of the wafer W held by the wafer holding portion 110 is provided.
  • the nozzle block 140 can be moved from the standby portion 142 provided on the outside of the frame holding portion 120 to the upper part of the center portion of the wafer W by the moving mechanism 141, and further on the surface Wa of the wafer W in the radial direction of the wafer W. It is configured to be movable.
  • the nozzle block 140 has a release liquid nozzle 150 as a release liquid supply unit, a two-fluid nozzle 160 as a rinse liquid supply unit, and an N 2 gas nozzle 170 as a gas supply unit. Stripping liquid nozzle 150,2 fluid nozzle 160, and N 2 gas nozzle 170 is supported by the moving mechanism 141 is movably configured together.
  • a supply pipe 151 for supplying the stripping liquid to the stripping liquid nozzle 150 is connected to the stripping liquid nozzle 150.
  • the supply pipe 151 communicates with a stripping liquid supply source 152 that stores the stripping liquid inside.
  • the supply pipe 151 is provided with a supply equipment group 153 including a valve for controlling the flow of the stripping liquid, a flow rate adjusting unit, and the like.
  • the stripping liquid nozzle 150 supplies the stripping liquid to the surface Wa of the wafer W.
  • the stripping solution is a chemical solution for stripping the protective film formed on the surface Wa of the wafer W. Since an alkali-soluble resin is used for the protective film as described above, an alkaline solution is used as the stripping solution, and for example, TMAH (tetramethylammonium hydroxide) is used.
  • the supply pipe 161 communicates with a pure water supply source 162 that stores pure water inside.
  • the supply pipe 161 is provided with a supply equipment group 163 including a valve for controlling the flow of pure water, a flow rate adjusting unit, and the like.
  • a supply pipe 164 for supplying an inert gas such as N 2 (nitrogen) to the two-fluid nozzle 160 is connected to the two-fluid nozzle 160.
  • the supply pipe 164 communicates with a gas supply source 165 that stores N 2 gas inside.
  • the supply pipe 161 is provided with a supply equipment group 166 including a valve for controlling the flow of N 2 gas, a flow rate adjusting unit, and the like.
  • Pure water and N 2 gas supplied to the two-fluid nozzle 160 is mixed in the two-fluid nozzle 160, it is discharged from the two-fluid nozzle 160 as a mist. In this way, the two-fluid nozzle 160 supplies atomized pure water to the protective film on the surface Wa of the wafer W.
  • the two-fluid nozzle 160 may supply of N 2 gas is stopped by controlling the supply equipment group 166, supplying only pure water to the surface Wa of the wafer W.
  • two-fluid nozzle 160 includes a supply of fluid mixture of pure water and N 2 gas, and is configured to be freely switched between the supply of only pure water.
  • the N 2 gas nozzle 170 a supply pipe 171 for supplying an inert gas such as N 2 gas nozzle 170, for example, N 2 (nitrogen) is connected.
  • the supply pipe 171 communicates with a gas supply source 172 that stores N 2 gas inside.
  • the supply pipe 171 is provided with a supply equipment group 173 including a valve for controlling the flow of N 2 gas, a flow rate adjusting unit, and the like. Then, the N 2 gas nozzle 170 supplies N 2 gas to the surface Wa of the wafer W.
  • FIG. 5 is a flow chart showing a main process of wafer processing according to the first embodiment.
  • FIG. 6 is an explanatory diagram schematically showing each step of the wafer processing according to the first embodiment.
  • FIG. 7 is an explanatory view showing a partial cross section of the wafer W in each step of wafer processing.
  • a step of forming a protective film on the surface Wa of the wafer W in the protective film forming apparatus 10 a step of dicing the wafer W outside the wafer processing system 1, and a protective film removing apparatus.
  • the step of removing the protective film from the surface Wa of the wafer W is sequentially performed.
  • the cassette C containing the plurality of wafers W is placed on the cassette mounting table 42 of the loading / unloading station 40. At this time, the wafer W is fixed to the dicing frame F via the dicing tape P. Further, the back surface Wb of the wafer W is ground and polished, and the wafer W is thinned.
  • the wafer W in the cassette C is taken out by the wafer transfer mechanism 44 and transferred to the coating module 50.
  • a protective film Q is formed on the surface Wa of the wafer W by the capillary coating method (step A1 in FIG. 5).
  • the thickness of the protective film Q is, for example, 5 ⁇ m.
  • step A1 the slit-shaped discharge port formed on the lower end surface of the coating nozzle 51 is brought close to the wafer W, and a state in which a desired gap is formed between the discharge port and the wafer W is maintained. ..
  • a pool of protective liquid discharged from the discharge port is formed between the wafer W and the discharge port, and in that state, the coating nozzle 51 and the wafer W are relatively relative to each other in the horizontal direction, for example, in the radial direction of the wafer W. Move it. Then, the protective liquid discharged from the discharge port is sequentially supplied to the surface of the wafer W by the action of its own weight and the capillary phenomenon, and the protective liquid is applied to the surface Wa of the wafer W to form the protective film Q.
  • the protective liquid is applied by the spin coating method, it is placed on the dicing tape P between the wafer W and the dicing frame F. Protective liquid may collect. Therefore, in the present embodiment, the protective film Q is formed only on the surface Wa of the wafer W by using the capillary coating method.
  • the wafer W is transferred to the heat treatment module 60 by the wafer transfer mechanism 44.
  • the wafer W is held on the hot plate 61 as shown in FIG. 6B.
  • the protective film Q on the surface Wa of the wafer W is heated to a desired temperature by the hot plate 61 and fired (step A2 in FIG. 5).
  • the desired temperature is a temperature at which the protective film Q can be fired, and is a temperature at which the dicing tape P is not damaged, for example, 60 ° C. or lower.
  • the wafer W is transferred to the ultraviolet irradiation module 70 by the wafer transfer mechanism 44.
  • the ultraviolet irradiation module 70 ultraviolet rays are irradiated to the protective film Q of the surface Wa of the wafer W from the ultraviolet irradiation unit 71 provided above the wafer W as shown in FIG. 6 (c) (step A3 in FIG. 5).
  • an ultraviolet curable resin is used for the protective film Q, and the protective film Q is cured by the ultraviolet irradiation in step A3.
  • the heating of the protective film Q in step A2 and the irradiation of the protective film Q in step A3 with ultraviolet rays may be performed both as in the present embodiment, or either one may be performed. It can be appropriately selected depending on the material of the protective film Q. Further, for example, when the heating of the protective film Q in step A2 is omitted, the heat treatment module 60 may be omitted, and when the ultraviolet irradiation to the protective film Q in step A3 is omitted, the ultraviolet irradiation module 70 may be omitted. Good.
  • the wafer W is transferred to the cassette C of the cassette mounting table 42 by the wafer transfer mechanism 44. In this way, a series of protective film forming processes in the protective film forming apparatus 10 are completed.
  • the cassette C containing the plurality of wafers W is carried out from the loading / unloading station 40 and transported to a dicing device (not shown) provided outside the wafer processing system 1.
  • the wafer W is diced as shown in FIGS. 6 (d) and 7 (b) (step A4 in FIG. 5).
  • step A4 while supplying pure water (DIW) D which is cutting water from a plurality of nozzles 200, for example, two nozzles 200, the wafer W is cut and cut out by using a dicing saw 201 to make chips.
  • the dicing tape P is also cut in order to completely divide the wafer W.
  • a large number of organic cutting chips such as the silicon base material of the wafer W, the scraps of the dicing tape P, the scraps of the adhesive material that adheres the wafer W and the dicing tape P, and the scraps of the device material are generated.
  • the protective film Q that protects the device is formed on the surface Wa of the wafer W, it is possible to prevent cutting chips from adhering to the device.
  • step A5 the surface Wa of the wafer W is washed as shown in FIG. 6 (e) (step A5 in FIG. 5).
  • pure water D is supplied from the nozzle 202 to the central portion of the wafer W to clean the surface Wa.
  • the wafer W is transported from the dicing device to the protective film removing device 20, and the protective film removing device 20 removes the protective film Q together with cutting chips from the surface Wa of the wafer W.
  • the protective film Q is removed by supplying a release liquid to the protective film Q.
  • cutting chips since cutting chips are attached to the protective film Q, cutting chips may not be completely removed when trying to remove them with a single supply of the release liquid. It was. Therefore, in the protective film removing device 20, the removal of the protective film Q is divided into two stages, the protective film Q is partially removed in the first stage, and the protective film Q is completely removed in the second stage. That is, after the protective film Q is partially removed in the first step to remove cutting chips to some extent, the protective film Q is completely removed together with the cutting chips in the second step.
  • the cassette C containing the plurality of wafers W is placed on the cassette mounting table 82 of the loading / unloading station 80.
  • FIG. 8 is an explanatory diagram schematically showing each step of the protective film removing process.
  • the first step of partial removal (partial peeling) of the protective film Q is performed.
  • the nozzle block 140 is moved from above the outer peripheral portion to above the central portion by the moving mechanism 141 while rotating the wafer W by the rotary elevating mechanism 131. While the nozzle block 140 is moving, the stripping liquid S is supplied from the stripping liquid nozzle 150 to the surface Wa (protective film Q) of the wafer W, and pure water D is supplied from the two-fluid nozzle 160 (step A6 in FIG. 5). .. N 2 gas is not supplied from the two-fluid nozzle 160, and only pure water D is supplied.
  • step A6 the release liquid S diffuses on the protective film Q, and as shown in FIGS. 6 (f) and 7 (c), the protective film Q is dissolved by the release liquid S and partially removed. At this time, the surface Wa of the wafer W is not exposed. Further, with the partial removal of the protective film Q, the cutting chips adhering to the removed protective film Q are also removed.
  • the film thickness of the protective film Q left on the surface Wa in step A6 is not particularly limited, and at least the surface Wa may not be exposed.
  • step A6 the pure water D is supplied together with the stripping liquid S in order to dilute the stripping liquid S. If the concentration of the stripping liquid S is high, the removal rate of the protective film Q becomes high, and the surface Wa of the wafer W may be exposed in step A6. Therefore, in the present embodiment, the stripping solution S is diluted to adjust the concentration.
  • the two-fluid nozzle 160 constitutes the diluent supply unit in the present disclosure, and pure water D is used as the diluent.
  • pure water D is supplied from the two-fluid nozzle 160 to the center of the wafer W while rotating the wafer W as shown in FIG. 8 (b) (step A7 in FIG. 5).
  • the pure water D diffuses on the protective film Q, the remaining stripping liquid S is discharged to the outside of the wafer W, and the surface of the protective film Q is washed. Further, when the release liquid S is discharged, the removal of the protective film Q is also stopped.
  • the nozzle block 140 is moved from above the center portion of the wafer W to above the outer peripheral portion.
  • the pure water D and N 2 mixed fluid Dm gases from two-fluid nozzle 160 for injecting atomized (step A8 in FIG. 5).
  • the mixed fluid Dm By injecting the mixed fluid Dm, the remaining cutting chips are discharged to the outside of the wafer W, and the surface of the protective film Q is more strongly cleaned.
  • the surface of the protective film Q with pure water D in step A7 and the surface of the protective film Q with the mixed fluid Dm in step A8 may both be cleaned as in the present embodiment, or either of them. One may be done.
  • So-called shake-off step is desirable (step A20 in FIG. 5).
  • step A7 the pure water D on the surface of the protective film Q contains a large amount of cutting chips, and in this step A20, the contaminated pure water D containing the cutting chips is promptly removed from the wafer W. Can be discharged.
  • the second step of completely removing the protective film Q (complete peeling) is performed.
  • the nozzle block 140 is moved from above the outer peripheral portion to above the central portion of the wafer W while rotating the wafer W.
  • the stripping liquid S is supplied from the stripping liquid nozzle 150 to the surface Wa (protective film Q) of the wafer W, and pure water D is supplied from the two-fluid nozzle 160 (step A9 in FIG. 5). .. N 2 gas is not supplied from the two-fluid nozzle 160, and only pure water D is supplied.
  • step A8 the release liquid S diffuses on the protective film Q, and the protective film Q is completely removed by the release liquid S as shown in FIG. 7 (d). Further, with the complete removal of the protective film Q, the cutting chips adhering to the removed protective film Q are also completely removed. Then, the surface Wa of the wafer W is exposed.
  • step A10 in FIG. 5 pure water D is supplied from the two-fluid nozzle 160 to the center of the wafer W while rotating the wafer W as shown in FIG. 8 (e) (step A10 in FIG. 5).
  • This step A10 is the same as in step A7, and the stripping liquid S remaining by the pure water D is discharged to the outside of the wafer W, and the surface of the protective film Q is washed. Further, when the release liquid S is discharged, the removal of the protective film Q is also stopped.
  • step A11 is the same as in step A8, and by injecting the mixed fluid Dm, the remaining cutting chips are discharged to the outside of the wafer W, and the surface of the protective film Q is more strongly cleaned.
  • the surface Wa of the wafer W is washed.
  • the nozzle block 140 is moved from above the outer peripheral portion to above the central portion of the wafer W while rotating the wafer W. While the nozzle block 140 is moving, pure water D is supplied from the two-fluid nozzle 160 (step A12 in FIG. 5). Pure water D diffuses on the surface Wa of the wafer W, and the surface Wa is washed. N 2 gas is not supplied from the two-fluid nozzle 160, and only pure water D is supplied.
  • the nozzle block 140 is moved from above the center portion of the wafer W to above the outer peripheral portion.
  • the movement of the nozzle block 140 supplies pure water D from the two-fluid nozzle 160 in the center of the wafer W, for injecting N 2 gas N 2 gas nozzle 170 (step A13 in FIG. 5).
  • N 2 gas N 2 gas nozzle 170 injecting N 2 gas N 2 gas nozzle 170.
  • the wafer W is cut in the dicing step of step A4 described above, a groove is formed in the wafer W. Since the stripping solution S in the groove can be inhibited from remaining, by spraying N 2 gas, blow stripping solution S. Then, the release liquid S is completely removed from the surface Wa of the wafer W.
  • the wafer W is transferred to the cassette C of the cassette mounting table 82 by the wafer transfer mechanism 84. In this way, a series of protective film removing processes in the protective film removing device 20 are completed.
  • the protective film Q is formed on the surface Wa of the wafer W in steps A1 to A3, even if cutting chips are generated during dicing of the wafer W in step A4, the cutting chips are the wafer W. It is possible to suppress the adhesion of the surface Wa to the device. Further, after dicing, the protective film Q can be removed together with the cutting chips from the surface Wa of the wafer W in steps A6 to A14. As a result, the yield of the product can be improved.
  • the present inventors conducted experiments in the case where the protective film Q was formed on the surface Wa of the wafer W and in the case where the protective film Q was not formed, and after the final cleaning was performed.
  • the number of defects such as cutting chips remaining on the surface Wa was compared.
  • the non-defective product rate was 88% when the protective film Q was not formed, whereas the non-defective product rate was improved to 93% when the protective film Q was formed. Therefore, it was confirmed that by forming the protective film Q as in the present embodiment, cutting chips can be removed while protecting the device on the surface Wa.
  • the cutting chips are partially removed in the first steps A6 to A8, and then the cutting chips are completely removed in the second steps A9 to A11. can do. As a result, the yield of the product can be further improved.
  • the wafer W was heat-treated at a temperature of, for example, 60 ° C. or lower in step A2.
  • the heating temperature is set to 60 ° C. or lower as a temperature at which the dicing tape P is not damaged, but the heating temperature may be increased depending on the material of the protective film Q. In this case, it is necessary to form the protective film Q on the surface Wa of the wafer W before the wafer W is fixed to the dicing tape P and the dicing frame F.
  • the protective film Q is formed on the wafer W, the protective film Q is fired at a high heating temperature, and then the wafer W is passed through the dicing tape P to the dicing frame F. Fix to.
  • the wafer W processed by the protective film forming apparatus 10 is not fixed to the dicing tape P and the dicing frame F. That is, the wafer transfer mechanism 44 conveys the wafer W that is not fixed to the dicing frame F, and the processing modules 50, 60, and 70 process the wafer W that is not fixed to the dicing frame F.
  • the coating module 50 a protective liquid is applied to the surface Wa of the wafer W to form a protective film by a so-called spin coating method.
  • FIG. 9 is a flow chart showing a main process of wafer processing according to the second embodiment.
  • FIG. 10 is an explanatory diagram schematically showing each step of the wafer processing according to the second embodiment.
  • the cassette C containing the plurality of wafers W is placed on the cassette mounting table 42 of the loading / unloading station 40.
  • a protective film Q is formed on the surface Wa of the wafer W by a spin coating method (step B1 in FIG. 9). Specifically, in step B1, the protective liquid L is supplied from the coating nozzle 52 as the coating portion to the central portion of the wafer W in a state where the wafer W is rotated. Then, due to the centrifugal force due to the rotation of the wafer W, the protective liquid L diffuses the surface Wa of the wafer W, and the protective film Q is formed on the surface Wa of the wafer W.
  • the wafer W is transferred to the heat treatment module 60 by the wafer transfer mechanism 44.
  • the wafer W is held on the hot plate 62 as shown in FIG. 10 (b).
  • the protective film Q on the surface Wa of the wafer W is heated to a desired temperature by the hot plate 62 and fired (step B2 in FIG. 9).
  • the heating temperature of the wafer W in step B2 is a temperature at which the protective film Q can be fired, for example, 150 ° C.
  • the dicing tape P is not attached to the wafer W in the heat treatment module 60. Therefore, the wafer W can be heated at a high heating temperature of, for example, 60 ° C. or higher.
  • the wafer W is transferred to the ultraviolet irradiation module 70 by the wafer transfer mechanism 44.
  • the ultraviolet irradiation module 70 ultraviolet rays are irradiated to the protective film Q of the surface Wa of the wafer W from the ultraviolet irradiation unit 72 provided above the wafer W as shown in FIG. 10 (c) (step B3 in FIG. 9). ..
  • the protective film Q is cured by this ultraviolet irradiation.
  • the heating of the protective film Q in step B2 and the irradiation of the protective film Q in step B3 with ultraviolet rays may be performed both as in the present embodiment, or either one may be performed. It can be appropriately selected depending on the material of the protective film Q. Further, for example, the heat treatment module 60 may be omitted when the heating of the protective film Q in step B2 is omitted, and the ultraviolet irradiation module 70 may be omitted when the ultraviolet irradiation to the protective film Q in step B3 is omitted. Good.
  • the wafer W is transferred to the cassette C of the cassette mounting table 42 by the wafer transfer mechanism 44. In this way, a series of protective film forming processes in the protective film forming apparatus 10 are completed.
  • the cassette C containing the plurality of wafers W is carried out from the loading / unloading station 40 and transported to a processing device (not shown) provided outside the wafer processing system 1.
  • the back surface Wb of the wafer W is ground by the grinding wheel 210 as shown in FIG. 10 (d) (step B4 in FIG. 9).
  • the wafer W is thinned to a desired film thickness.
  • a back grind tape G (hereinafter, referred to as “BG tape G”) is attached to the surface Wa of the wafer W.
  • the BG tape G is peeled from the surface Wa of the wafer W as shown in FIG. 10 (f) (step B6 in FIG. 9). Then, the protective film Q on the surface Wa of the wafer W is exposed. That is, the state is the same as the state in which step A3 in the first embodiment is completed.
  • the cassette C containing the plurality of wafers W is conveyed to a processing device (not shown) provided outside the wafer processing system 1.
  • the wafer W is diced as shown in FIG. 10 (g) (step B7 in FIG. 9), and then the surface Wa of the wafer W is washed as shown in FIG. 10 (h) (FIG. 9).
  • Step B8 Note that these steps B7 and B8 are the same processes as steps A4 and A5 of the first embodiment, respectively.
  • the cassette C containing the plurality of wafers W is conveyed to the protective film removing device 20.
  • the protective film removing device 20 As shown in FIG. 10 (i), the protective film Q is partially removed in the first stage (steps B9 to B11, B20 in FIG. 9) in the second stage, as in the first embodiment. (Steps B12 to B14 in FIG. 9) and cleaning of the surface Wa of the wafer W (steps B15 to B17 in FIG. 9) are sequentially performed. It should be noted that these steps B9 to B17 are the same processes as steps A6 to A14 of the first embodiment, respectively. Then, as shown in FIG. 10 (j), the protective film Q is completely removed from the surface of the wafer W together with the cutting chips.
  • the heating temperature in step B2 can be as high as 150 ° C., so that it can correspond to various protective films Q.
  • the stripping liquid S is supplied from the stripping liquid nozzle 150 while rotating the wafer W in step A6 and moving the nozzle block 140 from above the outer peripheral portion to above the central portion of the wafer W. It was.
  • the release liquid S is supplied to the outer peripheral portion of the wafer W at the start of movement, and the release liquid S flows toward the outer peripheral portion of the wafer W due to centrifugal force even during movement or at the end of movement. Therefore, in the outer peripheral portion of the wafer W, the time for the protective film Q to come into contact with the stripping liquid S is longer than in the central portion. Then, the film thickness of the protective film Q after performing step A6 is such that the outer peripheral portion is small and the central portion is large.
  • FIG. 11 shows the results of the experiment.
  • the horizontal axis of FIG. 11 indicates the position on the wafer W, and the vertical axis indicates the thickness of the protective film Q.
  • “ ⁇ ” indicates the protective film Q before the step A6 is performed
  • “ ⁇ ” indicates the protective film Q after the step A6 is performed.
  • the film thickness of the protective film Q after performing step A6 was small in the outer peripheral portion and large in the central portion.
  • the protective film Q is completely removed in the second step steps A9 to A11, when the protective film Q is partially removed in the first step steps A6 to A8, the protective film Q is in-plane. It does not have to be uniform.
  • the film thickness of the protective film Q may be made uniform in the plane after the partial removal of the protective film Q in the first step.
  • the rotation speed of the wafer W and the moving speed of the nozzle block 140 are controlled according to the position of the release liquid nozzle 150. For example, when the release liquid nozzle 150 is located above the outer peripheral portion of the wafer W, the rotation speed of the wafer W is slowed down and the moving speed of the nozzle block 140 is slowed down. On the other hand, when the stripping liquid nozzle 150 is located above the center of the wafer W, the rotation speed of the wafer W is increased to increase the moving speed of the nozzle block 140. Then, the release liquid S can be uniformly supplied to the protective film Q, and the film thickness of the protective film Q can be made uniform in the plane.
  • the method of making the film thickness of the protective film Q uniform in the plane may be another method.
  • the concentration of the stripping liquid S supplied to the surface Wa of the wafer W is controlled according to the position of the stripping liquid nozzle 150. May be good.
  • FIG. 12 is an explanatory diagram schematically showing each step of the protective film removing treatment according to another embodiment.
  • step A6 while rotating the wafer W as shown in FIG. 12A, the two-fluid nozzle 160 is arranged above the center of the wafer W, and the surface of the wafer W is transferred from the two-fluid nozzle 160. Pure water D is supplied to the center of Wa. At this time, N 2 gas is not supplied from the two-fluid nozzle 160, and only pure water D is supplied. Then, a paddle of pure water D is formed on the surface Wa of the wafer W.
  • the release liquid nozzle 150 is arranged above the center of the wafer W, and the release liquid nozzle 150 is moved from the release liquid nozzle 150 to the center of the surface Wa of the wafer W.
  • the stripping liquid S is supplied.
  • the stripping liquid S is supplied into the paddle of pure water D and diluted.
  • the diluted release liquid S diffuses the surface Wa of the wafer W by centrifugal force, and the protective film Q is dissolved by the release liquid S and partially removed.
  • steps A7 to A14 of FIGS. 12 (c) to (j) of this embodiment are the steps A7 to A14 of FIGS. 8 (b) to 8 (i) of the above embodiment, respectively. It is the same process.
  • the same effect as that of the embodiment shown in FIG. 8 can be enjoyed. That is, in the embodiment shown in FIG. 8, in the partial removal (partial peeling) of the protective film Q in the first stage, the stripping liquid S is removed while moving the stripping liquid nozzle 150 from above the outer peripheral portion to above the central portion of the wafer W. By supplying the protective film Q, the protective film Q could be partially removed. Similarly, even when the release liquid S was supplied to the central portion of the surface Wa of the wafer W as in the present embodiment, the protective film Q could be partially removed.
  • the method of diluting the stripping solution S in step A6 is different between the present embodiment and the embodiment shown in FIG. That is, in the embodiment shown in FIG. 8, the stripping liquid S was diluted by supplying the stripping liquid S and the pure water D at the same time, but in the present embodiment, the pure water D formed on the surface Wa of the wafer W By supplying the release liquid S to the paddle, the release liquid S is diluted. Also in this embodiment, the stripping solution S can be appropriately diluted.
  • FIG. 13 is a side view showing an outline of the configuration of the cleaning module 90 according to another embodiment.
  • the stripping liquid nozzle 150 alone provided, providing a two-fluid nozzle 160 and N 2 gas nozzle 170 as a unit.
  • the method of providing the three nozzles 150, 160 and 170 is arbitrary, and for example, the three nozzles 150, 160 and 170 may be provided independently.
  • the release liquid nozzle 150 can be moved from the standby portion 301 provided on the outside of the frame holding portion 120 to the upper part of the center of the wafer W by the moving mechanism 300, and further on the surface Wa of the wafer W. Is configured to be movable in the radial direction of the wafer W.
  • the stripping solution nozzle 150 supplies a diluted stripping solution Sd obtained by diluting the stripping solution S with pure water D.
  • a supply pipe 302 for supplying the diluted stripping liquid Sd to the stripping liquid nozzle 150 is connected to the stripping liquid nozzle 150.
  • the supply pipe 302 communicates with the stripping liquid supply source 303 for storing the stripping liquid S inside and the pure water supply source 304 for storing the pure water D inside.
  • the supply pipe 302 is provided with a mixer 305 that mixes the stripping liquid S supplied from the stripping liquid supply source 303 and the pure water D supplied from the pure water supply source 304.
  • the mixer 305 produces a diluted stripping solution Sd having a desired concentration by diluting the stripping solution S with pure water D.
