WO2020208556A1 - Válvula de manejo de vía aérea artificial con adaptación a dispositivos respiratorios – válvula de berna - Google Patents

Válvula de manejo de vía aérea artificial con adaptación a dispositivos respiratorios – válvula de berna Download PDF

Info

Publication number
WO2020208556A1
WO2020208556A1 PCT/IB2020/053371 IB2020053371W WO2020208556A1 WO 2020208556 A1 WO2020208556 A1 WO 2020208556A1 IB 2020053371 W IB2020053371 W IB 2020053371W WO 2020208556 A1 WO2020208556 A1 WO 2020208556A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
port
cleaning
airway
artificial airway
Prior art date
Application number
PCT/IB2020/053371
Other languages
English (en)
French (fr)
Inventor
David Alexander LEMOS MARTINEZ
Original Assignee
Fundación Valle Del Lili
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundación Valle Del Lili filed Critical Fundación Valle Del Lili
Priority to MX2021012360A priority Critical patent/MX2021012360A/es
Publication of WO2020208556A1 publication Critical patent/WO2020208556A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/04Tracheal tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/22Valves or arrangement of valves
    • A61M39/24Check- or non-return valves

Definitions

  • the present invention refers to an artificial airway management device or valve with adaptation to respiratory devices and equipment or Berne Valve, which comprises a body with couplings for the different airway support devices, a port for supplying medication using metered dose inhalers (MDIs) with their respective cap, a plurality of universal port caps that prevent pressure loss when the universal ports are not in use, an airway seal valve and a shunt cap. cleaning that mates with a diaphragm of the cleaning bypass.
  • MDIs metered dose inhalers
  • This valve is specially adapted to respiratory devices (endotracheal tubes, tracheostomy tubes, passive humidifiers, mechanical ventilator circuit, BVM device - Bag Valve Mask, among others), it allows the supply of inhaled medications, the connection of linear capnographs, the monitoring of nitric oxide therapy, aspiration of secretions, tracheal gas insufflation (IGT); Likewise, it avoids lung collapse during the disconnection of ventilatory support and allows the performance of procedures such as fiberoptic bronchoscopies, facilitating the intervention of the critically ill patient with support of invasive mechanical ventilation.
  • respiratory devices endotracheal tubes, tracheostomy tubes, passive humidifiers, mechanical ventilator circuit, BVM device - Bag Valve Mask, among others
  • ITT tracheal gas insufflation
  • the present invention belongs to the field of biomedical technology. Specifically refers to a device or valve specially adapted for connection to artificial airways such as endotracheal tubes, tracheostomy tubes, among other artificial airways and other medical devices related to invasive mechanical ventilation, such as mechanical ventilator circuits, BVM device, passive humidifiers, linear capnographs, tracheal gas insufflation devices (IGT), devices for performing fiberoptic bronchoscopies, nitric oxide sensors, closed suction devices and tracheo-bronchial secretion cleaning, devices for the delivery of metered dose medications (MDI), among others; likewise, it refers to devices that prevent pulmonary structures from collapsing.
  • invasive mechanical ventilation such as mechanical ventilator circuits, BVM device, passive humidifiers, linear capnographs, tracheal gas insufflation devices (IGT), devices for performing fiberoptic bronchoscopies, nitric oxide sensors, closed suction devices and tracheo-bronchial secreti
  • a multipurpose device that allows routine procedures to be performed without disconnecting the patient from the ventilator; and at the same time that, although disconnection is essential, there is no lung collapse, maintaining lung recruitment and avoiding adverse consequences for the patient.
  • Patents US6014972 and US6718969 present devices that include alternatives for the delivery of medications from metered dose inhalers into the respiratory tract, adding a device between the mechanical ventilator and an endotracheal tube.
  • the patient requires the supply of other medicinal gases or the performance of other procedures such as cleaning of secretions from the airway, the adaptation of other devices is necessary.
  • Patent document WO2018 / 126008 presents an alternative for cleaning the airway of intubated patients with an endotracheal cannula that is coupled to a mechanical ventilator through the use of a manifold designed for sizes smaller than 5mm that evacuates secretions with low pressure losses. .
  • C02 measurement or drug delivery is required, other devices must be fitted. Likewise, it also does not allow the temporary disconnection of the patient without de-recruitment.
  • the international publication W02008134330 discloses a device for the delivery of medicines through the use of metered dose inhalers together, which comprises two valves that seal the inspiratory flow and the expiratory flow and a compartment for the deposit of the patient's secretions.
  • the size of the device and its connection schemes favor the impaction phenomenon present in metered dose inhalers, preventing the medicine from reaching beyond the upper airways. Additionally, it does not allow the cleaning of secretions, nor the aspiration of these, nor the use in conjunction with sensors for the measurement of C02 flow, nor the use of nitric oxide.
  • the present invention prevents lung collapse by means of a valve, thereby allowing the safe disconnection of the ventilator in a critically ill patient.
  • it allows the connection of various devices such as capnograph, sources of nitric oxide, as well as drug delivery (MDI), airway secretion clearance, and tracheal gas insufflation (IGT). It is effectively coupled to mechanical ventilators through its circuit, to passive humidifiers, or to BVM devices (Bag Valve Mask) during intra-hospital transfers, avoiding complications derived from depressurization.
  • the present invention refers to a device, also called Bern Valve, for patients with artificial airway, endotracheal tube, tracheostomy tube, among other types of artificial airway, connected to an invasive mechanical ventilation support and requiring ventilatory parameters. high for the management of selected complications of hypoxemia, hypercapnia, ARDS (acute respiratory distress syndrome), among other types of associated pathologies, which compromise the cardiopulmonary system.
  • Bern Valve for patients with artificial airway, endotracheal tube, tracheostomy tube, among other types of artificial airway, connected to an invasive mechanical ventilation support and requiring ventilatory parameters.
  • the present invention comprises an end proximal to the patient that is characterized by having a diameter adaptable to the connection of the endotracheal tube, tracheostomy cannula, among other types of artificial airway that is characterized by comprising a selected pressure coupling system, among others types of coupling. It also includes an end distal to the patient, which is characterized by adapting to the passive humidifier, the mechanical ventilator circuit or the BVM device. Similarly, this system comprises at least one valve that allows closing the air flow from the mechanical ventilator and, in turn, prevents depressurization and subsequent collapse of the lung when performing interventions that require disconnection of the ventilatory support (change of filters, inhalation therapy, intrahospital transfers, among other types of interventions used in patients with artificial airways).
  • the device also includes a shunt or cleaning port to facilitate the drainage and cleaning of secretions from the patient by means of suction or to perform tracheal gas insufflation (IGT) without requiring disconnection of the mechanical ventilator and a Universal port at the top of the cleaning shunt that allows the instillation of saline during tracheal secretion aspiration processes or for connection of the nitric oxide sensor to measure or deliver nitric oxide.
  • ITT tracheal gas insufflation
  • Universal port at the top of the cleaning shunt that allows the instillation of saline during tracheal secretion aspiration processes or for connection of the nitric oxide sensor to measure or deliver nitric oxide.
  • it has a port for the measurement of carbon dioxide in the airway during the respiratory cycle (by devices such as linear capnographs), so that it allows continuous monitoring of C02.
  • MDI metered dose inhalers
  • Figure 1 corresponds to the isometric view of the body (1) of the device according to the invention where its derivations are appreciated, that is, the coupling to the artificial airway (1 A), a coupling to the passive humidifier or to the mechanical ventilator circuit (1 B), a coupling for inhalation port (1 C), a universal main port (1 D), a universal port of the cleaning tap (1 E) and a cleaning tap (1 F).
  • Figure 2 corresponds to the isometric view of the Bern Valve with the cover for the IDM supply port (3) and the covers for the universal port (5) open.
  • Figure 3 shows the top view of the Bern Valve, in which the port for the supply of inhaled medicine (2) with its corresponding cover (3), the valve for airway seal (6), the cover of cleaning bypass (7) and universal port caps (5) open.
  • Figure 4 corresponds to the view from the artificial airway coupling (1A) of the Berne Valve, where the directing of the port for delivery of (IDM) (2) towards the patient's airway can be observed.
  • Figure 5 consists of the isometric view of the valve for airway seal (6).
  • Figure 6 corresponds to the isometric view of the IDM supply port (2) with its cover (3) open.
  • Figure 7 corresponds to the cross section along the main path of the open Bern Valve.
  • Figure 8 corresponds to the isometric view of the universal port cover (5).
  • Figure 9 corresponds to a view of the Bern Valve with an exploded view of the cover of the cleaning bypass (7) and the diaphragm of the cleaning bypass (72).
  • Figure 10 comprises two sections: Figure 10a and Figure 10b.
  • Figure 10a shows a top view with a sectional section and the longitudinal section of the section in the embodiment of the invention where the cleaning bypass cover (7), the cleaning bypass cover (71) and the diaphragm of the cap of the cleaning bypass (72) are characterized by being a single solid piece.
  • Figure 10b shows an exploded view of the embodiment of the invention where the cover of the cleaning bypass (7), the cover of the cover of the cleaning bypass (71) and the diaphragm of the cover of the cleaning bypass cleaning (72) are characterized by being a single solid piece.
  • Figure 1 1 corresponds to the isometric side view of the IDM supply port (2) with a spring (8) in the internal base.
  • Figure 12 corresponds to a view from inside the valve, from the artificial airway coupling (1 A), when the IDM supply port (2) is immersed in the inhalation port (3).
  • the present invention relates to a device for the management of critically ill patients connected to an invasive mechanical ventilation support, also called the Berne Valve.
  • This device is characterized by comprising an artificial airway coupling (1 A) and a coupling to the mechanical ventilator circuit (1 B) or passive humidifiers or BVM device which allows the connection between selected artificial airways of endotracheal tube, cannulae tracheostomy, among other types of artificial airways, with BVM devices (Bag Valve Mask), ventilator circuits, passive humidifiers, closed suction tubes, among other types of devices used in conjunction with artificial airways.
  • BVM devices Bog Valve Mask
  • the Bern Valve is characterized by comprising a body (1) with couplings for the different airway support devices, a port for supply of IDM (2) with its respective cover (3) for port for IDM supply, a plurality of covers for universal port (5) that avoid pressure loss when the universal ports are not in use, a valve for seal of way (6) and a cover of the cleaning bypass (7) that is coupled with a diaphragm of the cleaning bypass (72), and with the body (1), as shown in Figure 2.
  • the Body (1) is characterized by being a single, solid piece that comprises a plurality of derivations that allow the connection of the valve according to the invention with different types of equipment, devices and instruments for the support of airways.
  • the body (1) comprises an artificial airway coupling (1 A), a coupling to the passive humidifier or to the mechanical ventilator circuit (1 B), a coupling for inhalation port (1 C), a plurality of universal ports and a cleaning bypass (1 F), as shown in Figure 1.
  • the body (1) comprises an end proximal to the patient called the artificial airway coupling (1 A), which in the preferred embodiment of the invention is characterized by being tubular; the endotracheal tube or tracheostomy tube is attached to it by means of selected couplings of pressure coupling, mechanical interference and geometric interference, and comprises a distal end to the patient called the coupling to the passive humidifier or to the mechanical ventilator circuit (1 B), the which is coupled with devices for artificial mechanical ventilation selected from passive humidifiers, ventilator circuits and manual ventilation devices such as the BVM, among others.
  • the coupling to the artificial airway (1 A) and the coupling to the passive humidifier or to the mechanical ventilator circuit (1 B), in the preferred embodiment of the invention, are characterized by comprising a stepped cylindrical shape, which allows the safe insertion of artificial airways and devices for artificial mechanical ventilation and is characterized by having a length such that it prevents involuntary disconnection due to the pressure exerted by the mechanical ventilator or slight movements of the Berne Valve.
  • the body (1) at its proximal end comprises an artificial airway coupling (1A), which, in the preferred embodiment of the invention, is characterized by being cylindrical and having a diameter slightly smaller than the diameter of the artificial airway, with one or more steps that allow the insertion by mechanical interference of selected artificial airways of endotracheal tubes and tracheostomy tubes, among others, so that a safe connection of the patient with the artificial airway and subsequently with the Bern Valve is generated . It comprises a sufficient stepped length for the safe coupling of the artificial airway or its complement, so that its involuntary exit or disconnection is prevented and in the preferred embodiment of the invention it is carried out under coupling due to the mechanical interference generated by pressure insertion of the artificial airway into the artificial airway coupling (1A).
  • the present invention is characterized by comprising a port for the insertion of metered dose inhalers (MDI), known as the MDI delivery port (2), which allows the delivery of drugs safely, without disconnecting the patient from the mechanical ventilator. , and with the possibility of regulating the flow of air inlet directly from the mechanical ventilator or through the complete or partial seal of the valve for airway seal (6), which will reduce the impaction effect produced by deep inspiration or high velocity air flow; allowing the drug to effectively reach the lower airway and not be deposited mostly in the upper airway, providing security in the correct administration of the drug.
  • Figure 6 shows the IDM supply port (2) and its IDM supply port cover (3).
  • the port for MDI delivery (2) corresponds to a fixed access through which inhaled medications for routine use are delivered for broncho-obstructive or inflammatory pathologies of the airway without disconnecting the mechanical ventilator.
  • the IDM supply port (2) contributes to the supply of inhaled dose medications in critical patients and in turn avoids the disconnection of the mechanical ventilator, also avoiding the disconnection of the heat-humidity exchanger (passive humidifier), operations necessary for adaptation the inhalation port and to avoid the retention of the medicine, respectively, guaranteeing the humidity and temperature that the filter provides. Additionally, the IDM supply port (2) has a cover for the IDM supply port (3) to avoid lung depressurization, as well as possible external contamination.
  • the IDM supply port (2) is characterized by being a stepped cylinder, the cylinder with a larger diameter being the one in the part in contact with the body (1). It is characterized by comprising a hole oriented towards the proximal direction, that is, towards the patient's airway, in such a way that it focuses the flow of the medicine from the MDI directly through the artificial airway towards the patient.
  • the provision of the port hole for the supply of IDM (2) reduces the effects of the impaction of the drug and promotes adequate sedimentation and diffusion in the lower airway;
  • Figure 7 shows a cross section of the Bern Valve, including the IDM supply port (2), where its steps and the internal conduit of the preferred embodiment of the invention can be seen.
