WO2020208849A1 - Analog meter reading device - Google Patents

Analog meter reading device Download PDF

Info

Publication number
WO2020208849A1
WO2020208849A1 PCT/JP2019/042952 JP2019042952W WO2020208849A1 WO 2020208849 A1 WO2020208849 A1 WO 2020208849A1 JP 2019042952 W JP2019042952 W JP 2019042952W WO 2020208849 A1 WO2020208849 A1 WO 2020208849A1
Authority
WO
WIPO (PCT)
Prior art keywords
indicator needle
meter
virtual
unit
scale
Prior art date
Application number
PCT/JP2019/042952
Other languages
French (fr)
Japanese (ja)
Inventor
黒澤 智明
賀昭 柴田
Original Assignee
株式会社オクタテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オクタテック filed Critical 株式会社オクタテック
Priority to JP2021513158A priority Critical patent/JP7423869B2/en
Publication of WO2020208849A1 publication Critical patent/WO2020208849A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C15/00Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • G08C19/36Electric signal transmission systems using optical means to covert the input signal

Definitions

  • the present invention relates to an analog meter reader.
  • Patent Document 2 a technique capable of automatically reading a value indicated by an indicator needle of an analog meter (hereinafter referred to as "indicator value”) by image processing and obtaining a digital signal suitable for computer management.
  • indicator value a value indicated by an indicator needle of an analog meter
  • Patent Document 1 uses a camera installed at a distance from the analog meter, and as images taken by the analog meter, a reference image having a known indicated value and a measured image in which the indicator needle is rotated. The two images of, and are obtained, and the indicated value indicated by the indicator needle is obtained by comparing the two images.
  • Patent Document 3 a technique that can be retrofitted to an analog meter, can read the indicated value indicated by the indicator needle without impairing the calibration state of the analog meter, and can take out the indicated value to the outside without contact.
  • Patent Document 3 detects the relative position of the indicator needle with respect to the proximity sensor by attaching a conductive target to the indicator needle and attaching a measurement IC tag unit including a proximity sensor to the cover glass surface of the analog meter. By doing so, the indicated value is output.
  • the present invention solves the above-mentioned problem of disclosure technology.
  • the analog meter reading device shows a scale plate on which numerical values assigned to a plurality of scales are displayed and an indicated value of the scale plate, and is on a plane at a predetermined distance from the display surface side of the scale plate.
  • An analog meter reading device that reads the indicated value of an indicator needle meter having an indicator needle that rotates with respect to a predetermined center of rotation and a transparent member that covers the display surface side of the scale plate so as to include the indicator needle.
  • a plurality of virtual sensors are virtually arranged outside or inside the arrangement direction of the numerical values displayed on the scale plate of the meter, and index numbers are assigned to the plurality of virtual sensors in the order of the arrangement direction.
  • a reading unit including an arithmetic processing unit that calculates an output signal of each of the plurality of virtual sensors using the output signals of one or more pixel sensors constituting each of the virtual sensors, and a reading unit including the arithmetic processing unit.
  • An index number detection unit that detects a substantial index number corresponding to the position of the indicator needle based on the output signal of at least one virtual sensor among the output signals of the plurality of virtual sensors. It has.
  • the present invention can read the indicated value of the analog meter with high accuracy by simply attaching it to the analog meter.
  • FIG. 1A is a front view of the analog meter reading device of the first embodiment attached to the indicator needle meter, and FIG. 1B is an external side view thereof.
  • FIG. 2 is a diagram showing a reading surface of the reading unit.
  • FIG. 3 is a block diagram showing a functional configuration of the analog meter reader.
  • FIG. 4 is a flowchart showing a rotation center identification routine of the indicator needle and a conversion table creation routine.
  • FIG. 5 is a diagram showing an example of the scale area of the indicator needle meter.
  • FIG. 6 is a diagram showing a scale region developed on a polar coordinate plane.
  • FIG. 7 is a diagram showing a conversion table.
  • FIG. 8 is a flowchart showing a reading processing routine.
  • FIG. 1A is a front view of the analog meter reading device of the first embodiment attached to the indicator needle meter
  • FIG. 1B is an external side view thereof.
  • FIG. 2 is a diagram showing a reading surface of the reading unit.
  • FIG. 9 is a schematic view when the indicator needle of the indicator needle meter is located in the center of one detection region of the photodiode, and is a diagram showing an output signal of each photodiode at that time.
  • FIG. 10 is a schematic view when the indicator needle of the analog meter exists in the overlapping portion of the detection regions of the two photodiodes, and is a diagram showing the output signal of each photodiode at that time.
  • FIG. 11 is a diagram showing a cross-sectional shape of the photodiode according to the second embodiment.
  • FIG. 12 (A) is a schematic view showing a light-sensitive region of a photodiode when the photodiode does not have a lens, and FIG.
  • FIG. 12 (B) is a schematic diagram showing a light-sensitive region when a lens is formed on the photodiode. Is.
  • FIG. 13 is a diagram showing light sensitive regions having different diameters.
  • FIG. 14A is a front view of the analog meter reading device of the third embodiment attached to the indicator needle meter, and FIG. 14B is an external side view thereof.
  • FIG. 15A is a view showing a reading surface of the reading unit, and FIG. 15B is an external side view thereof.
  • FIG. 16 is a side view of a main part of the camera module.
  • FIG. 17 is a block diagram showing a functional configuration of the analog meter reader.
  • FIG. 18 is a flowchart showing a rotation center identification routine.
  • FIG. 19 is a diagram showing an example of the scale area of the indicator needle meter.
  • FIG. 20 is a flowchart showing a virtual PD setting routine.
  • FIG. 21 is a diagram showing a virtual PD set in the effective area of the meter image.
  • FIG. 22 is a diagram showing an arrangement position of the virtual PD.
  • FIG. 23 is a diagram showing an example of a virtual PD.
  • FIG. 24 is a flowchart showing a conversion table creation routine.
  • FIG. 25 is a diagram showing a scale region developed on a polar coordinate plane and a series of virtual PDs.
  • FIG. 26 is a flowchart showing a reading processing routine.
  • FIG. 27 is a flowchart showing a signal reading routine.
  • FIG. 1A is a front view of the analog meter reading device 1 of the first embodiment attached to the indicator needle meter 100
  • FIG. 1B is an external side view thereof.
  • the analog meter reading device 1 irradiates the indicator needle meter 100 with light to detect the position information of the indicator needle 101, and the reading unit 10 and the indicated value indicated by the indicator needle 101 based on the position information detected by the reading unit 10. It includes a control unit 30 for calculating.
  • the indicator needle meter 100 includes an indicator needle 101, a scale plate 102 that displays a physical quantity (numerical value) corresponding to a position indicated by the indicator needle 101, and a cover glass 103 for protecting the indicator needle 101.
  • the indicator needle 101 rotates with respect to a predetermined rotation center on a plane at a predetermined distance from the display surface side of the scale plate 102.
  • the cover glass 103 covers the display surface side of the scale plate 102 so as to include the indicator needle 101.
  • the scale plate 102 of the indicator needle meter 100 is white, and the indicator needle 101 is black. Therefore, the light emitted to the indicator needle meter 100 is reflected by the scale plate 102 and absorbed by the indicator needle 101.
  • the reading unit 10 detects the position information of the indicator needle 101 of the indicator needle meter 100 by utilizing the light reflection characteristic of the indicator needle meter 100.
  • the reading unit 10 is an arc strip-shaped (doughnut-shaped) member having a substantially uniform thickness as a whole, a hole portion formed in the center, and a predetermined width in the radial direction.
  • One of the two side surfaces of the reading unit 10 is directly mounted on the cover glass 103 surface of the indicator needle meter 100, and the side surface (reading surface) that optically reads the position information of the indicator needle 101 of the indicator needle meter 100.
  • the other side surface of the above two side surfaces is a side surface (marker surface) exposed to the outside and on which the marker 10M is printed.
  • the reading surface of the reading unit 10 is the cover glass 103 surface on the opposite side of the scale plate 102 of the indicator needle meter 100 so that the center of the reading unit 10 coincides with the rotation center of the indicator needle 101 of the indicator needle meter 100. Mounted directly on top. At this time, the marker surface of the reading unit 10 is on the front side. In the present embodiment, four rectangular markers 10M are printed on the marker surface of the reading unit 10. The four markers 10M are arranged at the positions of the vertices of the square, and the intersections of the diagonal lines of the square coincide with the center of the reading unit 10.
  • FIG. 2 is a diagram showing a reading surface of the reading unit 10.
  • the reading unit 10 includes a disk-shaped storage case 12 in which a small hole portion 11 is formed, a plurality of photodiodes 13 arranged in an arc shape along the outer peripheral portion of the storage case 12, and a plurality of photodiodes and holes.
  • a plurality of LED elements 14 arranged in an arc shape between the portions are provided.
  • the storage case 12 has a circular storage bottom 12a in which a small hole 11 is formed in the center and a plurality of photodiodes 13 and LED elements 14 are installed, and an outer peripheral wall 12b formed along the outer peripheral portion of the circular storage bottom 12a. And an inner peripheral wall 12c formed along the inner peripheral portion of the circular storage bottom 12a.
  • the height of the outer peripheral wall 12b and the inner peripheral wall 12c is larger than the height from the arrangement surface of the photodiode 13 and the LED element 14. Therefore, when the reading unit 10 is attached to the cover glass 103, the ends of the outer peripheral wall 12b and the inner peripheral wall 12c are adhered to the cover glass 103. That is, the photodiode 13 and the LED element 14 do not have to come into contact with the cover glass 103, and damage due to contact is avoided.
  • Twenty-one photodiodes 13 from index number 0 to index number 20 are arranged in an arc shape on the reading unit 10.
  • the index number is used not only to identify one photodiode 13 out of the 21 photodiodes 13, but also as position information of the corresponding photodiode 13. Therefore, the index number is used when calculating the indicated value of the indicator needle meter 100, which will be described in detail later.
  • each photodiode 13 in the reading unit 10 is predetermined. Therefore, when the reading unit 10 is attached to the indicator needle meter 100, if the position of each marker 10M with respect to the indicator needle meter 100 is determined, the position of each photodiode 13 with respect to the indicator needle meter 100 is also uniquely determined.
  • the plurality of LED elements 14 are arranged in an arc shape inside a concentric circle with respect to the plurality of photodiodes 13.
  • the number of photodiodes 13 is larger than the number of LED elements 14.
  • the number of each of the photodiode 13 and the LED element 14 is not particularly limited.
  • the photodiode 13 is arranged outside the LED element 14, but the photodiode 13 may be arranged inside the LED element 14.
  • FIG. 3 is a block diagram showing a functional configuration of the analog meter reading device 1.
  • the reading unit 10 and the control unit 30 transmit and receive data to and from each other according to a predetermined protocol.
  • the reading unit 10 detects the position information of the indicator needle 101 of the indicator needle meter 100, and supplies the detected position information to the control unit 30.
  • the control unit 30 calculates the indicated value of the indicator needle meter 100 based on the position information supplied from the reading unit 10, and transmits the indicated value to the server device 200 by wireless communication.
  • the server device 200 aggregates and manages the indicated values of the plurality of indicator needle meters 100 in real time.
  • the reading unit 10 controls switching between a plurality of photodiodes 13 that receive the reflected light from the indicator needle meter 100, a plurality of LED elements 14 that irradiate the indicator needle meter 100 with light, and an output signal of each photodiode 13. It is provided with a photodiode control unit 15 and an LED drive unit 16 for driving each LED element 14.
  • the control unit 30 analog-to-digital / outputs the output signals from the storage battery 31, the photodiode (PD) switching unit 32, and the PD switching unit 32, which store power for supplying power to each circuit in the control unit 30 and the reading unit 10.
  • An A / D converter 33 that performs digital (A / D) conversion, a CPU 34, an LED control unit 35 that controls lighting / extinguishing of the LED element 14, a RAM 36 that is a data work area, and a ROM 37 that stores a program.
  • a wireless communication unit 38 that wirelessly communicates with an external device such as a server device 200.
  • the analog meter reading device 1 configured as described above calculates the indicated value of the indicator needle meter 100 according to the following procedure.
  • the reading unit 10 detects the position information of the indicator needle 101 of the indicator needle meter 100 in a state of being mounted on the front center portion of the indicator needle meter 100. Ideally, the reading unit 10 is preferably located at a position not deviated in the radial direction and the rotational direction with respect to the rotation center of the indicator needle 101 of the indicator needle meter 100. However, in reality, the reading unit 10 is mounted at a position deviated to some extent in the radial direction and the rotational direction described above. Therefore, the following processes (1) and (2) are required.
  • the position information of the indicator needle 101 detected by the reading unit 10 is merely the position information of the indicator needle 101 of the indicator needle meter 100 based on the index number of the photodiode 13, and the actual indicated value can be calculated. , It is necessary to create a conversion table for converting the position information to the indicated value.
  • the user attaches the reading unit 10 of the analog meter reading device 1 to the front center portion of the indicator needle meter 100.
  • the user uses, for example, a mobile terminal to take a picture of the indicator needle meter 100 to which the reading unit 10 is mounted.
  • the image of the indicator needle meter 100 generated by photographing (hereinafter, referred to as “meter image”) is transmitted to the server device 200 that manages each indicator needle meter 100.
  • the CPU 201 of the server device 200 rotates the indicator needle 101 for determining whether or not the above-mentioned radial and rotational deviations of the reading unit 10 are within an allowable range based on the meter image transmitted from the mobile terminal. Identify the center. Further, the CPU 201 of the server device 200 creates a conversion table for converting the position information of the indicator needle 101 of the indicator needle meter 100 into the indicated value based on the index number of the photodiode 13. Here, the conversion table refers to a table for converting the position information of the indicator needle 101 of the indicator needle meter 100 into the indicated value of the indicator needle meter 100.
  • FIG. 4 is a flowchart showing a rotation center identification routine and a conversion table creation routine of the indicator needle 101.
  • step S1 the CPU 201 determines whether or not a meter image has been acquired from the mobile terminal that captured the indicator needle meter 100, and waits until the meter image is acquired. When the CPU 201 acquires the meter image, the CPU 201 proceeds to the next step S2.
  • step S2 the CPU 201 corrects the distortion caused by the shooting direction and obtains a meter image equivalent to the meter image generated when the mobile terminal shoots the indicator needle meter 100 from the front.
  • the process of correcting the distortion caused by the photographing direction corresponds to, for example, the technique disclosed in Japanese Patent Application Laid-Open No. 2006-12133.
  • step S3 the CPU 201 performs a binarization process on the meter image. Specifically, the CPU 201 extracts a luminance component from the meter image, and for each pixel of the meter image, if the value of each luminance component is larger than a predetermined threshold value, it sets "1", otherwise it sets "0". Set.
  • step S4 the CPU 201 extracts the scale area MR1 (see FIG. 5 described later) from the binarized meter image.
  • the scale area means an area on the scale plate 102 on which a scale showing the correspondence between the position indicated by the indicator needle 101 and the indicated value is drawn.
  • FIG. 5 is a diagram showing an example of the scale area MR1 of the indicator needle meter 100.
  • the scale region MR1 is described using four parameter values: an outer radius a, an inner radius b, a central angle ⁇ to the left of the perpendicular line of the indicator needle meter 100, and a central angle ⁇ + to the right. Modeled with an arc band template. From this, the center position of the scale region MR1 becomes the same as the rotation center of the indicator needle 101.
  • the template of the scale area MR1 is not limited to the shape of the arc band specified by the four parameters (a value, b value, ⁇ - value and ⁇ + value). That is, the template of the scale region MR1 may have a shape other than the arc band as long as it can identify the rotation center of the indicator needle 101.
  • step S4 the CPU 201 further changes the center position of the template and the four parameter values to search for the optimum template position in the binarized meter image. Then, when the pixel value distribution in the template becomes uniform, the CPU 201 extracts the scale region MR1 according to the center position of the template and the four parameter values.
  • the CPU 201 when searching for a template, divides the internal area of the template into several subregions, and the average pixel value in each subregion becomes substantially constant over the entire interior of the template.
  • the scale region MR1 is extracted as the center position, a value, b value, ⁇ value, and ⁇ + value at that time.
  • step S5 the CPU 201 identifies the rotation center of the indicator needle 101 using the scale region MR1 (a value, b value, ⁇ - value and ⁇ + value) extracted in step S4.
  • the center of rotation of the indicator needle 101 coincides with the center position of the arc band-shaped template that models the scale region MR1. Therefore, the CPU 201 identifies the rotation center of the indicator needle 101 by specifying the center position of the template of the scale region MR1 extracted in step S4.
  • step S6 the CPU 201 detects the deviation of the mounting position of the reading unit 10 with respect to the rotation center of the indicator needle 101 based on the meter image.
  • the deviation of the mounting position of the reading unit 10 is defined by the translation deviation ⁇ r from the rotation center of the indicator needle 101 and the rotation deviation ⁇ of the reading unit 10 from the vertical line of the indicator needle meter 100.
  • the translation deviation ⁇ r and the rotation deviation ⁇ are calculated based on four rectangular markers 10M printed in advance at predetermined positions on the marker surface of the reading unit 10. Specifically, the CPU 201 calculates the position information of the center of the reading unit 10 from the position information of the four markers 10M in the meter image, and translates the translation deviation ⁇ r as the distance from the position information to the rotation center of the indicator needle 101. Is calculated. Further, the CPU 201 calculates the rotation deviation ⁇ as the slope of a straight line connecting the two markers 10M arranged in the vertical direction or the horizontal direction with reference to the above-mentioned perpendicular line.
  • a rectangular marker 10M pre-printed at a predetermined position on the marker surface of the reading unit 10 is used, but the present invention is limited to this. It's not something.
  • a QR code registered trademark
  • the QR code is a two-dimensional bar code in which a unique identifier is encoded and is printed at a predetermined position on the marker surface of the reading unit 10.
  • the CPU 201 may detect the deviation of the mounting position of the reading unit 10 by using the markers at the three corners of the QR code (registered trademark) in the meter image. In this case, the CPU 201 not only detects the deviation of the mounting position of the reading unit 10, but also can acquire the unique identifier of the reading unit 10.
  • step S7 the CPU 201 determines whether or not the deviation of the mounting position of the reading unit 10 is within the allowable range. Specifically, the CPU 201 determines whether or not both the translation deviation ⁇ r and the rotation deviation ⁇ are equal to or less than a predetermined threshold value. Then, if both the translation deviation ⁇ r and the rotation deviation ⁇ are equal to or less than a predetermined threshold value, the process proceeds to step S9, and if at least one of the translation deviation ⁇ r and the rotation deviation ⁇ is not equal to or less than the predetermined threshold value, the process proceeds to step S8.
  • the respective threshold values of the translation deviation ⁇ r and the rotation deviation ⁇ are determined by the number of photodiodes 13 and LED elements 14 mounted on the reading surface of the reading unit 10, the arrangement location, and the indicator needle meter 100 required for the reading unit 10. It is determined by the reading accuracy and is not a particularly limited value.
  • step S8 the CPU 201 performs a process for instructing the user to reattach the reading unit 10.
  • the process for instructing reattachment corresponds to, for example, a process of sending an e-mail instructing reattachment to a pre-registered e-mail address, or a process of displaying an instruction for reattachment on a predetermined monitor screen. .. Then, this routine ends.
  • step S9 the CPU 201 executes the polar coordinate conversion process of the position information of the scale region MR1 and the photodiode 13 shown in FIG. Specifically, the CPU 201 expands the arc band-shaped scale region MR1 extracted from the meter image into a polar coordinate plane whose horizontal axis is the central angle with respect to the perpendicular line of the indicator needle meter 100 and whose vertical axis is the radius method. To do.
  • FIG. 6 is a diagram showing a rectangular scale region MR2 developed on a polar coordinate plane.
  • the scale region MR2 is represented by a rectangular region having a width from ⁇ to ⁇ + on the horizontal axis and a height from a to b on the vertical axis.
  • the plurality of photodiodes 13 arranged in the reading unit 10 do not appear in the meter image. However, the position information of each photodiode 13 is associated with the position information of the four markers 10M printed on the reading unit 10. That is, if the position information of the four markers 10M is detected, the position information of each photodiode 13 is also detected.
  • the CPU 201 detects the position information of each of the four markers 10M using the meter image, detects the position information of each photodiode 13 based on the position information, and obtains the position information of these photodiodes 13. Expand to a polar plane.
  • a rectangular scale region MR2 is arranged on the polar coordinate plane described above, and the scale is concerned.
  • Twenty-one photodiodes 13 (0th to 20th) are arranged at equal intervals along the longitudinal direction of the region MR2.
  • This indicates a state in which the reading unit 10 is mounted without deviation with respect to the rotation center of the indicator needle 101 of the indicator needle meter 100. That is, the deviation of the mounting position of the reading unit 10 is within the allowable range and can be ignored in practice ( ⁇ r, ⁇ 0).
  • step S10 the CPU 201 creates a conversion table for converting the position information (substantial index number) of the indicator needle 101 of the indicator needle meter 100 based on the index number of the photodiode 13 into the indicated value. Specifically, the CPU 201 recognizes the scale numbers in the vicinity of the scale region MR2 as numerical values, and executes a process of associating the recognized numerical values with the position information of the scale numbers on the polar coordinate plane.
  • the position information of the scale numbers is converted into a polar coordinate value ⁇ with reference to the perpendicular line of the indicator needle meter 100. Then, the position information (polar coordinate value ⁇ ) of the scale numbers is associated with the numerical values of the scale numbers. It should be noted that such association is performed for all the scale numbers in the vicinity of the scale region MR2.
  • the scale number is often displayed only as a value corresponding to a typical rotation angle of the indicator needle 101.
  • the position information of the scale numbers is not limited to the value of the position information as it is detected from the recognition of the scale numbers, and is deviated by 5 °, 10 °, 15 °, 30 °, and 45 ° with respect to the above-mentioned perpendicular line. It may be replaced with a value (a typical divisor of 90 ° or a multiple thereof).
  • the CPU 201 creates a conversion table that converts the position information of the indicator needle 101 of the indicator needle meter 100 based on the index number of the photodiode 13 into an indicated value by using all the information developed on the polar coordinate plane.
  • FIG. 7 is a diagram showing a conversion table.
  • the conversion table is composed of an index number of the photodiode 13 corresponding to the position information of the indicator needle 101 of the indicator needle meter 100, a rotation angle based on the perpendicular line of the indicator needle meter 100, and an instruction value corresponding to the rotation angle. ing.
  • the index number of the photodiode 13 and the rotation angle with respect to the perpendicular line described above are values predetermined by mounting on the reading unit 10.
  • a plurality of typical rotation angles and indicated values (recognized numerical values) corresponding to them are acquired by the above-mentioned processing. Further, other rotation angles and the indicated values corresponding to them are obtained by linear interpolation using the acquired rotation angles and the indicated values corresponding to them.
  • the CPU 201 creates the conversion table shown in FIG. 7 by associating the index number of the photodiode 13 thus obtained, the rotation angle with respect to the perpendicular line described above, and the indicated value corresponding to the rotation angle.
  • the conversion table creation processing routine shown in FIG. 4 is applied when the indicator needle meter 100 to which the reading unit 10 is mounted is unknown. Therefore, when the indicator needle meter 100 is known and the conversion table for the known indicator needle meter 100 has been created by the conversion table creation processing routine shown in FIG. 4, the scale area MR1 of the indicator needle meter 100 is created. For an indicator needle meter having the same scale area as the above, only the mounting position deviation of the reading unit 10 needs to be evaluated.
  • the server device 200 transmits the conversion table created as described above to the analog meter reading device 1 by wireless communication.
  • the analog meter reading device 1 calculates the indicated value of the indicator needle meter 100 from the index number of the photodiode 13 using the conversion table transmitted from the server device 200.
  • the analog meter reading device 1 calculates the reading value of the indicator needle meter 100 by executing the reading processing routine shown below.
  • FIG. 8 is a flowchart showing a reading processing routine.
  • the CPU 34 of the control unit 30 determines whether or not the predetermined measurement time has come, and waits until the measurement time comes.
  • the measurement time may be a time repeated at predetermined time intervals or a preset time.
  • the CPU 34 determines that the measurement time has come, the process proceeds to step S12.
  • step S12 the CPU 34 turns on the switch of the power supply line from the storage battery 31 to the reading unit 10 to start supplying power to the reading unit 10.
  • step S13 the CPU 34 controls the LED drive unit 16 of the reading unit 10 to light all the LEDs 14. As a result, the indicator needle meter 100 is irradiated with light.
  • step S14 the CPU 34 controls the photodiode control unit 15 of the reading unit 10 to read a signal from each photodiode 13 according to the amount of received light.
  • the signal read from each photodiode 13 is supplied to the PD switching unit 32 of the control unit 30.
  • the CPU 34 controls the PD switching unit 32 so as to sequentially switch and output the signals of the photodiodes 13 having index numbers 0 to 20 from the signals supplied from each photodiode 13.
  • the signal output from the PD switching unit 32 is analog-to-digital converted by the A / D converter 33 and supplied to the CPU 34.
  • the CPU 34 receives the signals of the photodiodes 13 having index numbers 0 to 20.
  • FIG. 9A is a schematic diagram when the indicator needle 101 of the indicator needle meter 100 is located in the center of one detection region of the photodiode 13, and FIG. 9B is an output signal of each photodiode 13 at that time. It is a figure which shows.
  • the small white circle indicates the detection area of the photodiode 13, and the square in the center of the small white circle indicates the photodiode 13.
  • the large black circle indicates the light irradiation region by the LED element 14, and the square in the center of the large black circle indicates the LED element 14. The same applies to FIG. 10, which will be described later.
  • the indicator needle 101 of the indicator needle meter 100 When the indicator needle 101 of the indicator needle meter 100 is located in the center of one detection area of the photodiode 13, the output signal of the photodiode 13 becomes low level. The output signals of the other photodiodes 13 are at a high level. As a result, it can be seen that the indicator needle 101 of the indicator needle meter 100 is located at a position where the output signal corresponds to the low-level photodiode 13.
  • FIG. 10A is a schematic diagram when the indicator needle 101 of the indicator needle meter 100 exists in the overlapping portion of the detection regions of the two photodiodes 13, and FIG. 10B is an output signal of each photodiode 13 at that time. It is a figure which shows.
  • the indicator needle 101 of the indicator needle meter 100 exists in the overlapping portion of the detection areas of the two photodiodes 13, the output signals of the two photodiodes 13 are at the middle level.
  • the output signals of the other photodiodes 13 are at a high level.
  • the indicator needle 101 of the indicator needle meter 100 is located between the positions where the output signals correspond to the two photodiodes 13 at the middle level.
  • the indicator needle 101 of the indicator needle meter 100 may be detected in one detection region of the photodiode 13 or may be detected in each of the two detection regions. Therefore, in consideration of these situations, the CPU 34 of the control unit 30 detects the position information of the indicator needle 101 from the output signal of each photodiode 13 via the index number of the photodiode 13.
  • step S15 the CPU 34 calculates an instruction value corresponding to the position information of the instruction needle 101 of the instruction needle meter 100 based on the output signals of the photodiodes 13 having index numbers 0 to 20.
  • the CPU 34 uses the output signal of each photodiode 13 and the index numbers 0 to 20 of each corresponding photodiode 13, and the position information (substantial index) of the indicator needle 101 of the indicator needle meter 100. Number) is detected. Unlike the index number of the photodiode 13, this position information is not limited to an integer and may be a value including a decimal number.
  • the CPU 34 calculates an instruction value corresponding to the position information of the instruction needle 101 with reference to the conversion table shown in FIG. 7.
  • the method for detecting the position information of the indicator needle 101 is not particularly limited, but there are, for example, the following methods when the detection regions of the adjacent photodiodes 13 overlap.
  • the CPU 34 can detect the position information of the indicator needle 101 by using the weighted average as follows. For example, the CPU 34 first selects, among the output signals of each photodiode 13, an output signal affected by the indicator needle 101, for example, an output signal whose level is equal to or less than a predetermined threshold value and the corresponding photodiode 13.
  • the CPU 34 weights the index number of the selected photodiode 13.
  • the lower the level of the output signal the larger the weight of the index number, and the higher the level of the output signal, the smaller the weight of the index number.
  • the CPU 34 calculates a weighted average of each weighted index number.
  • the calculated weighted average value corresponds to the position information of the indicator needle 101.
  • the CPU 34 can also detect the position information of the indicator needle 101 using the maximum likelihood method as follows.
  • each of i -2 relative index number of five photodiodes 13 selected, the -1,0,1,2 each Y -2 the level of the output signal of the photodiode 13, Y - Let it be 1 , Y 0 , Y 1 , and Y 2 .
  • the maximum likelihood model function refers to a model function that can most accurately represent the levels of all output signals of the five selected photodiodes 13 based on the least squares method.
  • the portion of the indicator needle 101 in the tip direction is narrower than the portion in the root direction. This corresponds to the degree of spread of the parabola in the maximum likelihood model function described above.
  • a 1/14 ⁇ (2Y- 2- Y -1 -2Y 0- Y 1 + 2Y 2 )
  • the actual index number of the photodiode 13 may be obtained from the maximum likelihood model function in which the value of a becomes larger, in other words, the spread of the corresponding parabola is smaller.
  • the position information of the indicator needle 101 is obtained by using the output signals of the five photodiodes 13, but the number of the photodiodes 13 is not particularly limited.
  • the indicator needle meter 100 is based on the premise that the black indicator needle 101 is on the white scale plate 102, but the present invention is not limited to such a configuration.