  • the mixer 305 also includes a valve for controlling the flow of the diluting stripping solution Sd, a flow rate adjusting unit, and the like.
  • the nozzle block 310 can be moved from the standby portion 312 provided on the outside of the frame holding portion 120 to the upper part of the center of the wafer W by the moving mechanism 311, and further on the surface Wa of the wafer W in the radial direction of the wafer W. It is configured to be movable.
  • the two-fluid nozzle 160 includes a supply pipe 161, a pure water supply source 162, a supply equipment group 163, a supply pipe 164, a gas supply source 165, and a supply equipment group 166.
  • the N 2 gas nozzle 170 is provided with a supply pipe 171, a gas supply source 172, and a supply equipment group 173.
  • FIG. 14 is an explanatory diagram schematically showing each step of the protective film removing process.
  • step A6 the stripping liquid nozzle 150 is moved from above the center portion to above the outer peripheral portion of the wafer W by the moving mechanism 300 while rotating the wafer W by the rotary elevating mechanism 131 as shown in FIG. 14A.
  • the release liquid nozzle 150 the diluted release liquid Sd is supplied from the release liquid nozzle 150 to the surface Wa (protective film Q) of the wafer W.
  • the moving mechanism 311 moves the nozzle block 310 from above the outer peripheral portion to above the central portion of the wafer W.
  • step A6 the diluting stripping solution Sd diffuses on the protective film Q, and the protective film Q is dissolved by the diluting stripping solution Sd and partially removed. At this time, the surface Wa of the wafer W is not exposed. Further, with the partial removal of the protective film Q, the cutting chips adhering to the removed protective film Q are also removed.
  • step A7 pure water D is supplied from the two-fluid nozzle 160 to the center of the wafer W while rotating the wafer W as shown in FIG. 14 (b).
  • the pure water D diffuses on the protective film Q, the remaining stripping liquid S is discharged to the outside of the wafer W, and the surface of the protective film Q is washed. Further, when the release liquid S is discharged, the removal of the protective film Q is also stopped.
  • step A8 the nozzle block 310 is moved from above the center portion of the wafer W to above the outer peripheral portion while rotating the wafer W as shown in FIG. 14C. While the nozzle block 310 is moving, the mixed fluid Dm of pure water D and N 2 gas is injected in a mist form from the two-fluid nozzle 160. By injecting the mixed fluid Dm, the remaining cutting chips are discharged to the outside of the wafer W, and the surface of the protective film Q is more strongly cleaned. At this time, the stripping liquid nozzle 150 is moved from above the outer peripheral portion of the wafer W to above the central portion.
  • step A9 the stripping liquid nozzle 150 is moved from above the center portion to above the outer peripheral portion of the wafer W while rotating the wafer W as shown in FIG. 14D.
  • the release liquid nozzle 150 the diluted release liquid Sd is supplied from the release liquid nozzle 150 to the surface Wa (protective film Q) of the wafer W.
  • the moving mechanism 311 moves the nozzle block 310 from above the outer peripheral portion to above the central portion of the wafer W.
  • step A9 the diluting stripping solution Sd diffuses on the protective film Q, and the protective film Q is completely removed by the diluting stripping solution Sd. Further, with the complete removal of the protective film Q, the cutting chips adhering to the removed protective film Q are also completely removed. Then, the surface Wa of the wafer W is exposed.
  • step A10 pure water D is supplied from the two-fluid nozzle 160 to the center of the wafer W while rotating the wafer W as shown in FIG. 14 (e).
  • the pure water D diffuses on the protective film Q, the remaining stripping liquid S is discharged to the outside of the wafer W, and the surface of the protective film Q is washed. Further, when the release liquid S is discharged, the removal of the protective film Q is also stopped.
  • step A11 the nozzle block 310 is moved from above the center portion to above the outer peripheral portion of the wafer W while rotating the wafer W as shown in FIG. 14 (f). While the nozzle block 310 is moving, the mixed fluid Dm of pure water D and N 2 gas is injected in a mist form from the two-fluid nozzle 160.
  • This step A11 is the same as in step A8, and by injecting the mixed fluid Dm, the remaining cutting chips are discharged to the outside of the wafer W, and the surface of the protective film Q is more strongly cleaned.
  • step A12 the nozzle block 310 is moved from above the outer peripheral portion to above the central portion of the wafer W while rotating the wafer W as shown in FIG. 14 (g).
  • pure water D is supplied from the two-fluid nozzle 160. Pure water D diffuses on the surface Wa of the wafer W, and the surface Wa is washed.
  • N 2 gas is not supplied from the two-fluid nozzle 160, and only pure water D is supplied.
  • step A13 the nozzle block 310 is moved from above the center portion to above the outer peripheral portion of the wafer W while rotating the wafer W as shown in FIG. 14 (h).
  • the nozzle block 310 supplies the pure water D in the center of the wafer W from the two-fluid nozzle 160 injects N 2 gas N 2 gas nozzle 170.
  • the release liquid S is completely removed from the surface Wa of the wafer W.
  • step A14 in a state where the injection was stopped the N 2 gas from the supply and N 2 gas nozzle 170 for pure water D from the two-fluid nozzle 160 as shown in FIG. 14 (i), the rotation of the wafer W continue. Then, the surface Wa of the wafer W is spin-dried. Then, the protective film Q is completely removed from the surface of the wafer W together with the cutting chips.
  • the method of diluting the stripping solution S in step A6 is different between the present embodiment and the embodiment shown in FIG. That is, in the embodiment shown in FIG. 8, the stripping liquid S is diluted by supplying the stripping liquid S and the pure water D at the same time, but in the present embodiment, the diluted stripping liquid Sd is supplied to the stripping liquid nozzle 150. .. Also in this embodiment, the stripping solution S can be appropriately diluted.
  • FIG. 15 is an explanatory diagram schematically showing each step of the protective film removing treatment according to another embodiment.
  • step A6 while rotating the wafer W as shown in FIG. 15A, the release liquid nozzle 150 is arranged above the center of the wafer W, and the surface of the wafer W is removed from the release liquid nozzle 150.
  • the diluted stripping solution Sd is supplied to the center of the Wa.
  • the diluting stripping solution Sd diffuses the surface Wa of the wafer W by centrifugal force, and the protective film Q is dissolved by the diluting stripping solution Sd to be partially removed.
  • the diluted stripping liquid Sd is supplied from the stripping liquid nozzle 150, but after the pure water D is supplied from the two-fluid nozzle 160, the stripping liquid S is supplied to the paddle of the pure water D from the stripping liquid nozzle 150. You may.
  • steps A7 to A14 of FIGS. 15 (b) to (i) of the present embodiment are the steps A7 to A14 of FIGS. 14 (b) to 14 (i) of the above embodiment, respectively. It is the same process.
  • the same effect as that of the embodiment shown in FIG. 14 can be enjoyed. That is, in the embodiment shown in FIG. 14, in the partial removal (partial peeling) of the protective film Q in the first stage, the protective film Q is partially removed by supplying the diluted release liquid Sd while moving the release liquid nozzle 150. Was able to be removed. Similarly, even when the diluted stripping solution Sd was supplied to the central portion of the surface Wa of the wafer W as in the present embodiment, the protective film Q could be partially removed.
  • the nozzle block 140 may be provided with the ultrasonic oscillating unit 320 as shown in FIG.
  • step A8 after cleaning the surface of the protective film Q with the mixed fluid Dm from the two-fluid nozzle 160, the surface Wa of the wafer W (ultrasonic waves are applied to further surface the protective film Q from the ultrasonic oscillating unit 320).
  • step A11 the surface Wa of the wafer W may be ultrasonically cleaned using the ultrasonic oscillating unit 320. In such a case, the surface Wa of the wafer W may be cleaned more appropriately. can do.
  • CO 2 may be dissolved in pure water D supplied from the two-fluid nozzle 160.
  • the pure water D supplied from the two-fluid nozzle 160 may be heated to a high temperature.
  • a cover 330 that covers the dicing frame F supported by the frame holding portion 120 may be provided as shown in FIG.
  • the cover 330 covers at least the upper surface of the dicing frame F and is provided in a ring shape.
  • the cover 330 can prevent the dicing liquid S supplied from the release liquid nozzle 150 from being applied to the dicing frame F, and the dicing frame F can be prevented from being damaged.
  • the protective film removing device 20 in the protective film removing device 20, partial removal of the protective film Q in the first stage (steps A6 to A8, B9 to B11) and complete removal of the protective film Q in the second stage (steps A9 to A11,
  • the protective film removal treatment was performed in two steps of B12 to B14), but there may be three or more steps.
  • the protective film Q is formed as the protective layer, but the type of the protective layer is not limited to this.
  • a protective tape may be attached to the surface Wa of the wafer W.
  • the protective film Q and cutting chips are removed by strengthening the treatment of partial removal of the protective film Q in the first stage (steps A6 to A8, B9 to B11).
  • the process of cleaning the surface of the protective film Q is strengthened.
  • the method for strengthening this cleaning treatment include lengthening the partial removal treatment time, that is, rotating the wafer W to lengthen the time for discharging the release liquid S together with the cutting chips.
  • the physical detergency of the protective film Q can be improved.
  • the strengthening of the cleaning treatment of the protective film Q described above can be carried out in any of the cleaning modules 90 of the above embodiments, but here, the cleaning modules 90 according to the other embodiments shown in FIG. 18 are used. The case where it is used will be described.
  • the cleaning module 90 of the present embodiment further has a release liquid spray nozzle 340 for the configuration of the cleaning module 90 shown in FIG.
  • the stripping liquid spray nozzle 340 is supported by, for example, the moving mechanism 141 of the nozzle block 140, and is configured to be movable integrally with the stripping liquid nozzle 150, the two- fluid nozzle 160, and the N2 gas nozzle 170.
  • a supply pipe 341 for supplying a diluted stripping solution Sd obtained by diluting the stripping solution S with pure water D is connected to the stripping solution spray nozzle 340 to the stripping solution spray nozzle 340.
  • the supply pipe 341 communicates with the stripping liquid supply source 342 that stores the stripping liquid S inside and the pure water supply source 343 that stores the pure water D inside.
  • the supply pipe 341 is provided with a mixer 344 that mixes the stripping liquid S supplied from the stripping liquid supply source 342 and the pure water D supplied from the pure water supply source 343.
  • the mixer 344 produces a diluted stripping solution Sd having a desired concentration by diluting the stripping solution S with pure water D.
  • the mixer 344 also includes a valve for controlling the flow of the diluting stripping solution Sd, a flow rate adjusting unit, and the like.
  • a supply pipe 345 for supplying an inert gas such as N 2 (nitrogen) to the stripping liquid spray nozzle 340 is connected to the stripping liquid spray nozzle 340.
  • the supply pipe 345 communicates with a gas supply source 346 that stores N 2 gas inside.
  • the supply pipe 345 is provided with a supply equipment group 347 including a valve for controlling the flow of N 2 gas, a flow rate adjusting unit, and the like.
  • the diluted stripping liquid Sd and N 2 gas supplied to the stripping liquid spray nozzle 340 are mixed in the stripping liquid spray nozzle 340 and discharged in a mist form from the stripping liquid spray nozzle 340. In this way, the stripping liquid spray nozzle 340 supplies the atomized diluted stripping liquid Sd to the surface Wa (protective film Q) of the wafer W.
  • the stripping liquid spray nozzle 340 can also control the supply equipment group 347 to stop the supply of N 2 gas and supply only the diluted stripping liquid Sd to the surface Wa (protective film Q) of the wafer W. That is, the stripping solution spray nozzle 340 includes a supply of fluid mixture of diluted stripping solution Sd and N 2 gas, is configured to freely switch between supply of only dilute stripping solution Sd.
  • FIGS. 19 to 22 are explanatory views schematically showing each step of the protective film removing process.
  • the cleaning treatment of the surface of the protective film Q in the first step of partial removal (partial peeling) of the protective film Q is different.
  • step A6 the first step of partial removal (partial peeling) of the protective film Q is performed.
  • step A6 the nozzle block 140 is moved from above the outer peripheral portion to above the central portion by the moving mechanism 141 while rotating the wafer W by the rotary elevating mechanism 131 as shown in FIG. 19A.
  • the diluted release liquid Sd is supplied from the release liquid spray nozzle 340 to the surface Wa (protective film Q) of the wafer W.
  • N 2 gas from the stripping solution spray nozzle 340 is not supplied, only diluted stripping solution Sd is supplied.
  • step A6 the diluting stripping solution Sd diffuses on the protective film Q, and the protective film Q is dissolved by the diluting stripping solution Sd and partially removed. At this time, the surface Wa of the wafer W is not exposed. Further, with the partial removal of the protective film Q, the cutting chips adhering to the removed protective film Q are also removed.
  • step A7 pure water D is supplied from the two-fluid nozzle 160 to the center of the wafer W while rotating the wafer W as shown in FIG. 19B.
  • the pure water D diffuses on the protective film Q, the remaining stripping liquid S is discharged to the outside of the wafer W, and the surface of the protective film Q is washed. Further, when the release liquid S is discharged, the removal of the protective film Q is also stopped.
  • the rotation speed of the wafer W in step A7 is 500 rpm to 1200 rpm, and in this embodiment, it is 1000 rpm.
  • the processing time in step A7 is 0 to 60 seconds, which is 20 seconds in the present embodiment. In such a case, the cleaning time of the protective film Q becomes long, so that the surface of the protective film Q can be cleaned more appropriately.
  • step A8 the nozzle block 140 is moved from above the center portion of the wafer W to above the outer peripheral portion while rotating the wafer W as shown in FIG. 19C. While the nozzle block 140 is moving, a mixed fluid Dm of pure water D and N 2 gas is injected in a mist form from the two-fluid nozzle 160. By injecting the mixed fluid Dm, the remaining cutting chips are discharged to the outside of the wafer W, and the surface of the protective film Q is more strongly cleaned.
  • the rotation speed of the wafer W in step A8 is 500 rpm to 1200 rpm, and in this embodiment, it is 1000 rpm.
  • the processing time in step A8 is 30 seconds to 90 seconds, which is 60 seconds in the present embodiment.
  • the second-stage protective film Q complete removal steps (steps A9 to A11) shown in FIGS. 19 (d) to 19 (f) and the wafer W cleaning steps (steps) shown in FIGS. 19 (g) to 19 (i). Since A12 to A14) are the same as the steps shown in FIG. 8 of the above embodiment, the description thereof will be omitted.
  • step A6 the first step of partial removal (partial peeling) of the protective film Q is performed.
  • step A6 as shown in FIG. 20A, the wafer W is rotated, and the nozzle block 140 is moved from the upper part of the outer periphery to the upper part of the center of the wafer W from the release liquid spray nozzle 340 to the surface Wa of the wafer W.
  • the diluted stripping solution Sd is supplied to the protective film Q) to partially remove the protective film Q. Since this step A6 is the same as the step shown in FIG. 19A, the description thereof will be omitted.
  • step A7 is omitted.
  • step A8 as shown in FIG. 20B, the wafer W is rotated, and the nozzle block 140 is moved from the upper part of the center portion to the upper part of the outer peripheral portion of the wafer W, while the two-fluid nozzle 160 is used to move the pure water D and a mixed fluid Dm of N 2 gas was injected into mist, to clean the surface of the protective film Q. Since this step A8 is the same as the step shown in FIG. 19C, the description thereof will be omitted.
  • the second-stage protective film Q complete removal steps (steps A9 to A11) shown in FIGS. 20 (c) to 20 (e) and the wafer W cleaning steps (steps) shown in FIGS. 20 (f) to 20 (h). Since A12 to A14) are the same as the steps shown in FIG. 8 of the above embodiment, the description thereof will be omitted.
  • step A6 the first step of partial removal (partial peeling) of the protective film Q is performed.
  • step A6 the wafer W is rotated as shown in FIG. 21A, and the nozzle block 140 is moved from the upper part of the outer peripheral portion to the upper part of the central portion of the wafer W from the release liquid spray nozzle 340 to the surface Wa of the wafer W.
  • the diluted stripping solution Sd is supplied to the protective film Q) to partially remove the protective film Q. Since this step A6 is the same as the step shown in FIG. 19A, the description thereof will be omitted.
  • step A7 is omitted.
  • step A8 the nozzle block 140 is moved from above the center portion to above the outer peripheral portion of the wafer W while rotating the wafer W as shown in FIG. 21B.
  • the mixed fluid of the dilution stripping solution Sd and N 2 gas is injected into mist from stripping solution spray nozzle 340.
  • the mixed fluid of the diluted stripping solution Sd and N 2 gas is equivalent to the rinse liquid.
  • the rotation speed of the wafer W in step A8 is 500 rpm to 1200 rpm, and in this embodiment, it is 1000 rpm.
  • the processing time in step A8 is 30 seconds to 90 seconds, which is 60 seconds in the present embodiment.
  • the second-stage protective film Q complete removal steps (steps A9 to A11) shown in FIGS. 21 (c) to 21 (e) and the wafer W cleaning steps (steps) shown in FIGS. 21 (f) to 21 (h). Since A12 to A14) are the same as the steps shown in FIG. 8 of the above embodiment, the description thereof will be omitted.
  • step A6 the first step of partial removal (partial peeling) of the protective film Q is performed.
  • step A6 the wafer W is rotated as shown in FIG. 22A, and the nozzle block 140 is moved from the upper part of the outer periphery to the upper part of the center of the wafer W from the release liquid spray nozzle 340 to the surface Wa of the wafer W.
  • the diluted stripping solution Sd is supplied to the protective film Q) to partially remove the protective film Q. Since this step A6 is the same as the step shown in FIG. 19A, the description thereof will be omitted.
  • step A7 pure water D is supplied from the two-fluid nozzle 160 to the central portion of the wafer W while rotating the wafer W as shown in FIG. 22B to clean the surface of the protective film Q. Since this step A7 is the same as the step shown in FIG. 19B, the description thereof will be omitted.
  • step A8 the wafer W is rotated as shown in FIG. 22C, and the nozzle block 140 is moved from the upper part of the center portion to the upper part of the outer peripheral portion of the wafer W, and the diluting release fluid is diluted from the release liquid spray nozzle 340.
  • a mixed fluid of the mixed fluid of the Sd and N 2 gas was injected into the mist, to clean the surface of the protective film Q. Since this step A8 is the same as the step shown in FIG. 21B, the description thereof will be omitted.
  • the second-stage protective film Q complete removal steps (steps A9 to A11) shown in FIGS. 22 (d) to 22 (f) and the wafer W cleaning steps (steps) shown in FIGS. 20 (g) to 20 (i). Since A12 to A14) are the same as the steps shown in FIG. 8 of the above embodiment, the description thereof will be omitted.
  • the treatment of partial removal of the protective film Q in the first step is strengthened, and the surface of the protective film Q is cleaned. It is strengthening. That is, in FIGS. 19B and 22B, since the spin cleaning time of the protective film Q is lengthened, the surface of the protective film Q can be cleaned more appropriately. Further, in FIGS. 19 (c), 20 (b), 21 (b), and 22 (c), the mixed fluid Dm of pure water D or the mixed fluid of the diluted stripping solution Sd is sprayed in a mist form. Therefore, the physical detergency of the protective film Q can be improved. As a result of strengthening the process of partially removing the protective film Q in the first stage in this way, the effect of removing the protective film Q and cutting chips can be further improved.
  • the cleaning processes (1) to (3) may be sequentially performed.
  • a substrate processing method for processing a substrate which is a step of forming a protective layer on the surface of the substrate, then a step of dicing the substrate on which the protective layer is formed, and then the protection from the surface of the substrate.
  • a substrate processing method comprising a step of removing a layer.
  • the step of removing the protective layer includes a step of supplying a stripping liquid to the surface of the substrate and a step of supplying a rinse liquid to the surface of the substrate to which the stripping liquid is supplied.
  • the step of supplying the stripping liquid and the step of supplying the rinse liquid are performed a plurality of times, and in the step of supplying the stripping liquid prior to the final step among the plurality of times, the protective layer is partially covered so that the surface of the substrate is not exposed.
  • the substrate processing method according to any one of (2) to (4) above which supplies a liquid.
  • the rotation speed of the substrate and the moving speed of the stripping liquid supply unit are controlled to remain on the surface of the substrate after the stripping liquid is supplied.
  • the substrate processing method according to (5) above which controls the thickness of the protective layer.
  • the stripping liquid is supplied from the stripping liquid supply portion to the surface center portion of the substrate in a state where the stripping liquid supply portion is arranged above the center portion of the substrate while rotating the substrate.
  • the substrate processing method according to any one of (2) to (4) above which is supplied.
  • step of supplying the rinse liquid either the step of supplying only the rinse liquid to the surface of the substrate or the step of supplying the rinse liquid mixed with gas to the surface of the substrate in the form of a mist.
  • step of supplying the rinse liquid which is performed after the step of supplying the release liquid before the final round, after performing the step of supplying only the rinse liquid to the surface of the substrate, the rinse liquid is used.
  • the substrate processing method according to (8) above wherein the substrate is rotated with the supply stopped to discharge the rinse liquid on the surface of the substrate.
  • the rinsing solution is a diluted stripping solution in which the stripping solution and the diluent are mixed, and in the step of supplying the rinsing solution, the diluted stripping solution mixed with the gas is atomized on the surface of the substrate.
  • the substrate processing method according to any one of (2) to (10) above which comprises a step of supplying a gas and then a step of rotating the substrate to dry the surface of the substrate.
  • the step of forming the protective layer includes a step of applying a protective liquid to the surface of the substrate attached to the dicing frame, and then a step of heating the substrate to which the protective liquid is applied.
  • the substrate processing method according to any one of (1) to (11). (13) In the step of applying the protective liquid, while the protective liquid discharged from the coating portion is brought into contact with the surface of the substrate, the coating portion and the substrate are relatively moved in the horizontal direction to obtain the substrate.
  • the step of forming the protective layer is performed before attaching the dicing frame to the substrate, and the step of forming the protective layer is a step of applying a protective liquid to the surface of the substrate by a spin coating method, and thereafter.
  • the substrate processing method according to any one of (1) to (11) above which comprises a step of heating a substrate coated with the protective liquid.
  • the step of forming the protective layer includes a step of irradiating the surface of the substrate with ultraviolet rays.
  • the protective layer is an alkali-soluble resin.
  • a substrate processing system for processing a substrate, a protective layer forming device for forming a protective layer on the surface of the substrate before dicing, and a protective layer removing device for removing the protective layer from the surface of the substrate after dicing. Has a substrate processing system.
  • the rinse liquid supply unit has a two-fluid nozzle that supplies the rinse liquid mixed with a gas in a mist form, and the two-fluid nozzle supplies the rinse liquid mixed with the gas.
  • the rinse liquid supply unit has a two-fluid nozzle that mixes the stripping liquid and the diluting liquid and supplies the diluted stripping liquid with a gas in the form of a mist, according to the above (18) or (19).
  • (21) The substrate processing system according to any one of (18) to (21) above, wherein the protective layer removing device has a gas supply unit that supplies gas to the surface of the substrate.
  • the protective layer removing device has an ultrasonic oscillating unit that applies ultrasonic waves to the surface of the substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

This substrate processing method is for processing a substrate and includes: a step for forming a protective layer on a surface of the substrate; a subsequent step for dicing the substrate on which the protective layer was formed; and a subsequent step for removing the protective layer from the surface of the substrate. This substrate processing system is for processing a substrate and includes: a protective layer forming device for forming a protective layer on a surface of the substrate before the substrate is diced; and a protective layer removing device for removing the protective layer from the surface of the substrate after the substrate was diced.

Description

基板処理方法及び基板処理システムSubstrate processing method and substrate processing system
 本開示は、基板処理方法及び基板処理システムに関する。 This disclosure relates to a substrate processing method and a substrate processing system.
 特許文献1には、ダイシング後のウェハを洗浄する方法が開示されている。この洗浄方法では、ウェハを回転させるとともに、ウェハ表面に沿って往復移動するノズルからウェハに洗浄水を供給することによって、当該ウェハを洗浄する。 Patent Document 1 discloses a method for cleaning a wafer after dicing. In this cleaning method, the wafer is cleaned by rotating the wafer and supplying cleaning water to the wafer from a nozzle that reciprocates along the surface of the wafer.
特開2006-310395号公報Japanese Unexamined Patent Publication No. 2006-310395
 本開示にかかる技術は、ダイシング後の製品の歩留まりを向上させる。 The technology related to this disclosure improves the yield of products after dicing.
 本開示の一態様は、基板を処理する基板処理方法であって、基板の表面に保護層を形成する工程と、その後、前記保護層が形成された基板をダイシングする工程と、その後、基板の表面から前記保護層を除去する工程と、を有する。 One aspect of the present disclosure is a substrate processing method for processing a substrate, which comprises a step of forming a protective layer on the surface of the substrate, a step of dicing the substrate on which the protective layer is formed, and then a step of dicing the substrate. It has a step of removing the protective layer from the surface.
 本開示によれば、ダイシング後の製品の歩留まりを向上させることができる。 According to the present disclosure, the yield of the product after dicing can be improved.
