WO2020208286A1 - Dispositivo y procedimiento de cuantificación de la concentración de analitos en una muestra - Google Patents

Dispositivo y procedimiento de cuantificación de la concentración de analitos en una muestra Download PDF

Info

Publication number
WO2020208286A1
WO2020208286A1 PCT/ES2020/070237 ES2020070237W WO2020208286A1 WO 2020208286 A1 WO2020208286 A1 WO 2020208286A1 ES 2020070237 W ES2020070237 W ES 2020070237W WO 2020208286 A1 WO2020208286 A1 WO 2020208286A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochemical cell
load
voltage
concentration
analyte
Prior art date
Application number
PCT/ES2020/070237
Other languages
English (en)
French (fr)
Inventor
Irene MERINO JIMÉNEZ
Anna LLORELLA BUSTINS
Juan Pablo ESQUIVEL BOJÓRQUEZ
Neus Sabaté Vizcarra
Marina NAVARRO SEGARRA
Sunil Kumar SAILAPU
Original Assignee
Consejo Superior De Investigaciones Científicas
Fundació Privada Institució Catalana De Recerca I Estudis Avançats - Icrea
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas, Fundació Privada Institució Catalana De Recerca I Estudis Avançats - Icrea filed Critical Consejo Superior De Investigaciones Científicas
Priority to MX2021012362A priority Critical patent/MX2021012362A/es
Priority to US17/602,420 priority patent/US20220170878A1/en
Priority to EP20731902.1A priority patent/EP3954986A1/en
Priority to CN202080027672.5A priority patent/CN114026412A/zh
Publication of WO2020208286A1 publication Critical patent/WO2020208286A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/283Means for supporting or introducing electrochemical probes
    • G01N27/286Power or signal connectors associated therewith
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3273Devices therefor, e.g. test element readers, circuitry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4166Systems measuring a particular property of an electrolyte
    • G01N27/4168Oxidation-reduction potential, e.g. for chlorination of water