  • the IDM supply port (2) comprises an outer shape based on four sections, the first with a mainly cylindrical shape characterized by having a diameter greater than that of the entire part, which prevents the port from for IDM delivery (2) is introduced into the body and prevents any possible aspiration of it by the patient.
  • the second section comprises a cylindrical shape with a secant groove, which prevents the rotation of the IDM supply port (2) with respect to the main air flow line, which ensures that the port is always focusing the intake of inhaled medication.
  • the third section comprises a concave geometry as a transition with the last section and in such a way that it tends to preserve the properties of the air flow coming from the mechanical fan, while helping in the assembly of the IDM supply port (2 ) into the inhalation port fitting (1 C).
  • the last section comprises a primarily cylindrical shape with a tubular-shaped projection in the direction of the main air flow, which provides focus, suitably channeling the inflow of metered dose medications to the patient.
  • the IDM supply port (2) in its upper part comprises a cylindrical cavity with a flat base that allows the insertion of metered dose inhalers with and the actuation of the latter due to the geometric interference generated.
  • Said cavity has a smaller diameter extension, which projects to the tubular projection, where it ends in a conical opening, so that it conducts the medicine while maintaining the pressure and speed with which the metered dose inhaler comes out, in the Figure 4 shows the approach and arrangement of the IDM supply port (2) in a preferred embodiment of the invention.
  • the body (1) is characterized by comprising a cavity in the main branch (through which the air from the mechanical ventilator flows mainly), called the coupling for the inhalation port (1 C).
  • Said cavity comprises a geometry that generates mechanical interference with the IDM supply port (2), which in the preferred embodiment of the invention is characterized by being a cylindrical geometry with a flat section.
  • This geometry comprised of the coupling for inhalation port (1 C), prevents the involuntary exit of the port for MDI delivery (2) when removing the metered dose inhaler and prevents the rotation of the port for MDI delivery (2) within the coupling for inhalation port (1 C), which is a technical and functional advantage as it prevents pressure losses in the airway generated by the absence of the port for MDI supply (2).
  • the body (1) in its main air flow path comprises a main universal port (1 D) that is located near the end proximal to the patient, perpendicular to the main air flow path of the artificial airway.
  • a main universal port (1 D) that is located near the end proximal to the patient, perpendicular to the main air flow path of the artificial airway.
  • the main universal port (1 D) is also compatible with equipment for monitoring nitric oxide, with devices for instillation of saline, for example, when the universal port of the cleaning bypass (1 E) is busy.
  • the cleaning bypass (1 F) is characterized by being a branch attached to the main air flow path, which due to its diameter allows the passage of a Nelaton probe, suction probe or a device to perform fiberoptic bronchoscopy, among others devices for visualization, diagnosis, and cleaning of the airway.
  • it is characterized by being of a diameter smaller than that comprised by the main air flow path and by having an oblique character to it that facilitates the insertion of said medical devices and is prone to the flow of the inlet. from liquids like saline solution or gases like nitric oxide;
  • Figure 3 shows the preferred arrangement and location of the cleaning bypass (1 F) in the Bern Valve.
  • the cleaning bypass (1 F) comprises a diaphragm of the cleaning bypass (72), attached to the distal end of the same, which is responsible for sealing the air outlet from the mechanical ventilator or the lung, closing due to to the effect of the air pressure present in the Bern Valve, but allowing the insertion of the devices used in the visualization, diagnosis, and cleaning of the airway.
  • It is characterized by being a flexible, durable, biocompatible material, elastomeric and polymeric such as silicone, Teflon, among others.
  • Said diaphragm of the cleaning bypass (72) characterized by being replaceable, interchangeable and removable.
  • the cleaning bypass (1 F) allows the coupling of suction and cleaning devices of the airway, such as a suction probe or Nélaton probe, which can be inserted through the cover of the airway.
  • cleaning shunt (7) to be used as a closed suction system, with a sterile technique, without disconnecting the patient from the mechanical ventilator, which implies a functional advantage because it reduces the risk of hypoxemia associated with disconnecting the patient which causes the depressurization of the airway due to the interruption of the air flow for a period of time, where said disconnection may involve 4 to 6 hours to achieve pulmonary recruitment again in a diseased lung.
  • This pulmonary recruitment does not occur only with the patient's reconnection to the ventilator, but also involves performing an alveolar recruitment maneuver again with the mechanical ventilator that allows the alveolar units to be reopened again, which, in critically ill patients, generates a relevant impact on oxygenation and ventilation.
  • the cleaning shunt (1 F) allows the coupling and passage through it of diagnostic and visualization equipment of the airway such as fiberoptic bronchoscopy equipment, bronchoscopy, among others. This allows the entry of said equipment into the airway without disconnecting the patient from the mechanical ventilator, which reduces the possible complications associated with the procedure, such as desaturation, hypoxemia, hypotension, bradycardia and other complications derived from pulmonary derecruitment.
  • the cleaning bypass (1 F) comprises a cleaning bypass cap (7), which seals the cleaning bypass when not in use, preventing pressure leaks in the airway and keeping the lung in recruitment and preventing lung collapse, as shown in Figure 9.
  • the cleaning shunt cap (7) engages by insertion by mechanical interference, selected from push-in insertion with sufficient insertion length to prevent inadvertent disconnection or with a internal thread for screw-nut type coupling and is characterized by being a rough, flexible, durable, biocompatible, elastomeric and polymeric material such as silicone, Teflon, among others.
  • the cleaning bypass cover (7) in one embodiment of the present invention, comprises a cleaning bypass cover cover (71) and a cleaning bypass cover diaphragm (72).
  • the diaphragm of the cleaning bypass cover (72) comprises a cavity that is coupled to the cleaning bypass (1F) by pressure insertion with an insertion length sufficient to prevent its inadvertent disconnection and in its internal part comprises a membrane that moves like a diaphragm allowing the entry of fiberoptic bronchoscopy probes and when they are withdrawn due to the internal pressure of the Bern Valve, the diaphragm closes, preventing pressure losses.
  • the cleaning bypass cap (7) is attached to the diaphragm of the cleaning bypass cap (72) and is fitted by pressure insertion to it so that pressure losses are avoided by means of the diaphragm tab (72) during disconnection.
  • the cover of the cleaning bypass (7) comprises slotted cuts, a cavity or a central hole of smaller diameter than that of the diaphragm, characterized by comprising the standard diameter of the cannulas used in the insufflation of tracheal gas selected of 4 mm, preventing pressure losses due to the use of the Bern Valve in conjunction with tracheal gas insufflation therapies to the patient.
  • the cover of the cleaning bypass (7) is characterized by being a flip-top type cover, where the cover of the cleaning bypass (7), the cover of the bypass of cleaning (71) and the diaphragm of the cleaning bypass cover (72) are characterized by being a single solid piece which in its lower part is fixed to the cleaning bypass (1 F) and in its upper part it comprises a Cover that allows it to be opened for access to the cleaning bypass.
  • Figure 10b shows an exploded view of said modality. Said access comprises a diameter reduction in accordance with the standard diameter of the cannulas used in tracheal gas insufflation or in another embodiment, the characteristic diameter of fiberoptic bronchoscopy probes.
  • Figure 10a shows a top view with a sectional section and the longitudinal section of the section where it is shown how the cover of the cleaning bypass cover (71) is attached to the cleaning bypass cover (7) by means of pressure insertion, in turn the insertion of the cleaning bypass (7) in the body (1), and as the diaphragm tab of the cleaning bypass cover (72) generates a geometric interference with the cover of the cleaning bypass cover (71), such that a rise in pressure emitted by the mechanical fan does not eject the diaphragm tab from the cleaning bypass cover (72); A hole, groove or cavity is also seen in the cover of the cleaning shunt cover (71) that allows the insertion and passage of a Nelaton probe, suction probe or a device to perform fiberoptic bronchoscopy.
  • the cleaning bypass (1 F) also includes a universal port (1 E) of the cleaning bypass that is characterized by being located at the top and perpendicular to the cleaning bypass (1 F), and is also characterized by being cylindrical, of a diameter such that it allows the coupling of syringes and / or medical devices for supplying nitric oxide.
  • the universal port encompassed by the cleaning bypass is called the cleaning bypass universal port (1 E).
  • the universal port of the cleaning bypass (1E) allows the attachment of devices for monitoring the concentration and delivery of nitric oxide, widely used in patients with pulmonary hypertension or refractory hypoxemia.
  • the universal port of the cleaning bypass (1 E) provides an aid during the aspiration of secretions allowing the instillation of saline solution that goes directly into the airway to facilitate the permeabilization and unobstruction by adherent secretions.
  • Said aspiration can be done through a sterile technique with a closed system provided by the device.
  • Another way to clean the airway is through a conventional closed system, but its use in intensive care units cannot be longer than 48 hours, which implies the disconnection of the ventilator in that period of time.
  • the present invention allows a closed suction system, with a much longer time-in-use interval, without the complications associated with disconnecting the patient from the mechanical ventilator for extended periods of time.
  • the present invention has a valve to seal the artificial airway at the end of inspiration, called an airway seal valve (6), selected from a valve with a 1 ⁇ 4 turn stroke, understood as a manual, rotary type valve , butterfly type, or ball; which is responsible for sealing the artificial airway and preventing lung derecruitment when disconnection of the mechanical ventilator is required.
  • the valve for airway seal (6) is characterized by being coupled to the body (1) in such a way that it avoids air or liquid leaks and pressure losses due to its coupling.
  • the lower part of the valve for airway seal (61) is characterized by comprising four sections; The first one is a cylindrical section with a diameter greater than that comprised by the following sections of the lower part of the valve for airway seal (61) and comprises a length such that it allows its insertion into the body (1) so that generates a mechanical coupling under pressure.
  • the second section is a cylindrical section, which can be used in conjunction with O-rings to eliminate pressure losses in the airway and create a tight seal.
  • the third section is characterized by comprising a biconcave shape with a hole in its central portion, where said hole is inscribed in the channel of the main flow path so that when it is turned it totally or partially obstructs the air flow inlet and the being open does not create any obstruction to the flow of air from the mechanical fan circuits.
  • the last section comprises a cylindrical section, which can comprise grooved sections for use in conjunction with O-rings or other devices for the hermetic seal and in its upper part it comprises a threaded hole for the insertion of the upper part of the valve for sealing of airway (62).
  • the upper part of the valve for airway seal is characterized by comprising a cylindrical geometry, of equal diameter to the first section of the lower part of the valve for airway seal (61), a threaded projection in its lower portion that generates the mechanical coupling with the upper part of the body (1) and in its upper part an engraving that allows the visualization of the state of the airway seal valve and its actuation.
  • the lower part of the valve for airway seal (61) is pressed into the hole of the body (1) and the upper part of the valve for airway seal is coupled through the threaded projection. (62) with the threaded hole in the bottom of the Airway Seal Valve.
  • the universal ports (1 D) and (1 E) comprise a plurality of covers for the universal port (5), which seal the possible pressure losses that may originate from said ports.
  • the caps for universal ports (5) are characterized by being coupled by means of pressure insertion, generating mechanical interference with the body (1) and comprise a ring that is attached to the body in such a way as to avoid their loss during disconnection or use of these, as shown in Figure 8.
  • the IDM supply port (2) may comprise an internal base where a spring (8) rests that maintains a constant pressure above the pressure of the fan circuit.
  • a side view of the spring loaded IDM delivery port is shown in Figure 11.
  • a patient with a history of arterial hypertension and pulmonary hypertension was admitted to the emergency department due to a traffic accident with severe head trauma, blunt chest trauma, and rib fractures.
  • a simple skull tomography was performed showing parenchymal hemorrhage of the right temporal lobe and ipsilateral subdural hematoma for surgical management.
  • the chest radiograph shows a right pulmonary contusion and infiltrates for the heart due to possible aspiration. Due to neurological and respiratory compromise, programmed orotracheal intubation was decided, and it was connected to invasive mechanical ventilation, requiring high ventilation and oxygenation parameters. On auscultation, he had expiratory wheezing and rhonchi in both lung fields.
  • a mechanical ventilator is programmed with the following parameters: tidal volume (CV) 500 ml (tidal volume 8ml / k), respiratory rate (Fr) 20 rpm, positive pressure at the end of expiration (Peep) of 10 cmFI20, inspired fraction of 02 (Fi02) of 0.50, Tl 1.0. Control gases are taken which show worsening of the picture pH 7.1 1, p02 55 mmFlg, pC02 80 mmFlg, FIC03 19 mmol / L PAFI (1 10): acute respiratory acidosis with severe hypoxemia, for which ventilatory parameters are modified increasing PEEP up to 16 cmFI20 and FR 30 rpm.
  • the patient requires passage of a Swan-Ganz catheter where pulmonary artery pressure (PPM) of 45 mmFlg is monitored.
  • PPM pulmonary artery pressure
  • This patient has a severe compromise of oxygenation and ventilation, requiring high ventilatory parameters in order to maintain an acid-base balance and oxygenation in normal ranges. Due to compromise in ventilation, it requires continuous monitoring of expired C02 that can be done through the main universal port (1 D).
  • the tracheal insufflation strategy is used as a tool to normalize its values.
  • This strategy can be performed by introducing a probe through the cleaning shunt cap (7) passing through the diaphragm of the cleaning shunt cap (72) reaching directly through the endotracheal tube to the distal end and connecting the probe a flow meter that supplies 6 to 10 L / min of oxygen continuously, which allows the removal of C02.
  • a closed suction system which allows tracheal secretions to be aspirated without disconnecting the mechanical ventilator, to deliver inhaled medications and to instill saline solution into the airway to facilitate extraction of secretion .
  • These systems are used for 48 hours, during which time the patient must be disconnected to change the system promoting lung derecruitment (collapse).
  • the Bern Valve allows the application of all the strategies mentioned in the clinical case through a single device, allowing a safe disconnection of ventilatory support if the patient requires it, without causing lung collapse and facilitating the supply of inhaled medications, aspiration of secretions, tracheal insufflation, continuous monitoring of expired C02 and nitric oxide delivered to the critically ill patient through a single device. Similarly, it allows fiberoptic bronchoscopy through the device if the patient requires it.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Emergency Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Prostheses (AREA)