本実施形態にかかるウェハ処理システムの構成の概略を模式的に示す平面図である。It is a top view which shows the outline of the structure of the wafer processing system which concerns on this embodiment schematically. ウェハの構成の概略を示す側面図である。It is a side view which shows the outline of the structure of a wafer. ウェハの構成の概略を示す平面図である。It is a top view which shows the outline of the structure of a wafer. 本実施形態にかかる洗浄モジュールの構成の概略を示す側面図である。It is a side view which shows the outline of the structure of the cleaning module which concerns on this embodiment. 第1の実施形態にかかるウェハ処理の主な工程を示すフロー図である。It is a flow chart which shows the main process of the wafer processing which concerns on 1st Embodiment. 第1の実施形態にかかるウェハ処理の各工程を模式的に示す説明図である。It is explanatory drawing which shows typically each process of the wafer processing which concerns on 1st Embodiment. ウェハ処理の各工程におけるウェハWの一部断面を示す説明図である。It is explanatory drawing which shows the partial cross section of the wafer W in each step of a wafer processing. 本実施形態にかかる保護膜除去処理の各工程を模式的に示す説明図である。It is explanatory drawing which shows typically each step of the protective film removal process which concerns on this Embodiment. 第2の実施形態にかかるウェハ処理の主な工程を示すフロー図である。It is a flow chart which shows the main process of the wafer processing which concerns on 2nd Embodiment. 第2の実施形態にかかるウェハ処理の各工程を模式的に示す説明図である。It is explanatory drawing which shows typically each process of the wafer processing which concerns on 2nd Embodiment. 保護膜の部分除去処理を実施後の保護膜の状態を示すグラフである。It is a graph which shows the state of the protective film after performing the partial removal process of a protective film. 他の実施形態にかかる保護膜除去処理の各工程を模式的に示す説明図である。It is explanatory drawing which shows typically each step of the protective film removal process which concerns on other embodiment. 他の実施形態にかかる洗浄モジュールの構成の概略を示す側面図である。It is a side view which shows the outline of the structure of the cleaning module which concerns on other embodiment. 他の実施形態にかかる保護膜除去処理の各工程を模式的に示す説明図である。It is explanatory drawing which shows typically each step of the protective film removal process which concerns on other embodiment. 他の実施形態にかかる保護膜除去処理の各工程を模式的に示す説明図である。It is explanatory drawing which shows typically each step of the protective film removal process which concerns on other embodiment. 他の実施形態にかかる洗浄モジュールの構成の概略を示す側面図である。It is a side view which shows the outline of the structure of the cleaning module which concerns on other embodiment. 他の実施形態にかかる洗浄モジュールの構成の概略を示す側面図である。It is a side view which shows the outline of the structure of the cleaning module which concerns on other embodiment. 他の実施形態にかかる洗浄モジュールの構成の概略を示す側面図である。It is a side view which shows the outline of the structure of the cleaning module which concerns on other embodiment. 他の実施形態にかかる保護膜除去処理の各工程を模式的に示す説明図である。It is explanatory drawing which shows typically each step of the protective film removal process which concerns on other embodiment. 他の実施形態にかかる保護膜除去処理の各工程を模式的に示す説明図である。It is explanatory drawing which shows typically each step of the protective film removal process which concerns on other embodiment. 他の実施形態にかかる保護膜除去処理の各工程を模式的に示す説明図である。It is explanatory drawing which shows typically each step of the protective film removal process which concerns on other embodiment. 他の実施形態にかかる保護膜除去処理の各工程を模式的に示す説明図である。It is explanatory drawing which shows typically each step of the protective film removal process which concerns on other embodiment.
 半導体デバイスの製造工程においては、表面に複数の電子回路などのデバイスが形成された半導体ウェハ(以下、「ウェハ」という。)をダイシングすることが行われている。ダイシングは、例えばダイシングソーを用いてウェハを切削して切り出し、チップ化する工程である。ダイシング工程で発生した切削屑は、ダイシング時においては研削水を用いて排出を行うとともに、ダイシング後においては洗浄工程を加えてウェハ上から除去する処理が行われている。 In the semiconductor device manufacturing process, a semiconductor wafer (hereinafter referred to as "wafer") in which devices such as a plurality of electronic circuits are formed on the surface is diced. Dicing is a process of cutting a wafer using, for example, a dicing saw, cutting it out, and converting it into chips. The cutting chips generated in the dicing step are discharged using grinding water during dicing, and after dicing, a cleaning step is added to remove the cutting chips from the wafer.
 しかしながら、ダイシング工程で発生する切削屑は数多く、ダイシング時の研削液によってもダイシング後の洗浄を行うことによっても切削屑の除去は満足できるものではない。特にCCD(Charge Coupled Device)やCIS(CMOS Image Sensor)において、切削屑は画素欠陥につながる要因となっており、そのサイズも微細化していることから、問題となる切削屑の残留物も小さくなり、より高い清浄度が求められるようになっている。 However, there are many cutting chips generated in the dicing process, and the removal of cutting chips is not satisfactory either with the grinding fluid during dicing or by cleaning after dicing. Especially in CCD (Charge Coupled Device) and CIS (CMOS Image Sensor), cutting chips are a factor that leads to pixel defects, and since their size is also miniaturized, the residue of cutting chips that becomes a problem is also reduced. , Higher cleanliness is required.
 例えば特許文献1に開示された洗浄方法では、ダイシング後の洗浄において、ウェハの回転速度を第1の回転速度と第1の回転速度より高速な第2の回転速度とに切り替えて複数回繰り返し洗浄する。そして、この回転速度の加減速時にウェハに付着した切削屑に負荷を加えて、当該切削屑を除去することを図っている。 For example, in the cleaning method disclosed in Patent Document 1, in the cleaning after dicing, the rotation speed of the wafer is switched between the first rotation speed and the second rotation speed higher than the first rotation speed, and the wafer is repeatedly washed a plurality of times. To do. Then, a load is applied to the cutting chips adhering to the wafer during acceleration / deceleration of the rotation speed to remove the cutting chips.
 ここで、従来の方法では、ダイシング時にウェハの表面(デバイス面)が露出していることから、研削屑はデバイス上に付着することが確実である。そうすると、上述した特許文献1に開示された洗浄方法のように洗浄力を向上させたとしても、確率的に製品不良につながる研削屑の残留物の問題は解決できない。したがって、従来の方法には改善の余地がある。 Here, in the conventional method, since the surface (device surface) of the wafer is exposed during dicing, it is certain that the grinding debris adheres to the device. Then, even if the cleaning power is improved as in the cleaning method disclosed in Patent Document 1 described above, the problem of residual grinding debris that stochastically leads to product defects cannot be solved. Therefore, there is room for improvement in the conventional method.
 本開示にかかる技術は、ダイシング後の製品の歩留まりを向上させる。具体的には、ダイシング前に予めウェハの表面(デバイス面)に保護層としての保護膜を形成し、当該デバイス面の露出をなくし、その後、ダイシング後の洗浄工程では、発生した研削屑とともに保護膜を剥離する。 The technology related to this disclosure improves the yield of products after dicing. Specifically, a protective film as a protective layer is formed in advance on the surface (device surface) of the wafer before dicing to eliminate the exposure of the device surface, and then in the cleaning step after dicing, it is protected together with the generated grinding dust. Peel off the film.
 以下、本実施形態にかかる基板処理システムとしてのウェハ処理システム、及び基板処理方法としてのウェハ処理方法について、図面を参照しながら説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。 Hereinafter, the wafer processing system as the substrate processing system and the wafer processing method as the substrate processing method according to the present embodiment will be described with reference to the drawings. In the present specification and the drawings, elements having substantially the same functional configuration are designated by the same reference numerals to omit duplicate description.
<ウェハ処理システム1の構成>
 先ず、本実施形態にかかるウェハ処理システムの構成について説明する。図1は、ウェハ処理システム1の構成の概略を模式的に示す平面図である。
<Structure of Wafer Processing System 1>
First, the configuration of the wafer processing system according to the present embodiment will be described. FIG. 1 is a plan view schematically showing an outline of the configuration of the wafer processing system 1.
 ウェハ処理システム1では、図2及び図3に示すように基板としてのウェハWを処理する。ウェハWは、例えばシリコンウェハなどの半導体ウェハであって、表面Waに複数のデバイスを含むデバイス層(図示せず)が形成されている。 In the wafer processing system 1, the wafer W as a substrate is processed as shown in FIGS. 2 and 3. The wafer W is a semiconductor wafer such as a silicon wafer, and a device layer (not shown) including a plurality of devices is formed on the surface Wa.
 また、ウェハWは、ダイシングフレームFにダイシングテープPを介して固定される。具体的には、ダイシングフレームFの開口部FaにウェハWを配置し、開口部Faを裏面から塞ぐようにウェハWの裏面Wb及びダイシングフレームFの裏面にダイシングテープPを貼り付ける。これによりウェハWは、ダイシングフレームFに固定(保持)された状態となる。 Further, the wafer W is fixed to the dicing frame F via the dicing tape P. Specifically, the wafer W is arranged in the opening Fa of the dicing frame F, and the dicing tape P is attached to the back surface Wb of the wafer W and the back surface of the dicing frame F so as to close the opening Fa from the back surface. As a result, the wafer W is in a state of being fixed (held) to the dicing frame F.
 なお、ダイシングフレームFは、ウェハWよりも大径の開口部Faを中央に有する略環状の部材であり、ステンレス鋼などの金属で形成される。ダイシングフレームFの厚みは、例えば1mm程度である。また、ダイシングテープPには、例えば有機系樹脂、例えばPVC(ポリ塩化ビニル)、PET(ポリエチレンテレフタレート)、PO(ポリオレフィン)などが用いられる。 The dicing frame F is a substantially annular member having an opening Fa having a diameter larger than that of the wafer W in the center, and is made of a metal such as stainless steel. The thickness of the dicing frame F is, for example, about 1 mm. Further, for the dicing tape P, for example, an organic resin such as PVC (polyvinyl chloride), PET (polyethylene terephthalate), PO (polyolefin) and the like are used.
 ウェハ処理システム1は、ダイシング前のウェハWの表面に保護膜を形成する保護膜形成装置10と、ダイシング後のウェハWの表面から保護膜を除去する形成する保護膜除去装置20とを有している。 The wafer processing system 1 includes a protective film forming device 10 for forming a protective film on the surface of the wafer W before dicing, and a protective film removing device 20 for removing the protective film from the surface of the wafer W after dicing. ing.
 また、ウェハ処理システム1には、制御装置30が設けられている。制御装置30は、例えばCPUやメモリなどを備えたコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、ウェハ処理システム1におけるウェハWの処理を制御するプログラムが格納されている。また、プログラム格納部には、ウェハ処理システム1の動作を制御して、ウェハ処理システム1における後述のウェハ処理を実現させるためのプログラムも格納されている。なお、上記プログラムは、コンピュータに読み取り可能な記憶媒体Hに記録されていたものであって、当該記憶媒体Hから制御装置30にインストールされたものであってもよい。 Further, the wafer processing system 1 is provided with a control device 30. The control device 30 is, for example, a computer equipped with a CPU, a memory, or the like, and has a program storage unit (not shown). The program storage unit stores a program that controls the processing of the wafer W in the wafer processing system 1. Further, the program storage unit also stores a program for controlling the operation of the wafer processing system 1 to realize the wafer processing described later in the wafer processing system 1. The program may be recorded on a computer-readable storage medium H and may be installed on the control device 30 from the storage medium H.
<保護膜形成装置10の構成>
 図1に示すように保護膜形成装置10は、例えば外部との間で複数のウェハWを収容可能なカセットCが搬入出される搬入出ステーション40と、ウェハWに対して処理を施す各種処理モジュールを備えた処理ステーション41とを一体に接続した構成を有している。
<Structure of protective film forming apparatus 10>
As shown in FIG. 1, the protective film forming apparatus 10 includes, for example, an loading / unloading station 40 in which a cassette C capable of accommodating a plurality of wafers W is loaded / unloaded from the outside, and various processing modules that process the wafer W. It has a configuration in which the processing station 41 provided with the above is integrally connected.
 搬入出ステーション40には、カセット載置台42が設けられている。図示の例では、カセット載置台42には複数、例えば4つのカセットCをX軸方向に一列に載置自在になっている。なお、カセット載置台42に載置されるカセットCの数は本実施形態に限定されず、任意に決定できる。 The loading / unloading station 40 is provided with a cassette mounting stand 42. In the illustrated example, a plurality of cassettes C, for example, four cassettes C can be freely mounted in a row in the X-axis direction on the cassette mounting table 42. The number of cassettes C mounted on the cassette mounting table 42 is not limited to this embodiment and can be arbitrarily determined.
 搬入出ステーション40には、カセット載置台42に隣接してウェハ搬送領域43が設けられている。ウェハ搬送領域43には、ウェハWの搬送を行うウェハ搬送機構44が配置される。ウェハ搬送機構44は、水平方向への移動、鉛直方向への昇降及び鉛直方向を中心とする旋回が可能な搬送アーム部(図示せず)と、この搬送アーム部の先端に取り付けられたウェハ保持部(図示せず)とを備える。そして、ウェハ搬送機構44は、カセット載置台42のカセットC、及び後述する塗布モジュール50、熱処理モジュール60、紫外線照射モジュール70に対して、ウェハWを搬送可能に構成されている。 The loading / unloading station 40 is provided with a wafer transport area 43 adjacent to the cassette mounting table 42. In the wafer transfer region 43, a wafer transfer mechanism 44 that transfers the wafer W is arranged. The wafer transfer mechanism 44 includes a transfer arm portion (not shown) capable of moving in the horizontal direction, raising and lowering in the vertical direction, and turning around the vertical direction, and a wafer holding attached to the tip of the transfer arm portion. It is provided with a part (not shown). The wafer transfer mechanism 44 is configured to transfer the wafer W to the cassette C of the cassette mounting table 42, the coating module 50, the heat treatment module 60, and the ultraviolet irradiation module 70, which will be described later.
 処理ステーション41には、ウェハ搬送領域43のY軸正方向側において、塗布モジュール50と、熱処理モジュール60と、紫外線照射モジュール70とが、X軸方向に並べて配置されている。なお、塗布モジュール50、熱処理モジュール60、紫外線照射モジュール70の数や配置は本実施形態に限定されず、任意に決定することができる。 In the processing station 41, the coating module 50, the heat treatment module 60, and the ultraviolet irradiation module 70 are arranged side by side in the X-axis direction on the Y-axis positive direction side of the wafer transfer region 43. The number and arrangement of the coating module 50, the heat treatment module 60, and the ultraviolet irradiation module 70 are not limited to this embodiment, and can be arbitrarily determined.
 塗布モジュール50では、いわゆるキャピラリー塗布法により、ウェハWの表面Waに保護液を塗布して保護膜を形成する。キャピラリー塗布法は、塗布部としての塗布ノズルから吐出された保護液をウェハWの表面Waに接液させながら、塗布ノズルとウェハWを水平方向に相対的に移動させて、当該表面Waに保護液を塗布する方法である。なお、塗布モジュール50には、キャピラリー塗布法を実行する公知の塗布装置が用いられる。 In the coating module 50, a protective liquid is applied to the surface Wa of the wafer W to form a protective film by a so-called capillary coating method. In the capillary coating method, the protective liquid discharged from the coating nozzle as the coating portion is brought into contact with the surface Wa of the wafer W, and the coating nozzle and the wafer W are relatively moved in the horizontal direction to protect the surface Wa. This is a method of applying a liquid. For the coating module 50, a known coating device that executes a capillary coating method is used.
 本実施形態の保護膜には、アルカリ可溶性樹脂、例えばアクリルやスチレンなどが用いられる。なお、保護膜の材質には、ダイシングテープPが剥離液に溶解しないものであれば使用することができる。例えば、ダイシングテープPが有機溶剤に耐性を有する場合、保護膜には有機溶剤可溶性樹脂を用いることも可能である。但し、ダイシングテープPの材料の自由度を高めるためには、保護膜にはアルカリ可溶性樹脂を用いるのが好ましい。 An alkali-soluble resin such as acrylic or styrene is used for the protective film of the present embodiment. The protective film can be used as long as the dicing tape P does not dissolve in the release liquid. For example, when the dicing tape P has resistance to an organic solvent, an organic solvent-soluble resin can be used as the protective film. However, in order to increase the degree of freedom of the material of the dicing tape P, it is preferable to use an alkali-soluble resin for the protective film.
 熱処理モジュール60では、ウェハWを熱処理する。熱処理モジュール60は、例えばウェハWを保持する熱板を有し、当該熱板によってウェハWを加熱処理する。これにより、ウェハW上の保護膜を焼成する。なお、熱処理モジュール60には、公知の熱処理装置が用いられる。 The heat treatment module 60 heat-treats the wafer W. The heat treatment module 60 has, for example, a hot plate that holds the wafer W, and the wafer W is heat-treated by the hot plate. As a result, the protective film on the wafer W is fired. A known heat treatment apparatus is used for the heat treatment module 60.
 紫外線照射モジュール70では、ウェハWの表面Waに紫外線を照射する。紫外線照射モジュール70は、ウェハWの上方に設けられた紫外線照射部を有し、当該紫外線照射部からウェハWの表面Waに紫外線を照射する。これにより、ウェハW上の保護膜が硬化する。なお、紫外線照射モジュール70には、公知の紫外線照射装置が用いられる。 In the ultraviolet irradiation module 70, the surface Wa of the wafer W is irradiated with ultraviolet rays. The ultraviolet irradiation module 70 has an ultraviolet irradiation unit provided above the wafer W, and irradiates the surface Wa of the wafer W with ultraviolet rays from the ultraviolet irradiation unit. As a result, the protective film on the wafer W is cured. A known ultraviolet irradiation device is used for the ultraviolet irradiation module 70.
<保護膜除去装置20の構成>
 保護膜除去装置20は、例えば外部との間で複数のウェハWを収容可能なカセットCが搬入出される搬入出ステーション80と、ウェハWの表面Waから保護膜を剥離して除去する洗浄モジュールを備えた処理ステーション81とを一体に接続した構成を有している。
<Structure of protective film removing device 20>
The protective film removing device 20 includes, for example, an loading / unloading station 80 in which a cassette C capable of accommodating a plurality of wafers W is carried in / out from the outside, and a cleaning module that peels and removes the protective film from the surface Wa of the wafer W. It has a configuration in which the processing station 81 provided is integrally connected.
 搬入出ステーション80には、カセット載置台82が設けられている。図示の例では、カセット載置台82には複数、例えば4つのカセットCをX軸方向に一列に載置自在になっている。なお、カセット載置台82に載置されるカセットCの数は本実施形態に限定されず、任意に決定できる。 The loading / unloading station 80 is provided with a cassette mounting stand 82. In the illustrated example, a plurality of cassettes C, for example, four cassettes C can be freely mounted in a row in the X-axis direction on the cassette mounting table 82. The number of cassettes C mounted on the cassette mounting table 82 is not limited to this embodiment and can be arbitrarily determined.
 搬入出ステーション80には、カセット載置台82に隣接してウェハ搬送領域83が設けられている。ウェハ搬送領域83には、ウェハWの搬送を行うウェハ搬送機構84が配置される。ウェハ搬送機構84は、水平方向への移動、鉛直方向への昇降及び鉛直方向を中心とする旋回が可能な搬送アーム部(図示せず)と、この搬送アーム部の先端に取り付けられたウェハ保持部(図示せず)とを備える。そして、ウェハ搬送機構84は、カセット載置台82のカセットC、及び後述する洗浄モジュール90に対して、ウェハWを搬送可能に構成されている。 The loading / unloading station 80 is provided with a wafer transport area 83 adjacent to the cassette mounting table 82. A wafer transfer mechanism 84 that transfers the wafer W is arranged in the wafer transfer region 83. The wafer transfer mechanism 84 includes a transfer arm portion (not shown) capable of moving in the horizontal direction, ascending / descending in the vertical direction, and turning around the vertical direction, and a wafer holding attached to the tip of the transfer arm portion. It is provided with a part (not shown). The wafer transfer mechanism 84 is configured to transfer the wafer W to the cassette C of the cassette mounting table 82 and the cleaning module 90 described later.
 処理ステーション81には、ウェハ搬送領域43のY軸正方向側において、複数、例えば4つの洗浄モジュール90が設けられている。洗浄モジュール90は、X軸方向に並べて2つ配置されるとともに、鉛直方向に2段に積層されて配置されている。なお、洗浄モジュール90の数や配置は本実施形態に限定されず、任意に決定することができる。また、洗浄モジュール90の詳細な構成については後述する。 The processing station 81 is provided with a plurality, for example, four cleaning modules 90 on the Y-axis positive direction side of the wafer transfer region 43. Two cleaning modules 90 are arranged side by side in the X-axis direction, and are arranged in two stages in the vertical direction. The number and arrangement of the cleaning modules 90 are not limited to this embodiment, and can be arbitrarily determined. The detailed configuration of the cleaning module 90 will be described later.
<洗浄モジュール90の構成>
 次に、上述した洗浄モジュール90の構成について説明する。図4は、洗浄モジュール90の構成の概略を示す側面図である。洗浄モジュール90では、ダイシングテープPを介してダイシングフレームFに保持されたウェハWの表面Waを洗浄する。具体的には、ダイシング後のウェハWの表面Waから保護膜を剥離して除去する。
<Structure of cleaning module 90>
Next, the configuration of the cleaning module 90 described above will be described. FIG. 4 is a side view showing an outline of the configuration of the cleaning module 90. The cleaning module 90 cleans the surface Wa of the wafer W held by the dicing frame F via the dicing tape P. Specifically, the protective film is peeled off and removed from the surface Wa of the wafer W after dicing.
 洗浄モジュール90は、内部を閉鎖可能な処理容器100を有している。処理容器100のウェハ搬送領域83側の側面にはウェハWの搬入出口(図示せず)が形成され、当該搬入出口には開閉シャッタ(図示せず)が設けられている。 The cleaning module 90 has a processing container 100 whose inside can be closed. A wafer W carry-in outlet (not shown) is formed on the side surface of the processing container 100 on the wafer transport region 83 side, and an open / close shutter (not shown) is provided at the carry-in outlet.
 処理容器100内の中央部には、ウェハWを保持するウェハ保持部110と、ダイシングフレームFを保持するフレーム保持部120とが設けられている。 A wafer holding portion 110 for holding the wafer W and a frame holding portion 120 for holding the dicing frame F are provided in the central portion of the processing container 100.
 ウェハ保持部110は、ウェハWの裏面Wb側をダイシングテープPを介して吸着保持する。ウェハ保持部110には、例えばポーラスチャックが用いられる。ウェハ保持部110は、円盤状の本体部111と、本体部111を支持する支柱部材112とを備える。 The wafer holding unit 110 sucks and holds the back surface Wb side of the wafer W via the dicing tape P. For the wafer holding portion 110, for example, a porous chuck is used. The wafer holding portion 110 includes a disk-shaped main body portion 111 and a support column member 112 that supports the main body portion 111.
 本体部111は、例えばアルミニウムなどの金属部材で構成される。かかる本体部111の表面には、吸着面113が設けられる。吸着面113は、ウェハWと略同径であり、例えば炭化ケイ素などの多孔質体や多孔質セラミックで形成される。 The main body 111 is made of a metal member such as aluminum. A suction surface 113 is provided on the surface of the main body 111. The suction surface 113 has substantially the same diameter as the wafer W, and is formed of, for example, a porous body such as silicon carbide or a porous ceramic.
 本体部111の内部には、吸着面113を介して外部と連通する吸引空間114が形成される。吸引空間114は、真空ポンプなどの吸気装置(図示せず)に連通している。ウェハ保持部110は、吸気装置の吸気によって発生する負圧を利用し、ウェハWの裏面WbをダイシングテープPを介して吸着面113に吸着させることによって、ウェハWを吸着保持する。 Inside the main body 111, a suction space 114 that communicates with the outside is formed via the suction surface 113. The suction space 114 communicates with an intake device (not shown) such as a vacuum pump. The wafer holding unit 110 sucks and holds the wafer W by sucking the back surface Wb of the wafer W to the suction surface 113 via the dicing tape P by utilizing the negative pressure generated by the intake of the intake device.
 ウェハ保持部110の側方には、ダイシングフレームFを下方から保持するフレーム保持部120が配置される。フレーム保持部120は、ダイシングフレームFを吸着保持する複数の吸着パッド121と、吸着パッド121を支持する支持部材122と、支持部材122を鉛直方向に移動させる移動機構123とを備える。 A frame holding portion 120 that holds the dicing frame F from below is arranged on the side of the wafer holding portion 110. The frame holding portion 120 includes a plurality of suction pads 121 that suck and hold the dicing frame F, a support member 122 that supports the suction pad 121, and a moving mechanism 123 that moves the support member 122 in the vertical direction.
 吸着パッド121は、ゴムなどの弾性部材によって形成され、例えば図3に示すダイシングフレームFの4隅に対応する位置にそれぞれ設けられる。吸着パッド121には、吸引口(図示せず)が形成されている。吸引口は、真空ポンプなどの吸気装置(図示せず)に連通している。 The suction pad 121 is formed of an elastic member such as rubber, and is provided at positions corresponding to the four corners of the dicing frame F shown in FIG. 3, for example. A suction port (not shown) is formed on the suction pad 121. The suction port communicates with an intake device (not shown) such as a vacuum pump.
 フレーム保持部120は、吸気装置の吸気によって発生する負圧を利用し、ダイシングフレームFを吸着することによってダイシングフレームFを保持する。また、フレーム保持部120は、移動機構123によって支持部材122及び吸着パッド121を鉛直方向に移動させることにより、吸着パッド121に吸着保持されたダイシングフレームFを鉛直方向に移動させる。 The frame holding unit 120 holds the dicing frame F by adsorbing the dicing frame F by utilizing the negative pressure generated by the intake air of the intake device. Further, the frame holding portion 120 moves the support member 122 and the suction pad 121 in the vertical direction by the moving mechanism 123, thereby moving the dicing frame F sucked and held by the suction pad 121 in the vertical direction.
 ウェハ保持部110及びフレーム保持部120は、下側ベース部130によって下方から支持される。また、下側ベース部130は、処理容器100の床面に固定された回転昇降機構131によって支持される。 The wafer holding portion 110 and the frame holding portion 120 are supported from below by the lower base portion 130. Further, the lower base portion 130 is supported by a rotary elevating mechanism 131 fixed to the floor surface of the processing container 100.
 回転昇降機構131は、下側ベース部130を鉛直軸回りに回転させることにより、下側ベース部130に支持されたウェハ保持部110及びフレーム保持部120を一体的に回転させる。また、回転昇降機構131は、下側ベース部130を鉛直方向に移動させることにより、下側ベース部130に支持されたウェハ保持部110及びフレーム保持部120を一体的に昇降させる。 The rotary elevating mechanism 131 rotates the lower base portion 130 around the vertical axis to integrally rotate the wafer holding portion 110 and the frame holding portion 120 supported by the lower base portion 130. Further, the rotary elevating mechanism 131 integrally raises and lowers the wafer holding portion 110 and the frame holding portion 120 supported by the lower base portion 130 by moving the lower base portion 130 in the vertical direction.