Definitions

  • the present invention relates to a method for quantifying the concentration of anaiite present in a sample by using a single-use, disposable, self-powered device.
  • the method depends on the combination of an electrochemical cell and an electronic load connected to it in parallel.
  • the electronic load can be a combination of at least one capacitive and one resistive load.
  • a fundamental aspect of this method is that the resistive load connected to the electrochemical cell has a value such that it puts the cell to work in a diffusion-limited regime.
  • the charge voltage level of the capacitive element can be related to the concentration of anaiite in the electrochemical cell.
  • the charging voltage of the capacitor can be measured using an integrated reading element, which can be powered by the same electrochemical cell. Alternatively, the reading element can be an external measuring device.
  • An anaiite is a chemical species whose presence or content in a sample is to be known, identified and quantified, through a chemical measurement process.
  • electrochemical systems including potentiometric or amperometric sensors and biosensors to quantify an analyte present in a sample has already been widely reported.
  • These sensors generally consist of electrochemical cells that contain a working electrode (sensing electrode), where the analyte reacts through a redox reaction, and a counter electrode, where the complementary redox reaction takes place.
  • the sensor and counter electrodes may or may not be enzymatic.
  • the sensor electrode is preferably selective for the redox reaction of the analyte, to ensure the reliability of the sensor.
  • electrochemical sensors can be potentiometric, such as those presented in US 2004/0245101 A1, where the open circuit potential of a fuel cell is monitored and related to the analyte concentration. This method is designed for constant flow conditions, where the cell potential is stable as long as the flow and analyte concentration are constant. Although these bio fuel cells operate at low efficiency, and have limited applications as a power source, the power extracted is sufficient to power the sensor elements. The sensor operates without an external power supply. However, a system for reading the open circuit potential measurement is needed.
  • the determination of the amount of analyte present in a sample can be done with amperometric sensors, in which the fuel cell is polarized by setting a constant working voltage, by applying a load, or by a swept over a given voltage range, to generate electrical current. Fuel cell voltage or generated electrical current can be measured and correlated with analyte concentration.
  • amperometric sensors in which the fuel cell is polarized by setting a constant working voltage, by applying a load, or by a swept over a given voltage range, to generate electrical current.
  • Fuel cell voltage or generated electrical current can be measured and correlated with analyte concentration.
  • These systems commonly require the use of complex electronics and an external power source for polarization and current recording. This makes a dedicated reader necessary.
  • the use of external equipment such as a potentiostat or a power supply can be avoided by connecting the fuel cell to a load (for example, to a resistor), as mentioned in W02GQ5093400A1, US9220451 B2 and US
  • sensors are generally called self-powered as they do not require an external power source to set a specific working voltage or sweep through a certain voltage range.
  • these systems need to integrate a transducer or connect to one, to convert the analyte concentration into an electrical signal and subsequently into a signal recognizable by the human being.
  • a current or voltage reading system is also necessary.
  • the reading can be performed directly with an external reading system (portable monitoring system) or by coupling the sensor to a measurement circuit powered by radio frequency (RF).
  • RF radio frequency
  • a monitoring system The laptop remotely interrogates the radio-frequency powered measurement circuit at time intervals.
  • Self-powered devices for the detection of an analyte from a fuel cell are based on the correlation between the current generated in the fuel cell and the analyte concentration.
  • a method of transducing the current or voltage measurement obtained by the fuel cell to a signal that can be identified by the user is not indicated.
  • a potentiostat is necessary to carry out a voltage sweep and current measurements, which limits its practical application and implies that the result cannot be obtained in a self-powered way from the sensor, since a external source to power the potentiostat.
  • these types of devices are focused for long-term measurements or constant monitoring and the sample is generally fed continuously into the fuel cell.
  • the fuel cell voltage is constant as long as fuel flows into the fuel cell, and for a wide range of resistive loads. This makes it easy to measure fuel cell voltage.
  • the voltage or current generated by the fuel cell is not constant, for example when the sample volume is limited to a few microliters, for example a drop of blood drawn by capillary action.
  • the fuel cell is connected to a load and the electrochemical reaction begins, consuming the fuel and varying its concentration over time, and following a concentration gradient proportional to the diffusion coefficient of the anaiite. Consequently, the fuel cell voltage varies, decreasing along with the sample concentration, which is consumed during the measurement. This makes it difficult to measure the initial concentration of analyte in the sample.
  • the electromotive force induced in the fuel cell which is fed to the charging pump, depends on the concentration of the sample. Therefore, as mentioned above, the concentration gradients observed while using low-volume samples can alter the dependence on loading frequency.
  • the sample volume is crucial.
  • the sample (and analyte) concentration in the “bulK ' is constant and the charge and discharge cycles remain constant.
  • the upload and download frequency can be monitored and the signal can be sent to an external receiver.
  • the charge and discharge cycles are not constant. If a threshold voltage is established, the charging cycles are lengthened and the discharge cycles are shortened in time, as the fuel runs out.
  • the frequency With time-varying charge and discharge cycles, the frequency will also be variable and will not provide reliable data. If, on the contrary, a certain time is established for charging and discharging the capacitor, the charging and discharging voltages will decrease over time, as the fuel runs out. This makes it difficult to establish a threshold voltage, as the voltage reached decreases with each cycle. This can provide unreliable and unreliable analyte concentration data. Also, these types of devices require complex electronics that often include a charge pump and an oscillator. This reduces the applicability of the device, whose use is limited in the absence of external power supplies, reading elements or external receivers.
  • the objective of the present invention is to provide a simple procedure for the measurement of the concentration of an anaiite using an electrochemical cell, which can contain a sample volume, which can be of any volume, and with the possibility of use, but without the need from an external power source or receiver.
  • This method can be used in a single-use, disposable and autonomous device, with simple electronics, disposable, and self-powered, which avoids the use of external batteries.
  • the method of the invention makes use of a device that comprises an electrochemical cell, a load that is connected in parallel thereto and a reading element, in turn connected in parallel to the load.
  • the device and the method for quantifying the concentration of anaiite in the sample consists of an electrochemical cell and an electronic load connected to it in parallel.
  • the electronic load can be a combination of at least a capacitive load and a resistive load.
  • a fundamental aspect of the device and the method is that the equivalent resistance of the load connected to the electrochemical cell has a value that puts the cell to work in a diffusion-limited regime.
  • Diffusion-limited regime is defined in the present invention as the condition in which the analyte reacting at the electrodes of the cell is consumed at the same or greater rate than the rate at which it is transported through the reaction medium.
  • the electrochemical cell When the electrochemical cell operates in such a diffusion-limited regime, it enters a non-stationary state in which the output voltage of the electrochemical cell decreases with time.
  • the current generated by the electrochemical cell under these conditions is totally or partially transferred to the capacitive load.
  • the voltage reached in the capacitive element can be directly related to the concentration of anaiite in the electrochemical cell.
  • this method allows a direct and simple transduction of anaitite concentration to voltage.
  • This device and method differs from other methods already published in that the method proposed here does not analyze the anaiite concentration based on a signal obtained by the frequency response of multiple charge and discharge cycles.
  • the present device and method operates the electrochemical cell in direct current (DC) during a single cell discharge cycle. This strategy allows to significantly simplify the instrumentation required to operate the electrochemical cell and the reader element.
  • this device and method makes it possible to quantify the analyte concentration from a reduced sample volume with and / or without flow, in which a diffusion-limited regime is established when any resistive load is connected to the electrochemical cell.
  • the voltage reached on the capacitive element can be measured using an integrated reading element, which can be powered by the electrochemical cell itself.
  • the reading element can be an external measuring device.
  • the electrochemical cell consists of at least one electrode where an oxidation reaction takes place (anode) and one electrode where a reduction reaction takes place (cathode). These electrodes are in contact with an electrolyte, where ion transfer takes place.
  • At least one of the two electrodes reacts with the analyte (designated as the sensor electrode) to be measured, through an oxidation or reduction reaction, while another of the electrodes (designated the complementary electrode) carries out an Complementary reaction (reduction or oxidation) in order to configure the electrochemical cell that allows the generation of a net voltage and current.
  • the sensing electrode can be direct electronic transfer or electronic transfer through a mediator.
  • the sensing electrode can be formed of any material that catalyzes the redox reaction of the anaphyte, including metals, alloys, redox polymers, enzymes or bacteria, for example, glucose dehydrogenase enzyme, glucose oxidase, FDH, MDH, AOD, XOD, Hyderasa, Gluconobacter oxidans, magnesium, paiadium, bismuth, nickel, platinum, ruthenium, gold, carbon, graphite, iron, lithium, cadmium, copper, silver, zinc, aluminum, among others.
  • the sensor electrode can be enzymatic, and can be first generation, where an enzyme selective for an analyte, oxidizes the analyte, while a simultaneous reduction reaction reduces to a cofactor, then the reduced cofactor is oxidized, using oxygen to produce peroxide of hydrogen on the electrode surface, producing an electrical signal proportional to the analyte concentration.
  • the sensing electrode can also be like the electrode of a second generation amperometric sensor, comprising a mediator (in solution) for electron transfer to the electrode.
  • the sensing electrode can also be like a third generation amperometric sensor, with direct electron transfer, since the enzyme is physically connected to the electrode.
  • the complementary electrode carries out a reduction or oxidation reaction, complementary to that which takes place at the sensing electrode.
  • the redox voltage of said reaction must be more electropositive than the sensing electrode reaction if the complementary electrode acts as a cathode, or more electronegative than the sensing electrode if the complementary electrode acts as an anode, thus creating a positive voltage difference between the reaction of the sensor. cathode electrode and anode electrode.
  • the reaction that takes place in the complementary electrode should not limit the generation of current, leaving this subject to the concentration of analyte.
  • the complementary electrode can be composed of any redox species complementary to the reaction that takes place in the sensing electrode, metal, alloy, reducing or oxidizing polymeric material, bacteria or enzymes, for example, iron, cobalt, nickel, benzoquinone, silver, silver oxide, silver peroxide, copper, manganese, platinum, gold, carbon compounds, including electrodes based on activated carbon, graphite, carbon nanotubes and carbon paste, magnesium, zinc, aluminum, among others.
  • the sensing electrode and the complementary electrode can be distributed planar, next to each other or opposite each other. More than one combination of sensing and complementary electrodes can be used to increase voltage if connected in series or increase current if connected in parallel. Both electrodes may or may not be separated by a selective or non-selective ion exchange membrane, by a porous material or by a salt bridge.
  • the device in which the procedure object of this comprises a load, which is connected to the sensor in parallel, and which can be of the resistive, capacitive, inductive type, or a combination of them.
  • the load connected to the electrochemical cell puts the cell to work at an analyte diffusion-limited duty, whereby the response of the electrochemical cell is conditioned by the concentration of the analyte in the sample. From the reading of the voltage in the load, by means of a reading element connected in parallel with it, the concentration of the analyte in the sample can be known.
  • the load connected to the electrochemical cell is predominantly capacitive, preferably being a capacitor.
  • the resistive load is established by the internal resistivity of the electrochemical cell and the ohmic resistance of the electrodes, circuit tracks, and electrical connections in the assembly.
  • the electrical charge generated by the electrochemical cell is transferred to the capacitor.
  • the voltage reached between the capacitor terminals (Ve) depends on the electrical charge that has been transferred from the electrochemical cell (VS). This, in turn, depends on the concentration of analyte that has been oxidized or reduced in the electrochemical cell. In this way, the voltage reached across the capacitor (Ve) provides information on the analyte concentration.