  • a parabola is assumed as the maximum likelihood model function, but it is not limited to that.
  • the indicator needle 101 when the indicator needle 101 does not exist in the vicinity, it is assumed that the light receiving amount of each photodiode 13 is the same and the level of each output signal becomes a predetermined default value.
  • the level of the output signal may vary due to individual differences of each photodiode.
  • a scale number or a manufacturer's logo mark is printed in the light-sensitive area of the photodiode on the scale plate, the light reflection is hindered by the scale number or the logo mark. In this case, even though there is no indicator needle 101, the level of the output signal as the default value becomes smaller than that of the periphery.
  • the above calculation is obtained by subtracting the output signal strength of the photodiode as a default value from the detected output signal strength of the optical sensor. Such an operation may be applied.
  • the CPU 34 calculates the indicated value by detecting the position information of the indicator needle 101 as described above and then converting the position information of the indicator needle 101 into the indicated value with reference to the conversion table.
  • This conversion table is created by the conversion table creation routine shown in FIG.
  • step S16 the CPU 34 determines whether or not the indicated value is abnormal (outside the preset range). If it is determined that the indicated value is abnormal, the process returns to step S14, the signal is read again from each photodiode 13, and the indicated value is calculated again. If the indicated value is not abnormal, the process proceeds to step S17. If the indicated value becomes abnormal a predetermined number of times in succession, the process proceeds to step S18 without returning to step S14.
  • step S17 the CPU 34 transmits the calculated instruction value to the server device 200 via the wireless communication unit 38.
  • the server device 200 can constantly manage the indicated value of each indicator needle meter 100.
  • step S18 the CPU 34 controls the LED drive unit 16 of the reading unit 10 to turn off all the LEDs 14.
  • step S19 the CPU 34 turns off the switch of the power supply line from the storage battery 31 to the reading unit 10 to stop the power supply to the reading unit 10. Then, the process returns to step S11. After that, the process of step S11 and the like is repeated again.
  • the position information of the indicating needle 101 of the indicating needle meter 100 is provided by the reading unit 10 having the photodiode 13 and the LED element 14 without using the image sensor. Is detected.
  • the analog meter reading device 1 can significantly reduce the power consumption as compared with the device using the image sensor.
  • the analog meter reading device 1 since the analog meter reading device 1 requires less time for the light detection itself than the device using the image sensor, the measurement frequency of the indicator needle meter 100 is not high (for example, in a few hours). In the case of one time), the power consumption can be suppressed to one-fifth to one-tenth.
  • the analog meter reading device 1 transmits the indicated value to the server device 200, but instead of the indicated value, the analog meter reading device 1 transmits the position information of the indicating needle 101 represented by the index number of the photodiode 13. May be good.
  • the server device 200 since the server device 200 may convert the position information of the indicator needle 101 into the indicated value by referring to the conversion table created by itself, the server device 200 transmits the conversion table created by itself to the analog meter reading device 1. You can save time and effort.
  • FIG. 11 is a diagram showing a cross-sectional shape of the photodiode 13 according to the second embodiment.
  • the lens 13a is formed on the light receiving surface of the photodiode 13.
  • the light-sensitive region of the photodiode 13 changes depending on the presence or absence of the lens 13a.
  • the light-sensitive region refers to a spatial region in which the presence of a point light source can be detected by the photodiode 13.
  • the range in the depth direction and the range in the width direction of the light sensitive region are limited according to the optical characteristics of the lens 13a.
  • FIG. 12 (A) is a schematic view showing a light sensitive region A1 of the photodiode 13 when the photodiode 13 does not have a lens
  • FIG. 12 (B) is a schematic diagram showing the light sensitivity when the lens 13a is formed on the photodiode 13. It is a schematic diagram which shows the region A2.
  • the light sensitive region A1 of the photodiode 13 includes not only the indicator needle 101 but also the scale plate 102. Therefore, when the scale number or the manufacturer's logo mark is displayed on the scale plate 102, the photodiode 13 obtains an output signal influenced by those displayed objects. Specifically, the level of the output signal of the photodiode 13 is lowered as if the indicator needle 101 actually exists even though the indicator needle 101 does not exist.
  • the light-sensitive region A2 of the photodiode 13 is limited in the depth direction as compared with the light-sensitive region A1 of FIG. 12 (A) due to the influence of the optical characteristics of the lens 13a. That is, the light-sensitive region A2 includes the indicator needle 101 or its vicinity in the depth direction, but does not include the scale plate 102. Therefore, even if the scale plate 102 has a display such as a scale number or a manufacturer's logo mark or does not have such a display, the output signal of the photodiode 13 is not affected.
  • the photodiode 13 detects the indicator needle 101, the photodiode 13 obtains a low-level output signal (a signal corresponding to black) as in the first embodiment. Further, when the photodiode 13 does not detect the indicator needle 101, it is not affected by the presence or absence of a display object such as a scale number on the scale plate 102 or a manufacturer's logo mark, and corresponds to a high-level output signal (corresponding to white). Signal). That is, as in the first embodiment, it can be seen that the indicator needle 101 is at a position where the output signal corresponds to the low-level photodiode 13.
  • the photodiode 13 when the depth direction of the light-sensitive region is limited by the lens 13a, the photodiode 13 has a display object such as a scale number or a manufacturer's logo mark on the scale plate 102. Even in some cases, it is possible to obtain an output signal of an appropriate level depending only on the presence of the indicator needle 101.
  • FIG. 13 is a diagram showing light sensitive regions A11 to A15 and A21 to A25 having different diameters.
  • the photodiode 13 does not have the lens 13a (FIG. 12 (A))
  • the adjacent light-sensitive regions A11 to A15 partially overlap each other as shown in FIG. Therefore, when the indicator needle 101 is present at the position shown in FIG. 13, it is detected in the two light sensitive regions A12 and A13.
  • the diameter of each of the light-sensitive regions A21 to A25 is smaller than the diameter of each of the light-sensitive regions A11 to A15. Therefore, the adjacent light-sensitive regions A21 to A25 do not overlap each other and are in contact with each other. Therefore, when the indicator needle 101 is present at the position shown in FIG. 13, it is detected only in one light sensitive region A22. That is, by limiting the diameter (width direction) of the light-sensitive regions, it is possible to suppress the overlap of adjacent light-sensitive regions, and the detection accuracy of the position information of the indicator needle 101 is improved.
  • the analog meter reading device 1 can detect the depth direction of the light-sensitive region even when the scale number or the manufacturer's logo mark is displayed on the scale plate 102 of the indicator needle meter 100.
  • the position information of the indicator needle 101 of the indicator needle meter 100 can be detected with high accuracy without being affected by those displayed objects.
  • the analog meter reading device 1 can detect the position information of the indicator needle 101 with higher accuracy by limiting the width direction of the light sensitive region.
  • the adjacent light sensitive regions A21 to A25 are in contact with each other without overlapping, thereby improving the detection accuracy of the position information of the indicator needle 101.
  • the diameter of the light-sensitive regions may be reduced, and as in the first embodiment, adjacent light-sensitive regions may overlap each other.
  • the position information of the indicator needle 101 is detected by the "indicator needle position information detection method 1 (weighted average)" or “indicator needle position information detection method 2 (maximum likelihood method)" of the first embodiment. It is possible.
  • the number of photodiodes 13 that can be mounted per unit length is dramatically increased. Can be increased to. As a result, the detection accuracy of the position information of the indicator needle 101 and the calculation accuracy of the indicator value can be further improved.
  • FIG. 14A is a front view of the analog meter reading device 1a of the third embodiment attached to the indicator needle meter 100a
  • FIG. 14B is an external side view thereof.
  • the analog meter reading device 1a has a reading unit 10a that irradiates the indicator needle meter 100a with light to detect the position information of the indicator needle 101, and an instruction value indicated by the indicator needle 101 based on the position information detected by the reading unit 10a. It includes a control unit 30 for calculating.
  • the reading unit 10a is attached to the center of rotation of the indicator needle meter 100a or its vicinity. Then, the reading unit 10a detects the position information of the indicating needle 101 of the indicating needle meter 100a, and supplies the detected position information to the control unit 30. The control unit 30 calculates the indicated value of the indicator needle meter 100a based on the position information supplied from the reading unit 10a, and transmits the indicated value to the server device 200 (see FIG. 17) described later by wireless communication.
  • the indicator needle meter 100a includes an indicator needle 101, a scale plate 102 that displays a physical quantity (numerical value) corresponding to the position indicated by the indicator needle 101, a cover glass 103 for protecting the indicator needle 101, and the back of the cover glass 103. It is on the side (scale plate 102 side) and is provided with a cover member 104 that covers the vicinity of the rotation center of the indicator needle for aesthetic purposes.
  • the numerical values displayed on the tip side of the indicator needle 101 and the scale plate 102 can be visually recognized from the outside through the cover glass 103.
  • the center of rotation of the indicator needle 101 and its peripheral portion are hidden by the cover member 104 between the cover glass 103 and the indicator needle 101, and cannot be seen from the outside.
  • One side surface of the two side surfaces of the reading unit 10a is directly mounted on the cover glass 103 surface of the indicator needle meter 100a, and the side surface (reading surface) that optically reads the position information of the indicator needle 101 of the indicator needle meter 100a. Is.
  • the other side surface of the above two sides is exposed to the outside, and the side surface (marker surface) on which a two-dimensional code (for example, QR code (registered trademark)) for identifying the analog meter reader 1a is printed is printed. ).
  • a two-dimensional code for example, QR code (registered trademark)
  • FIG. 15A is a view showing a reading surface of the reading unit 10a
  • FIG. 15B is a side view of the main part thereof.
  • the reading unit 10a was fixed to the disk-shaped case lid 21, the outer peripheral portion 22 formed along the outer peripheral portion of the case lid 21, the substrate 23 attached to one side of the case lid 21, and the substrate 23. It includes an LED element 24 and a camera module 25 fixed to a substrate 23.
  • the camera module 25 is fixed to the substrate 23 and is arranged at the center of the case lid 21 by a fixing member 22a extending from the outer peripheral portion 22.
  • the LED element 24 is arranged on the substrate 23 and around the camera module 25.
  • FIG. 16 is a side view of a main part of the camera module 25.
  • the camera module 25 is a camera for fixing the arrangement position of the wide-angle lens 26, the image sensor 27 that generates a signal based on the incident light from the wide-angle lens 26, and the wide-angle lens 26, and protecting the image sensor 27 from the outside. It has a case 28 and. Reflected light from the indicator needle 101 and the scale plate 102 of the indicator needle meter 100a is incident on the image sensor 27 via the wide-angle lens 26.
  • FIG. 17 is a block diagram showing a functional configuration of the analog meter reading device 1a.
  • the reading unit 10a and the control unit 30 transmit and receive data to and from each other according to a predetermined protocol, as in the first embodiment. That is, in the analog meter reading device 1a of the present embodiment, the reading unit 10 of the analog meter reading device 1 shown in FIG. 3 is replaced with the reading unit 10a shown in FIG.
  • the reading unit 10a is predetermined for a plurality of LED elements 24 that irradiate the indicator needle meter 100a with light, an image sensor 27, a drive control unit 111 that drives the image sensor 27, and an image read from the image sensor 27. It includes an image processing unit 112 that performs processing, a storage unit 113 that stores data, and an LED driving unit 114 that drives each LED element 24.
  • the control unit 30 is configured in the same manner as in FIG.
  • the analog meter reading device 1a configured as described above executes the following processes (1) to (4) in order to calculate the indicated value of the indicator needle meter 100a.
  • FIG. 18 is a flowchart showing a rotation center identification routine for identifying the rotation center of the indicator needle 101.
  • step S21 the user directly mounts the reading unit 10a near the center of rotation of the indicator needle 101 of the indicator needle meter 100a.
  • the mounting position of the reading unit 10a does not have to be the exact center of rotation of the indicator needle 101, and may be a position near the center of rotation estimated from the position of the indicator needle 101 or the shape of the scale region by the scale plate 102. That is, normally, the reading unit 10a is mounted in a state of being displaced from the indicator needle meter 100a.
  • the center position of the reading unit 10a has a translational deviation of ⁇ r from the rotation center of the indicator needle 101.
  • the perpendicular line of the reading unit 10a has a rotational deviation of ⁇ with respect to the perpendicular line of the indicator needle meter 100a.
  • ⁇ r and ⁇ can be ignored by the processing described later.
  • step S22 the image processing unit 112 acquires a distorted meter image generated by the image sensor 27 based on the incident light from the wide-angle lens 26.
  • the image sensor 27 is incorporated in the reading unit 10a directly mounted on the indicator needle meter 100a. Therefore, the distortion generated in the meter image is not caused by the photographing direction described in the first embodiment, but is caused by the wide-angle lens 26.
  • the reading unit 10a is attached to the vicinity of the rotation center of the indicator needle meter 100a in which the rotation center of the indicator needle 101 is hidden.
  • the numerical values displayed on the tip side of the indicator needle 101 and the scale plate 102 can be read in the lens field of view LV.
  • step S23 the image processing unit 112 converts the distorted meter image acquired from the image sensor 27 into a flat image.
  • the image conversion method for converting the distorted image into a flat image is not particularly limited.
  • the wide-angle lens 26 is an equidistant projection type fisheye lens
  • the technique described in JP-A-11-18007 can be applied to the image conversion method, for example.
  • the meter image converted into a flat image includes an area where the indicator needle 101 and the scale plate 102 are displayed (effective area) and an area where the cover member 104 behind the cover glass 103 is displayed and the indicator needle 101 is hidden. (Invalid area) and is included.
  • the center of rotation of the indicator needle 101 exists in the invalid region, but is identified based on the effective region of the meter image, as will be described in detail later.
  • step S24 the image processing unit 112 performs binarization processing on the meter image. Specifically, the image processing unit 112 extracts the luminance component from the meter image, and for each pixel in the effective region of the meter image, if the value of each luminance component is larger than a predetermined threshold value, it is set to '1', otherwise. If so, set '0'.
  • '0' for all the pixels in the invalid area of the meter image, for example, in the template search described later, when all the pixels in the template are '0', the template is the invalid area. Make it easy to detect what is in.
  • step S25 the image processing unit 112 extracts the scale region MR3 (see FIG. 19 described later) from the binarized meter image.
  • the scale area means an area on the scale plate 102 on which a scale showing the correspondence between the position indicated by the indicator needle 101 and the indicated value is drawn.
  • FIG. 19 is a diagram showing an example of the scale region MR3 of the indicator needle meter 100a.
  • the scale region MR3 exists in the effective region of the meter image, and has an outer radius a, an inner radius b, a central angle ⁇ to the left of the perpendicular line of the indicator needle meter 100a, and a central angle ⁇ + to the right. It is modeled by the arc band template described using the four parameter values. From this, the center position of the scale region MR3 becomes the same as the rotation center of the indicator needle 101.
  • the template of the scale area MR3 is not limited to the shape of the arc band specified by the four parameters (a value, b value, ⁇ - value and ⁇ + value). That is, the template of the scale region MR3 may have a shape other than the arc band as long as it can identify the rotation center of the indicator needle 101.
  • step S25 the image processing unit 112 further changes the center position of the template and the four parameter values to search for the optimum template position within the effective region of the binarized meter image. Then, when the pixel value distribution in the template becomes uniform, the image processing unit 112 extracts the scale region MR3 according to the center position of the template and the four parameter values.
  • the image processing unit 112 divides the internal area of the template into several subregions, and the average pixel value in each subregion is substantially constant over the entire interior of the template.
  • the scale region MR3 is extracted as the center position, a value, b value, ⁇ value, and ⁇ + value at that time.
  • step S26 the image processing unit 112 identifies the rotation center of the indicator needle 101 using the scale region MR3 (a value, b value, ⁇ value and ⁇ + value) extracted in step S25.
  • the center of rotation of the indicator needle 101 coincides with the center position of the arc band-shaped template that models the scale region MR3. Therefore, the image processing unit 112 identifies the rotation center of the indicator needle 101 by specifying the center position of the template of the scale region MR3 extracted in step S25.
  • the image processing unit 112 may prepare in advance a template that models the relationship between the shape of the scale region MR3 and the rotation center of the indicator needle 101. Then, the image processing unit 112 performs matching processing between the scale region MR and the template, and identifies the rotation center of the indicator needle 101 based on the template after the matching processing.
  • FIG. 20 is a flowchart showing a virtual PD setting routine.
  • FIG. 21 is a diagram showing a virtual PD set in the effective area of the meter image.
  • step S31 the image processing unit 112 sets an arc (arrangement arc) in which the virtual PD is arranged by using the rotation center of the indicator needle 101 identified in the above process.
  • the placement arc is an arc that is included in the effective area of the meter image and passes through the centers of all virtual PDs that are placed on the concentric circles of the rotation center of the indicator needle 101.
  • the radius of the placement arc is determined according to the detection accuracy required for the analog meter reading device 1a, specifically, the number and size of the virtual PDs to be placed.
  • the analog meter reading device 1a of the present embodiment targets the indicator needle meter 100a shown in FIG. 14, but the indicator needle meter 100 shown in FIG. 1 (a type in which the rotation center of the indicator needle 101 and its periphery are not hidden). But it is possible.
  • the arrangement arc is set as an arc whose center is at the same position as the rotation center of the indicator needle 101, the central angle to the left of the perpendicular line of the indicator needle meter 100 is ⁇ , and the central angle to the right is ⁇ +. ..
  • the central angle of the placement arc is equal to the angle formed by the respective half straight lines from the center of the placement arc identified in the above process to the minimum scale value and the maximum scale value of the scale area MR3.
  • the upper limit of the radius of the placement arc is not particularly limited as long as the entire placement arc is included in the effective area of the meter image and the detection accuracy required for the analog meter reading device 1a is satisfied.
  • the lower limit of the radius of the placement arc is equal to the length of the line segment connecting the point where each half line intersects the boundary line between the effective region and the invalid region and the center of the placement arc.
  • step S32 the image processing unit 112 determines the center (placement position center) of each placement position of the series of virtual PDs defined on the set placement arc.
  • the center of each placement position is from the center of the placement arc to the scale area MR3 for each rotation angle obtained by dividing the center angle of the above-mentioned placement arc by the number obtained by subtracting 1 from the number of virtual PDs to be placed. It is given as the intersection of the pointed half straight line and the arrangement arc.
  • the scale is scaled from the center of the arrangement arc for each rotation angle of ( ⁇ / 2)
  • the intersection of the half straight line toward the region MR3 and the arrangement arc is the center of the arrangement position of each virtual PD.
  • the center of the arrangement arc of the virtual PD in other words, the substantial center of the reading unit 10a, is dynamically determined by the rotation center itself of the identified indicator needle 101. Therefore, the translational deviation ( ⁇ r) from the center of rotation of the indicator needle 101 to the center of the mounting position of the reading unit 10a does not affect the detection accuracy of the indicated value and can be ignored in the present embodiment.
  • step S33 the image processing unit 112 assigns an index number to each virtual PD (center of the placement position). For example, in the case of FIG. 21, index numbers 1, 2, 3, ... Are assigned in order from the left of each virtual PD. In this case, the index number of the virtual PD at the right end is 21.
  • step S34 the image processing unit 112 calculates the rotation deviation ( ⁇ ) of the reading unit 10a from the perpendicular line of the indicator needle meter 100a.
  • the rotation deviation ( ⁇ ) is determined by the boundary line between the effective region and the invalid region extracted from the meter image and the pixel sensor array which is the horizontal arrangement of the pixel sensors of the image sensor 27. Corresponds to the angle of formation.
  • step S35 the image processing unit 112 creates a virtual PD configuration table that summarizes the index number and the center of the placement position of each virtual PD.
  • the actual placement position of the virtual PD has a rotation deviation of ⁇ in the positive direction.
  • the virtual PD composition table showing the relationship between the index number of the virtual PD and the placement position center of the virtual PD (xy coordinates of the placement position center) is as shown in Table 1.
  • step S36 the image processing unit 112 sets the virtual PD for the placement position center of each virtual PD. Specifically, the image processing unit 112 sets the virtual PD with an aggregate of pixel sensors within a predetermined range based on the center of the arrangement position of the virtual PD.
  • FIG. 23 is a diagram showing a virtual PD composed of an aggregate of a total of 49 pixel sensors having 7 pixels in the vertical direction and 7 pixels in the horizontal direction.
  • the center of the placement position of the virtual PD is determined by the intersection of the placement arc and the half straight line from the center of the placement arc to the scale area.
  • the virtual PD is composed of a total of 49 pixel sensors, 7 pixels in the vertical direction and 7 pixels in the horizontal direction, with reference to the center of the arrangement position.
  • FIG. 24 is a flowchart showing a conversion table creation routine for creating a conversion table for converting the index number of the virtual PD to the indicated value.
  • the conversion table creation routine is executed as the final processing of the initial setting.
  • step S41 the image processing unit 112 identifies the center of rotation of the indicator needle 101.
  • the image processing unit 112 reuses the result obtained by the processing of the rotation center identification routine shown in FIG.
  • step S42 the image processing unit 112 executes the polar coordinate conversion process centered on the arrangement position of the scale area MR3 and the virtual PD shown in FIG. Specifically, the image processing unit 112 has the arc band-shaped scale region MR3 extracted from the meter image with the rotation angle with respect to the x-axis shown in FIG. 22 as the horizontal axis and the radius method as the vertical axis. Expand to the polar coordinate plane to generate the polar coordinate-converted scale region MR4. Then, the image processing unit 112 evenly arranges 21 virtual PDs with respect to the scale area MR4.
  • the image processing unit 112 executes the same processing as in step S9 shown in FIG. However, in the image processing unit 112, the scale area MR3 shown in FIG. 19 or 21 and the half straight line from the center of the arrangement arc used when creating the virtual PD configuration table to the arrangement position center of each virtual PD are formed.
  • the rotation angle of the eggplant can be used.
  • FIG. 25 is a diagram showing a rectangular scale region MR4 developed on a polar coordinate plane based on FIG. 22 and a series of virtual PDs arranged corresponding to the scale region MR4.
  • the scale region MR4 is represented by a rectangular region having a width from (3 ⁇ / 4 + ⁇ ) to ( ⁇ / 4 + ⁇ ) on the horizontal axis and a height from a to b on the vertical axis in the polar coordinate plane.
  • the center of the placement position of each virtual PD is dynamically determined on the placement arc of the virtual PD obtained based on the extracted scale area MR3 so as to correspond to the main scale of the scale area MR3. From this, the influence of the rotation deviation ( ⁇ ) of the reading unit 10a from the perpendicular line of the indicator needle meter 100a can be ignored here.
  • the rotation deviation ( ⁇ ) affects the calculation of the placement position center of each virtual PD as shown in FIG. 22, but the correspondence between the main scale of the scale area MR3 and the placement position of the virtual PD. Does not affect.
  • step S43 the image processing unit 112 creates a conversion table for converting the position information (substantial index number) of the indicator needle 101 of the indicator needle meter 100a based on the index number of the virtual PD into the indicated value.
  • the image processing unit 112 recognizes the scale number in the vicinity of the scale region MR4 as a numerical value by using the OCR technique as in step S10 of FIG. 4, and is recognized by the position information of the scale number on the polar coordinate plane. Executes the process of associating the numbers. As a result, the conversion table shown in Table 2 below is created.
  • the virtual PD configuration table in Table 1 and the conversion table in Table 2 are generated by independent processing.
  • both the virtual PD configuration table and the conversion table are created by using the scale area MR3 whose heading column is the index number (or the rotation angle corresponding to the index number 1: 1) and is extracted from the meter image. It is a thing. Therefore, the virtual PD configuration table and the conversion table may be created as one table.
  • the virtual PD configuration table is used by the reading unit 10a in FIG. 17, while the conversion table is used by the control unit 30 in FIG. Therefore, the table in which the virtual PD configuration table and the conversion table are integrated is suitable when the reading unit 10a and the control unit 30 are integrated.
  • control unit 30 calculates the indicated value of the indicator needle meter 100a by executing the following reading processing routine using the signal output from the reading unit 10a.
  • FIG. 26 is a flowchart showing a reading processing routine.
  • the data transmitted / received between the reading unit 10a and the control unit 30 in the present embodiment is the same as the data transmitted / received between the reading unit 10 and the control unit 30 in the first embodiment.
  • the photodiode has replaced the virtual PD (note that the index numbers are 0 to 20 for the former and 1 to 21 for the latter), and It is the same as the reading processing routine shown in FIG. 8 except that step S14 shown in FIG. 8 has replaced step S14a. Therefore, in the following step S14a, the points different from the step S14 shown in FIG. 8 will be mainly described.
  • step S14a the CPU 34 controls the image processing unit 112 of the reading unit 10a to read the output signals of each virtual PD (a plurality of pixel sensors corresponding to the virtual PD).
  • the output signal of each virtual PD read out is supplied to the PD switching unit 32 of the control unit 30.
  • the CPU 34 controls the PD switching unit 32 so as to sequentially switch and read the output signals of the virtual PDs with index numbers 1 to 21 from the output signals of each virtual PD.
  • the signal output from the PD switching unit 32 is analog-to-digital converted by the A / D converter 33 and supplied to the CPU 34.
  • the CPU 34 receives the output signals of the virtual PDs with index numbers 1 to 21.
  • the reading unit 10a when the control unit 30 executes the reading processing routine, the LED 24 lights up according to the control signal (step S13) from the control unit 30. As a result, the indicator needle meter 100a is irradiated with light. Then, when the control unit 30 executes step S15a, the reading unit 10a executes the next signal reading routine to supply a signal to the control unit 30.
  • FIG. 27 is a flowchart showing a signal reading routine.
  • the image processing unit 112 of the reading unit 10a acquires a distorted meter image generated by the image sensor 27 based on the incident light from the wide-angle lens 26 after the LED 24 is turned on.
  • the image processing unit 112 converts the distorted meter image acquired from the image sensor 27 into a flat image.
  • step S53 the image processing unit 112 reads the virtual PD configuration table (Table 1) from the storage unit 113, and obtains the placement position centers of all the virtual PDs based on the read virtual PD configuration table. Then, the image processing unit 112 sums the output signals of a total of 49 pixel sensors of the pixel sensor (center pixel sensor) existing at the center of each arrangement position and the pixel sensors existing around the pixel sensor, and each virtual PD Calculate the output signal of.
  • Table 1 the virtual PD configuration table
  • the output signal strength of each pixel sensor constituting the virtual PD is v (p, q).
  • v (0,0) is the output signal strength of the central pixel sensor of the virtual PD.
  • p and q are relative addresses in the horizontal direction and the vertical direction of the other pixel sensors when the central pixel sensor is used as a reference.
  • V represents the output signal strength of the virtual PD composed of a total of 49 pixel sensors of 7 pixels in the vertical direction and 7 pixels in the horizontal direction shown in FIG. 23 by the following equation 1.
  • the image processing unit 112 calculates Equation 1 for all virtual PDs, and stores the calculation result in the storage unit 113 as an output signal of each virtual PD.
  • the saved virtual PD output signal is read out in step S55, which will be described later, and then supplied to the control unit 30.
  • step S55 the image processing unit 112 reads the output signal of the virtual PD (i) from the storage unit 113 and supplies it to the control unit 30. At first, the output signal of the virtual PD (1) is read and supplied to the control unit 30.
  • step S56 the image processing unit 112 confirms the presence / absence of virtual PD switching control. Specifically, the image processing unit 112 confirms whether or not the PD switching unit 32 of the control unit 30 has received a control signal to switch to the virtual PD having the next index number. When the control signal is received, the process proceeds to step S57.
  • step S56 when the above-mentioned control signal is not received (timed out), the output signals of all virtual PDs have been read, and this routine is terminated.
  • the output signal of the virtual PD supplied from the reading unit 10a to the control unit 30 by this routine is used in the calculation of the indicated value in step S15 described above.
  • the analog meter reading device 1a uses the reading unit 10a for photographing the indicating needle meter 100a, so that the reading unit 10a is translated and rotated with respect to the indicating needle meter 100a. Even if there is, the indicated value of the indicator needle meter 100a can be calculated with high accuracy without being affected by the translation deviation and the rotation deviation.
  • the analog meter reading device 1a can obtain the indicated value of the indicator needle meter 100a by identifying the rotation center based on the meter image even if the indicator needle meter 100a has the rotation center of the indicator needle 101 hidden. Can be calculated.
  • the analog meter reading device 1a can set a series of virtual PDs for detecting the position information of the indicator needle 101 to an arbitrary size and interval, the analog meter reader 1a indicates with the detection accuracy and reliability desired by the user. The value can be calculated.
  • the present invention is not limited to the above-described embodiment, but can also be applied to those whose design has been changed within the scope of the matters described in the claims.
  • the routines of FIGS. 18, 20, and 24 were executed by the reading unit 10a, but after being executed by the control unit 30 and the server device 200, the results are read by the reading unit 10a. May be supplied to.
  • the virtual PD is not limited to the case where it is set inside the scale area MR3 as shown in FIG. 21, and may be set outside the scale area MR3.