 なお、ウェハ保持部110及びフレーム保持部120の周囲には、ウェハWから飛散又は落下する液体を受け止め、回収するカップ(図示せず)が設けられている。カップの下面には、回収した液体を排出する排出管(図示せず)と、カップ内の雰囲気を排気する排気管(図示せず)が接続されている。 A cup (not shown) is provided around the wafer holding portion 110 and the frame holding portion 120 to receive and collect the liquid scattered or dropped from the wafer W. An exhaust pipe (not shown) for discharging the collected liquid and an exhaust pipe (not shown) for exhausting the atmosphere inside the cup are connected to the lower surface of the cup.
 ウェハ保持部110の上方には、ウェハ保持部110に保持されたウェハWの表面Waに対して、各種液体や気体を供給するノズルブロック140が設けられている。ノズルブロック140は、移動機構141によって、フレーム保持部120の外方に設けられた待機部142からウェハWの中心部上方まで移動でき、さらに当該ウェハWの表面Wa上をウェハWの径方向に移動自在に構成されている。 Above the wafer holding portion 110, a nozzle block 140 that supplies various liquids and gases to the surface Wa of the wafer W held by the wafer holding portion 110 is provided. The nozzle block 140 can be moved from the standby portion 142 provided on the outside of the frame holding portion 120 to the upper part of the center portion of the wafer W by the moving mechanism 141, and further on the surface Wa of the wafer W in the radial direction of the wafer W. It is configured to be movable.
 ノズルブロック140は、剥離液供給部としての剥離液ノズル150と、リンス液供給部としての2流体ノズル160と、気体供給部としてのNガスノズル170とを有している。剥離液ノズル150、2流体ノズル160、及びNガスノズル170は移動機構141に支持され、一体となって移動自在に構成されている。 The nozzle block 140 has a release liquid nozzle 150 as a release liquid supply unit, a two-fluid nozzle 160 as a rinse liquid supply unit, and an N 2 gas nozzle 170 as a gas supply unit. Stripping liquid nozzle 150,2 fluid nozzle 160, and N 2 gas nozzle 170 is supported by the moving mechanism 141 is movably configured together.
 剥離液ノズル150には、剥離液ノズル150に剥離液を供給する供給管151が接続されている。供給管151は、内部に剥離液を貯留する剥離液供給源152に連通している。また、供給管151には、剥離液の流れを制御するバルブや流量調節部などを含む供給機器群153が設けられている。 A supply pipe 151 for supplying the stripping liquid to the stripping liquid nozzle 150 is connected to the stripping liquid nozzle 150. The supply pipe 151 communicates with a stripping liquid supply source 152 that stores the stripping liquid inside. Further, the supply pipe 151 is provided with a supply equipment group 153 including a valve for controlling the flow of the stripping liquid, a flow rate adjusting unit, and the like.
 かかる剥離液ノズル150は、ウェハWの表面Waに剥離液を供給する。剥離液は、ウェハWの表面Waに形成された保護膜を剥離させるための薬液である。上述したように保護膜にはアルカリ可溶性樹脂が用いられるため、剥離液にはアルカリ性の液が用いられ、例えばTMAH(水酸化テトラメチルアンモニウム)が用いられる。 The stripping liquid nozzle 150 supplies the stripping liquid to the surface Wa of the wafer W. The stripping solution is a chemical solution for stripping the protective film formed on the surface Wa of the wafer W. Since an alkali-soluble resin is used for the protective film as described above, an alkaline solution is used as the stripping solution, and for example, TMAH (tetramethylammonium hydroxide) is used.
 2流体ノズル160には、2流体ノズル160にリンス液である例えば純水(DIW)を供給する供給管161が接続されている。供給管161は、内部に純水を貯留する純水供給源162に連通している。また、供給管161には、純水の流れを制御するバルブや流量調節部などを含む供給機器群163が設けられている。 A supply pipe 161 for supplying, for example, pure water (DIW), which is a rinse liquid, is connected to the two-fluid nozzle 160. The supply pipe 161 communicates with a pure water supply source 162 that stores pure water inside. Further, the supply pipe 161 is provided with a supply equipment group 163 including a valve for controlling the flow of pure water, a flow rate adjusting unit, and the like.
 また、2流体ノズル160には、2流体ノズル160に例えばN(窒素)などの不活性ガスを供給する供給管164が接続されている。供給管164は、内部にNガスを貯留するガス供給源165に連通している。また、供給管161には、Nガスの流れを制御するバルブや流量調節部などを含む供給機器群166が設けられている。 Further, a supply pipe 164 for supplying an inert gas such as N 2 (nitrogen) to the two-fluid nozzle 160 is connected to the two-fluid nozzle 160. The supply pipe 164 communicates with a gas supply source 165 that stores N 2 gas inside. Further, the supply pipe 161 is provided with a supply equipment group 166 including a valve for controlling the flow of N 2 gas, a flow rate adjusting unit, and the like.
 2流体ノズル160に供給された純水及びNガスは、2流体ノズル160内で混合され、2流体ノズル160から霧状に吐出される。このように2流体ノズル160は、ウェハWの表面Waの保護膜に霧状の純水を供給する。 Pure water and N 2 gas supplied to the two-fluid nozzle 160 is mixed in the two-fluid nozzle 160, it is discharged from the two-fluid nozzle 160 as a mist. In this way, the two-fluid nozzle 160 supplies atomized pure water to the protective film on the surface Wa of the wafer W.
 なお、2流体ノズル160は、供給機器群166を制御してNガスの供給を停止し、ウェハWの表面Waに純水のみを供給することもできる。すなわち、2流体ノズル160は、純水及びNガスの混合流体の供給と、純水のみの供給とを切り換え自在に構成されている。 The two-fluid nozzle 160 may supply of N 2 gas is stopped by controlling the supply equipment group 166, supplying only pure water to the surface Wa of the wafer W. In other words, two-fluid nozzle 160 includes a supply of fluid mixture of pure water and N 2 gas, and is configured to be freely switched between the supply of only pure water.
 Nガスノズル170には、Nガスノズル170に例えばN(窒素)などの不活性ガスを供給する供給管171が接続されている。供給管171は、内部にNガスを貯留するガス供給源172に連通している。また、供給管171には、Nガスの流れを制御するバルブや流量調節部などを含む供給機器群173が設けられている。そして、Nガスノズル170は、ウェハWの表面WaにNガスを供給する。 The N 2 gas nozzle 170, a supply pipe 171 for supplying an inert gas such as N 2 gas nozzle 170, for example, N 2 (nitrogen) is connected. The supply pipe 171 communicates with a gas supply source 172 that stores N 2 gas inside. Further, the supply pipe 171 is provided with a supply equipment group 173 including a valve for controlling the flow of N 2 gas, a flow rate adjusting unit, and the like. Then, the N 2 gas nozzle 170 supplies N 2 gas to the surface Wa of the wafer W.
<ウェハ処理の第1の実施形態>
 次に、以上のように構成されたウェハ処理システム1において行われる、第1の実施形態にかかるウェハ処理について説明する。図5は、第1の実施形態にかかるウェハ処理の主な工程を示すフロー図である。図6は、第1の実施形態にかかるウェハ処理の各工程を模式的に示す説明図である。図7は、ウェハ処理の各工程におけるウェハWの一部断面を示す説明図である。
<First Embodiment of Wafer Processing>
Next, the wafer processing according to the first embodiment performed in the wafer processing system 1 configured as described above will be described. FIG. 5 is a flow chart showing a main process of wafer processing according to the first embodiment. FIG. 6 is an explanatory diagram schematically showing each step of the wafer processing according to the first embodiment. FIG. 7 is an explanatory view showing a partial cross section of the wafer W in each step of wafer processing.
 第1の実施形態にかかるウェハ処理では、保護膜形成装置10においてウェハWの表面Waに保護膜を形成する工程と、ウェハ処理システム1の外部においてウェハWをダイシングする工程と、保護膜除去装置20においてウェハWの表面Waから保護膜を除去する工程とを順次行う。 In the wafer processing according to the first embodiment, a step of forming a protective film on the surface Wa of the wafer W in the protective film forming apparatus 10, a step of dicing the wafer W outside the wafer processing system 1, and a protective film removing apparatus. In 20, the step of removing the protective film from the surface Wa of the wafer W is sequentially performed.
 先ず、保護膜形成装置10において、複数のウェハWを収納したカセットCが搬入出ステーション40のカセット載置台42に載置される。この際、ウェハWは、ダイシングテープPを介してダイシングフレームFに固定されている。また、ウェハWの裏面Wbは研削及び研磨され、ウェハWは薄化されている。 First, in the protective film forming apparatus 10, the cassette C containing the plurality of wafers W is placed on the cassette mounting table 42 of the loading / unloading station 40. At this time, the wafer W is fixed to the dicing frame F via the dicing tape P. Further, the back surface Wb of the wafer W is ground and polished, and the wafer W is thinned.
 次に、ウェハ搬送機構44によりカセットC内のウェハWが取り出され、塗布モジュール50に搬送される。塗布モジュール50では、図6(a)及び図7(a)に示すようにキャピラリー塗布法により、ウェハWの表面Waに保護膜Qを形成する(図5のステップA1)。保護膜Qの厚みは、例えば5μmである。ステップA1では具体的に、塗布ノズル51の下端面に形成されたスリット状の吐出口をウェハWに接近させ、当該吐出口とウェハWとの間に所望の隙間が形成された状態を維持する。そして、ウェハWと吐出口との間に当該吐出口から吐出された保護液の液溜りを形成し、その状態で塗布ノズル51とウェハWを水平方向、例えばウェハWの径方向に相対的に移動させる。そうすると、吐出口から吐出された保護液は、その自重と毛細管現象の作用によってウェハWの表面に順次供給され、ウェハWの表面Waに保護液が塗布され、保護膜Qが形成される。 Next, the wafer W in the cassette C is taken out by the wafer transfer mechanism 44 and transferred to the coating module 50. In the coating module 50, as shown in FIGS. 6A and 7A, a protective film Q is formed on the surface Wa of the wafer W by the capillary coating method (step A1 in FIG. 5). The thickness of the protective film Q is, for example, 5 μm. Specifically, in step A1, the slit-shaped discharge port formed on the lower end surface of the coating nozzle 51 is brought close to the wafer W, and a state in which a desired gap is formed between the discharge port and the wafer W is maintained. .. Then, a pool of protective liquid discharged from the discharge port is formed between the wafer W and the discharge port, and in that state, the coating nozzle 51 and the wafer W are relatively relative to each other in the horizontal direction, for example, in the radial direction of the wafer W. Move it. Then, the protective liquid discharged from the discharge port is sequentially supplied to the surface of the wafer W by the action of its own weight and the capillary phenomenon, and the protective liquid is applied to the surface Wa of the wafer W to form the protective film Q.
 なお、本実施形態のウェハWはダイシングテープPを介してダイシングフレームFに固定されているので、仮にスピン塗布法により保護液を塗布すると、ウェハWとダイシングフレームFの間のダイシングテープP上に保護液が溜まるおそれがある。そこで、本実施形態ではキャピラリー塗布法を用いることで、ウェハWの表面Waのみに保護膜Qを形成する。 Since the wafer W of the present embodiment is fixed to the dicing frame F via the dicing tape P, if the protective liquid is applied by the spin coating method, it is placed on the dicing tape P between the wafer W and the dicing frame F. Protective liquid may collect. Therefore, in the present embodiment, the protective film Q is formed only on the surface Wa of the wafer W by using the capillary coating method.
 次に、ウェハ搬送機構44によりウェハWは熱処理モジュール60に搬送される。熱処理モジュール60では、図6(b)に示すように熱板61上にウェハWが保持される。そして、熱板61によりウェハWの表面Waの保護膜Qが所望の温度に加熱され、焼成される(図5のステップA2)。なお、この所望の温度は、保護膜Qを焼成可能な温度であって、ダイシングテープPが損傷を被らない温度であり、例えば60℃以下である。 Next, the wafer W is transferred to the heat treatment module 60 by the wafer transfer mechanism 44. In the heat treatment module 60, the wafer W is held on the hot plate 61 as shown in FIG. 6B. Then, the protective film Q on the surface Wa of the wafer W is heated to a desired temperature by the hot plate 61 and fired (step A2 in FIG. 5). The desired temperature is a temperature at which the protective film Q can be fired, and is a temperature at which the dicing tape P is not damaged, for example, 60 ° C. or lower.
 次に、ウェハ搬送機構44によりウェハWは紫外線照射モジュール70に搬送される。紫外線照射モジュール70では、図6(c)に示すようにウェハWの上方に設けられた紫外線照射部71から、ウェハWの表面Waの保護膜Qに紫外線が照射される(図5のステップA3)。本実施形態では、保護膜Qには紫外線硬化樹脂が用いられ、ステップA3の紫外線照射により保護膜Qが硬化する。 Next, the wafer W is transferred to the ultraviolet irradiation module 70 by the wafer transfer mechanism 44. In the ultraviolet irradiation module 70, ultraviolet rays are irradiated to the protective film Q of the surface Wa of the wafer W from the ultraviolet irradiation unit 71 provided above the wafer W as shown in FIG. 6 (c) (step A3 in FIG. 5). ). In the present embodiment, an ultraviolet curable resin is used for the protective film Q, and the protective film Q is cured by the ultraviolet irradiation in step A3.
 なお、ステップA2の保護膜Qの加熱とステップA3の保護膜Qへの紫外線照射は、本実施形態のように両方行ってもよいし、あるいはいずれか一方を行ってもよい。保護膜Qの材質に応じて、適宜選択することができる。また例えば、ステップA2の保護膜Qの加熱を省略する場合は熱処理モジュール60を省略してもよく、ステップA3の保護膜Qへの紫外線照射を省略する場合は紫外線照射モジュール70を省略してもよい。 Note that the heating of the protective film Q in step A2 and the irradiation of the protective film Q in step A3 with ultraviolet rays may be performed both as in the present embodiment, or either one may be performed. It can be appropriately selected depending on the material of the protective film Q. Further, for example, when the heating of the protective film Q in step A2 is omitted, the heat treatment module 60 may be omitted, and when the ultraviolet irradiation to the protective film Q in step A3 is omitted, the ultraviolet irradiation module 70 may be omitted. Good.
 次に、ウェハ搬送機構44によりウェハWはカセット載置台42のカセットCに搬送される。こうして、保護膜形成装置10における一連の保護膜形成処理が終了する。 Next, the wafer W is transferred to the cassette C of the cassette mounting table 42 by the wafer transfer mechanism 44. In this way, a series of protective film forming processes in the protective film forming apparatus 10 are completed.
 次に、複数のウェハWを収納したカセットCが搬入出ステーション40から搬出され、ウェハ処理システム1の外部に設けられたダイシング装置(図示せず)に搬送される。 Next, the cassette C containing the plurality of wafers W is carried out from the loading / unloading station 40 and transported to a dicing device (not shown) provided outside the wafer processing system 1.
 ダイシング装置では、図6(d)及び図7(b)に示すようにウェハWがダイシングされる(図5のステップA4)。ステップA4では、複数、例えば2つのノズル200から切削水である純水(DIW)Dを供給しながら、ダイシングソー201を用いてウェハWを切削して切り出し、チップ化する。この際、ウェハWを完全に分断するため、ダイシングテープPも切削している。そうすると、例えばウェハWのシリコン基材、ダイシングテープPの屑、ウェハWとダイシングテープPを密着させる密着材の屑、デバイス材の屑などの、有機系の切削屑が多数発生する。本実施形態では、ウェハWの表面Waにデバイスを保護する保護膜Qが形成されているので、切削屑がデバイスに付着するのを防止することができる。 In the dicing apparatus, the wafer W is diced as shown in FIGS. 6 (d) and 7 (b) (step A4 in FIG. 5). In step A4, while supplying pure water (DIW) D which is cutting water from a plurality of nozzles 200, for example, two nozzles 200, the wafer W is cut and cut out by using a dicing saw 201 to make chips. At this time, the dicing tape P is also cut in order to completely divide the wafer W. Then, a large number of organic cutting chips such as the silicon base material of the wafer W, the scraps of the dicing tape P, the scraps of the adhesive material that adheres the wafer W and the dicing tape P, and the scraps of the device material are generated. In the present embodiment, since the protective film Q that protects the device is formed on the surface Wa of the wafer W, it is possible to prevent cutting chips from adhering to the device.
 次に、ダイシング装置では、図6(e)に示すようにウェハWの表面Waを洗浄する(図5のステップA5)。ステップA5では、ウェハWを回転させながら、ノズル202からウェハWの中心部に純水Dを供給し、表面Waを洗浄する。 Next, in the dicing apparatus, the surface Wa of the wafer W is washed as shown in FIG. 6 (e) (step A5 in FIG. 5). In step A5, while rotating the wafer W, pure water D is supplied from the nozzle 202 to the central portion of the wafer W to clean the surface Wa.
 しかしながら、有機系の切削屑は付着性があって、単に純水を除去しただけでは、切削屑を除去し難い。そこで、本実施形態では、ウェハWをダイシング装置から保護膜除去装置20に搬送し、保護膜除去装置20においてウェハWの表面Waから、切削屑とともに保護膜Qを除去する。 However, organic cutting chips are adhesive, and it is difficult to remove cutting chips simply by removing pure water. Therefore, in the present embodiment, the wafer W is transported from the dicing device to the protective film removing device 20, and the protective film removing device 20 removes the protective film Q together with cutting chips from the surface Wa of the wafer W.
 保護膜Qの除去は、保護膜Qに剥離液を供給することで行う。ここで、本発明者らが鋭意検討した結果、保護膜Qには切削屑が付着しているため、1回の剥離液の供給で除去しようとすると、切削屑を完全に除去できない場合があった。そこで、保護膜除去装置20においては、保護膜Qの除去を2段階に分け、1段階目に保護膜Qを部分的に除去し、2段階目に保護膜Qを完全に除去する。すなわち、1段階目に保護膜Qを部分的に除去して切削屑をある程度除去した後、2段階目に保護膜Qを切削屑とともに完全に除去する。 The protective film Q is removed by supplying a release liquid to the protective film Q. Here, as a result of diligent studies by the present inventors, since cutting chips are attached to the protective film Q, cutting chips may not be completely removed when trying to remove them with a single supply of the release liquid. It was. Therefore, in the protective film removing device 20, the removal of the protective film Q is divided into two stages, the protective film Q is partially removed in the first stage, and the protective film Q is completely removed in the second stage. That is, after the protective film Q is partially removed in the first step to remove cutting chips to some extent, the protective film Q is completely removed together with the cutting chips in the second step.
 保護膜除去装置20では、先ず、複数のウェハWを収納したカセットCが搬入出ステーション80のカセット載置台82に載置される。 In the protective film removing device 20, first, the cassette C containing the plurality of wafers W is placed on the cassette mounting table 82 of the loading / unloading station 80.
 次に、ウェハ搬送機構44によりカセットC内のウェハWが取り出され、洗浄モジュール90に搬送される。洗浄モジュール90に搬送されたウェハWは、ウェハ保持部110とフレーム保持部120に保持される。以下、洗浄モジュール90における保護膜Qの除去処理を、図8を用いて説明する。図8は、保護膜除去処理の各工程を模式的に示す説明図である。 Next, the wafer W in the cassette C is taken out by the wafer transfer mechanism 44 and transferred to the cleaning module 90. The wafer W conveyed to the cleaning module 90 is held by the wafer holding portion 110 and the frame holding portion 120. Hereinafter, the process of removing the protective film Q in the cleaning module 90 will be described with reference to FIG. FIG. 8 is an explanatory diagram schematically showing each step of the protective film removing process.
 先ず、1段階目の保護膜Qの部分除去(部分剥離)を行う。図8(a)に示すように回転昇降機構131によりウェハWを回転させながら、移動機構141によりノズルブロック140をウェハWの外周部上方から中心部上方まで移動させる。このノズルブロック140の移動中、剥離液ノズル150からウェハWの表面Wa(保護膜Q)に剥離液Sを供給するとともに、2流体ノズル160から純水Dを供給する(図5のステップA6)。なお、2流体ノズル160からNガスは供給されず、純水Dのみが供給される。 First, the first step of partial removal (partial peeling) of the protective film Q is performed. As shown in FIG. 8A, the nozzle block 140 is moved from above the outer peripheral portion to above the central portion by the moving mechanism 141 while rotating the wafer W by the rotary elevating mechanism 131. While the nozzle block 140 is moving, the stripping liquid S is supplied from the stripping liquid nozzle 150 to the surface Wa (protective film Q) of the wafer W, and pure water D is supplied from the two-fluid nozzle 160 (step A6 in FIG. 5). .. N 2 gas is not supplied from the two-fluid nozzle 160, and only pure water D is supplied.
 ステップA6では、保護膜Q上を剥離液Sが拡散し、図6(f)及び図7(c)に示すように剥離液Sによって保護膜Qが溶解して、部分的に除去される。この際、ウェハWの表面Waは露出していない。また、保護膜Qの部分的除去に伴い、除去された保護膜Qに付着した切削屑も除去される。なお、ステップA6において表面Waに残す保護膜Qの膜厚は特に限定されるものではなく、少なくとも表面Waが露出しなければよい。 In step A6, the release liquid S diffuses on the protective film Q, and as shown in FIGS. 6 (f) and 7 (c), the protective film Q is dissolved by the release liquid S and partially removed. At this time, the surface Wa of the wafer W is not exposed. Further, with the partial removal of the protective film Q, the cutting chips adhering to the removed protective film Q are also removed. The film thickness of the protective film Q left on the surface Wa in step A6 is not particularly limited, and at least the surface Wa may not be exposed.
 なお、ステップA6において、剥離液Sとともに純水Dを供給するのは、剥離液Sを希釈するためである。剥離液Sの濃度が高いと、保護膜Qの除去レートが高くなり、ステップA6でウェハWの表面Waが露出するおそれがある。そこで、本実施形態では、剥離液Sを希釈して濃度を調整している。なお、本実施形態では、2流体ノズル160が本開示における希釈液供給部を構成し、希釈液には純水Dが用いられる。 In step A6, the pure water D is supplied together with the stripping liquid S in order to dilute the stripping liquid S. If the concentration of the stripping liquid S is high, the removal rate of the protective film Q becomes high, and the surface Wa of the wafer W may be exposed in step A6. Therefore, in the present embodiment, the stripping solution S is diluted to adjust the concentration. In the present embodiment, the two-fluid nozzle 160 constitutes the diluent supply unit in the present disclosure, and pure water D is used as the diluent.
 次に、図8(b)に示すようにウェハWを回転させながら、2流体ノズル160からウェハWの中心部に純水Dを供給する(図5のステップA7)。純水Dは保護膜Q上を拡散し、残存する剥離液SがウェハWの外部に排出され、保護膜Qの表面が洗浄される。また、剥離液Sが排出されることで、保護膜Qの除去も停止する。 Next, pure water D is supplied from the two-fluid nozzle 160 to the center of the wafer W while rotating the wafer W as shown in FIG. 8 (b) (step A7 in FIG. 5). The pure water D diffuses on the protective film Q, the remaining stripping liquid S is discharged to the outside of the wafer W, and the surface of the protective film Q is washed. Further, when the release liquid S is discharged, the removal of the protective film Q is also stopped.
 次に、図8(c)に示すようにウェハWを回転させながら、ノズルブロック140をウェハWの中心部上方から外周部上方まで移動させる。このノズルブロック140の移動中、2流体ノズル160から純水D及びNガスの混合流体Dmを霧状に噴射する(図5のステップA8)。混合流体Dmを噴射することにより、残存する切削屑がウェハWの外部に排出され、保護膜Qの表面がより強力に洗浄される。 Next, while rotating the wafer W as shown in FIG. 8C, the nozzle block 140 is moved from above the center portion of the wafer W to above the outer peripheral portion. During this movement of the nozzle block 140, the pure water D and N 2 mixed fluid Dm gases from two-fluid nozzle 160 for injecting atomized (step A8 in FIG. 5). By injecting the mixed fluid Dm, the remaining cutting chips are discharged to the outside of the wafer W, and the surface of the protective film Q is more strongly cleaned.
 なお、ステップA7の純水Dによる保護膜Qの表面の洗浄と、ステップA8の混合流体Dmによる保護膜Qの表面の洗浄は、本実施形態のように両方行ってもよいし、あるいはいずれか一方を行ってもよい。 The surface of the protective film Q with pure water D in step A7 and the surface of the protective film Q with the mixed fluid Dm in step A8 may both be cleaned as in the present embodiment, or either of them. One may be done.
 さらに、ステップA7の後であってステップA8の前には、ノズルブロック140からのすべての液の供給を停止した状態で、ウェハWの回転を継続し、保護膜Qの表面にある純水Dを排出させる(いわゆる、振り切り工程)のが望ましい(図5のステップA20)。ステップA7において保護膜Qの表面にある純水D中には多量の切削屑が含まれており、本ステップA20により、切削屑が含まれる汚染された純水Dを速やかにウェハWの外部に排出することができる。なお、この場合のステップA20では、保護膜Qの表面上の純水Dを完全に乾燥させてもよいし、完全に乾燥させなくてもよい。 Further, after step A7 and before step A8, the rotation of the wafer W is continued in a state where the supply of all the liquids from the nozzle block 140 is stopped, and the pure water D on the surface of the protective film Q is continued. (So-called shake-off step) is desirable (step A20 in FIG. 5). In step A7, the pure water D on the surface of the protective film Q contains a large amount of cutting chips, and in this step A20, the contaminated pure water D containing the cutting chips is promptly removed from the wafer W. Can be discharged. In step A20 in this case, the pure water D on the surface of the protective film Q may or may not be completely dried.