  • the accumulated charge causes the capacitor voltage to increase following equation (1), where Vc (t) is the voltage across the capacitor, q (t) is the charge generated by the electrochemical cell under diffusion regime conditions, which is stored in the capacitor over time, and C is the capacitance of the capacitor, A is the area of the cell's sensing electrode, D the diffusion coefficient of the analyte, t is the time, and Co is the analyte concentration.
  • the accumulation of charge can be expressed in terms of: As can be seen, the accumulated voltage of the capacitor is proportional to the analyte concentration and this allows a direct quantification of the analyte content.
  • the charge transferred between the electrochemical cell and the capacitor can be interrupted by disconnecting the two elements at a particular moment with an additional element, such as a diode, switch, transistor, among others.
  • the final fixed value of the capacitor voltage can be represented by Vout, which is directly proportional to the amount of analyte in the sample.
  • the load connected to the electrochemical cell is predominantly resistive, preferably being a resistor.
  • a resistive load R1 is connected in parallel to the electrochemical cell as the main load.
  • a second branch containing resistor R2, capacitor C1, and diode D1 is also connected in parallel to the electrochemical cell.
  • the resistive load R1 subjects the cell to a diffusion-limited regime that causes the electrochemical cell voltage to drop from its open circuit potential.
  • the current generated by the electrochemical cell flows through the branches containing R1 and R2. During this process, the capacitor C1 that appears in the branch together with the resistor R2 and D1 is charged.
  • the diode D1 goes into reverse bias when the accumulated voltage across the capacitor increases and the voltage of the electrochemical cell decreases below a certain threshold value.
  • the current through the branch containing it ceases (acting as a switch to cut the connection between the electrochemical cell and the capacitor), and the capacitor stays at the voltage. final charge acquired just before the diode significantly obstructed current flow.
  • the capacitor C1 remains at the final charged voltage value, as the diode restricts the flow of current in reverse direction.
  • the final output voltage accumulated across! condenser is proportional to the anaiite concentration.
  • the level of the output voltages reached at the capacitive element can be modulated or changed by choosing the combination of resistors R1 and R2 and the values of! capacitor C1 without affecting the response pattern.
  • the differences in the acquired voltage levels between the measured analyte concentrations at the capacitive element can be modulated by choosing the combination of resistors R1 and R2 and the capacitance value C1.
  • the load that is connected in parallel to the electrochemical cell is of the resistive type, preferably a resistor.
  • the resistive load R1 puts the cell to work in a diffusion-limited regime causing the electrochemical cell voltage to drop from its open circuit potential.
  • the rate at which the electrochemical cell voltage decays is related to the concentration of oxidized or reduced anailite in the electrochemical cell.
  • the rate of the voltage drop in the electrochemical cell when subjected to the resistive load R1 is slower for higher concentrations of analyte.
  • information on the analyte concentration can be obtained by measuring the time elapsed between a previously defined initial voltage and a final voltage, using the reading element.
  • the reading element allows the transduction of the response generated by the electrochemical cell to a signal that allows a user to derive information on the concentration of anaiite.
  • This signal can consist of a digital display or light signal, an acoustic signal or a mechanical signal. These signals can indicate the concentration of the analyte or whether it has exceeded certain predefined threshold values.
  • the reading element can be integrated with the electrochemical cell and its load, making this device portable and disposable.
  • the reader can be an external component.
  • the reading element can be powered only with the energy generated by the electrochemical cell, or alternatively, it can be powered by an external power supply or a combination of both.
  • the reading element can consist of any element capable of measuring the capacitor voltage. This allows information on analyte concentration to be obtained with direct current voltage reading systems.
  • the reading element can consist of one or a set of transistors, integrated circuits, application-specific integrated circuits (ASIC), a multimeter, a USB communication system with the computer or a wireless communication system RFiD, NFC , or bluetooth among others.
  • the reading element when the load connected to the electrochemical cell is resistive, can consist of two elements that allow voltage and time to be measured simultaneously or of one element that integrates both functions.
  • the reading element can comprise, for example, any of the options contemplated in the previous paragraph to measure voltage, combined with a method to measure time such as complex electronics that includes a clock, a quartz crystal, an RC circuit or any other. type of external clock among others.
  • the load comprises a matrix of capacitors so that the voltage reached at the terminals of each one of them provides discretized information on the concentration value of the analyte in the electrochemical cell.
  • a concrete example of an embodiment of the device for quantifying the concentration of analytes in an electrochemical cell is that of a glucometer in which the concentration of glucose, which is the analyte, is quantified in blood, and which can be used for diagnostic purposes. diabetes.
  • Figure 1 Shows a schematic representation of the device in which the analyte concentration quantification procedure that constitutes the object of this invention is carried out.
  • Figure 2.- Shows a polarization curve of the electrochemical cell, when it is a fuel cell, a battery or a hybrid.
  • Figure 4.- Shows a diagram of the second embodiment for the analyte quantification in an electrochemical cell, where the main charge corresponds to a resistive element.
  • Figure 5. Shows a diagram of the electrochemical cell, the load and the reading element in the case in which the load is resistive.
  • B) Shows a graph of the voltage response of the electrochemical cell over time when the load is resistive, from the connection of the load to the cell, for different analyte concentrations
  • C) Shows a graph that indicates the calibration line that is obtained by representing the time elapsed for the cell voltage to fall between two predetermined voltage values, at different analyte concentrations.
  • Figure 6. Shows an embodiment of the invention when the electrochemical cell is connected to a capacitive load and to an integrated reading element.
  • Figure 7 shows the voltage response of the fuel cell when connected to a capacitor as a function of capacitor size.
  • C 1, 1.36, 2 and 3.3 mF.
  • Figure 8. Shows the voltage response of the fuel cell when connected to a capacitor for a constant capacitor size of 2 mF and for different glucose concentrations (6.2, 7.8 and 11.1 mM).
  • Figure 9. Shows the calibration curve obtained from the fuel cell at a specific time (50 s) after the fuel cell was connected to the condenser (2 mF), with respect to the glucose concentration in the sample.
  • Figure 10. Shows an embodiment of the invention in which the electrochemical cell is connected to a resistive load and to an integrated reading element.
  • Figure 11.- Shows the evolution of the electrochemical cell voltage over time for different analyte concentrations after connecting to a specific resistive load.
  • Figure 14.- (a, b) Shows the modulations of the output voltage levels for different analyte concentrations as a function of the choice of combinations of R1, R2 and C1.
  • Figure 15.- Shows the experimental results of modulating the stable output voltage level across the capacitor depending on the choice of resistor R2 for a given analyte concentration.
  • an electrochemical cell (1) a load (2) are connected in parallel, which in this case It is a capacitor (4), and a reading element (3).
  • a load (2) is connected in parallel, which in this case It is a capacitor (4), and a reading element (3).
  • the charge of the electrochemical cell is transferred to the capacitor (4)
  • the voltage that exists between the terminals of the capacitor (4) Ve depends on the charge that has been transferred from the electrochemical cell (1), which a its turn depends on the analyte concentration.
  • the accumulated voltage in the capacitor Ve (4) depends on the accumulated charge that has been transferred from the electrochemical cell (1). This charge, in turn, depends on the concentration of analyte in the sample placed in the electrochemical cell (1).
  • the reading element (3) comprises a combination of transistors (8) that conduct as a function of the voltage of the capacitor (4) in order to give a digital result according to the concentration of the analyte. exceed certain previously set values.
  • the result of the reading will be expressed in electrochromic screens (6 and 7), which will light up as the transistors (8) go into conduction, that is, when the voltage of! capacitor (4) reaches a threshold value. In this configuration the device is able to discriminate between three different concentration values.
  • Figure 9 shows the evolution of the voltage of the electrochemical cell (1) when it is connected to a capacitor C of values 1 mF, 1.38 ⁇ F, 2 rnF and 3.3 mF, operating with a glucose concentration of 7.5 rr ⁇ M.
  • Capacitance values allow modifying the output voltage of the electrochemical cell (1).
  • Figure 8 shows the experimental values of electrochemical cell voltage (1) (VS) with time for different glucose concentrations (6.25 mM, 7.85 mM, 10 mM and 112.15 mM) when e! capacitor is set to 2 mF. As shown in the figure, the voltage of the electrochemical cell (1) is directly related to the glucose concentration and therefore, by measuring the voltage of the electrochemical cell (1) at a specific time, the analyte concentration can be determined.
  • Figure 9 shows the calibration curve of Vout, which is the capacitor voltage (VC (t)) after the analyte in the electrochemical cell (1) has been depleted, versus the glucose concentration.
  • the reading element (3) shown in figure 6, comprises a series of transistors (T1, T2 and T3) that are in an open or closed state depending on the voltage of the capacitor (4) (VC ( t)) in order to provide a digital result divided into different analyte concentration levels.
  • the result of the reading is shown on several electrochromic screens (8, 7), which will be activated when enabled! conduction state of the transistors (8), that is, when the voltage of the capacitor (4) (VC (t)) exceeds a threshold value.
  • the present embodiment is capable of discriminating three different levels of analyte concentration.
  • the electrochemical cell (1) is connected in parallel to a load (2), which in this case is a resistance (5), and to a reading element (3).
  • reading (3) comprises two blocks: a first block (9) that measures the voltage drop across the resistance (5) and detects the two thresholds that will mark the beginning and end of the time count, this block will activate and deactivate time counting. And a second block (10) that is used to quantify said time.
  • the time counting is done with an RC circuit, where the current is limited by the resistance and the accumulated voltage in the capacitor (5), in this way it is possible to obtain information on the time that the RC circuit has been connected to the electrochemical cell
  • the voltage between the terminals of the capacitor of the RC circuit in the second block (10) depends on the time elapsed between the Instant in which the voltage between the terminals of the electrochemical cell (1) has reached the initial voltage and in which the final voltage has been reached, intens / alo marked by the reading element, this interval is determined through the first block (9).
  • this time depends on the concentration of the analyte in the electrochemical cell. (one). Therefore, by measuring the voltage drop between the capacitor terminals of the second block (10) once the voltage in the electrochemical cell (1) has reached the threshold value, the analyte concentration can be estimated. The higher the analyte concentration, the greater the voltage drop across the capacitor of the second block (10), since it has been charged for a longer time.
  • the electrochemical cell (1) is connected to a resistive load.
  • the electrochemical cell voltage (1) decays from its open circuit potential value at different rates depending on the analyte concentration for a given resistance value. As can be seen, the rate of voltage drop is higher at lower analyte concentrations.
  • the voltage drop is affected by the value of the resistance used.
  • the voltage drop rate is higher for higher load values.
  • the elapsed time for the voltage of the electrochemical cell (1) to drop from the open circuit voltage, to a specific threshold value (mentioned in the legend) when it is subjected only to a resistive load is presented in the figure 12 (a).
  • a specific threshold value for a particular resistance value of 10 kQ
  • a proportional increase in elapsed time is observed with an increase in analyte concentrations for different threshold voltage levels.
  • Figure 12 (b) shows the elapsed time for the electrochemical cell (1) to reach the threshold value of 0.45 V from its open circuit voltage, when it is subjected to a resistive load. It is observed that the slope of the fitted linear curves increased with the increase in the value of the load resistance.
  • the value of the voltage of the electrochemical cell (1) falls due to the main influence of the resistance R1.
  • the output voltage across the capacitor increases during this process until diode D1 interrupts the flow of current significantly.
  • the experimental results indicated different output voltage values across the capacitor for different analyte concentrations.
  • the output voltage maintains a stable value for at least 30 s due to the presence of diodes that restricts the immediate discharge of the capacitor.
  • the effect of the R2 value on the accumulated voltage of the capacitor was also measured by establishing an analyte concentration of 5 mM and R2 values of 57 KW, 100 KW and 220 KW, as shown in figure 15.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Secondary Cells (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