Abstract

This analog meter reading device is provided with a reading unit which includes: light emitting elements; an imaging device that detects, by means of a plurality of pixel sensors, the reflected light resulting from illumination of the pointer needle or scale plate of a pointer needle meter with light emitted from the light emitting elements; and a calculation processing unit that calculates the output signal of each of a plurality of virtual sensors using the output signal of one or more pixel sensors constituting each of the plurality of virtual sensors, wherein the plurality of virtual sensors are virtually arranged within the imaging device and outside or inside relative to the direction in which the numerals displayed on the scale plate of the pointer needle meter are aligned, and wherein index numbers are assigned to the plurality of virtual sensors sequentially in the arrangement direction. The analog meter reading device is further provided with an index number detection unit which detects the index number substantially corresponding to the current position of the pointer needle, on the basis of the output signal of at least one virtual sensor, from among the output signals of the plurality of virtual sensors as calculated by the calculation processing unit.

Description

アナログメータ読取装置Analog meter reader
 本発明は、アナログメータ読取装置に関する。 The present invention relates to an analog meter reader.
 従来、アナログメータの指示針が示す値(以下、「指示値」という。)を画像処理によって自動的に読み取り、コンピュータ管理に適したデジタル信号を得ることができる技術が開示されている(特許文献1、特許文献2)。 Conventionally, there has been disclosed a technique capable of automatically reading a value indicated by an indicator needle of an analog meter (hereinafter referred to as "indicator value") by image processing and obtaining a digital signal suitable for computer management (Patent Document). 1. Patent Document 2).
 特許文献1の技術は、アナログメータから距離を隔てて設置されたカメラを用いて、アナログメータの撮影画像として、指示値が既知である基準画像と、指示針が回転した状態である計測画像と、の2つの画像を得て、2つの画像を比較することで指示針が示す指示値を求める。 The technology of Patent Document 1 uses a camera installed at a distance from the analog meter, and as images taken by the analog meter, a reference image having a known indicated value and a measured image in which the indicator needle is rotated. The two images of, and are obtained, and the indicated value indicated by the indicator needle is obtained by comparing the two images.
 特許文献2の技術は、カメラを用いたアナログメータの指示値読取の別の方法として、アナログメータの撮影画像に対してその中心が指示針の回転中心に一致した円を設定し、当該円上に存在する画素が指示針と重なる部分の円弧の有無から、あるいは当該円弧が複数ある場合はそれらの長短比較から、指示針が指し示す角度“θ”を求めることで、指示値を出力する。 In the technique of Patent Document 2, as another method of reading the indicated value of the analog meter using a camera, a circle whose center coincides with the rotation center of the indicator needle is set for the captured image of the analog meter, and the circle is on the circle. The indicated value is output by obtaining the angle "θ" pointed by the indicator needle from the presence or absence of an arc in the portion where the pixel existing in the indicator overlaps with the indicator needle, or from the length comparison of a plurality of the arcs.
 さらに、アナログメータに後付けでき、当該アナログメータの校正状態を損なわず、指示針が示す指示値を読み取って、非接触で外部に指示値を取り出すことができる技術が開示されている(特許文献3)。 Further, there is disclosed a technique that can be retrofitted to an analog meter, can read the indicated value indicated by the indicator needle without impairing the calibration state of the analog meter, and can take out the indicated value to the outside without contact (Patent Document 3). ).
 特許文献3の技術は、指示針に導電性ターゲットを貼り付けると共に、アナログメータのカバーガラス面に近接センサを含む計測用ICタグユニットを貼り付けて、近接センサに対する指示針の相対位置を検出することで、指示値を出力する。 The technique of Patent Document 3 detects the relative position of the indicator needle with respect to the proximity sensor by attaching a conductive target to the indicator needle and attaching a measurement IC tag unit including a proximity sensor to the cover glass surface of the analog meter. By doing so, the indicated value is output.
特開2004-133560号公報Japanese Unexamined Patent Publication No. 2004-133560 特開2016-162412号公報Japanese Unexamined Patent Publication No. 2016-162412 特開2017-203775号公報JP-A-2017-203775
 本発明は、上述した開示技術の問題を解決するものである。 The present invention solves the above-mentioned problem of disclosure technology.
 本発明に係るアナログメータ読取装置は、複数の目盛に割り当てられた数値が表示された目盛板と、前記目盛板の指示値を示し、前記目盛板の表示面側から所定距離にある平面上で所定の回転中心を基準に回転する指示針と、前記指示針を含むように前記目盛板の表示面側を覆う透明部材と、を有する指示針メータの前記指示値を読み取るアナログメータ読取装置であって、発光素子と、前記発光素子から発されて前記指示針メータの前記指示針あるいは前記目盛板で反射された光を複数の画素センサにより検出する撮像素子と、前記撮像素子内に前記指示針メータの前記目盛板に表示された前記数値の配列方向の外側又は内側に仮想的に複数の仮想センサを配置し、前記配置方向の順に前記複数の仮想センサにインデックス番号を割り当てて、前記複数の仮想センサのそれぞれを構成する1つ以上の画素センサの出力信号を用いて、前記複数の仮想センサの各々の出力信号を算出する演算処理部と、を含む読取部と、前記演算処理部で算出された前記複数の仮想センサの各々の出力信号のうち、少なくとも1つの仮想センサの出力信号に基づいて、前記指示針の存在位置に対応する実質的なインデックス番号を検出するインデックス番号検出部と、を備えている。 The analog meter reading device according to the present invention shows a scale plate on which numerical values assigned to a plurality of scales are displayed and an indicated value of the scale plate, and is on a plane at a predetermined distance from the display surface side of the scale plate. An analog meter reading device that reads the indicated value of an indicator needle meter having an indicator needle that rotates with respect to a predetermined center of rotation and a transparent member that covers the display surface side of the scale plate so as to include the indicator needle. A light emitting element, an image pickup element that detects light emitted from the light emitting element and reflected by the indicator needle of the indicator needle meter or the scale plate by a plurality of pixel sensors, and the indicator needle in the image pickup element. A plurality of virtual sensors are virtually arranged outside or inside the arrangement direction of the numerical values displayed on the scale plate of the meter, and index numbers are assigned to the plurality of virtual sensors in the order of the arrangement direction. A reading unit including an arithmetic processing unit that calculates an output signal of each of the plurality of virtual sensors using the output signals of one or more pixel sensors constituting each of the virtual sensors, and a reading unit including the arithmetic processing unit. An index number detection unit that detects a substantial index number corresponding to the position of the indicator needle based on the output signal of at least one virtual sensor among the output signals of the plurality of virtual sensors. It has.
 本発明は、アナログメータに簡単に取り付けるだけで、高精度にアナログメータの指示値を読み取ることができる。 The present invention can read the indicated value of the analog meter with high accuracy by simply attaching it to the analog meter.
図1(A)は指示針メータに取り付けられた状態の第1実施形態のアナログメータ読取装置の正面図であり、図1(B)はその外観側面図である。FIG. 1A is a front view of the analog meter reading device of the first embodiment attached to the indicator needle meter, and FIG. 1B is an external side view thereof. 図2は読取部の読取面を示す図である。FIG. 2 is a diagram showing a reading surface of the reading unit. 図3はアナログメータ読取装置の機能的な構成を示すブロック図である。FIG. 3 is a block diagram showing a functional configuration of the analog meter reader. 図4は指示針の回転中心同定ルーチン並びに変換表作成ルーチンを示すフローチャートである。FIG. 4 is a flowchart showing a rotation center identification routine of the indicator needle and a conversion table creation routine. 図5は指示針メータの目盛領域の一例を示す図である。FIG. 5 is a diagram showing an example of the scale area of the indicator needle meter. 図6は極座標平面に展開された目盛領域を示す図である。FIG. 6 is a diagram showing a scale region developed on a polar coordinate plane. 図7は変換表を示す図である。FIG. 7 is a diagram showing a conversion table. 図8は読取処理ルーチンを示すフローチャートである。FIG. 8 is a flowchart showing a reading processing routine. 図9は、指示針メータの指示針がフォトダイオードの1つの検出領域の中心部に存在する場合の模式図、及びそのときの各フォトダイオードの出力信号を示す図である。FIG. 9 is a schematic view when the indicator needle of the indicator needle meter is located in the center of one detection region of the photodiode, and is a diagram showing an output signal of each photodiode at that time. 図10は、アナログメータの指示針が2つのフォトダイオードの検出領域の重なり部分に存在する場合の模式図、及びそのときの各フォトダイオードの出力信号を示す図である。FIG. 10 is a schematic view when the indicator needle of the analog meter exists in the overlapping portion of the detection regions of the two photodiodes, and is a diagram showing the output signal of each photodiode at that time. 図11は第2実施形態に係るフォトダイオードの断面形状を示す図である。FIG. 11 is a diagram showing a cross-sectional shape of the photodiode according to the second embodiment. 図12(A)はフォトダイオードにレンズがない場合のフォトダイオードの光感応領域を示す模式図であり、図12(B)はフォトダイオードにレンズが形成された場合の光感応領域を示す模式図である。FIG. 12 (A) is a schematic view showing a light-sensitive region of a photodiode when the photodiode does not have a lens, and FIG. 12 (B) is a schematic diagram showing a light-sensitive region when a lens is formed on the photodiode. Is. 図13は直径が異なる光感応領域を示す図である。FIG. 13 is a diagram showing light sensitive regions having different diameters. 図14(A)は指示針メータに取り付けられた状態の第3実施形態のアナログメータ読取装置の正面図であり、図14(B)はその外観側面図である。FIG. 14A is a front view of the analog meter reading device of the third embodiment attached to the indicator needle meter, and FIG. 14B is an external side view thereof. 図15(A)は読取部の読取面を示す図であり、図15(B)はその外観側面図である。FIG. 15A is a view showing a reading surface of the reading unit, and FIG. 15B is an external side view thereof. 図16はカメラモジュールの要部側面図である。FIG. 16 is a side view of a main part of the camera module. 図17はアナログメータ読取装置の機能的な構成を示すブロック図である。FIG. 17 is a block diagram showing a functional configuration of the analog meter reader. 図18は回転中心同定ルーチンを示すフローチャートである。FIG. 18 is a flowchart showing a rotation center identification routine. 図19は指示針メータの目盛領域の一例を示す図である。FIG. 19 is a diagram showing an example of the scale area of the indicator needle meter. 図20は仮想PD設定ルーチンを示すフローチャートである。FIG. 20 is a flowchart showing a virtual PD setting routine. 図21はメータ画像の有効領域に設定される仮想PDを示す図である。FIG. 21 is a diagram showing a virtual PD set in the effective area of the meter image. 図22は仮想PDの配置位置を示す図である。FIG. 22 is a diagram showing an arrangement position of the virtual PD. 図23は仮想PDの一例を示す図である。FIG. 23 is a diagram showing an example of a virtual PD. 図24は変換表作成ルーチンを示すフローチャートである。FIG. 24 is a flowchart showing a conversion table creation routine. 図25は極座標平面に展開された目盛領域及び一連の仮想PDを示す図である。FIG. 25 is a diagram showing a scale region developed on a polar coordinate plane and a series of virtual PDs. 図26は読取処理ルーチンを示すフローチャートである。FIG. 26 is a flowchart showing a reading processing routine. 図27は信号読出ルーチンを示すフローチャートである。FIG. 27 is a flowchart showing a signal reading routine.
 以下、本発明の実施形態について図面を参照しながら詳細に説明する。
[第1実施形態]
 図1(A)は指示針メータ100に取り付けられた状態の第1実施形態のアナログメータ読取装置1の正面図であり、同図(B)はその外観側面図である。アナログメータ読取装置1は、指示針メータ100に光を照射して指示針101の位置情報を検出する読取部10と、読取部10が検出した位置情報に基づいて指示針101が示す指示値を算出する制御部30と、を備えている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[First Embodiment]
FIG. 1A is a front view of the analog meter reading device 1 of the first embodiment attached to the indicator needle meter 100, and FIG. 1B is an external side view thereof. The analog meter reading device 1 irradiates the indicator needle meter 100 with light to detect the position information of the indicator needle 101, and the reading unit 10 and the indicated value indicated by the indicator needle 101 based on the position information detected by the reading unit 10. It includes a control unit 30 for calculating.
 指示針メータ100は、指示針101と、指示針101が指し示す位置に対応する物理量(数値)を表示する目盛板102と、指示針101を保護するためのカバーガラス103と、を備えている。指示針101は、目盛板102の表示面側から所定距離にある平面上において、所定の回転中心を基準に回転する。カバーガラス103は、指示針101を含むように目盛板102の表示面側を覆っている。 The indicator needle meter 100 includes an indicator needle 101, a scale plate 102 that displays a physical quantity (numerical value) corresponding to a position indicated by the indicator needle 101, and a cover glass 103 for protecting the indicator needle 101. The indicator needle 101 rotates with respect to a predetermined rotation center on a plane at a predetermined distance from the display surface side of the scale plate 102. The cover glass 103 covers the display surface side of the scale plate 102 so as to include the indicator needle 101.
 指示針メータ100の目盛板102は白色であり、指示針101は黒色である。このため、指示針メータ100に照射された光は、目盛板102では反射され、指示針101では吸収される。読取部10は、このような指示針メータ100の光反射特性を利用して、指示針メータ100の指示針101の位置情報を検出する。 The scale plate 102 of the indicator needle meter 100 is white, and the indicator needle 101 is black. Therefore, the light emitted to the indicator needle meter 100 is reflected by the scale plate 102 and absorbed by the indicator needle 101. The reading unit 10 detects the position information of the indicator needle 101 of the indicator needle meter 100 by utilizing the light reflection characteristic of the indicator needle meter 100.
 読取部10は、全体的にほぼ均一の厚みを有し、中央に穴部が形成され、径方向に所定の幅を有する円弧帯状(ドーナツ状)部材である。読取部10の2つ側面のうちの一方の側面は、指示針メータ100のカバーガラス103面に直接装着され、指示針メータ100の指示針101の位置情報を光学的に読み取る側面(読取面)である。上記2つの側面のうちの他方の側面は、外部へ露出し、その表面にマーカ10Mが印刷された側面(マーカ面)である。 The reading unit 10 is an arc strip-shaped (doughnut-shaped) member having a substantially uniform thickness as a whole, a hole portion formed in the center, and a predetermined width in the radial direction. One of the two side surfaces of the reading unit 10 is directly mounted on the cover glass 103 surface of the indicator needle meter 100, and the side surface (reading surface) that optically reads the position information of the indicator needle 101 of the indicator needle meter 100. Is. The other side surface of the above two side surfaces is a side surface (marker surface) exposed to the outside and on which the marker 10M is printed.
 読取部10の読取面は、指示針メータ100の指示針101の回転中心上に、当該読取部10の中心が一致するように、指示針メータ100の目盛板102の対面側のカバーガラス103面上に直接装着される。このとき、読取部10のマーカ面は正面側になる。本実施形態では、読取部10のマーカ面には、4か所の矩形のマーカ10Mが印刷されている。4つのマーカ10Mは正方形の各頂点の位置に配置され、その正方形の対角線の交点は読取部10の中心に一致する。 The reading surface of the reading unit 10 is the cover glass 103 surface on the opposite side of the scale plate 102 of the indicator needle meter 100 so that the center of the reading unit 10 coincides with the rotation center of the indicator needle 101 of the indicator needle meter 100. Mounted directly on top. At this time, the marker surface of the reading unit 10 is on the front side. In the present embodiment, four rectangular markers 10M are printed on the marker surface of the reading unit 10. The four markers 10M are arranged at the positions of the vertices of the square, and the intersections of the diagonal lines of the square coincide with the center of the reading unit 10.
 図2は、読取部10の読取面を示す図である。読取部10は、小さな穴部11が形成された円盤状の収納ケース12と、収納ケース12内の外周部に沿って円弧状に配置された複数のフォトダイオード13と、複数のフォトダイオードと穴部との間に円弧状に配置された複数のLED素子14と、を備えている。 FIG. 2 is a diagram showing a reading surface of the reading unit 10. The reading unit 10 includes a disk-shaped storage case 12 in which a small hole portion 11 is formed, a plurality of photodiodes 13 arranged in an arc shape along the outer peripheral portion of the storage case 12, and a plurality of photodiodes and holes. A plurality of LED elements 14 arranged in an arc shape between the portions are provided.
 収納ケース12は、中心に小さな穴部11が形成され、複数のフォトダイオード13及びLED素子14が設置される円形収納底12aと、円形収納底12aの外周部に沿って形成される外周壁12bと、円形収納底12aの内周部に沿って形成される内周壁12cと、を有する。外周壁12b及び内周壁12cの高さは、フォトダイオード13及びLED素子14の配置面からの高さより大きい。このため、読取部10のカバーガラス103への装着の際には、外周壁12b及び内周壁12cの端部がカバーガラス103に接着される。つまり、フォトダイオード13及びLED素子14は、カバーガラス103に接触せずに済み、接触による破損が回避される。 The storage case 12 has a circular storage bottom 12a in which a small hole 11 is formed in the center and a plurality of photodiodes 13 and LED elements 14 are installed, and an outer peripheral wall 12b formed along the outer peripheral portion of the circular storage bottom 12a. And an inner peripheral wall 12c formed along the inner peripheral portion of the circular storage bottom 12a. The height of the outer peripheral wall 12b and the inner peripheral wall 12c is larger than the height from the arrangement surface of the photodiode 13 and the LED element 14. Therefore, when the reading unit 10 is attached to the cover glass 103, the ends of the outer peripheral wall 12b and the inner peripheral wall 12c are adhered to the cover glass 103. That is, the photodiode 13 and the LED element 14 do not have to come into contact with the cover glass 103, and damage due to contact is avoided.
 読取部10には、インデックス番号0からインデックス番号20までの21個のフォトダイオード13が円弧状に配置されている。インデックス番号は、21個のフォトダイオード13の中のから1個のフォトダイオード13を識別するために使用されるだけでなく、対応するフォトダイオード13の位置情報としても使用される。このため、インデックス番号は、詳細は後述するが、指示針メータ100の指示値を算出する際に使用される。 Twenty-one photodiodes 13 from index number 0 to index number 20 are arranged in an arc shape on the reading unit 10. The index number is used not only to identify one photodiode 13 out of the 21 photodiodes 13, but also as position information of the corresponding photodiode 13. Therefore, the index number is used when calculating the indicated value of the indicator needle meter 100, which will be described in detail later.
 また、読取部10内の各フォトダイオード13と読取部10のマーカ面に印刷された各マーカ10Mとの相対的な位置関係は、予め定められている。このため、指示針メータ100に読取部10が装着された場合に、指示針メータ100に対する各マーカ10Mの位置が決まれば、指示針メータ100に対する各フォトダイオード13の位置も一意に定まる。 Further, the relative positional relationship between each photodiode 13 in the reading unit 10 and each marker 10M printed on the marker surface of the reading unit 10 is predetermined. Therefore, when the reading unit 10 is attached to the indicator needle meter 100, if the position of each marker 10M with respect to the indicator needle meter 100 is determined, the position of each photodiode 13 with respect to the indicator needle meter 100 is also uniquely determined.
 複数のLED素子14は、複数のフォトダイオード13に対して同心円の内側に円弧状に配置されている。本実施形態では、フォトダイオード13の個数は、LED素子14の個数よりも多い。しかし、フォトダイオード13及びLED素子14のそれぞれの個数は、特に限定されるものではない。 The plurality of LED elements 14 are arranged in an arc shape inside a concentric circle with respect to the plurality of photodiodes 13. In this embodiment, the number of photodiodes 13 is larger than the number of LED elements 14. However, the number of each of the photodiode 13 and the LED element 14 is not particularly limited.
 また本実施形態では、フォトダイオード13は、LED素子14の外側に配置されるとしたが、フォトダイオード13を、LED素子14の内側に配置しても良い。 Further, in the present embodiment, the photodiode 13 is arranged outside the LED element 14, but the photodiode 13 may be arranged inside the LED element 14.
 図3は、アナログメータ読取装置1の機能的な構成を示すブロック図である。読取部10と制御部30は、所定のプロトコルに従って、互いにデータを送受信する。読取部10は、指示針メータ100の指示針101の位置情報を検出し、検出した位置情報を制御部30へ供給する。制御部30は、読取部10から供給された位置情報に基づいて指示針メータ100の指示値を算出し、当該指示値を無線通信によりサーバ装置200へ送信する。これにより、サーバ装置200は、複数の指示針メータ100の指示値をリアルタイムで集計・管理する。 FIG. 3 is a block diagram showing a functional configuration of the analog meter reading device 1. The reading unit 10 and the control unit 30 transmit and receive data to and from each other according to a predetermined protocol. The reading unit 10 detects the position information of the indicator needle 101 of the indicator needle meter 100, and supplies the detected position information to the control unit 30. The control unit 30 calculates the indicated value of the indicator needle meter 100 based on the position information supplied from the reading unit 10, and transmits the indicated value to the server device 200 by wireless communication. As a result, the server device 200 aggregates and manages the indicated values of the plurality of indicator needle meters 100 in real time.
 読取部10は、指示針メータ100からの反射光を受光する複数のフォトダイオード13と、指示針メータ100に光を照射する複数のLED素子14と、各フォトダイオード13の出力信号の切替を制御するフォトダイオード制御部15と、各LED素子14を駆動させるLED駆動部16と、を備えている。 The reading unit 10 controls switching between a plurality of photodiodes 13 that receive the reflected light from the indicator needle meter 100, a plurality of LED elements 14 that irradiate the indicator needle meter 100 with light, and an output signal of each photodiode 13. It is provided with a photodiode control unit 15 and an LED drive unit 16 for driving each LED element 14.
 制御部30は、制御部30内の各回路及び読取部10へ供給するための電源を蓄積する蓄電池31と、フォトダイオード(PD)切替部32と、PD切替部32からの出力信号をアナログ/デジタル(A/D)変換するA/Dコンバータ33と、CPU34と、LED素子14の点灯/消灯を制御するLED制御部35と、データのワークエリアであるRAM36と、プログラムが記憶されたROM37と、サーバ装置200等の外部機器と無線通信する無線通信部38と、を備えている。 The control unit 30 analog-to-digital / outputs the output signals from the storage battery 31, the photodiode (PD) switching unit 32, and the PD switching unit 32, which store power for supplying power to each circuit in the control unit 30 and the reading unit 10. An A / D converter 33 that performs digital (A / D) conversion, a CPU 34, an LED control unit 35 that controls lighting / extinguishing of the LED element 14, a RAM 36 that is a data work area, and a ROM 37 that stores a program. A wireless communication unit 38 that wirelessly communicates with an external device such as a server device 200.
 以上のように構成されたアナログメータ読取装置1は、以下の手順に従って、指示針メータ100の指示値を算出する。 The analog meter reading device 1 configured as described above calculates the indicated value of the indicator needle meter 100 according to the following procedure.
 読取部10は、指示針メータ100の正面中央部に装着された状態で、指示針メータ100の指示針101の位置情報を検出する。読取部10は、理想的には、指示針メータ100の指示針101の回転中心に対して、径方向及び回転方向にずれていない位置にあるのが好ましい。しかし、現実的には、読取部10は、上述した径方向及び回転方向にある程度ずれた位置に装着される。そこで、次の(1)及び(2)の処理が必要である。 The reading unit 10 detects the position information of the indicator needle 101 of the indicator needle meter 100 in a state of being mounted on the front center portion of the indicator needle meter 100. Ideally, the reading unit 10 is preferably located at a position not deviated in the radial direction and the rotational direction with respect to the rotation center of the indicator needle 101 of the indicator needle meter 100. However, in reality, the reading unit 10 is mounted at a position deviated to some extent in the radial direction and the rotational direction described above. Therefore, the following processes (1) and (2) are required.
(1)指示針メータ100の指示値を正確に算出するためには、予め、径方向及び回転方向のずれが許容範囲であるか否かを判定する必要がある。
(2)読取部10で検出される指示針101の位置情報は、フォトダイオード13のインデックス番号に基づく指示針メータ100の指示針101の位置情報に過ぎず、実際の指示値を算出するには、当該位置情報から指示値へ変換するための変換表を作成する必要がある。
(1) In order to accurately calculate the indicated value of the indicator needle meter 100, it is necessary to determine in advance whether or not the deviation in the radial direction and the rotational direction is within the allowable range.
(2) The position information of the indicator needle 101 detected by the reading unit 10 is merely the position information of the indicator needle 101 of the indicator needle meter 100 based on the index number of the photodiode 13, and the actual indicated value can be calculated. , It is necessary to create a conversion table for converting the position information to the indicated value.
 このため、具体的には、次の処理が行われる。
 最初に、ユーザは、アナログメータ読取装置1の読取部10を指示針メータ100の正面中央部に装着する。