 次に、2段階目の保護膜Qの完全除去(完全剥離)を行う。図8(d)に示すようにウェハWを回転させながら、ノズルブロック140をウェハWの外周部上方から中心部上方まで移動させる。このノズルブロック140の移動中、剥離液ノズル150からウェハWの表面Wa(保護膜Q)に剥離液Sを供給するとともに、2流体ノズル160から純水Dを供給する(図5のステップA9)。なお、2流体ノズル160からNガスは供給されず、純水Dのみが供給される。 Next, the second step of completely removing the protective film Q (complete peeling) is performed. As shown in FIG. 8D, the nozzle block 140 is moved from above the outer peripheral portion to above the central portion of the wafer W while rotating the wafer W. During the movement of the nozzle block 140, the stripping liquid S is supplied from the stripping liquid nozzle 150 to the surface Wa (protective film Q) of the wafer W, and pure water D is supplied from the two-fluid nozzle 160 (step A9 in FIG. 5). .. N 2 gas is not supplied from the two-fluid nozzle 160, and only pure water D is supplied.
 ステップA8では、保護膜Q上を剥離液Sが拡散し、図7(d)に示すように剥離液Sによって保護膜Qが完全に除去される。また、保護膜Qの完全除去に伴い、除去された保護膜Qに付着した切削屑も完全に除去される。そして、ウェハWの表面Waが露出する。 In step A8, the release liquid S diffuses on the protective film Q, and the protective film Q is completely removed by the release liquid S as shown in FIG. 7 (d). Further, with the complete removal of the protective film Q, the cutting chips adhering to the removed protective film Q are also completely removed. Then, the surface Wa of the wafer W is exposed.
 次に、図8(e)に示すようにウェハWを回転させながら、2流体ノズル160からウェハWの中心部に純水Dを供給する(図5のステップA10)。このステップA10はステップA7と同様であり、純水Dにより残存する剥離液SがウェハWの外部に排出され、保護膜Qの表面が洗浄される。また、剥離液Sが排出されることで、保護膜Qの除去も停止する。 Next, pure water D is supplied from the two-fluid nozzle 160 to the center of the wafer W while rotating the wafer W as shown in FIG. 8 (e) (step A10 in FIG. 5). This step A10 is the same as in step A7, and the stripping liquid S remaining by the pure water D is discharged to the outside of the wafer W, and the surface of the protective film Q is washed. Further, when the release liquid S is discharged, the removal of the protective film Q is also stopped.
 次に、図8(f)に示すようにウェハWを回転させながら、ノズルブロック140をウェハWの中心部上方から外周部上方まで移動させる。このノズルブロック140の移動中、2流体ノズル160から純水D及びNガスの混合流体Dmを霧状に噴射する(図5のステップA11)。このステップA11はステップA8と同様であり、混合流体Dmを噴射することにより、残存する切削屑がウェハWの外部に排出され、保護膜Qの表面がより強力に洗浄される。 Next, while rotating the wafer W as shown in FIG. 8 (f), the nozzle block 140 is moved from above the center portion of the wafer W to above the outer peripheral portion. During this movement of the nozzle block 140, the pure water D and N 2 mixed fluid Dm gases from two-fluid nozzle 160 for injecting atomized (step A11 in FIG. 5). This step A11 is the same as in step A8, and by injecting the mixed fluid Dm, the remaining cutting chips are discharged to the outside of the wafer W, and the surface of the protective film Q is more strongly cleaned.
 次に、ウェハWの表面Waの洗浄を行う。図8(g)に示すようにウェハWを回転させながら、ノズルブロック140をウェハWの外周部上方から中心部上方まで移動させる。このノズルブロック140の移動中、2流体ノズル160から純水Dを供給する(図5のステップA12)。純水DはウェハWの表面Wa上を拡散し、当該表面Waが洗浄される。なお、2流体ノズル160からNガスは供給されず、純水Dのみが供給される。 Next, the surface Wa of the wafer W is washed. As shown in FIG. 8 (g), the nozzle block 140 is moved from above the outer peripheral portion to above the central portion of the wafer W while rotating the wafer W. While the nozzle block 140 is moving, pure water D is supplied from the two-fluid nozzle 160 (step A12 in FIG. 5). Pure water D diffuses on the surface Wa of the wafer W, and the surface Wa is washed. N 2 gas is not supplied from the two-fluid nozzle 160, and only pure water D is supplied.
 次に、図8(h)に示すようにウェハWを回転させながら、ノズルブロック140をウェハWの中心部上方から外周部上方まで移動させる。このノズルブロック140の移動中、2流体ノズル160からウェハWの中心部に純水Dを供給するとともに、Nガスノズル170からNガスを噴射する(図5のステップA13)。ここで、上述したステップA4のダイシング工程でウェハWを切削する際、ウェハWには溝が形成される。この溝に剥離液Sが残存するのを抑制するため、Nガスを噴射して、剥離液Sを吹き飛ばす。そして、ウェハWの表面Waから剥離液Sが完全に除去される。 Next, while rotating the wafer W as shown in FIG. 8H, the nozzle block 140 is moved from above the center portion of the wafer W to above the outer peripheral portion. During the movement of the nozzle block 140 supplies pure water D from the two-fluid nozzle 160 in the center of the wafer W, for injecting N 2 gas N 2 gas nozzle 170 (step A13 in FIG. 5). Here, when the wafer W is cut in the dicing step of step A4 described above, a groove is formed in the wafer W. Since the stripping solution S in the groove can be inhibited from remaining, by spraying N 2 gas, blow stripping solution S. Then, the release liquid S is completely removed from the surface Wa of the wafer W.
 次に、図8(i)に示すように2流体ノズル160からの純水Dの供給とNガスノズル170からのNガスの噴射を停止した状態で、ウェハWの回転を継続する。そうすると、ウェハWの表面Waがスピン乾燥される(図5のステップA14)。そして、図6(g)に示すようにウェハWの表面から、切削屑とともに保護膜Qが完全に除去される。 Next, in a state where the injection was stopped the N 2 gas from the supply and N 2 gas nozzle 170 for pure water D from the two-fluid nozzle 160 as shown in FIG. 8 (i), to continue the rotation of the wafer W. Then, the surface Wa of the wafer W is spin-dried (step A14 in FIG. 5). Then, as shown in FIG. 6 (g), the protective film Q is completely removed from the surface of the wafer W together with the cutting chips.
 次に、ウェハ搬送機構84によりウェハWはカセット載置台82のカセットCに搬送される。こうして、保護膜除去装置20における一連の保護膜除去処理が終了する。 Next, the wafer W is transferred to the cassette C of the cassette mounting table 82 by the wafer transfer mechanism 84. In this way, a series of protective film removing processes in the protective film removing device 20 are completed.
 以上の実施形態によれば、ステップA1~A3においてウェハWの表面Waに保護膜Qを形成するので、ステップA4においてウェハWのダイシング時に切削屑が発生しても、当該切削屑がウェハWの表面Waのデバイスに付着するのを抑制することができる。また、ダイシング後、ステップA6~A14においてウェハWの表面Waから、保護膜Qを切削屑とともに除去することができる。その結果、製品の歩留まりを向上させることができる。 According to the above embodiment, since the protective film Q is formed on the surface Wa of the wafer W in steps A1 to A3, even if cutting chips are generated during dicing of the wafer W in step A4, the cutting chips are the wafer W. It is possible to suppress the adhesion of the surface Wa to the device. Further, after dicing, the protective film Q can be removed together with the cutting chips from the surface Wa of the wafer W in steps A6 to A14. As a result, the yield of the product can be improved.
 なお、本発明者らは本実施形態の効果を検証するため、ウェハWの表面Waに保護膜Qを形成した場合と、保護膜Qを形成しない場合の実験を行い、最終洗浄を行った後に表面Waに残存する、切削屑などの欠陥の付着数を比較した。その結果、保護膜Qを形成しない場合に良品率が88%であったのに対し、保護膜Qを形成した場合に良品率は93%に向上した。したがって、本実施形態のように保護膜Qを形成することで、表面Waのデバイスを保護しつつ、切削屑も除去できることが確認された。 In order to verify the effect of the present embodiment, the present inventors conducted experiments in the case where the protective film Q was formed on the surface Wa of the wafer W and in the case where the protective film Q was not formed, and after the final cleaning was performed. The number of defects such as cutting chips remaining on the surface Wa was compared. As a result, the non-defective product rate was 88% when the protective film Q was not formed, whereas the non-defective product rate was improved to 93% when the protective film Q was formed. Therefore, it was confirmed that by forming the protective film Q as in the present embodiment, cutting chips can be removed while protecting the device on the surface Wa.
 また、保護膜Qの除去を2段階に分けて行うので、1段階目のステップA6~A8において切削屑を部分的に除去した後、2段階目のステップA9~A11において切削屑を完全に除去することができる。その結果、製品の歩留まりをさらに向上させることができる。 Further, since the protective film Q is removed in two steps, the cutting chips are partially removed in the first steps A6 to A8, and then the cutting chips are completely removed in the second steps A9 to A11. can do. As a result, the yield of the product can be further improved.
<ウェハ処理の第2の実施形態>
 次に、以上のように構成されたウェハ処理システム1において行われる、第2の実施形態にかかるウェハ処理について説明する。
<Second Embodiment of Wafer Processing>
Next, the wafer processing according to the second embodiment performed in the wafer processing system 1 configured as described above will be described.
 第1の実施形態では、ステップA1においてウェハWの表面Waに保護膜Qを形成した後、ステップA2においてウェハWを例えば60℃以下の温度で加熱処理した。このステップA2では、ダイシングテープPが損傷を被らない温度として加熱温度を60℃以下に設定したが、保護膜Qの材質によっては加熱温度を高くする場合がある。この場合、ウェハWがダイシングテープP及びダイシングフレームFに固定される前に、当該ウェハWの表面Waに保護膜Qを形成する必要がある。そこで、第2の実施形態にかかるウェハ処理では、ウェハWに保護膜Qを形成して、高い加熱温度で保護膜Qを焼成した後、当該ウェハWを、ダイシングテープPを介してダイシングフレームFに固定する。 In the first embodiment, after forming the protective film Q on the surface Wa of the wafer W in step A1, the wafer W was heat-treated at a temperature of, for example, 60 ° C. or lower in step A2. In this step A2, the heating temperature is set to 60 ° C. or lower as a temperature at which the dicing tape P is not damaged, but the heating temperature may be increased depending on the material of the protective film Q. In this case, it is necessary to form the protective film Q on the surface Wa of the wafer W before the wafer W is fixed to the dicing tape P and the dicing frame F. Therefore, in the wafer processing according to the second embodiment, the protective film Q is formed on the wafer W, the protective film Q is fired at a high heating temperature, and then the wafer W is passed through the dicing tape P to the dicing frame F. Fix to.
 第2の実施形態において、保護膜形成装置10で処理されるウェハWは、ダイシングテープP及びダイシングフレームFに固定されていない。すなわち、ウェハ搬送機構44はダイシングフレームFに固定されていないウェハWを搬送し、各処理モジュール50、60、70ではダイシングフレームFに固定されていないウェハWを処理する。特に塗布モジュール50では、いわゆるスピン塗布法により、ウェハWの表面Waに保護液を塗布して保護膜を形成する。 In the second embodiment, the wafer W processed by the protective film forming apparatus 10 is not fixed to the dicing tape P and the dicing frame F. That is, the wafer transfer mechanism 44 conveys the wafer W that is not fixed to the dicing frame F, and the processing modules 50, 60, and 70 process the wafer W that is not fixed to the dicing frame F. In particular, in the coating module 50, a protective liquid is applied to the surface Wa of the wafer W to form a protective film by a so-called spin coating method.
 図9は、第2の実施形態にかかるウェハ処理の主な工程を示すフロー図である。図10は、第2の実施形態にかかるウェハ処理の各工程を模式的に示す説明図である。 FIG. 9 is a flow chart showing a main process of wafer processing according to the second embodiment. FIG. 10 is an explanatory diagram schematically showing each step of the wafer processing according to the second embodiment.
 先ず、保護膜形成装置10において、複数のウェハWを収納したカセットCが搬入出ステーション40のカセット載置台42に載置される。 First, in the protective film forming apparatus 10, the cassette C containing the plurality of wafers W is placed on the cassette mounting table 42 of the loading / unloading station 40.
 次に、ウェハ搬送機構44によりカセットC内のウェハWが取り出され、塗布モジュール50に搬送される。塗布モジュール50では、図10(a)に示すようにスピン塗布法により、ウェハWの表面Waに保護膜Qを形成する(図9のステップB1)。ステップB1では具体的に、ウェハWを回転させた状態で、塗布部としての塗布ノズル52からウェハWの中心部に保護液Lを供給する。そうすると、ウェハWの回転による遠心力により、保護液LはウェハWの表面Waを拡散し、ウェハWの表面Waに保護膜Qが形成される。 Next, the wafer W in the cassette C is taken out by the wafer transfer mechanism 44 and transferred to the coating module 50. In the coating module 50, as shown in FIG. 10A, a protective film Q is formed on the surface Wa of the wafer W by a spin coating method (step B1 in FIG. 9). Specifically, in step B1, the protective liquid L is supplied from the coating nozzle 52 as the coating portion to the central portion of the wafer W in a state where the wafer W is rotated. Then, due to the centrifugal force due to the rotation of the wafer W, the protective liquid L diffuses the surface Wa of the wafer W, and the protective film Q is formed on the surface Wa of the wafer W.
 次に、ウェハ搬送機構44によりウェハWは熱処理モジュール60に搬送される。熱処理モジュール60では、図10(b)に示すように熱板62上にウェハWが保持される。そして、熱板62によりウェハWの表面Waの保護膜Qが所望の温度に加熱され、焼成される(図9のステップB2)。 Next, the wafer W is transferred to the heat treatment module 60 by the wafer transfer mechanism 44. In the heat treatment module 60, the wafer W is held on the hot plate 62 as shown in FIG. 10 (b). Then, the protective film Q on the surface Wa of the wafer W is heated to a desired temperature by the hot plate 62 and fired (step B2 in FIG. 9).
 なお、ステップB2におけるウェハWの加熱温度は、保護膜Qを焼成可能な温度であって、例えば150℃である。第1の実施形態と異なり、本実施形態では、熱処理モジュール60においてウェハWにはダイシングテープPが取り付けられていない。このため、例えば60℃以上の高い加熱温度でウェハWを加熱することができる。 The heating temperature of the wafer W in step B2 is a temperature at which the protective film Q can be fired, for example, 150 ° C. Unlike the first embodiment, in the present embodiment, the dicing tape P is not attached to the wafer W in the heat treatment module 60. Therefore, the wafer W can be heated at a high heating temperature of, for example, 60 ° C. or higher.
 次に、ウェハ搬送機構44によりウェハWは紫外線照射モジュール70に搬送される。紫外線照射モジュール70では、図10(c)示すようにウェハWの上方に設けられた紫外線照射部72から、ウェハWの表面Waの保護膜Qに紫外線が照射される(図9のステップB3)。この紫外線照射により保護膜Qが硬化する。 Next, the wafer W is transferred to the ultraviolet irradiation module 70 by the wafer transfer mechanism 44. In the ultraviolet irradiation module 70, ultraviolet rays are irradiated to the protective film Q of the surface Wa of the wafer W from the ultraviolet irradiation unit 72 provided above the wafer W as shown in FIG. 10 (c) (step B3 in FIG. 9). .. The protective film Q is cured by this ultraviolet irradiation.
 なお、ステップB2の保護膜Qの加熱とステップB3の保護膜Qへの紫外線照射は、本実施形態のように両方行ってもよいし、あるいはいずれか一方を行ってもよい。保護膜Qの材質に応じて、適宜選択することができる。また例えば、ステップB2の保護膜Qの加熱を省略する場合は熱処理モジュール60を省略してもよく、ステップB3の保護膜Qへの紫外線照射を省略する場合は紫外線照射モジュール70を省略してもよい。 Note that the heating of the protective film Q in step B2 and the irradiation of the protective film Q in step B3 with ultraviolet rays may be performed both as in the present embodiment, or either one may be performed. It can be appropriately selected depending on the material of the protective film Q. Further, for example, the heat treatment module 60 may be omitted when the heating of the protective film Q in step B2 is omitted, and the ultraviolet irradiation module 70 may be omitted when the ultraviolet irradiation to the protective film Q in step B3 is omitted. Good.
 次に、ウェハ搬送機構44によりウェハWはカセット載置台42のカセットCに搬送される。こうして、保護膜形成装置10における一連の保護膜形成処理が終了する。 Next, the wafer W is transferred to the cassette C of the cassette mounting table 42 by the wafer transfer mechanism 44. In this way, a series of protective film forming processes in the protective film forming apparatus 10 are completed.
 次に、複数のウェハWを収納したカセットCが搬入出ステーション40から搬出され、ウェハ処理システム1の外部に設けられた加工装置(図示せず)に搬送される。 Next, the cassette C containing the plurality of wafers W is carried out from the loading / unloading station 40 and transported to a processing device (not shown) provided outside the wafer processing system 1.
 加工装置では、図10(d)に示すようにウェハWの裏面Wbが研削砥石210によって研削される(図9のステップB4)。この裏面Wbの研削(バックグラインド)により、ウェハWが所望の膜厚に薄化される。またステップB4では、薄化したウェハWを支持するため、ウェハWの表面WaにバックグラインドテープG(以下、「BGテープG」という。)が貼り付けられる。 In the processing apparatus, the back surface Wb of the wafer W is ground by the grinding wheel 210 as shown in FIG. 10 (d) (step B4 in FIG. 9). By grinding (back grinding) the back surface Wb, the wafer W is thinned to a desired film thickness. Further, in step B4, in order to support the thinned wafer W, a back grind tape G (hereinafter, referred to as “BG tape G”) is attached to the surface Wa of the wafer W.
 次に、加工装置では、図10(e)に示すようにウェハWに対してマウント処理が行われ、ウェハWがダイシングテープPを介してダイシングフレームFに固定される(図9のステップB5)。 Next, in the processing apparatus, mounting processing is performed on the wafer W as shown in FIG. 10 (e), and the wafer W is fixed to the dicing frame F via the dicing tape P (step B5 in FIG. 9). ..
 次に、加工装置では、図10(f)に示すようにウェハWの表面WaからBGテープGが剥離される(図9のステップB6)。そして、ウェハWの表面Waの保護膜Qが露出した状態になる。すなわち、第1の実施形態におけるステップA3が終了した状態と同じ状態になる。 Next, in the processing apparatus, the BG tape G is peeled from the surface Wa of the wafer W as shown in FIG. 10 (f) (step B6 in FIG. 9). Then, the protective film Q on the surface Wa of the wafer W is exposed. That is, the state is the same as the state in which step A3 in the first embodiment is completed.
 次に、複数のウェハWを収納したカセットCは、ウェハ処理システム1の外部に設けられた加工装置(図示せず)に搬送される。ダイシング装置では、図10(g)に示すようにウェハWがダイシングされ(図9のステップB7)、その後、図10(h)に示すようにウェハWの表面Waが洗浄される(図9のステップB8)。なお、これらステップB7、B8は、それぞれ第1の実施形態のステップA4、A5と同じ処理である。 Next, the cassette C containing the plurality of wafers W is conveyed to a processing device (not shown) provided outside the wafer processing system 1. In the dicing apparatus, the wafer W is diced as shown in FIG. 10 (g) (step B7 in FIG. 9), and then the surface Wa of the wafer W is washed as shown in FIG. 10 (h) (FIG. 9). Step B8). Note that these steps B7 and B8 are the same processes as steps A4 and A5 of the first embodiment, respectively.
 次に、複数のウェハWを収納したカセットCは、保護膜除去装置20に搬送される。保護膜除去装置20では、第1の実施形態と同様に、図10(i)に示すように1段階目の保護膜Qの部分除去(図9のステップB9~B11、B20)、2段階目の保護膜Qの完全除去(図9のステップB12~B14)、ウェハWの表面Waの洗浄(図9のステップB15~B17)が順次行われる。なお、これらステップB9~B17は、それぞれ第1の実施形態のステップA6~A14と同じ処理である。そして、図10(j)に示すようにウェハWの表面から、切削屑とともに保護膜Qが完全に除去される。 Next, the cassette C containing the plurality of wafers W is conveyed to the protective film removing device 20. In the protective film removing device 20, as shown in FIG. 10 (i), the protective film Q is partially removed in the first stage (steps B9 to B11, B20 in FIG. 9) in the second stage, as in the first embodiment. (Steps B12 to B14 in FIG. 9) and cleaning of the surface Wa of the wafer W (steps B15 to B17 in FIG. 9) are sequentially performed. It should be noted that these steps B9 to B17 are the same processes as steps A6 to A14 of the first embodiment, respectively. Then, as shown in FIG. 10 (j), the protective film Q is completely removed from the surface of the wafer W together with the cutting chips.
 以上の実施形態においても、第1の実施形態と同様の効果を享受することができる。しかも、本実施形態では、ステップB2における加熱温度を例えば150℃と高温にすることができるので、種々の保護膜Qに対応することができる。 Even in the above embodiments, the same effects as those in the first embodiment can be enjoyed. Moreover, in the present embodiment, the heating temperature in step B2 can be as high as 150 ° C., so that it can correspond to various protective films Q.
<保護膜除去処理の他の実施形態>
 次に、保護膜除去装置20で行われる保護膜Qの除去処理(ステップA6~A14、B9~B17)の、他の実施形態について説明する。
<Other Embodiments of Protective Film Removal Treatment>
Next, another embodiment of the protective film Q removal treatment (steps A6 to A14, B9 to B17) performed by the protective film removing device 20 will be described.
 図8に示した実施形態では、ステップA6においてウェハWを回転させ、且つノズルブロック140をウェハWの外周部上方から中心部上方に移動させながら、剥離液ノズル150から剥離液Sを供給していた。かかる場合、移動開始時にはウェハWの外周部に剥離液Sが供給され、また移動中又は移動終了時においても剥離液Sは遠心力によりウェハWの外周部に向かって流れる。このため、ウェハWの外周部では中心部に比べて、保護膜Qが剥離液Sに接液する時間が長くなる。そうすると、ステップA6を行った後の保護膜Qの膜厚は、外周部が小さく、中心部が大きくなる。 In the embodiment shown in FIG. 8, the stripping liquid S is supplied from the stripping liquid nozzle 150 while rotating the wafer W in step A6 and moving the nozzle block 140 from above the outer peripheral portion to above the central portion of the wafer W. It was. In such a case, the release liquid S is supplied to the outer peripheral portion of the wafer W at the start of movement, and the release liquid S flows toward the outer peripheral portion of the wafer W due to centrifugal force even during movement or at the end of movement. Therefore, in the outer peripheral portion of the wafer W, the time for the protective film Q to come into contact with the stripping liquid S is longer than in the central portion. Then, the film thickness of the protective film Q after performing step A6 is such that the outer peripheral portion is small and the central portion is large.
 この点、本発明者らは実験を行い、この保護膜Qの形状を確認した。図11は実験の結果を示す。図11の横軸はウェハW上の位置を示し、縦軸は保護膜Qの厚みを示す。また図11において、“●”はステップA6を行う前の保護膜Qを示し、“〇”はステップA6を行った後の保護膜Qを示す。本実験によっても、ステップA6を行った後の保護膜Qの膜厚は、外周部が小さく、中心部が大きくなることが分かった。 In this regard, the present inventors conducted an experiment and confirmed the shape of this protective film Q. FIG. 11 shows the results of the experiment. The horizontal axis of FIG. 11 indicates the position on the wafer W, and the vertical axis indicates the thickness of the protective film Q. Further, in FIG. 11, “●” indicates the protective film Q before the step A6 is performed, and “◯” indicates the protective film Q after the step A6 is performed. Also in this experiment, it was found that the film thickness of the protective film Q after performing step A6 was small in the outer peripheral portion and large in the central portion.
 ここで、2段階目のステップA9~A11で保護膜Qを完全に除去するため、1段階目のステップA6~A8で保護膜Qを部分的に除去した際には、保護膜Qは面内で均一でなくてもよい。 Here, since the protective film Q is completely removed in the second step steps A9 to A11, when the protective film Q is partially removed in the first step steps A6 to A8, the protective film Q is in-plane. It does not have to be uniform.
 但し、1段階目の保護膜Qの部分除去を行った後、保護膜Qの膜厚を面内均一にしてもよい。かかる場合、剥離液ノズル150の位置に応じて、ウェハWの回転速度とノズルブロック140の移動速度を制御する。例えば剥離液ノズル150がウェハWの外周部上方に位置する場合、ウェハWの回転速度を遅くして、ノズルブロック140の移動速度を遅くする。一方、剥離液ノズル150がウェハWの中心部上方に位置する場合、ウェハWの回転速度を速くして、ノズルブロック140の移動速度を速くする。そうすると、保護膜Qに対して剥離液Sを均一に供給することができ、保護膜Qの膜厚を面内均一にすることができる。 However, the film thickness of the protective film Q may be made uniform in the plane after the partial removal of the protective film Q in the first step. In such a case, the rotation speed of the wafer W and the moving speed of the nozzle block 140 are controlled according to the position of the release liquid nozzle 150. For example, when the release liquid nozzle 150 is located above the outer peripheral portion of the wafer W, the rotation speed of the wafer W is slowed down and the moving speed of the nozzle block 140 is slowed down. On the other hand, when the stripping liquid nozzle 150 is located above the center of the wafer W, the rotation speed of the wafer W is increased to increase the moving speed of the nozzle block 140. Then, the release liquid S can be uniformly supplied to the protective film Q, and the film thickness of the protective film Q can be made uniform in the plane.
 なお、保護膜Qの膜厚を面内均一にする方法は、他の方法であってもよい。例えば、ウェハWの回転速度とノズルブロック140の移動速度をそれぞれ一定にした状態で、剥離液ノズル150の位置に応じて、ウェハWの表面Waに供給される剥離液Sの濃度を制御してもよい。 The method of making the film thickness of the protective film Q uniform in the plane may be another method. For example, with the rotation speed of the wafer W and the moving speed of the nozzle block 140 constant, the concentration of the stripping liquid S supplied to the surface Wa of the wafer W is controlled according to the position of the stripping liquid nozzle 150. May be good.