La invención se refiere a un dispositivo y procedimiento de cuantificación de la concentración de analitos, comprendiendo el dispositivo una celda electroquímica (1) que contiene el analito, una carga (2) que se conecta en paralelo con la celda electroquímica (1), y un elemento de lectura (3), que se conecta en paralelo con la carga (2), y que comprende las etapas de cuantificación de la concentración de analitos, transferencia de carga de la celda electroquímica (1) a la carga (2), determinación de la tensión en la carga (2) y determinación de la concentración de analito a partir de la relación que existe entre esta y la tensión en la carga (2).

Description

DISPOSITIVO Y PROCEDI MIENTO DE CUANTIFICACIÓN DE LA
CONCENTRACIÓN DE ANALITOS EN UNA MUESTRA
DESCRIPCIÓN
OBJETO DE LA INVENCIÓN
La presente invención se refiere a un método de cuantificación de ía concentración de anaiito presente en una muestra mediante el uso de un dispositivo autoalimentado, desechable y de un solo uso. El método depende de la combinación de una celda electroquímica y una carga electrónica conectada a ésta en paralelo. La carga electrónica puede ser una combinación de al menos una carga capacitiva y una resistiva. Un aspecto fundamental de este método es que la carga resistiva conectada a la celda electroquímica tenga un valor tal que ponga a la celda a trabajar en régimen limitado por difusión. El nivel de voltaje de carga del elemento capacitivo se puede relacionar con la concentración de anaiito en la celda electroquímica. El voltaje de carga del condensador se puede medir usando un elemento de lectura integrado, que se puede ser alimentado por la misma celda electroquímica. De manera alternativa, el elemento de lectura puede ser un dispositivo de medida externo.
ANTECEDENTES DE LA INVENCIÓN
Un anaiito es una especie química cuya presencia o contenido en una muestra se desea conocer, identificar y cuantificar, mediante un proceso de medición química. El uso de sistemas electroquímicos, incluyendo sensores potenciométricos o amperométricos y biosensores para cuantificar un anaiito presente en una muestra ya ha sido ampliamente reportado.
Estos sensores generalmente consisten en celdas electroquímicas que contienen un electrodo de trabajo (electrodo sensor), donde el anaiito reacciona a través de una reacción redox, y un contra electrodo, donde la reacción redox complementaria tiene lugar. Los electrodos sensor y contra electrodo pueden ser o no enzimáticos. El electrodo sensor es preferiblemente selectivo para la reacción redox del anaiito, para asegurar la fiabilidad del sensor.
Dichos sensores electroquímicos pueden ser potenciométricos, como aquellos presentados en U.S. 2004/0245101 A1 , donde se moniíorea el potencial de circuito abierto de una celda de combustible y se relaciona con la concentración de analito. Este método se ha diseñado para condiciones de flujo constante, donde el potencial de celda es estable mientras que el flujo y la concentración de analito sean constantes. Aunque estas bioceldas de combustible operan a baja eficiencia, y tienen aplicaciones limitadas como fuente de energía, la potencia extraída es suficiente para alimentar ios elementos sensores. El sensor opera sin fuente de alimentación externa. No obstante, se necesita un sistema de lectura de la medida de potencial de circuito abierto. De forma alternativa, la determinación de la cantidad de analito presente en una muestra se puede hacer con sensores amperométrícos, en los que la celda de combustible se polariza mediante la fijación de un voltaje de trabajo constante, mediante la aplicación de una carga o mediante un barrido en un rango de voltaje determinado, para generar corriente eléctrica. El voltaje de la celda de combustible o la corriente eléctrica generada puede medirse y correlacionarlo con la concentración de analito. Estos sistemas comúnmente requieren el uso de una electrónica compleja y una fuente de energía externa para la polarización y registro de corriente. Esto hace que sea necesario un lector dedicado. El uso de equipamiento externo como un potenciostato o una fuente de alimentación se puede evitar conectando la celda de combustible a una carga (por ejemplo, a una resistencia), como se menciona en W02GQ5093400A1 , US9220451 B2 y US 2010/0213057 A1. Estos tipos de sensores generalmente se denominan autoalimentados, ya que no requieren fuente de alimentación externa para fijar un voltaje de trabajo específico o hacer un barrido en un rango determinado de voltaje. Sin embargo, estos sistemas necesitan integrar un transductor o conectarse a uno, para convertir la concentración de analito en una señal eléctrica y posteriormente en una señal reconocible por el ser humano.
En la mayoría de los casos, también es necesario un sistema de lectura de corriente o voltaje. Como se describe en US 2010/0213057 A1 , la lectura se puede realizar directamente con un sistema de lectura externo (sistema de monitoreo portátil) o acoplando el sensor a un circuito de medida alimentado por radiofrecuencia (RF). Para proporcionar medidas continuadas de niveles de analito, un sistema de monitoreo portátil interroga remotamente en intervalos de tiempo al circuito de medida alimentado por radiofrecuencia.
Los dispositivos autoalimentados para ¡a detección de un anaiito a partir de una pila de combustible se basan en la correlación entre la corriente generada en la pila de combustible y la concentración de anaiito. En cualquier caso, en las publicaciones en las que se presentan estos dispositivos, no se indica un método de transducción de la medida de corriente o voltaje obtenida por la pila de combustible a una señal que puede ser identificada por el usuario. Para la replicabilidad de estos resultados, es necesario un potenciostato para efectuar un barrido de voltaje y medidas de corriente, lo que limita su aplicación práctica y supone que el resultado no se puede obtener de manera autoalimentada a partir del sensor, ya que es necesaria una fuente externa para alimentar el potenciostato. Además, este tipo de dispositivos están enfocados para medidas a largo plazo o monitoreo constante y la muestra generalmente se alimenta de manera continua en la celda de combustible. Esto significa que el voltaje de la celda de combustible es constante mientras que el combustible fluya en la celda de combustible, y para un amplio rango de cargas resistivas. Esto facilita la medida de voltaje de la celda de combustible. En ciertos casos, el voltaje o la corriente generada por la celda de combustible no es constante, por ejemplo, cuando el volumen de muestra se limitada a pocos microlitros, por ejemplo, una gota de sangre extraída por capilaridad. En este caso, cuando la celda de combustible se conecta a una carga y la reacción electroquímica empieza, consumiendo el combustible y variando su concentración en el tiempo, y siguiendo un gradiente de concentración proporcional al coeficiente de difusión del anaiito. En consecuencia, el voltaje de la celda de combustible varia, disminuyendo junto con la concentración de muestra, que se va consumiendo durante la medida. Esto dificulta la medida de la concentración inicial de anaiito en la muestra. Otros dispositivos, como aquel reportado en U.S. 2010/0200429 A1 hacen uso de una celda de combustible enzimática que carga un condensador, que se descarga mediante una señal, como la iluminación de un LED. En este caso, se requería una bomba de carga para aumentar el voltaje de la celda de combustible para alimentarlo a un condensador. Después de que el capacitor alcanzó un valor fijo, se descargó a través de una carga para recargarse nuevamente y así sucesivamente. La frecuencia de carga y descarga, que será dependiente de la concentración de anaiito, se transmite por radio frecuencia y un recibidor identifica ia señal y ia convierte en un valor de concentración de analito.
En este caso es necesaria la utilización de un equipo externo de medida de voltaje, corriente o un receptor de radiofrecuencia. Además, la fuerza electromotriz inducida en la celda de combustible, que se alimenta a la bomba de carga, depende de la concentración de la muestra. Por lo tanto, como se mencionó anteriormente, ¡os gradientes de concentración observados mientras se emplean muestras de bajo volumen pueden alterar ia dependencia de ¡a frecuencia de carga.
De forma similar al tipo de dispositivos mencionados en el párrafo anterior, donde la carga conectada a la celda de combustible es una resistencia, el volumen de muestra es crucial. Para sistemas de alimentación“batch” con volúmenes de muestra tal que el gradiente de concentraciones generado no alcance el final del volumen de muestra o para sistemas de flujo continuo, donde ia concentración de muestra (y de analito) en el “bulK’ es constante y los ciclos de carga y descarga permanecen constante. En ese caso, ¡a frecuencia de carga y descarga se puede monitorear y ia señal se puede enviar a un recibidor externo. Por el contrario, para un volumen pequeño de muestra (ej. una gofa), ios ciclos de carga y descarga no son constantes. Si se establece un voltaje umbral, los ciclos de carga se alargan y los ciclos de descarga se acortan en el tiempo, conforme se va agotando el combustible. Con ciclos de carga y descarga variables en el tiempo, la frecuencia también será variable y no proporcionará datos fiables. Si por el contrario se establece un tiempo determinado de carga y descarga del condensador, ios voltajes de carga y descarga disminuirán en el tiempo, conforme se agota el combustible. Esto dificulta el establecimiento de un voltaje umbral, ya que el voltaje alcanzado disminuye en cada ciclo. Esto puede proporcionar datos de concentración de analito no fiables ni precisos. Además, este tipo de dispositivos requieren una electrónica compleja que a menudo incluye una bomba de carga y un oscilador. Esto reduce la aplicabilidad del dispositivo, cuyo uso queda limitado en ausencia de fuentes de alimentación externa, elementos de lectura o recibidores externos.