Therefore, specifically, the following processing is performed.
First, the user attaches the reading unit 10 of the analog meter reading device 1 to the front center portion of the indicator needle meter 100.
 次に、ユーザは、例えば携帯端末を使って、読取部10が装着された指示針メータ100を撮影する。撮影により生成された指示針メータ100の画像(以下、「メータ画像」という。)は、各指示針メータ100を管理するサーバ装置200へ送信される。 Next, the user uses, for example, a mobile terminal to take a picture of the indicator needle meter 100 to which the reading unit 10 is mounted. The image of the indicator needle meter 100 generated by photographing (hereinafter, referred to as “meter image”) is transmitted to the server device 200 that manages each indicator needle meter 100.
 サーバ装置200のCPU201は、携帯端末から送信されたメータ画像に基づいて、読取部10の上述した径方向及び回転方向のずれが許容範囲であるか否かを判定するための指示針101の回転中心を同定する。さらにサーバ装置200のCPU201は、フォトダイオード13のインデックス番号に基づいて、指示針メータ100の指示針101の位置情報を指示値へ変換するための変換表を作成する。ここで、変換表とは、指示針メータ100の指示針101の位置情報を指示針メータ100の指示値に変換するためのテーブルをいう。 The CPU 201 of the server device 200 rotates the indicator needle 101 for determining whether or not the above-mentioned radial and rotational deviations of the reading unit 10 are within an allowable range based on the meter image transmitted from the mobile terminal. Identify the center. Further, the CPU 201 of the server device 200 creates a conversion table for converting the position information of the indicator needle 101 of the indicator needle meter 100 into the indicated value based on the index number of the photodiode 13. Here, the conversion table refers to a table for converting the position information of the indicator needle 101 of the indicator needle meter 100 into the indicated value of the indicator needle meter 100.
 図4は、指示針101の回転中心同定ルーチン並びに変換表作成ルーチンを示すフローチャートである。 FIG. 4 is a flowchart showing a rotation center identification routine and a conversion table creation routine of the indicator needle 101.
 ステップS1では、CPU201は、指示針メータ100を撮影した携帯端末からメータ画像を取得したか否かを判定して、メータ画像を取得するまで待機する。CPU201は、メータ画像を取得すると、次のステップS2へ進む。 In step S1, the CPU 201 determines whether or not a meter image has been acquired from the mobile terminal that captured the indicator needle meter 100, and waits until the meter image is acquired. When the CPU 201 acquires the meter image, the CPU 201 proceeds to the next step S2.
 ステップS2では、CPU201は、撮影方向に起因する歪みを補正して、携帯端末が指示針メータ100を真正面から撮影した場合に生成されるメータ画像と等価なメータ画像を得る。なお、撮影方向に起因する歪みを補正する処理は、例えば、特開2006-120133号公報で開示された技術が該当する。 In step S2, the CPU 201 corrects the distortion caused by the shooting direction and obtains a meter image equivalent to the meter image generated when the mobile terminal shoots the indicator needle meter 100 from the front. The process of correcting the distortion caused by the photographing direction corresponds to, for example, the technique disclosed in Japanese Patent Application Laid-Open No. 2006-12133.
 ステップS3では、CPU201は、メータ画像に二値化処理を施す。具体的には、CPU201は、メータ画像から輝度成分を抽出し、メータ画像の各画素について、各輝度成分の値が所定の閾値より大きい場合は‘1’を、そうでない場合は‘0’を設定する。 In step S3, the CPU 201 performs a binarization process on the meter image. Specifically, the CPU 201 extracts a luminance component from the meter image, and for each pixel of the meter image, if the value of each luminance component is larger than a predetermined threshold value, it sets "1", otherwise it sets "0". Set.
 ステップS4では、CPU201は、二値化されたメータ画像から目盛領域MR1(後述する図5参照)を抽出する。ここで、目盛領域とは、目盛板102上において、指示針101が示す位置と指示値との対応関係を表した目盛が描かれた領域をいう。 In step S4, the CPU 201 extracts the scale area MR1 (see FIG. 5 described later) from the binarized meter image. Here, the scale area means an area on the scale plate 102 on which a scale showing the correspondence between the position indicated by the indicator needle 101 and the indicated value is drawn.
 図5は、指示針メータ100の目盛領域MR1の一例を示す図である。本実施形態では、目盛領域MR1は、外半径a、内半径b、指示針メータ100の垂線より左方向の中心角φ-、同右方向の中心角φ+なる4つのパラメータ値を用いて記述される円弧帯のテンプレートにてモデル化される。これより目盛領域MR1の中心位置は、指示針101の回転中心と同一になる。 FIG. 5 is a diagram showing an example of the scale area MR1 of the indicator needle meter 100. In the present embodiment, the scale region MR1 is described using four parameter values: an outer radius a, an inner radius b, a central angle φ− to the left of the perpendicular line of the indicator needle meter 100, and a central angle φ + to the right. Modeled with an arc band template. From this, the center position of the scale region MR1 becomes the same as the rotation center of the indicator needle 101.
 なお、目盛領域MR1のテンプレートは、4つのパラメータ(a値、b値、φ-値及びφ+値)によって特定される円弧帯の形状に限定されるものではない。すなわち、目盛領域MR1のテンプレートは、指示針101の回転中心を同定できるものであれば、円弧帯以外の形状であってもよい。 The template of the scale area MR1 is not limited to the shape of the arc band specified by the four parameters (a value, b value, φ- value and φ + value). That is, the template of the scale region MR1 may have a shape other than the arc band as long as it can identify the rotation center of the indicator needle 101.
 ステップS4では、さらに、CPU201は、テンプレートの中心位置及び4つのパラメータ値を変化させて、二値化されたメータ画像内での最適なテンプレートの位置を探索する。そして、CPU201は、テンプレート内の画素値分布が均一になった場合に、そのテンプレートの中心位置及び4つのパラメータ値によって、目盛領域MR1を抽出する。 In step S4, the CPU 201 further changes the center position of the template and the four parameter values to search for the optimum template position in the binarized meter image. Then, when the pixel value distribution in the template becomes uniform, the CPU 201 extracts the scale region MR1 according to the center position of the template and the four parameter values.
 具体的には、テンプレート探索の際、CPU201は、テンプレートの内部領域を幾つかの部分領域に分割し、それぞれの部分領域における平均画素値が当該テンプレートの内部全体に渡ってほぼ一定になった場合に、そのときの中心位置、a値、b値、φ-値及びφ+値として、目盛領域MR1を抽出する。 Specifically, when searching for a template, the CPU 201 divides the internal area of the template into several subregions, and the average pixel value in each subregion becomes substantially constant over the entire interior of the template. In addition, the scale region MR1 is extracted as the center position, a value, b value, φ− value, and φ + value at that time.
 ステップS5では、CPU201は、ステップS4で抽出された目盛領域MR1(a値、b値、φ-値及びφ+値)を用いて、指示針101の回転中心を同定する。本実施形態では、指示針101の回転中心は、目盛領域MR1をモデル化した円弧帯形状のテンプレートの中心位置に一致する。そこで、CPU201は、ステップS4で抽出された目盛領域MR1のテンプレートの中心位置を特定することで、指示針101の回転中心を同定する。 In step S5, the CPU 201 identifies the rotation center of the indicator needle 101 using the scale region MR1 (a value, b value, φ- value and φ + value) extracted in step S4. In the present embodiment, the center of rotation of the indicator needle 101 coincides with the center position of the arc band-shaped template that models the scale region MR1. Therefore, the CPU 201 identifies the rotation center of the indicator needle 101 by specifying the center position of the template of the scale region MR1 extracted in step S4.
 ステップS6では、CPU201は、メータ画像に基づいて、指示針101の回転中心に対する読取部10の装着位置のずれを検出する。ここで、読取部10の装着位置のずれは、指示針101の回転中心からの平行移動ずれΔrと、指示針メータ100の垂線からの読取部10の回転ずれΔθとで定義される。 In step S6, the CPU 201 detects the deviation of the mounting position of the reading unit 10 with respect to the rotation center of the indicator needle 101 based on the meter image. Here, the deviation of the mounting position of the reading unit 10 is defined by the translation deviation Δr from the rotation center of the indicator needle 101 and the rotation deviation Δθ of the reading unit 10 from the vertical line of the indicator needle meter 100.
 平行移動ずれΔr及び回転ずれΔθは、読取部10のマーカ面の所定位置に予め印刷された4か所の矩形のマーカ10Mに基づいて算出される。具体的には、CPU201は、メータ画像にある4つのマーカ10Mの位置情報から読取部10の中心の位置情報を算出し、当該位置情報から指示針101の回転中心までの距離として平行移動ずれΔrを算出する。さらに、CPU201は、上述した垂線を基準として、縦方向あるいは横方向に配置された二つのマーカ10Mを結んだ直線の傾きとして回転ずれΔθを算出する。 The translation deviation Δr and the rotation deviation Δθ are calculated based on four rectangular markers 10M printed in advance at predetermined positions on the marker surface of the reading unit 10. Specifically, the CPU 201 calculates the position information of the center of the reading unit 10 from the position information of the four markers 10M in the meter image, and translates the translation deviation Δr as the distance from the position information to the rotation center of the indicator needle 101. Is calculated. Further, the CPU 201 calculates the rotation deviation Δθ as the slope of a straight line connecting the two markers 10M arranged in the vertical direction or the horizontal direction with reference to the above-mentioned perpendicular line.
 なお、本実施形態では、読取部10の装着位置のずれを検出するためのマーカとして、読取部10のマーカ面の所定位置に予め印刷された矩形マーカ10Mが用いられたが、これに限定されるものではない。例えば、複数の指示針メータ100にそれぞれ読取部10が装着され、各々の読取部10に固有識別子が割り当てられた場合、当該マーカとして、QRコード(登録商標)を用いてもよい。当該QRコード(登録商標)は、固有識別子を符号化して2次元バーコードで表したものであって、読取部10のマーカ面の所定位置に印刷される。一方、CPU201は、メータ画像の中の当該QRコード(登録商標)の3隅のマーカを用いて、読取部10の装着位置のずれを検出すればよい。この場合、CPU201は、読取部10の装着位置のずれを検出するだけでなく、読取部10の固有識別子も取得できる。 In the present embodiment, as a marker for detecting the deviation of the mounting position of the reading unit 10, a rectangular marker 10M pre-printed at a predetermined position on the marker surface of the reading unit 10 is used, but the present invention is limited to this. It's not something. For example, when a reading unit 10 is attached to each of the plurality of indicating needle meters 100 and a unique identifier is assigned to each reading unit 10, a QR code (registered trademark) may be used as the marker. The QR code (registered trademark) is a two-dimensional bar code in which a unique identifier is encoded and is printed at a predetermined position on the marker surface of the reading unit 10. On the other hand, the CPU 201 may detect the deviation of the mounting position of the reading unit 10 by using the markers at the three corners of the QR code (registered trademark) in the meter image. In this case, the CPU 201 not only detects the deviation of the mounting position of the reading unit 10, but also can acquire the unique identifier of the reading unit 10.
 ステップS7では、CPU201は、読取部10の装着位置のずれが許容範囲内であるか否かを判定する。具体的には、CPU201は、平行移動ずれΔr及び回転ずれΔθが共に所定の閾値以下であるか否かを判定する。そして、平行移動ずれΔr及び回転ずれΔθが共に所定の閾値以下である場合はステップS9へ進み、平行移動ずれΔr及び回転ずれΔθの少なくとも1つが所定の閾値以下でない場合はステップS8へ進む。 In step S7, the CPU 201 determines whether or not the deviation of the mounting position of the reading unit 10 is within the allowable range. Specifically, the CPU 201 determines whether or not both the translation deviation Δr and the rotation deviation Δθ are equal to or less than a predetermined threshold value. Then, if both the translation deviation Δr and the rotation deviation Δθ are equal to or less than a predetermined threshold value, the process proceeds to step S9, and if at least one of the translation deviation Δr and the rotation deviation Δθ is not equal to or less than the predetermined threshold value, the process proceeds to step S8.
 なお、平行移動ずれΔr及び回転ずれΔθのそれぞれの閾値は、読取部10の読取面に実装されたフォトダイオード13及びLED素子14の個数、配置場所、読取部10に求められる指示針メータ100の読取り精度などによって決定され、特に限定される値ではない。 The respective threshold values of the translation deviation Δr and the rotation deviation Δθ are determined by the number of photodiodes 13 and LED elements 14 mounted on the reading surface of the reading unit 10, the arrangement location, and the indicator needle meter 100 required for the reading unit 10. It is determined by the reading accuracy and is not a particularly limited value.
 ステップS8では、CPU201は、ユーザに読取部10の再装着を指示するための処理を行う。再装着を指示するための処理とは、例えば、予め登録されたメールアドレスに再装着を指示する電子メールを送信する処理、あるいは所定のモニタ画面に再装着の指示を表示する処理などが該当する。そして、本ルーチンが終了する。 In step S8, the CPU 201 performs a process for instructing the user to reattach the reading unit 10. The process for instructing reattachment corresponds to, for example, a process of sending an e-mail instructing reattachment to a pre-registered e-mail address, or a process of displaying an instruction for reattachment on a predetermined monitor screen. .. Then, this routine ends.
 一方、ステップS9では、CPU201は、図5に示す目盛領域MR1及びフォトダイオード13の位置情報の極座標変換処理を実行する。
 具体的には、CPU201は、メータ画像から抽出された円弧帯形状の目盛領域MR1を、指示針メータ100の垂線を基準とした中心角を横軸、半径方法を縦軸とした極座標平面に展開する。
On the other hand, in step S9, the CPU 201 executes the polar coordinate conversion process of the position information of the scale region MR1 and the photodiode 13 shown in FIG.
Specifically, the CPU 201 expands the arc band-shaped scale region MR1 extracted from the meter image into a polar coordinate plane whose horizontal axis is the central angle with respect to the perpendicular line of the indicator needle meter 100 and whose vertical axis is the radius method. To do.
 図6は、極座標平面に展開された矩形の目盛領域MR2を示す図である。目盛領域MR2は、横軸のφ-からφ+までを幅、縦軸のaからbまでを高さとした矩形の領域で表される。 FIG. 6 is a diagram showing a rectangular scale region MR2 developed on a polar coordinate plane. The scale region MR2 is represented by a rectangular region having a width from φ− to φ + on the horizontal axis and a height from a to b on the vertical axis.
 メータ画像には、読取部10に配置された複数のフォトダイオード13は現れない。しかし、各フォトダイオード13の位置情報は、読取部10に印刷される4つのマーカ10Mの位置情報に関連付けられている。つまり、4つのマーカ10Mの位置情報が検出されれば、各フォトダイオード13の位置情報も検出される。 The plurality of photodiodes 13 arranged in the reading unit 10 do not appear in the meter image. However, the position information of each photodiode 13 is associated with the position information of the four markers 10M printed on the reading unit 10. That is, if the position information of the four markers 10M is detected, the position information of each photodiode 13 is also detected.
 そこで、CPU201は、メータ画像を用いて4つのマーカ10Mのそれぞれの位置情報を検出し、これらの位置情報に基づいて各フォトダイオード13の位置情報を検出し、これらのフォトダイオード13の位置情報を極座標平面に展開する。 Therefore, the CPU 201 detects the position information of each of the four markers 10M using the meter image, detects the position information of each photodiode 13 based on the position information, and obtains the position information of these photodiodes 13. Expand to a polar plane.
 例えば、読取部10に21個のフォトダイオード13が円弧状に等間隔で配置されている場合、図6に示すように、先述した極座標平面には、矩形の目盛領域MR2が配置され、当該目盛領域MR2の長手方向に沿って、21個のフォトダイオード13(0番目から20番目)が等間隔に配置される。このとき、フォトダイオード13の10番目の位置情報(中間位置)は、回転ずれΔθ=0((φ+)=(φ-)=0)の位置情報に対応する。これは、指示針メータ100の指示針101の回転中心に対して、読取部10がずれなく装着された状態を示している。つまり、読取部10の装着位置のずれが許容範囲であり、実用上は無視してよい(Δr、Δθ=0)状態にある。 For example, when 21 photodiodes 13 are arranged in the reading unit 10 at equal intervals in an arc shape, as shown in FIG. 6, a rectangular scale region MR2 is arranged on the polar coordinate plane described above, and the scale is concerned. Twenty-one photodiodes 13 (0th to 20th) are arranged at equal intervals along the longitudinal direction of the region MR2. At this time, the tenth position information (intermediate position) of the photodiode 13 corresponds to the position information of the rotation deviation Δθ = 0 ((φ +) = (φ−) = 0). This indicates a state in which the reading unit 10 is mounted without deviation with respect to the rotation center of the indicator needle 101 of the indicator needle meter 100. That is, the deviation of the mounting position of the reading unit 10 is within the allowable range and can be ignored in practice (Δr, Δθ = 0).
 ステップS10では、CPU201は、フォトダイオード13のインデックス番号に基づく指示針メータ100の指示針101の位置情報(実質的インデックス番号)を指示値へ変換するための変換表を作成する。具体的には、CPU201は、目盛領域MR2近傍にある目盛数字を数値として認識し、極座標平面の当該目盛数字の位置情報に、認識された数値を関連付ける処理を実行する。 In step S10, the CPU 201 creates a conversion table for converting the position information (substantial index number) of the indicator needle 101 of the indicator needle meter 100 based on the index number of the photodiode 13 into the indicated value. Specifically, the CPU 201 recognizes the scale numbers in the vicinity of the scale region MR2 as numerical values, and executes a process of associating the recognized numerical values with the position information of the scale numbers on the polar coordinate plane.
 本実施形態では、公知のOCR(Optical Character Recognition)技術が用いられる。また、目盛数字の位置情報は、指示針メータ100の垂線を基準とした極座標値θに変換される。そして、目盛数字の位置情報(極座標値θ)と目盛数字の数値とが対応付けられる。なお、このような対応付けは、目盛領域MR2の近傍にあるすべての目盛数字について行われる。 In this embodiment, a known OCR (Optical Character Recognition) technology is used. Further, the position information of the scale numbers is converted into a polar coordinate value θ with reference to the perpendicular line of the indicator needle meter 100. Then, the position information (polar coordinate value θ) of the scale numbers is associated with the numerical values of the scale numbers. It should be noted that such association is performed for all the scale numbers in the vicinity of the scale region MR2.
 なお、目盛数字は、一般的には、指示針101の代表的な回転角度に対応した値のみ表示されることが多い。これより、目盛数字の位置情報は、目盛数字の認識から検出された位置情報そのままの値に限定されず、上述した垂線を基準にして5°、10°、15°、30°、45°ずれた値(90°の代表的な約数あるいはそれらの倍数)で置き換えてもよい。 In general, the scale number is often displayed only as a value corresponding to a typical rotation angle of the indicator needle 101. From this, the position information of the scale numbers is not limited to the value of the position information as it is detected from the recognition of the scale numbers, and is deviated by 5 °, 10 °, 15 °, 30 °, and 45 ° with respect to the above-mentioned perpendicular line. It may be replaced with a value (a typical divisor of 90 ° or a multiple thereof).
 最後に、CPU201は、極座標平面に展開されたすべての情報を用いて、フォトダイオード13のインデックス番号に基づく指示針メータ100の指示針101の位置情報を指示値に変換する変換表を作成する。 Finally, the CPU 201 creates a conversion table that converts the position information of the indicator needle 101 of the indicator needle meter 100 based on the index number of the photodiode 13 into an indicated value by using all the information developed on the polar coordinate plane.
 図7は、変換表を示す図である。変換表は、指示針メータ100の指示針101の位置情報に相当するフォトダイオード13のインデックス番号及び指示針メータ100の垂線を基準とした回転角度、そして当該回転角度に対応した指示値によって構成されている。 FIG. 7 is a diagram showing a conversion table. The conversion table is composed of an index number of the photodiode 13 corresponding to the position information of the indicator needle 101 of the indicator needle meter 100, a rotation angle based on the perpendicular line of the indicator needle meter 100, and an instruction value corresponding to the rotation angle. ing.
 ここで、フォトダイオード13のインデックス番号及び上述した垂線に対する回転角度は、読取部10に実装によって予め定められた値である。 Here, the index number of the photodiode 13 and the rotation angle with respect to the perpendicular line described above are values predetermined by mounting on the reading unit 10.
 一方、代表的な複数の回転角度及びそれらに対応する指示値(認識された数値)は、上述した処理により取得されている。また、その他の回転角度及びそれらに対応する指示値は、取得済みの回転角度及びそれらに対応する指示値を用いて、線形補間することで求められる。 On the other hand, a plurality of typical rotation angles and indicated values (recognized numerical values) corresponding to them are acquired by the above-mentioned processing. Further, other rotation angles and the indicated values corresponding to them are obtained by linear interpolation using the acquired rotation angles and the indicated values corresponding to them.
 そこで、CPU201は、このようにして得られたフォトダイオード13のインデックス番号及び上述した垂線に対する回転角度、そして当該回転角度に対応した指示値を対応付けることで、図7に示す変換表を作成する。 Therefore, the CPU 201 creates the conversion table shown in FIG. 7 by associating the index number of the photodiode 13 thus obtained, the rotation angle with respect to the perpendicular line described above, and the indicated value corresponding to the rotation angle.
 なお、図7では、説明の都合上、指示針メータ100の垂線に対する回転角度が示されているが、実際の変換表からは、当該回転角度を省略してもよい。すなわち、各フォトダイオード13のインデックス番号と指示値との関係が分かれば、当該回転角度を変換表から省略しても問題はない。 Note that, in FIG. 7, for convenience of explanation, the rotation angle of the indicator needle meter 100 with respect to the perpendicular line is shown, but the rotation angle may be omitted from the actual conversion table. That is, if the relationship between the index number of each photodiode 13 and the indicated value is known, there is no problem even if the rotation angle is omitted from the conversion table.
 ところで、図4に示した変換表作成処理ルーチンは、読取部10の装着対象である指示針メータ100が未知の場合に適用される。このため、指示針メータ100が既知であって、図4に示した変換表作成処理ルーチンによって当該既知の指示針メータ100に関する変換表が作成済みである場合、当該指示針メータ100の目盛領域MR1と同一の目盛領域を有する指示針メータについては、読取部10の装着位置ずれのみを評価すればよい。 By the way, the conversion table creation processing routine shown in FIG. 4 is applied when the indicator needle meter 100 to which the reading unit 10 is mounted is unknown. Therefore, when the indicator needle meter 100 is known and the conversion table for the known indicator needle meter 100 has been created by the conversion table creation processing routine shown in FIG. 4, the scale area MR1 of the indicator needle meter 100 is created. For an indicator needle meter having the same scale area as the above, only the mounting position deviation of the reading unit 10 needs to be evaluated.
 また、既に当該変換表が作成済みであり、要求される指示値の読取精度が高くなく、その結果、装着時のずれが十分許容できる場合は、図4に示した指示針の回転中心同定ルーチン及び変換表作成処理ルーチンは不要である。 Further, if the conversion table has already been created and the required reading accuracy of the indicated value is not high, and as a result, the deviation at the time of mounting can be sufficiently tolerated, the rotation center identification routine of the indicator needle shown in FIG. And the conversion table creation processing routine is unnecessary.
 サーバ装置200は、以上のようにして作成された変換表を無線通信によりアナログメータ読取装置1へ送信する。これにより、アナログメータ読取装置1は、サーバ装置200から送信された変換表を用いて、フォトダイオード13のインデックス番号から指示針メータ100の指示値を算出する。具体的には、アナログメータ読取装置1は、次に示す読取処理ルーチンを実行することにより、指示針メータ100の指示値を算出する。 The server device 200 transmits the conversion table created as described above to the analog meter reading device 1 by wireless communication. As a result, the analog meter reading device 1 calculates the indicated value of the indicator needle meter 100 from the index number of the photodiode 13 using the conversion table transmitted from the server device 200. Specifically, the analog meter reading device 1 calculates the reading value of the indicator needle meter 100 by executing the reading processing routine shown below.
 図8は、読取処理ルーチンを示すフローチャートである。
 ステップS11では、制御部30のCPU34は、所定の測定時刻になったか否かを判定し、当該測定時刻になるまで待機する。測定時刻は、所定時間毎に繰り返される時刻でもよいし、予め設定された時刻であってもよい。CPU34は、測定時刻になったと判定すると、ステップS12へ進む。
FIG. 8 is a flowchart showing a reading processing routine.
In step S11, the CPU 34 of the control unit 30 determines whether or not the predetermined measurement time has come, and waits until the measurement time comes. The measurement time may be a time repeated at predetermined time intervals or a preset time. When the CPU 34 determines that the measurement time has come, the process proceeds to step S12.
 ステップS12では、CPU34は、蓄電池31から読取部10へ電源供給ラインのスイッチをオンにして、読取部10への電源供給を開始する。 In step S12, the CPU 34 turns on the switch of the power supply line from the storage battery 31 to the reading unit 10 to start supplying power to the reading unit 10.
 ステップS13では、CPU34は、読取部10のLED駆動部16を制御して、すべてのLED14を点灯させる。これにより、指示針メータ100に光が照射される。 In step S13, the CPU 34 controls the LED drive unit 16 of the reading unit 10 to light all the LEDs 14. As a result, the indicator needle meter 100 is irradiated with light.