 図8に示した実施形態では、ステップA6においてノズルブロック140の移動中に剥離液ノズル150から剥離液Sを供給したが、剥離液ノズル150をウェハWの中心部上方に配置した状態で、剥離液ノズル150から剥離液Sを供給してもよい。図12は、他の実施形態にかかる保護膜除去処理の各工程を模式的に示す説明図である。 In the embodiment shown in FIG. 8, the release liquid S was supplied from the release liquid nozzle 150 while the nozzle block 140 was moving in step A6, but the release liquid nozzle 150 was separated above the center of the wafer W. The release liquid S may be supplied from the liquid nozzle 150. FIG. 12 is an explanatory diagram schematically showing each step of the protective film removing treatment according to another embodiment.
 本実施形態ではステップA6において、図12(a)に示すようにウェハWを回転させながら、2流体ノズル160をウェハWの中心部上方に配置した状態で、2流体ノズル160からウェハWの表面Waの中心部に純水Dを供給する。この際、2流体ノズル160からNガスは供給されず、純水Dのみが供給される。そして、ウェハWの表面Waに純水Dのパドルを形成する。 In the present embodiment, in step A6, while rotating the wafer W as shown in FIG. 12A, the two-fluid nozzle 160 is arranged above the center of the wafer W, and the surface of the wafer W is transferred from the two-fluid nozzle 160. Pure water D is supplied to the center of Wa. At this time, N 2 gas is not supplied from the two-fluid nozzle 160, and only pure water D is supplied. Then, a paddle of pure water D is formed on the surface Wa of the wafer W.
 次に、図12(b)に示すようにウェハWを回転させながら、剥離液ノズル150をウェハWの中心部上方に配置した状態で、剥離液ノズル150からウェハWの表面Waの中心部に剥離液Sを供給する。剥離液Sは純水Dのパドル中に供給され、希釈される。そして、希釈された剥離液Sは遠心力によりウェハWの表面Waを拡散し、剥離液Sによって保護膜Qが溶解して、部分的に除去される。 Next, while rotating the wafer W as shown in FIG. 12B, the release liquid nozzle 150 is arranged above the center of the wafer W, and the release liquid nozzle 150 is moved from the release liquid nozzle 150 to the center of the surface Wa of the wafer W. The stripping liquid S is supplied. The stripping liquid S is supplied into the paddle of pure water D and diluted. Then, the diluted release liquid S diffuses the surface Wa of the wafer W by centrifugal force, and the protective film Q is dissolved by the release liquid S and partially removed.
 なお、ステップA6以降の処理、すなわち本実施形態の図12(c)~(j)のステップA7~A14はそれぞれ、上記実施形態の図8(b)~(i)ののステップA7~A14と同じ処理である。 The processes after step A6, that is, steps A7 to A14 of FIGS. 12 (c) to (j) of this embodiment are the steps A7 to A14 of FIGS. 8 (b) to 8 (i) of the above embodiment, respectively. It is the same process.
 本実施形態でも、図8に示した実施形態と同様の効果を享受できる。すなわち、図8に示した実施形態では、1段階目の保護膜Qの部分除去(部分剥離)において、剥離液ノズル150をウェハWの外周部上方から中心部上方に移動させながら剥離液Sを供給することで、保護膜Qを部分的に除去することができた。同様に、本実施形態のようにウェハWの表面Waの中心部に剥離液Sを供給した場合でも、保護膜Qを部分的に除去することができた。 Even in this embodiment, the same effect as that of the embodiment shown in FIG. 8 can be enjoyed. That is, in the embodiment shown in FIG. 8, in the partial removal (partial peeling) of the protective film Q in the first stage, the stripping liquid S is removed while moving the stripping liquid nozzle 150 from above the outer peripheral portion to above the central portion of the wafer W. By supplying the protective film Q, the protective film Q could be partially removed. Similarly, even when the release liquid S was supplied to the central portion of the surface Wa of the wafer W as in the present embodiment, the protective film Q could be partially removed.
 また、本実施形態と図8に示した実施形態では、ステップA6における剥離液Sの希釈方法が異なる。すなわち、図8に示した実施形態では、剥離液Sと純水Dを同時に供給することで剥離液Sを希釈したが、本実施形態では、ウェハWの表面Waに形成された純水Dのパドルに剥離液Sを供給することで、当該剥離液Sを希釈する。本実施形態でも、剥離液Sを適切に希釈することができる。 Further, the method of diluting the stripping solution S in step A6 is different between the present embodiment and the embodiment shown in FIG. That is, in the embodiment shown in FIG. 8, the stripping liquid S was diluted by supplying the stripping liquid S and the pure water D at the same time, but in the present embodiment, the pure water D formed on the surface Wa of the wafer W By supplying the release liquid S to the paddle, the release liquid S is diluted. Also in this embodiment, the stripping solution S can be appropriately diluted.
 図4に示した実施形態の洗浄モジュール90では、3つのノズル150、160、170が一体に設けられていたが、これらノズル150、160、170の設け方はこれに限定されない。図13は、他の実施形態にかかる洗浄モジュール90の構成の概略を示す側面図である。本実施形態においては、剥離液ノズル150を単独で設け、2流体ノズル160とNガスノズル170を一体として設ける。なお、3つのノズル150、160、170の設け方は任意であり、例えば3つのノズル150、160、170をそれぞれ単独で設けてもよい。 In the cleaning module 90 of the embodiment shown in FIG. 4, three nozzles 150, 160 and 170 are integrally provided, but the method of providing these nozzles 150, 160 and 170 is not limited to this. FIG. 13 is a side view showing an outline of the configuration of the cleaning module 90 according to another embodiment. In this embodiment, the stripping liquid nozzle 150 alone provided, providing a two-fluid nozzle 160 and N 2 gas nozzle 170 as a unit. The method of providing the three nozzles 150, 160 and 170 is arbitrary, and for example, the three nozzles 150, 160 and 170 may be provided independently.
 図13に示すように剥離液ノズル150は、移動機構300によって、フレーム保持部120の外方に設けられた待機部301からウェハWの中心部上方まで移動でき、さらに当該ウェハWの表面Wa上をウェハWの径方向に移動自在に構成されている。 As shown in FIG. 13, the release liquid nozzle 150 can be moved from the standby portion 301 provided on the outside of the frame holding portion 120 to the upper part of the center of the wafer W by the moving mechanism 300, and further on the surface Wa of the wafer W. Is configured to be movable in the radial direction of the wafer W.
 剥離液ノズル150は、剥離液Sを純水Dで希釈した希釈剥離液Sdを供給する。剥離液ノズル150には、剥離液ノズル150に希釈剥離液Sdを供給する供給管302が接続されている。供給管302は、内部に剥離液Sを貯留する剥離液供給源303と、内部に純水Dを貯留する純水供給源304とに連通している。また、供給管302には、剥離液供給源303から供給される剥離液Sと純水供給源304から供給される純水Dを混合する混合器305が設けられている。混合器305は、剥離液Sを純水Dで希釈することで、所望の濃度の希釈剥離液Sdを生成する。また、混合器305は、希釈剥離液Sdの流れを制御するバルブや流量調節部なども含む。 The stripping solution nozzle 150 supplies a diluted stripping solution Sd obtained by diluting the stripping solution S with pure water D. A supply pipe 302 for supplying the diluted stripping liquid Sd to the stripping liquid nozzle 150 is connected to the stripping liquid nozzle 150. The supply pipe 302 communicates with the stripping liquid supply source 303 for storing the stripping liquid S inside and the pure water supply source 304 for storing the pure water D inside. Further, the supply pipe 302 is provided with a mixer 305 that mixes the stripping liquid S supplied from the stripping liquid supply source 303 and the pure water D supplied from the pure water supply source 304. The mixer 305 produces a diluted stripping solution Sd having a desired concentration by diluting the stripping solution S with pure water D. Further, the mixer 305 also includes a valve for controlling the flow of the diluting stripping solution Sd, a flow rate adjusting unit, and the like.
 2流体ノズル160とNガスノズル170は一体となって、ノズルブロック310を構成している。ノズルブロック310は、移動機構311によって、フレーム保持部120の外方に設けられた待機部312からウェハWの中心部上方まで移動でき、さらに当該ウェハWの表面Wa上をウェハWの径方向に移動自在に構成されている。 2 fluid nozzle 160 and N 2 gas nozzle 170 together constitute the nozzle block 310. The nozzle block 310 can be moved from the standby portion 312 provided on the outside of the frame holding portion 120 to the upper part of the center of the wafer W by the moving mechanism 311, and further on the surface Wa of the wafer W in the radial direction of the wafer W. It is configured to be movable.
 なお、図4に示した洗浄モジュール90と同様に、2流体ノズル160には、供給管161、純水供給源162、供給機器群163、供給管164、ガス供給源165、供給機器群166が設けられる。また、Nガスノズル170には、供給管171、ガス供給源172、供給機器群173が設けられる。 Similar to the cleaning module 90 shown in FIG. 4, the two-fluid nozzle 160 includes a supply pipe 161, a pure water supply source 162, a supply equipment group 163, a supply pipe 164, a gas supply source 165, and a supply equipment group 166. Provided. Further, the N 2 gas nozzle 170 is provided with a supply pipe 171, a gas supply source 172, and a supply equipment group 173.
 次に、本実施形態の洗浄モジュール90で行われる保護膜Qの除去処理について、図14を用いて説明する。図14は、保護膜除去処理の各工程を模式的に示す説明図である。 Next, the removal process of the protective film Q performed by the cleaning module 90 of the present embodiment will be described with reference to FIG. FIG. 14 is an explanatory diagram schematically showing each step of the protective film removing process.
 先ず、1段階目の保護膜Qの部分除去(部分剥離)を行う。ステップA6において、図14(a)に示すように回転昇降機構131によりウェハWを回転させながら、移動機構300により剥離液ノズル150をウェハWの中心部上方から外周部上方まで移動させる。この剥離液ノズル150の移動中、剥離液ノズル150からウェハWの表面Wa(保護膜Q)に希釈剥離液Sdを供給する。この際、移動機構311によりノズルブロック310をウェハWの外周部上方から中心部上方まで移動させる。 First, partial removal (partial peeling) of the protective film Q in the first stage is performed. In step A6, the stripping liquid nozzle 150 is moved from above the center portion to above the outer peripheral portion of the wafer W by the moving mechanism 300 while rotating the wafer W by the rotary elevating mechanism 131 as shown in FIG. 14A. During the movement of the release liquid nozzle 150, the diluted release liquid Sd is supplied from the release liquid nozzle 150 to the surface Wa (protective film Q) of the wafer W. At this time, the moving mechanism 311 moves the nozzle block 310 from above the outer peripheral portion to above the central portion of the wafer W.
 ステップA6では、保護膜Q上を希釈剥離液Sdが拡散し、希釈剥離液Sdによって保護膜Qが溶解して、部分的に除去される。この際、ウェハWの表面Waは露出していない。また、保護膜Qの部分的除去に伴い、除去された保護膜Qに付着した切削屑も除去される。 In step A6, the diluting stripping solution Sd diffuses on the protective film Q, and the protective film Q is dissolved by the diluting stripping solution Sd and partially removed. At this time, the surface Wa of the wafer W is not exposed. Further, with the partial removal of the protective film Q, the cutting chips adhering to the removed protective film Q are also removed.
 次に、ステップA7において、図14(b)に示すようにウェハWを回転させながら、2流体ノズル160からウェハWの中心部に純水Dを供給する。純水Dは保護膜Q上を拡散し、残存する剥離液SがウェハWの外部に排出され、保護膜Qの表面が洗浄される。また、剥離液Sが排出されることで、保護膜Qの除去も停止する。 Next, in step A7, pure water D is supplied from the two-fluid nozzle 160 to the center of the wafer W while rotating the wafer W as shown in FIG. 14 (b). The pure water D diffuses on the protective film Q, the remaining stripping liquid S is discharged to the outside of the wafer W, and the surface of the protective film Q is washed. Further, when the release liquid S is discharged, the removal of the protective film Q is also stopped.
 次に、ステップA8において、図14(c)に示すようにウェハWを回転させながら、ノズルブロック310をウェハWの中心部上方から外周部上方まで移動させる。このノズルブロック310の移動中、2流体ノズル160から純水D及びNガスの混合流体Dmを霧状に噴射する。混合流体Dmを噴射することにより、残存する切削屑がウェハWの外部に排出され、保護膜Qの表面がより強力に洗浄される。この際、剥離液ノズル150をウェハWの外周部上方から中心部上方まで移動させる。 Next, in step A8, the nozzle block 310 is moved from above the center portion of the wafer W to above the outer peripheral portion while rotating the wafer W as shown in FIG. 14C. While the nozzle block 310 is moving, the mixed fluid Dm of pure water D and N 2 gas is injected in a mist form from the two-fluid nozzle 160. By injecting the mixed fluid Dm, the remaining cutting chips are discharged to the outside of the wafer W, and the surface of the protective film Q is more strongly cleaned. At this time, the stripping liquid nozzle 150 is moved from above the outer peripheral portion of the wafer W to above the central portion.
 次に、2段階目の保護膜Qの完全除去(完全剥離)を行う。ステップA9において、図14(d)に示すようにウェハWを回転させながら、剥離液ノズル150をウェハWの中心部上方から外周部上方まで移動させる。この剥離液ノズル150の移動中、剥離液ノズル150からウェハWの表面Wa(保護膜Q)に希釈剥離液Sdを供給する。この際、移動機構311によりノズルブロック310をウェハWの外周部上方から中心部上方まで移動させる。 Next, the second stage protective film Q is completely removed (completely peeled off). In step A9, the stripping liquid nozzle 150 is moved from above the center portion to above the outer peripheral portion of the wafer W while rotating the wafer W as shown in FIG. 14D. During the movement of the release liquid nozzle 150, the diluted release liquid Sd is supplied from the release liquid nozzle 150 to the surface Wa (protective film Q) of the wafer W. At this time, the moving mechanism 311 moves the nozzle block 310 from above the outer peripheral portion to above the central portion of the wafer W.
 ステップA9では、保護膜Q上を希釈剥離液Sdが拡散し、希釈剥離液Sdによって保護膜Qが完全に除去される。また、保護膜Qの完全除去に伴い、除去された保護膜Qに付着した切削屑も完全に除去される。そして、ウェハWの表面Waが露出する。 In step A9, the diluting stripping solution Sd diffuses on the protective film Q, and the protective film Q is completely removed by the diluting stripping solution Sd. Further, with the complete removal of the protective film Q, the cutting chips adhering to the removed protective film Q are also completely removed. Then, the surface Wa of the wafer W is exposed.
 次に、ステップA10において、図14(e)に示すようにウェハWを回転させながら、2流体ノズル160からウェハWの中心部に純水Dを供給する。純水Dは保護膜Q上を拡散し、残存する剥離液SがウェハWの外部に排出され、保護膜Qの表面が洗浄される。また、剥離液Sが排出されることで、保護膜Qの除去も停止する。 Next, in step A10, pure water D is supplied from the two-fluid nozzle 160 to the center of the wafer W while rotating the wafer W as shown in FIG. 14 (e). The pure water D diffuses on the protective film Q, the remaining stripping liquid S is discharged to the outside of the wafer W, and the surface of the protective film Q is washed. Further, when the release liquid S is discharged, the removal of the protective film Q is also stopped.
 次に、ステップA11において、図14(f)に示すようにウェハWを回転させながら、ノズルブロック310をウェハWの中心部上方から外周部上方まで移動させる。このノズルブロック310の移動中、2流体ノズル160から純水D及びNガスの混合流体Dmを霧状に噴射する。このステップA11はステップA8と同様であり、混合流体Dmを噴射することにより、残存する切削屑がウェハWの外部に排出され、保護膜Qの表面がより強力に洗浄される。 Next, in step A11, the nozzle block 310 is moved from above the center portion to above the outer peripheral portion of the wafer W while rotating the wafer W as shown in FIG. 14 (f). While the nozzle block 310 is moving, the mixed fluid Dm of pure water D and N 2 gas is injected in a mist form from the two-fluid nozzle 160. This step A11 is the same as in step A8, and by injecting the mixed fluid Dm, the remaining cutting chips are discharged to the outside of the wafer W, and the surface of the protective film Q is more strongly cleaned.
 次に、ウェハWの表面Waの洗浄を行う。ステップA12において、図14(g)に示すようにウェハWを回転させながら、ノズルブロック310をウェハWの外周部上方から中心部上方まで移動させる。このノズルブロック310の移動中、2流体ノズル160から純水Dを供給する。純水DはウェハWの表面Wa上を拡散し、当該表面Waが洗浄される。なお、2流体ノズル160からNガスは供給されず、純水Dのみが供給される。 Next, the surface Wa of the wafer W is washed. In step A12, the nozzle block 310 is moved from above the outer peripheral portion to above the central portion of the wafer W while rotating the wafer W as shown in FIG. 14 (g). During the movement of the nozzle block 310, pure water D is supplied from the two-fluid nozzle 160. Pure water D diffuses on the surface Wa of the wafer W, and the surface Wa is washed. N 2 gas is not supplied from the two-fluid nozzle 160, and only pure water D is supplied.
 次に、ステップA13において、図14(h)に示すように示すようにウェハWを回転させながら、ノズルブロック310をウェハWの中心部上方から外周部上方まで移動させる。このノズルブロック310の移動中、2流体ノズル160からウェハWの中心部に純水Dを供給するとともに、Nガスノズル170からNガスを噴射する。そして、ウェハWの表面Waから剥離液Sが完全に除去される。 Next, in step A13, the nozzle block 310 is moved from above the center portion to above the outer peripheral portion of the wafer W while rotating the wafer W as shown in FIG. 14 (h). During the movement of the nozzle block 310 supplies the pure water D in the center of the wafer W from the two-fluid nozzle 160 injects N 2 gas N 2 gas nozzle 170. Then, the release liquid S is completely removed from the surface Wa of the wafer W.
 次に、ステップA14において、図14(i)に示すように2流体ノズル160からの純水Dの供給とNガスノズル170からのNガスの噴射を停止した状態で、ウェハWの回転を継続する。そうすると、ウェハWの表面Waがスピン乾燥される。そして、ウェハWの表面から、切削屑とともに保護膜Qが完全に除去される。 Then, in step A14, in a state where the injection was stopped the N 2 gas from the supply and N 2 gas nozzle 170 for pure water D from the two-fluid nozzle 160 as shown in FIG. 14 (i), the rotation of the wafer W continue. Then, the surface Wa of the wafer W is spin-dried. Then, the protective film Q is completely removed from the surface of the wafer W together with the cutting chips.
 本実施形態でも、図8に示した実施形態と同様の効果を享受できる。すなわち、1段階目のステップA6~A8において切削屑を部分的に除去した後、2段階目のステップA9~A11において切削屑を完全に除去することができる。 Even in this embodiment, the same effect as that of the embodiment shown in FIG. 8 can be enjoyed. That is, after the cutting chips are partially removed in the first step steps A6 to A8, the cutting chips can be completely removed in the second step steps A9 to A11.
 また、本実施形態と図8に示した実施形態では、ステップA6における剥離液Sの希釈方法が異なる。すなわち、図8に示した実施形態では、剥離液Sと純水Dを同時に供給することで剥離液Sを希釈したが、本実施形態では、剥離液ノズル150に希釈剥離液Sdが供給される。本実施形態でも、剥離液Sを適切に希釈することができる。 Further, the method of diluting the stripping solution S in step A6 is different between the present embodiment and the embodiment shown in FIG. That is, in the embodiment shown in FIG. 8, the stripping liquid S is diluted by supplying the stripping liquid S and the pure water D at the same time, but in the present embodiment, the diluted stripping liquid Sd is supplied to the stripping liquid nozzle 150. .. Also in this embodiment, the stripping solution S can be appropriately diluted.
 図14に示した実施形態では、ステップA6において剥離液ノズル150を移動させながら希釈剥離液Sdを供給したが、剥離液ノズル150をウェハWの中心部上方に配置した状態で、剥離液ノズル150から希釈剥離液Sdを供給してもよい。図15は、他の実施形態にかかる保護膜除去処理の各工程を模式的に示す説明図である。 In the embodiment shown in FIG. 14, the diluted stripping liquid Sd was supplied while moving the stripping liquid nozzle 150 in step A6, but the stripping liquid nozzle 150 was placed above the center of the wafer W. Diluted stripping solution Sd may be supplied from. FIG. 15 is an explanatory diagram schematically showing each step of the protective film removing treatment according to another embodiment.
 本実施形態ではステップA6において、図15(a)に示すようにウェハWを回転させながら、剥離液ノズル150をウェハWの中心部上方に配置した状態で、剥離液ノズル150からウェハWの表面Waの中心部に希釈剥離液Sdを供給する。希釈剥離液Sdは遠心力によりウェハWの表面Waを拡散し、希釈剥離液Sdによって保護膜Qが溶解して、部分的に除去される。 In the present embodiment, in step A6, while rotating the wafer W as shown in FIG. 15A, the release liquid nozzle 150 is arranged above the center of the wafer W, and the surface of the wafer W is removed from the release liquid nozzle 150. The diluted stripping solution Sd is supplied to the center of the Wa. The diluting stripping solution Sd diffuses the surface Wa of the wafer W by centrifugal force, and the protective film Q is dissolved by the diluting stripping solution Sd to be partially removed.
 なお、本実施形態では剥離液ノズル150から希釈剥離液Sdを供給したが、2流体ノズル160から純水Dを供給した後、純水Dのパドルに剥離液ノズル150から剥離液Sを供給してもよい。 In the present embodiment, the diluted stripping liquid Sd is supplied from the stripping liquid nozzle 150, but after the pure water D is supplied from the two-fluid nozzle 160, the stripping liquid S is supplied to the paddle of the pure water D from the stripping liquid nozzle 150. You may.
 また、ステップA6以降の処理、すなわち本実施形態の図15(b)~(i)のステップA7~A14はそれぞれ、上記実施形態の図14(b)~(i)ののステップA7~A14と同じ処理である。 Further, the processes after step A6, that is, steps A7 to A14 of FIGS. 15 (b) to (i) of the present embodiment are the steps A7 to A14 of FIGS. 14 (b) to 14 (i) of the above embodiment, respectively. It is the same process.
 本実施形態でも、図14に示した実施形態と同様の効果を享受できる。すなわち、図14に示した実施形態では、1段階目の保護膜Qの部分除去(部分剥離)において、剥離液ノズル150を移動させながら希釈剥離液Sdを供給することで、保護膜Qを部分的に除去することができた。同様に、本実施形態のようにウェハWの表面Waの中心部に希釈剥離液Sdを供給した場合でも、保護膜Qを部分的に除去することができた。 Even in this embodiment, the same effect as that of the embodiment shown in FIG. 14 can be enjoyed. That is, in the embodiment shown in FIG. 14, in the partial removal (partial peeling) of the protective film Q in the first stage, the protective film Q is partially removed by supplying the diluted release liquid Sd while moving the release liquid nozzle 150. Was able to be removed. Similarly, even when the diluted stripping solution Sd was supplied to the central portion of the surface Wa of the wafer W as in the present embodiment, the protective film Q could be partially removed.
 図4に示した実施形態の洗浄モジュール90において、図16に示すようにノズルブロック140には超音波発振部320が設けられていてもよい。例えばステップA8において2流体ノズル160からの混合流体Dmで保護膜Qの表面を洗浄した後、超音波発振部320からウェハWの表面Wa(超音波を付与して、保護膜Qの表面をさらに洗浄してもよい。同様に、ステップA11の後にも、超音波発振部320を用いてウェハWの表面Waを超音波洗浄してもよい。かかる場合、ウェハWの表面Waをさらに適切に洗浄することができる。 In the cleaning module 90 of the embodiment shown in FIG. 4, the nozzle block 140 may be provided with the ultrasonic oscillating unit 320 as shown in FIG. For example, in step A8, after cleaning the surface of the protective film Q with the mixed fluid Dm from the two-fluid nozzle 160, the surface Wa of the wafer W (ultrasonic waves are applied to further surface the protective film Q from the ultrasonic oscillating unit 320). Similarly, after step A11, the surface Wa of the wafer W may be ultrasonically cleaned using the ultrasonic oscillating unit 320. In such a case, the surface Wa of the wafer W may be cleaned more appropriately. can do.
 また、図4に示した実施形態の洗浄モジュール90において、2流体ノズル160から供給される純水DにCOを溶け込ましてもよい。あるいは、2流体ノズル160から供給される純水Dを高温にしてもよい。このように純水DにCOを付与したり、高温にしたりすることにより、ウェハWの表面Waをさらに適切に洗浄することができる。 Further, in the cleaning module 90 of the embodiment shown in FIG. 4, CO 2 may be dissolved in pure water D supplied from the two-fluid nozzle 160. Alternatively, the pure water D supplied from the two-fluid nozzle 160 may be heated to a high temperature. By adding CO 2 to the pure water D or raising the temperature to a high temperature in this way, the surface Wa of the wafer W can be cleaned more appropriately.
 図4に示した実施形態の洗浄モジュール90において、図17に示すようにフレーム保持部120に支持されたダイシングフレームFを覆うカバー330を設けてもよい。カバー330は少なくともダイシングフレームFの上面を覆い、リング形状に設けられる。かかる場合、カバー330により、剥離液ノズル150から供給される剥離液SがダイシングフレームFにかからず、当該ダイシングフレームFが損傷を被るのを抑制することができる。 In the cleaning module 90 of the embodiment shown in FIG. 4, a cover 330 that covers the dicing frame F supported by the frame holding portion 120 may be provided as shown in FIG. The cover 330 covers at least the upper surface of the dicing frame F and is provided in a ring shape. In such a case, the cover 330 can prevent the dicing liquid S supplied from the release liquid nozzle 150 from being applied to the dicing frame F, and the dicing frame F can be prevented from being damaged.