Abstract

La presente invención se refiere a un dispositivo o válvula de manejo de vía aérea artificial con adaptación a dispositivos y equipos respiratorios o Válvula de Berna, la cual comprende un cuerpo con acoples para los diferentes dispositivos de soporte de vía respiratoria, un puerto para suministro de medicamento mediante inhaladores de dosis medida (IDM) con su respectiva tapa, una pluralidad de tapas para puerto universal que evitan la pérdida de presión cuando los puertos universales no están en uso, una válvula para sello de vía aérea y una tapa de la derivación de limpieza que se acopla con un diafragma de la derivación de limpieza. Esta válvula está especialmente adaptada a los dispositivos respiratorios (tubos endotraqueales, cánulas de traqueostomía, humidificadores pasivos, circuito del ventilador mecánico, dispositivo BVM - Bolsa Válvula Mascarilla, entre otros), permite el suministro de medicamentos inhalados, la conexión de capnógrafos lineales, la monitorización de la terapia con óxido nítrico, la aspiración de secreciones, la insuflación de gas traqueal (IGT); así mismo evita el colapso pulmonar durante la desconexión del soporte ventilatorio y permite la realización de procedimientos como fibrobroncoscopias, facilitando la intervención del paciente críticamente enfermo con soporte de ventilación mecánica invasiva.