DESCRIPCIÓN DE LA INVENCIÓN El objetivo de la presente invención es proveer de un procedimiento sencillo para la medida de la concentración de un anaiito usando una celda electroquímica, que puede contener un volumen de muestra, que puede ser de cualquier volumen, y con posibilidad de uso, pero sin necesidad de una fuente de energía o un recibidor externo. Este método se puede usar en un dispositivo de un solo uso, desechadle y autónomo, de electrónica simple, desechadle, y autoalimentada, que evita la utilización de baterías externas.
Concretamente, el procedimiento de la invención hace uso de un dispositivo que comprende una celda electroquímica, una carga que se conecta en paralelo a la misma y un elemento de lectura, conectado a su vez en paralelo a la carga.
En concreto, el dispositivo y el método de cuantificación de la concentración de anaiito en la muestra se compone de una celda electroquímica y una carga electrónica conectada a ella en paralelo. La carga electrónica puede ser una combinación de al menos una carga capacitiva y una carga resistiva.
Un aspecto fundamental del dispositivo y del método es que la resistencia equivalente de la carga conectada a la celda electroquímica tenga un valor que ponga a la celda a trabajar en régimen limitado por difusión. Régimen limitado por difusión se define en la presente invención como la condición en la que el anaiito que reacciona en los electrodos de la celda se consume a igual o mayor velocidad que la velocidad a la que se transporta a través del medio de reacción.
Cuando la celda electroquímica opera en dicho régimen limitado por difusión, entra en un estado no estacionario en el que el voltaje de salida de la celda electroquímica disminuye en el tiempo. La corriente generada por la celda electroquímica bajo estas condiciones se transfiere total o parcialmente a la carga capacitiva. El voltaje alcanzado en el elemento capacitivo se puede relacionar directamente con la concentración de anaiito en la celda electroquímica.
Por tanto, este método permite una transducción directa y simple de concentración de anaiito a voltaje. Este dispositivo y método difiere de otros métodos ya publicados en que el método aquí propuesto no analiza la concentración de anaiito basándose en una señal obtenida por la respuesta de la frecuencia de múltiples ciclos de carga y descarga. El presente dispositivo y método opera la celda electroquímica en corriente directa (DC) durante un único ciclo de descarga de la celda. Esta estrategia permite simplificar significativamente la instrumentación requerida para operar la celda electroquímica y ei elemento lector. Además, este dispositivo y método permite cuantificar la concentración de anaiito a partir de un volumen reducido de muestra con y/o sin flujo, en el que se establece un régimen de limitado por difusión cuando cualquier carga resistiva se conecta a la celda electroquímica. Este fenómeno, que haría que otros métodos informados fueran inexactos, se toma en la presente invención como una ventaja y constituye la piedra angular del principio de medición. Ei voltaje alcanzado en ei elemento capacitivo puede medirse usando un elemento de lectura integrado, que puede ser alimentado por la propia celda electroquímica. De manera alternativa, ei elemento de lectura puede ser un dispositivo de medida externo. La celda electroquímica consiste en al menos un electrodo donde tiene lugar una reacción de oxidación (ánodo) y un electrodo donde tiene lugar una reacción de reducción (cátodo). Estos electrodos están en contacto con un electrolito, donde tiene lugar la transferencia iónica. En la celda electroquímica al menos uno de los dos electrodos reacciona con el anaiito (designado como electrodo sensor) que se quiere medir, mediante una reacción de oxidación o de reducción, mientras que otro de los electrodos (designado electrodo complementario) lleva a cabo una reacción complementaria (reducción u oxidación) con ei objetivo de configurar la celda electroquímica que permita la generación de un voltaje y una corriente neta.
El electrodo sensor puede ser de transferencia electrónica directa o de transferencia electrónica a través de un mediador. El electrodo sensor puede estar formado por cualquier material que catalice la reacción redox del anaiito, incluyendo metales, aleaciones, polímeros redox, enzimas o bacterias, por ejemplo, enzima glucosa desidrogenasa, glucosa oxidasa, FDH, MDH, AOD, XOD, Hyderasa, Gluconobacter oxidans, magnesio, paiadio, bismuto, níquel, platino, rutenio, oro, carbono, grafito, hierro, litio, cadmio, cobre, plata, zinc, aluminio, entre otros. El electrodo sensor puede ser enzimáiico, pudiendo ser de primera generación, donde una enzima selectiva para un analito, oxida al analito, mientras que una reacción de reducción simultánea reduce a un cofactor, después el cofactor reducido se oxida, usando oxígeno para producir peróxido de hidrógeno en la superficie del electrodo, produciendo una señal eléctrica proporcional a la concentración de analito. El electrodo sensor también puede ser como el electrodo de un sensor amperométrico de segunda generación, comprendiendo un mediador (en disolución) para la transferencia electrónica ai electrodo. El electrodo sensor también puede ser como un sensor amperométrico de tercera generación, con una transferencia directa de electrones, ya que ¡a enzima está físicamente conectada con el electrodo.
El electrodo complementario lleva a cabo una reacción de reducción u oxidación, complementaria a la que tiene lugar en el electrodo sensor. El voltaje redox de dicha reacción debe ser más electropositivo que la reacción del electrodo sensor si el electrodo complementario actúa de cátodo, o más electronegativo que el electrodo sensor si el electrodo complementario actúa de ánodo, creando así una diferencia de voltaje positiva entre la reacción del electrodo catódico y el electrodo anódico. La reacción que transcurre en el electrodo complementario no debe ser limitante de la generación de corriente, quedando ésta supeditada a la concentración de analito.
El electrodo complementario puede estar compuesto de cualquier especie redox complementaria a ¡a reacción que tiene lugar en el electrodo sensor, metal, aleación, material polimérico reductor u oxidante, bacterias o enzimas, por ejemplo, hierro, cobalto, níquel, benzoquínona, plata, oxido de plata, peróxido de plata, cobre, manganeso, platino, oro, compuestos de carbono, incluyendo electrodos basados en carbón activado, grafito, nanotubos de carbono y pasta de carbono, magnesio, zinc, aluminio, entre otros.
El electrodo sensor y el electrodo complementario pueden estar distribuidos de forma planar, uno junto al otro o uno frente al otro. Más de una combinación de electrodos sensores y complementarios se puede utilizar para aumentar el voltaje si se conectan en serie o aumentar la corriente si se conectan en paralelo. Ambos electrodos pueden estar separados o no por una membrana de intercambio iónico selectiva o no selectiva, por un material poroso o por un puente salino.
Por otra parte, el dispositivo en el que se lleva a cabo el procedimiento objeto de esta invención comprende además de ia celda electroquímica, una carga, que se conecta al sensor en paralelo, y que puede ser de tipo resistivo, capacitivo, inductivo, o una combinación de ellas. La carga conectada a la celda electroquímica pone a trabajar a la celda a un régimen de trabajo limitado por difusión de analito, con lo que la respuesta de la celda electroquímica está condicionada por la concentración del analito en la muestra. A partir de la lectura de la tensión en la carga, mediante un elemento de lectura conectado en paralelo con esta, se puede conocer la concentración del analito en la muestra.
En concreto, en una primera realización del dispositivo utilizado, ia carga conectada a la celda electroquímica es predominantemente capacitiva, siendo preferentemente un condensador. La carga resistiva se establece mediante la resistividad interna de la celda electroquímica y la resistencia óhmica de los electrodos, las pistas del circuito y las conexiones eléctricas del ensamblaje. Cuando se cierra el circuito, la carga eléctrica generada por la celda electroquímica es transferida al condensador. La tensión alcanzada entre los terminales del condensador (Ve) depende de la carga eléctrica que ha sido transferida desde la celda electroquímica (VS). Ésta, a su vez, depende de la concentración de analito que ha sido oxidado o reducido en ia celda electroquímica. De esta manera, el voltaje alcanzado en el condensador (Ve) proporciona información sobre la concentración de analito.
La carga acumulada hace que el voltaje del condensador aumente siguiendo la ecuación (1), donde Vc(t) es el voltaje a través del condensador, q(t) es la carga generada por ia celda electroquímica en condiciones de régimen de difusión, que se almacena en el condensador con el tiempo, y C es la capacitancia del condensador, A es el área del electrodo de sensado de la celda, D el coeficiente de difusión del analito, t es el tiempo y Co es la concentración de analito. Así mismo, la acumulación de carga puede expresarse en términos de:
Figure imgf000010_0001
Como se puede ver, el voltaje acumulado del condensador es proporcional a la concentración de analito y esto permite una cuantificación directa del contenido de analito. Bajo esta configuración, ia evolución dei voltaje acumulado en el condensador hace que el voltaje de la celda electroquímica aumente simultáneamente hasta que el analíto se agote totalmente en la muestra. Podemos denominar este tiempo como tsat, ya que el voltaje dei condensador alcanza una saturación de carga transferida, a medida que la celda electroquímica deja de generar corriente.
De manera alternativa, ia carga transferida entre ia celda electroquímica y el condensador se puede interrumpir desconectando ios dos elementos en un momento particular con un elemento adicional, como un diodo, interruptor, transistor, entre otros. El valor fijo final del voltaje en condensador puede representarse por Vout, que es directamente proporcional a ia cantidad de analíto en la muestra.
En una segunda realización, ia carga conectada a la celda electroquímica es predominantemente resistiva, siendo preferiblemente una resistencia. En particular, una carga resistiva R1 se conecta en paralelo a la celda electroquímica como la carga principal. Una segunda rama que contiene la resistencia R2, el condensador C1 y el diodo D1 también está conectada en paralelo a la celda electroquímica.
En esta realización, una vez que el circuito está conectado a la celda electroquímica, la carga resistiva R1 somete a la celda a un régimen limitado por difusión que provoca una caída en el voltaje de la celda electroquímica desde su potencial de circuito abierto. La corriente generada por la celda electroquímica fluye a través de las ramas que contienen R1 y R2. Durante este proceso, el condensador C1 que aparece en la rama junto con la resistencia R2 y D1 se carga.
Finalmente, el diodo D1 entra en polarización inversa cuando el voltaje acumulado en el condensador aumenta y el voltaje de la celda electroquímica disminuye por debajo de un cierto valor umbral. Cuando el voltaje a través del diodo se pone en polarización inversa, ia corriente a través de la rama que lo contiene cesa (actuando como un interruptor para cortar la conexión entre la celda electroquímica y el condensador), y el condensador se mantiene en el voltaje cargado final adquirido justo antes de que el diodo obstruyera significativamente el flujo de corriente.
Es importante destacar que incluso después, aunque la celda electroquímica está cayendo constantemente de voltaje debido a la influencia de R1 , el condensador C1 se mantiene en el valor final de voltaje cargado, ya que el diodo restringe el flujo de corriente en dirección inversa. La tensión final de salida acumulada a través de! condensador es proporcional a la concentración de anaiito. El nivel de ios voltajes de salida alcanzados en el elemento capacitivo se puede modular o cambiar mediante la elección de la combinación de resistencias R1 y R2 y ios valores de! capacitor C1 sin afectar el patrón de respuesta.
Las diferencias en ios niveles de voltaje adquiridos entre las concentraciones de anaiito medidas en el elemento capacitivo se pueden modular mediante la elección de la combinación de las resistencias R1 y R2 y el valor de capacitancia C1.
En una tercera realización del dispositivo, la carga que se conecta en paralelo a la celda electroquímica es de tipo resistivo, preferentemente una resistencia. En esta realización, una vez que el circuito está conectado a la celda electroquímica, la carga resistiva R1 pone a trabajar a la celda en régimen limitado por difusión que causa una caída en el voltaje de la celda electroquímica desde su potencial de circuito abierto.
La velocidad a la cual decae la tensión de la celda electroquímica está relacionada con la concentración de anaiito oxidado o reducido en la celda electroquímica. La velocidad de la caída de voltaje en la celda electroquímica cuando se somete a la carga resistiva R1 es más lenta para concentraciones más altas de anaiito. En esta configuración, se puede obtener información sobre la concentración de anaiito midiendo el tiempo transcurrido entre un voltaje inicial y un voltaje final previamente definidos, mediante el elemento de lectura.
El elemento de lectura permite la transducción de la respuesta generada por la celda electroquímica a una señal que permita a un usuario derivar información sobre la concentración de anaiito. Esta señal puede consistir en una pantalla digital o señal luminosa, una señal acústica o una señal mecánica. Estas señales pueden indicar la concentración del anaiito o bien si ésta ha superado ciertos valores umbrales predefinidos.
El elemento de lectura puede estar integrado con la celda electroquímica y su carga, haciendo este dispositivo portátil y desechable. Alternativamente, el elemento de lectura puede ser un componente externo. Alternativamente el elemento de lectura puede estar alimentado solamente con la energía generada por la celda electroquímica, o alternativamente, puede estar alimentado con una fuente de alimentación externa o la combinación de ambas Más concretamente, en las realizaciones que involucran la lectura de un elemento capacitivo, el elemento de lectura puede consistir en cualquier elemento capaz de medir el voltaje del condensador. Esto permite obtener información sobre la concentración del analito con sistemas de lectura de voltaje en corriente continua. El elemento de lectura puede constar de uno o un conjunto de transistores, de circuitos integrados, de circuitos integrados para aplicaciones específicas (ASIC), de un multímetro, de un sistema de comunicación USB con el ordenador o un sistema de comunicación inalámbrica RFiD, NFC, o bluetooth entre otros.
En otra realización del dispositivo, cuando la carga conectada a la celda electroquímica es resistiva, ei elemento de lectura puede consistir en dos elementos que permitan medir voltaje y tiempo de manera simultánea o bien en un elemento que integre las dos funciones. El elemento de lectura puede comprender por ejemplo cualquiera de las opciones contempladas en el párrafo anterior para medir ei voltaje, combinada con un método para medir el tiempo como puede ser electrónica compleja que incluya un reloj, un cristal de cuarzo, un circuito RC o cualquier tipo de reloj externo entre otros.
En otra realización del dispositivo cabe la posibilidad de que la carga comprenda una matriz de condensadores de manera que la tensión que se alcanza en los terminales de cada uno de ellos proporciona una información discretizada del valor de concentración del analito en la celda electroquímica.
Un ejemplo concreto de realización del dispositivo de cuantificación de la concentración de analitos en una celda electroquímica es la de un glucómetro en el que se cuantifica la concentración de glucosa, que es el analito, en sangre, y que se puede emplear para ei de diagnóstico de diabetes.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
Figura 1.- Muestra una representación esquemática del dispositivo en el que se ¡leva a cabo el procedimiento de cuantificación de la concentración de analitos que constituye el objeto de esta invención.
Figura 2.- Muestra una curva de polarización de la celda electroquímica, cuando ésta es una celda de combustible, una batería o un hibrido.
Figure 3 - A) Muestra un esquema de la celda electroquímica, la carga y el elemento de lectura en el caso de que la carga es de tipo capacitiva. B) Muestra una gráfica en la que se representa la evolución de la tensión en la carga capacitiva con el tiempo, en la que se muestran tres posibles tensiones alcanzadas en el condensador para tres posibles concentraciones de analito. C) Muestra una gráfica que indica una línea de calibración que se obtiene al representar el voltaje de la carga capacitiva respecto a las concentraciones de analito a un tiempo determinado desde la conexión de la celda electroquímica a la carga.
Figura 4.- Muestra un esquema de la segunda realización para la cuantificación de analito en una celda electroquímica, donde la carga principal corresponde a un elemento resistivo.
Figura 5.- A) Muestra un esquema de la celda electroquímica, la carga y el elemento de lectura en el caso en el que la carga es de tipo resistivo. B) Muestra una gráfica de la respuesta en tensión de la celda electroquímica con el tiempo cuando la carga es resistiva, desde la conexión de la carga a la celda, para distintas concentraciones de analito C) Muestra una gráfica que indica la línea de calibración que se obtiene ai representar el tiempo transcurrido en descender el voltaje de la celda entre dos valores predeterminados de voltaje, a distintas concentraciones de analito.
Figura 6.- Muestra una realización de la invención cuando la celda electroquímica se conecta a una carga capacitiva y a un elemento de lectura integrado.
Figura 7 Muestra la respuesta de voltaje de ¡a celda de combustible cuando se conecta a un condensador en función del tamaño del condensador. Para una concentración constante de analto (glucosa de 7.5 mM) y diferentes tamaños de condensadores: C = 1 , 1.36, 2 y 3.3 mF.
Figura 8.- Muestra la respuesta de voltaje de la celda de combustible cuando se conecta a un condensador para un tamaño de condensador constante de 2 mF y para distintas concentraciones de glucosa (6.2, 7.8 y 11.1 mM).
Figura 9.- Muestra la curva de calibrado obtenida de la celda de combustible a un tiempo concreto (50 s) después de que la celda de combustible se conectara al condensador (2 mF), respecto a la concentración de glucosa en la muestra.