 ステップS14では、CPU34は、読取部10のフォトダイオード制御部15を制御して、各フォトダイオード13から受光量に応じた信号を読み出す。各フォトダイオード13から読み出された信号は、制御部30のPD切替部32に供給される。 In step S14, the CPU 34 controls the photodiode control unit 15 of the reading unit 10 to read a signal from each photodiode 13 according to the amount of received light. The signal read from each photodiode 13 is supplied to the PD switching unit 32 of the control unit 30.
 さらに、CPU34は、各フォトダイオード13から供給される信号の中から、インデックス番号0~20までのフォトダイオード13の信号を順次切り替えて出力するように、PD切替部32を制御する。PD切替部32から出力された信号は、A/Dコンバータ33によってアナログ/デジタル変換され、CPU34に供給される。この結果、CPU34は、インデックス番号0~20までのフォトダイオード13の信号を受信する。 Further, the CPU 34 controls the PD switching unit 32 so as to sequentially switch and output the signals of the photodiodes 13 having index numbers 0 to 20 from the signals supplied from each photodiode 13. The signal output from the PD switching unit 32 is analog-to-digital converted by the A / D converter 33 and supplied to the CPU 34. As a result, the CPU 34 receives the signals of the photodiodes 13 having index numbers 0 to 20.
 図9(A)は指示針メータ100の指示針101がフォトダイオード13の1つの検出領域の中心部に存在する場合の模式図、同図(B)はそのときの各フォトダイオード13の出力信号を示す図である。 FIG. 9A is a schematic diagram when the indicator needle 101 of the indicator needle meter 100 is located in the center of one detection region of the photodiode 13, and FIG. 9B is an output signal of each photodiode 13 at that time. It is a figure which shows.
 同図において、小さな白円はフォトダイオード13の検出領域を示し、小さな白円の中心部にある正方形はフォトダイオード13を示す。大きな黒円はLED素子14による光照射領域を示し、大きな黒円の中心部にある正方形はLED素子14を示す。なお、後述する図10も同様である。 In the figure, the small white circle indicates the detection area of the photodiode 13, and the square in the center of the small white circle indicates the photodiode 13. The large black circle indicates the light irradiation region by the LED element 14, and the square in the center of the large black circle indicates the LED element 14. The same applies to FIG. 10, which will be described later.
 指示針メータ100の指示針101がフォトダイオード13の1つの検出領域の中心部に存在する場合、当該フォトダイオード13の出力信号はローレベルになる。それ以外のフォトダイオード13の出力信号はハイレベルになる。これにより、出力信号がローレベルのフォトダイオード13に対応する位置に、指示針メータ100の指示針101があることが分かる。 When the indicator needle 101 of the indicator needle meter 100 is located in the center of one detection area of the photodiode 13, the output signal of the photodiode 13 becomes low level. The output signals of the other photodiodes 13 are at a high level. As a result, it can be seen that the indicator needle 101 of the indicator needle meter 100 is located at a position where the output signal corresponds to the low-level photodiode 13.
 図10(A)は指示針メータ100の指示針101が2つのフォトダイオード13の検出領域の重なり部分に存在する場合の模式図、同図(B)はそのときの各フォトダイオード13の出力信号を示す図である。 FIG. 10A is a schematic diagram when the indicator needle 101 of the indicator needle meter 100 exists in the overlapping portion of the detection regions of the two photodiodes 13, and FIG. 10B is an output signal of each photodiode 13 at that time. It is a figure which shows.
 指示針メータ100の指示針101が2つのフォトダイオード13の検出領域の重なり部分に存在する場合、当該2つのフォトダイオード13の出力信号はミドルレベルになる。それ以外のフォトダイオード13の出力信号はハイレベルになる。これにより、出力信号がミドルレベルの2つのフォトダイオード13に対応する位置の間に、指示針メータ100の指示針101があることが分かる。 When the indicator needle 101 of the indicator needle meter 100 exists in the overlapping portion of the detection areas of the two photodiodes 13, the output signals of the two photodiodes 13 are at the middle level. The output signals of the other photodiodes 13 are at a high level. As a result, it can be seen that the indicator needle 101 of the indicator needle meter 100 is located between the positions where the output signals correspond to the two photodiodes 13 at the middle level.
 このように、指示針メータ100の指示針101は、フォトダイオード13の1つの検出領域で検出されることもあれば、2つの検出領域でそれぞれ検出されることもある。そこで、制御部30のCPU34は、これらの状況を考慮して、各フォトダイオード13の出力信号から当該フォトダイオード13のインデックス番号を介して指示針101の位置情報を検出する。 As described above, the indicator needle 101 of the indicator needle meter 100 may be detected in one detection region of the photodiode 13 or may be detected in each of the two detection regions. Therefore, in consideration of these situations, the CPU 34 of the control unit 30 detects the position information of the indicator needle 101 from the output signal of each photodiode 13 via the index number of the photodiode 13.
 ステップS15では、CPU34は、インデックス番号0~20までのフォトダイオード13の出力信号に基づいて、指示針メータ100の指示針101の位置情報に対応する指示値を算出する。 In step S15, the CPU 34 calculates an instruction value corresponding to the position information of the instruction needle 101 of the instruction needle meter 100 based on the output signals of the photodiodes 13 having index numbers 0 to 20.
 ここでは、最初に、CPU34は、各フォトダイオード13の出力信号と、対応する各フォトダイオード13のインデックス番号0~20とを用いて、指示針メータ100の指示針101の位置情報(実質的インデックス番号)を検出する。この位置情報は、フォトダイオード13のインデックス番号と異なり、整数に限定されず、小数を含む値でもよい。次に、CPU34は、図7に示す変換表を参照して、指示針101の位置情報に対応する指示値を算出する。 Here, first, the CPU 34 uses the output signal of each photodiode 13 and the index numbers 0 to 20 of each corresponding photodiode 13, and the position information (substantial index) of the indicator needle 101 of the indicator needle meter 100. Number) is detected. Unlike the index number of the photodiode 13, this position information is not limited to an integer and may be a value including a decimal number. Next, the CPU 34 calculates an instruction value corresponding to the position information of the instruction needle 101 with reference to the conversion table shown in FIG. 7.
 なお、指示針101の位置情報の検出方法は、特に限定されるものではないが、特に隣接するフォトダイオード13の検出領域が重なり合う場合には、例えば以下のような方法がある。 The method for detecting the position information of the indicator needle 101 is not particularly limited, but there are, for example, the following methods when the detection regions of the adjacent photodiodes 13 overlap.
(指示針の位置情報の検出方法1)
 CPU34は、次のように、加重平均を用いて指示針101の位置情報を検出することができる。例えば、CPU34は、最初に、各フォトダイオード13の出力信号のうち、指示針101の影響を受けた出力信号、例えばレベルが所定の閾値以下の出力信号及び対応するフォトダイオード13を選択する。
(Detection method of indicator needle position information 1)
The CPU 34 can detect the position information of the indicator needle 101 by using the weighted average as follows. For example, the CPU 34 first selects, among the output signals of each photodiode 13, an output signal affected by the indicator needle 101, for example, an output signal whose level is equal to or less than a predetermined threshold value and the corresponding photodiode 13.
 次に、CPU34は、選択したフォトダイオード13のインデックス番号に重み付けを行う。ここでは、出力信号のレベルが低いほどインデックス番号の重みが大きくなり、出力信号のレベルが高いほどインデックス番号の重みが小さくなる。 Next, the CPU 34 weights the index number of the selected photodiode 13. Here, the lower the level of the output signal, the larger the weight of the index number, and the higher the level of the output signal, the smaller the weight of the index number.
 最後に、CPU34は、重み付けされたそれぞれのインデックス番号の加重平均を演算する。演算された加重平均値は、指示針101の位置情報に相当する。 Finally, the CPU 34 calculates a weighted average of each weighted index number. The calculated weighted average value corresponds to the position information of the indicator needle 101.
(指示針の位置情報の検出方法2)
 隣接する更に多くのフォトダイオード13の検出領域が重なり合う場合には、CPU34は、次のように、最尤法を用いて指示針101の位置情報を検出することもできる。
(Detection method 2 of indicator needle position information)
When the detection regions of more adjacent photodiodes 13 overlap, the CPU 34 can also detect the position information of the indicator needle 101 using the maximum likelihood method as follows.
 最初に、各フォトダイオード13の出力信号のうち最小レベルの出力信号に対応するフォトダイオード13を基準にして、基準となるフォトダイオード13が中心になるように連続する5つのフォトダイオード13を選択する。そして、選択された5つのフォトダイオード13の相対的なインデックス番号をそれぞれi=-2、-1、0、1、2とし、各フォトダイオード13の出力信号のレベルをそれぞれY-2、Y-1、Y、Y、Yとする。なお、基準となるフォトダイオード13のインデックス番号はi=0、その出力信号のレベルはYである。 First, with reference to the photodiode 13 corresponding to the lowest level output signal among the output signals of each photodiode 13, five continuous photodiodes 13 are selected so that the reference photodiode 13 is at the center. .. Then, each of i = -2 relative index number of five photodiodes 13 selected, the -1,0,1,2 each Y -2 the level of the output signal of the photodiode 13, Y - Let it be 1 , Y 0 , Y 1 , and Y 2 . The index number of the reference photodiode 13 is i = 0, and the output signal level thereof is Y 0 .
 つぎに、インデックス番号iを独立変数として、5つの出力信号のレベルに関する最尤モデル関数を例えば次式のような放物線(2次関数)で定義する。
   y=a・i+b・i+c
Next, with the index number i as an independent variable, the maximum likelihood model function for the levels of the five output signals is defined by a parabola (quadratic function) such as the following equation.
y = a · i 2 + b · i + c
 ここで最尤モデル関数とは、最小二乗法に基づいて、選択された5つのフォトダイオード13のすべての出力信号のレベルを最も確からしく表現できるモデル関数のことをいう。ここでは、出力信号のレベルが最小になるフォトダイオード13の実質的なインデックス番号は、放物線の値が最小となるときのi(=imin)である。 Here, the maximum likelihood model function refers to a model function that can most accurately represent the levels of all output signals of the five selected photodiodes 13 based on the least squares method. Here, the substantial index number of the photodiode 13 that minimizes the output signal level is i (= i min ) when the parabolic value is minimized.
 すなわち、y’=2a・imin+b=0より
min=-b/2a
   =-0.7×(-2Y-2-Y-1+Y+2Y
              /(2Y-2-Y-1-2Y-Y+2Y
となる。
That is, from y'= 2a · i min + b = 0, i min = −b / 2a
= -0.7 × (-2Y -2 -Y -1 + Y 1 + 2Y 2 )
/ (2Y- 2- Y -1 -2Y 0- Y 1 + 2Y 2 )
Will be.
 例えば、インデックス番号7のフォトダイオード13の出力信号のレベルYが最小(0.9μA)で、Y-2、Y-1、Y、Y、Yがそれぞれ52.9μA、16.9μA、0.9μA、4.9μA、28.9μAの場合、imin=0.3となる。 For example, the output signal level Y 0 of the photodiode 13 with index number 7 is the minimum (0.9 μA), and Y -2 , Y -1 , Y 0 , Y 1 , and Y 2 are 52.9 μA and 16.9 μA, respectively. , 0.9 μA, 4.9 μA, and 28.9 μA, i min = 0.3.
 iminは、基準となるフォトダイオード13からのインデックス番号としてのずれ量に相当する。これより、出力信号のレベルが最小値となるフォトダイオード13の実質的なインデックス番号、つまり、指示針101の位置情報は、インデックス番号7+imin=7.3となる。 imin corresponds to the amount of deviation as an index number from the reference photodiode 13. From this, the substantial index number of the photodiode 13 at which the level of the output signal becomes the minimum value, that is, the position information of the indicator needle 101 is the index number 7 + imin = 7.3.
 なお、フォトダイオード13の列が、指示針101の先端方向の部分のみならず根元方向の部分にも重なった場合、出力信号のレベルが極小となる場所が2か所存在する。この場合、指示針101の先端方向の部分は根元方向の部分より狭い幅になる。これは、上述した最尤モデル関数では、放物線の広がり具合に相当する。 When the row of photodiodes 13 overlaps not only the portion in the tip direction of the indicator needle 101 but also the portion in the root direction, there are two places where the output signal level is minimized. In this case, the portion of the indicator needle 101 in the tip direction is narrower than the portion in the root direction. This corresponds to the degree of spread of the parabola in the maximum likelihood model function described above.
 そこで、指示針101の先端方向の部分及び根元方向の部分でそれぞれ得られる最尤モデル関数において、次式のようにaを求める。
   a=1/14×(2Y-2-Y-1-2Y-Y+2Y
Therefore, in the maximum likelihood model functions obtained in the portion in the tip direction and the portion in the root direction of the indicator needle 101, a is obtained as shown in the following equation.
a = 1/14 × (2Y- 2- Y -1 -2Y 0- Y 1 + 2Y 2 )
 そして、aの値がより大きくなる、換言すれば対応する放物線の広がり具合がより小さい最尤モデル関数からフォトダイオード13の実質的なインデックス番号を求めればよい。 Then, the actual index number of the photodiode 13 may be obtained from the maximum likelihood model function in which the value of a becomes larger, in other words, the spread of the corresponding parabola is smaller.
 なお、本実施形態では、5つのフォトダイオード13の出力信号を用いて指示針101の位置情報を求めたが、フォトダイオード13の数は特に限定されるものではない。 In the present embodiment, the position information of the indicator needle 101 is obtained by using the output signals of the five photodiodes 13, but the number of the photodiodes 13 is not particularly limited.
 また、指示針メータ100は、白色の目盛板102上に黒色の指示針101があることを前提としたが、このような構成に限定されるものではない。例えば、目盛板が黒色で指示針が白色の指示針メータを用いることも可能である。この場合、指示針の位置又はその近傍にあるフォトダイオードの出力信号のレベルが高くなる。そこで、出力信号のレベルが最大となるフォトダイオード13の位置情報を検出することで、指示針の位置情報が検出される。 Further, the indicator needle meter 100 is based on the premise that the black indicator needle 101 is on the white scale plate 102, but the present invention is not limited to such a configuration. For example, it is also possible to use an indicator needle meter having a black scale plate and a white indicator needle. In this case, the level of the output signal of the photodiode at or near the position of the indicator needle becomes high. Therefore, by detecting the position information of the photodiode 13 that maximizes the output signal level, the position information of the indicator needle is detected.
 本実施形態では、最尤モデル関数として放物線を仮定したが、それに限定されるのではない。例えば、最尤モデル関数は、相対的なインデックス番号を基準(i=0)としたフォトダイオードの近傍に極小値(あるいは極大値)を持つ任意の関数であってもよい。 In this embodiment, a parabola is assumed as the maximum likelihood model function, but it is not limited to that. For example, the maximum likelihood model function may be any function having a minimum value (or maximum value) in the vicinity of the photodiode with respect to the relative index number (i = 0).
 また本実施形態では、指示針101が近傍に存在しない場合、各フォトダイオード13の受光量が同じであって、各出力信号のレベルが所定のデフォルト値になることを前提としている。しかし、実際には、受光量が同じであっても、各フォトダイオードの個体差に起因して、出力信号のレベルにばらつきが生じることがある。また、目盛板上のフォトダイオードの光感応領域に、目盛数字や製造メーカのロゴマークなどが印刷されている場合、当該目盛数字やロゴマーク等によって光反射が妨げられる。この場合、指示針101がないにもかかわらず、デフォルト値としての出力信号のレベルが周辺に比較して小さくなる。 Further, in the present embodiment, when the indicator needle 101 does not exist in the vicinity, it is assumed that the light receiving amount of each photodiode 13 is the same and the level of each output signal becomes a predetermined default value. However, in reality, even if the amount of received light is the same, the level of the output signal may vary due to individual differences of each photodiode. Further, when a scale number or a manufacturer's logo mark is printed in the light-sensitive area of the photodiode on the scale plate, the light reflection is hindered by the scale number or the logo mark. In this case, even though there is no indicator needle 101, the level of the output signal as the default value becomes smaller than that of the periphery.
 そこで、上記の演算をフォトダイオードの出力信号強度に直接適用するのでなく、検出された光センサの出力信号強度から、デフォルト値としてのフォトダイオードの出力信号強度を減じた差分情報でもって、上記のような演算を適用してもよい。 Therefore, instead of applying the above calculation directly to the output signal strength of the photodiode, the above calculation is obtained by subtracting the output signal strength of the photodiode as a default value from the detected output signal strength of the optical sensor. Such an operation may be applied.
 CPU34は、上述のようにして指示針101の位置情報を検出した後、変換表を参照して、指示針101の位置情報を指示値に変換することで、指示値を算出する。この変換表は、図4に示す変換表作成ルーチンにより作成されたものである。 The CPU 34 calculates the indicated value by detecting the position information of the indicator needle 101 as described above and then converting the position information of the indicator needle 101 into the indicated value with reference to the conversion table. This conversion table is created by the conversion table creation routine shown in FIG.
 ステップS16では、CPU34は、指示値が異常(予め設定された範囲外)であるか否かを判定する。指示値が異常であると判定された場合は、ステップS14に戻り、各フォトダイオード13から信号が再度読み出され、指示値が再び算出される。指示値が異常でない場合は、ステップS17へ進む。なお、指示値が所定回数連続して異常になった場合は、ステップS14へ戻らず、ステップS18へ進む。 In step S16, the CPU 34 determines whether or not the indicated value is abnormal (outside the preset range). If it is determined that the indicated value is abnormal, the process returns to step S14, the signal is read again from each photodiode 13, and the indicated value is calculated again. If the indicated value is not abnormal, the process proceeds to step S17. If the indicated value becomes abnormal a predetermined number of times in succession, the process proceeds to step S18 without returning to step S14.
 ステップS17では、CPU34は、無線通信部38を介して、算出された指示値をサーバ装置200へ送信する。これにより、サーバ装置200は、各指示針メータ100の指示値を常時管理することが可能になる。 In step S17, the CPU 34 transmits the calculated instruction value to the server device 200 via the wireless communication unit 38. As a result, the server device 200 can constantly manage the indicated value of each indicator needle meter 100.
 ステップS18では、CPU34は、読取部10のLED駆動部16を制御して、すべてのLED14を消灯させる。 In step S18, the CPU 34 controls the LED drive unit 16 of the reading unit 10 to turn off all the LEDs 14.
 ステップS19では、CPU34は、蓄電池31から読取部10へ電源供給ラインのスイッチをオフにして、読取部10への電源供給を停止する。そして、ステップS11へ戻る。その後、再びステップS11以下の処理が繰り返される。 In step S19, the CPU 34 turns off the switch of the power supply line from the storage battery 31 to the reading unit 10 to stop the power supply to the reading unit 10. Then, the process returns to step S11. After that, the process of step S11 and the like is repeated again.
 以上のように、第1実施形態に係るアナログメータ読取装置1は、イメージセンサを使用することなく、フォトダイオード13及びLED素子14を有する読取部10で指示針メータ100の指示針101の位置情報を検出する。これにより、アナログメータ読取装置1は、イメージセンサを使用する機器に比べて、消費電力を大幅に抑制することができる。 As described above, in the analog meter reading device 1 according to the first embodiment, the position information of the indicating needle 101 of the indicating needle meter 100 is provided by the reading unit 10 having the photodiode 13 and the LED element 14 without using the image sensor. Is detected. As a result, the analog meter reading device 1 can significantly reduce the power consumption as compared with the device using the image sensor.
 特に、アナログメータ読取装置1は、イメージセンサを使用する機器に比べて、光検出そのものに必要とする時間が短時間で済むので、指示針メータ100の測定頻度が多くない場合(例えば数時間で1回の場合)には、消費電力を数分の一から十数分の一に抑制することができる。 In particular, since the analog meter reading device 1 requires less time for the light detection itself than the device using the image sensor, the measurement frequency of the indicator needle meter 100 is not high (for example, in a few hours). In the case of one time), the power consumption can be suppressed to one-fifth to one-tenth.
 なお、本実施形態では、アナログメータ読取装置1は、サーバ装置200に指示値を送信したが、指示値の代わりにフォトダイオード13のインデックス番号で表される指示針101の位置情報を送信してもよい。この場合、サーバ装置200は、自身が作成した変換表を参照して、指示針101の位置情報を指示値に変換すればよいので、自身が作成した変換表をアナログメータ読取装置1に送信する手間を省略できる。 In the present embodiment, the analog meter reading device 1 transmits the indicated value to the server device 200, but instead of the indicated value, the analog meter reading device 1 transmits the position information of the indicating needle 101 represented by the index number of the photodiode 13. May be good. In this case, since the server device 200 may convert the position information of the indicator needle 101 into the indicated value by referring to the conversion table created by itself, the server device 200 transmits the conversion table created by itself to the analog meter reading device 1. You can save time and effort.
[第2実施形態]
 つぎに、本発明の第2実施形態について説明する。なお、第1の実施形態と同一の部位には同一の符号を付し、重複する説明は省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. The same parts as those in the first embodiment are designated by the same reference numerals, and redundant description will be omitted.
 図11は、第2実施形態に係るフォトダイオード13の断面形状を示す図である。第2実施形態では、フォトダイオード13の受光面にレンズ13aが形成される。レンズ13aの有無によって、フォトダイオード13の光感応領域が変わる。ここで光感応領域とは、フォトダイオード13によって点光源の存在が検出可能な空間領域のことをいう。レンズ13aの光学特性に応じて、光感応領域の深さ方向の範囲及び幅方向の範囲が制限される。 FIG. 11 is a diagram showing a cross-sectional shape of the photodiode 13 according to the second embodiment. In the second embodiment, the lens 13a is formed on the light receiving surface of the photodiode 13. The light-sensitive region of the photodiode 13 changes depending on the presence or absence of the lens 13a. Here, the light-sensitive region refers to a spatial region in which the presence of a point light source can be detected by the photodiode 13. The range in the depth direction and the range in the width direction of the light sensitive region are limited according to the optical characteristics of the lens 13a.
 図12(A)はフォトダイオード13にレンズがない場合のフォトダイオード13の光感応領域A1を示す模式図であり、同図(B)はフォトダイオード13にレンズ13aが形成された場合の光感応領域A2を示す模式図である。 FIG. 12 (A) is a schematic view showing a light sensitive region A1 of the photodiode 13 when the photodiode 13 does not have a lens, and FIG. 12 (B) is a schematic diagram showing the light sensitivity when the lens 13a is formed on the photodiode 13. It is a schematic diagram which shows the region A2.
 図12(A)の場合、フォトダイオード13の光感応領域A1は、指示針101だけでなく目盛板102も含んでいる。このため、フォトダイオード13は、目盛板102に目盛数字や製造メーカのロゴマークなどが表示されている場合、それらの表示物の影響を受けた出力信号を得る。具体的には、実際には指示針101が存在しないにも関わらずあたかも指示針101が存在しているかのように、フォトダイオード13の出力信号のレベルが下がる。 In the case of FIG. 12A, the light sensitive region A1 of the photodiode 13 includes not only the indicator needle 101 but also the scale plate 102. Therefore, when the scale number or the manufacturer's logo mark is displayed on the scale plate 102, the photodiode 13 obtains an output signal influenced by those displayed objects. Specifically, the level of the output signal of the photodiode 13 is lowered as if the indicator needle 101 actually exists even though the indicator needle 101 does not exist.
 図12(B)の場合、レンズ13aの光学特性の影響により、フォトダイオード13の光感応領域A2は、図12(A)の光感応領域A1に比べて深さ方向が制限されている。つまり、光感応領域A2は、深さ方向において、指示針101又はその近傍を含むものの、目盛板102を含まない。よって、目盛板102に目盛数字や製造メーカのロゴマークなどの表示物がある場合でもそのような表示物がない場合でも、フォトダイオード13の出力信号には影響しない。 In the case of FIG. 12 (B), the light-sensitive region A2 of the photodiode 13 is limited in the depth direction as compared with the light-sensitive region A1 of FIG. 12 (A) due to the influence of the optical characteristics of the lens 13a. That is, the light-sensitive region A2 includes the indicator needle 101 or its vicinity in the depth direction, but does not include the scale plate 102. Therefore, even if the scale plate 102 has a display such as a scale number or a manufacturer's logo mark or does not have such a display, the output signal of the photodiode 13 is not affected.
 このため、フォトダイオード13は、指示針101を検出した場合、第1実施形態と同様に、ローレベルの出力信号(黒色に相当する信号)を得る。また、フォトダイオード13は、指示針101を検出しない場合、目盛板102上の目盛数字や製造メーカのロゴマークなどの表示物の有無の影響を受けず、ハイレベルの出力信号(白色に相当する信号)を得る。つまり、第1実施形態と同様に、指示針101は、出力信号がローレベルのフォトダイオード13に対応する位置にあることが分かる。 Therefore, when the photodiode 13 detects the indicator needle 101, the photodiode 13 obtains a low-level output signal (a signal corresponding to black) as in the first embodiment. Further, when the photodiode 13 does not detect the indicator needle 101, it is not affected by the presence or absence of a display object such as a scale number on the scale plate 102 or a manufacturer's logo mark, and corresponds to a high-level output signal (corresponding to white). Signal). That is, as in the first embodiment, it can be seen that the indicator needle 101 is at a position where the output signal corresponds to the low-level photodiode 13.
 したがって、フォトダイオード13は、図12(B)に示すように、レンズ13aによって光感応領域の深さ方向が制限された場合、目盛板102に目盛数字や製造メーカのロゴマークなどの表示物がある場合でも、指示針101の存在のみに依存した適正レベルの出力信号を得ることができる。 Therefore, as shown in FIG. 12B, when the depth direction of the light-sensitive region is limited by the lens 13a, the photodiode 13 has a display object such as a scale number or a manufacturer's logo mark on the scale plate 102. Even in some cases, it is possible to obtain an output signal of an appropriate level depending only on the presence of the indicator needle 101.
 図13は、直径が異なる光感応領域A11~A15,A21~A25を示す図である。フォトダイオード13にレンズ13aがない場合(図12(A))、隣り合う光感応領域A11~A15は、図13に示すように、互いに一部が重なっている。したがって、指示針101は、図13に示す位置に存在する場合、2つの光感応領域A12,A13で検出される。 FIG. 13 is a diagram showing light sensitive regions A11 to A15 and A21 to A25 having different diameters. When the photodiode 13 does not have the lens 13a (FIG. 12 (A)), the adjacent light-sensitive regions A11 to A15 partially overlap each other as shown in FIG. Therefore, when the indicator needle 101 is present at the position shown in FIG. 13, it is detected in the two light sensitive regions A12 and A13.
 フォトダイオード13にレンズ13aがある場合(図12(B))、各光感応領域A21~A25の直径は、各光感応領域A11~A15の直径より小さくなる。このため、隣り合う光感応領域A21~A25は、互いに重なっておらず、接している。したがって、指示針101は、図13に示す位置に存在する場合、1つの光感応領域A22のみで検出される。すなわち、光感応領域の直径(幅方向)を制限することで、隣り合う光感応領域の重なりを抑制することができ、指示針101の位置情報の検出精度が向上する。 When the photodiode 13 has a lens 13a (FIG. 12B), the diameter of each of the light-sensitive regions A21 to A25 is smaller than the diameter of each of the light-sensitive regions A11 to A15. Therefore, the adjacent light-sensitive regions A21 to A25 do not overlap each other and are in contact with each other. Therefore, when the indicator needle 101 is present at the position shown in FIG. 13, it is detected only in one light sensitive region A22. That is, by limiting the diameter (width direction) of the light-sensitive regions, it is possible to suppress the overlap of adjacent light-sensitive regions, and the detection accuracy of the position information of the indicator needle 101 is improved.
 これにより、第2実施形態に係るアナログメータ読取装置1は、指示針メータ100の目盛板102に目盛数字や製造メーカのロゴマークなどが表示されている場合でも、光感応領域の深さ方向を制限することで、それら表示物の影響を受けることなく、指示針メータ100の指示針101の位置情報を高精度に検出することができる。また、アナログメータ読取装置1は、光感応領域の幅方向を制限することで、指示針101の位置情報をさらに高精度に検出できる。 As a result, the analog meter reading device 1 according to the second embodiment can detect the depth direction of the light-sensitive region even when the scale number or the manufacturer's logo mark is displayed on the scale plate 102 of the indicator needle meter 100. By limiting, the position information of the indicator needle 101 of the indicator needle meter 100 can be detected with high accuracy without being affected by those displayed objects. Further, the analog meter reading device 1 can detect the position information of the indicator needle 101 with higher accuracy by limiting the width direction of the light sensitive region.
 第2実施形態では、図13に示すように、隣り合う光感応領域A21~A25が重ならずに接することで、指示針101の位置情報の検出精度を向上させているが、このような例に限定されるものではない。例えば、第2実施形態と同様に、光感応領域の直径を小さくして、かつ、第1実施形態と同様に、隣り合う光感応領域が互いに重なるようにしてもよい。このとき、指示針101の位置情報は、第1実施形態の「指示針の位置情報の検出方法1(加重平均)」又は「指示針の位置情報の検出方法2(最尤法)」によって検出可能である。 In the second embodiment, as shown in FIG. 13, the adjacent light sensitive regions A21 to A25 are in contact with each other without overlapping, thereby improving the detection accuracy of the position information of the indicator needle 101. Such an example. It is not limited to. For example, as in the second embodiment, the diameter of the light-sensitive regions may be reduced, and as in the first embodiment, adjacent light-sensitive regions may overlap each other. At this time, the position information of the indicator needle 101 is detected by the "indicator needle position information detection method 1 (weighted average)" or "indicator needle position information detection method 2 (maximum likelihood method)" of the first embodiment. It is possible.
 以上のように、光感応領域の直径(幅方向)を小さくし、かつ、隣り合う光感応領域が互いに重なることを許容することによって、単位長さ当たりに実装できるフォトダイオード13の個数を飛躍的に増やすことができる。その結果、指示針101の位置情報の検出精度ひいては指示値の算出精度を更に向上させることができる。 As described above, by reducing the diameter (width direction) of the light-sensitive regions and allowing the adjacent light-sensitive regions to overlap each other, the number of photodiodes 13 that can be mounted per unit length is dramatically increased. Can be increased to. As a result, the detection accuracy of the position information of the indicator needle 101 and the calculation accuracy of the indicator value can be further improved.
[第3実施形態]
 つぎに、本発明の第3実施形態について説明する。なお、上述した実施形態と同一の部位には同一の符号を付し、重複する説明は省略する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. The same parts as those in the above-described embodiment are designated by the same reference numerals, and duplicate description will be omitted.
 図14(A)は指示針メータ100aに取り付けられた状態の第3実施形態のアナログメータ読取装置1aの正面図であり、同図(B)はその外観側面図である。
 アナログメータ読取装置1aは、指示針メータ100aに光を照射して指示針101の位置情報を検出する読取部10aと、読取部10aが検出した位置情報に基づいて指示針101が示す指示値を算出する制御部30と、を備えている。
FIG. 14A is a front view of the analog meter reading device 1a of the third embodiment attached to the indicator needle meter 100a, and FIG. 14B is an external side view thereof.
The analog meter reading device 1a has a reading unit 10a that irradiates the indicator needle meter 100a with light to detect the position information of the indicator needle 101, and an instruction value indicated by the indicator needle 101 based on the position information detected by the reading unit 10a. It includes a control unit 30 for calculating.
 読取部10aは、指示針メータ100aの回転中心又はその近傍に貼り付けられる。そして、読取部10aは、指示針メータ100aの指示針101の位置情報を検出し、検出した位置情報を制御部30へ供給する。制御部30は、読取部10aから供給された位置情報に基づいて指示針メータ100aの指示値を算出し、当該指示値を無線通信により後述するサーバ装置200(図17参照)へ送信する。 The reading unit 10a is attached to the center of rotation of the indicator needle meter 100a or its vicinity. Then, the reading unit 10a detects the position information of the indicating needle 101 of the indicating needle meter 100a, and supplies the detected position information to the control unit 30. The control unit 30 calculates the indicated value of the indicator needle meter 100a based on the position information supplied from the reading unit 10a, and transmits the indicated value to the server device 200 (see FIG. 17) described later by wireless communication.
 指示針メータ100aは、指示針101と、指示針101が指し示す位置に対応する物理量(数値)を表示する目盛板102と、指示針101を保護するためのカバーガラス103と、カバーガラス103の奥側(目盛板102側)にあり美観のため指示針の回転中心近傍を覆うカバー部材104を備えている。 The indicator needle meter 100a includes an indicator needle 101, a scale plate 102 that displays a physical quantity (numerical value) corresponding to the position indicated by the indicator needle 101, a cover glass 103 for protecting the indicator needle 101, and the back of the cover glass 103. It is on the side (scale plate 102 side) and is provided with a cover member 104 that covers the vicinity of the rotation center of the indicator needle for aesthetic purposes.
 指示針101の先端側及び目盛板102に表示された数値は、カバーガラス103を介して、外部から視認可能である。指示針101の回転中心及びその周辺部は、カバーガラス103と指示針101との間にあるカバー部材104によって隠されており、外部から視認できない。 The numerical values displayed on the tip side of the indicator needle 101 and the scale plate 102 can be visually recognized from the outside through the cover glass 103. The center of rotation of the indicator needle 101 and its peripheral portion are hidden by the cover member 104 between the cover glass 103 and the indicator needle 101, and cannot be seen from the outside.
 読取部10aの2つ側面のうちの一方の側面は、指示針メータ100aのカバーガラス103面に直接装着され、指示針メータ100aの指示針101の位置情報を光学的に読み取る側面(読取面)である。上記2つの側面のうちの他方の側面は、外部へ露出し、その表面にアナログメータ読取装置1aを識別するための2次元コード(例えばQRコード(登録商標))が印刷された側面(マーカ面)である。 One side surface of the two side surfaces of the reading unit 10a is directly mounted on the cover glass 103 surface of the indicator needle meter 100a, and the side surface (reading surface) that optically reads the position information of the indicator needle 101 of the indicator needle meter 100a. Is. The other side surface of the above two sides is exposed to the outside, and the side surface (marker surface) on which a two-dimensional code (for example, QR code (registered trademark)) for identifying the analog meter reader 1a is printed is printed. ).
 図15(A)は読取部10aの読取面を示す図であり、同図(B)はその要部側面図である。
 読取部10aは、円板状のケース蓋21と、ケース蓋21の外周部に沿って形成された外周部22と、ケース蓋21の片面に貼り付けられる基板23と、基板23に固定されたLED素子24と、基板23に固定されたカメラモジュール25と、を備えている。
FIG. 15A is a view showing a reading surface of the reading unit 10a, and FIG. 15B is a side view of the main part thereof.
The reading unit 10a was fixed to the disk-shaped case lid 21, the outer peripheral portion 22 formed along the outer peripheral portion of the case lid 21, the substrate 23 attached to one side of the case lid 21, and the substrate 23. It includes an LED element 24 and a camera module 25 fixed to a substrate 23.
 カメラモジュール25は、基板23に固定されると共に、外周部22から伸びた固定部材22aによってケース蓋21の中心部に配置されている。LED素子24は、基板23上であってカメラモジュール25の周辺に配置されている。 The camera module 25 is fixed to the substrate 23 and is arranged at the center of the case lid 21 by a fixing member 22a extending from the outer peripheral portion 22. The LED element 24 is arranged on the substrate 23 and around the camera module 25.
 図16は、カメラモジュール25の要部側面図である。
 カメラモジュール25は、広角レンズ26と、広角レンズ26からの入射光に基づいて信号を生成するイメージセンサ27と、広角レンズ26の配置位置を固定すると共にイメージセンサ27を外部から保護するためのカメラケース28と、を有する。イメージセンサ27には、広角レンズ26を介して、指示針メータ100aの指示針101及び目盛板102からの反射光が入射される。
FIG. 16 is a side view of a main part of the camera module 25.
The camera module 25 is a camera for fixing the arrangement position of the wide-angle lens 26, the image sensor 27 that generates a signal based on the incident light from the wide-angle lens 26, and the wide-angle lens 26, and protecting the image sensor 27 from the outside. It has a case 28 and. Reflected light from the indicator needle 101 and the scale plate 102 of the indicator needle meter 100a is incident on the image sensor 27 via the wide-angle lens 26.
 図17は、アナログメータ読取装置1aの機能的な構成を示すブロック図である。読取部10aと制御部30は、第1実施形態と同様に、所定のプロトコルに従って、互いにデータを送受信する。つまり、本実施形態のアナログメータ読取装置1aは、図3に示すアナログメータ読取装置1の読取部10を、図17に示す読取部10aに代えたものである。 FIG. 17 is a block diagram showing a functional configuration of the analog meter reading device 1a. The reading unit 10a and the control unit 30 transmit and receive data to and from each other according to a predetermined protocol, as in the first embodiment. That is, in the analog meter reading device 1a of the present embodiment, the reading unit 10 of the analog meter reading device 1 shown in FIG. 3 is replaced with the reading unit 10a shown in FIG.
 読取部10aは、指示針メータ100aに光を照射する複数のLED素子24と、イメージセンサ27と、イメージセンサ27を駆動させる駆動制御部111と、イメージセンサ27から読み出された画像に所定の処理を施す画像処理部112と、データを記憶する記憶部113と、各LED素子24を駆動させるLED駆動部114と、を備えている。制御部30は、図3と同様に構成されている。 The reading unit 10a is predetermined for a plurality of LED elements 24 that irradiate the indicator needle meter 100a with light, an image sensor 27, a drive control unit 111 that drives the image sensor 27, and an image read from the image sensor 27. It includes an image processing unit 112 that performs processing, a storage unit 113 that stores data, and an LED driving unit 114 that drives each LED element 24. The control unit 30 is configured in the same manner as in FIG.
 以上のように構成されたアナログメータ読取装置1aは、指示針メータ100aの指示値を算出するために、次に示す(1)~(4)の処理を実行する。 The analog meter reading device 1a configured as described above executes the following processes (1) to (4) in order to calculate the indicated value of the indicator needle meter 100a.
(1)メータ画像を用いた指示針101の回転中心の同定
(2)指示針101の回転中心に基づく仮想フォトダイオード(仮想PD)の設定
(3)仮想PDのインデックス番号に基づく指示針101の位置情報を、指示針101の指示値に変換するための変換表の作成
(4)仮想PDのインデックス番号に基づく指示針101の位置情報の検出と、当該位置情報に対応した指示値の算出
 なお、(1)~(3)は、初期設定として1回だけ実行される。(4)は、指示針メータ100aからの指示値の読み取り毎に実行される。
(1) Identification of the center of rotation of the indicator needle 101 using a meter image (2) Setting of a virtual photodiode (virtual PD) based on the center of rotation of the indicator needle 101 (3) Of the indicator needle 101 based on the index number of the virtual PD Creation of a conversion table for converting the position information into the indicated value of the indicator needle 101 (4) Detection of the position information of the indicator needle 101 based on the index number of the virtual PD and calculation of the indicated value corresponding to the position information. , (1) to (3) are executed only once as the initial setting. (4) is executed every time the indicated value is read from the indicator needle meter 100a.
 図18は、指示針101の回転中心を同定するための回転中心同定ルーチンを示すフローチャートである。 FIG. 18 is a flowchart showing a rotation center identification routine for identifying the rotation center of the indicator needle 101.
 ステップS21では、ユーザが、指示針メータ100aの指示針101の回転中心近傍に、読取部10aを直接装着する。なお、読取部10aの装着位置は、指示針101の正確な回転中心でなくてもよく、指示針101の位置や目盛板102による目盛領域の形状から推定される回転中心付近の位置でもよい。すなわち、通常、読取部10aは、指示針メータ100aに対して、ずれた状態で装着される。 In step S21, the user directly mounts the reading unit 10a near the center of rotation of the indicator needle 101 of the indicator needle meter 100a. The mounting position of the reading unit 10a does not have to be the exact center of rotation of the indicator needle 101, and may be a position near the center of rotation estimated from the position of the indicator needle 101 or the shape of the scale region by the scale plate 102. That is, normally, the reading unit 10a is mounted in a state of being displaced from the indicator needle meter 100a.
 ここでは、読取部10aの中心位置は、指示針101の回転中心からΔrの平行移動ずれがある。また、読取部10aの垂線は、指示針メータ100aの垂線に対してΔθの回転ずれがある。しかし、Δr及びΔθは、後述する処理によって無視できる。 Here, the center position of the reading unit 10a has a translational deviation of Δr from the rotation center of the indicator needle 101. Further, the perpendicular line of the reading unit 10a has a rotational deviation of Δθ with respect to the perpendicular line of the indicator needle meter 100a. However, Δr and Δθ can be ignored by the processing described later.
 ステップS22では、画像処理部112は、広角レンズ26からの入射光に基づいてイメージセンサ27で生成された歪みのあるメータ画像を取得する。なお、イメージセンサ27は、指示針メータ100aに直接装着された読取部10aに組み込まれたものである。よって、メータ画像に生じる歪みは、第1実施形態で説明した撮影方向に起因するものではなく、広角レンズ26に起因するものである。 In step S22, the image processing unit 112 acquires a distorted meter image generated by the image sensor 27 based on the incident light from the wide-angle lens 26. The image sensor 27 is incorporated in the reading unit 10a directly mounted on the indicator needle meter 100a. Therefore, the distortion generated in the meter image is not caused by the photographing direction described in the first embodiment, but is caused by the wide-angle lens 26.
一方、この広角レンズ26の作用により、図14で示すように、読取部10aは、指示針101の回転中心が隠れている指示針メータ100aの回転中心近傍に張り付けられた場合であっても、レンズ視野LV内で指示針101の先端側及び目盛板102に表示された数値を読み取ることができる。 On the other hand, due to the action of the wide-angle lens 26, as shown in FIG. 14, the reading unit 10a is attached to the vicinity of the rotation center of the indicator needle meter 100a in which the rotation center of the indicator needle 101 is hidden. The numerical values displayed on the tip side of the indicator needle 101 and the scale plate 102 can be read in the lens field of view LV.
 ステップS23では、画像処理部112は、イメージセンサ27から取得した歪みのあるメータ画像を平面画像へ変換する。当該歪みのある画像を平面画像に変換する画像変換方法は、特に限定されるものではない。例えば、広角レンズ26が等距離射影式の魚眼レンズの場合、当該画像変換方法には、例えば、特開平11-18007号公報に記載された技術を適用することができる。 In step S23, the image processing unit 112 converts the distorted meter image acquired from the image sensor 27 into a flat image. The image conversion method for converting the distorted image into a flat image is not particularly limited. For example, when the wide-angle lens 26 is an equidistant projection type fisheye lens, the technique described in JP-A-11-18007 can be applied to the image conversion method, for example.
 平面画像に変換されたメータ画像は、指示針101及び目盛板102が表示される領域(有効領域)と、カバーガラス103の奥にあるカバー部材104が表示されて指示針101が隠れている領域(無効領域)と、を含んでいる。指示針101の回転中心は無効領域内に存在しているが、詳しくは後述するように、メータ画像の有効領域に基づいて同定される。 The meter image converted into a flat image includes an area where the indicator needle 101 and the scale plate 102 are displayed (effective area) and an area where the cover member 104 behind the cover glass 103 is displayed and the indicator needle 101 is hidden. (Invalid area) and is included. The center of rotation of the indicator needle 101 exists in the invalid region, but is identified based on the effective region of the meter image, as will be described in detail later.
 ステップS24では、画像処理部112は、メータ画像に二値化処理を施す。具体的には、画像処理部112は、メータ画像から輝度成分を抽出し、メータ画像の有効領域における各画素について、各輝度成分の値が所定の閾値より大きい場合は‘1’を、そうでない場合は‘0’を設定する。なお、メータ画像の無効領域のすべての画素については ‘0’を設定することで、例えば後述するテンプレート探索において、当該テンプレート内のすべての画素が‘0’である場合に、当該テンプレートが無効領域にあることを容易に検出できるようにしておく。 In step S24, the image processing unit 112 performs binarization processing on the meter image. Specifically, the image processing unit 112 extracts the luminance component from the meter image, and for each pixel in the effective region of the meter image, if the value of each luminance component is larger than a predetermined threshold value, it is set to '1', otherwise. If so, set '0'. By setting '0' for all the pixels in the invalid area of the meter image, for example, in the template search described later, when all the pixels in the template are '0', the template is the invalid area. Make it easy to detect what is in.
 ステップS25では、画像処理部112は、二値化されたメータ画像から目盛領域MR3(後述する図19参照)を抽出する。ここで、目盛領域とは、目盛板102上において、指示針101が示す位置と指示値との対応関係を表した目盛が描かれた領域をいう。 In step S25, the image processing unit 112 extracts the scale region MR3 (see FIG. 19 described later) from the binarized meter image. Here, the scale area means an area on the scale plate 102 on which a scale showing the correspondence between the position indicated by the indicator needle 101 and the indicated value is drawn.
 図19は、指示針メータ100aの目盛領域MR3の一例を示す図である。本実施形態では、目盛領域MR3は、メータ画像の有効領域に存在しており、外半径a、内半径b、指示針メータ100aの垂線より左方向の中心角φ-、同右方向の中心角φ+なる4つのパラメータ値を用いて記述される円弧帯のテンプレートにてモデル化される。これより目盛領域MR3の中心位置は、指示針101の回転中心と同一になる。 FIG. 19 is a diagram showing an example of the scale region MR3 of the indicator needle meter 100a. In the present embodiment, the scale region MR3 exists in the effective region of the meter image, and has an outer radius a, an inner radius b, a central angle φ− to the left of the perpendicular line of the indicator needle meter 100a, and a central angle φ + to the right. It is modeled by the arc band template described using the four parameter values. From this, the center position of the scale region MR3 becomes the same as the rotation center of the indicator needle 101.
 なお、目盛領域MR3のテンプレートは、4つのパラメータ(a値、b値、φ-値及びφ+値)によって特定される円弧帯の形状に限定されるものではない。すなわち、目盛領域MR3のテンプレートは、指示針101の回転中心を同定できるものであれば、円弧帯以外の形状であってもよい。 The template of the scale area MR3 is not limited to the shape of the arc band specified by the four parameters (a value, b value, φ- value and φ + value). That is, the template of the scale region MR3 may have a shape other than the arc band as long as it can identify the rotation center of the indicator needle 101.
 ステップS25では、さらに、画像処理部112は、テンプレートの中心位置及び4つのパラメータ値を変化させて、二値化されたメータ画像の有効領域内での最適なテンプレートの位置を探索する。そして、画像処理部112は、テンプレート内の画素値分布が均一になった場合に、そのテンプレートの中心位置及び4つのパラメータ値によって、目盛領域MR3を抽出する。 In step S25, the image processing unit 112 further changes the center position of the template and the four parameter values to search for the optimum template position within the effective region of the binarized meter image. Then, when the pixel value distribution in the template becomes uniform, the image processing unit 112 extracts the scale region MR3 according to the center position of the template and the four parameter values.
 具体的には、テンプレート探索の際、画像処理部112は、テンプレートの内部領域を幾つかの部分領域に分割し、それぞれの部分領域における平均画素値が当該テンプレートの内部全体に渡ってほぼ一定になった場合に、そのときの中心位置、a値、b値、φ-値及びφ+値として、目盛領域MR3を抽出する。 Specifically, at the time of template search, the image processing unit 112 divides the internal area of the template into several subregions, and the average pixel value in each subregion is substantially constant over the entire interior of the template. In that case, the scale region MR3 is extracted as the center position, a value, b value, φ− value, and φ + value at that time.
 ステップS26では、画像処理部112は、ステップS25で抽出された目盛領域MR3(a値、b値、φ-値及びφ+値)を用いて、指示針101の回転中心を同定する。本実施形態では、指示針101の回転中心は、目盛領域MR3をモデル化した円弧帯形状のテンプレートの中心位置に一致する。そこで、画像処理部112は、ステップS25で抽出された目盛領域MR3のテンプレートの中心位置を特定することで、指示針101の回転中心を同定する。 In step S26, the image processing unit 112 identifies the rotation center of the indicator needle 101 using the scale region MR3 (a value, b value, φ− value and φ + value) extracted in step S25. In the present embodiment, the center of rotation of the indicator needle 101 coincides with the center position of the arc band-shaped template that models the scale region MR3. Therefore, the image processing unit 112 identifies the rotation center of the indicator needle 101 by specifying the center position of the template of the scale region MR3 extracted in step S25.
 なお、画像処理部112は、目盛領域MR3が円弧帯形状でない場合は、目盛領域MR3の形状と指示針101の回転中心との関係をモデル化したテンプレートを予め用意しておけばよい。そして、画像処理部112は、目盛領域MRとテンプレートとのマッチング処理を行い、マッチング処理後のテンプレートに基づいて指示針101の回転中心を同定する。 If the scale region MR3 is not in the shape of an arc band, the image processing unit 112 may prepare in advance a template that models the relationship between the shape of the scale region MR3 and the rotation center of the indicator needle 101. Then, the image processing unit 112 performs matching processing between the scale region MR and the template, and identifies the rotation center of the indicator needle 101 based on the template after the matching processing.
 図20は、仮想PD設定ルーチンを示すフローチャートである。図21は、メータ画像の有効領域に設定される仮想PDを示す図である。 FIG. 20 is a flowchart showing a virtual PD setting routine. FIG. 21 is a diagram showing a virtual PD set in the effective area of the meter image.
 ステップS31では、画像処理部112は、前述の処理で同定された指示針101の回転中心を用いて、仮想PDが配置される円弧(配置円弧)を設定する。配置円弧とは、メータ画像の有効領域に含まれ、指示針101の回転中心の同心円上に配置されるすべての仮想PDの中心を通る円弧をいう。配置円弧の半径は、アナログメータ読取装置1aに要求される検出精度、具体的には、配置される仮想PDの個数や大きさに応じて決定される。 In step S31, the image processing unit 112 sets an arc (arrangement arc) in which the virtual PD is arranged by using the rotation center of the indicator needle 101 identified in the above process. The placement arc is an arc that is included in the effective area of the meter image and passes through the centers of all virtual PDs that are placed on the concentric circles of the rotation center of the indicator needle 101. The radius of the placement arc is determined according to the detection accuracy required for the analog meter reading device 1a, specifically, the number and size of the virtual PDs to be placed.
 本実施形態のアナログメータ読取装置1aは、図14に示す指示針メータ100aを対象にしているが、図1に示す指示針メータ100(指示針101の回転中心及びその周辺が隠れていないタイプ)でも対応可能である。この場合、配置円弧は、指示針101の回転中心と同一位置に中心があり、指示針メータ100の垂線より左方向の中心角がφ-、同右方向の中心角がφ+なる円弧として設定される。 The analog meter reading device 1a of the present embodiment targets the indicator needle meter 100a shown in FIG. 14, but the indicator needle meter 100 shown in FIG. 1 (a type in which the rotation center of the indicator needle 101 and its periphery are not hidden). But it is possible. In this case, the arrangement arc is set as an arc whose center is at the same position as the rotation center of the indicator needle 101, the central angle to the left of the perpendicular line of the indicator needle meter 100 is φ−, and the central angle to the right is φ +. ..
 配置円弧の中心角は、図21に示すように、前述の処理で同定された配置円弧の中心から目盛領域MR3の最小目盛値及び最大目盛値へ向けたそれぞれの半直線がなす角に等しい。配置円弧の半径の上限値は、配置円弧の全体がメータ画像の有効領域に含まれ、アナログメータ読取装置1aに要求される検出精度を満たせば、特に限定されない。一方、配置円弧の半径の下限値は、当該それぞれの半直線が有効領域と無効領域との間の境界線と交わる点と、当該配置円弧の中心と、を結ぶ線分の長さに等しい。 As shown in FIG. 21, the central angle of the placement arc is equal to the angle formed by the respective half straight lines from the center of the placement arc identified in the above process to the minimum scale value and the maximum scale value of the scale area MR3. The upper limit of the radius of the placement arc is not particularly limited as long as the entire placement arc is included in the effective area of the meter image and the detection accuracy required for the analog meter reading device 1a is satisfied. On the other hand, the lower limit of the radius of the placement arc is equal to the length of the line segment connecting the point where each half line intersects the boundary line between the effective region and the invalid region and the center of the placement arc.
 ステップS32では、画像処理部112は、設定された配置円弧上において規定される一連の仮想PDの各々の配置位置の中心(配置位置中心)を決定する。当該各々の配置位置中心は、上述した配置円弧の中心角を、配置すべき仮想PDの個数から1を減じた数で分割して得られる回転角毎に、配置円弧の中心から目盛領域MR3へ向けた半直線と、当該配置円弧との交点として与えられる。 In step S32, the image processing unit 112 determines the center (placement position center) of each placement position of the series of virtual PDs defined on the set placement arc. The center of each placement position is from the center of the placement arc to the scale area MR3 for each rotation angle obtained by dividing the center angle of the above-mentioned placement arc by the number obtained by subtracting 1 from the number of virtual PDs to be placed. It is given as the intersection of the pointed half straight line and the arrangement arc.
 例えば図21の場合、配置円弧の中心角はπ/2(=90°)である。この中心角の中に21個の仮想PDを設定する場合、(π/2)÷(21-1)=π/40(=4.5°)なる回転角毎に、配置円弧の中心から目盛領域MR3へ向けた半直線と、当該配置円弧との交点が、各々の仮想PDの配置位置中心となる。 For example, in the case of FIG. 21, the central angle of the arrangement arc is π / 2 (= 90 °). When 21 virtual PDs are set in this central angle, the scale is scaled from the center of the arrangement arc for each rotation angle of (π / 2) ÷ (21-1) = π / 40 (= 4.5 °). The intersection of the half straight line toward the region MR3 and the arrangement arc is the center of the arrangement position of each virtual PD.
 上記の処理から明らかなように、仮想PDの配置円弧の中心、換言すれば読取部10aの実質的な中心は、同定された指示針101の回転中心それ自体でもって動的に決定される。したがって、指示針101の回転中心から読取部10aの装着位置の中心までの平行移動ずれ(Δr)は、指示値の検出精度に影響を与えず、本実施形態では無視しても問題ない。 As is clear from the above processing, the center of the arrangement arc of the virtual PD, in other words, the substantial center of the reading unit 10a, is dynamically determined by the rotation center itself of the identified indicator needle 101. Therefore, the translational deviation (Δr) from the center of rotation of the indicator needle 101 to the center of the mounting position of the reading unit 10a does not affect the detection accuracy of the indicated value and can be ignored in the present embodiment.
 ステップS33では、画像処理部112は、各仮想PD(の配置位置中心)にインデックス番号を付与する。例えば図21の場合、各仮想PDの左から順に、1,2,3、…のインデックス番号が付与される。この場合、右端の仮想PDのインデックス番号は21となる。 In step S33, the image processing unit 112 assigns an index number to each virtual PD (center of the placement position). For example, in the case of FIG. 21, index numbers 1, 2, 3, ... Are assigned in order from the left of each virtual PD. In this case, the index number of the virtual PD at the right end is 21.
 ステップS34では、画像処理部112は、指示針メータ100aの垂線からの読取部10aの回転ずれ(Δθ)を算出する。例えば図21の場合、当該回転ずれ(Δθ)は、メータ画像から抽出される有効領域と無効領域との境界線と、イメージセンサ27の画素センサの横方向の並びである画素センサ列と、がなす角度に相当する。 In step S34, the image processing unit 112 calculates the rotation deviation (Δθ) of the reading unit 10a from the perpendicular line of the indicator needle meter 100a. For example, in the case of FIG. 21, the rotation deviation (Δθ) is determined by the boundary line between the effective region and the invalid region extracted from the meter image and the pixel sensor array which is the horizontal arrangement of the pixel sensors of the image sensor 27. Corresponds to the angle of formation.
 ステップS35では、画像処理部112は、各々の仮想PDのインデックス番号と配置位置中心とをまとめた仮想PD構成表を作成する。 In step S35, the image processing unit 112 creates a virtual PD configuration table that summarizes the index number and the center of the placement position of each virtual PD.
 ここで、上述した指示針メータ100aの垂線からの読取部10aの回転ずれ(Δθ)を0、配置円弧の中心を原点、有効領域と無効領域との境界線をy=dなる直線とした場合、図21に示す仮想PDの配置位置中心は、次のようになる。 Here, when the rotation deviation (Δθ) of the reading unit 10a from the perpendicular line of the indicator needle meter 100a described above is 0, the center of the arrangement arc is the origin, and the boundary line between the effective region and the invalid region is a straight line y = d. , The center of the placement position of the virtual PD shown in FIG. 21 is as follows.
 図22は、当該回転ずれ(Δθ)を0、配置円弧の中心を原点、有効領域と無効領域との境界線をy=dなる直線とした場合に、図21に示す仮想PDの配置位置を示す図である。 FIG. 22 shows the arrangement position of the virtual PD shown in FIG. 21 when the rotation deviation (Δθ) is 0, the center of the arrangement arc is the origin, and the boundary line between the effective area and the invalid area is a straight line y = d. It is a figure which shows.
 ここで図21と図22を比較すると、実際の仮想PDの配置位置は、正の向きにΔθの回転ずれがある。これより、仮想PDのインデックス番号と、仮想PDの配置位置中心(当該配置位置中心のxy座標)との関係を示す仮想PD構成表は、表1のようになる。 Comparing FIG. 21 and FIG. 22 here, the actual placement position of the virtual PD has a rotation deviation of Δθ in the positive direction. From this, the virtual PD composition table showing the relationship between the index number of the virtual PD and the placement position center of the virtual PD (xy coordinates of the placement position center) is as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ステップS36では、画像処理部112は、各々の仮想PDの配置位置中心に対して、仮想PDを設定する。具体的には、画像処理部112は、仮想PDの配置位置中心を基準とした所定範囲内の画素センサの集合体でもって仮想PDを設定する。 In step S36, the image processing unit 112 sets the virtual PD for the placement position center of each virtual PD. Specifically, the image processing unit 112 sets the virtual PD with an aggregate of pixel sensors within a predetermined range based on the center of the arrangement position of the virtual PD.
 図23は、縦方向7画素及び横方向7画素の合計49個の画素センサの集合体によって構成された仮想PDを示す図である。同図に示すように、仮想PDの配置位置中心は、配置円弧と、当該配置円弧の中心から目盛領域への半直線と、の交点によって決定される。そして仮想PDは、当該配置位置中心を基準にして、縦方向7画素及び横方向7画素の合計49個の画素センサの集合体によって構成される。 FIG. 23 is a diagram showing a virtual PD composed of an aggregate of a total of 49 pixel sensors having 7 pixels in the vertical direction and 7 pixels in the horizontal direction. As shown in the figure, the center of the placement position of the virtual PD is determined by the intersection of the placement arc and the half straight line from the center of the placement arc to the scale area. The virtual PD is composed of a total of 49 pixel sensors, 7 pixels in the vertical direction and 7 pixels in the horizontal direction, with reference to the center of the arrangement position.
 図24は、仮想PDのインデックス番号から指示値へ変換するための変換表を作成する変換表作成ルーチンを示すフローチャートである。変換表作成ルーチンは、初期設定の最後の処理として実行される。 FIG. 24 is a flowchart showing a conversion table creation routine for creating a conversion table for converting the index number of the virtual PD to the indicated value. The conversion table creation routine is executed as the final processing of the initial setting.
 ステップS41では、画像処理部112は、指示針101の回転中心を同定する。ここでは、画像処理部112は、図18に示す回転中心同定ルーチンの処理で得られた結果を再利用する。 In step S41, the image processing unit 112 identifies the center of rotation of the indicator needle 101. Here, the image processing unit 112 reuses the result obtained by the processing of the rotation center identification routine shown in FIG.
 ステップS42では、画像処理部112は、図21に示す目盛領域MR3及び仮想PDの配置位置中心の極座標変換処理を実行する。
具体的には、画像処理部112は、メータ画像から抽出された円弧帯形状の目盛領域MR3を、図22で示したx軸を基準とした回転角を横軸、半径方法を縦軸とした極座標平面に展開して、極座標変換された目盛領域MR4を生成する。そして、画像処理部112は、目盛領域MR4に対して、21個の仮想PDを均等に配置する。
In step S42, the image processing unit 112 executes the polar coordinate conversion process centered on the arrangement position of the scale area MR3 and the virtual PD shown in FIG.
Specifically, the image processing unit 112 has the arc band-shaped scale region MR3 extracted from the meter image with the rotation angle with respect to the x-axis shown in FIG. 22 as the horizontal axis and the radius method as the vertical axis. Expand to the polar coordinate plane to generate the polar coordinate-converted scale region MR4. Then, the image processing unit 112 evenly arranges 21 virtual PDs with respect to the scale area MR4.
 ここでは、画像処理部112は、図4に示すステップS9と同様の処理を実行する。但し、画像処理部112は、図19又は図21に示す目盛領域MR3、及び、仮想PD構成表を作成する際に用いた配置円弧の中心から各々の仮想PDの配置位置中心への半直線がなす回転角を用いることができる。 Here, the image processing unit 112 executes the same processing as in step S9 shown in FIG. However, in the image processing unit 112, the scale area MR3 shown in FIG. 19 or 21 and the half straight line from the center of the arrangement arc used when creating the virtual PD configuration table to the arrangement position center of each virtual PD are formed. The rotation angle of the eggplant can be used.
 図25は、図22に基づく極座標平面に展開された矩形の目盛領域MR4及び、当該目盛領域MR4に対応して配置された一連の仮想PDを示す図である。目盛領域MR4は、当該極座標平面において、横軸の(3π/4+Δθ)から(π/4+Δθ)までを幅、縦軸のaからbまでを高さとした矩形の領域で表される。 FIG. 25 is a diagram showing a rectangular scale region MR4 developed on a polar coordinate plane based on FIG. 22 and a series of virtual PDs arranged corresponding to the scale region MR4. The scale region MR4 is represented by a rectangular region having a width from (3π / 4 + Δθ) to (π / 4 + Δθ) on the horizontal axis and a height from a to b on the vertical axis in the polar coordinate plane.
 各々の仮想PDの配置位置中心は、抽出された目盛領域MR3に基づいて得られる仮想PDの配置円弧上に、目盛領域MR3の主たる目盛に対応させるかたちで動的に決定される。このことから、指示針メータ100aの垂線からの読取部10aの回転ずれ(Δθ)の影響は、ここでは無視できる。 The center of the placement position of each virtual PD is dynamically determined on the placement arc of the virtual PD obtained based on the extracted scale area MR3 so as to correspond to the main scale of the scale area MR3. From this, the influence of the rotation deviation (Δθ) of the reading unit 10a from the perpendicular line of the indicator needle meter 100a can be ignored here.
 換言すれば、当該回転ずれ(Δθ)は、図22で示すように各々の仮想PDの配置位置中心の算出には影響を与えるものの、目盛領域MR3の主たる目盛と仮想PDの配置位置との対応には影響しない。 In other words, the rotation deviation (Δθ) affects the calculation of the placement position center of each virtual PD as shown in FIG. 22, but the correspondence between the main scale of the scale area MR3 and the placement position of the virtual PD. Does not affect.
 ステップS43では、画像処理部112は、仮想PDのインデックス番号に基づく指示針メータ100aの指示針101の位置情報(実質的インデックス番号)を指示値へ変換するための変換表を作成する。 In step S43, the image processing unit 112 creates a conversion table for converting the position information (substantial index number) of the indicator needle 101 of the indicator needle meter 100a based on the index number of the virtual PD into the indicated value.
 ここでは、画像処理部112は、図4のステップS10と同様に、OCR技術を用いて目盛領域MR4近傍にある目盛数字を数値として認識し、極座標平面の当該目盛数字の位置情報に、認識された数値を関連付ける処理を実行する。この結果、次の表2に示す変換表が作成される。 Here, the image processing unit 112 recognizes the scale number in the vicinity of the scale region MR4 as a numerical value by using the OCR technique as in step S10 of FIG. 4, and is recognized by the position information of the scale number on the polar coordinate plane. Executes the process of associating the numbers. As a result, the conversion table shown in Table 2 below is created.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本実施形態では、表1の仮想PD構成表と、表2の変換表は、それぞれが独立した処理によって生成される。一方、仮想PD構成表と変換表は、共に、見出し列がインデックス番号(または当該インデックス番号に1:1に対応した回転角)であり、メータ画像から抽出される目盛領域MR3を用いて作成されたものである。このため、仮想PD構成表と変換表は、1つの表として作成されたものでもよい。 In the present embodiment, the virtual PD configuration table in Table 1 and the conversion table in Table 2 are generated by independent processing. On the other hand, both the virtual PD configuration table and the conversion table are created by using the scale area MR3 whose heading column is the index number (or the rotation angle corresponding to the index number 1: 1) and is extracted from the meter image. It is a thing. Therefore, the virtual PD configuration table and the conversion table may be created as one table.
 但し、仮想PD構成表は図17における読取部10aで使用されるのに対して、変換表は図17における制御部30で使用される。このため、仮想PD構成表と変換表が一体化した表は、読取部10aと制御部30が一体化された場合に好適である。 However, the virtual PD configuration table is used by the reading unit 10a in FIG. 17, while the conversion table is used by the control unit 30 in FIG. Therefore, the table in which the virtual PD configuration table and the conversion table are integrated is suitable when the reading unit 10a and the control unit 30 are integrated.
 上述した初期設定の終了後、制御部30は、読取部10aから出力された信号を用いて、次に示す読取処理ルーチンを実行することにより、指示針メータ100aの指示値を算出する。 After the above-mentioned initial setting is completed, the control unit 30 calculates the indicated value of the indicator needle meter 100a by executing the following reading processing routine using the signal output from the reading unit 10a.
 図26は、読取処理ルーチンを示すフローチャートである。本実施形態において読取部10aと制御部30との間で送受信されるデータは、第1実施形態において読取部10と制御部30との間で送受信されるデータと同じである。 FIG. 26 is a flowchart showing a reading processing routine. The data transmitted / received between the reading unit 10a and the control unit 30 in the present embodiment is the same as the data transmitted / received between the reading unit 10 and the control unit 30 in the first embodiment.
 このため、図26に示す読取処理ルーチンは、フォトダイオードが仮想PDに代わった点(なお、インデックス番号も前者が0~20であるのに対し、後者は1~21としている。)、及び、図8に示すステップS14がステップS14aに代わった点を除き、図8に示す読取処理ルーチンと同じである。そこで、以下のステップS14aでは、主に、図8に示すステップS14と異なる点について説明する。 Therefore, in the reading processing routine shown in FIG. 26, the photodiode has replaced the virtual PD (note that the index numbers are 0 to 20 for the former and 1 to 21 for the latter), and It is the same as the reading processing routine shown in FIG. 8 except that step S14 shown in FIG. 8 has replaced step S14a. Therefore, in the following step S14a, the points different from the step S14 shown in FIG. 8 will be mainly described.
 ステップS14aでは、CPU34は、読取部10aの画像処理部112を制御して、各仮想PD(に対応する複数の画素センサ)の出力信号を読み出す。読み出された各仮想PDの出力信号は、制御部30のPD切替部32に供給される。 In step S14a, the CPU 34 controls the image processing unit 112 of the reading unit 10a to read the output signals of each virtual PD (a plurality of pixel sensors corresponding to the virtual PD). The output signal of each virtual PD read out is supplied to the PD switching unit 32 of the control unit 30.
 さらに、CPU34は、各仮想PDの出力信号の中から、インデックス番号1~21までの仮想PDの出力信号を順次切り替えて読み出すように、PD切替部32を制御する。PD切替部32から出力された信号は、A/Dコンバータ33によってアナログ/デジタル変換され、CPU34に供給される。この結果、CPU34は、インデックス番号1~21までの仮想PDの出力信号を受信する。 Further, the CPU 34 controls the PD switching unit 32 so as to sequentially switch and read the output signals of the virtual PDs with index numbers 1 to 21 from the output signals of each virtual PD. The signal output from the PD switching unit 32 is analog-to-digital converted by the A / D converter 33 and supplied to the CPU 34. As a result, the CPU 34 receives the output signals of the virtual PDs with index numbers 1 to 21.
 一方、読取部10aでは、制御部30による読取処理ルーチンの実行時において、制御部30からの制御信号(ステップS13)に従って、LED24が点灯する。これにより、指示針メータ100aに光が照射される。そして、読取部10aは、制御部30によるステップS15aの実行の際、次の信号読出ルーチンを実行して、制御部30に信号を供給する。 On the other hand, in the reading unit 10a, when the control unit 30 executes the reading processing routine, the LED 24 lights up according to the control signal (step S13) from the control unit 30. As a result, the indicator needle meter 100a is irradiated with light. Then, when the control unit 30 executes step S15a, the reading unit 10a executes the next signal reading routine to supply a signal to the control unit 30.
 図27は、信号読出ルーチンを示すフローチャートである。
 ステップS51では、読取部10aの画像処理部112は、LED24の点灯後に、広角レンズ26からの入射光に基づいてイメージセンサ27で生成された歪みのあるメータ画像を取得する。
 ステップS52では、画像処理部112は、イメージセンサ27から取得した歪みのあるメータ画像を平面画像へ変換する。
FIG. 27 is a flowchart showing a signal reading routine.
In step S51, the image processing unit 112 of the reading unit 10a acquires a distorted meter image generated by the image sensor 27 based on the incident light from the wide-angle lens 26 after the LED 24 is turned on.
In step S52, the image processing unit 112 converts the distorted meter image acquired from the image sensor 27 into a flat image.
 ステップS53では、画像処理部112は、記憶部113から仮想PD構成表(表1)を読み出し、読み出した仮想PD構成表に基づき、すべての仮想PDの配置位置中心を求める。そして、画像処理部112は、各々の配置位置中心に存在する画素センサ(中心画素センサ)及びその周囲に存在する画素センサの合計49個の画素センサの出力信号を合計して、各々の仮想PDの出力信号を計算する。 In step S53, the image processing unit 112 reads the virtual PD configuration table (Table 1) from the storage unit 113, and obtains the placement position centers of all the virtual PDs based on the read virtual PD configuration table. Then, the image processing unit 112 sums the output signals of a total of 49 pixel sensors of the pixel sensor (center pixel sensor) existing at the center of each arrangement position and the pixel sensors existing around the pixel sensor, and each virtual PD Calculate the output signal of.
 例えば図23において、仮想PDを構成する各々の画素センサの出力信号強度をv(p,q)とする。但し、v(0,0)は、仮想PDの中心画素センサの出力信号強度である。p,qは、中心画素センサを基準とした場合の他の画素センサの横方向及び縦方向それぞれの相対アドレスである。 For example, in FIG. 23, the output signal strength of each pixel sensor constituting the virtual PD is v (p, q). However, v (0,0) is the output signal strength of the central pixel sensor of the virtual PD. p and q are relative addresses in the horizontal direction and the vertical direction of the other pixel sensors when the central pixel sensor is used as a reference.
 図23に示された縦方向7画素及び横方向7画素の合計49個の画素センサで構成された仮想PDの出力信号強度をVは、次の式1で表される。 V represents the output signal strength of the virtual PD composed of a total of 49 pixel sensors of 7 pixels in the vertical direction and 7 pixels in the horizontal direction shown in FIG. 23 by the following equation 1.
式1 Equation 1
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000003
 画像処理部112は、すべての仮想PDについて式1を計算し、計算結果を各々の仮想PDの出力信号として記憶部113に保存する。保存された仮想PDの出力信号は、後述するステップS55において読み出された後、制御部30へ供給される。 The image processing unit 112 calculates Equation 1 for all virtual PDs, and stores the calculation result in the storage unit 113 as an output signal of each virtual PD. The saved virtual PD output signal is read out in step S55, which will be described later, and then supplied to the control unit 30.
 ステップS54では、画像処理部112は、仮想PDのインデックス番号iについて、i=1に設定する。
 ステップS55では、画像処理部112は、記憶部113から仮想PD(i)の出力信号を読み出して、制御部30へ供給する。なお、最初は仮想PD(1)の出力信号が読み出され、制御部30へ供給される。
In step S54, the image processing unit 112 sets i = 1 for the index number i of the virtual PD.
In step S55, the image processing unit 112 reads the output signal of the virtual PD (i) from the storage unit 113 and supplies it to the control unit 30. At first, the output signal of the virtual PD (1) is read and supplied to the control unit 30.
 ステップS56では、画像処理部112は、仮想PD切替制御の有無を確認する。具体的には、画像処理部112は、制御部30のPD切替部32から、次のインデックス番号を持つ仮想PDへ切り替える旨の制御信号の受信の有無を確認する。当該制御信号を受信した場合はステップS57へ進む。 In step S56, the image processing unit 112 confirms the presence / absence of virtual PD switching control. Specifically, the image processing unit 112 confirms whether or not the PD switching unit 32 of the control unit 30 has received a control signal to switch to the virtual PD having the next index number. When the control signal is received, the process proceeds to step S57.
 ステップS57では、画像処理部112は、インデックス番号をインクリメントして(i=i+1)、ステップS55へ戻る。すなわち、記憶部113からすべての仮想PDの出力信号が読み出されまで、ステップS55からステップS57が繰り返し実行される。 In step S57, the image processing unit 112 increments the index number (i = i + 1) and returns to step S55. That is, steps S55 to S57 are repeatedly executed until the output signals of all the virtual PDs are read from the storage unit 113.
 一方、ステップS56において、前述の制御信号を受信していない(タイムアウトした)場合は、すべての仮想PDの出力信号が読み出されたので、本ルーチンを終了する。なお、本ルーチンによって読取部10aから制御部30に供給された仮想PDの出力信号は、前述のステップS15において、指示値の算出で使用される。 On the other hand, in step S56, when the above-mentioned control signal is not received (timed out), the output signals of all virtual PDs have been read, and this routine is terminated. The output signal of the virtual PD supplied from the reading unit 10a to the control unit 30 by this routine is used in the calculation of the indicated value in step S15 described above.
 以上のように、第3実施形態に係るアナログメータ読取装置1aは、指示針メータ100aを撮影する読取部10aを用いることにより、指示針メータ100aに対して読取部10aの平行移動ずれ及び回転ずれがある場合であっても、平行移動ずれ及び回転ずれの影響を受けることなく、高精度に、指示針メータ100aの指示値を算出することができる。 As described above, the analog meter reading device 1a according to the third embodiment uses the reading unit 10a for photographing the indicating needle meter 100a, so that the reading unit 10a is translated and rotated with respect to the indicating needle meter 100a. Even if there is, the indicated value of the indicator needle meter 100a can be calculated with high accuracy without being affected by the translation deviation and the rotation deviation.
 また、アナログメータ読取装置1aは、指示針101の回転中心が隠れている指示針メータ100aであっても、メータ画像に基づいて当該回転中心を同定することにより、指示針メータ100aの指示値を算出することができる。 Further, the analog meter reading device 1a can obtain the indicated value of the indicator needle meter 100a by identifying the rotation center based on the meter image even if the indicator needle meter 100a has the rotation center of the indicator needle 101 hidden. Can be calculated.
 さらに、アナログメータ読取装置1aは、指示針101の位置情報を検出するための一連の仮想PDについて、任意の大きさ・間隔に設定可能であるため、ユーザの希望する検出精度・信頼度で指示値を算出することができる。 Further, since the analog meter reading device 1a can set a series of virtual PDs for detecting the position information of the indicator needle 101 to an arbitrary size and interval, the analog meter reader 1a indicates with the detection accuracy and reliability desired by the user. The value can be calculated.
 なお、本発明は、上述した実施形態に限定されるものではなく、特許請求の範囲に記載された事項の範囲内で設計変更されたものにも適用可能である。
 例えば、第3実施形態では、図18、図20、図24の各ルーチンは、読取部10aにて実行されたが、制御部30やサーバ装置200で実行した上で、その結果を読取部10aに供給してもよい。また、仮想PDは、図21に示すように目盛領域MR3の内側に設定される場合に限らず、目盛領域MR3の外側に設定されてもよい。
The present invention is not limited to the above-described embodiment, but can also be applied to those whose design has been changed within the scope of the matters described in the claims.
For example, in the third embodiment, the routines of FIGS. 18, 20, and 24 were executed by the reading unit 10a, but after being executed by the control unit 30 and the server device 200, the results are read by the reading unit 10a. May be supplied to. Further, the virtual PD is not limited to the case where it is set inside the scale area MR3 as shown in FIG. 21, and may be set outside the scale area MR3.
1,1a アナログメータ読取装置
10,10a 読取部
13 フォトダイオード
14 LED素子
25 カメラモジュール
30 制御部
100,100a 指示針メータ
101 指示針
102 目盛板
103 カバーガラス

 
1,1a Analog meter reader 10,10a Reading unit 13 Photodiode 14 LED element 25 Camera module 30 Control unit 100, 100a Indicator needle Meter 101 Indicator needle 102 Scale plate 103 Cover glass

Claims (5)

  1.  複数の目盛に割り当てられた数値が表示された目盛板と、前記目盛板の指示値を示し、前記目盛板の表示面側から所定距離にある平面上で所定の回転中心を基準に回転する指示針と、前記指示針を含むように前記目盛板の表示面側を覆う透明部材と、を有する指示針メータの前記指示値を読み取るアナログメータ読取装置であって、
     発光素子と、前記発光素子から発されて前記指示針メータの前記指示針あるいは前記目盛板で反射された光を複数の画素センサにより検出する撮像素子と、前記撮像素子内に前記指示針メータの前記目盛板に表示された前記数値の配列方向の外側又は内側に仮想的に複数の仮想センサを配置し、前記配置方向の順に前記複数の仮想センサにインデックス番号を割り当てて、前記複数の仮想センサのそれぞれを構成する1つ以上の画素センサの出力信号を用いて、前記複数の仮想センサの各々の出力信号を算出する演算処理部と、を含む読取部と、
     前記演算処理部で算出された前記複数の仮想センサの各々の出力信号のうち、少なくとも1つの仮想センサの出力信号に基づいて、前記指示針の存在位置に対応する実質的なインデックス番号を検出するインデックス番号検出部と、
     を備えたアナログメータ読取装置。
    An instruction to indicate a scale plate on which numerical values assigned to a plurality of scales are displayed and an indicated value of the scale plate, and to rotate with reference to a predetermined rotation center on a plane at a predetermined distance from the display surface side of the scale plate. An analog meter reading device that reads the indicated value of an indicator needle meter having a needle and a transparent member that covers the display surface side of the scale plate so as to include the indicator needle.
    A light emitting element, an image pickup element that detects light emitted from the light emitting element and reflected by the indicator needle or the scale plate of the indicator needle meter by a plurality of pixel sensors, and an image pickup element of the indicator needle meter in the image pickup element. A plurality of virtual sensors are virtually arranged outside or inside the arrangement direction of the numerical values displayed on the scale plate, index numbers are assigned to the plurality of virtual sensors in the order of the arrangement direction, and the plurality of virtual sensors are assigned. A reading unit including an arithmetic processing unit that calculates each output signal of the plurality of virtual sensors using the output signals of one or more pixel sensors constituting each of the above.
    Of the output signals of each of the plurality of virtual sensors calculated by the arithmetic processing unit, a substantial index number corresponding to the presence position of the indicator needle is detected based on the output signal of at least one virtual sensor. Index number detector and
    An analog meter reader equipped with.
  2.  前記演算処理部は、
     前記読取部が前記指示針メータの前記透明部材に装着された状態で前記撮像素子により生成される前記指示針メータの撮影画像から、前記指示針メータの目盛領域の輝度成分を抽出し、抽出された前記目盛領域の輝度成分に基づいて、前記指示針メータの指示針の回転中心を同定する回転中心同定部と、
     前記回転中心同定部により同定された回転中心を中心する同心円上であって、前記指示針メータの前記目盛板に表示された前記数値の配列方向の外側又は内側に円弧、を設定して、前記円弧上に前記複数の仮想センサを配置し、前記配置方向の順に前記複数の仮想センサにインデックス番号を割り当てることで前記複数の仮想センサを設定する仮想センサ設定部と、
     前記仮想センサ設定部により設定された複数の仮想センサのそれぞれを構成する1つ以上の画素センサの出力信号を用いて、前記複数の仮想センサの各々の出力信号を算出する出力信号算出部と、
     を有する請求項1に記載のアナログメータ読取装置。
    The arithmetic processing unit
    The brightness component of the scale region of the indicator needle meter is extracted and extracted from the captured image of the indicator needle meter generated by the image pickup device with the reading unit attached to the transparent member of the indicator needle meter. A rotation center identification unit that identifies the rotation center of the indicator needle of the indicator needle meter based on the brightness component of the scale region.
    An arc is set outside or inside in the arrangement direction of the numerical values displayed on the scale plate of the indicator needle meter on a concentric circle centered on the rotation center identified by the rotation center identification unit. A virtual sensor setting unit that sets the plurality of virtual sensors by arranging the plurality of virtual sensors on an arc and assigning index numbers to the plurality of virtual sensors in the order of the arrangement direction.
    An output signal calculation unit that calculates the output signal of each of the plurality of virtual sensors by using the output signals of one or more pixel sensors constituting each of the plurality of virtual sensors set by the virtual sensor setting unit.
    The analog meter reading device according to claim 1.
  3.  前記アナログメータ読取装置は、さらに、
     前記複数の仮想センサに割り当てられた前記インデックス番号と、前記目盛板に表示された前記数値、との対応を記述した変換表を記憶する変換表記憶部と、
     前記変換表記憶部に記憶された前記変換表と、前記インデックス番号検出部により検出された前記実質的なインデックス番号と、に基づいて、前記指示値を算出する指示値算出部と、
     を備えた請求項1又は請求項2に記載のアナログメータ読取装置。
    The analog meter reader further comprises
    A conversion table storage unit that stores a conversion table that describes the correspondence between the index numbers assigned to the plurality of virtual sensors and the numerical values displayed on the scale plate.
    An instruction value calculation unit that calculates the instruction value based on the conversion table stored in the conversion table storage unit and the substantial index number detected by the index number detection unit.
    The analog meter reading device according to claim 1 or 2.
  4.  前記回転中心同定部により同定された回転中心と、前記目盛板に表示された前記数値を含む前記目盛領域と、前記複数の仮想センサに割り当てられた前記インデックス番号と、に基づいて、前記変換表を作成する変換表作成部を更に備え、
     前記記憶部は、前記変換表作成部により作成された前記変換表を記憶する
     請求項3に記載のアナログメータ読取装置。
    The conversion table is based on the rotation center identified by the rotation center identification unit, the scale area including the numerical value displayed on the scale plate, and the index number assigned to the plurality of virtual sensors. It also has a conversion table creation unit to create
    The analog meter reading device according to claim 3, wherein the storage unit stores the conversion table created by the conversion table creation unit.
  5.  前記読取部は、前記指示値算出部から分離されている
     請求項4に記載のアナログメータ読取装置。
     

     
    The analog meter reading device according to claim 4, wherein the reading unit is separated from the indicated value calculation unit.


PCT/JP2019/042952 2019-04-12 2019-10-31 Analog meter reading device WO2020208849A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021513158A JP7423869B2 (en) 2019-04-12 2019-10-31 analog meter reading device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019076656A JP6667771B1 (en) 2019-04-12 2019-04-12 Analog meter reader
JP2019-076656 2019-04-12

Publications (1)

Publication Number Publication Date
WO2020208849A1 true WO2020208849A1 (en) 2020-10-15

Family

ID=70000626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042952 WO2020208849A1 (en) 2019-04-12 2019-10-31 Analog meter reading device

Country Status (2)

Country Link
JP (2) JP6667771B1 (en)
WO (1) WO2020208849A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114279624A (en) * 2021-12-28 2022-04-05 广东电网有限责任公司 Dial plate device for converting pointer into digital remote transmission signal

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111445685B (en) * 2020-04-29 2024-03-22 国网上海市电力公司 Power consumption information acquisition terminal function detection device and method thereof
CN114155452B (en) * 2021-11-29 2022-11-15 江苏红光仪表厂有限公司 Information identification method for industrial automation instrument
JP7360487B2 (en) * 2022-02-16 2023-10-12 シャープ株式会社 Device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032028A (en) * 2003-07-07 2005-02-03 Ntt Power & Building Facilities Inc Method for reading indicator value of indicator needle rotating meter, device for reading indicator value of indicator needle rotating meter, and program for reading meter indicator value
WO2005064563A1 (en) * 2003-12-26 2005-07-14 Yeonmi Kim Automatic meter reading method and apparatus using pattern analysis for levels of output signals from multiple photoelectric sensors
JP2012104032A (en) * 2010-11-12 2012-05-31 Kansai Electric Power Co Inc:The Analog meter reading device and reading method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770000B2 (en) * 1988-04-07 1995-07-31 東邦瓦斯株式会社 Meter sensor
JPH09159490A (en) * 1995-12-04 1997-06-20 Mitsui Zosen Akishima Kenkyusho:Kk Remote measuring apparatus for analog measuring instrument
JPH09318393A (en) * 1996-06-03 1997-12-12 Kansai Electric Power Co Inc:The Optical position detector for indicator needle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032028A (en) * 2003-07-07 2005-02-03 Ntt Power & Building Facilities Inc Method for reading indicator value of indicator needle rotating meter, device for reading indicator value of indicator needle rotating meter, and program for reading meter indicator value
WO2005064563A1 (en) * 2003-12-26 2005-07-14 Yeonmi Kim Automatic meter reading method and apparatus using pattern analysis for levels of output signals from multiple photoelectric sensors
JP2012104032A (en) * 2010-11-12 2012-05-31 Kansai Electric Power Co Inc:The Analog meter reading device and reading method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114279624A (en) * 2021-12-28 2022-04-05 广东电网有限责任公司 Dial plate device for converting pointer into digital remote transmission signal

Also Published As

Publication number Publication date
JP2020173733A (en) 2020-10-22
JPWO2020208849A1 (en) 2020-10-15
JP7423869B2 (en) 2024-01-30
JP6667771B1 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
WO2020208849A1 (en) Analog meter reading device
US10931924B2 (en) Method for the generation of a correction model of a camera for the correction of an aberration
CN109152537A (en) A kind of skin examination equipment of exception for identification
US6856935B1 (en) Camera tracking system for a virtual television or video studio
US10041814B2 (en) Optical measurement system, method and scaleplate therefor
US10210426B2 (en) Position estimation of light source of a luminaire from light footprint
CN105157568A (en) Coordinate measuring device
JP6420506B2 (en) Measuring device, system, method, and program
KR20110004056A (en) Liquid crystal display
CN104977155A (en) Rapid measurement method of LED light distribution curve
US20230386081A1 (en) Camera auto-calibration system
CN105453418A (en) Method and apparatus for identifying locations of solar panels
CN112051920B (en) Sight line falling point determining method and device
CN112611399A (en) Device for calibrating laser swinger
CN104793458A (en) Method and system for focusing multi-camera module based on near-infrared environment
US20030076498A1 (en) Process and device for the optical marking of a target region of a color measuring device on a measurement surface
KR102533385B1 (en) Control device
US20130070089A1 (en) Position detecting device and image processing system
JPH05133715A (en) Target mark, image pickup device, relative position and attitude measuring device using them
CN106248058A (en) A kind of for the storage localization method of means of transport, Apparatus and system
KR101243848B1 (en) Device of Hook-Angle Recognition for Unmanned Crane
KR100913165B1 (en) Apparatus and method for detecting a localization of mobility
KR20180037347A (en) Board inspection apparatus and method of compensating board distortion using the same
TWM592540U (en) Electronic device
JP2013055616A (en) Image display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923815

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021513158

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923815

Country of ref document: EP

Kind code of ref document: A1