 以上の実施形態では保護膜除去装置20において、1段階目の保護膜Qの部分除去(ステップA6~A8、B9~B11)と、2段階目の保護膜Qの完全除去(ステップA9~A11、B12~B14)との2段階で保護膜除去処理を行ったが、3段階以上であってもよい。保護膜Qの部分除去を複数回行うことによって、保護膜Qと切削屑をより確実に除去することができる。 In the above embodiment, in the protective film removing device 20, partial removal of the protective film Q in the first stage (steps A6 to A8, B9 to B11) and complete removal of the protective film Q in the second stage (steps A9 to A11, The protective film removal treatment was performed in two steps of B12 to B14), but there may be three or more steps. By performing partial removal of the protective film Q a plurality of times, the protective film Q and cutting chips can be removed more reliably.
 以上の実施形態では、保護層として保護膜Qを形成したが、保護層の種類はこれに限定されない。例えば、ウェハWの表面Waに保護テープを貼り付けてもよい。 In the above embodiments, the protective film Q is formed as the protective layer, but the type of the protective layer is not limited to this. For example, a protective tape may be attached to the surface Wa of the wafer W.
 ここで、本発明者らが鋭意検討した結果、1段階目の保護膜Qの部分除去(ステップA6~A8、B9~B11)の処理を強化することにより、保護膜Qと切削屑を除去する効果がさらに向上することを見出した。具体的には、剥離液Sで保護膜Qを部分的に除去した後、保護膜Qの表面を洗浄する処理を強化する。この洗浄処理を強化する方法としては、例えば部分除去処理時間を長くすること、すなわちウェハWを回転させて、剥離液Sを切削屑とともに排出する時間を長くすることが挙げられる。また例えば、2流体ノズルから保護膜Qに混合流体を噴射することによって、当該保護膜Qの物理的な洗浄力を向上させることも挙げられる。 Here, as a result of diligent studies by the present inventors, the protective film Q and cutting chips are removed by strengthening the treatment of partial removal of the protective film Q in the first stage (steps A6 to A8, B9 to B11). We found that the effect was further improved. Specifically, after partially removing the protective film Q with the release liquid S, the process of cleaning the surface of the protective film Q is strengthened. Examples of the method for strengthening this cleaning treatment include lengthening the partial removal treatment time, that is, rotating the wafer W to lengthen the time for discharging the release liquid S together with the cutting chips. Further, for example, by injecting a mixed fluid from a two-fluid nozzle onto the protective film Q, the physical detergency of the protective film Q can be improved.
 上述した保護膜Qの洗浄処理の強化は、以上の実施形態のいずれの洗浄モジュール90でも実行することが可能であるが、ここでは、図18に示す、他の実施形態にかかる洗浄モジュール90を用いた場合について説明する。 The strengthening of the cleaning treatment of the protective film Q described above can be carried out in any of the cleaning modules 90 of the above embodiments, but here, the cleaning modules 90 according to the other embodiments shown in FIG. 18 are used. The case where it is used will be described.
 本実施形態の洗浄モジュール90は、図4に示した洗浄モジュール90の構成に対して、さらに剥離液スプレーノズル340を有している。剥離液スプレーノズル340は、例えばノズルブロック140の移動機構141に支持され、剥離液ノズル150、2流体ノズル160、及びNガスノズル170と一体となって移動自在に構成されている。 The cleaning module 90 of the present embodiment further has a release liquid spray nozzle 340 for the configuration of the cleaning module 90 shown in FIG. The stripping liquid spray nozzle 340 is supported by, for example, the moving mechanism 141 of the nozzle block 140, and is configured to be movable integrally with the stripping liquid nozzle 150, the two- fluid nozzle 160, and the N2 gas nozzle 170.
 剥離液スプレーノズル340には、剥離液スプレーノズル340に対して、剥離液Sを純水Dで希釈した希釈剥離液Sdを供給する供給管341が接続されている。供給管341は、内部に剥離液Sを貯留する剥離液供給源342と、内部に純水Dを貯留する純水供給源343とに連通している。また、供給管341には、剥離液供給源342から供給される剥離液Sと純水供給源343から供給される純水Dを混合する混合器344が設けられている。混合器344は、剥離液Sを純水Dで希釈することで、所望の濃度の希釈剥離液Sdを生成する。また、混合器344は、希釈剥離液Sdの流れを制御するバルブや流量調節部なども含む。 A supply pipe 341 for supplying a diluted stripping solution Sd obtained by diluting the stripping solution S with pure water D is connected to the stripping solution spray nozzle 340 to the stripping solution spray nozzle 340. The supply pipe 341 communicates with the stripping liquid supply source 342 that stores the stripping liquid S inside and the pure water supply source 343 that stores the pure water D inside. Further, the supply pipe 341 is provided with a mixer 344 that mixes the stripping liquid S supplied from the stripping liquid supply source 342 and the pure water D supplied from the pure water supply source 343. The mixer 344 produces a diluted stripping solution Sd having a desired concentration by diluting the stripping solution S with pure water D. Further, the mixer 344 also includes a valve for controlling the flow of the diluting stripping solution Sd, a flow rate adjusting unit, and the like.
 また、剥離液スプレーノズル340には、剥離液スプレーノズル340に例えばN(窒素)などの不活性ガスを供給する供給管345が接続されている。供給管345は、内部にNガスを貯留するガス供給源346に連通している。また、供給管345には、Nガスの流れを制御するバルブや流量調節部などを含む供給機器群347が設けられている。 Further, a supply pipe 345 for supplying an inert gas such as N 2 (nitrogen) to the stripping liquid spray nozzle 340 is connected to the stripping liquid spray nozzle 340. The supply pipe 345 communicates with a gas supply source 346 that stores N 2 gas inside. Further, the supply pipe 345 is provided with a supply equipment group 347 including a valve for controlling the flow of N 2 gas, a flow rate adjusting unit, and the like.
 剥離液スプレーノズル340に供給された希釈剥離液Sd及びNガスは、剥離液スプレーノズル340内で混合され、剥離液スプレーノズル340から霧状に吐出される。このように剥離液スプレーノズル340は、ウェハWの表面Wa(保護膜Q)に霧状の希釈剥離液Sdを供給する。 The diluted stripping liquid Sd and N 2 gas supplied to the stripping liquid spray nozzle 340 are mixed in the stripping liquid spray nozzle 340 and discharged in a mist form from the stripping liquid spray nozzle 340. In this way, the stripping liquid spray nozzle 340 supplies the atomized diluted stripping liquid Sd to the surface Wa (protective film Q) of the wafer W.
 なお、剥離液スプレーノズル340は、供給機器群347を制御してNガスの供給を停止し、ウェハWの表面Wa(保護膜Q)に希釈剥離液Sdのみを供給することもできる。すなわち、剥離液スプレーノズル340は、希釈剥離液Sd及びNガスの混合流体の供給と、希釈剥離液Sdのみの供給とを切り換え自在に構成されている。 The stripping liquid spray nozzle 340 can also control the supply equipment group 347 to stop the supply of N 2 gas and supply only the diluted stripping liquid Sd to the surface Wa (protective film Q) of the wafer W. That is, the stripping solution spray nozzle 340 includes a supply of fluid mixture of diluted stripping solution Sd and N 2 gas, is configured to freely switch between supply of only dilute stripping solution Sd.
 次に、本実施形態の洗浄モジュール90で行われる保護膜Qの除去方法について、図19~図22を用いて説明する。図19~図22はそれぞれ、保護膜除去処理の各工程を模式的に示す説明図である。図19~図22では、1段階目の保護膜Qの部分除去(部分剥離)における、保護膜Qの表面の洗浄処理が異なる。 Next, the method of removing the protective film Q performed by the cleaning module 90 of the present embodiment will be described with reference to FIGS. 19 to 22. 19 to 22 are explanatory views schematically showing each step of the protective film removing process. In FIGS. 19 to 22, the cleaning treatment of the surface of the protective film Q in the first step of partial removal (partial peeling) of the protective film Q is different.
 図19に示す保護膜除去処理について説明する。先ず、1段階目の保護膜Qの部分除去(部分剥離)を行う。ステップA6において、図19(a)に示すように回転昇降機構131によりウェハWを回転させながら、移動機構141によりノズルブロック140をウェハWの外周部上方から中心部上方まで移動させる。このノズルブロック140の移動中、剥離液スプレーノズル340からウェハWの表面Wa(保護膜Q)に希釈剥離液Sdを供給する。なお、剥離液スプレーノズル340からNガスは供給されず、希釈剥離液Sdのみが供給される。 The protective film removing treatment shown in FIG. 19 will be described. First, the first step of partial removal (partial peeling) of the protective film Q is performed. In step A6, the nozzle block 140 is moved from above the outer peripheral portion to above the central portion by the moving mechanism 141 while rotating the wafer W by the rotary elevating mechanism 131 as shown in FIG. 19A. During the movement of the nozzle block 140, the diluted release liquid Sd is supplied from the release liquid spray nozzle 340 to the surface Wa (protective film Q) of the wafer W. Incidentally, N 2 gas from the stripping solution spray nozzle 340 is not supplied, only diluted stripping solution Sd is supplied.
 ステップA6では、保護膜Q上を希釈剥離液Sdが拡散し、希釈剥離液Sdによって保護膜Qが溶解して、部分的に除去される。この際、ウェハWの表面Waは露出していない。また、保護膜Qの部分的除去に伴い、除去された保護膜Qに付着した切削屑も除去される。 In step A6, the diluting stripping solution Sd diffuses on the protective film Q, and the protective film Q is dissolved by the diluting stripping solution Sd and partially removed. At this time, the surface Wa of the wafer W is not exposed. Further, with the partial removal of the protective film Q, the cutting chips adhering to the removed protective film Q are also removed.
 次に、ステップA7において、図19(b)に示すようにウェハWを回転させながら、2流体ノズル160からウェハWの中心部に純水Dを供給する。純水Dは保護膜Q上を拡散し、残存する剥離液SがウェハWの外部に排出され、保護膜Qの表面が洗浄される。また、剥離液Sが排出されることで、保護膜Qの除去も停止する。なお、ステップA7におけるウェハWの回転数は500rpm~1200rpmであり、本実施形態では1000rpmである。また、ステップA7における処理時間は、0秒~60秒であり、本実施形態では20秒である。かかる場合、保護膜Qの洗浄時間が長くなるので、当該保護膜Qの表面をより適切に洗浄できる。 Next, in step A7, pure water D is supplied from the two-fluid nozzle 160 to the center of the wafer W while rotating the wafer W as shown in FIG. 19B. The pure water D diffuses on the protective film Q, the remaining stripping liquid S is discharged to the outside of the wafer W, and the surface of the protective film Q is washed. Further, when the release liquid S is discharged, the removal of the protective film Q is also stopped. The rotation speed of the wafer W in step A7 is 500 rpm to 1200 rpm, and in this embodiment, it is 1000 rpm. The processing time in step A7 is 0 to 60 seconds, which is 20 seconds in the present embodiment. In such a case, the cleaning time of the protective film Q becomes long, so that the surface of the protective film Q can be cleaned more appropriately.
 次に、ステップA8において、図19(c)に示すようにウェハWを回転させながら、ノズルブロック140をウェハWの中心部上方から外周部上方まで移動させる。このノズルブロック140の移動中、2流体ノズル160から純水D及びNガスの混合流体Dmを霧状に噴射する。混合流体Dmを噴射することにより、残存する切削屑がウェハWの外部に排出され、保護膜Qの表面がより強力に洗浄される。なお、ステップA8におけるウェハWの回転数は500rpm~1200rpmであり、本実施形態では1000rpmである。また、ステップA8における処理時間は、30秒~90秒であり、本実施形態では60秒である。 Next, in step A8, the nozzle block 140 is moved from above the center portion of the wafer W to above the outer peripheral portion while rotating the wafer W as shown in FIG. 19C. While the nozzle block 140 is moving, a mixed fluid Dm of pure water D and N 2 gas is injected in a mist form from the two-fluid nozzle 160. By injecting the mixed fluid Dm, the remaining cutting chips are discharged to the outside of the wafer W, and the surface of the protective film Q is more strongly cleaned. The rotation speed of the wafer W in step A8 is 500 rpm to 1200 rpm, and in this embodiment, it is 1000 rpm. The processing time in step A8 is 30 seconds to 90 seconds, which is 60 seconds in the present embodiment.
 なお、図19(d)~(f)に示す2段階目の保護膜Qの完全除去工程(ステップA9~A11)と、図19(g)~(i)に示すウェハWの洗浄工程(ステップA12~A14)については、上記実施形態の図8に示した工程と同様であるので、説明を省略する。 The second-stage protective film Q complete removal steps (steps A9 to A11) shown in FIGS. 19 (d) to 19 (f) and the wafer W cleaning steps (steps) shown in FIGS. 19 (g) to 19 (i). Since A12 to A14) are the same as the steps shown in FIG. 8 of the above embodiment, the description thereof will be omitted.
 図20に示す保護膜除去処理について説明する。先ず、1段階目の保護膜Qの部分除去(部分剥離)を行う。ステップA6において、図20(a)に示すようにウェハWを回転させ、ノズルブロック140をウェハWの外周部上方から中心部上方まで移動させながら、剥離液スプレーノズル340からウェハWの表面Wa(保護膜Q)に希釈剥離液Sdを供給し、保護膜Qを部分的に除去する。このステップA6は、図19(a)に示した工程と同様であるので、説明を省略する。 The protective film removing treatment shown in FIG. 20 will be described. First, the first step of partial removal (partial peeling) of the protective film Q is performed. In step A6, as shown in FIG. 20A, the wafer W is rotated, and the nozzle block 140 is moved from the upper part of the outer periphery to the upper part of the center of the wafer W from the release liquid spray nozzle 340 to the surface Wa of the wafer W. The diluted stripping solution Sd is supplied to the protective film Q) to partially remove the protective film Q. Since this step A6 is the same as the step shown in FIG. 19A, the description thereof will be omitted.
 本実施形態では、ステップA7を省略する。 In this embodiment, step A7 is omitted.
 次に、ステップA8において、図20(b)に示すようにウェハWを回転させ、ノズルブロック140をウェハWの中心部上方から外周部上方まで移動させながら、2流体ノズル160から純水D及びNガスの混合流体Dmを霧状に噴射し、保護膜Qの表面を洗浄する。このステップA8は、図19(c)に示した工程と同様であるので、説明を省略する。 Next, in step A8, as shown in FIG. 20B, the wafer W is rotated, and the nozzle block 140 is moved from the upper part of the center portion to the upper part of the outer peripheral portion of the wafer W, while the two-fluid nozzle 160 is used to move the pure water D and a mixed fluid Dm of N 2 gas was injected into mist, to clean the surface of the protective film Q. Since this step A8 is the same as the step shown in FIG. 19C, the description thereof will be omitted.
 なお、図20(c)~(e)に示す2段階目の保護膜Qの完全除去工程(ステップA9~A11)と、図20(f)~(h)に示すウェハWの洗浄工程(ステップA12~A14)については、上記実施形態の図8に示した工程と同様であるので、説明を省略する。 The second-stage protective film Q complete removal steps (steps A9 to A11) shown in FIGS. 20 (c) to 20 (e) and the wafer W cleaning steps (steps) shown in FIGS. 20 (f) to 20 (h). Since A12 to A14) are the same as the steps shown in FIG. 8 of the above embodiment, the description thereof will be omitted.
 図21に示す保護膜除去処理について説明する。先ず、1段階目の保護膜Qの部分除去(部分剥離)を行う。ステップA6において、図21(a)に示すようにウェハWを回転させ、ノズルブロック140をウェハWの外周部上方から中心部上方まで移動させながら、剥離液スプレーノズル340からウェハWの表面Wa(保護膜Q)に希釈剥離液Sdを供給し、保護膜Qを部分的に除去する。このステップA6は、図19(a)に示した工程と同様であるので、説明を省略する。 The protective film removing treatment shown in FIG. 21 will be described. First, the first step of partial removal (partial peeling) of the protective film Q is performed. In step A6, the wafer W is rotated as shown in FIG. 21A, and the nozzle block 140 is moved from the upper part of the outer peripheral portion to the upper part of the central portion of the wafer W from the release liquid spray nozzle 340 to the surface Wa of the wafer W. The diluted stripping solution Sd is supplied to the protective film Q) to partially remove the protective film Q. Since this step A6 is the same as the step shown in FIG. 19A, the description thereof will be omitted.
 本実施形態では、ステップA7を省略する。 In this embodiment, step A7 is omitted.
 次に、ステップA8において、図21(b)に示すようにウェハWを回転させながら、ノズルブロック140をウェハWの中心部上方から外周部上方まで移動させる。このノズルブロック140の移動中、剥離液スプレーノズル340から希釈剥離液Sd及びNガスの混合流体を霧状に噴射する。本実施形態では、この希釈剥離液Sd及びNガスの混合流体がリンス液に相当する。希釈剥離液Sdを噴射することにより、残存する剥離液SがウェハWの外部に排出され、さらに希釈剥離液Sdによって浮遊する切削屑もウェハWの外部に排出され、保護膜Qの表面が洗浄される。なお、ステップA8におけるウェハWの回転数は500rpm~1200rpmであり、本実施形態では1000rpmである。また、ステップA8における処理時間は、30秒~90秒であり、本実施形態では60秒である。 Next, in step A8, the nozzle block 140 is moved from above the center portion to above the outer peripheral portion of the wafer W while rotating the wafer W as shown in FIG. 21B. During the movement of the nozzle block 140, the mixed fluid of the dilution stripping solution Sd and N 2 gas is injected into mist from stripping solution spray nozzle 340. In the present embodiment, the mixed fluid of the diluted stripping solution Sd and N 2 gas is equivalent to the rinse liquid. By injecting the diluted stripping solution Sd, the remaining stripping solution S is discharged to the outside of the wafer W, and the cutting chips suspended by the diluted stripping solution Sd are also discharged to the outside of the wafer W, and the surface of the protective film Q is cleaned. Will be done. The rotation speed of the wafer W in step A8 is 500 rpm to 1200 rpm, and in this embodiment, it is 1000 rpm. The processing time in step A8 is 30 seconds to 90 seconds, which is 60 seconds in the present embodiment.
 なお、図21(c)~(e)に示す2段階目の保護膜Qの完全除去工程(ステップA9~A11)と、図21(f)~(h)に示すウェハWの洗浄工程(ステップA12~A14)については、上記実施形態の図8に示した工程と同様であるので、説明を省略する。 The second-stage protective film Q complete removal steps (steps A9 to A11) shown in FIGS. 21 (c) to 21 (e) and the wafer W cleaning steps (steps) shown in FIGS. 21 (f) to 21 (h). Since A12 to A14) are the same as the steps shown in FIG. 8 of the above embodiment, the description thereof will be omitted.
 図22に示す保護膜除去処理について説明する。先ず、1段階目の保護膜Qの部分除去(部分剥離)を行う。ステップA6において、図22(a)に示すようにウェハWを回転させ、ノズルブロック140をウェハWの外周部上方から中心部上方まで移動させながら、剥離液スプレーノズル340からウェハWの表面Wa(保護膜Q)に希釈剥離液Sdを供給し、保護膜Qを部分的に除去する。このステップA6は、図19(a)に示した工程と同様であるので、説明を省略する。 The protective film removing treatment shown in FIG. 22 will be described. First, the first step of partial removal (partial peeling) of the protective film Q is performed. In step A6, the wafer W is rotated as shown in FIG. 22A, and the nozzle block 140 is moved from the upper part of the outer periphery to the upper part of the center of the wafer W from the release liquid spray nozzle 340 to the surface Wa of the wafer W. The diluted stripping solution Sd is supplied to the protective film Q) to partially remove the protective film Q. Since this step A6 is the same as the step shown in FIG. 19A, the description thereof will be omitted.
 次に、ステップA7において、図22(b)に示すようにウェハWを回転させながら、2流体ノズル160からウェハWの中心部に純水Dを供給し、保護膜Qの表面を洗浄する。このステップA7は、図19(b)に示した工程と同様であるので、説明を省略する。 Next, in step A7, pure water D is supplied from the two-fluid nozzle 160 to the central portion of the wafer W while rotating the wafer W as shown in FIG. 22B to clean the surface of the protective film Q. Since this step A7 is the same as the step shown in FIG. 19B, the description thereof will be omitted.
 次に、ステップA8において、図22(c)に示すようにウェハWを回転させ、ノズルブロック140をウェハWの中心部上方から外周部上方まで移動させながら、剥離液スプレーノズル340から希釈剥離液Sd及びNガスの混合流体の混合流体を霧状に噴射し、保護膜Qの表面を洗浄する。このステップA8は、図21(b)に示した工程と同様であるので、説明を省略する。 Next, in step A8, the wafer W is rotated as shown in FIG. 22C, and the nozzle block 140 is moved from the upper part of the center portion to the upper part of the outer peripheral portion of the wafer W, and the diluting release fluid is diluted from the release liquid spray nozzle 340. a mixed fluid of the mixed fluid of the Sd and N 2 gas was injected into the mist, to clean the surface of the protective film Q. Since this step A8 is the same as the step shown in FIG. 21B, the description thereof will be omitted.
 なお、図22(d)~(f)に示す2段階目の保護膜Qの完全除去工程(ステップA9~A11)と、図20(g)~(i)に示すウェハWの洗浄工程(ステップA12~A14)については、上記実施形態の図8に示した工程と同様であるので、説明を省略する。 The second-stage protective film Q complete removal steps (steps A9 to A11) shown in FIGS. 22 (d) to 22 (f) and the wafer W cleaning steps (steps) shown in FIGS. 20 (g) to 20 (i). Since A12 to A14) are the same as the steps shown in FIG. 8 of the above embodiment, the description thereof will be omitted.
 以上の図19~図22に示したいずれの保護膜除去処理においても、1段階目の保護膜Qの部分除去(ステップA6~A8)の処理を強化し、保護膜Qの表面の洗浄処理を強化している。すなわち、図19(b)、図22(b)では、保護膜Qのスピン洗浄時間を長くしているので、当該保護膜Qの表面をより適切に洗浄することができる。また、図19(c)、図20(b)、図21(b)、図22(c)では、純水Dの混合流体Dm又は希釈剥離液Sdの混合流体を霧状に噴霧しているので、保護膜Qの物理的な洗浄力を向上させることができる。このように1段階目の保護膜Qの部分除去の処理を強化した結果、保護膜Qと切削屑を除去する効果をさらに向上させることができる。 In any of the protective film removing treatments shown in FIGS. 19 to 22 above, the treatment of partial removal of the protective film Q in the first step (steps A6 to A8) is strengthened, and the surface of the protective film Q is cleaned. It is strengthening. That is, in FIGS. 19B and 22B, since the spin cleaning time of the protective film Q is lengthened, the surface of the protective film Q can be cleaned more appropriately. Further, in FIGS. 19 (c), 20 (b), 21 (b), and 22 (c), the mixed fluid Dm of pure water D or the mixed fluid of the diluted stripping solution Sd is sprayed in a mist form. Therefore, the physical detergency of the protective film Q can be improved. As a result of strengthening the process of partially removing the protective film Q in the first stage in this way, the effect of removing the protective film Q and cutting chips can be further improved.
 なお、図19~図22に示した1段階目の保護膜Qの部分除去処理では、下記(1)~(3)を行ったが、これら(1)~(3)の洗浄処理の組み合わせは、図19~図22に限定されず、任意である。例えば、下記(1)~(3)の洗浄処理を順次行ってもよい。
(1)図19(b)、図22(b)に示した純水Dによる保護膜Qの洗浄処理。
(2)図19(c)、図20(b)に示した純水D及びNガスの混合流体Dmによる保護膜Qの洗浄処理。
(3)図21(b)、図22(c)に示した希釈剥離液Sd及びNガスの混合流体による保護膜Qの洗浄処理。
In the first-stage partial removal treatment of the protective film Q shown in FIGS. 19 to 22, the following (1) to (3) were performed, but the combination of the cleaning treatments (1) to (3) is , Not limited to FIGS. 19 to 22, and is arbitrary. For example, the following cleaning processes (1) to (3) may be sequentially performed.
(1) Cleaning treatment of the protective film Q with pure water D shown in FIGS. 19 (b) and 22 (b).
(2) Cleaning treatment of the protective film Q with the mixed fluid Dm of pure water D and N 2 gas shown in FIGS. 19 (c) and 20 (b).
(3) FIG. 21 (b), the cleaning process of the protective layer Q by the fluid mixture of diluted stripping solution Sd and N 2 gas as shown in FIG. 22 (c).