Figura 10.- Muestra una realización de la invención en la que la celda electroquímica se conecta a una carga resistiva y a un elemento de lectura integrado.
Figura 11.- Muestra la evolución del voltaje de la celda electroquímica con el tiempo para diferentes concentraciones de analito después de conectarse a una carga resistiva especifica.
Figura 12.- a) Muestra la relación entre ios tiempos transcurridos en la caída del voltaje de la celda electroquímica desde el potencial de circuito abierto hasta un valor de voltaje umbral específico para diferentes concentraciones de analito. b) Muestra la influencia del valor de la resistencia en el tiempo transcurrido desde que la celda electroquímica tiene un potencial de circuito abierto hasta que alcanza un valor umbral fijado como 0.45 V para diferentes concentraciones de analito.
Figura 13.- a) Muestra el voltaje acumulado a través del condensador C1 para diferentes concentraciones de analito, mientras que el voltaje a través de la celda electroquímica se reduce principalmente debido a la influencia de R1. b) Curva de calibración obtenida entre el voltaje del condensador de salida medido y la concentración de analito.
Figura 14.- (a,b) Muestra las modulaciones de los niveles de voltaje de salida para diferentes concentraciones de analito en función de la elección de combinaciones de R1 , R2 y C1.
Figura 15.- Muestra los resultados experimentales de modular el nivel de voltaje de salida estable a través del capacitor dependiendo de la elección del resistor R2 para una concentración de analito dada.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
A continuación se describe, con ayuda de las figuras 1 a 15, ia realización preferida del dispositivo y el procedimiento de cuantificación de ia concentración de analito en una celda de combustible. En una primera realización del dispositivo en el que se lleva a cabo el procedimiento de esta invención, tal y como se muestra en la figura 5, se conectan en paralelo una celda electroquímica (1 ), una carga (2), que en este caso es un condensador (4), y un elemento de lectura (3). Una vez cerrado el circuito, la carga de la celda electroquímica se transfiere ai condensador (4) La tensión que existe entre los terminales del condensador (4) Ve depende de la carga que ha sido transferida desde la celda electroquímica (1), que a su vez depende de la concentración de analito. El voltaje acumulado en el condensador Ve (4) depende de ia carga acumulada que se ha transferido desde la celda electroquímica (1). Esta carga, a su vez, depende de la concentración de analito que haya en la muestra colocada en la celda electroquímica (1).
El elemento de lectura (3), tal y como se muestra en la figura 6, comprende una combinación de transistores (8) que conducen en función del voltaje del condensador (4) con el fin de dar un resultado digital según la concentración dei analito supere ciertos valores establecidos previamente. El resultado de la lectura se expresará en unas pantallas electrocrómicas (6 y 7), que se iluminarán según los transistores (8) entren en conducción, es decir, cuando el voltaje de! condensador (4) alcance un valor umbral. En esta configuración el dispositivo es capaz de discriminar entre tres valores de concentración diferentes. La figura 9 muestra la evolución de la tensión de ia celda electroquímica (1) cuando se conecta a un condensador C de valores 1 mF, 1.38 ¡mF, 2 rnF y 3.3 mF, operando con una concentración de glucosa de 7.5 rr¡M. Los valores de capacitancia permiten modificar el voltaje de salida de la celda electroquímica (1). La Figura 8 muestra los valores experimentales de voltaje de celda electroquímica (1) (VS) con el tiempo para diferentes concentraciones de glucosa (6.25 mM, 7.85 mM, 10 mM y 112.15 mM) cuando e! capacitor se ajusta a 2 mF. Como se muestra en la figura, el voltaje de la celda electroquímica (1) está directamente relacionado con la concentración de glucosa y por tanto, midiendo el voltaje de la celda electroquímica (1) en un tiempo específico se puede determinar la concentración de analito.
La figura 9 muestra la curva de calibrado de Vout, que es el voltaje del capacitor (VC(t)) una vez que el analito en la celda electroquímica (1) se ha agotado, frente a la concentración de glucosa. Por su parte, el elemento de lectura (3), que se muestra en la figura 6, comprende una serie de transistores (T1 , T2 y T3) que están en estado abierto o cerrado dependiendo del voltaje del condensador (4) (VC(t)) con objeto de proporcionar un resultado digital dividido en diferentes niveles de concentración de analito. El resultado de la lectura se muestra en varias pantallas electrocrómicas (8, 7), que se activarán ai habilitare! estado de conducción de los transistores (8), es decir, cuando el voltaje del condensador (4) (VC(t)) supera un valor umbral. En esta configuración particular, la presente realización es capaz de discriminar tres niveles diferentes de concentración de analito.
En otra realización, como se muestra en la figura 10, la celda electroquímica (1) se conecta en paralelo a una carga (2), que en este caso es una resistencia (5), y a un elemento de lectura (3) El elemento de lectura (3) comprende dos bloques: un primer bloque (9) que mide la caída de voltaje en la resistencia (5) y detecta los dos umbrales de que marcaran el inicio y el final del conteo de tiempo, este bloque activará y desactivará el conteo de tiempo. Y un segundo bloque (10) que se usa para cuantificar dicho tiempo. En este caso el conteo de tiempo se hace con un circuito RC, donde la corriente está limitada por la resistencia y ei voltaje acumulado en el condensador (5), de esta forma se consigue sacar información del tiempo que ei circuito RC ha estado conectado a la celda electroquímica
(li La tensión entre los terminales del condensador del circuito RC en el segundo bloque (10) depende del tiempo transcurrido entre el Instante en el que la tensión entre los terminales de la celda electroquímica (1) ha alcanzado la tensión inicial y en el que se ha alcanzado la tensión final, inten/alo marcado por el elemento de lectura. Este intervalo se determina a través del primer bloque (9).
A su vez, este tiempo depende de la concentración del analito en la celda electroquímica (1). Por lo tanto, midiendo la caída de tensión entre los terminales del condensador del segundo bloque (10) una vez que la tensión en la celda electroquímica (1) ha alcanzado el valor umbral, se puede estimar la concentración del analito. A mayor concentración de analito, mayor será la caída de tensión en el condensador del segundo bloque (10), puesto que este ha sido cargado durante más tiempo.
En otra realización, como se muestra en la figura 11 , la celda electroquímica (1) se conecta a una carga resistiva. El voltaje de la celda de electroquímica (1) decae desde su valor de potencial de circuito abierto a diferentes velocidades dependiendo de la concentración de analito para un valor de resistencia determinado. Como se puede observar, la velocidad de caída del voltaje es mayor en caso de concentraciones más pequeñas de analito.
Como también se observa en la figura 11 , la caída de voltaje se ve afectada por el valor de la resistencia utilizada. La velocidad de caída del voltaje es mayor para mayores valores de cargas. En esta realización, el tiempo transcurrido para que el voltaje de la celda electroquímica (1) caiga desde el voltaje de circuito abierto, hasta un valor umbral especifico (mencionado en ia leyenda) cuando se somete solamente a una carga resistiva se presenta en ia figura 12(a). Para un valor de resistencia particular de 10 kQ, se observa un aumento proporcional en el tiempo transcurrido con un aumento en las concentraciones de analito para diferentes niveles de voltaje umbral. La figura 12(b) muestra el tiempo transcurrido para que la celda electroquímica (1) alcance el valor umbral de 0,45 V desde su voltaje de circuito abierto, cuando se encuentra sometida a una carga resistiva. Se observa que la pendiente de las curvas lineales ajustadas aumentó con el aumento en el valor de la resistencia de carga.
En otra realización, la celda electroquímica (1) se ha conectado ai circuito mostrado en la figura 3 con R1 = 10 KOhms, R2 = 100 KOhms y C1 = 47pF. El valor del voltaje de ia celda electroquímica (1) cae debido a la influencia principal de la resistencia R1. El voltaje de salida en ei condensador se va aumentando durante este proceso hasta que el diodo D1 interrumpe el paso de la corriente de manera significativa.
Como se muestra en ¡a figura 13, los resultados experimentales indicaron diferentes valores de voltaje de salida a través dei condensador para diferentes concentraciones de analito. El voltaje de salida mantiene un valor estable durante al menos 30 s debido a la presencia de diodos que restringe ia descarga inmediata dei condensador. En realizaciones adicionales, ia celda electroquímica (1) se ha conectado al circuito que se muestra en la figura 3 con R1 = 10 KOhms y C1 = 47 mF, y ios niveles de voltaje de salida a través del condensador C1 se han modulado ajustando la resistencia R2 a diferentes valores (100 y 220 KOhms ) sin afectar eí patrón de respuesta para diferentes analitos como se muestra en ia figura 14. Ei efecto del valor R2 en el voltaje acumulado del condensador también se midió estableciendo una concentración de analito de 5 mM y valores R2 de 57 KW, 100 KW y 220 KW, como se muestra en la figura 15.

Claims

REIVINDICACIONES
1 Dispositivo para la cuantificación de la concentración de anaiitos en una muestra, que comprende:
una celda electroquímica (1), que utiliza un volumen de combustible que incorpora un analito, cuya concentración se quiere determinar,
una carga
(2), que comprende al menos una carga capacitiva (4) y/o una carga resistiva (5), conectada en paralelo con ia celda electroquímica (1), con un valor de resistencia equivalente tal que obliga a ia celda electroquímica (1) a trabajar en régimen limitado por difusión y a entrar en un estado no estable en el que su voltaje de salida varía con el tiempo, generando la celda electroquímica (1) una corriente continua, transferida en un único ciclo de descarga, total o parcialmente a ia carga capacitiva (4), y siendo ei voltaje acumulado en la carga capacitiva (4) dependiente de la concentración del analito en ia celda electroquímica (1), y
- un elemento de lectura
(3), conectado en paralelo con la carga capacitiva (4) y/o la carga resistiva (5), con capacidad de medir la tensión de la carga (4,5) en función de ia que se determina ia concentración del analito en la celda electroquímica (1) 2.- El dispositivo de la reivindicación 1 , en el que la carga (2) es predominantemente una carga capacitiva (4) y ia carga resistiva (5) se establece en función de ia resistencia óbmica de la celda electroquímica (1), la conexión entre la célula electroquímica (1) y la carga capacitiva (4) y conexiones eléctricas de! dispositivo 3.- El dispositivo de la reivindicación 1 , en ei que la carga capacitiva (4) es una matriz de condensadores, destinados a proporcionar una información discretizada sobre ia concentración de! analito en ia celda electroquímica (1) a partir de la tensión que se alcanza en cada uno de los condensadores.
4 - Ei dispositivo de la reivindicación 1 , en el que la carga (2) comprende al menos dos ramas conectadas en paralelo a la celda electroquímica (1), y en el que una primera rama comprende un elemento resistivo tal que obliga a la celda electroquímica (1) a trabajar en régimen limitado por difusión y en el que una segunda rama comprende, conectados en serie, una carga resistiva (5), una carga capacitiva (4) y un diodo con capacidad de ponerse en polarización inversa cuando el voltaje de la celda electroquímica (1) ha caído por debajo de un valor predeterminado permitiendo mantener la carga acumulada en la carga capacitiva (4).
5.- El dispositivo de la reivindicación 4, en el que el valor de la carga resistiva (5) de la segunda rama es al menos cinco veces el valor del elemento resistivo de la primera rama.
6.- El dispositivo de la reivindicación 1 , en el que la carga (2) conectada a la celda electroquímica (1) es predominantemente resistiva, preferentemente una resistencia, tal que obliga a la celda electroquímica (1) a trabajar en régimen limitado por difusión y en el que la unidad de lectura (3) está configurada para medir el tiempo transcurrido entre dos valores de voltaje diferentes preestablecidos alcanzados en la celda electroquímica (1).
7.- El dispositivo de la reivindicación 1 , en el que el elemento de lectura (3) comprende al menos:
un transistor (8) que se activa cuando la tensión en la carga (2) alcanza un valor umbral, y
un indicador (8), que emite una señal luminosa, acústica o vibratoria cuando el transistor (8) empieza a conducir.
8.- El dispositivo de la reivindicación 1 , en el que el elemento de lectura (3) está alimentado por la tensión generada por la celda electroquímica (1 ).
9.- El dispositivo de la reivindicación 1 , en el que el elemento de lectura (3) está alimentado por una fuente externa al dispositivo.
10.~ El dispositivo de la reivindicación 1 , en el que el combustible de la celda electroquímica (1) es sangre y el anaiito analizado es glucosa.
1 1.- El dispositivo de la reivindicación 1 , en el que el volumen de combustible que incorpora el anaiito es limitado y del orden de 0.1-50ul.
12.- El dispositivo de la reivindicación 1 , en el que el volumen de combustible que incorpora el anaiito es un flujo constante.
13.- Procedimiento para la cuantificación de la concentración de analitos en una muestra, que hace uso del dispositivo de la reivindicación 1 , y que comprende las etapas de:
conexión de la celda electroquímica (1), la carga (2) y el elemento de lectura (3), trabajando la celda electroquímica (1) en régimen limitado por difusión, transferencia de una intensidad de corriente continua en un único ciclo de descarga desde ¡a celda electroquímica (1) hasta la carga (2),
determinación de ia tensión en la carga (2) mediante ei elemento de lectura (3) y/o determinación del tiempo transcurrido hasta que se alcanza una tensión umbral en la celda electroquímica (1 ) mediante el elemento de lectura (3), y determinación de la concentración de analito en la celda electroquímica (1).
14.- El procedimiento de ¡a reivindicación 13, en el que la carga (2) es predominantemente una carga capacitiva (4), y la determinación de la concentración del analito se hace a partir de la relación que existe entre la tensión alcanzada en la carga capacitiva (4) y la concentración de analito en la celda electroquímica (1).
15.- El procedimiento de la reivindicación 13, en el que la carga (2) comprende al menos dos ramas paralelas conectadas en paralelo a la celda electroquímica (1), y en el que una primera rama comprende un elemento resistivo tal que obliga a la celda electroquímica (1) a trabajar en régimen limitado por difusión y en ei que una segunda rama comprende, conectados en serie, una carga resistiva (5), una carga capacitiva (4) y un diodo, y ia determinación de ia concentración del analito se hace a partir de ia relación que existe entre la tensión alcanzada en ¡a carga capacitiva (4) y la concentración del analito en la celda electroquímica (1).
16.- El procedimiento de la reivindicación 13, en el que la carga (2) es una carga predominantemente resistiva (5), y la determinación de la concentración del analito se hace a partir de la relación que existe entre el tiempo transcurrido hasta que se alcanza una tensión umbral en la celda electroquímica (1) y la concentración de analito en la celda electroquímica (1).
PCT/ES2020/070237 2019-04-09 2020-04-13 Dispositivo y procedimiento de cuantificación de la concentración de analitos en una muestra WO2020208286A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MX2021012362A MX2021012362A (es) 2019-04-09 2020-04-13 Dispositivo y procedimiento de cuantificacion de la concentracion de analitos en una muestra.
US17/602,420 US20220170878A1 (en) 2019-04-09 2020-04-13 Device and procedure for the quantification of the concentration of analytes in a sample
EP20731902.1A EP3954986A1 (en) 2019-04-09 2020-04-13 Device and procedure for the quantification of the concentration of analytes in a sample
CN202080027672.5A CN114026412A (zh) 2019-04-09 2020-04-13 样品中分析物浓度定量的装置和程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201930320 2019-04-09
ES201930320A ES2786450A1 (es) 2019-04-09 2019-04-09 Procedimiento de cuantificacion de la concentracion de analitos en una celda electroquimica

Publications (1)

Publication Number Publication Date
WO2020208286A1 true WO2020208286A1 (es) 2020-10-15

Family

ID=71078534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2020/070237 WO2020208286A1 (es) 2019-04-09 2020-04-13 Dispositivo y procedimiento de cuantificación de la concentración de analitos en una muestra

Country Status (6)

Country Link
US (1) US20220170878A1 (es)
EP (1) EP3954986A1 (es)
CN (1) CN114026412A (es)
ES (1) ES2786450A1 (es)
MX (1) MX2021012362A (es)
WO (1) WO2020208286A1 (es)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115980148B (zh) * 2023-03-22 2023-06-09 深圳一代科技有限公司 一种双电层电容式薄膜传感器及相关制品、装置与方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019170A1 (en) * 2001-08-29 2003-03-06 Yissum Research Development Company Of The Hebrew University Of Jerusalem Self-powered biosensor
WO2005093400A1 (ja) 2004-03-25 2005-10-06 Ultizyme International Ltd. 燃料電池型ワイヤレス酵素センサー
US20100200429A1 (en) 2007-09-18 2010-08-12 Ultizyme International Ltd. Method for measuring substrate concentration and device for the same
US20100213057A1 (en) 2009-02-26 2010-08-26 Benjamin Feldman Self-Powered Analyte Sensor
US9220451B2 (en) 2010-03-11 2015-12-29 Roche Diabetes Care, Inc. Method and fuel cell for electrochemical measurement of analyte concentration in vivo
US20160187286A1 (en) * 2013-08-07 2016-06-30 Nokia Technology Oy Apparatus and associated methods for analyte detection
US20180233761A1 (en) * 2016-11-01 2018-08-16 Gymama Slaughter Self-charging implantable power source with biosensor functionality

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6872298B2 (en) * 2001-11-20 2005-03-29 Lifescan, Inc. Determination of sample volume adequacy in biosensor devices
US7368190B2 (en) * 2002-05-02 2008-05-06 Abbott Diabetes Care Inc. Miniature biological fuel cell that is operational under physiological conditions, and associated devices and methods
CN1938599B (zh) * 2004-03-26 2012-08-29 伊顿动力品质公司 测试电化学装置的方法
US9484589B1 (en) * 2013-08-13 2016-11-01 The United States Of America As Represented By Secretary Of The Navy Microbial fuel cell with sediment agitator
JP2015210968A (ja) * 2014-04-28 2015-11-24 積水化学工業株式会社 微生物燃料システム、微生物燃料電池の蓄電方法および蓄電回路
US11105766B2 (en) * 2019-02-25 2021-08-31 Advanced Environmental Technologies, Llc Methods and systems for real-time monitoring of in situ bioactivity and biodegradation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019170A1 (en) * 2001-08-29 2003-03-06 Yissum Research Development Company Of The Hebrew University Of Jerusalem Self-powered biosensor
US20040245101A1 (en) 2001-08-29 2004-12-09 Itamar Willner Self-powered biosensor
WO2005093400A1 (ja) 2004-03-25 2005-10-06 Ultizyme International Ltd. 燃料電池型ワイヤレス酵素センサー
US20100200429A1 (en) 2007-09-18 2010-08-12 Ultizyme International Ltd. Method for measuring substrate concentration and device for the same
US20100213057A1 (en) 2009-02-26 2010-08-26 Benjamin Feldman Self-Powered Analyte Sensor
US9220451B2 (en) 2010-03-11 2015-12-29 Roche Diabetes Care, Inc. Method and fuel cell for electrochemical measurement of analyte concentration in vivo
US20160187286A1 (en) * 2013-08-07 2016-06-30 Nokia Technology Oy Apparatus and associated methods for analyte detection
US20180233761A1 (en) * 2016-11-01 2018-08-16 Gymama Slaughter Self-charging implantable power source with biosensor functionality

Also Published As

Publication number Publication date
EP3954986A1 (en) 2022-02-16
MX2021012362A (es) 2021-11-04
CN114026412A (zh) 2022-02-08
ES2786450A1 (es) 2020-10-09
US20220170878A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
AU2019236408B2 (en) A device and a method for sensing the conductivity of a fluid
CA2806064C (en) System and method for measuring an analyte in a sample
CN102348414B (zh) 连续测量基质浓度的方法
RU2660316C2 (ru) Аналитическая тест-полоска со встроенным аккумулятором
GB2310493A (en) Determination of characteristics of fluids by use of a disposable sensor module of a testing device
KR20080009119A (ko) 전기화학적 스트립에서의 부분적인 채워짐의 판별
KR20120099452A (ko) 바이오센서용 언더필 인식 시스템
KR101462019B1 (ko) 혈액측정기
Merino‐Jimenez et al. A Self‐Powered Minimalistic Glucometer: A Lean Approach to Sustainable Single‐Use Point‐of‐Care Devices
WO2020208286A1 (es) Dispositivo y procedimiento de cuantificación de la concentración de analitos en una muestra
US20220296131A1 (en) Miniaturized analyte sensor
Hanson et al. Flexible and portable electrochemical system for the detection of analytes
EP2679992A1 (en) Biological sample measuring device
EP1482296A1 (en) Method and device for measuring blood coagulating or lysis by viscosity changes
US20150330926A1 (en) Hand-held test meter constant current driver with integrated test strip sample detection
US20150168339A1 (en) Hand-held test meter multi-event control solution measurement reminder
Mohammadifar et al. A paper-based enzymatic sensor array for visual detection of glucose levels in urine
CZ28142U1 (cs) Systém pro převod elektrochemického signálu na vizuální vjem

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20731902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020731902

Country of ref document: EP

Effective date: 20211109