Description

PATENTE DE INVENCIÓN
VÁLVULA DE MANEJO DE VÍA AÉREA ARTIFICIAL CON ADAPTACIÓN A DISPOSITIVOS RESPIRATORIOS - VÁLVULA DE BERNA
RESUMEN
La presente invención se refiere a un dispositivo o válvula de manejo de vía aérea artificial con adaptación a dispositivos y equipos respiratorios o Válvula de Berna, la cual comprende un cuerpo con acoples para los diferentes dispositivos de soporte de vía respiratoria, un puerto para suministro de medicamento mediante inhaladores de dosis medida (IDM) con su respectiva tapa, una pluralidad de tapas para puerto universal que evitan la pérdida de presión cuando los puertos universales no están en uso, una válvula para sello de vía aérea y una tapa de la derivación de limpieza que se acopla con un diafragma de la derivación de limpieza. Esta válvula está especialmente adaptada a los dispositivos respiratorios (tubos endotraqueales, cánulas de traqueostomía, humidificadores pasivos, circuito del ventilador mecánico, dispositivo BVM - Bolsa Válvula Mascarilla, entre otros), permite el suministro de medicamentos inhalados, la conexión de capnógrafos lineales, la monitorización de la terapia con óxido nítrico, la aspiración de secreciones, la insuflación de gas traqueal (IGT); así mismo evita el colapso pulmonar durante la desconexión del soporte ventilatorio y permite la realización de procedimientos como fibrobroncoscopias, facilitando la intervención del paciente críticamente enfermo con soporte de ventilación mecánica invasiva.
SECTOR TECNOLÓGICO:
La presente invención pertenece al sector de la tecnología biomédica. Específicamente se refiere a un dispositivo o válvula especialmente adaptada para su conexión a vías aéreas artificiales como tubos endotraqueales, cánulas de traqueostomía, entre otras vías aéreas artificiales y otros dispositivos médicos relacionados con la ventilación mecánica invasiva, como circuitos de ventiladores mecánicos, dispositivo BVM, humidificadores pasivos, capnógrafos lineales, dispositivos de insuflación de gas traqueal (IGT), dispositivos para realizar fibrobroncoscopias, sensores de óxido nítrico, dispositivos de succión cerrada y limpieza de secreciones traqueo-bronquiales, dispositivos para suministro de medicamentos de dosis medida (IDM) , entre otros; así mismo, se refiere a dispositivos que evitan que colapsen las estructuras pulmonares.
ANTECEDENTES DE LA INVENCIÓN:
Los pacientes críticamente enfermos que requieren soporte de ventilación mecánica invasiva a través de una vía aérea artificial (tubo endotraqueal, o cánula de traqueostomía), comúnmente cursan con alteraciones fisiológicas como son la hipoxemia (disminución de presión de oxígeno en la sangre), hipercapnia (incremento de la presión de C02 en sangre) y broncoespasmo (cierre de los bronquios), asociados a disfunciones broncopulmonares.
Para el manejo de estas alteraciones se utilizan modificaciones en los parámetros ventilatorios y suministro de medicamentos inhalados. En el caso de la hipoxemia, el incremento en la presión positiva al final de la espiración (PEEP) y tiempo inspiratorio (T:l) generan un incremento de la presurización de la vía aérea (reclutamiento pulmonar) y optimización de la difusión del gas (oxígeno) a través de la membrana alvéolo capilar, disminuyendo la hipoxemia y mejorando la saturación arterial de oxígeno. De igual forma, la utilización de gases como oxígeno y óxido nítrico tiene un impacto positivo para la disminución de la hipoxemia refractaria e hipertensión pulmonar.
Durante los procesos de intervención en los pacientes críticamente enfermos se requiere la desconexión del ventilador mecánico para procedimientos tales como: limpieza de secreciones traqueo bronquiales, cambios de filtros de humificación pasiva, cambios de sistemas de succión cerrados, traslados intrahospitalarios y suministro de medicamentos inhalados; estas intervenciones causan la perdida de la presión de la vía aérea y el colapso pulmonar (desreclutamiento), lo que genera una disminución del aporte de oxígeno en la sangre y, en consecuencia, la desaturación que puede tener un desenlace fatal en los pacientes críticos.
Por lo tanto, es necesario un dispositivo multiuso que permita realizar procedimientos de rutina sin que se desconecte al paciente del ventilador; y a su vez que, aun siendo indispensable la desconexión, no se presente colapso pulmonar, manteniendo el reclutamiento pulmonar y evitando las consecuencias adversas para el paciente.
Las patentes US6014972 y US6718969 presentan dispositivos que comprenden alternativas para el suministro de medicamentos provenientes de inhaladores de dosis medida en la vía respiratoria, adicionando un dispositivo entre el ventilador mecánico y un tubo endotraqueal. Sin embargo, si el paciente requiere el suministro de otros gases medicinales o la realización de otros procedimientos como la limpieza de secreciones de la vía aérea, es necesaria la adaptación de otros dispositivos.
El documento de patente WO2018/126008 presenta una alternativa para la limpieza de vía aérea de pacientes intubados con cánula endotraqueal que se acopla a un ventilador mecánico mediante el uso de un colector diseñado para tamaños menores a 5mm que evacúa las secreciones con pérdidas de presión bajas. Sin embargo, cuando se requiere medir C02 o el suministro de medicamentos, se deben acoplar otros dispositivos. Así mismo, tampoco permite la desconexión temporal del paciente sin desreclutamiento.
Por otra parte, la publicación internacional W02008134330 da a conocer un dispositivo para el suministro de medicamentos mediante el uso en conjunto de inhaladores de dosis medida, el cual comprende dos válvulas que sellan el flujo inspiratorio y el flujo espiratorio y un compartimiento para el depósito de las secreciones del paciente. Sin embargo, el tamaño del dispositivo y sus esquemas de conexión favorecen el fenómeno de impactación presente en los inhaladores de dosis medida, impidiendo que el medicamento llegue más allá de las vías aéreas superiores. Adicionalmente, no permite la limpieza de secreciones, ni la aspiración de estas, como tampoco el uso en conjunto con sensores para la medición del flujo de C02, ni el uso del óxido nítrico.
La presente invención evita el colapso pulmonar mediante una válvula, de manera que permite la desconexión segura del ventilador en un paciente críticamente enfermo. Así mismo, permite la conexión de diversos dispositivos como capnógrafo, fuentes de óxido nítrico, así como el suministro de medicamentos (IDM), la limpieza de las secreciones de la vía aérea y la insuflación de gas traqueal (IGT). Se acopla efectivamente a ventiladores mecánicos a través de su circuito, a los humificadores pasivos, o a dispositivos BVM (Bolsa Válvula Mascarilla) durante los traslados intrahospitalarios evitando complicaciones derivadas de la despresurización.
BREVE DESCRIPCIÓN DE LA INVENCIÓN
La presente invención se refiere a un dispositivo, también denominado Válvula de Berna, para pacientes con vía aérea artificial, tubo endotraqueal, cánula de traqueostomía, entre otros tipos de vía aérea artificial, conectados a un soporte de ventilación mecánica invasiva y que requieren parámetros ventilatorios altos para el manejo de complicaciones seleccionadas de hipoxemia, hipercapnia, SDRA (síndrome de dificultad respiratoria aguda), entre otros tipos de patologías asociadas, que comprometen el sistema cardiopulmonar.
La presente invención comprende un extremo proximal al paciente que se caracteriza por tener un diámetro adaptable a la conexión del tubo endotraqueal, cánula de traqueostomía, entre otros tipos de vía aérea artificial que se caracteriza por comprender un sistema seleccionado de acople a presión, entre otros tipos de acople. Comprende también un extremo distal al paciente, que se caracteriza por adaptarse al humidificador pasivo, al circuito del ventilador mecánico o al dispositivo BVM. De igual forma este sistema comprende al menos una válvula que permite cerrar el flujo de aire proveniente del ventilador mecánico y, a su vez, evita la despresurización y posterior colapso del pulmón cuando se realizan intervenciones que requieren desconexión del soporte ventilatorio (cambio de filtros, inhaloterapia, traslados intrahospitalarios, entre otros tipos de intervenciones usadas en pacientes con vías aéreas artificiales). Por otra parte, el dispositivo también comprende una derivación o puerto de limpieza para facilitar el drenaje y limpieza de secreciones del paciente por medio de succión o para la realización de la insuflación de gas traqueal (IGT) sin requerir la desconexión del ventilador mecánico y un puerto universal en la parte superior de la derivación de limpieza que permite la instilación de solución salina durante el procesos de aspiración de secreción traqueal o para la conexión del sensor de óxido nítrico para medir o suministrar óxido nítrico. Así mismo, cuenta con un puerto para la medición del dióxido de carbono en la vía aérea durante el ciclo respiratorio (por parte de dispositivos como capnógrafos lineales), de forma que permite la monitorización continua de C02. Adicionalmente, comprende un puerto para suministro de medicamentos con inhaladores de dosis medida (IDM).
BREVE DESCRIPCIÓN DE LAS FIGURAS:
La Figura 1 corresponde a la vista isométrica del cuerpo (1 ) del dispositivo según la invención en donde se aprecian sus derivaciones, esto es, el acople a vía aérea artificial (1 A), un acople al humidificador pasivo o al circuito del ventilador mecánico (1 B), un acople para puerto inhalatorio (1 C), un puerto universal principal (1 D), un puerto universal de la derivación de limpieza (1 E) y una derivación de limpieza (1 F). La Figura 2 corresponde a la vista isométrica de la Válvula de Berna con la tapa para puerto para suministro de IDM (3) y las tapas para puerto universal (5) abiertas. La Figura 3 muestra la vista superior de la Válvula de Berna, en la que se observa el puerto para suministro de medicamento inhalado (2) con su tapa (3) correspondiente, la válvula para sello de vía aérea (6), la tapa de derivación de limpieza (7) y las tapas para puerto universal (5) abiertas.
La Figura 4 corresponde a la vista desde el acople a vía aérea artificial (1 A) de la Válvula de Berna, en donde se puede observar el direccionamiento del puerto para suministro de (IDM) (2) hacia la vía aérea del paciente.
La Figura 5 consiste en la vista isométrica de la válvula para sello de vía aérea (6). La Figura 6 corresponde a la vista isométrica del puerto para suministro de IDM (2) con su tapa (3) abierta.
La Figura 7 corresponde al corte transversal a lo largo de la vía principal de la Válvula de Berna abierta.
La Figura 8 corresponde a la vista isométrica de la tapa para puerto universal (5). La Figura 9 corresponde a una vista de la Válvula de Berna con un despiece de la tapa de la derivación de limpieza (7) y el diafragma de la derivación de limpieza (72). La Figura 10 comprende dos secciones: la Figura 10a y la Figura 10b. La Figura 10a muestra una vista superior con un corte se sección y el corte longitudinal de la sección en la modalidad de la invención donde la tapa de la derivación de limpieza (7), la cubierta de la tapa de la derivación de limpieza (71 ) y el diafragma de la tapa de la derivación de limpieza (72) se caracterizan por ser una única pieza sólida.
La Figura 10b muestra una vista de la modalidad de la invención con un despiece donde la tapa de la derivación de limpieza (7), la cubierta de la tapa de la derivación de limpieza (71 ) y el diafragma de la tapa de la derivación de limpieza (72) se caracterizan por ser una única pieza sólida.
La Figura 1 1 corresponde a la vista lateral de isométrica del puerto para suministro de IDM (2) con un resorte (8) en la base interna.
La Figura 12 corresponde a una vista desde el interior de la válvula, desde el acople a vía aérea artificial (1 A), cuando el puerto para suministro de IDM (2) está inmerso en el puerto inhalatorio (3).
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La presente invención se relaciona con un dispositivo para el manejo de pacientes críticamente enfermos conectados a un soporte de ventilación mecánica invasiva, también denominado Válvula de Berna. Este dispositivo se caracteriza por comprender un acople de vía aérea artificial (1 A) y un acople al circuito del ventilador mecánico (1 B) o humidificadores pasivos o dispositivo BVM la cual permite la conexión entre vías aéreas artificiales seleccionadas de tubo endotraqueal, cánulas de traqueostomía, entre otros tipos de vías aéreas artificiales, con dispositivos BVM (Bolsa Válvula Mascarilla), circuitos del ventilador, humidificadores pasivos, sondas de succión cerrada, entre otros tipos de dispositivos usados en conjunto con vías aéreas artificiales.
La Válvula de Berna se caracteriza por comprender un cuerpo (1 ) con acoples para los diferentes dispositivos de soporte de vía respiratoria, un puerto para suministro de IDM (2) con su respectiva tapa (3) para puerto para suministro de IDM, una pluralidad de tapas para puerto universal (5) que evitan la pérdida de presión cuando los puertos universales no están en uso, una válvula para sello de vía aérea (6) y una tapa de la derivación de limpieza (7) que se acopla con un diafragma de la derivación de limpieza (72), y con el cuerpo (1 ), como se muestra en la Figura 2. Por su parte el cuerpo (1 ) se caracteriza por ser una pieza única, solida que comprende una pluralidad de derivaciones que permiten la conexión de la válvula según la invención con diferentes tipos de equipos, dispositivos e instrumentos para el soporte de vías aéreas. El cuerpo (1 ) comprende un acople a vía aérea artificial (1 A), un acople al humidificador pasivo o al circuito del ventilador mecánico (1 B), un acople para puerto inhalatorio (1 C), una pluralidad de puertos universales y una derivación de limpieza (1 F), como se muestra en la Figura 1 .
La Válvula de Berna permite la unión entre la vía aérea artificial del paciente (tubo endotraqueal, cánula de traqueostomía) y el humidificador pasivo, el circuito del ventilador mecánico o el dispositivo BVM con la posibilidad de ser cerrada o sellada para evitar el colapso pulmonar. Por su parte, el cuerpo (1 ) comprende un extremo proximal al paciente llamado acople a vía aérea artificial (1 A), que en la modalidad preferida de la invención se caracteriza por ser tubular; a este se acopla el tubo endotraqueal o la cánula de traqueostomía mediante acoples seleccionados de acople a presión, interferencia mecánica e interferencia geométrica, y comprende un extremo distal al paciente llamado acople al humidificador pasivo o al circuito del ventilador mecánico (1 B), el cual se acopla con dispositivos para la ventilación mecánica artificial seleccionados de humidificadores pasivos, circuitos del ventilador y dispositivos ventilación manual como el BVM, entre otros. El acople a vía aérea artificial (1 A) y el acople al humidificador pasivo o al circuito del ventilador mecánico (1 B), en la modalidad preferida de la invención, se caracterizan por comprender una forma cilindrica escalonada, que permite la inserción segura de vías aéreas artificiales y dispositivos para la ventilación mecánica artificial y se caracteriza por comprender una longitud tal que evita la desconexión involuntaria debida a la presión ejercida por el ventilador mecánico o a movimientos leves de la Válvula de Berna .
El cuerpo (1 ) en su extremo proximal comprende un acople a vía aérea artificial (1 A), el cual, en la modalidad preferida de la invención se caracteriza por ser cilindrico y comprender un diámetro ligeramente menor al diámetro de la vía aérea artificial, con uno o más escalones que permiten la inserción mediante interferencia mecánica de vías aéreas artificiales seleccionadas de tubos endotraqueales y cánulas de traqueostomía, entre otros, de manera que se genera una conexión segura del paciente con la vía aérea artificial y subsecuentemente con la Válvula de Berna. Comprende una longitud escalonada suficiente para el acople seguro de la vía aérea artificial o del complemento de esta, de manera que se impide la salida involuntaria o desconexión de esta y en la modalidad preferida de la invención se efectúa bajo acople por la interferencia mecánica generada por la inserción a presión de la vía aérea artificial en el acople a vía aérea artificial (1 A).
La presente invención se caracteriza por comprender un puerto para la inserción de inhaladores de dosis medida (IDM), conocido como puerto para suministro de IDM (2), que permite el suministro de medicamentos de forma segura, sin la desconexión del paciente del ventilador mecánico, y con la posibilidad de regular el flujo de entrada de aire directamente desde el ventilador mecánico o mediante el sello completo o parcial de la válvula para sello de vía aérea (6), lo que disminuirá el efecto de impactación producido por la inspiración profunda o el flujo de aire a velocidad elevada; permitiendo que el medicamento llegue efectivamente a la vía aérea inferior y no se deposite en su mayoría en la vía aérea superior, brindando una seguridad en la administración correcta del medicamento. En la Figura 6 se aprecia el puerto para suministro de IDM (2) y su tapa para puerto de suministro de IDM (3).
El puerto para suministro de IDM (2) corresponde a un acceso fijo por el cual se suministran medicamentos inhalados de uso rutinario para patologías bronco- obstructivas o inflamatorias de la vía aérea sin la desconexión del ventilador mecánico. El puerto para suministro de IDM (2) contribuye en el suministro de medicamentos de dosis inhalada en pacientes críticos y a su vez evita la desconexión del ventilador mecánico, evitando también la desconexión del intercambiador de calor humedad (humidificador pasivo), operaciones necesarias para la adaptación del puerto inhalatorio y para evitar la retención del medicamento, respectivamente, garantizando la humedad y temperatura que el filtro proporciona. Adicionalmente, el puerto para suministro de IDM (2) cuenta con una tapa para puerto de suministro de IDM (3) para evitar la despresurización pulmonar, así como la posible contaminación externa.
Por su parte, el puerto para suministro de IDM (2) se caracteriza por ser un cilindro escalonado, siendo el cilindro de diámetro mayor el comprendido en la parte en contacto con el cuerpo (1 ). Se caracteriza por comprender un agujero orientado hacia la dirección proximal, esto es, hacia la vía aérea del paciente, de manera que enfoca el flujo del medicamento proveniente del IDM directamente por la vía aérea artificial hacia el paciente. La disposición del agujero del puerto para suministro de IDM (2) disminuye los efectos de la impactación del medicamento y propende por una adecuada sedimentación y difusión en la vía aérea inferior; en la Figura 7 se muestra un corte transversal de la Válvula de Berna, incluyendo el puerto para suministro de IDM (2), donde se aprecian sus escalones y el conducto interno de la modalidad preferida de la invención.
En la modalidad preferida de la invención, el puerto para suministro de IDM (2) comprende una forma exterior basada en cuatro secciones, la primera con una forma principalmente cilindrica caracterizada por tener un diámetro mayor al de toda la pieza, que impide que el puerto para suministro de IDM (2) se introduzca en el cuerpo e impide cualquier posible aspiración de este por parte del paciente. La segunda sección comprende una forma cilindrica con una ranura secante, la cual impide el giro del puerto para suministro de IDM (2) respecto a la línea de flujo de aire principal, lo que garantiza que el puerto siempre esté enfocando la entrada de medicamento inhalado en la dirección del paciente y comprende un diámetro tal que genera una interferencia mecánica que evita la expulsión involuntaria del puerto para suministro de IDM (2) del acople para puerto inhalatorio (1 C) de forma involuntaria o cuando es retirado el inhalador de dosis medida. La tercera sección comprende una geometría cóncava a manera de transición con la última sección y de manera tal que propende por conservar las propiedades del flujo de aire provenientes del ventilador mecánico, a la vez que ayuda en el ensamblaje del puerto para suministro de IDM (2) dentro del acople para puerto inhalatorio (1 C). La última sección comprende una forma primordialmente cilindrica con una saliente de forma tubular en la dirección del flujo principal de aire, que proporciona un enfoque, canalizando de forma adecuada la entrada de medicamentos de dosis medida al paciente. El puerto para suministro de IDM (2) en su parte superior comprende una cavidad cilindrica de base plana que permite la inserción de inhaladores de dosis medida con y el accionamiento de éste por la interferencia geométrica que se genera. Dicha cavidad tiene una prolongación de menor diámetro, que se proyecta hasta la saliente tubular, donde termina en una apertura de forma cónica, de manera que conduce el medicamento manteniendo la presión y la velocidad con la que sale el inhalador de dosis medida, en la Figura 4 se aprecia el enfoque y disposición del puerto para suministro de IDM (2) en una modalidad preferida de la invención.
El cuerpo (1 ) se caracteriza por comprender una cavidad en la ramificación principal (por donde fluye principalmente el aire proveniente del ventilador mecánico), llamada acople para puerto inhalatorio (1 C). Dicha cavidad comprende una geometría que genera una interferencia mecánica con el puerto para suministro de IDM (2), que en la modalidad preferida de la invención se caracteriza por ser una geometría cilindrica con una sección plana. Dicha geometría, comprendida por el acople para puerto inhalatorio (1 C), impide la salida involuntaria del puerto para suministro de IDM (2) al retirar el inhalador de dosis medida e impide el giro del puerto para suministro de IDM (2) dentro del acople para puerto inhalatorio (1 C), lo cual supone una ventaja técnica y funcional pues impide pérdidas de presión en la vía aérea generadas por la ausencia del puerto para suministro de IDM (2).
De igual forma, el cuerpo (1 ) en su vía principal del flujo de aire comprende un puerto universal principal (1 D) que está ubicado cerca del extremo proximal al paciente, perpendicular a la vía principal de flujo de aire de la vía aérea artificial, el cual se caracteriza por ser cilindrico, tiene un diámetro estándar que permite el acople tanto de jeringas como de dispositivos médicos para la monitorización del C02 espirado (capnografía lineal). El puerto universal principal (1 D) también es compatible con equipos para la monitorización de óxido nítrico, con dispositivos para la instilación de solución salina, por ejemplo, cuando el puerto universal de la derivación de limpieza (1 E) se encuentra ocupado.
La derivación de limpieza (1 F) se caracteriza por ser una ramificación unida a la vía principal de flujo de aire, la cual por su diámetro permite el paso de una sonda Nélaton, sonda de succión o de un dispositivo para realizar fibrobroncoscopia, entre otros dispositivos para la visualización, diagnóstico, y limpieza de la vía aérea. En la modalidad preferida de la invención se caracteriza por ser de un diámetro menor al comprendido por la vía principal de flujo de aire y por tener un carácter oblicuo a la misma que facilita la inserción de dichos dispositivos médicos y propende por el flujo de la entrada de líquidos como solución salina o gases como el óxido nítrico; en la Figura 3 se muestra la modalidad preferida de la disposición y ubicación de la derivación de limpieza (1 F) en la Válvula de Berna.
Además, la derivación de limpieza (1 F) comprende un diafragma de la derivación de limpieza (72), unido al extremo distal de la misma, el cual se encarga de sellar la salida de aire proveniente del ventilador mecánico o del pulmón, cerrándose debido al efecto de la presión de aire presente en la Válvula de Berna, pero permitiendo la inserción de los dispositivos usados en la visualización, diagnóstico, y limpieza de la vía aérea. Se caracteriza por ser de un material flexible, durable, biocompatible, elastómero y polimérico como la silicona, teflón, entre otros. Dicho diafragma de la derivación de limpieza (72) que se caracteriza por ser reemplazable, intercambiable y removible.
Además, la derivación de limpieza (1 F) permite el acople de dispositivos de succión y limpieza de la vía aérea como, por ejemplo, de una sonda de succión o sonda de Nélaton, la cual podrá ser introducida a través de la tapa de la derivación de limpieza (7) para ser utilizada como un sistema de succión cerrado, con una técnica estéril, sin la desconexión del paciente del ventilador mecánico, lo que implica una ventaja funcional debido a que reduce el riesgo de hipoxemia asociado a la desconexión del paciente que provoca la despresurización de la vía aérea por la interrupción del flujo de aire durante un periodo de tiempo, donde dicha desconexión puede implicar de 4 a 6 horas para lograr nuevamente un reclutamiento pulmonar en un pulmón enfermo. Este reclutamiento pulmonar no se da solo con la reconexión del paciente al ventilador, sino que implica realizar nuevamente una maniobra de reclutamiento alveolar con el ventilador mecánico que permita volver nuevamente a generar reapertura de las unidades alveolares que, en caso de pacientes críticamente enfermos, genera un impacto relevante en la oxigenación y ventilación.
La derivación de limpieza (1 F) permite el acople y paso a través de ella de equipos de diagnóstico y visualización de la vía aérea como equipos de fibrobroncoscopía, broncoscopía, entre otros. Lo anterior permite el ingreso de dichos equipos a la vía aérea sin la desconexión del paciente del ventilador mecánico, lo que reduce las posibles complicaciones asociadas al procedimiento, como la desaturación, hipoxemia, hipotensión, bradicardia y demás complicaciones derivadas del desreclutamiento pulmonar.
La derivación de limpieza (1 F) comprende una tapa de la derivación de limpieza (7), la cual sella la derivación de limpieza cuando no se encuentra en uso, previniendo las fugas de presión en la vía aérea y manteniendo el pulmón en reclutamiento e impidiendo el colapso pulmonar, como se muestra en la Figura 9. La tapa de la derivación de limpieza (7) se acopla mediante inserción por interferencia mecánica, seleccionada de inserción a presión con una longitud de inserción suficiente para impedir su desconexión involuntaria o con un roscado interno para acople del tipo tornillo-tuerca y se caracteriza por ser de un material rugoso, flexible, durable, biocompatible, elastómero y polimérico como la silicona, teflón, entre otros.
La tapa de la derivación de limpieza (7), en una modalidad de la presente invención, comprende una cubierta de la tapa de la derivación de limpieza (71 ) y un diafragma de la tapa de la derivación de limpieza (72). El diafragma de la tapa de la derivación de limpieza (72) comprende una cavidad que se acopla a la derivación de limpieza (1 F) mediante inserción a presión con una longitud de inserción suficiente para impedir su desconexión involuntaria y en su parte interna comprende una membrana que a manera de diafragma se mueve permitiendo el ingreso de sondas de fibrobroncoscopía y al ser retiradas por efecto de la presión interna de la Válvula de Berna el diafragma se cierra, impidiendo las pérdidas de presión. En dicha modalidad, la tapa de la derivación de limpieza (7) se une al diafragma de la tapa de la derivación de limpieza (72) y se acopla mediante inserción a presión al de forma que se evitan las pérdidas de presión por medio de la lengüeta del diafragma (72) durante su desconexión. La tapa de la derivación de limpieza (7) comprende cortes ranurados, una cavidad o un agujero central de menor diámetro al del diafragma, caracterizada por comprender el diámetro estándar de las cánulas usadas en la insuflación de gas traqueal seleccionado de 4 mm, impidiendo las pérdidas de presión por el uso de la Válvula de Berna en conjunto con terapias de insuflación de gas traqueal al paciente.
En otra modalidad de la presente invención, la tapa de la derivación de limpieza (7) se caracteriza por ser una tapa tipo flip-top, donde la tapa de la derivación de limpieza (7), la cubierta de la tapa de la derivación de limpieza (71 ) y el diafragma de la tapa de la derivación de limpieza (72) se caracterizan por ser una única pieza sólida la cual en su parte inferior se fija a la derivación de limpieza (1 F) y en su parte superior comprende una cubierta que permite su apertura para el acceso a la derivación de limpieza, en la Figura 10b se muestra un despiece de dicha modalidad. Dicho acceso comprende una reducción de diámetro de acuerdo con el diámetro estándar de las cánulas usadas en la insuflación de gas traqueal o en otra modalidad el diámetro característico de las sondas de fibrobroncoscopía. En la Figura 10a se muestra una vista superior con un corte sección y el corte longitudinal de la sección donde se muestra como la cubierta de la tapa de la derivación de limpieza (71 ) se acopla a la tapa de la derivación de limpieza (7) mediante inserción a presión, a su vez la inserción de la derivación de limpieza (7) en el cuerpo (1 ), y como la lengüeta del diafragma de la tapa de la derivación de limpieza (72) genera una interferencia geométrica con la cubierta de la tapa de la derivación de limpieza (71 ), de forma que una elevación en la presión emitida por el ventilador mecánico no expulsa la lengüeta del diafragma de la tapa de la derivación de limpieza (72); también se observa un agujero, ranura o cavidad en la cubierta de la tapa de la derivación de limpieza (71 ) que permite la inserción y el paso de una sonda Nélaton, sonda de succión o de un dispositivo para realizar fibrobroncoscopía.
La derivación de limpieza (1 F) comprende también un puerto universal (1 E) de la derivación de limpieza que se caracteriza por estar ubicado en la parte superior y perpendicular a la derivación de limpieza (1 F), y también se caracteriza por ser cilindrico, de un diámetro tal que permite el acople de jeringas y/o dispositivos médicos para suministro de óxido nítrico. El puerto universal comprendido por la derivación de limpieza se denomina puerto universal de la derivación de limpieza (1 E) .
El puerto universal de la derivación de limpieza (1 E) permite el acople de dispositivos para la monitorización de la concentración y suministro de óxido nítrico, ampliamente usado en pacientes con hipertensión pulmonar o hipoxemia refractaria. De la misma forma, el puerto universal de la derivación de limpieza (1 E) brinda una ayuda durante la aspiración de secreciones permitiendo la instilación de solución salina que va directamente a la vía aérea para facilitar la permeabilización y desobstrucción por secreciones adherentes. Dicha aspiración puede hacerse a través de una técnica estéril con un sistema cerrado que proporciona el dispositivo. Otra forma de realizar la limpieza de la vía aérea es a través de un sistema cerrado convencional, pero su uso en las unidades de cuidado intensivo no puede ser mayor a 48 horas, lo que implica la desconexión del ventilador en ese periodo de tiempo. La presente invención permite un sistema de aspiración cerrada, con un intervalo de tiempo en uso mucho mayor, sin las complicaciones asociadas a la desconexión del paciente del ventilador mecánico durante prolongados periodos de tiempo. La presente invención cuenta con una válvula para sellar la vía aérea artificial al final de la inspiración, llamada válvula para sello de vía aérea (6), seleccionada de una válvula con un recorrido de ¼ de vuelta, comprendida como una válvula tipo manual, rotativa, tipo mariposa, o de bola; la cual se encarga de sellar la vía aérea artificial e impedir el desreclutamiento pulmonar cuando se requiere la desconexión del ventilador mecánico. Se caracteriza por estar ubicada en el extremo distal, de modo que no interfiere con el puerto para suministro de IDM (2), ni con la derivación de limpieza (1 F), ni con ninguno de los puertos universales, lo cual implica una manipulación adecuada de la vía aérea artificial cuando es necesaria una desconexión del paciente del ventilador mecánico. Comprende en su parte superior un grabado en relieve que muestra de forma inequívoca el estado del sistema; abierto o cerrado; y a su vez permite el accionamiento de la válvula, tal como se ilustra en la Figura 5.
La válvula para sello de vía aérea (6) se caracteriza por acoplarse al cuerpo (1 ) de forma que evita las filtraciones de aire o líquidos y las pérdidas de presión por su acople. En una modalidad de la invención la parte inferior de válvula para sello de vía aérea (61 ) se caracteriza por comprender cuatro secciones; la primera de ella es una sección cilindrica de un diámetro mayor al comprendido por las siguientes secciones de la parte inferior de válvula para sello de vía aérea (61 ) y comprende una longitud tal que permite su inserción en el cuerpo (1 ) de forma que genera un acople mecánico a presión. La segunda sección es una sección cilindrica, la cual puede ser usada en conjunto con juntas tóricas para eliminar las pérdidas de presión en la vía aérea y crear un sello hermético. La tercera sección se caracteriza por comprender una forma bicóncava con un agujero en su porción central, donde dicho agujero se encuentra inscrito en el canal de la vía principal de flujo de forma que al girarse obstruye total o parcialmente la entrada de flujo de aire y al estar abierta no genera ninguna obstaculización al flujo de aire proveniente de los circuitos de ventilador mecánico. La última sección comprende una sección cilindrica, que puede comprender secciones ranuradas para su uso en conjunto con juntas tóricas u otros dispositivos para el sello hermético y en su parte superior comprende un agujero roscado para la inserción de la parte superior de la válvula para sello de vía aérea (62).
La parte superior de la válvula para sello de vía aérea se caracteriza por comprender una geometría cilindrica, de igual diámetro a la primera sección de la parte inferior de la válvula para sello de vía aérea (61 ), una saliente roscada en su porción inferior que genera el acople mecánico con la parte superior del cuerpo (1 ) y en su parte superior un grabado que permite la visualización del estado de la válvula de sello de la vía aérea y el accionamiento de esta. Para el ensamble de dichos componentes se inserta a presión la parte inferior de la válvula para sello de vía aérea (61 ) en el agujero del cuerpo (1 ) y se acopla mediante la saliente roscada la parte superior de la válvula para sello de vía aérea (62) con el agujero roscado de la parte inferior de la válvula para sello de vía aérea.
Los puertos universales (1 D) y (1 E) comprenden una pluralidad de tapas para puerto universal (5), las cuales sellan las posibles pérdidas de presión que se pueden originar por dichos puertos. Las tapas para puerto universal (5) se caracterizan por acoplarse mediante la inserción a presión, generando una interferencia mecánica con el cuerpo (1 ) y comprenden un aro que se une al cuerpo de forma tal que evitan su pérdida durante la desconexión o el uso de estas, como se muestra en la Figura 8.
En una modalidad preferente de la invención, el puerto para suministro de IDM (2), puede comprender una base interna donde reposa un resorte (8) que mantiene una presión constante por encima de la presión del circuito del ventilador. En la Figura 1 1 se observa una vista lateral del puerto de suministro IDM con resorte.
Cuando la presión es excesiva como es el caso de episodios de tos, dicha presión vence la resistencia del resorte movilizando el pin hacia arriba dejando salir aire al exterior del sistema a través de los orificios que se encuentran en la parte distal, cerrándose inmediatamente cuando disminuye la presión interna por propiedad elástica del resorte que lo retorna a su estado inicial. Este sistema de liberación de presión está inmerso en el puerto inhalatorio (3). En la Figura 12, se observa una vista desde el interior de la válvula, desde el acople a vía aérea artificial (1 A), cuando el puerto para suministro de IDM (2) esta inmerso en el puerto inhalatorio (3).
EJEMPLOS
Ejemplo 1
Un paciente con antecedentes de hipertensión arterial e hipertensión pulmonar ingresa al servicio de urgencias por accidente de tránsito con trauma craneoencefálico severo, trauma cerrado de tórax y fracturas costales. Se realiza tomografía de cráneo simple que muestra hemorragia parenquimatosa del lóbulo temporal derecho y hematoma subdural ipsilateral para manejo quirúrgico. En la radiografía de tórax se observa contusión pulmonar derecha e infiltrados para cardiacos por posible broncoaspiración. Por compromiso neurológico y respiratorio se decide intubación orotraqueal programada, se conecta a ventilación mecánica invasiva requiriendo parámetros ventilatorios de oxigenación y ventilación altos. En la auscultación tiene presencia de sibilancias espiratorias y roncus en ambos campos pulmonares. Se programa ventilador mecánico con los siguientes parámetros: volumen corriente (VC) 500 mi (Volumen corriente 8ml/k), frecuencia respiratoria (Fr) 20 rpm, presión positiva al final de la espiración (Peep) de 10 cmFI20, fracción inspirada de 02 (Fi02) de 0,50, T.l 1 ,0. Se toman gases de control los cuales muestran empeoramiento del cuadro pH 7,1 1 , p02 55 mmFlg, pC02 80 mmFlg, FIC03 19 mmol/L PAFI (1 10): acidosis respiratoria aguda con hipoxemia severa por lo cual se modifican parámetros ventilatorios incrementando el PEEP hasta 16 cmFI20 y FR 30 rpm. El paciente requiere paso de catéter de Swan-Ganz donde se monitoriza la presión de la arteria pulmonar (PPM) de 45 mmFlg.
Este paciente presenta compromiso severo de la oxigenación y ventilación requiriendo parámetros ventilatorios altos con el fin de mantener un equilibrio acido básico y una oxigenación en rangos normales. Por compromiso en la ventilación requiere monitorización continua del C02 espirado que se puede realizar a través del puerto universal principal (1 D).
De igual forma, presenta sibilancias que requiere manejo con medicamentos inhalados (broncodilatadores) por esquema cada 20 minutos en una hora para optimizar el flujo de aire a través de las vías respiratorias. Este procedimiento se puede realizar a través del puerto para suministro de IDM (2) sin necesidad de desconexión del paciente para retirar el humidificador pasivo y sincronizando con la entrega de flujo del ventilador mecánico permitiendo cerrar la válvula para sello de vía aérea (6) al final de la inspiración para mejorar la redistribución y entrega del medicamento en el paciente críticamente enfermo.
Así mismo, por su cuadro de hipoxemia refractaria e hipertensión pulmonar sería candidato al manejo con posicionamiento en prono y óxido nítrico inhalado, el cual se puede monitorizar a través del puerto universal de la derivación de limpieza (1 E) utilizando una línea de muestreo que detecta la concentración del gas suministrado al paciente.
Si persiste empeoramiento de la gasometría arterial con mayor incremento del C02 y no hay posibilidad de incrementar parámetros ventilatorios que optimicen la ventilación (FR, Volumen corriente, Presión control, R:l) se tiene la estrategia de insuflación traqueal como herramienta para normalizar sus valores. Esta estrategia se puede realizar introduciendo una sonda a través de la tapa de la derivación de limpieza (7) pasando a través del diafragma de la tapa de derivación de limpieza (72) llegando directamente a través del tubo endotraqueal hasta el extremo distal y conectando la sonda a un flujómetro que suministre de 6 a 10 L/min de oxígeno continuos, lo que permite remover el C02.
Para poder realizar algunas de las intervenciones anteriormente mencionadas en el paciente críticamente enfermo se utiliza un sistema de succión cerrado el cual permite aspirar secreciones traqueales sin desconexión del ventilador mecánico, suministrar medicamentos inhalados e instilar solución salina en la vía aérea para facilitar extracción de la secreción. Estos sistemas tienen un uso de 48h, tiempo en el cual se debe desconectar al paciente para el cambio del sistema promoviendo el desreclutamiento (colapso) pulmonar.
La Válvula de Berna permite la aplicación de todas las estrategias mencionadas en el caso clínico a través de un solo dispositivo permitiendo una desconexión segura del soporte ventilatorio si el paciente lo requiere, sin provocar colapso pulmonar y facilitando el suministro de medicamentos inhalados, la aspiración de secreciones, insuflación traqueal, monitoria continua de C02 espirado y óxido nítrico suministrado al paciente críticamente enfermo a través de un solo dispositivo. De igual forma permite realizar fibrobroncoscopia a través del dispositivo si el paciente lo requiere.
Las figuras presentadas en esta descripción corresponden a propósitos meramente ilustrativos de la invención. Se da a entender que las figuras descritas no limitan el alcance de la invención divulgada. Una persona versada en el arte es capaz de concebir modificaciones posteriores a los principios determinados en el presente documento.
Aunque algunas modalidades de la invención se describen en la presente descripción, se apreciará que numerosas modificaciones y otras modalidades pueden concebirse por aquellos expertos en la materia con posterioridad a la divulgación de la presente invención. Por ejemplo, las características aquí descritas pueden aplicarse en otras modalidades. Por lo tanto, se entenderá que las reivindicaciones pretenden cubrir todas las modificaciones y modalidades que están dentro del espíritu y alcance de la presente descripción.

Claims

REIVINDICACIONES
1. Un dispositivo médico para manejo de vía aérea artificial caracterizado porque comprende un cuerpo (1 ) tubular que comprende una derivación de limpieza (1 F), una válvula para sello de vía aérea (6) y un puerto para suministro de medicamento inhalado (2), en donde el cuerpo (1 ) se acopla por su extremo distal a un dispositivo seleccionado de humificador pasivo, circuito del ventilador mecánico y dispositivo Bolsa Válvula Mascarilla, entre otros por medio de un acople (1 B) y por su extremo proximal a una vía aérea seleccionada de tipo tubo endotraqueal y cánulas de traqueostomía, entre otros, por medio de un acople a vía aérea artificial (1 A).
2. El dispositivo médico para manejo de vía aérea artificial de la reivindicación 1 caracterizado porque el cuerpo (1 ) comprende uno o más puertos universales seleccionados de puertos universales principales (1 D) y puertos universales de la derivación de limpieza (1 E), en donde los puertos universales principales (1 D) se ubican sobre la vía principal de flujo de aire del cuerpo (1 ) y puertos universales de la derivación de limpieza (1 E) se ubican sobre de la derivación de limpieza (1 F); en donde los puertos universales (1 D) (1 E) permiten el acople de capnógrafos, líneas de muestreo para monitorización gases medicinales, jeringas para la instilación de solución salina, entre otros.
3. El dispositivo médico para manejo de vía aérea artificial de la reivindicación 2 caracterizada porque los puertos universales (1 D) (1 E) comprenden tapas (5), las cuales comprenden un capuchón, el cual se acopla mecánicamente al puerto universal (1 D) (1 E) y evita la pérdida de presión, y una conexión entre el puerto y el capuchón, en donde la conexión comprende una argolla ensamblada mediante interferencia geométrica al puerto (1 D) (1 E) que evita la salida involuntaria de la tapa.
4. El dispositivo médico para manejo de vía aérea artificial de la reivindicación 1 caracterizada porque la derivación de limpieza (1 F) comprende una tapa (7) que se acopla mediante un mecanismo seleccionado de rosca, interferencia mecánica, interferencia geométrica, entre otros, a la derivación de limpieza (1 F) y evita las pérdidas de presión y su expulsión involuntaria por presiones altas en la vía aérea artificial.
5. El dispositivo médico para manejo de vía aérea artificial de la reivindicación 4 caracterizada porque la tapa de la derivación de limpieza (7) comprende un diafragma (72) y la tapa de la derivación de limpieza (7) comprende cortes ranurados, una cavidad, un agujero central, entre otros.
6. El dispositivo médico para manejo de vía aérea artificial de la reivindicación 4 caracterizada porque la tapa de la derivación de limpieza (7) comprende una cubierta (71 ) y un diafragma (72), en donde cubierta (71 ) comprende cortes ranurados, una cavidad, un agujero central, entre otros y la cubierta (71 ) genera una interferencia geométrica que impide que la lengüeta del diafragma (72) sea expulsada por un incremento en la presión del dispositivo.
7. El dispositivo médico para manejo de vía aérea artificial de la reivindicación 1 caracterizado porque el puerto para suministro de medicamento inhalado (2) comprende una cavidad para el acople mecánico de medicamentos de dosis medida, un enfoque del puerto inhalatorio (1 C) dirigido a la vía aérea artificial en su porción proximal que permite el acceso del medicamento a la vía aérea baja y una tapa para puerto para suministro de medicamento inhalado (IDM) (3) que evita la fuga de presión mientras no se esté administrando medicamentos de dosis medida.
8. El dispositivo médico para manejo de vía aérea artificial de la reivindicación 1 caracterizado porque la válvula para sello de vía aérea (6) se selecciona de válvula de bola y mariposa, se ubica en el extremo distal del dispositivo posterior a la derivación de limpieza (1 F), y comprende un grabado en relieve que muestra el estado del sistema seleccionado de abierto y cerrado y permite el accionamiento de la válvula, en donde la válvula (6) sella el flujo de aire del pulmón cuando está en la posición cerrada.
9. El dispositivo médico para manejo de vía aérea artificial de la reivindicación 1 caracterizado porque el puerto para suministro de medicamento inhalado (2) comprende una base interna donde reposa un resorte (8).
PCT/IB2020/053371 2019-04-08 2020-04-08 Válvula de manejo de vía aérea artificial con adaptación a dispositivos respiratorios – válvula de berna WO2020208556A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MX2021012360A MX2021012360A (es) 2019-04-08 2020-04-08 Valvula de manejo de via aerea artificial con adaptacion a dispositivos respiratorios-valvula de berna.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CONC2019/0003481 2019-04-08
CONC2019/0003481A CO2019003481A1 (es) 2019-04-08 2019-04-08 Válvula de manejo de vía aérea artificial con adaptación a dispositivos respiratorios – válvula de berna

Publications (1)

Publication Number Publication Date
WO2020208556A1 true WO2020208556A1 (es) 2020-10-15

Family

ID=66038752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/053371 WO2020208556A1 (es) 2019-04-08 2020-04-08 Válvula de manejo de vía aérea artificial con adaptación a dispositivos respiratorios – válvula de berna

Country Status (4)

Country Link
CL (1) CL2021002626A1 (es)
CO (1) CO2019003481A1 (es)
MX (1) MX2021012360A (es)
WO (1) WO2020208556A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022234478A1 (en) * 2021-05-04 2022-11-10 Lemos Martinez David Alexander Multi-purpose device for respiratory therapy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2960758A1 (en) * 2007-04-24 2008-11-06 Trudell Medical International Aerosol delivery system
US20150144138A1 (en) * 2013-11-22 2015-05-28 ResQSystems, Inc. Pressure actuated valve systems and methods
US20170216554A1 (en) * 2016-02-03 2017-08-03 Drägerwerk AG & Co. KGaA Exhalation valve, inhalation valve, ventilator and method for controlling ventilation
CA3050868A1 (en) * 2016-12-30 2018-07-05 Endoclear Llc Artificial airway management devices, systems and methods
US10039691B2 (en) * 2010-09-21 2018-08-07 Koninklijke Philips N.V. Vibratory positive expiratory pressure device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2960758A1 (en) * 2007-04-24 2008-11-06 Trudell Medical International Aerosol delivery system
US10039691B2 (en) * 2010-09-21 2018-08-07 Koninklijke Philips N.V. Vibratory positive expiratory pressure device
US20150144138A1 (en) * 2013-11-22 2015-05-28 ResQSystems, Inc. Pressure actuated valve systems and methods
US20170216554A1 (en) * 2016-02-03 2017-08-03 Drägerwerk AG & Co. KGaA Exhalation valve, inhalation valve, ventilator and method for controlling ventilation
CA3050868A1 (en) * 2016-12-30 2018-07-05 Endoclear Llc Artificial airway management devices, systems and methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022234478A1 (en) * 2021-05-04 2022-11-10 Lemos Martinez David Alexander Multi-purpose device for respiratory therapy

Also Published As

Publication number Publication date
CL2021002626A1 (es) 2022-06-17
CO2019003481A1 (es) 2019-04-12
MX2021012360A (es) 2021-11-04

Similar Documents

Publication Publication Date Title
ES2966576T3 (es) Máscara de ventilación
USRE42488E1 (en) Bronchoscopy oxygenation system
US5291882A (en) Multi-lumen ITPV endotracheal tube
ES2857801T3 (es) Dispositivo de administración de aerosol
EP2163275B1 (en) Branching unit for delivering respiratory gas of a subject
KR20230136692A (ko) 산소 마스크
US10029060B2 (en) Oropharyngeal airway
US9050434B2 (en) Lung therapy device
BRPI0404017B1 (pt) Aparelho de tratamento de respiração de oscilação em alta freqüência contínua
US20140276178A1 (en) Multi-lumen breathing tube device
JP2013517016A (ja) 鎮静下内視鏡手技を受ける患者に使用するマスク
US20210138176A1 (en) Connectors for respiratory assistance systems
US7934498B1 (en) Device and method for facilitating delivery of medication/humidity to a patient without breaking a ventilator circuit
Khaja et al. Percutaneous tracheostomy: A bedside procedure
US6237597B1 (en) Endotracheal medication port adapter
Aston et al. Equipment in Anaesthesia and Critical Care: A complete guide for the FRCA
Misbahuddin et al. Percutaneous Tracheostomy: A Bedside Procedure
WO2020236860A1 (en) Mechanical ventilation circuit with wet nebulization
JP6104513B2 (ja) 人工呼吸器
US11478596B2 (en) System and method for high flow oxygen therapy
WO2020208556A1 (es) Válvula de manejo de vía aérea artificial con adaptación a dispositivos respiratorios – válvula de berna
CN106880897A (zh) 一种麻醉导管
Malhotra Retromolar intubation–a simple alternative to submental intubation
Kalava et al. Mistaken endobronchial placement of a nasogastric tube during mandibular fracture surgery
US20110264004A1 (en) Bronchoscopy System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20788676

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20788676

Country of ref document: EP

Kind code of ref document: A1