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The above embodiments may be omitted, replaced or modified in various forms without departing from the scope of the appended claims and their gist.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)基板を処理する基板処理方法であって、基板の表面に保護層を形成する工程と、その後、前記保護層が形成された基板をダイシングする工程と、その後、基板の表面から前記保護層を除去する工程と、を有する、基板処理方法。
 前記(1)によれば、ダイシング前に基板の表面に保護層を形成するので、基板のダイシング時に切削屑が発生しても、当該切削屑が基板の表面のデバイスに付着するのを抑制することができる。また、ダイシング後、基板の表面から、保護層を切削屑とともに除去することができる。その結果、製品の歩留まりを向上させることができる。
(2)前記保護層を除去する工程は、基板の表面に剥離液を供給する工程と、その後、前記剥離液が供給された基板の表面にリンス液を供給する工程と、を有し、前記剥離液を供給する工程と前記リンス液を供給する工程を複数回行い、複数回のうち最終回より前の前記剥離液を供給する工程において、基板の表面が露出しなうように前記保護層を部分的に除去し、最終回の前記剥離液を供給する工程において、基板の表面から前記保護層を除去する、前記(1)に記載の基板処理方法。
(3)前記剥離液を供給する工程において、剥離液供給部から基板の表面に前記剥離液を供給するとともに、希釈液供給部から基板の表面に希釈液を供給する、前記(2)に記載の基板処理方法。
(4)前記剥離液を供給する工程において、前記剥離液と希釈液を混合して希釈剥離液を生成し、剥離液供給部から基板の表面に前記希釈剥離液を供給する、前記(2)に記載の基板処理方法。
(5)前記剥離液を供給する工程において、基板を回転させ、且つ、剥離液供給部を基板の外周部から中心部に向けて移動させながら、前記剥離液供給部から基板の表面に前記剥離液を供給する、前記(2)~(4)のいずれか1つに記載の基板処理方法。
(6)前記最終回より前の前記剥離液を供給する工程において、基板の回転速度と前記剥離液供給部の移動速度とを制御して、前記剥離液を供給した後に基板の表面に残存する前記保護層の厚みを制御する、前記(5)に記載の基板処理方法。
(7)前記剥離液を供給する工程において、基板を回転させながら、剥離液供給部を基板の中心部上方に配置した状態で、当該剥離液供給部から基板の表面中心部に前記剥離液を供給する、前記(2)~(4)のいずれか1つに記載の基板処理方法。
(8)前記リンス液を供給する工程において、基板の表面に前記リンス液のみを供給する工程と、基板の表面に気体と混合された前記リンス液を霧状に供給する工程とのいずれか一方の工程又は両方の工程を行う、前記(2)~(7)のいずれか1つに記載の基板処理方法。
(9)前記最終回より前の前記剥離液を供給する工程の後に行う、前記リンス液を供給する工程において、基板の表面に前記リンス液のみを供給する工程を行った後、当該リンス液の供給を停止した状態で基板を回転させて、基板の表面上の前記リンス液を排出する、前記(8)に記載の基板処理方法。
(10)前記リンス液は、前記剥離液と希釈液が混合された希釈剥離液であり、前記リンス液を供給する工程において、基板の表面に気体と混合された前記希釈剥離液を霧状に供給する、前記(2)~(9)のいずれかに記載の基板処理方法。
(11)前記保護層を除去する工程の後、基板の表面を洗浄する工程を有し、基板の表面を洗浄する工程は、基板の表面に前記リンス液を供給しながら、当該基板の表面に気体を供給する工程と、その後、基板を回転させて、当該基板の表面を乾燥させる工程と、を有する、前記(2)~(10)のいずれか1つに記載の基板処理方法。
(12)前記保護層を形成する工程は、ダイシングフレームに取り付けられた基板の表面に、保護液を塗布する工程と、その後、前記保護液が塗布された基板を加熱する工程と、を有する、前記(1)~(11)のいずれか1つに記載の基板処理方法。
(13)前記保護液を塗布する工程において、塗布部から吐出された前記保護液を基板の表面に接液させながら、前記塗布部と基板を水平方向に相対的に移動させて、当該基板の表面に前記保護液を塗布する、前記(12)に記載の基板処理方法。
(14)前記保護層を形成する工程は、基板にダイシングフレームを取り付ける前に行われ、前記保護層を形成する工程は、スピン塗布法により基板の表面に保護液を塗布する工程と、その後、前記保護液が塗布された基板を加熱する工程と、を有する、前記(1)~(11)のいずれか1つに記載の基板処理方法。
(15)前記保護層を形成する工程は、基板の表面に紫外線を照射する工程を有する、前記(12)~(14)のいずれか1つに記載の基板処理方法。
(16)前記保護層はアルカリ可溶性樹脂である、前記(1)~(15)のいずれか1つに記載の基板処理方法。
(17)基板を処理する基板処理システムであって、ダイシング前の基板の表面に保護層を形成する保護層形成装置と、ダイシング後の基板の表面から前記保護層を除去する保護層除去装置と、を有する、基板処理システム。
(18)前記保護層除去装置は、基板の表面に剥離液を供給する剥離液供給部と、基板の表面にリンス液を供給するリンス液供給部と、を有する、前記(17)に記載の基板処理システム。
(19)前記リンス液供給部は、気体と混合された前記リンス液を霧状に供給する2流体ノズルを有し、前記2流体ノズルは、前記気体と混合された前記リンス液の供給と、前記リンス液のみの供給とを切り替え自在に構成されている、前記(18)に記載の基板処理システム。
(20)前記リンス液供給部は、前記剥離液と希釈液が混合された希釈剥離液を、気体と混合して霧状に供給する2流体ノズルを有する、前記(18)又は(19)に記載の基板処理システム。
(21)前記保護層除去装置は、基板の表面に気体を供給する気体供給部を有する、前記(18)~(21)のいずれかに記載の基板処理システム。
(22)前記保護層除去装置は、基板の表面に超音波を付与する超音波発振部を有する、前記(18)~(21)のいずれか1つに記載の基板処理システム。
The following configurations also belong to the technical scope of the present disclosure.
(1) A substrate processing method for processing a substrate, which is a step of forming a protective layer on the surface of the substrate, then a step of dicing the substrate on which the protective layer is formed, and then the protection from the surface of the substrate. A substrate processing method comprising a step of removing a layer.
According to the above (1), since the protective layer is formed on the surface of the substrate before dicing, even if cutting chips are generated during dicing of the substrate, the cutting chips are suppressed from adhering to the device on the surface of the substrate. be able to. Further, after dicing, the protective layer can be removed together with cutting chips from the surface of the substrate. As a result, the yield of the product can be improved.
(2) The step of removing the protective layer includes a step of supplying a stripping liquid to the surface of the substrate and a step of supplying a rinse liquid to the surface of the substrate to which the stripping liquid is supplied. The step of supplying the stripping liquid and the step of supplying the rinse liquid are performed a plurality of times, and in the step of supplying the stripping liquid prior to the final step among the plurality of times, the protective layer is partially covered so that the surface of the substrate is not exposed. The substrate processing method according to (1) above, wherein the protective layer is removed from the surface of the substrate in the final step of supplying the release liquid.
(3) The step described in (2) above, wherein in the step of supplying the stripping solution, the stripping solution is supplied from the stripping solution supply unit to the surface of the substrate, and the diluent is supplied from the diluent supply section to the surface of the substrate. Substrate processing method.
(4) In the step of supplying the stripping solution, the stripping solution and the diluting solution are mixed to generate a diluted stripping solution, and the diluted stripping solution is supplied from the stripping solution supply unit to the surface of the substrate. The substrate processing method described in 1.
(5) In the step of supplying the release liquid, the release from the release liquid supply unit to the surface of the substrate while rotating the substrate and moving the release liquid supply unit from the outer peripheral portion to the center portion of the substrate. The substrate processing method according to any one of (2) to (4) above, which supplies a liquid.
(6) In the step of supplying the stripping liquid before the final round, the rotation speed of the substrate and the moving speed of the stripping liquid supply unit are controlled to remain on the surface of the substrate after the stripping liquid is supplied. The substrate processing method according to (5) above, which controls the thickness of the protective layer.
(7) In the step of supplying the stripping liquid, the stripping liquid is supplied from the stripping liquid supply portion to the surface center portion of the substrate in a state where the stripping liquid supply portion is arranged above the center portion of the substrate while rotating the substrate. The substrate processing method according to any one of (2) to (4) above, which is supplied.
(8) In the step of supplying the rinse liquid, either the step of supplying only the rinse liquid to the surface of the substrate or the step of supplying the rinse liquid mixed with gas to the surface of the substrate in the form of a mist. The substrate processing method according to any one of (2) to (7) above, wherein the step (2) to (7) is performed.
(9) In the step of supplying the rinse liquid, which is performed after the step of supplying the release liquid before the final round, after performing the step of supplying only the rinse liquid to the surface of the substrate, the rinse liquid is used. The substrate processing method according to (8) above, wherein the substrate is rotated with the supply stopped to discharge the rinse liquid on the surface of the substrate.
(10) The rinsing solution is a diluted stripping solution in which the stripping solution and the diluent are mixed, and in the step of supplying the rinsing solution, the diluted stripping solution mixed with the gas is atomized on the surface of the substrate. The substrate processing method according to any one of (2) to (9) above, which is supplied.
(11) After the step of removing the protective layer, there is a step of cleaning the surface of the substrate, and the step of cleaning the surface of the substrate is performed on the surface of the substrate while supplying the rinse liquid to the surface of the substrate. The substrate processing method according to any one of (2) to (10) above, which comprises a step of supplying a gas and then a step of rotating the substrate to dry the surface of the substrate.
(12) The step of forming the protective layer includes a step of applying a protective liquid to the surface of the substrate attached to the dicing frame, and then a step of heating the substrate to which the protective liquid is applied. The substrate processing method according to any one of (1) to (11).
(13) In the step of applying the protective liquid, while the protective liquid discharged from the coating portion is brought into contact with the surface of the substrate, the coating portion and the substrate are relatively moved in the horizontal direction to obtain the substrate. The substrate processing method according to (12) above, wherein the protective liquid is applied to the surface.
(14) The step of forming the protective layer is performed before attaching the dicing frame to the substrate, and the step of forming the protective layer is a step of applying a protective liquid to the surface of the substrate by a spin coating method, and thereafter. The substrate processing method according to any one of (1) to (11) above, which comprises a step of heating a substrate coated with the protective liquid.
(15) The substrate processing method according to any one of (12) to (14) above, wherein the step of forming the protective layer includes a step of irradiating the surface of the substrate with ultraviolet rays.
(16) The substrate treatment method according to any one of (1) to (15) above, wherein the protective layer is an alkali-soluble resin.
(17) A substrate processing system for processing a substrate, a protective layer forming device for forming a protective layer on the surface of the substrate before dicing, and a protective layer removing device for removing the protective layer from the surface of the substrate after dicing. , Has a substrate processing system.
(18) The protective layer removing device according to (17) above, wherein the protective layer removing device has a peeling liquid supply unit that supplies a stripping liquid to the surface of the substrate and a rinse liquid supply unit that supplies the rinse liquid to the surface of the substrate. Board processing system.
(19) The rinse liquid supply unit has a two-fluid nozzle that supplies the rinse liquid mixed with a gas in a mist form, and the two-fluid nozzle supplies the rinse liquid mixed with the gas. The substrate processing system according to (18), wherein the supply of only the rinsing fluid can be switched freely.
(20) The rinse liquid supply unit has a two-fluid nozzle that mixes the stripping liquid and the diluting liquid and supplies the diluted stripping liquid with a gas in the form of a mist, according to the above (18) or (19). The substrate processing system described.
(21) The substrate processing system according to any one of (18) to (21) above, wherein the protective layer removing device has a gas supply unit that supplies gas to the surface of the substrate.
(22) The substrate processing system according to any one of (18) to (21) above, wherein the protective layer removing device has an ultrasonic oscillating unit that applies ultrasonic waves to the surface of the substrate.
  1   ウェハ処理システム
  10  保護膜形成装置
  20  保護膜除去装置
  W   ウェハ
1 Wafer processing system 10 Protective film forming device 20 Protective film removing device W wafer

Claims (22)

  1. 基板を処理する基板処理方法であって、
    基板の表面に保護層を形成する工程と、
    その後、前記保護層が形成された基板をダイシングする工程と、
    その後、基板の表面から前記保護層を除去する工程と、を有する、基板処理方法。
    It is a substrate processing method that processes a substrate.
    The process of forming a protective layer on the surface of the substrate and
    After that, a step of dicing the substrate on which the protective layer is formed and
    A substrate processing method comprising a step of removing the protective layer from the surface of the substrate after that.
  2. 前記保護層を除去する工程は、
    基板の表面に剥離液を供給する工程と、
    その後、前記剥離液が供給された基板の表面にリンス液を供給する工程と、を有し、
    前記剥離液を供給する工程と前記リンス液を供給する工程を複数回行い、
    複数回のうち最終回より前の前記剥離液を供給する工程において、基板の表面が露出しなうように前記保護層を部分的に除去し、
    最終回の前記剥離液を供給する工程において、基板の表面から前記保護層を除去する、請求項1に記載の基板処理方法。
    The step of removing the protective layer is
    The process of supplying the release liquid to the surface of the substrate and
    After that, it has a step of supplying a rinse liquid to the surface of the substrate to which the stripping liquid is supplied.
    The step of supplying the release liquid and the step of supplying the rinse liquid are performed a plurality of times.
    In the step of supplying the release liquid before the final round of the plurality of rounds, the protective layer is partially removed so that the surface of the substrate is not exposed.
    The substrate processing method according to claim 1, wherein the protective layer is removed from the surface of the substrate in the final step of supplying the release liquid.
  3. 前記剥離液を供給する工程において、剥離液供給部から基板の表面に前記剥離液を供給するとともに、希釈液供給部から基板の表面に希釈液を供給する、請求項2に記載の基板処理方法。 The substrate processing method according to claim 2, wherein in the step of supplying the stripping solution, the stripping solution is supplied to the surface of the substrate from the stripping solution supply section, and the diluent is supplied to the surface of the substrate from the diluent supply section. ..
  4. 前記剥離液を供給する工程において、前記剥離液と希釈液を混合して希釈剥離液を生成し、剥離液供給部から基板の表面に前記希釈剥離液を供給する、請求項2に記載の基板処理方法。 The substrate according to claim 2, wherein in the step of supplying the stripping solution, the stripping solution and the diluting solution are mixed to generate a diluted stripping solution, and the diluted stripping solution is supplied from the stripping solution supply unit to the surface of the substrate. Processing method.
  5. 前記剥離液を供給する工程において、基板を回転させ、且つ、剥離液供給部を基板の外周部から中心部に向けて移動させながら、前記剥離液供給部から基板の表面に前記剥離液を供給する、請求項2~4のいずれか一項に記載の基板処理方法。 In the step of supplying the release liquid, the release liquid is supplied from the release liquid supply unit to the surface of the substrate while rotating the substrate and moving the release liquid supply unit from the outer peripheral portion to the center portion of the substrate. The substrate processing method according to any one of claims 2 to 4.
  6. 前記最終回より前の前記剥離液を供給する工程において、基板の回転速度と前記剥離液供給部の移動速度とを制御して、前記剥離液を供給した後に基板の表面に残存する前記保護層の厚みを制御する、請求項5に記載の基板処理方法。 In the step of supplying the release liquid before the final round, the rotation speed of the substrate and the moving speed of the release liquid supply unit are controlled, and the protective layer remaining on the surface of the substrate after the release liquid is supplied. The substrate processing method according to claim 5, wherein the thickness of the substrate is controlled.
  7. 前記剥離液を供給する工程において、基板を回転させながら、剥離液供給部を基板の中心部上方に配置した状態で、当該剥離液供給部から基板の表面中心部に前記剥離液を供給する、請求項2~4のいずれか一項に記載の基板処理方法。 In the step of supplying the release liquid, the release liquid is supplied from the release liquid supply unit to the surface center portion of the substrate in a state where the release liquid supply unit is arranged above the center portion of the substrate while rotating the substrate. The substrate processing method according to any one of claims 2 to 4.
  8. 前記リンス液を供給する工程において、基板の表面に前記リンス液のみを供給する工程と、基板の表面に気体と混合された前記リンス液を霧状に供給する工程とのいずれか一方の工程又は両方の工程を行う、請求項2~7のいずれか一項に記載の基板処理方法。 In the step of supplying the rinse liquid, either one of a step of supplying only the rinse liquid to the surface of the substrate and a step of supplying the rinse liquid mixed with gas to the surface of the substrate in the form of a mist or The substrate processing method according to any one of claims 2 to 7, wherein both steps are performed.
  9. 前記最終回より前の前記剥離液を供給する工程の後に行う、前記リンス液を供給する工程において、
    基板の表面に前記リンス液のみを供給する工程を行った後、当該リンス液の供給を停止した状態で基板を回転させて、基板の表面上の前記リンス液を排出する、請求項8に記載の基板処理方法。
    In the step of supplying the rinse liquid, which is performed after the step of supplying the stripping liquid before the final round.
    The eighth aspect of the present invention, wherein after performing the step of supplying only the rinse liquid to the surface of the substrate, the substrate is rotated in a state where the supply of the rinse liquid is stopped, and the rinse liquid on the surface of the substrate is discharged. Substrate processing method.
  10. 前記リンス液は、前記剥離液と希釈液が混合された希釈剥離液であり、
    前記リンス液を供給する工程において、基板の表面に気体と混合された前記希釈剥離液を霧状に供給する、請求項2~9のいずれか一項に記載の基板処理方法。
    The rinse solution is a diluted stripping solution in which the stripping solution and the diluent are mixed.
    The substrate processing method according to any one of claims 2 to 9, wherein in the step of supplying the rinse liquid, the diluted stripping liquid mixed with gas is supplied to the surface of the substrate in the form of mist.
  11. 前記保護層を除去する工程の後、基板の表面を洗浄する工程を有し、
    基板の表面を洗浄する工程は、
    基板の表面に前記リンス液を供給しながら、当該基板の表面に気体を供給する工程と、
    その後、基板を回転させて、当該基板の表面を乾燥させる工程と、を有する、請求項2~10のいずれか一項に記載の基板処理方法。
    After the step of removing the protective layer, there is a step of cleaning the surface of the substrate.
    The process of cleaning the surface of the substrate is
    A process of supplying gas to the surface of the substrate while supplying the rinse liquid to the surface of the substrate.
    The substrate processing method according to any one of claims 2 to 10, further comprising a step of rotating the substrate to dry the surface of the substrate.
  12. 前記保護層を形成する工程は、
    ダイシングフレームに取り付けられた基板の表面に、保護液を塗布する工程と、
    その後、前記保護液が塗布された基板を加熱する工程と、を有する、請求項1~11のいずれか一項に記載の基板処理方法。
    The step of forming the protective layer is
    The process of applying a protective liquid to the surface of the substrate attached to the dicing frame, and
    The substrate processing method according to any one of claims 1 to 11, further comprising a step of heating the substrate coated with the protective liquid.
  13. 前記保護液を塗布する工程において、塗布部から吐出された前記保護液を基板の表面に接液させながら、前記塗布部と基板を水平方向に相対的に移動させて、当該基板の表面に前記保護液を塗布する、請求項12に記載の基板処理方法。 In the step of applying the protective liquid, the protective liquid discharged from the coating portion is brought into contact with the surface of the substrate, and the coating portion and the substrate are relatively moved in the horizontal direction to reach the surface of the substrate. The substrate processing method according to claim 12, wherein a protective liquid is applied.
  14. 前記保護層を形成する工程は、基板にダイシングフレームを取り付ける前に行われ、
    前記保護層を形成する工程は、
    スピン塗布法により基板の表面に保護液を塗布する工程と、
    その後、前記保護液が塗布された基板を加熱する工程と、を有する、請求項1~11のいずれか一項に記載の基板処理方法。
    The step of forming the protective layer is performed before attaching the dicing frame to the substrate.
    The step of forming the protective layer is
    The process of applying a protective liquid to the surface of the substrate by the spin coating method,
    The substrate processing method according to any one of claims 1 to 11, further comprising a step of heating the substrate coated with the protective liquid.
  15. 前記保護層を形成する工程は、基板の表面に紫外線を照射する工程を有する、請求項12~14のいずれか一項に記載の基板処理方法。 The substrate processing method according to any one of claims 12 to 14, wherein the step of forming the protective layer includes a step of irradiating the surface of the substrate with ultraviolet rays.
  16. 前記保護層はアルカリ可溶性樹脂である、請求項1~15のいずれか一項に記載の基板処理方法。 The substrate treatment method according to any one of claims 1 to 15, wherein the protective layer is an alkali-soluble resin.
  17. 基板を処理する基板処理システムであって、
    ダイシング前の基板の表面に保護層を形成する保護層形成装置と、
    ダイシング後の基板の表面から前記保護層を除去する保護層除去装置と、を有する、基板処理システム。
    A substrate processing system that processes substrates
    A protective layer forming device that forms a protective layer on the surface of the substrate before dicing,
    A substrate processing system comprising a protective layer removing device for removing the protective layer from the surface of the substrate after dicing.
  18. 前記保護層除去装置は、
    基板の表面に剥離液を供給する剥離液供給部と、
    基板の表面にリンス液を供給するリンス液供給部と、を有する、請求項17に記載の基板処理システム。
    The protective layer removing device is
    A stripping liquid supply unit that supplies the stripping liquid to the surface of the substrate,
    The substrate processing system according to claim 17, further comprising a rinse liquid supply unit for supplying a rinse liquid to the surface of the substrate.
  19. 前記リンス液供給部は、気体と混合された前記リンス液を霧状に供給する2流体ノズルを有し、
    前記2流体ノズルは、前記気体と混合された前記リンス液の供給と、前記リンス液のみの供給とを切り替え自在に構成されている、請求項18に記載の基板処理システム。
    The rinse liquid supply unit has a two-fluid nozzle that supplies the rinse liquid mixed with gas in the form of mist.
    The substrate processing system according to claim 18, wherein the two-fluid nozzle is configured to be able to switch between supplying the rinse liquid mixed with the gas and supplying only the rinse liquid.
  20. 前記リンス液供給部は、前記剥離液と希釈液が混合された希釈剥離液を、気体と混合して霧状に供給する2流体ノズルを有する、請求項18又は19に記載の基板処理システム。 The substrate processing system according to claim 18 or 19, wherein the rinsing liquid supply unit has a two-fluid nozzle that mixes a diluted stripping solution in which the stripping solution and the diluent is mixed with a gas and supplies the diluted solution in a mist form.
  21. 前記保護層除去装置は、基板の表面に気体を供給する気体供給部を有する、請求項18~20のいずれか一項に記載の基板処理システム。 The substrate processing system according to any one of claims 18 to 20, wherein the protective layer removing device has a gas supply unit that supplies gas to the surface of the substrate.
  22. 前記保護層除去装置は、基板の表面に超音波を付与する超音波発振部を有する、請求項18~21のいずれか一項に記載の基板処理システム。 The substrate processing system according to any one of claims 18 to 21, wherein the protective layer removing device has an ultrasonic oscillator that applies ultrasonic waves to the surface of the substrate.
PCT/JP2020/014571 2019-04-12 2020-03-30 Substrate processing method and substrate processing system WO2020209127A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019076613 2019-04-12
JP2019-076613 2019-04-12
JP2019-218749 2019-12-03
JP2019218749 2019-12-03

Publications (1)

Publication Number Publication Date
WO2020209127A1 true WO2020209127A1 (en) 2020-10-15

Family

ID=72750658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014571 WO2020209127A1 (en) 2019-04-12 2020-03-30 Substrate processing method and substrate processing system

Country Status (1)

Country Link
WO (1) WO2020209127A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166848A (en) * 2003-12-01 2005-06-23 Ses Co Ltd Substrate treating method and device
JP2006253402A (en) * 2005-03-10 2006-09-21 Nec Electronics Corp Manufacturing method of semiconductor device
JP2008307444A (en) * 2007-06-13 2008-12-25 Eme:Kk Washing equipment and washing method
JP2013123001A (en) * 2011-12-12 2013-06-20 Dainippon Screen Mfg Co Ltd Substrate processing method and substrate processing apparatus
JP2018129365A (en) * 2017-02-07 2018-08-16 東京応化工業株式会社 Protective film substrate for dicing, protective film composition for dicing, protective sheet for dicing, and method for producing wafer to be processed
JP2018195663A (en) * 2017-05-16 2018-12-06 株式会社ディスコ Method for dividing wafer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166848A (en) * 2003-12-01 2005-06-23 Ses Co Ltd Substrate treating method and device
JP2006253402A (en) * 2005-03-10 2006-09-21 Nec Electronics Corp Manufacturing method of semiconductor device
JP2008307444A (en) * 2007-06-13 2008-12-25 Eme:Kk Washing equipment and washing method
JP2013123001A (en) * 2011-12-12 2013-06-20 Dainippon Screen Mfg Co Ltd Substrate processing method and substrate processing apparatus
JP2018129365A (en) * 2017-02-07 2018-08-16 東京応化工業株式会社 Protective film substrate for dicing, protective film composition for dicing, protective sheet for dicing, and method for producing wafer to be processed
JP2018195663A (en) * 2017-05-16 2018-12-06 株式会社ディスコ Method for dividing wafer

Similar Documents

Publication Publication Date Title
KR100320585B1 (en) A resist processing apparatus
JP5641110B2 (en) Substrate cleaning apparatus, substrate cleaning method, and storage medium
TWI401734B (en) Cleaning apparatus, cleaning method, coating-developing apparatus, coating-developing method, and storage medium
TWI666069B (en) Substrate processing method
JP5580806B2 (en) Peeling apparatus, peeling system, peeling method, program, and computer storage medium
TWI753789B (en) Substrate processing method and substrate processing apparatus
JP6158721B2 (en) Cleaning device, peeling system, cleaning method, program, and computer storage medium
JP5740550B2 (en) Peeling apparatus, peeling system, peeling method, program, and computer storage medium
TWI704614B (en) Substrate processing method and substrate processing apparatus
KR20140083961A (en) Cleaning method and computer storage medium and cleaning apparatus and detachment system
JP5314057B2 (en) Peeling system, peeling method, program, and computer storage medium
JP6277021B2 (en) Wafer processing apparatus and wafer processing method
TW201005852A (en) Substrate cleaning apparatus, substrate cleaning method, and storage medium
TWI697043B (en) Substrate liquid processing device, substrate liquid processing method, and computer readable storage medium recorded with substrate liquid processing program
WO2020209127A1 (en) Substrate processing method and substrate processing system
JP5617065B2 (en) Peeling method, program, computer storage medium, and peeling system
TWI673115B (en) Substrate processing apparatus and substrate processing method
JP5717803B2 (en) Peeling system, peeling method, program, and computer storage medium
JP6254054B2 (en) Coating apparatus, bonding system, coating method, bonding method, program, and information storage medium
JP2003332284A (en) Liquid treatment apparatus and liquid treatment method
TWI708641B (en) Substrate treatment method
JP6367727B2 (en) Cleaning device, peeling system, cleaning method, peeling method, program, and information storage medium
TW201940255A (en) Substrate processing method and substrate processing apparatus
JP7262594B2 (en) Coating and developing equipment
JP5552559B2 (en) Peeling system, peeling method, program, and computer storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20786966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20786966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP