WO2020207768A1 - Imaging optical unit for imaging an object field into an image field, and projection exposure apparatus comprising such an imaging optical unit - Google Patents

Imaging optical unit for imaging an object field into an image field, and projection exposure apparatus comprising such an imaging optical unit Download PDF

Info

Publication number
WO2020207768A1
WO2020207768A1 PCT/EP2020/057854 EP2020057854W WO2020207768A1 WO 2020207768 A1 WO2020207768 A1 WO 2020207768A1 EP 2020057854 W EP2020057854 W EP 2020057854W WO 2020207768 A1 WO2020207768 A1 WO 2020207768A1
Authority
WO
WIPO (PCT)
Prior art keywords
field
optical unit
imaging
structuring
imaging optical
Prior art date
Application number
PCT/EP2020/057854
Other languages
French (fr)
Other versions
WO2020207768A8 (en
Inventor
Michael Patra
Sascha Migura
Original Assignee
Carl Zeiss Smt Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss Smt Gmbh filed Critical Carl Zeiss Smt Gmbh
Publication of WO2020207768A1 publication Critical patent/WO2020207768A1/en
Publication of WO2020207768A8 publication Critical patent/WO2020207768A8/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/08Anamorphotic objectives
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70233Optical aspects of catoptric systems, i.e. comprising only reflective elements, e.g. extreme ultraviolet [EUV] projection systems

Definitions

  • Imaging optical unit for imaging an object field into an image field
  • projection exposure apparatus comprising such an imaging optical unit
  • the invention relates to an imaging optical unit for a projection exposure apparatus for imaging an object field into an image field. Further, the invention relates to a method for designing such an imaging optical unit, an optical system of such an imaging optical unit and an illumination optical unit for illuminating the object field which is imageable with the imaging optical unit, a projection exposure apparatus comprising such an optical system, a method for producing a microstructured or nanostructured component using such a projection exposure apparatus and a microstructured or nanostructured component part produced by this method.
  • Projection optical units of the type set forth at the outset are known from US 2016/0085061 Al, DE 10 2012 202 675 Al, DE 10 2009 011 328 Al, US 8 027 022 B2 and US 6 577 443 B2.
  • An illumination optical unit for a projection exposure apparatus is known from DE 10 2009 045 096 Al.
  • an imaging optical unit comprising the features specified in Claim 1.
  • an imaging optical unit or projection optical unit with specifiable reduction scales in the two field directions offers a degree of freedom which can be used to optimize the field dimensions ratios while taking account of, firstly, the actual area to be imaged on the object and, secondly, the field dimensions required on the image side.
  • the form of an object specification field including the rounded comer regions thereof, needs to be taken into account for the purposes of optimizing the imaging optical unit.
  • the reduction scales of the imaging optical unit are specified with the aid of a Pareto criterion. It is possible to consider those field aspect ratios that can no longer be increased in one direction without having to accept losses in the other field direction.
  • the deviation of the area of the structuring field from an area of a Pareto structuring field can be less than 8%, can be less than 5%, can be less than 3%, or else can be less than 2%.
  • the reduction scale specifies the factor by which the imaging optical unit reduces the image field, proceeding from the respective object field dimension.
  • a reduction scale of 4 in the first field direction an object field that has an extent of 100 mm in this first field direction is imaged into an image field that has an extent of 25 mm in the same field direction.
  • the imaging optical unit is regularly embodied as an anamorphic optical unit.
  • the imaging optical unit can be embodied as a catoptric optical unit.
  • Integer reduction scale ratios according to Claim 2 render it possible to proceed from already known designs of imaging optical units and, for example, only adapt the imaging scale for one field direction.
  • Specifying a reduction scale ratio according to Claim 3 allows scaling of the imaging optical unit.
  • Embodiments of the imaging field according to Claim 4 and of the object specification field according to Claims 5 and 6 have proven their worth.
  • a semiconductor component for example a memory chip, can be produced using the projection exposure apparatus.
  • Fig. 1 schematically shows a projection exposure apparatus for EUV microlithography
  • Fig. 2 shows, in a meridional section, an embodiment of an imaging optical unit which can be used as a projection lens in the projection exposure apparatus according to Figure 1, wherein an imaging beam path for chief rays and for an upper coma ray and a lower coma ray of three selected field points is depicted;
  • Fig. 3 shows a view of the imaging optical unit, as seen from the viewing direction III in Figure 2;
  • Fig. 4 shows a view of a first section of the imaging optical unit in the imaging beam path, as seen from the viewing direction IV in Figure 2;
  • Fig. 5 shows a view of a last section of the imaging optical unit in the imaging beam path, as seen from the viewing direction V in Figure 2;
  • Fig. 6 to 15 show plan views of mirrors Ml to M10 of the imaging optical unit, illustrated in the sequence in which these mirrors reflect imaging light in the imaging beam path;
  • Fig. 16 to 85 show, in illustrations similar to Figures 2 to 15, further embodiments of imaging optical units that are usable in place of the imaging optical unit according to Figures 2 to 14 in the projection exposure apparatus according to Figure 1;
  • Fig. 86 shows a plan view of an embodiment of a reticle to be imaged by the projection exposure apparatus
  • Fig. 87 to 91 show corresponding plan views of further embodiments of reticles to be imaged
  • Fig. 92 shows a plan view of an imaging field of the projection exposure apparatus
  • Fig. 93 to 95 show corresponding plan views of further embodiments of imaging fields of the projection exposure apparatus
  • Fig. 96 shows a plan view of a used region of the reticle of one of the embodiments according to Figures 86 to 91 with different embodiments of object fields with different aspect ratios x/y inscribed in this used region;
  • Fig. 97 shows a diagram of a dependence between reduction scales b c and b n that are admissible for reticle imaging when an aspect ratio x/y of the used region of the reticle is taken into account, wherein Pareto-optimal reduction scales [b c , b n ] assigned to one another are highlighted;
  • Fig. 98 shows, in a diagram similar to Figure 97, the Pareto-optimal reduction scales for various combinations of, firstly, reticle used regions and, secondly, imaging field dimensions
  • Fig. 99 shows, in an illustration similar to Figure 96, a plan view of a used region of a reticle to be imaged with an inscribed, rectangular object field and an additional illustration of the areas provided for the arrangement of auxiliary structures, which lie outside of the object field and within the used region;
  • Fig. 100, 101 show, in an illustration similar to Figure 99 in each case, further arrangement variants of the object field and of auxiliary areas for auxiliary structures within a reticle used region;
  • Fig. 102 shows, in an illustration similar to Figure 98, Pareto-optimal reduction scale assignments [b c , b n ] for various combinations of object field aspect ratios and image field aspect ratios while taking account of area required for reticle auxiliary regions corresponding to those illustrated in Figures 99 to 101;
  • Fig. 103 shows a schematic plan view of a reticle to be imaged with an object field to be imaged that is defined by a stop boundary;
  • Fig. 104 shows the reticle with the object field to be imaged and the stops delimiting the latter (reticle masking stops), which act along the two object field dimensions x and y;
  • Fig. 105 shows a schematic section along a light path of the imaging light in the region of an edge portion of a reticle to be imaged, wherein beam-limiting and beam- influencing components for a light beam of the imaging light are shown schematically;
  • Fig. 106 schematically shows the consequences of the shadowing effect of the reticle masking stops for the reticle
  • Fig. 107 shows, in an illustration similar to Figure 100, the used region of the reticle when the shadowing effect of the reticle masking stops are additionally taken into account; and Fig. 108 shows, in an illustration similar to Figures 98 and 102, Pareto-optimal pairs of reduction scales [b c , b n ] for the respective combinations of, firstly, reticle embodiments and, secondly, image field dimension embodiments while the shadowing effect of the reticle masking stops is additionally taken into account.
  • a microlithographic projection exposure apparatus 1 comprises a light source 2 for illumination light or imaging light 3.
  • the light source 2 is an EUV light source, which produces light in a wavelength range of, for example, between 5 nm and 30 nm, in particular between 5 nm and 15 nm.
  • the light source 2 can be a light source with a wavelength of 13.5 nm or a light source with a wavelength of 6.7 nm.
  • Other EUV wavelengths are also possible.
  • the illumination light 3 guided in the projection exposure apparatus 1 could even have any desired wavelength, for example visible wavelengths or else other wavelengths which may find use in microlithography (e.g. DUV, deep ultraviolet) and for which suitable laser light sources and/or LED light sources are available (e.g. 365 nm, 248 nm, 193 nm, 157 nm, 129 nm, 109 nm).
  • a beam path of the illumination light 3 is illustrated very schematically in Figure 1.
  • An illumination optical unit 6 is used to guide the illumination light 3 from the light source 2 to an object field 4 in an object plane 5.
  • the object field 4 is imaged into an image field 8 in an image plane 9 with a specified, possibly anamorphic reduction scale.
  • a Cartesian xyz-coordinate system is indicated in the drawing, from which system the respective positional relationship of the components illustrated in the figures is evident.
  • the x-direction runs perpendicular to the plane of the drawing into the latter.
  • the y-direction runs towards the left, and the z-direction runs upward.
  • the object field 4 and the image field 8 have a partial ring shape. Alternatively, it is also possible for the object field 4 and the image field 8 to have a different bent or curved embodiment, or else the rectangular embodiment.
  • the object field 4 and the image field 8 have an x/y-aspect ratio of greater than 1. Therefore, the object field 4 has a longer object field dimension in the x-direction and a shorter object field dimension in the y-direction. These object field dimensions extend along the field coordinates x and y.
  • the projection optical unit 7 according to Figures 2 to 15 has an anamorphic embodiment.
  • the projection optical unit 7 In the yz-plane, i.e., in the meridional plane of the section according to Figure 2, the projection optical unit 7 has a reduction scale b g of -8.10.
  • the object field 4 In the meridional plane yz, the object field 4 is thus imaged onto the image field 8 with a reduction by a non-integer factor of 8.1 and, moreover, there is an image inversion on account of an even number of intermediate image planes between the object plane at 5 and the image plane 9 such that a negative value for p y arises.
  • a reduction scale b c of the projection optical unit 7 is 4.00 in the sagittal plane xz, which is perpendicular to the meridional plane.
  • the object field 4 is thus imaged onto the image field 8 with a reduction by an integer factor of 4 and without an image inversion on account of an odd number of intermediate image planes between the object plane 5 and the image plane 9 such that a positive value for b c arises.
  • Other integer or non-integer reduction scales b c , b g are also possible, as will still be explained below on the basis of the further exemplary embodiments according to Figures 16 et seq.
  • the image field 8 has an x-extent of 26 mm and a y-extent of 1.6 mm.
  • the image field has a partial ring shape, with field boundaries of the image field extending along the first field direction having a radius of curvature of 80 mm.
  • the image plane 9 is arranged parallel to the object plane 5. What is imaged in this case is a portion of a reflection mask 10, also referred to as reticle, coinciding with the object field 4.
  • the reticle is a reflection mask 10, also referred to as reticle, coinciding with the object field 4.
  • reticle 10 is carried by a reticle holder 10a.
  • the reticle holder 10a is displaced by a reticle displacement drive 10b.
  • the imaging by way of the projection optical unit 7 is implemented on the surface of a substrate
  • Figure 1 schematically illustrates, between the reticle 10 and the projection optical unit 7, a beam 13 of the illumination light 3 that enters into said projection optical unit and, between the projection optical unit 7 and the substrate 11, a beam 14 of the illumination light 3 that emerges from the projection optical unit 7.
  • An image field-side numerical aperture (NA) of the projection optical unit 7 is not reproduced to scale in Figure 1.
  • the projection exposure apparatus 1 is of the scanner type. Both the reticle 10 and the substrate 11 are scanned in the y-direction during the operation of the projection exposure apparatus 1.
  • Figure 2 shows the optical design of a first embodiment of the projection optical unit 7.
  • Figure 2 depicts the beam path of, in each case, three individual rays 15 emanating from three object field points which are spaced apart from one another in the y-direction in Figure 2.
  • What is depicted are chief rays 16, i.e., individual rays 15 which pass through the centre of a pupil in a pupil plane of the projection optical unit 7, and, in each case, an upper coma ray and a lower coma ray of these two object field points.
  • the chief rays 16 include an angle CRAO of 5.05° with a normal on the object plane 5.
  • the projection optical unit 7 has an image-side numerical aperture of 0.55.
  • the projection optical unit 7 according to Figure 2 has a total of ten mirrors, which are numbered consecutively by Ml to M10 in the order of the beam path of the individual rays 15, proceeding from the object field 4.
  • An imaging optical unit 7 could also have a different number of mirrors, for example four mirrors, six mirrors or eight mirrors. An odd number of mirrors is also possible.
  • the calculated reflection surfaces of the mirrors Ml to M10 are depicted in some of Figures 2 to 15. As is evident from the illustration according to Figure 2, for example, only a portion of these calculated reflection surfaces is used. At least this actually used region of the reflection surfaces, shown in Figures 6 to 15, for example, is in fact present in the real mirrors Ml to M10. These used reflection surfaces are carried by mirror bodies in a manner known per se.
  • the mirrors Ml, M9 and M10 are embodied as normal incidence mirrors, i.e., as mirrors on which the imaging light 3 strikes with an angle of incidence of less than 45°. Overall, the projection optical unit 7 according to Figure 2 thus has three normal incidence mirrors Ml, M9 and M10.
  • the mirrors M2, M3, M4, M5, M6, M7 and M8 are mirrors for grazing incidence of the illumination light 3, i.e., mirrors on which the illumination light 3 is incident with angles of incidence of greater than 45° and, in particular, of greater than 60°.
  • a typical angle of incidence of the individual rays 15 of the imaging light 3 on the mirrors M2 to M8 for grazing incidence lies in the region of 80°.
  • the projection optical unit 7 according to Figure 2 has exactly seven mirrors M2 to M8 for grazing incidence.
  • the mirrors M2 to M8 reflect the imaging light 3 in such a way that the angles of reflection of the individual rays 15 at the respective mirrors M2 to M8 add up, i.e., lead to an amplification of the deflection effect thereof.
  • the mirrors M2 to M8 for grazing incidence each have large absolute values for the radius, i.e., they have a relatively small deviation from a plane surface. These mirrors M2 to M8 contribute to a specific imaging aberration correction and, in particular, to a local imaging aberration correction.
  • the mirror Ml of the projection optical unit 7 is an example for the“L” deflecting effect.
  • the mirror M9 of the projection optical unit 7 is an example for the“0” deflecting effect.
  • the projection optical unit 7 for the mirrors Ml to M10 has the following sequence of deflecting effects: LRRRRRRROR.
  • all described exemplary embodiments of the projection optical units can be mirrored about a plane extending parallel to the xz-plane without this changing fundamental imaging properties in the process.
  • the mirrors Ml to M10 carry a coating that optimizes the reflectivity of the mirrors Ml to M10 for the imaging light 3.
  • this can be a ruthenium coating, a molybdenum coating, an alternating molybdenum-silicon coating, an alternating molybdenum-silicon coating with an uppermost layer made of ruthenium or a molybdenum coating with an uppermost layer made of ruthenium.
  • a coating comprising for example a layer of molybdenum or ruthenium can be used in the case of the grazing incidence mirrors M2 to M8.
  • These highly reflecting layers in particular of the mirrors Ml, M9 and M10 for normal incidence, can be configured as multi-ply layers, wherein successive layers can be manufactured from different materials. Alternating material layers can also be used.
  • a typical multi-ply layer can have fifty bilayers, respectively made of a layer of molybdenum and a layer of silicon. The bilayers may have an aperiodic and/or a spatially dependent embodiment.
  • the multi-ply layer may also be provided with protective layers, e.g., to counter mechanical, optical and/or chemical damage, or with diffusion stop layers in addition to used layers, i.e., layers that contribute to the reflection of the imaging light 3.
  • a system transmission is calculated as follows: A mirror reflectivity is determined at each mirror surface on the basis of the angle of incidence of a guide ray, i.e., a chief ray of a central object field point, and combined by multiplication to form the system transmission.
  • the mirror M10 that is to say the ultimate mirror upstream of the image field 8 in the imaging beam path, has a passage opening 17 for the passage of the imaging light 3 which is reflected from the antepenultimate mirror M8 toward the penultimate mirror M9.
  • the mirror M10 is used in a reflective manner around the passage opening 17. None of the other mirrors Ml to M9 has a passage opening and said mirrors are used in a reflective manner in a continuous region without gaps.
  • a stop AS is disposed in the imaging beam path between the mirrors M9 and M10, said stop having both the function of an aperture stop and the function of an obscuration stop.
  • the stop AS firstly specifies the image-side numerical aperture of the projection optical unit 7 and secondly specifies the size of an inner pupil obscuration.
  • the stop AS may also have a non contiguous embodiment.
  • the mirrors Ml to M10 are thus embodied as free-form surfaces which cannot be described by a rotationally symmetric function.
  • Other embodiments of the projection optical unit 7, in which at least one of the mirrors Ml to M10 is embodied as a rotationally symmetric asphere, are also possible. It is also possible for all mirrors Ml to M10 to be embodied as such aspheres.
  • a free-form surface can be described by the following free-form surface equation (Equation 1):
  • r is the distance from the reference axis of the free-form surface equation
  • Ci, C2, C3... denote the coefficients of the free-form surface series expansion in powers of x and y.
  • Equation (1) describes a biconical free-form surface.
  • An alternative possible free-form surface can be produced from a rotationally symmetric reference surface. Such free-form surfaces for reflection surfaces of the mirrors of projection optical units of microlithographic projection exposure apparatuses are known from
  • free-form surfaces can also be described with the aid of two-dimensional spline surfaces.
  • examples for this are Bezier curves or non-uniform rational basis splines (NURBS).
  • NURBS non-uniform rational basis splines
  • two-dimensional spline surfaces can be described by a grid of points in an xy- plane and associated z-values, or by these points and gradients associated therewith.
  • the complete surface is obtained by interpolation between the grid points using e.g. polynomials or functions which have specific properties in respect of the continuity and the differentiability thereof. Examples for this are analytical functions.
  • the optical design data of the reflection surfaces of the mirrors Ml to M10 of the projection optical unit 7 can be gathered from the following tables.
  • Negative radii values denote curves that are concave towards the incident illumination light 3 at the intersection of the respective surface with the considered plane (xz, yz) that is spanned by a surface normal at the vertex with the respective direction of curvature (x, y).
  • the two radii Radiusx, Radiusy may explicitly have different signs.
  • the refractive powers Powerx (P x ), Powery (P y ) at the vertices are defined as: p _ 2 cos AOI
  • AOI denotes an angle of incidence of the guide ray with respect to the surface normal.
  • the second table specifies the absolute value along which the respective mirror, proceeding from a reference surface, was decentred (D y ) in the y-direction, displaced (D z ) in the z-direction and tilted (a x , a . a z ).
  • This corresponds to a parallel shift and a tilting in the case of the free-form surface design method.
  • a displacement is carried out along the y-direction and in the z- direction in mm, and tilting is carried out about the x-axis, about the y-axis and about the z-axis.
  • the angle of rotation is specified in degrees. Decentring is carried out first, followed by tilting.
  • the reference surface during decentring is in each case the first surface of the specified optical design data. Decentring in the y-direction and in the z-direction is also specified for the object field 4 (reticle). In addition to values assigned to the individual mirrors Ml to M10, this table also tabulates the object plane (reticle) as a first surface, the image plane (wafer) as an ultimate surface and a stop surface (denoted“stop”) as an arrangement plane for an aperture or obscuration stop.
  • the third table (Tables 3a to 3d) specifies the free-from surface coefficients C n , respectively assigned to the polynomials x k , y 1 , for the mirrors Ml to M10. Coefficients C n not tabulated each have a value of 0.
  • the fourth table specifies a boundary of the stop AS as a polygonal chain with N corners in local coordinates xyz. As described above, the stop is still decentred and tilted.
  • Each row of the table specifies the coordinates of two polygonal corners, specifically of the point i and of the point i+N/2; expressed differently, the table is constructed in such a way that the two front columns have to be read from top to bottom and subsequently the two back columns have to be read from top to bottom.
  • the mirrors Ml, M5, M6, M8 and M10 have negative radius values, i.e., are concave mirrors as a matter of principle.
  • the mirrors M2 and M9 have positive radius values, i.e., are convex mirrors as a matter of principle.
  • the mirrors M3, M4, M7 have R x , R y radius values with differing signs in each case, i.e., are each saddle-shaped as a matter of principle.
  • the boundary is an inner boundary.
  • the stop AS can lie in a plane or else have a three-dimensional embodiment.
  • the extent of the stop AS can be smaller in the scan direction (y) than in the cross-scan direction (x).
  • the projection optical unit 7 is designed for a wavelength of the illumination light 3 of 13.5 nm.
  • the value of the etendue arises as the product of the field dimensions of the image field 8 in the two field directions x and y and the square of the image-side numerical aperture.
  • the mean wavefront aberration RMS is a measure for the imaging quality of the projection optical unit 7.
  • the negative values for the positions of the entry pupil in Table 5 mean that the entry pupil lies upstream of the object field 4 in the imaging light beam path, both in the xz-plane (EP (x) value) and in the yz-plane (EP (y) value).
  • a positive value for EP(x) or for EP(y) would mean that the entry pupil lies downstream of the object field 4 in the respective plane in the imaging light beam path.
  • the object-image offset is the y-distance between the centre of the object field 4 and the centre of the image field 8.
  • the corresponding dimension of the object-image offset, dois is plotted in Figure 2.
  • the object-image offset, dois is at least approximately identical to the decentring of the reticle relative to the wafer as specified in Table 2; in the case of object and image fields with a partial ring shape, in particular, the exact value of dois depends on the definition of which point of the object field 4 and which point of the image field 8 are considered.
  • the working distance between the mirror M9 closest to the wafer and the image plane 9 specifies the distance between the used reflection surface of the mirror M9 and the image plane 9.
  • a reticle tilt of 0° arises on account of the object plane 5 being parallel to the image plane 9.
  • the installation length is the distance between the object plane 5 and the image plane 9 in the z- direction.
  • an area that cannot be illuminated due to the obscuration by the obscuration stop AS is less than 0.184 2 of the area of the overall system pupil.
  • the non-illuminated area within the system pupil can have a different extent in the x-direction than in the y-direction.
  • the non-illuminated area in the system pupil can be round, elliptical, square or rectangular. Moreover, this area in the system pupil which cannot be illuminated can be decentred in the x-direction and/or in the y-direction in relation to a centre of the system pupil.
  • the mirrors Ml to M10 can be housed in an installation space cuboid with the extents in the x-, y- and z-direction as specified in Table 5.
  • a telecentricity value of the projection optical unit 7, measured in the y-direction over the image field 8, is less than 0.4 mrad.
  • the projection optical unit 7 is approximately telecentric on the image side.
  • the angles of incidence are specified for the chief rays 16 in each case.
  • the mirror M9 has the largest maximum angle of incidence. It is less than 21°.
  • the mirror M8 has the smallest minimum angle of incidence of 70.3°.
  • the minimum angle of incidence for the chief rays is greater than 70° in each case.
  • the ultimate mirror M specifying the image-side numerical aperture is the largest, both in the x- and in the y-extent, with both extents in the x and y of the mirror M10 being less than 800 mm. Accordingly, the maximum diameter of the mirror M10 is also less than 800 mm and represents the largest maximum mirror diameter of the projection optical unit 7.
  • the plan view according to Figure 3 elucidates that the complete reflection surface of the mirror Ml lies at greater y-coordinates than the object field on account of the chief ray angle of 5.05° at the object field.
  • this allows a better separation of illumination optical unit 6 and projection optical unit 7.
  • the reflection surfaces of mirrors M7 and M8 lie at greater y- coordinates than the image field 8.
  • the mirrors Ml and M2 do not overlap in the plan view according to Figure 3.
  • Figure 4 shows a lateral view of the projection optical unit 7 in the region of a first section of the imaging beam path containing the mirrors Ml to M4.
  • Figure 5 shows, in turn, a lateral view of the last section of the imaging beam path of the imaging optical unit 7, comprising mirrors M6 to M10, as seen from the opposite direction of Figure 4.
  • Figure 5 shows the edge contours of the aperture/obscuration stop AS with a stop body OS and an outer edge.
  • a ring-shaped passage region of the stop AS is present between this inner stop body OS and the outer edge, the inner edge of said passage region specifying the obscuration of the projection optical unit 7 and the outer edge of said passage opening specifying the image-side numerical aperture of the projection optical unit 7.
  • Figures 6 to 15 show edge contours of the surfaces in each case impinged upon by the illumination light 3 on the mirrors Ml to M10 of the projection optical unit 7, i.e., the so-called footprints of the mirrors Ml to M10. These edge contours are in each case depicted in an x/y- diagram, which corresponds to the local x- and y-coordinates of the respective mirror Ml to M10.
  • Mirrors M4, M5, M8 and M10 have an x/y-aspect ratio that does not deviate, or only deviates slightly, from a value of 1.
  • the mirror M7 has the largest x/y-aspect ratio of
  • none of the mirrors Ml to M10 has an x/y-aspect ratio that is greater than 2.6.
  • Figure 86 shows a plan view of a first embodiment of a reticle 10 that is imageable by the projection optical unit 7.
  • Figure 86 and the following illustrations of further embodiments of the reticle in Figures 87 to 91 are provided with dimensions, just like the imaging field illustrations ( Figures 92 to 95).
  • an inch (”) corresponds to 2.54 cm, i.e., 25.4 mm.
  • the reticle 10 according to Figure 86 comprises a square substrate 18 with an edge length of 1524 mm (6 inches, 6”).
  • a used region, also referred to as object specification field 19, which is available for imaging structures of the reticle 10 lies within the square boundary of the substrate 18.
  • the object specification field 19 is delimited by a square specification field basic shape and convexly curved specification field corner regions 20.
  • the reticle 10 according to Figure 86 is also referred to as a standard reticle.
  • Figures 87 to 91 show further size variants of the reticle 10, which are likewise provided with dimensions. Components and functions corresponding to those which have already been explained above with reference to Figure 86, in particular, bear the same reference signs and will not be discussed in detail again.
  • the reticle 10 according to Figure 87 has a square substrate, the external dimensions of which matching those in Figure 86.
  • the object specification field 19 in the reticle 10 according to Figure 87 is smaller than in the embodiment according to Figure 86. This is due to the fact that the distance in the y-dimension between the specification field basic shape of the object specification field 19 and the outer edge of the substrate 18 is greater than in the embodiment according to Figure 86.
  • the reticle 10 according to Figure 89 has a substrate 18 two times larger in the x-dimension than the embodiments according to Figures 86 to 88.
  • the x/y-dimensions in the reticle 10 according to Figure 89 are 12 inches/6 inches.
  • the object specification field 19 in the reticle 10 according to Figure 89 is also correspondingly larger in the x-dimesion and has a rectangular specification field basic shape, likewise with an x/y-aspect ratio of approximately 2/1 and convexly curved specification field corner regions 20.
  • the reticle 10 according to Figure 89 is also referred to as a reticle with twice the size in the horizontal direction.
  • the reticle 10 according to Figure 90 corresponds to that of Figure 89, rotated through 90° about the z-axis (axis perpendicular to the plane of the drawing according to Figures 86 to 91).
  • the reticle 10 according to Figure 90 is also referred to as a reticle with twice the size in the vertical direction.
  • the reticle 10 according to Figure 91 has a square substrate 18 with x/y-dimensions of respectively 12 inches.
  • the edge distances between the object specification field 19 and the outer edge of the substrate 18 are always the same, both in the region of the rectangular specification field basic shape and in the region of the specification field corner regions 20.
  • the reticle 10 according to Figure 91 is also referred to as a reticle with twice the size in both directions.
  • Figure 92 shows an entire imaging field 21 with dimensions in exemplary fashion, said imaging field being exposed in contiguous fashion on the wafer 11 during a scanning procedure within the scope of the projection exposure.
  • the imaging field 21 according to Figure 92 has an extent of 26 mm in the x-dimension; this corresponds to the x-extent of the image field 8.
  • the imaging field 21 has an extent of 33 mm in the y-dimension. With the aid of the image field 8 with an extent of 1.6 mm in the y-dimension, the entire y-extent of the imaging field 21 is illuminated during the scanning process by way of the scanning movement of the wafer 11 in the y-direction with the aid of the substrate displacement drive 12a.
  • the imaging field 21 according to Figure 92 is also referred to as a full field.
  • Figures 93 to 95 show further embodiments of imaging fields 21 with dimensions. Components and functions which have already been explained above with reference to Figure 92, in particular, bear the same labels and will not be discussed in detail again.
  • the imaging field 21 according to Figure 93 has an extent of 13 mm in the x-dimension and an extent of 33 mm in the y-dimension.
  • the x-extent thus corresponds to half the x-extent of the image field 8 of the projection optical unit 7.
  • the y-extent corresponds to that of the imaging field 21 according to Figure 92.
  • the imaging field 21 according to Figure 93 has exactly half the area of the full field according to Figure 92 and is also referred to as a rotated half field.
  • Figure 94 shows an embodiment of the imaging field 21 with an x-extent of 26 mm and a y- extent of 16.5 mm.
  • the x-extent of the imaging field 21 according to Figure 94 is therefore just as large as that of the embodiment according to Figure 92, and the y-extent has half the size.
  • the imaging field 21 according to Figure 94 is also referred to as a half field.
  • the imaging field 21 according to Figure 95 has half the x-extent of 13 mm and half the y-extent of 16.5 mm.
  • the imaging field 21 according to Figure 95 is also referred to as a quarter field.
  • Figure 96 shows arrangement options of structuring fields 4i (4a, 4b, 4c, 4d) with different x/y-aspect ratios, which use the area of the object specification field 19 in Pareto- optimal fashion.
  • the respective rectangular structuring field 4i is illuminated within the scope of a scanning operation of the projection exposure apparatus 1 by way of a relative displacement of the reticle 10 with respect to the object field 4.
  • This is illustrated in Figure 96 using the example of the arcuate object field 4, the x-extent of which corresponds to that of a Pareto-optimal structuring field 4c.
  • the object field 4 is scanned relative to this structuring field 4c along the field direction y, i.e., along the object displacement direction, during the scanning operation of the projection exposure apparatus 1 until the entirety of the structuring field 4c has been illuminated.
  • the respective structuring field 4i overall is imaged into the imaging field 21 associated with the imaging optical unit by way of the imaging scales b c , b n.
  • the imaging field 21 is displaced relative to the image field 8 in a manner synchronized to the object displacement by way of an appropriate synchronization of the drives 10b and 12a.
  • a Pareto-optimal use of the object specification field 19 by the structuring field 4i inscribed therein is present if a magnification of the respective structuring field 4i along an object field dimension is possible only to the detriment of a reduction in the extent of this structuring field along the structuring field dimensional orthogonal thereto.
  • Figure 96 also plots, in exemplary fashion two fields 22 (dotted) and 23 (dashed) that are not inscribed in Pareto- optimal fashion.
  • the field 22 has not been inscribed into the object specification field 19 in Pareto-optimal fashion since it could have a greater extent in the x-dimension without the y- dimension of the field 22 having to be reduced.
  • the field 23 is not inscribed into the object specification field 19 in Pareto-optimal fashion either since it could be increased in the y- dimension without the field 23 having to be reduced in terms of its x-dimension in this case.
  • Examples of structuring fields inscribed in the object specification field 19 in Pareto-optimal fashion are the structuring fields 4a (dash dotted), 4b (dashed), 4c (dotted) and 4d (dashed with a greater spacing).
  • the comers of these rectangular structural fields 4a to 4d lie on the convexly curved boundary lines of the specification field corner regions 20.
  • Such structuring fields 4a to 4d are also referred to as Pareto-structuring fields.
  • the sign of b c or b n is not important when forming this ratio b c /b n ; all that matters is the absolute value.
  • Figure 97 elucidates this result in a diagram, which plots the reduction scale b c along the abscissa and the reduction scale b n along the ordinate. Pareto-optimal, absolute reduction scale ratios are reproduced by a scale ratio curve 24. Proceeding from this curve, smaller assigned absolute reduction scales b g or b c are possible in each case - illustrated using hatching - in the case of respectively set absolute reduction scale b c 0G b n ; this would lead to non-Pareto-optimal inscribed structuring fields, for example structuring fields of types 22, 23 in Figure 96.
  • Figure 98 shows ascertained scale ratio curves 24i.
  • a scale ratio curve 24i for the combination of a standard reticle according to Figure 86 and a half field according to Figure 94 lie close to this scale ratio 4/8.1 of the projection optical unit 7.
  • Figure 99 once again shows an object specification field 19 with a Pareto-optimally inscribed structuring field 4a.
  • usable auxiliary areas 25, 26, 27, 28 are plotted in the surface regions, which lie, firstly, within the object specification field 19 and, secondly, outside of the structuring field 4a.
  • the auxiliary areas 26 to 28 are each rectangular and represent spatial requirements of sensors or markings, which serve to align the reticle, for example.
  • such auxiliary areas have dimensions of 3250 pm x 160 pm, of 9636 pm x 1750 pm and of 4000 pm x 4000 pm.
  • Figures 99 to 101 show, not entirely true to scale, three different arrangement variants of auxiliary areas 25 to 28 between the respective structuring field 4a, 4b and 4c, each inscribed in Pareto-optimal fashion with a different x/y-aspect ratio, and the edge contour of the object specification field 19.
  • Figure 103 schematically shows an embodiment of the reticle 10 together with a region 29, in which reticle structures to be imaged are present. This region 29 is spaced apart from an outer edge contour of the substrate of the reticle 10 on all sides of the square or rectangular reticle 10.
  • Figure 104 shows, very schematically, an arrangement of shadowing stops of the projection exposure apparatus 1, which are also referred to as reticle masking (ReMa) stops.
  • ReMa reticle masking
  • Figure 105 shows, very schematically, those components of the projection exposure apparatus 1 that influence the illumination or imaging light 3 in the region of a reflection at the reticle 10.
  • an entire light beam of the illumination light 3 initially passes energy sensors 34 that are located at the edge, said sensors measuring the energy and, optionally, a directional stability of the illumination light 3.
  • the illumination light 3 passes a field intensity specification device with finger stops 35 in the style of a Unicom.
  • a Unicom is described in DE 10 2017 206 541 A1 and DE 10 2012 208 016 Al.
  • This field intensity specification device serves to specify a defined illumination intensity curve over the x-coordinate of the object field 4.
  • the illumination light 3 passes the y-ReMa stops 32 and 33.
  • the back ReMa stop 33 of Figure 105 is illustrated in the section of Figure 5.
  • the illumination light 3 passes the x-ReMa stops 30, 31, the left x-ReMa stop 30 of which is illustrated in Figure 105.
  • the illumination light 3 passes an optional pellicle 36, which protects a surface of the reticle 10, before the illumination light 3 strikes the object structures of the reticle 10.
  • the pellicle 36 is carried by the reticle holder 10a.
  • Figure 106 schematically shows a shadowing effect caused by the ReMa stops 30 to 33, which occurs at the edge of the region 29 to be imaged in each case.
  • the reticle 10 is illustrated with a break in the central portion such that the edge regions are illustrated with great magnification in Figure 106.
  • the illumination light 3 passes through the ReMa stops 30 to 33 with a respective object-side numerical aperture, which is indicated at NA in Figure 106.
  • half-shadow regions or stop-shadowed areas D arise on the reticle 10, in which some of the illumination light 3 is shadowed by the respective ReMa stop 30 to 33 in each case.
  • the half shadow regions D have a value ranging from 1 mm to 3.5 mm.
  • Figure 107 shows the relationship between the usable structuring field 4i and the shape of the object specification field 19, wherein, firstly, the auxiliary areas 25 to 28, in particular for the alignment sensors and alignment markings, and, secondly, the half-shadowed regions D are additionally taken into account. This yields a corresponding reduction in the usable structuring field 4i in both object field dimensions x and y.
  • Figure 108 shows the influence that this taking account of, firstly, the auxiliary areas and, secondly, the half-shadowed regions has on the curve of the scale ratio curves 24i.
  • the scale ratio curves 24i are shifted to smaller b c values and to smaller b n values in comparison with the case where only the auxiliary areas according to Figure 102 are taken into account.
  • the reduction scale ratio value 4/8.1 of the projection optical unit 7 still lies just below the scale ratio curve 24i and the projection optical unit 7 still satisfies the scale ratio criterion for the same scale ratio curves 24i, as explained above on the basis of Figures 98 and 102.
  • a shape of the object specification field 19, which is bounded by the rectangular specification field basic shape and the convexly curved specification field comer regions 20, and the dimensions of the image field 8 in both field directions x and y are included when ascertaining a reduction scale ratio to be specified from a first reduction scale b c of the imaging optical unit 7 in the first field direction x and the second reduction scale b n of the imaging optical unit 7 in the second field direction y. Then, an arrangement of optical components of the imaging optical unit 7, for example the arrangement described above in conjunction with Figures 2 to 15, is specified, by means of which the specified imaging scale ratio between the object field 4 and the image field 8 is generated.
  • an auxiliary area need can also be included in the ascertainment of the reduction scale ratio b c /b g to be specified. No structures to be imaged are present on the respective auxiliary area 25 to 28, and so the structuring field 4i must not overlap with the auxiliary area 25 to 28.
  • the need for at least one stop-shadowed area D on the object specification field 19 can be included in the ascertainment of the reduction scale ratio b c / b g to be specified.
  • Figures 16 to 29 show a further embodiment of a projection optical unit 37, which can be used instead of the projection optical unit 7 in the projection exposure apparatus 1.
  • the projection optical unit 37 has an integer reduction scale b c in the xz-plane of 4.00 and a reduction scale b g in the yz-plane of -8.80. In terms of its basic design, the projection optical unit 37 corresponds to the projection optical unit 7.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

An imaging optical unit (7) for a projection exposure apparatus is used to image an object field (4) into an image field (8). The projection exposure apparatus is embodied in such a way that a rectangular structuring field on an object to be imaged, which carries structures to be imaged, is imaged in the entirety thereof into an imaging field by displacement of the structuring field relative to the object field, said imaging field being displaced relative to the image field in a manner synchronized with the object displacement. The structuring field lies within a larger object specification field. The latter is defined by an object carrying the structures to be imaged and delimited by a rectangular specification field basic shape and convexly curved specification field corner regions. The object field (4) is spanned by two perpendicular field directions (x, y). The imaging optical unit (7) has a first reduction scale in the first field direction (x), which is given by a ratio of the extent in the first field direction (x) of, firstly, the structuring field and, secondly, the imaging field. The imaging optical unit (7) has a second reduction scale in the second field direction (y), which is given by a ratio of the extent in the second field direction (y) of, firstly, the structuring field and, secondly, the imaging field. The reduction scales and are chosen in such a way that an area of the structuring field is no more than 10% smaller than the area of the largest, rectangular Pareto structuring field which can be fitted into the object specification field. This results in an imaging optical unit with a well-corrected imageable field with, at the same time, a high imaging light throughput.

Description

Imaging optical unit for imaging an object field into an image field, and projection exposure apparatus comprising such an imaging optical unit
The content of the German Patent Application DE 10 2019 205 271.1 is incorporated by reference herein.
The invention relates to an imaging optical unit for a projection exposure apparatus for imaging an object field into an image field. Further, the invention relates to a method for designing such an imaging optical unit, an optical system of such an imaging optical unit and an illumination optical unit for illuminating the object field which is imageable with the imaging optical unit, a projection exposure apparatus comprising such an optical system, a method for producing a microstructured or nanostructured component using such a projection exposure apparatus and a microstructured or nanostructured component part produced by this method.
Projection optical units of the type set forth at the outset are known from US 2016/0085061 Al, DE 10 2012 202 675 Al, DE 10 2009 011 328 Al, US 8 027 022 B2 and US 6 577 443 B2. An illumination optical unit for a projection exposure apparatus is known from DE 10 2009 045 096 Al.
It is an object of the present invention to develop an imaging optical unit of the type set forth at the outset so that this results in a well-corrected imageable field with, at the same time, a high imaging light throughput.
According to the invention, this object is achieved by an imaging optical unit comprising the features specified in Claim 1.
According to the invention, it was recognized that an imaging optical unit or projection optical unit with specifiable reduction scales in the two field directions offers a degree of freedom which can be used to optimize the field dimensions ratios while taking account of, firstly, the actual area to be imaged on the object and, secondly, the field dimensions required on the image side. Here, it was recognized that, in particular, the form of an object specification field, including the rounded comer regions thereof, needs to be taken into account for the purposes of optimizing the imaging optical unit. The reduction scales of the imaging optical unit are specified with the aid of a Pareto criterion. It is possible to consider those field aspect ratios that can no longer be increased in one direction without having to accept losses in the other field direction. Perfect Pareto-optimality is not required in order to meet, where necessary, practical additional requirements, which may still be present; instead, all that is required is that the area of the structuring field deviates from a Pareto-optimized area by less than 10%. The deviation of the area of the structuring field from an area of a Pareto structuring field can be less than 8%, can be less than 5%, can be less than 3%, or else can be less than 2%.
The reduction scale specifies the factor by which the imaging optical unit reduces the image field, proceeding from the respective object field dimension. By way of example, in the case of a reduction scale of 4 in the first field direction, an object field that has an extent of 100 mm in this first field direction is imaged into an image field that has an extent of 25 mm in the same field direction.
The imaging optical unit is regularly embodied as an anamorphic optical unit.
The imaging optical unit can be embodied as a catoptric optical unit.
Integer reduction scale ratios according to Claim 2 render it possible to proceed from already known designs of imaging optical units and, for example, only adapt the imaging scale for one field direction.
Specifying a reduction scale ratio according to Claim 3 allows scaling of the imaging optical unit.
Embodiments of the imaging field according to Claim 4 and of the object specification field according to Claims 5 and 6 have proven their worth.
The advantages of a design method according to Claim 7 correspond to those that have already been explained above with reference to the imaging optical unit according to the invention. An inclusion of necessary auxiliary areas (Claim 8) and/or unavoidable stop-shadowed areas (Claim 9) according to Claims 8 and 9 improves the specification of the reduction scale ratio for the projection optical unit.
The advantages of an optical system according to Claims 10 to 12, a projection exposure apparatus according to Claim 13 or 14, a production method according to Claim 15 and a microstructured or nanostructured component produced therewith correspond to those which have already been explained above with reference to the imaging optical unit and the production method thereof.
In particular, a semiconductor component, for example a memory chip, can be produced using the projection exposure apparatus.
Exemplary embodiments of the invention are explained in greater detail below with reference to the drawing. In said drawing:
Fig. 1 schematically shows a projection exposure apparatus for EUV microlithography;
Fig. 2 shows, in a meridional section, an embodiment of an imaging optical unit which can be used as a projection lens in the projection exposure apparatus according to Figure 1, wherein an imaging beam path for chief rays and for an upper coma ray and a lower coma ray of three selected field points is depicted;
Fig. 3 shows a view of the imaging optical unit, as seen from the viewing direction III in Figure 2;
Fig. 4 shows a view of a first section of the imaging optical unit in the imaging beam path, as seen from the viewing direction IV in Figure 2;
Fig. 5 shows a view of a last section of the imaging optical unit in the imaging beam path, as seen from the viewing direction V in Figure 2; Fig. 6 to 15 show plan views of mirrors Ml to M10 of the imaging optical unit, illustrated in the sequence in which these mirrors reflect imaging light in the imaging beam path;
Fig. 16 to 85 show, in illustrations similar to Figures 2 to 15, further embodiments of imaging optical units that are usable in place of the imaging optical unit according to Figures 2 to 14 in the projection exposure apparatus according to Figure 1;
Fig. 86 shows a plan view of an embodiment of a reticle to be imaged by the projection exposure apparatus;
Fig. 87 to 91 show corresponding plan views of further embodiments of reticles to be imaged;
Fig. 92 shows a plan view of an imaging field of the projection exposure apparatus;
Fig. 93 to 95 show corresponding plan views of further embodiments of imaging fields of the projection exposure apparatus;
Fig. 96 shows a plan view of a used region of the reticle of one of the embodiments according to Figures 86 to 91 with different embodiments of object fields with different aspect ratios x/y inscribed in this used region;
Fig. 97 shows a diagram of a dependence between reduction scales bc and bn that are admissible for reticle imaging when an aspect ratio x/y of the used region of the reticle is taken into account, wherein Pareto-optimal reduction scales [bc, bn] assigned to one another are highlighted;
Fig. 98 shows, in a diagram similar to Figure 97, the Pareto-optimal reduction scales for various combinations of, firstly, reticle used regions and, secondly, imaging field dimensions; Fig. 99 shows, in an illustration similar to Figure 96, a plan view of a used region of a reticle to be imaged with an inscribed, rectangular object field and an additional illustration of the areas provided for the arrangement of auxiliary structures, which lie outside of the object field and within the used region;
Fig. 100, 101 show, in an illustration similar to Figure 99 in each case, further arrangement variants of the object field and of auxiliary areas for auxiliary structures within a reticle used region;
Fig. 102 shows, in an illustration similar to Figure 98, Pareto-optimal reduction scale assignments [bc, bn] for various combinations of object field aspect ratios and image field aspect ratios while taking account of area required for reticle auxiliary regions corresponding to those illustrated in Figures 99 to 101;
Fig. 103 shows a schematic plan view of a reticle to be imaged with an object field to be imaged that is defined by a stop boundary;
Fig. 104 shows the reticle with the object field to be imaged and the stops delimiting the latter (reticle masking stops), which act along the two object field dimensions x and y;
Fig. 105 shows a schematic section along a light path of the imaging light in the region of an edge portion of a reticle to be imaged, wherein beam-limiting and beam- influencing components for a light beam of the imaging light are shown schematically;
Fig. 106 schematically shows the consequences of the shadowing effect of the reticle masking stops for the reticle;
Fig. 107 shows, in an illustration similar to Figure 100, the used region of the reticle when the shadowing effect of the reticle masking stops are additionally taken into account; and Fig. 108 shows, in an illustration similar to Figures 98 and 102, Pareto-optimal pairs of reduction scales [bc, bn] for the respective combinations of, firstly, reticle embodiments and, secondly, image field dimension embodiments while the shadowing effect of the reticle masking stops is additionally taken into account.
A microlithographic projection exposure apparatus 1 comprises a light source 2 for illumination light or imaging light 3. The light source 2 is an EUV light source, which produces light in a wavelength range of, for example, between 5 nm and 30 nm, in particular between 5 nm and 15 nm. In particular, the light source 2 can be a light source with a wavelength of 13.5 nm or a light source with a wavelength of 6.7 nm. Other EUV wavelengths are also possible. In general, the illumination light 3 guided in the projection exposure apparatus 1 could even have any desired wavelength, for example visible wavelengths or else other wavelengths which may find use in microlithography (e.g. DUV, deep ultraviolet) and for which suitable laser light sources and/or LED light sources are available (e.g. 365 nm, 248 nm, 193 nm, 157 nm, 129 nm, 109 nm). A beam path of the illumination light 3 is illustrated very schematically in Figure 1.
An illumination optical unit 6 is used to guide the illumination light 3 from the light source 2 to an object field 4 in an object plane 5. Using a projection optical unit or imaging optical unit 7, the object field 4 is imaged into an image field 8 in an image plane 9 with a specified, possibly anamorphic reduction scale.
In order to facilitate the description of the projection exposure apparatus 1 and the various embodiments of the projection optical unit 7, a Cartesian xyz-coordinate system is indicated in the drawing, from which system the respective positional relationship of the components illustrated in the figures is evident. In Figure 1, the x-direction runs perpendicular to the plane of the drawing into the latter. The y-direction runs towards the left, and the z-direction runs upward.
The object field 4 and the image field 8 have a partial ring shape. Alternatively, it is also possible for the object field 4 and the image field 8 to have a different bent or curved embodiment, or else the rectangular embodiment. The object field 4 and the image field 8 have an x/y-aspect ratio of greater than 1. Therefore, the object field 4 has a longer object field dimension in the x-direction and a shorter object field dimension in the y-direction. These object field dimensions extend along the field coordinates x and y.
One of the exemplary embodiments depicted in Figures 2 et seq. can be used for the projection optical unit 7. The projection optical unit 7 according to Figures 2 to 15 has an anamorphic embodiment. In the yz-plane, i.e., in the meridional plane of the section according to Figure 2, the projection optical unit 7 has a reduction scale bg of -8.10. In the meridional plane yz, the object field 4 is thus imaged onto the image field 8 with a reduction by a non-integer factor of 8.1 and, moreover, there is an image inversion on account of an even number of intermediate image planes between the object plane at 5 and the image plane 9 such that a negative value for py arises. A reduction scale bc of the projection optical unit 7 is 4.00 in the sagittal plane xz, which is perpendicular to the meridional plane. In this plane xz, the object field 4 is thus imaged onto the image field 8 with a reduction by an integer factor of 4 and without an image inversion on account of an odd number of intermediate image planes between the object plane 5 and the image plane 9 such that a positive value for bc arises. Other integer or non-integer reduction scales bc, bg are also possible, as will still be explained below on the basis of the further exemplary embodiments according to Figures 16 et seq.
The image field 8 has an x-extent of 26 mm and a y-extent of 1.6 mm. The image field has a partial ring shape, with field boundaries of the image field extending along the first field direction having a radius of curvature of 80 mm.
In the embodiments of the projection optical unit 7 according to Figures 2 and 5 et seq., the image plane 9 is arranged parallel to the object plane 5. What is imaged in this case is a portion of a reflection mask 10, also referred to as reticle, coinciding with the object field 4. The reticle
10 is carried by a reticle holder 10a. The reticle holder 10a is displaced by a reticle displacement drive 10b.
The imaging by way of the projection optical unit 7 is implemented on the surface of a substrate
11 in the form of a wafer, which is carried by a substrate holder 12. The substrate holder 12 is displaced by a wafer or substrate displacement drive 12a. Figure 1 schematically illustrates, between the reticle 10 and the projection optical unit 7, a beam 13 of the illumination light 3 that enters into said projection optical unit and, between the projection optical unit 7 and the substrate 11, a beam 14 of the illumination light 3 that emerges from the projection optical unit 7. An image field-side numerical aperture (NA) of the projection optical unit 7 is not reproduced to scale in Figure 1.
The projection exposure apparatus 1 is of the scanner type. Both the reticle 10 and the substrate 11 are scanned in the y-direction during the operation of the projection exposure apparatus 1. A stepper type of the projection exposure apparatus 1, in which a stepwise displacement of the reticle 10 and of the substrate 11 in the y-direction is effected between individual exposures of the substrate 11, is also possible. These displacements are effected synchronously or in synchronized fashion with one another by an appropriate actuation of the displacement drives 10b and 12a.
Figure 2 shows the optical design of a first embodiment of the projection optical unit 7. Figure 2 depicts the beam path of, in each case, three individual rays 15 emanating from three object field points which are spaced apart from one another in the y-direction in Figure 2. What is depicted are chief rays 16, i.e., individual rays 15 which pass through the centre of a pupil in a pupil plane of the projection optical unit 7, and, in each case, an upper coma ray and a lower coma ray of these two object field points. Proceeding from the object field 4, the chief rays 16 include an angle CRAO of 5.05° with a normal on the object plane 5.
The projection optical unit 7 has an image-side numerical aperture of 0.55.
The different object-side numerical apertures in the meridional section and in the sagittal section, which correlate with the different reduction scales bc, bn, can be gathered from a comparison of Figures 2 (meridional section) and 4 (sagittal view). In the sagittal view, the object-side numerical aperture is more than twice as large as in the meridional section.
The projection optical unit 7 according to Figure 2 has a total of ten mirrors, which are numbered consecutively by Ml to M10 in the order of the beam path of the individual rays 15, proceeding from the object field 4. An imaging optical unit 7 could also have a different number of mirrors, for example four mirrors, six mirrors or eight mirrors. An odd number of mirrors is also possible.
The calculated reflection surfaces of the mirrors Ml to M10 are depicted in some of Figures 2 to 15. As is evident from the illustration according to Figure 2, for example, only a portion of these calculated reflection surfaces is used. At least this actually used region of the reflection surfaces, shown in Figures 6 to 15, for example, is in fact present in the real mirrors Ml to M10. These used reflection surfaces are carried by mirror bodies in a manner known per se.
In the case of the projection optical unit 7 according to Figure 2, the mirrors Ml, M9 and M10 are embodied as normal incidence mirrors, i.e., as mirrors on which the imaging light 3 strikes with an angle of incidence of less than 45°. Overall, the projection optical unit 7 according to Figure 2 thus has three normal incidence mirrors Ml, M9 and M10.
The mirrors M2, M3, M4, M5, M6, M7 and M8 are mirrors for grazing incidence of the illumination light 3, i.e., mirrors on which the illumination light 3 is incident with angles of incidence of greater than 45° and, in particular, of greater than 60°. A typical angle of incidence of the individual rays 15 of the imaging light 3 on the mirrors M2 to M8 for grazing incidence lies in the region of 80°. Overall, the projection optical unit 7 according to Figure 2 has exactly seven mirrors M2 to M8 for grazing incidence.
The mirrors M2 to M8 reflect the imaging light 3 in such a way that the angles of reflection of the individual rays 15 at the respective mirrors M2 to M8 add up, i.e., lead to an amplification of the deflection effect thereof.
The mirrors M2 to M8 for grazing incidence each have large absolute values for the radius, i.e., they have a relatively small deviation from a plane surface. These mirrors M2 to M8 contribute to a specific imaging aberration correction and, in particular, to a local imaging aberration correction.
A deflection direction is defined below on the basis of the respectively depicted meridional sections for the purposes of characterizing a deflecting effect of the mirrors of the projection optical unit 7. As seen in the respective incident beam direction in the meridional section, for example according to Figure 2, a deflecting effect of the respective mirror in the clockwise direction, i.e., a deflection to the right, is denoted by the abbreviation“R”. By way of example, the mirror M2 of the projection optical unit 7 has such a deflecting effect“R”. A deflecting effect of a mirror in the anticlockwise direction, i.e., to the left as seen from the beam direction respectively incident on this mirror, is denoted by the abbreviation“L”. The mirror Ml of the projection optical unit 7 is an example for the“L” deflecting effect. A weakly deflecting effect, or an effect that does not deflect at all, of a mirror with a folding angle f, for which the following applies: -1° <f < 1°, is denoted by the abbreviation“0”. The mirror M9 of the projection optical unit 7 is an example for the“0” deflecting effect. Overall, the projection optical unit 7 for the mirrors Ml to M10 has the following sequence of deflecting effects: LRRRRRRROR.
In principle, all described exemplary embodiments of the projection optical units can be mirrored about a plane extending parallel to the xz-plane without this changing fundamental imaging properties in the process. However, this naturally then changes the sequence of deflecting effects, which has the following sequence in the case of a projection optical unit which emerges by appropriate mirroring from the projection optical unit 7: RLLLLLLLOL.
The mirrors Ml to M10 carry a coating that optimizes the reflectivity of the mirrors Ml to M10 for the imaging light 3. Here, this can be a ruthenium coating, a molybdenum coating, an alternating molybdenum-silicon coating, an alternating molybdenum-silicon coating with an uppermost layer made of ruthenium or a molybdenum coating with an uppermost layer made of ruthenium. A coating comprising for example a layer of molybdenum or ruthenium can be used in the case of the grazing incidence mirrors M2 to M8. These highly reflecting layers, in particular of the mirrors Ml, M9 and M10 for normal incidence, can be configured as multi-ply layers, wherein successive layers can be manufactured from different materials. Alternating material layers can also be used. A typical multi-ply layer can have fifty bilayers, respectively made of a layer of molybdenum and a layer of silicon. The bilayers may have an aperiodic and/or a spatially dependent embodiment. The multi-ply layer may also be provided with protective layers, e.g., to counter mechanical, optical and/or chemical damage, or with diffusion stop layers in addition to used layers, i.e., layers that contribute to the reflection of the imaging light 3. For the purposes of calculating an overall reflectivity of the projection optical unit 7, a system transmission is calculated as follows: A mirror reflectivity is determined at each mirror surface on the basis of the angle of incidence of a guide ray, i.e., a chief ray of a central object field point, and combined by multiplication to form the system transmission.
Further information concerning the system transmission can be found in US 2016/0085061 Al.
Further information concerning reflection at a GI mirror (grazing incidence mirror) can be found in WO 2012/126867 A. Further information concerning the reflectivity of NI mirrors (normal incidence mirrors) can be found in DE 101 55 711 A.
An overall reflectivity or system transmission of the projection optical unit 7, which emerges as a product of the reflectivities of all mirrors Ml to M10 of the projection optical unit 7, is R = 7.7%.
The mirror M10, that is to say the ultimate mirror upstream of the image field 8 in the imaging beam path, has a passage opening 17 for the passage of the imaging light 3 which is reflected from the antepenultimate mirror M8 toward the penultimate mirror M9. The mirror M10 is used in a reflective manner around the passage opening 17. None of the other mirrors Ml to M9 has a passage opening and said mirrors are used in a reflective manner in a continuous region without gaps.
A stop AS is disposed in the imaging beam path between the mirrors M9 and M10, said stop having both the function of an aperture stop and the function of an obscuration stop. Thus, the stop AS firstly specifies the image-side numerical aperture of the projection optical unit 7 and secondly specifies the size of an inner pupil obscuration. The stop AS may also have a non contiguous embodiment.
The mirrors Ml to M10 are thus embodied as free-form surfaces which cannot be described by a rotationally symmetric function. Other embodiments of the projection optical unit 7, in which at least one of the mirrors Ml to M10 is embodied as a rotationally symmetric asphere, are also possible. It is also possible for all mirrors Ml to M10 to be embodied as such aspheres.
A free-form surface can be described by the following free-form surface equation (Equation 1):
Figure imgf000014_0001
+ Clx + C2y
+ C3x2 + C4xy + C5y2
+ C6x3 + ... + C9y3
+ C10x4 + ... + C12x2y2 + ... + C14y4
+ Ci5x5 + ... + C20y5
+ C21x6 + ... + C24x3y3 + ... + C27y6
+ ...
(1)
The following applies to the parameters of this Equation (1): Z is the sagittal height of the free-form surface at the point x, y, where x2 + y2 = r2. Here, r is the distance from the reference axis of the free-form surface equation
(x = 0; y = 0).
In the free-form surface Equation (1), Ci, C2, C3... denote the coefficients of the free-form surface series expansion in powers of x and y.
In the case of a conical base area, cx, cy is a constant corresponding to the vertex curvature of a corresponding sphere or asphere. Thus, cx = 1/RX and cy = 1/Ry applies. kx and ky each correspond to a conical constant of a corresponding asphere. Thus, Equation (1) describes a biconical free-form surface. An alternative possible free-form surface can be produced from a rotationally symmetric reference surface. Such free-form surfaces for reflection surfaces of the mirrors of projection optical units of microlithographic projection exposure apparatuses are known from
US 2007-0058269 Al.
Alternatively, free-form surfaces can also be described with the aid of two-dimensional spline surfaces. Examples for this are Bezier curves or non-uniform rational basis splines (NURBS). By way of example, two-dimensional spline surfaces can be described by a grid of points in an xy- plane and associated z-values, or by these points and gradients associated therewith. Depending on the respective type of the spline surface, the complete surface is obtained by interpolation between the grid points using e.g. polynomials or functions which have specific properties in respect of the continuity and the differentiability thereof. Examples for this are analytical functions.
The optical design data of the reflection surfaces of the mirrors Ml to M10 of the projection optical unit 7 can be gathered from the following tables.
The first of these tables indicates vertex radii (Radiusx = Rx, Radiusy = Ry) and refractive power values (Powerx, Powery) for the optical surfaces of the optical components. Negative radii values denote curves that are concave towards the incident illumination light 3 at the intersection of the respective surface with the considered plane (xz, yz) that is spanned by a surface normal at the vertex with the respective direction of curvature (x, y). The two radii Radiusx, Radiusy may explicitly have different signs.
The vertices at each optical surface are defined as points of incidence of a guide ray which travels from an object field centre to the image field 8 along a plane of symmetry x = 0, i.e., the plane of the drawing of Figure 2 (meridional plane).
The refractive powers Powerx (Px), Powery (Py) at the vertices are defined as: p _ 2 cos AOI
-
Rx
P = _ ?
y R y cos AOI
Here, AOI denotes an angle of incidence of the guide ray with respect to the surface normal.
The second table specifies the absolute value along which the respective mirror, proceeding from a reference surface, was decentred (Dy) in the y-direction, displaced (Dz) in the z-direction and tilted (ax, a . az). This corresponds to a parallel shift and a tilting in the case of the free-form surface design method. Here, a displacement is carried out along the y-direction and in the z- direction in mm, and tilting is carried out about the x-axis, about the y-axis and about the z-axis. In this case, the angle of rotation is specified in degrees. Decentring is carried out first, followed by tilting. The reference surface during decentring is in each case the first surface of the specified optical design data. Decentring in the y-direction and in the z-direction is also specified for the object field 4 (reticle). In addition to values assigned to the individual mirrors Ml to M10, this table also tabulates the object plane (reticle) as a first surface, the image plane (wafer) as an ultimate surface and a stop surface (denoted“stop”) as an arrangement plane for an aperture or obscuration stop.
The third table (Tables 3a to 3d) specifies the free-from surface coefficients Cn, respectively assigned to the polynomials xk, y1, for the mirrors Ml to M10. Coefficients Cn not tabulated each have a value of 0.
The fourth table specifies a boundary of the stop AS as a polygonal chain with N corners in local coordinates xyz. As described above, the stop is still decentred and tilted. Each row of the table specifies the coordinates of two polygonal corners, specifically of the point i and of the point i+N/2; expressed differently, the table is constructed in such a way that the two front columns have to be read from top to bottom and subsequently the two back columns have to be read from top to bottom.
Design data for the projection optical unit 7 with bc = 4.00 and bn = -8.10 Radii of the surfaces
RadiuSx [mm] Powerx [1/mm] RadiuSy [mm] Powery [1/mm]
M01 -2155.29067785 0.00090708 -1360.16999579 0.00143734
M02 3088.63828999 -0.00011852 2632.04913940 -0.00013908
M03 2206.18993200 -0.00020553 -12503.78911686 0.00003626
M04 4094.16026291 -0.00009915 -8480.50613920 0.00004787
MO 5 -2112.63330655 0.00015809 -6112.82860111 0.00005464
M06 -930.07779041 0.00050052 -1837.61415658 0.00025333
M07 -759.40005725 0.00062139 18904.99392265 -0.00002496
MO 8 -1102.08162137 0.00048299 -5063.33369895 0.00010513
M09 1135.47023088 -0.00176138 314.39500683 -0.00636142
M10 -784.21274557 0.00253055 -718.88926505 0.00276049
Table 1 for Figure 2 Decentring (location, angle) the surfaces
Dx [mm] Dy [mm] l)z [mm]
Reticle 0.000000000 2219.192642536 2300.991309649
M01 0.000000000 2072.094075772 619.646997872
M02 0.000000000 1779.251257647 1453.632551257
M03 0.000000000 1552.292739112 1719.915881109
M04 0.000000000 1192.846272958 1875.093827415
M05 0.000000000 799.725476332 1874.614838497
M06 0.000000000 166.006879888 1652.736739305
M07 0.000000000 -63.342524559 1413.441066080
M08 0.000000000 -129.812975755 1188.894098961
M09 0.000000000 147.735193235 106.368269562
Stop 0.000000000 109.604596583 256.158826042
M10 0.000000000 0.000000000 686.724695889
Wafer 0.000000000 0.000000000 0.000000000
Figure imgf000017_0001
Reticle 0.000000000 0.000000000 0.000000000
M01 7.174019540 180.000000000 0.000000000
M02 -60.105176620 0.000000000 0.000000000
M03 -36.454454545 0.000000000 180.000000000
M04 -11.640353045 0.000000000 0.000000000
MO 5 9.683012830 0.000000000 180.000000000 M06 32.756023490 0.000000000 0.000000000
M07 59.863005545 0.000000000 180.000000000
MO 8 88.945226730 0.000000000 0.000000000
M09 14.331060692 180.000000000 0.000000000
Stop 1.550202611 180.000000000 0.000000000
M10 7.140923508 0.000000000 0.000000000
Wafer 0.000000000 0.000000000 0.000000000
Table 2 for Figure 2
Free-form coefficients of the surfaces
Coefficient Formula M01 M02 M03
C7 x 2 y 1.7010571816e-08 -5.7421934582e-08 1.8511452905e-07
C9 3
y 1.5818583604e-09 -5.4479900983e-07 3.4637403526e-07
CIO X4 -6.7178934013e-12 2.7166871239e-10 7.3400243648e-10
C12 x2 y2 3.5002224146e-l 1 -2.2400427398e-l 1 3.4713729577e-10
C14 y4 -1.2415798183e-10 2.0966593039e-09 -1.6478579447e-10
C16 x 4 y 7.6673982659e-16 -4.2008062875e-13 1.9292420047e-12
C18 x 2 y 3 8.7205577223e-14 1.3261388712e-12 3.7358191436e-13
C20 y -1.0583874588e-13 -9.7129821976e-12 2.8962356182e-12
C21 x6 -1.1549417272e-18 -3.6726340828e-17 5.0950634390e-16
C23 x4 y2 -3.7362526432e-17 1.2842067865e-15 3.3515426307e-15
C25 x y4 -9.4246366936e-17 -8.0898345277e-15 1.0824010077e-15
C27 .6
y -4.6157931961e-16 4.7278561709e-14 -4.0950654427e-16
C29 x6 y 4.0170098189e-21 7.7046496902e-19 5.1154794745e-18
C31 x4 y3 -1.1138535602e-19 -2.6519581650e-18 6.6205074434e-18
C33 x2 y5 -1.7291566060e-19 4.7339164059e-17 8.9670407205e-18
C35 y7 6.4130942494e-19 -2.2749748482e-16 3.8142374390e-17
C36 x8 7.4711889972e-24 -2.6081748965e-21 8.8503821496e-21
C38 x6 y2 9.9458447059e-24 6.6874958380e-21 1.4493124897e-20
C40 x4 y4 5.6424490309e-22 2.562276948 le-20 1.4785866601e-20
C42 x2 y6 2.4928105523e-21 -2.3887468848e-19 2.6118610441e-20
C44 y8 -7.0275752780e-21 1.0397634858e-18 4.5570681700e-20
C46 x8 y 5.1131189353e-28 -4.1610273541e-23 -4.3922204289e-23
C48 x6 y3 1.9225636966e-25 -3.7493504981e-22 -7.7643245004e-23
C50 x4 y5 -6.5804507949e-25 -5.7801737354e-22 -2.4772269939e-22
C52 x2 y7 2.7904407894e-23 8.1116914928e-22 -1.0097331743e-21
C54 9
y -9.5915218325e-24 -5.0922969220e-21 -5.2690508685e-23
C55 X10 -2.8693100147e-28 2.3371902724e-25 -7.4401731427e-25
C57 x8 y2 -6.6138941956e-28 2.2754225124e-25 -1.2339758591e-24 C59 x6 y4 -3.9498024952e-26 1.9833396129e-26 -1.1231565864e-24
C61 x4 y6 -3.3357793308e-25 -1.5153075321e-25 -5.9639885400e-25
C63 x2 y8 -4.073197621 le-25 -6.6097199039e-24 -1.7351524427e-24
C65 yio 1.0794966161e-24 3.5287209458e-23 -2.0970685903e-24
C67 x10 y -3 4906008288e-31 2.1022118653e-27 -2.2337530422e-27
C69 x8 y3 -9.6016929612e-30 2.3643642112e-26 1.1096397973e-26
C71 x6 y5 -7.9235313430e-30 5.8750544594e-26 1.7962573228e-26
C73 x 4 y 7 -5.4608206967e-28 5.4452321133e-26 6.5247652135e-26
C75 x 2 y 9 -4.713398926 le-27 1.0341914257e-25 1.9264569749e-25
C77 11
y -8.2439799454e-28 -2.4030017510e-25 1.0654164412e-25
C78 x12 5.483343143 le-33 -9.6973286792e-30 3.7771231463e-29
C80 x10 y2 8.0930393635e-33 -2.2335435165e-29 8.1601305406e-29
C82 x8 y4 7.1531436188e-31 -4.4204429325e-29 1.3146746645e-28
C84 x6 y6 1.0207667361e-29 2.5336276433e-29 1.2134343047e-28
C86 x4 y8 4.2628507278e-29 -2.7924047093e-29 3.1041037656e-28
C88 x2 y10 1.7850310712e-29 -6.6200528532e-28 7.4931891293e-28
C90 y12 -1.3382658524e-28 6.0287802684e-28 4.8181116069e-28
C92 x12 y 1.5136653275e-35 -6.8749921124e-32 4.3723563283e-31
C94 x10 y3 2.2480370978e-34 -9.2113221459e-31 -6.3791574381e-31
C96 x8 y5 7.1776867460e-34 -3.2222103640e-30 -1.5996533573e-30
C98 x6 y7 7.0664235987e-33 -5.2709952147e-30 -1.0376031741e-30
CIOO x4 y9 8.7277851298e-32 -2.7747463548e-30 -8.6989798991e-30
C102 x2 y1 1 3.7088263456e-31 2.3400866736e-31 -1.6841078827e-29
C104 13
y -5.7722520790e-32 4.3896862438e-30 -6.4990529026e-30
C105 x14 -5.9357340457e-38 2.1781161018e-34 -6.9465402094e-34
C107 x12 y2 -9.1865231136e-38 9.7722048466e-34 -2.1787589763e-33
C109 x10 y4 -6.5339659731e-36 4.1408543527e-33 -7.7429651374e-33 cm x8 y6 -1.4200320685e-34 4.2432876918e-33 -8.1129856612e-33
Cl 13 x6 y8 -1.0083844464e-33 5.9430245922e-33 -1.001956371 le-32 Cl 15 x4 y10 -2.7303977530e-33 2.5405922762e-33 -4.7952010120e-32 Cl 17 x 2 y 12 6.3264291506e-37 1.0382175646e-32 -8.2767836596e-32 Cl 19 y14 8.1220342923e-33 -1.9323344327e-32 -3.5695974450e-32 C121 x14 y -1.654055469 le-40 1.1359723695e-36 -1.6722263138e-35 C123 x12 y3 -2.2613447234e-39 1.8248453168e-35 1.5040434535e-35 C125 x10 y5 -9.9981671970e-39 8.1654541562e-35 7.4234945440e-35 C127 x8 y7 -6.0948561388e-38 2.0445219427e-34 1.3666822151e-35 C129 x6 y9 -7.1324719765e-37 1.8528485174e-34 8.3226354269e-35 C131 x4 y1 1 -4.7139010347e-36 5.8742562556e-35 5.6970977505e-34 C133 x2 y13 -1.3202567950e-35 4.2104541698e-35 7.6590166103e-34 C135 15
y 6.9831976310e-36 -2.1934609676e-34 2.5258918591e-34
C136 x16 3.3467364619e-43 -2.4427341481e-39 -3.2843630009e-39
C138 x14 y2 8.7852957414e-43 -1.9972590380e-38 1.6413387542e-38
C140 x12 y4 2.9461102032e-41 -1.2581887687e-37 2.3658963787e-37
C142 x10 y6 9.4427458519e-40 -2.9009537654e-37 3.8517841399e-37
C144 x8 y8 9.3338923756e-39 -5.1275717140e-37 -3.9897248612e-39
C146 x6 y10 4.3102127913e-38 -2.3969303198e-37 8.7082176158e-37
C148 x4 y 8.5752946584e-38 1.5351896021e-37 3.3476930080e-36
C150 x 2 y 14 -2.7916937622e-38 -7.8140936546e-37 4.3103138489e-36
C152 yl6 -2.5434092773e-37 2.0918439384e-36 1.4624401255e-36
C154 x16 y 5.9514085560e-46 -7.5237093735e-42 2.0428290895e-40
C156 x14 y3 8.2825754628e-45 -1.4257550343e-40 -1.1242779842e-40
C158 x12 y5 4.2602157026e-44 -7.7884268616e-40 -1.1703720457e-39
C160 x10 y7 2.7548643548e-43 -2.6699230707e-39 -3.985471651 le-40
C162 x8 y9 2.2309519658e-42 -4.0907951551e-39 1.6782220829e-40
C164 x6 y1 1 1.9391077974e-41 -3.7127016622e-39 -2.7712559844e-39
C166 x4 y13 8.5698699286e-41 -2.3430466603e-39 -1.4253560159e-38
C168 x2 y15 1.7560184509e-40 3.1311771334e-39 -1.2880760133e-38
C170 17
y -1.6838979454e-40 -6.7218612334e-39 -3.3543050400e-39
C171 x18 -7.6505777723e-49 1.0611780850e-44 1.6220297530e-43
C173 x16 y2 -3.4759169954e-48 1.5567037473e-43 1.5554472763e-43
C175 x14 y4 -5.0154497068e-47 1.2715585349e-42 -2.7842993659e-42
C177 x12 y6 -2.4823542473e-45 4.5230227990e-42 -7.6231745892e-42
C179 x10 y8 -3.0397034102e-44 1.1005168599e-41 2.4217278415e-42
C181 x8 y10 -2.0090028875e-43 1.3913565114e-41 -2.4793432596e-42
C183 x6 y12 -6.5778040458e-43 9.824908638 le-42 -2.5450810484e-41
C185 x4 y14 -1.0926346677e-42 4.7541557373e-42 -8.8582078606e-41
C187 x2 y16 6.7198733421e-43 -4.2696721110e-42 -7.9014463673e-41
C189 18
y 3.2613148198e-42 7.8387013954e-42 -2.1420888580e-41
Table 3 a for Figure 2
Coefficient Formula M04 M05 M06
C7 x 2 y 6.0341343808e-08 -8.5203527164e-08 2.0419794537e-07
C9 y 3 -6.3580458959e-08 -1.0167379181e-07 -1.9836055306e-08
CIO X4 1.0026577731e-10 -1.3661478730e-10 -3.6302186255e-10
C12 x2 y2 3.2596409071e-l 1 -1.7760997272e-10 3.9776648452e-l 1
C14 y4 -1.5858055519e-10 -7.8495552930e-l 1 -3.0188785500e-10
C16 x 4 y 1.5054235742e-13 -3.741670221 le-13 -2.4885844668e-13
C18 x 2 y 3J 4.5683620837e-13 -5.6538020720e-14 3.5155340895e-14 C20 y -3.1874312473e-13 -9.1113788091e-14 1.2600547735e-12
C21 x6 -8.1848627831e-16 -6.9811117315e-16 -4.1239283734e-16
C23 x4 y2 -4.5524269912e- 16 -1.4960955868e-16 -3.1490636056e-16
C25 x y4 6.3192266919e-16 -5.2172377674e-17 -2.3207730308e-15
C27 y6 - 1.2209610740e- 15 1.7127008628e-16 -5.4410838424e-16
C29 x6 y 3.3108501819e- 18 -1.4803878632e-18 -3.3656376392e-19
C31 x4 y3 5.1430394401e-20 -1.0541948277e-18 1.2212381781 e- 18
C33 x2 y5 4.9871935087e-18 1.2954515547e-18 -5.6937966717e-18
C35 7
y -4.0994128989e-18 1.3349430858e-18 9.6445459536e-18
C36 X 6.2084555126e-20 3.1278588157e-21 -5.8446421369e-21
C38 x6 y2 -7.8564539750e-21 3.8087965223e-21 -1.2884164434e-20
C40 x4 y4 -1.8937319269e-20 8.4858388230e-21 3.1849601731e-21
C42 x2 y6 -1.0558727153e-20 4.2228545052e-21 1.4400506882e-20
C44 y -3.8217868797e-20 -9.8504966838e-21 -8.7238650278e-20
C46 x8 y -4.8230289914e-23 3.2315949415e-22 7.6846667305e-23
C48 x6 y3 2.9757811576e-22 1.2169225595e-22 1.8695663170e-22
C50 x4 y5 2.9194844803e-22 6.2960743257e-23 2.8391982891e-22
C52 x2 y7 1.1110132296e-22 -7.4150823212e-23 1.2772848224e-21
C54 9
y 3.8453706796e-22 -1.5046784210e-22 3.6719189473e-23
C55 X10 -3.6546888678e-24 -4.4560152756e-25 4.4634377561e-25
C57 x8 y2 1.9150549716e-25 -6.2094140884e-25 6.3344928709e-25
C59 x6 y4 -2.0313342357e-25 -5.6278811763e-25 1.3201006014e-24
C61 x4 y6 2.4357141550e-24 -1.3204079178e-25 -6.2424622070e-24
C63 x2 y8 5.8989961507e-25 -2.8502409723e-25 -7.4844629866e-24
C65 yio 3.0346126717e-24 1.566628700 le-24 -6.0532573605e-25
C67 x10 y 1.2130985426e-26 -2.4542519148e-26 -5.5404719543e-27
C69 x8 y3 -2.2987658166e-26 -1.3087625087e-26 -1.9320293801e-26
C71 x6 y5 -4.9931776085e-26 -3.9235774884e-27 -1.3051622341e-27
C73 x 4 y 7 -1.9804084178e-26 -1.260706533 le-26 -5.0280495962e-26
C75 x 2 y 9 -2.6040919705e-27 1.1178413574e-26 -1.1930427849e-25
C77 11
y -5.3382179389e-26 7.2758898590e-27 1.9109902289e-26
C78 x12 5.5835984399e-29 1.5020830077e-29 -2.0164590392e-29
C80 x10 y2 -2.0328904626e-29 4.9788145366e-29 -3.0350282355e-30
C82 x8 y4 1.4873783966e-28 4.4757878681e-29 -1.1034737240e-28
C84 x6 y6 -9.6430766058e-29 -1.1313899657e-29 2.6604598740e-28
C86 x4 y8 -2.2898887435e-28 -2.8445865107e-29 1.1819010246e-27
C88 x2 y10 1.7173111219e-29 1.8865397661e-30 8.6359397904e-28
C90 y12 -2.4122665049e-28 -1.1087494422e-28 1.7190792446e-28
C92 x12 y -9.6340701054e-31 1.1901845532e-30 2.5769726748e-31 C94 x10 y3 8.6829254019e-31 8.4007341165e-31 1.3178120084e-30
C96 x8 y5 3.5318027885e-30 1.4981111699e-32 -2.6039081605e-31
C98 x6 y7 4.1390245010e-30 5.1554499498e-31 -3.2179540289e-30
CIOO x4 y9 8.2406207493e-31 9.4116479671e-31 6.5089383430e-30
C102 x2 y1 1 4.9072633550e-31 -9.3509703779e-31 7.6766240802e-30
C104 13
y 4.1573906866e-30 -7.8783550268e-32 -1.8175443171e-30
C105 x14 3.6908546879e-33 -4.8804466263e-34 6.0888241705e-34
C107 x12 y2 2.4956067132e-33 -2.3773068238e-33 -1.6996027847e-33
C109 x10 y4 -1.3526587571e-32 -2.0020269554e-33 2.3484428805e-33 cm x8 y6 -6.3950662738e-33 -2.9590919344e-34 9.2450475366e-34
Cl 13 x6 y8 3.3833129903e-33 3.6398007429e-33 -4.7956685585e-32 Cl 15 x4 y10 9.0394454684e-33 1.6633589974e-33 -9.8387173791e-32 Cl 17 x 2 y 12 -4.5684487357e-33 1.3117510490e-33 -6.0986227418e-32 Cl 19 y14 5.9350512022e-33 3.9641782220e-33 -1.3775337421e-32 C121 x14 y 3.4801802705e-35 -3.0350365762e-35 -6.0531148708e-36 C123 x12 y3 -1.1371549397e-35 -2.7109215364e-35 -4.6587139561e-35 C125 x10 y5 - 1.0628477137e-34 -2.2480511955e-36 -2.3463817205e-35 C127 x8 y7 -1.9232693217e-34 2.5413494306e-36 3.0059399107e-34 C129 x6 y9 -1.6729724065e-34 -3.1568130749e-35 1.8448811292e-34 C131 x4 y1 1 1.3342753546e-36 -3.0540126001e-35 -3.9042239852e-34 C133 x2 y13 -2.3578434401e-35 3.9570249713e-35 -2.5284687381e-34 C135 15
y -1.7301634196e-34 -6.4073415882e-36 9.7627629609e-35 C136 x16 -1.8956574653e-37 1.5331747927e-38 -1.2343655712e-38 C138 x14 y2 -1.4099492358e-37 6.1082739560e-38 7.4178896685e-38 C140 x12 y4 5.1124606346e-37 2.0473751463e-38 1.0869422872e-37 C142 x10 y6 3.7662225187e-37 9.1246944167e-38 -3.0113199201e-37 C144 x8 y8 5.2003842539e-37 -1.4793185822e-37 -2.6887380934e-37 C146 x6 y10 5.4285572523e-38 -1.1114460864e-37 2.5353760690e-36 C148 x4 y -2.3048464363e-37 -2.3407654875e-38 4.1012561833e-36 C150 x 2 y 14 2.0528014110e-37 -9.9824185858e-38 2.2242246848e-36 C152 yl6 1.4307657768e-37 -5.3788497908e-38 5.4953584304e-37 C154 x16 y -4.7257358905e-40 3.1134715899e-40 5.6346915218e-41 C156 x14 y3 -3.1259455852e-41 3.3638899381e-40 6.2495386334e-40 C158 x12 y5 1.2231751625e-39 1.1508687091e-40 1.0759964071e-39 C160 x10 y7 2.7297864877e-39 -2.1195040034e-40 -5.1397269669e-39 C162 x8 y9 4.1149053670e-39 2.2178247336e-40 -1.2542643680e-38 C164 x6 y1 1 2.7516933736e-39 4.555598743 le-40 -9.2448396932e-40 C166 x4 y13 -5.4470981989e-40 4.1655717207e-40 8.1191609651e-39 C168 x2 y15 5.7355620922e-40 -6.4848469755e-40 3.5147846664e-39 C170 17
y 2.9666257616e-39 1.7562008012e-40 -1.9605266157e-39
C171 x18 2.6057955405e-42 -2.0327276126e-43 1.1679531016e-43
C173 x16 y2 2.7435302503e-42 -6.4286481304e-43 -9.6350975554e-43
C175 x14 y4 -7.5845817896e-42 2.4259459984e-43 -3.7733936384e-42
C177 x12 y6 -4.2436257084e-42 -1.4320259515e-42 2.1328557630e-42
C179 x10 y8 -1.5344983693e-41 2.2536456688e-43 3.1566165152e-41
C181 x8 y10 -1.1245286809e-41 2.9837631195e-42 2.4795012140e-41
C183 x6 y12 -6.4972621674e-42 1.0882633301e-42 -5.2394068784e-41
C185 x4 y14 4.5929419759e-42 -3.3378252988e-43 -7.2968183762e-41
C187 x2 y16 -3.9804401942e-42 2.2167054228e-42 -3.2149713453e-41
C189 18
y -7.4348868990e-42 -7.6657461128e-44 -1.0030776141e-41
Table 3b for Figure 2
Coefficient Formula M07 M08 M09
C7 x 2 y -1.4980098630e-07 2.6469813246e-07 1.5029816183e-06
C9 y 3 -4.3281552572e-07 -1.7411591110e-07 -8.026472128 le-07
CIO x4 4.8598950600e-l 1 1.9356450688e-10 1.3104790693e-09
C12 x2 y2 -1.2394647234e-09 - 1.0447081821 e- 10 5.4506337450e-09
C14 y4 2.3422570235e-09 -4.9611709777e-10 2.4158231622e-09
C16 x 4 y 4.1723748049e-13 6.1679291247e-13 8.1351144822e-12
C18 x 2 y 3J -1.3813436729e-13 1.9004541505e-13 2.5169645914e-13
C20 y -4.519877931 le- 12 -2.3885478526e-12 -1.2145275471e-l 1
C21 x6 1.5881692122e- 16 8.4049245781 e- 16 7.1897509291e-15
C23 x4 y2 2.7910318881e-15 3.2166200248e-15 4.6357596714e-14
C25 x y4 -2.8765055883e-14 -4.9874650813e- 16 9.0058955521e-14
C27 y6 4.4759629640e-14 - 1.2954651676e- 14 1.3985464303e-13
C29 x6 y 2.6206404813e-18 8.6256863678e-18 5.7629354681e-17
C31 x4 y3 5.4691792509e-17 2.0686813359e-17 1.2096289019e-16
C33 x2 y5 -2.6648397103e- 16 -9.2339989533e-18 2.0451863373e-16
C35 y7 -8.6994736745e- 16 -7.4240359355e- 17 -7.4283563648e-16
C36 x8 1.0030783487e-20 -8.4055387551e-20 3 4846478267e-20
C38 x6 y2 -1.1276879423e-19 -3.0522408643e-19 5.0082790971e-19
C40 x4 y4 2.1607163521e-18 -1.2728075115e-19 1.8460059532e-18
C42 x2 y6 6.7989686950e-18 -2.2492437270e-19 8.3809451304e-19
C44 y8 -2.9995669677e-17 -4.9706688506e-19 -2.1770027255e-18
C46 x8 y 1.1513290664e-22 - 1.2401734578e-21 5.0925189295e-22
C48 x6 y3 -8.7812569150e-21 -4.7332639845e-21 3.3525891351e-21
C50 x4 y5 -4.7301775959e-21 -1.0452472612e-21 8.2222628455e-21
C52 x2 y7 4.4278838843e-19 -4.4942014609e-21 -2.522509740 le-20 C54 9
y 3.3360645013e-19 -4.3768545597e-21 -1.7752544067e-20
C55 X10 -1.2094289571e-24 1.5465862891e-23 6.6516381385e-25
C57 x8 y2 9.5045625474e-24 9.0659624601e-23 2.1340031442e-24
C59 x6 y4 -2.4171560310e-22 7.1741275380e-23 9.3353026334e-24
C61 x4 y6 -2.4036396072e-21 1.6983960825e-23 2.1283359391e-23
C63 x2 y8 -3.7302849965e-21 -2.6948334498e-23 4.2965186504e-22
C65 yio 2.9980085550e-20 -3.0809331544e-23 9.2430987794e-22
C67 x10 y -2.1532677603e-28 1.4172711108e-25 1.458793491 le-26
C69 x8 y3 8.4257825961e-25 1.2077742773e-24 5.7571662973e-26
C71 x6 y5 7.3790595984e-25 7.0690956072e-25 -6.7913923435e-25
C73 x 4 y 7 -2.7945200138e-24 1.5213236313e-25 -3.5833147159e-24
C75 x 2 y 9 -4.7076232072e-22 3.5420318951e-25 -2.9974026503e-25
C77 11
y 2.3438538378e-22 -6.2675163908e-26 5.4714156336e-24
C78 x12 6.5847917098e-29 -1.6573159205e-27 -8.2324373987e-30
C80 x10 y2 4.0224088390e-29 -1.3242664994e-26 4.8444684293e-28
C82 x8 y4 1.8270199965e-26 -1.9851213322e-26 2.7733479198e-27
C84 x6 y6 1.8109269376e-25 -1.2914225167e-28 -1.7410976703e-27
C86 x4 y8 1.9795273135e-24 1.0601778558e-27 -4.0168770668e-26
C88 x2 y10 -1.5811838950e-24 5.0835199082e-27 -1.0714716376e-25
C90 y12 -1.2587218626e-23 2.7720178576e-28 -1.2180437487e-25
C92 x12 y -7.3784737092e-31 -8.6661612275e-30 -5.6728270166e-31
C94 x10 y3 -4.6994999310e-29 -1.3502948674e-28 -3.9643174553e-30
C96 x8 y5 5.8732290100e-29 -1.6967140008e-28 1.9748462012e-29
C98 x6 y7 -1.2800609274e-27 2.9885802863e-29 3.2106008091e-28
CIOO x4 y9 1.1578415800e-26 -9.9606176662e-30 9.5898208683e-28
C102 x2 y1 1 2.4013413081e-25 -1.2702802775e-29 3.7550173150e-28
C104 13
y -2.8400731767e-25 -9.8582742961e-30 -1.1464312413e-27
C105 x14 -2.356084560 le-33 1.0757433378e-31 -4.1284274059e-34
C107 x12 y2 -4.0142746390e-32 1.0458338654e-30 -2.5264351334e-32
C109 x10 y4 -1.044489986 le-30 3.0162384552e-30 -2.3050975710e-31 cm x8 y6 -3.722972999 le-30 3.6833269289e-31 -4.3896621482e-31
Cl 13 x6 y8 -1.4796162278e-28 -1.2230166578e-31 3.2544266349e-30 Cl 15 x4 y10 -6.4951433758e-28 -3.7629537828e-31 1.3914733138e-29 Cl 17 x 2 y 12 1.9969491162e-27 -6.0393719510e-31 2.0078594150e-29 Cl 19 y14 1.4560741818e-27 -1.9108989726e-31 1.5647775551e-29 C121 x14 y 4.0005818647e-35 3.0081860540e-34 2.0847058316e-35 C123 x12 y3 1.4103155934e-33 7.0930058017e-33 2.5639335291e-34 C125 x10 y5 -5.9397937696e-33 1.5936433953e-32 7.0388022575e-34 C127 x8 y7 4.1338002978e-32 1.8066231390e-34 -9.3000503001e-33 C129 x6 y9 2.1673891205e-31 -7.5489310260e-33 -5.2474560862e-32
C131 x4 y1 1 -5.5175575275e-30 -1.2028000036e-33 -1.1884261080e-31
C133 x2 y13 -5.9377090314e-29 -4.4244264612e-33 -6.2921630741e-32
C135 15
y 9.9491097684e-29 -1.3892754945e-33 9.9151546329e-32
C136 x16 5.9367921705e-38 -3.9086954302e-36 3.6329466957e-38
C138 x14 y2 1.8976437184e-36 -4.0451692540e-35 8.5468148430e-37
C140 x12 y4 3.5151371590e-35 -2.1405687091e-34 1.0585778930e-35
C142 x10 y6 -1.8316637013e-35 -7.6884844109e-35 4.3624777450e-35
C144 x8 y8 3.2270129032e-33 -1.8447784938e-36 -1.6342541582e-35
C146 x6 y10 4.3044774475e-32 -2.7904315078e-35 -6.7987598347e-34
C148 x4 y 7.2570491167e-32 2.3163712124e-35 -1.6097820672e-33
C150 x 2 y 14 -6.4687202284e-31 -1.3333424159e-35 -1.6118012545e-33
C152 yl6 4.5344808377e-31 -5.195789673 le-36 -1.1983990815e-33
C154 x16 y -6.6264507430e-40 -4.9794816089e-39 -2.3464519916e-40
C156 x14 y3 -1.7410292873e-38 -1.3987824925e-37 -4.2720727668e-39
C158 x12 y5 1.3773673673e-37 -5.1265638169e-37 -3.0755990155e-38
C160 x10 y7 -4.9189261656e-37 -1.7512245875e-37 6.9924646229e-38
C162 x8 y9 -2.6640577835e-36 3.8528501056e-37 9.7477696086e-37
C164 x6 y1 1 -2.0391086112e-35 1.3369205398e-37 3.0735516765e-36
C166 x4 y13 8.8874281456e-34 1.8412399524e-37 6.0237312343e-36
C168 x2 y15 5.5058449350e-33 -1.2094752114e-38 3.7504230635e-36
C170 17
y -1.1770314976e-32 -9.9269678282e-39 -3.3500707128e-36
C171 x18 -7.5562867445e-43 6.1671204254e-41 -5.9574078217e-43
C173 x16 y2 -2.8449309406e-41 5.6390122836e-40 -1.0888720256e-41
C175 x14 y4 -4.8188730677e-40 5.6774018316e-39 -1.7750493757e-40
C177 x12 y6 8.5604731416e-40 3.5644673045e-39 -1.0762569406e-39
C179 x10 y8 -1.8612269583e-38 1.0632555615e-39 -1.8087723428e-39
C181 x8 y10 -5.3757808576e-37 1.7279617198e-39 6.4783855619e-39
C183 x6 y12 -4.3424625115e-36 6.260967535 le-40 4.2322993908e-38
C185 x4 y14 2.3285538399e-36 3.8566171091e-40 5.7867732944e-38
C187 x2 y16 6.7999660807e-35 9.4531088469e-42 3.9370084467e-38
C189 18
y -1.0260980068e-34 -7.6043594479e-42 3.8220262598e-38
Table 3 c for Figure 2
Coefficient Formula M10
C7 x 2 y -1.2073199536e-08
C9 y 3 8.7782631399e-09
CIO X4 -2.1135859437e-l l
C12 x2 y2 -5.9834662932e-l 1 C14 y4 -1.3443430600e-l 1
C16 x 4 y -2.9899827344e-14
C18 x 2 3 -7.7448726568e-15
C20 y 1.2440729856e-14
C21 x6 -4.4201857012e-17
C23 x4 y2 -1.7313252068e-16
C25 x y4 -1.5606453698e-16
C27 y6 -3.5492462087e- 17
C29 x6 y -5.2425950879e-20
C31 x4 y3 -6.0978501628e-20
C33 x2 y5 -2.5207395989e-22
C35 7
y 1.9021989274e-20
C36 X -8.4617143390e-23
C38 x6 y2 -3.9214991493e-22
C40 x4 y4 -6.0342325722e-22
C42 x2 y6 -3.6677879525e-22
C44 y -6.1826088446e-23
C46 x8 y -7.6533590184e-26
C48 x6 y3 -2.0917182905e-25
C50 x4 y5 -1.5388135872e-25
C52 x2 y7 1.8107516367e-26
C54 9
y 5.103484904 le-26
C55 X10 -1.0798352267e-28
C57 x8 y2 -1.0006063556e-27
C59 x6 y4 -2.2510577007e-27
C61 x4 y6 -2.2611988333e-27
C63 x2 y8 - 1.0213726748e-27
C65 yio -1.7451446659e-28
C67 x10 y -2.5053804319e-31
C69 x8 y3 -3.3639027166e-31
C71 x6 y5 -2.3000585068e-31
C73 x 4 y 7 4.6317972303e-31
C75 x 2 y 9 2.6835066549e-31
C77 11
y -7.582766784 le-32
C78 x12 -3.1957253510e-34
C80 x10 y2 2.1076467863e-34
C82 x8 y4 2.5118635339e-33
C84 x6 y6 4.0800565250e-33
C86 x4 y8 2.4148743334e-33 C88 x2 y10 6.7649691548e-34
C90 y12 -7.3285702529e-35
C92 x12 y 4.1657376875e-37
C94 x10 y3 -2.3864950004e-36
C96 x8 y5 -3.4192095510e-36
C98 x6 y7 -6.7106223870e-36
CIOO x4 y9 -6.7653046130e-36
C102 x2 y1 1 -4.7693438708e-37
C104 13
y 8.0612200336e-37
C105 x14 -5.0147801591e-40
C107 x12 y2 -1.7146117047e-38
C109 x10 y4 -7.7170881957e-38 cm x8 y6 -1.5311406942e-37
Cl 13 x6 y8 -1.4636329649e-37 Cl 15 x4 y10 -7.5885325789e-38 Cl 17 x 2 y 12 -2.1535993122e-38 Cl 19 y14 -1.4838695167e-39 C121 x14 y -2.4269767687e-42 C123 x12 y3 4.794340969 le-42 C125 x10 y5 - 1.7838892399e-42 C127 x8 y7 4.9226302038e-42 C129 x6 y9 3.6310829513e-41 C131 x4 y1 1 3.1353343502e-41 C133 x2 y13 1.5961567122e-43 C135 15
y -2.3278985886e-42 C136 x16 7.3524059733e-46 C138 x14 y2 4.8410529570e-44 C140 x12 y4 2.8284757370e-43 C142 x10 y6 7.4368326210e-43 C144 x8 y8 9.5483041876e-43 C146 x6 y10 6.4376977153e-43 C148 x4 y 2.4364807196e-43 C150 x 2 y 14 5.2354676832e-44 C152 yl6 1.6845564149e-45 C154 x16 y 1.1016160767e-48 C156 x14 y3 -2.5273940801 e-47 C158 x12 y5 -3.6737179978e-47 C160 x10 y7 -3.3476988649e-47 C162 x8 y9 -8.5930637599e-47 C164 x6 y1 1 -1.2641835179e-46
C166 x4 y13 -5.9732349227e-47
C168 x2 y15 8.3341314710e-48
C170 17
y 4.6335184158e-48
C171 x18 -4.9179114747e-51
C173 x16 y2 -1.1208115428e-49
C175 x14 y4 -6.7377189315e-49
C177 x12 y6 -2.0781632568e-48
C179 x10 y8 -3.4411161488e-48
C181 x8 y10 -3.2793070904e-48
C183 x6 y12 -1.8142307618e-48
C185 x4 y14 -5.999574359 le-49
C187 x2 y16 - 1.1594044702e-49
C189 18
y -5.9942768045e-51
Table 3d for Figure 2
Coordinate of the stop edge
Xi [mm] yi [mm] Xi+N/2 [mm] yi+N/2 [mm]
-98.425261 152.247682 104.405530 169.191778
-77.494319 160.719730 91.448280 174.175335
-63.042003 165.204932 70.517339 180.653960
-48.589686 168.693422 47.094619 185.637518
-31.147234 171.683557 24.170254 188.627652
-16.196562 173.178624 4.734380 189.624364
-5.731091 173.676980 -5.232735 189.624364
7.226158 173.676980 -24.170254 188.627652
27.160388 172.181912 -33.639013 187.630941
43.606128 169.690134 -55.566666 184.142450
61.048580 165.703287 -66.530493 181.650672
74.504185 161.716441 -82.477877 177.165470
82.976233 158.726307 -105.402242 168.693422
96.431838 153.244394 -123.343049 160.221374
107.894020 147.762480 -139.788788 150.752615
126.333183 137.297010 -147.264125 145.769057
137.297010 129.821673 -162.214797 134.306875
152.247682 118.359491 -170.188489 127.329895
166.201643 105.402242 -177.663826 119.854558
178.162181 -92.444992 -186.135873 110.385799
189.624364 -77.494319 -194.109565 99.920328 195.604633 -68.523916 -203.079969 85.468011
201.086546 -59.055157 -207.565171 76.995964
206.070103 -49.088042 -212.548728 65.035426
212.050372 -34.635725 -214.542151 59.055157
216.037218 -21.678475 -218.030641 46.097907
218.030641 -13.704783 -220.522420 30.648879
219.525709 -5.232735 -221.020776 23.173542
221.020776 9.717937 -221.020776 10.714649
221.020776 22.675187 -220.024064 -1.245889
219.525709 38.124215 -218.528997 -11.213004
217.532286 48.091330 -214.043795 -28.655456
214.043795 60.550224 -209.558594 -41.114350
208.561882 74.504185 -205.571748 -50.084753
201.086546 88.956502 -197.099700 -66.032137
191.617787 103.408819 -187.132585 -80.982810
186.135873 110.385799 -178.162181 -92.444992
179.158893 118.359491 -169.191778 102.412107
170.686845 126.831539 -162.713153 108.890732
159.224663 136.798654 -153.244394 117.362780
150.752615 143.277279 -137.297010 129.821673
133.310164 154.739461 -121.349626 140.287144
115.369357 164.208220 -113.375934 144.772346
Table 4 for Figure 2
The mirrors Ml, M5, M6, M8 and M10 have negative radius values, i.e., are concave mirrors as a matter of principle. The mirrors M2 and M9 have positive radius values, i.e., are convex mirrors as a matter of principle. The mirrors M3, M4, M7 have Rx, Ry radius values with differing signs in each case, i.e., are each saddle-shaped as a matter of principle.
A boundary of a stop surface of the stop (cf , also, Table 4 for Figure 2) emerges from
intersection points on the stop surface of all rays of the illumination light 3 which, on the image side, propagate at the field centre point in the direction of the stop surface with a complete image-side telecentric aperture. When the stop is embodied as an aperture stop, the boundary is an inner boundary. The stop AS can lie in a plane or else have a three-dimensional embodiment. The extent of the stop AS can be smaller in the scan direction (y) than in the cross-scan direction (x).
Further data of the projection optical unit 7 arise from Table 5 below:
Further design data for the projection optical unit 7 according to Figure 2
Wavelength 13.5 nm
NA 0.55
Figure imgf000030_0001
4.00
bg 8.10
Chief ray angle (CRA) 5.05°
Etendue 12.58 mm2
Mean wavefront aberration RMS 7.32 m l
System transmission 7.68 %
Position of the entry pupil EP (x) -2377.91 mm
Position of the entry pupil EP (y) -2678.36 mm
Object-image offset 2219.19 mm
Working distance between M9 and
81 mm
image field
Reticle tilt 0 0
Installation length 2300.99 mm
Obscuration 18.4 %
Installation space cuboid (790 x 2561 x 1819) mm
Table 5 for Figure 2
The projection optical unit 7 is designed for a wavelength of the illumination light 3 of 13.5 nm.
The value of the etendue arises as the product of the field dimensions of the image field 8 in the two field directions x and y and the square of the image-side numerical aperture.
The mean wavefront aberration RMS is a measure for the imaging quality of the projection optical unit 7.
The negative values for the positions of the entry pupil in Table 5 mean that the entry pupil lies upstream of the object field 4 in the imaging light beam path, both in the xz-plane (EP (x) value) and in the yz-plane (EP (y) value). A positive value for EP(x) or for EP(y) would mean that the entry pupil lies downstream of the object field 4 in the respective plane in the imaging light beam path.
The object-image offset is the y-distance between the centre of the object field 4 and the centre of the image field 8. The corresponding dimension of the object-image offset, dois, is plotted in Figure 2. The object-image offset, dois, is at least approximately identical to the decentring of the reticle relative to the wafer as specified in Table 2; in the case of object and image fields with a partial ring shape, in particular, the exact value of dois depends on the definition of which point of the object field 4 and which point of the image field 8 are considered.
The working distance between the mirror M9 closest to the wafer and the image plane 9 specifies the distance between the used reflection surface of the mirror M9 and the image plane 9.
A reticle tilt of 0° arises on account of the object plane 5 being parallel to the image plane 9.
The installation length is the distance between the object plane 5 and the image plane 9 in the z- direction.
In a system pupil of the projection optical unit 7, an area that cannot be illuminated due to the obscuration by the obscuration stop AS is less than 0.1842 of the area of the overall system pupil.
Less than 3.4% of the numerical aperture is obscured as a result of the passage opening 17.
The non-illuminated area within the system pupil can have a different extent in the x-direction than in the y-direction. The non-illuminated area in the system pupil can be round, elliptical, square or rectangular. Moreover, this area in the system pupil which cannot be illuminated can be decentred in the x-direction and/or in the y-direction in relation to a centre of the system pupil.
The mirrors Ml to M10 can be housed in an installation space cuboid with the extents in the x-, y- and z-direction as specified in Table 5. A telecentricity value of the projection optical unit 7, measured in the y-direction over the image field 8, is less than 0.4 mrad.
The projection optical unit 7 is approximately telecentric on the image side.
Further mirror data emerge from the following Table 6.
Ml M2 M3 M4 M5
Maximum angle of 13.9 84.5 80.1 80.6 83.4
incidence [deg]
Minimum angle of incidence [deg] 10.5 74.1 74.2 76.0 77.5
Mirror extent (x) [mm] 640.8 410.7 341.1 294.8 324.8
Mirror extent (y) [mm] 272.2 299.7 265.2 296.8 364.2
Maximum mirror diameter 641.1 355.2 378.2 425.6
[mm] 410.9
Table 6a for Figure 2
M6 M7 M8 M9 M10
Maximum angle of incidence 79.9 81.8 78.0 20.4 8.4
[deg]
Minimum angle of incidence [deg] 73.7 72.2 70.3 0.0 5.1
Viirror extent (x) [mm] 349.7 306.2 234.3 292.1 789.9
Viirror extent (y) [mm] 260.6 119.9 264.3 155.7 767.9
Maximum mirror diameter 351.3 306.3 291.2 292.2 790.2
[mm]
Table 6b for Figure 2
Again, the angles of incidence are specified for the chief rays 16 in each case. For the NI mirrors, the mirror M9 has the largest maximum angle of incidence. It is less than 21°. For the GI mirrors, the mirror M8 has the smallest minimum angle of incidence of 70.3°. Thus, in the projection optical unit 7, the minimum angle of incidence for the chief rays is greater than 70° in each case.
The ultimate mirror M specifying the image-side numerical aperture is the largest, both in the x- and in the y-extent, with both extents in the x and y of the mirror M10 being less than 800 mm. Accordingly, the maximum diameter of the mirror M10 is also less than 800 mm and represents the largest maximum mirror diameter of the projection optical unit 7.
The plan view according to Figure 3 elucidates that the complete reflection surface of the mirror Ml lies at greater y-coordinates than the object field on account of the chief ray angle of 5.05° at the object field. Advantageously, this allows a better separation of illumination optical unit 6 and projection optical unit 7. The reflection surfaces of mirrors M7 and M8 lie at greater y- coordinates than the image field 8. The mirrors Ml and M2 do not overlap in the plan view according to Figure 3.
Figure 4 shows a lateral view of the projection optical unit 7 in the region of a first section of the imaging beam path containing the mirrors Ml to M4. Figure 5 shows, in turn, a lateral view of the last section of the imaging beam path of the imaging optical unit 7, comprising mirrors M6 to M10, as seen from the opposite direction of Figure 4.
Using dashed lines, Figure 5 shows the edge contours of the aperture/obscuration stop AS with a stop body OS and an outer edge. A ring-shaped passage region of the stop AS is present between this inner stop body OS and the outer edge, the inner edge of said passage region specifying the obscuration of the projection optical unit 7 and the outer edge of said passage opening specifying the image-side numerical aperture of the projection optical unit 7.
Figures 6 to 15 show edge contours of the surfaces in each case impinged upon by the illumination light 3 on the mirrors Ml to M10 of the projection optical unit 7, i.e., the so-called footprints of the mirrors Ml to M10. These edge contours are in each case depicted in an x/y- diagram, which corresponds to the local x- and y-coordinates of the respective mirror Ml to M10. Mirrors M4, M5, M8 and M10 have an x/y-aspect ratio that does not deviate, or only deviates slightly, from a value of 1. The mirror M7 has the largest x/y-aspect ratio of
approximately 2.55. Accordingly, none of the mirrors Ml to M10 has an x/y-aspect ratio that is greater than 2.6.
Figure 86 shows a plan view of a first embodiment of a reticle 10 that is imageable by the projection optical unit 7. Figure 86 and the following illustrations of further embodiments of the reticle in Figures 87 to 91 are provided with dimensions, just like the imaging field illustrations (Figures 92 to 95). Here, an inch (”) corresponds to 2.54 cm, i.e., 25.4 mm.
The reticle 10 according to Figure 86 comprises a square substrate 18 with an edge length of 1524 mm (6 inches, 6”). A used region, also referred to as object specification field 19, which is available for imaging structures of the reticle 10 lies within the square boundary of the substrate 18. The object specification field 19 is delimited by a square specification field basic shape and convexly curved specification field corner regions 20.
The reticle 10 according to Figure 86 is also referred to as a standard reticle.
Figures 87 to 91 show further size variants of the reticle 10, which are likewise provided with dimensions. Components and functions corresponding to those which have already been explained above with reference to Figure 86, in particular, bear the same reference signs and will not be discussed in detail again.
The reticle 10 according to Figure 87 has a square substrate, the external dimensions of which matching those in Figure 86. The object specification field 19 in the reticle 10 according to Figure 87 is smaller than in the embodiment according to Figure 86. This is due to the fact that the distance in the y-dimension between the specification field basic shape of the object specification field 19 and the outer edge of the substrate 18 is greater than in the embodiment according to Figure 86.
The embodiment according to Figure 88 corresponds to that of Figure 86.
The reticle 10 according to Figure 89 has a substrate 18 two times larger in the x-dimension than the embodiments according to Figures 86 to 88. Thus, the x/y-dimensions in the reticle 10 according to Figure 89 are 12 inches/6 inches. Accordingly, the object specification field 19 in the reticle 10 according to Figure 89 is also correspondingly larger in the x-dimesion and has a rectangular specification field basic shape, likewise with an x/y-aspect ratio of approximately 2/1 and convexly curved specification field corner regions 20. The reticle 10 according to Figure 89 is also referred to as a reticle with twice the size in the horizontal direction.
The reticle 10 according to Figure 90 corresponds to that of Figure 89, rotated through 90° about the z-axis (axis perpendicular to the plane of the drawing according to Figures 86 to 91).
The reticle 10 according to Figure 90 is also referred to as a reticle with twice the size in the vertical direction.
The reticle 10 according to Figure 91 has a square substrate 18 with x/y-dimensions of respectively 12 inches. The object specification field 19, which has a square specification field basic shape and convexly curved specification field corner regions 20, lies within this substrate 18 of the reticle 10 according to Figure 91.
In the reticle embodiments according to Figure 86 and Figures 88 to 91, the edge distances between the object specification field 19 and the outer edge of the substrate 18 are always the same, both in the region of the rectangular specification field basic shape and in the region of the specification field corner regions 20.
The reticle 10 according to Figure 91 is also referred to as a reticle with twice the size in both directions.
Figure 92 shows an entire imaging field 21 with dimensions in exemplary fashion, said imaging field being exposed in contiguous fashion on the wafer 11 during a scanning procedure within the scope of the projection exposure. The imaging field 21 according to Figure 92 has an extent of 26 mm in the x-dimension; this corresponds to the x-extent of the image field 8. The imaging field 21 has an extent of 33 mm in the y-dimension. With the aid of the image field 8 with an extent of 1.6 mm in the y-dimension, the entire y-extent of the imaging field 21 is illuminated during the scanning process by way of the scanning movement of the wafer 11 in the y-direction with the aid of the substrate displacement drive 12a. The imaging field 21 according to Figure 92 is also referred to as a full field. Figures 93 to 95 show further embodiments of imaging fields 21 with dimensions. Components and functions which have already been explained above with reference to Figure 92, in particular, bear the same labels and will not be discussed in detail again.
The imaging field 21 according to Figure 93 has an extent of 13 mm in the x-dimension and an extent of 33 mm in the y-dimension. The x-extent thus corresponds to half the x-extent of the image field 8 of the projection optical unit 7. The y-extent corresponds to that of the imaging field 21 according to Figure 92. The imaging field 21 according to Figure 93 has exactly half the area of the full field according to Figure 92 and is also referred to as a rotated half field.
Figure 94 shows an embodiment of the imaging field 21 with an x-extent of 26 mm and a y- extent of 16.5 mm. The x-extent of the imaging field 21 according to Figure 94 is therefore just as large as that of the embodiment according to Figure 92, and the y-extent has half the size. The imaging field 21 according to Figure 94 is also referred to as a half field.
In comparison with the imaging field according to Figure 92, the imaging field 21 according to Figure 95 has half the x-extent of 13 mm and half the y-extent of 16.5 mm. The imaging field 21 according to Figure 95 is also referred to as a quarter field.
Using the example of an object specification field 19 with a square specification field basic shape corresponding to the object specification field of the reticle 10 according to Figure 86, 88 or 91, for example, Figure 96 shows arrangement options of structuring fields 4i (4a, 4b, 4c, 4d) with different x/y-aspect ratios, which use the area of the object specification field 19 in Pareto- optimal fashion.
The respective rectangular structuring field 4i is illuminated within the scope of a scanning operation of the projection exposure apparatus 1 by way of a relative displacement of the reticle 10 with respect to the object field 4. This is illustrated in Figure 96 using the example of the arcuate object field 4, the x-extent of which corresponds to that of a Pareto-optimal structuring field 4c. The object field 4 is scanned relative to this structuring field 4c along the field direction y, i.e., along the object displacement direction, during the scanning operation of the projection exposure apparatus 1 until the entirety of the structuring field 4c has been illuminated. In this way, the respective structuring field 4i overall is imaged into the imaging field 21 associated with the imaging optical unit by way of the imaging scales bc, bn. The imaging field 21 is displaced relative to the image field 8 in a manner synchronized to the object displacement by way of an appropriate synchronization of the drives 10b and 12a.
A Pareto-optimal use of the object specification field 19 by the structuring field 4i inscribed therein is present if a magnification of the respective structuring field 4i along an object field dimension is possible only to the detriment of a reduction in the extent of this structuring field along the structuring field dimensional orthogonal thereto.
In respect of the theory surrounding Pareto-optimality, reference is made to the German
Wikipedia page“Pareto-Optimum”, retrievable on 18 July 2018, and the references specified therein.
In order to elucidate this specification of the Pareto-optimality, Figure 96 also plots, in exemplary fashion two fields 22 (dotted) and 23 (dashed) that are not inscribed in Pareto- optimal fashion. The field 22 has not been inscribed into the object specification field 19 in Pareto-optimal fashion since it could have a greater extent in the x-dimension without the y- dimension of the field 22 having to be reduced. Accordingly, the field 23 is not inscribed into the object specification field 19 in Pareto-optimal fashion either since it could be increased in the y- dimension without the field 23 having to be reduced in terms of its x-dimension in this case.
Examples of structuring fields inscribed in the object specification field 19 in Pareto-optimal fashion are the structuring fields 4a (dash dotted), 4b (dashed), 4c (dotted) and 4d (dashed with a greater spacing). In all of these Pareto-optimally inscribed structuring fields 4a to 4d or 4i (i = a...d), the comers of these rectangular structural fields 4a to 4d lie on the convexly curved boundary lines of the specification field corner regions 20. Such structuring fields 4a to 4d are also referred to as Pareto-structuring fields.
The corners of the Pareto-optimally inscribed structuring fields 4i, which follow this boundary line of the specification field corner regions 20, each have a defined x/y-aspect ratio, which follows the curve following the form of the specification field corner regions 20 in a diagrammatic representation. Accordingly, the admissible, absolute bc/bn-ratios of the reduction scales, which the projection optical unit 7 may have for Pareto-optimal imaging of the respective structuring field 4i into an image field 8 of specified dimensions, also follow a corresponding curve. The sign of bc or bn is not important when forming this ratio bc/bn; all that matters is the absolute value.
Figure 97 elucidates this result in a diagram, which plots the reduction scale bc along the abscissa and the reduction scale bn along the ordinate. Pareto-optimal, absolute reduction scale ratios are reproduced by a scale ratio curve 24. Proceeding from this curve, smaller assigned absolute reduction scales bg or bc are possible in each case - illustrated using hatching - in the case of respectively set absolute reduction scale bc 0G bn; this would lead to non-Pareto-optimal inscribed structuring fields, for example structuring fields of types 22, 23 in Figure 96.
With the aid of, firstly, the various combinations of object specification fields 19 according to Figures 86 or 88 to 91 and, secondly, imaging fields 21 according to Figures 92 to 95, Figure 98 shows ascertained scale ratio curves 24i. In the key on the right-hand side of Figure 98, each of the scale ratio curves 24i (i = 1, 2... 16) is assigned to a combination of reticle size according to Figures 88 to 91 and an imaging field size according to Figures 92 to 95. Moreover, Figure 98 highlights, inter alia, the scale ratio bc/ bn = 4/8.1 of the projection optical unit 7.
A scale ratio curve 24i for the combination of a standard reticle according to Figure 86 and a half field according to Figure 94 lie close to this scale ratio 4/8.1 of the projection optical unit 7.
Apart from the combinations of“standard reticle and full field” (scale ratio curve 242),“standard reticle and rotated half field” (scale ratio curve 243),“reticle with twice the size and horizontal format and full field” (scale ratio curve 244) and“reticle with twice the size and horizontal format and rotated half field” (scale ratio curve 24s), all other combinations of, firstly, reticles according to Figures 86 to 91 and imaging fields according to Figures 92 to 95 can be imaged using the projection optical unit 7 and the scale ratio 4/8.1. The associated scale ratio curves for these admissible combinations of reticles and imaging fields are denoted by 246 to 24i6 in Figure 98 and in addition to the scale ratio curve 24i already discussed at the outset. In an illustration comparable to Figure 96, Figure 99 once again shows an object specification field 19 with a Pareto-optimally inscribed structuring field 4a. Additionally, usable auxiliary areas 25, 26, 27, 28 are plotted in the surface regions, which lie, firstly, within the object specification field 19 and, secondly, outside of the structuring field 4a. The auxiliary areas 26 to 28 are each rectangular and represent spatial requirements of sensors or markings, which serve to align the reticle, for example. By way of example, such auxiliary areas have dimensions of 3250 pm x 160 pm, of 9636 pm x 1750 pm and of 4000 pm x 4000 pm.
Figures 99 to 101 show, not entirely true to scale, three different arrangement variants of auxiliary areas 25 to 28 between the respective structuring field 4a, 4b and 4c, each inscribed in Pareto-optimal fashion with a different x/y-aspect ratio, and the edge contour of the object specification field 19.
What ultimately arises on account of the extent of auxiliary areas 25 to 28 is that the play for the Pareto-optimal inscription of the structuring field 4i within the edge contour of the object specification field 19 is restricted in comparison with the entirely free inscription according to Figure 96, and so the corners of the Pareto-optimally inscribed structuring field 4i, in particular, cannot come to rest near the ends of the specification field corner regions 20, i.e., not near the transitions between the rounded specification field corner regions 20 and the specification field basic shape boundaries running in a straight line.
The effect on the scale ratio curves 24i arising as a result thereof is illustrated in Figure 102. There has been no change in the basic position of the respective scale ratio curves 241 to 24i6 in the illustration 102, which takes account of the auxiliary areas 25 to 28, in comparison with the illustration according to Figure 98, which does not take account of the auxiliary areas. Only in the region of the extremal values of the respective scale ratio curves 24i, i.e., in the region of the respective start and/or in the region of the respective end of the scale ratio curve 24i, is there shortening in the illustration according to Figure 102 and hence a corresponding reduction in the admissible scale ratio values bc, bg below the respective scale ratio curve 24i. Even when the auxiliary areas 25 to 28 are considered, the projection optical unit 7 with its scale ratio of 4/8.1 remains admissible for the same scale ratio curves 24i, as explained above in conjunction with Figure 98.
A shadowing effect as a further influencing quantity for the profile of the scale ratio curves 24i is explained below on the basis of Figures 103 to 108. Components and functions which have already been explained above bear the same labels and will not be discussed in detail again.
Figure 103 schematically shows an embodiment of the reticle 10 together with a region 29, in which reticle structures to be imaged are present. This region 29 is spaced apart from an outer edge contour of the substrate of the reticle 10 on all sides of the square or rectangular reticle 10.
Figure 104 shows, very schematically, an arrangement of shadowing stops of the projection exposure apparatus 1, which are also referred to as reticle masking (ReMa) stops. Two x-ReMa stops 30, 31, which are spaced apart from one another in the x-direction, and two y-ReMa stops 32, 33, which are spaced apart from one another in the y-direction, are present. Between them, these ReMa stops 30 to 33 delimit the region 29 to be imaged on the reticle 10.
Figure 105 shows, very schematically, those components of the projection exposure apparatus 1 that influence the illumination or imaging light 3 in the region of a reflection at the reticle 10.
In the illumination beam path towards the reticle 10, an entire light beam of the illumination light 3 initially passes energy sensors 34 that are located at the edge, said sensors measuring the energy and, optionally, a directional stability of the illumination light 3. Subsequently, the illumination light 3 passes a field intensity specification device with finger stops 35 in the style of a Unicom. By way of example, such a Unicom is described in DE 10 2017 206 541 A1 and DE 10 2012 208 016 Al. This field intensity specification device serves to specify a defined illumination intensity curve over the x-coordinate of the object field 4.
Subsequently, the illumination light 3 passes the y-ReMa stops 32 and 33. The back ReMa stop 33 of Figure 105 is illustrated in the section of Figure 5. Subsequently, the illumination light 3 passes the x-ReMa stops 30, 31, the left x-ReMa stop 30 of which is illustrated in Figure 105.
Subsequently, the illumination light 3 passes an optional pellicle 36, which protects a surface of the reticle 10, before the illumination light 3 strikes the object structures of the reticle 10.
Like the reticle 10, the pellicle 36 is carried by the reticle holder 10a.
Figure 106 schematically shows a shadowing effect caused by the ReMa stops 30 to 33, which occurs at the edge of the region 29 to be imaged in each case. In Figure 106, the reticle 10 is illustrated with a break in the central portion such that the edge regions are illustrated with great magnification in Figure 106. The illumination light 3 passes through the ReMa stops 30 to 33 with a respective object-side numerical aperture, which is indicated at NA in Figure 106.
Depending on this object-side numerical aperture and the distance d of the ReMa stops 30 to 33 from the reticle 10, half-shadow regions or stop-shadowed areas D arise on the reticle 10, in which some of the illumination light 3 is shadowed by the respective ReMa stop 30 to 33 in each case. Depending on the combination of object-side numerical aperture NA and distance d between the ReMa stops 30 to 33 and reticle 10, the half shadow regions D have a value ranging from 1 mm to 3.5 mm.
In an illustration similar to Figure 100, Figure 107 shows the relationship between the usable structuring field 4i and the shape of the object specification field 19, wherein, firstly, the auxiliary areas 25 to 28, in particular for the alignment sensors and alignment markings, and, secondly, the half-shadowed regions D are additionally taken into account. This yields a corresponding reduction in the usable structuring field 4i in both object field dimensions x and y.
Figure 108 shows the influence that this taking account of, firstly, the auxiliary areas and, secondly, the half-shadowed regions has on the curve of the scale ratio curves 24i. When taking this half shadow into account according to Figure 108, the scale ratio curves 24i are shifted to smaller bc values and to smaller bn values in comparison with the case where only the auxiliary areas according to Figure 102 are taken into account. The reduction scale ratio value 4/8.1 of the projection optical unit 7 still lies just below the scale ratio curve 24i and the projection optical unit 7 still satisfies the scale ratio criterion for the same scale ratio curves 24i, as explained above on the basis of Figures 98 and 102.
The following procedure is undertaken when designing an imaging optical unit if an optimization of the reduction scale ratio is taken into account:
A shape of the object specification field 19, which is bounded by the rectangular specification field basic shape and the convexly curved specification field comer regions 20, and the dimensions of the image field 8 in both field directions x and y are included when ascertaining a reduction scale ratio to be specified from a first reduction scale bc of the imaging optical unit 7 in the first field direction x and the second reduction scale bn of the imaging optical unit 7 in the second field direction y. Then, an arrangement of optical components of the imaging optical unit 7, for example the arrangement described above in conjunction with Figures 2 to 15, is specified, by means of which the specified imaging scale ratio between the object field 4 and the image field 8 is generated.
As explained above, an auxiliary area need can also be included in the ascertainment of the reduction scale ratio bc/bg to be specified. No structures to be imaged are present on the respective auxiliary area 25 to 28, and so the structuring field 4i must not overlap with the auxiliary area 25 to 28.
As likewise described above, the need for at least one stop-shadowed area D on the object specification field 19 can be included in the ascertainment of the reduction scale ratio bc/ bg to be specified.
No structures to be imaged are allowed to be present on the stop-shadowed areas D, and so the structuring field 4i must not overlap with the stop-shadowed area D.
Figures 16 to 29 show a further embodiment of a projection optical unit 37, which can be used instead of the projection optical unit 7 in the projection exposure apparatus 1. Components and functions corresponding to those which were already explained above with reference to Figures 1 to 15, in particular, are denoted by the same reference signs and are not discussed in detail again. The projection optical unit 37 has an integer reduction scale bc in the xz-plane of 4.00 and a reduction scale bg in the yz-plane of -8.80. In terms of its basic design, the projection optical unit 37 corresponds to the projection optical unit 7.
The optical design data emerge from following Tables 1 to 6, which, in turn, correspond in terms of the basic structure to Tables 1 to 6 relating to the embodiment according to Figure 2.
Radii of the surfaces
RadiuSx [mm] Powerx [1/mm] RadiuSy [mm] Powery [1/mm]
M01 -2149.74307520 0.00090990 -1362.27734550 0.00143587
M02 2951.01744024 -0.00012502 2712.04344590 -0.00013603
M03 2191.51476631 -0.00020518 -11642.78088155 0.00003862
M04 4303.80775718 -0.00009566 -8301.25656720 0.00004960
M05 -2107.30064397 0.00015821 -6172.35866799 0.00005401
M06 -932.82274076 0.00049065 -1858.97453141 0.00024621
M07 -763.03971988 0.00062902 36508.86814551 -0.00001315
M08 -1095.26826407 0.00048573 -5537.85564012 0.00009607
M09 1134.00647010 -0.00176366 315.29960114 -0.00634317
M10 -784.04106832 0.00253122 -718.87542257 0.00276067
Table 1 for Figure 16
Decentring (location, angle) the surfaces
Dx [mm] Dy [mm] l)z [mm]
Reticle 0.000000000 2210.981916717 2301.547066942
M01 0.000000000 2063.733100150 618.485392066
M02 0.000000000 1775.827961535 1451.540846742
M03 0.000000000 1550.505676179 1717.000095488
M04 0.000000000 1196.044970849 1872.526464812
M05 0.000000000 798.146061456 1872.043574818
M06 0.000000000 168.387727608 1651.981239302
M07 0.000000000 -61.812466046 1415.923766055
M08 0.000000000 -129.367296140 1187.996276842
M09 0.000000000 147.308716142 106.028755734 Stop 0.000000000 109.279602567 255.875038017
M10 0.000000000 0.000000000 686.469933215
Wafer 0.000000000 0.000000000 0.000000000
« [°] «y P °]
Reticle 0.000000000 0.000000000 0.000000000
M01 7.032610840 0.000000000 0.000000000
M02 -60.305060791 180.000000000 0.000000000
M03 143.317140055 0.000000000 0.000000000
M04 -11.810421261 180.000000000 0.000000000
M05 189.665478733 0.000000000 0.000000000
M06 32.490576806 180.000000000 0.000000000
M07 239.605285876 0.000000000 0.000000000
M08 88.917443106 180.000000000 0.000000000
M09 14.292174071 -0.000000000 0.000000000
Stop 1.508659025 180.000000000 0.000000000
M10 7.120151714 180.000000000 0.000000000
Wafer -0.000000000 -0.000000000 0.000000000
Table 2 for Figure 16
Free-form coefficients of the surfaces
Coefficient Formula M01 M02 M03
C7 x 2 y 1.7432098326e-08 -4.4623820617e-08 1.7051619165e-07
C9 3
y 3.3715366275e-09 -5.2811768454e-07 3.2939519637e-07
CIO X4 -6.6297473048e-12 2.6173508552e-10 7.0663063675e-10
C12 x2 y2 4.0146454028e-l 1 1.7456806714e-l 1 3.1842507927e-10
C14 y4 -1.4499155377e-10 2.0351988517e-09 -2.0197542726e-10
C16 x 4 y - 1.7300235249e- 16 -4.057473421 le-13 1.8373474415e-12
C18 x 2 y 3 9.6045073382e-14 1.3179582488e-12 2.8100631490e-13
C20 y -5.5746703360e-14 -9.5457119369e-12 2.7320887718e-12
C21 X .6 -1.3081768504e-18 1.3616950321e-17 5.204007106 le- 16
C23 x 4
4 y 2 -4.4191928350e-17 1.400624420 le- 15 2.9530268958e-15
C25 x 2 y 4
4 -1.1020038744e- 16 -8.1353284898e-15 9.3041533968e-16
C27 .6
y -3.7417779508e-16 4.5503290830e-14 -1.0317672036e-15
C29 x6 y 5.5066724659e-21 7.6289840190e-19 4.7794423107e-18
C31 x4 y3 -1.3355143656e-19 -2.4221367844e-18 5.3581493413e-18
C33 x2 y5 4.8085026762e-20 4.9612594964e-17 7.0830887456e-18
C35 7
y 1.1494003337e-18 -2.1427657968e-16 3.7319240299e-17 C36 x 7.8328753569e-24 -3.2738672783e-21 1.2368178276e-20
C38 x6 y2 -5.6374986327e-23 6.5002024356e-21 1.4551762271e-20
C40 x4 y4 -6.3981724492e-23 3.3387704514e-20 2.9977044125e-20
C42 x2 y6 1.6713426747e-21 -2.3026370522e-19 4.2253280691e-20
C44 y -2.204147113 le-20 1.0557874204e-18 7.6780588488e-20
C46 x8 y 1.4089754984e-26 -4.7587057940e-23 -3.5112434259e-25
C48 x6 y3 -2.2082137927e-25 -5.1585739640e-22 -5.3019449696e-23
C50 x4 y5 -1.2254116954e-23 -1.0828586769e-21 -6.0079209117e-23
C52 x2 y7 -2.2549362896e-24 -7.5584008603e-23 -7.2999984203e-22
C54 9
y -6.5947900176e-23 -5.8325914144e-21 -4.7689171293e-22
C55 X10 -3.0438454151e-28 2.7417781952e-25 -9.8475237058e-25
C57 x8 y2 1.6914763581e-27 3.6936149946e-25 - 1.1066430236e-24
C59 x6 y4 -1.4874645734e-26 3.6904296120e-25 -2.8884711468e-24
C61 x4 y6 -2.9669764509e-25 -1.000267805 le-24 -4.0023016323e-24
C63 x2 y8 -4.7441792653e-25 -4.1167728125e-24 -2.8122115967e-24
C65 yio 3.2329528401e-24 3.3951708574e-23 -9.2186988033e-24
C67 x10 y -8.1193570438e-31 2.4227453180e-27 -6.2483814368e-27
C69 x8 y3 -6.8069472809e-30 3.2749135078e-26 1.0483788387e-26
C71 x6 y5 2.9038584527e-28 1.0986313185e-25 4.7343307374e-27
C73 x 4 y 7 1.5550905816e-27 1.5095743767e-25 2.6136501715e-26
C75 x 2 y 9 -2.1385660939e-27 2.2382121323e-25 1.5961797117e-25
C77 11
y 9.5009245151e-27 -1.7910258171e-25 1.5392586815e-25
C78 x12 5.7921118982e-33 -1.0913956487e-29 4.2996197743e-29
C80 x10 y2 -3.1540236857e-32 -3.2630531779e-29 6.0518395154e-29
C82 x8 y4 1.1202578335e-31 -1.0585946372e-28 2.2975793259e-28
C84 x6 y6 7.9887456083e-30 -5.6152559781e-29 4.0648598893e-28
C86 x4 y8 4.5241059787e-29 -7.1528187213e-29 5.5073759204e-28
C88 x2 y10 2.4949076389e-29 -1.4682423383e-27 6.7073694500e-28
C90 y12 -3.9413917460e-28 4.6207474676e-28 1.1551929898e-27
C92 x12 y 2.1495703723e-35 -7.6901083550e-32 6.0518219551e-31
C94 x10 y3 2.8898576184e-34 -1.2265484660e-30 -7.1955828081e-31
C96 x8 y5 -2.4177077459e-33 -5.6720292940e-30 -9.5973789473e-31
C98 x6 y7 -3.9269124909e-32 -1.2342281999e-29 2.8872128360e-31
CIOO x4 y9 -7.0824577793e-32 -1.1232183288e-29 -4.6775445520e-30
C102 x2 y1 1 3.2714084788e-31 -6.6283207466e-30 -1.5061190382e-29
C104 13
y -1.0494099888e-30 3.2562367950e-30 -1.0489397807e-29
C105 x14 -6.1915065482e-38 2.3514671742e-34 -6.0547869016e-34
C107 x12 y2 2.7112774517e-37 1.3320931815e-33 -1.2334342497e-33
C109 x10 y4 1.2699232433e-36 7.3741185564e-33 -1.1561907828e-32 cm x8 y6 -9.5089221315e-35 1.4680349874e-32 -1.7442247332e-32
Cl 13 x6 y8 -9.7102114465e-34 2.1707965628e-32 -3.4498266381e-32 Cl 15 x4 y10 -3.3363424403e-33 2.2609910146e-32 -4.4565703791e-32 Cl 17 x2 y12 1.3892885170e-34 9.8636301467e-32 -7.1044595266e-32 Cl 19 y14 2.8039623317e-32 -2.1257256935e-32 -7.9017977402e-32 C121 x14 y -2.0548112895e-40 1.2408473059e-36 -2.0067332102e-35 C123 x12 y3 -3.1722027237e-39 2.333158333 le-35 1.9965414657e-35 C125 x10 y5 9.6758103876e-40 1.3525511163e-34 5.7930245024e-35 C127 x8 y7 3.5126320558e-37 4.3260561031e-34 -1.4873239302e-35 C129 x6 y9 1.9700401102e-36 5.8429821840e-34 1.1760562147e-35 C131 x4 y1 1 2.3640569867e-37 3.6356868375e-34 3.5073579071e-34 C133 x2 y13 -1.5868284671e-35 -4.7102756998e-35 7.3980367777e-34 C135 15
y 5.8406929219e-35 -1.9425891669e-34 4.2319792703e-34 C136 x16 3.4420345971e-43 -2.5295366363e-39 -8.7502549109e-39 C138 x14 y2 -8.1590702694e-43 -2.5870417384e-38 -1.8296885153e-39 C140 x12 y4 -2.1128276500e-41 -1.9801069084e-37 3.3864931426e-37 C142 x10 y6 5.2470831128e-40 -6.5234269435e-37 4.879082351 le-37 C144 x8 y8 7.9743132003e-39 -1.4573753605e-36 7.2493547762e-37 C146 x6 y10 4.6690947865e-38 -1.4301005432e-36 1.5947845063e-36 C148 x4 y 1.2064790126e-37 -1.0748199680e-36 2.2650199163e-36 C150 x 2 y 14 -7.456842579 le-38 -3.5789633920e-36 3.9564885833e-36 C152 yl6 -1.0747936572e-36 2.5458854599e-36 3.0185283116e-36 C154 x16 y 6.9096923519e-46 -8.0894874728e-42 2.2978234583e-40 C156 x14 y3 1.1514098771e-44 -1.7571261957e-40 -1.8987889326e-40 C158 x12 y5 4.7809247668e-44 -1.2177267903e-39 -1.0293442762e-39 C160 x10 y7 -9.0351418638e-43 -5.215886791 le-39 -8.4778485534e-42 C162 x8 y9 -1.1496817573e-41 -1.0790789473e-38 3.3402110734e-40 C164 x6 y1 1 -3.1546044294e-41 -1.1721845279e-38 -5.9065154284e-40 C166 x4 y13 4.0472798226e-41 -4.2578318863e-39 -9.8100163066e-39 C168 x2 y15 2.4721170568e-40 1.8348597385e-38 -1.3481495938e-38 C170 17
y -1.2322983262e-39 -1.0274081794e-38 -6.4710389422e-39 C171 x18 -7.7696354769e-49 1.0478428070e-44 2.2586751994e-43 C173 x16 y2 -3.3602432929e-49 1.9346324756e-43 2.8327161576e-43 C175 x14 y4 8.0541368165e-47 1.8591575941e-42 -4.0397845563e-42 C177 x12 y6 -1.1630920478e-45 8.5533249427e-42 -7.7899331700e-42 C179 x10 y8 -2.2217127589e-44 2.6283154180e-41 -3.3319414778e-42 C181 x8 y10 -1.9140790346e-43 4.4420274832e-41 -2.0359168269e-41 C183 x6 y12 -7.7217979784e-43 3.9454747793e-41 -2.4226283961e-41 C185 x4 y14 - 1.8269249335e-42 1.522210928 le-41 -5.8047204225e-41 C187 x2 y16 2.2341278320e-42 -2.9268822501e-41 -7.9280898085e-41
C189 y18 1.7185164667e-41 1.4784334892e-41 -4.6267408488e-41
Table 3a for Figure 16
Coefficient Formula M04 M05 M06
C7 x 2 y 5.7630260309e-08 -8.2466913454e-08 2.0753059829e-07
C9 y 3 -6.388299237 le-08 -1.0109001182e-07 -2.6624852147e-08
CIO X4 1.1740810333e-10 -1.2714745137e-10 -3.6018874805e-10
C12 x2 y2 3.7723403261e-l 1 -1.8108395179e-10 5.2705851210e-l 1
C14 y4 -1.5533643419e-10 -8.3008278320e-l 1 -2.988531141 le-10
C16 x 4 y 1.2940323056e-13 -3.9114017276e-13 -2.4930123708e-13
C18 x 2 3 4.6228262860e- 13 -9.0446836128e-14 9.1595798092e-15
C20 y -3.5009214697e-13 -7.9467335826e-14 1.2876369865e-12
C21 x6 -8.4733462550e-16 -6.8813776839e-16 -4.0273110102e-16
C23 x4 y2 -4.9919173867e-16 -2.3159160364e-16 -2.4547875449e-16
C25 x y4 7.2975604296e-16 2.7327436674e-17 -2.4320208775e-15
C27 y6 -1.3342532005e-15 1.1846297505e-16 -4.4631817054e-16
C29 x6 y 3.1569935186e-18 -1.9278717303e-18 -4.7751067293e-19
C31 x4 y3 -2.2038517130e-19 -3.5089118995e-19 1.4070408757e-18
C33 x2 y5 5.2182592804e-18 1.2661920948e-18 -6.8848644921e-18
C35 y7 -5.4913395057e-18 1.0391579235e-18 8.3922774213e-18
C36 x8 7.0956068088e-20 3.4388795801e-23 -6.0726694777e-21
C38 x6 y2 -2.9298997772e-21 5.7481253498e-21 -1.7285222723e-20
C40 x4 y4 -1.3200525254e-20 5.4023731342e-21 -1.474409581 le-20
C42 x2 y6 4.9449176869e-21 4.0379726885e-21 9.1298484539e-22
C44 y8 -3.7106440250e-22 -3.8805689553e-21 -1.0356309959e-19
C46 x8 y -3.2135160667e-23 3.7129353542e-22 1.0008309255e-22
C48 x6 y3 3.0552124665e-22 6.2459143209e-23 2.8937391423e-22
C50 x4 y5 2.4171868505e-22 -1.1988586492e-23 3.8645583434e-22
C52 x2 y7 4.980906821 Oe-24 -9.6622768618e-23 1.9538765909e-21
C54 9
y 4.7541929665e-22 -1.0182867764e-22 3.0675099285e-22
C55 X10 -4.6729345526e-24 -2.3381244105e-25 4.9453926249e-25
C57 x8 y2 -5.0637351779e-25 -8.5946014553e-25 8.0624575677e-25
C59 x6 y4 -8.2814264566e-25 -5.5959528621e-25 3.7439362401e-24
C61 x4 y6 1.4464529023e-24 2.2229010662e-25 -3.3091058056e-24
C63 x2 y8 -1.9367545012e-24 -2.9729560962e-25 -5.0971015105e-24
C65 yio -2.5292458227e-24 6.2511503369e-25 1.106267953 le-24
C67 x10 y 1.0745421654e-26 -2.9318586757e-26 -7.4021657978e-27
C69 x8 y3 -2.5188207293e-26 -9.2230412465e-27 -3.3260583257e-26 C71 x6 y5 -4.4357706790e-26 4.6262218163e-27 -2.6268931975e-26
C73 x 4 y 7 -1.2151663050e-26 -5.9359324747e-27 -8.9395815179e-26
C75 x 2 y 9 1.8392975172e-26 1.0571302499e-26 -2.5797542321e-25
C77 11
y -5.6668257627e-26 5.0559064774e-27 -1.8427728365e-26
C78 x12 1.2428752271e-28 4.6975507713e-30 -2.4999219433e-29
C80 x10 y2 4.6907549546e-29 7.0218513460e-29 6.6819884154e-30
C82 x8 y4 1.8113119128e-28 5.6909221993e-29 -2.1838907388e-28
C84 x6 y6 -1.2630695435e-29 -2.1266924333e-29 -4.6342534983e-29
C86 x4 y8 -1.4519324228e-28 -3.7269577987e-29 1.0675725927e-27
C88 x2 y10 2.8408441208e-28 1.1614756733e-29 7.2314927648e-28
C90 y12 2.0297200756e-28 -3.8611013126e-29 1.2843664979e-28
C92 x12 y -8.8170327781e-31 1.4393031944e-30 3.3307445809e-31
C94 x10 y3 1.0615320319e-30 6.9418613200e-31 2.1164631909e-30
C96 x8 y5 3.2019965018e-30 -3.9521068894e-31 2.3001057315e-30
C98 x6 y7 3.4205063801e-30 5.1988795085e-33 -4.3016436296e-31
CIOO x4 y9 1.7198183617e-31 5.5905531972e-31 1.2808295012e-29
C102 x2 y1 1 -2.0626142072e-30 -6.8914717850e-31 2.1213166618e-29
C104 13
y 3.6939177301e-30 -1.1544854800e-31 3.8853076387e-31
C105 x14 1.0333993829e-33 -1.9066963077e-34 8.6227993826e-34
C107 x12 y2 -1.1658147670e-33 -3.3850149492e-33 -2.7452830970e-33
C109 x10 y4 -1.4413923415e-32 -2.3474309637e-33 2.6682419133e-33 cm x8 y6 -8.828728141 le-33 -1.7685359006e-33 7.9143887319e-33
Cl 13 x6 y8 -7.501774433 le-34 4.355124115 le-33 -3.4948278680e-32 Cl 15 x4 y10 6.2880902836e-33 8.4990265868e-34 -1.1297615227e-31 Cl 17 x 2 y 12 -1.6306540531e-32 3.7218392838e-34 -6.1091600355e-32 Cl 19 y14 -1.2183133295e-32 1.2084745603e-33 -1.8592498867e-32 C121 x14 y 3.1841051194e-35 -3.6796685847e-35 -7.6011715904e-36 C123 x12 y3 -1.9046287559e-35 -2.4620383097e-35 -6.8114162348e-35 C125 x10 y5 -9.6853455100e-35 8.2045557766e-36 -1.2093362300e-34 C127 x8 y7 -1.6481783363e-34 1.7366348188e-35 1.2574029671e-34 C129 x6 y9 -1.3238875290e-34 -1.6760830373e-35 1.7543993598e-35 C131 x4 y1 1 3.8137604915e-35 -1.5530725806e-35 -8.2668265888e-34 C133 x2 y13 1.2735101028e-34 2.2538044113e-35 -8.9296362969e-34 C135 15
y -1.3276679506e-34 2.0346404134e-37 4.5550650949e-35 C136 x16 -1.3425890565e-37 1.0123846145e-38 -1.8921742915e-38 C138 x14 y2 -3.5093987868e-38 8.6335276240e-38 1.0656943241e-37 C140 x12 y4 5.3445973824e-37 2.3997094830e-38 1.9973024491e-37 C142 x10 y6 3.6200655433e-37 1.2474117815e-37 -9.9942018121e-38 C144 x8 y8 6.0385849370e-37 -7.0913491183e-38 -2.0261413189e-37 C146 x6 y10 7.5123785473e-38 -1.3142077459e-37 2.6089077643e-36
C148 x4 y12 -2.4624143440e-37 7.0634414265e-39 5.8243685957e-36
C150 x 2 y 14 2.5061157530e-37 -4.0580444298e-38 2.5518695629e-36
C152 yl6 4.4215281039e-37 -1.5027994928e-38 9.8751012698e-37
C154 x16 y -4.2905800862e-40 3.7753203617e-40 6.9034708736e-41
C156 x14 y3 8.8924683674e-41 3.2821831162e-40 8.5304751687e-40
C158 x12 y5 1.0845496010e-39 -1.9591001233e-41 2.3371158506e-39
C160 x10 y7 2.4716300085e-39 -2.9364409696e-40 -1.7602989150e-39
C162 x8 y9 3.2178839273e-39 -1.0584977571e-40 -8.6263426012e-39
C164 x6 y1 1 2.2544021341e-39 3.7800236337e-40 3.3733169079e-39
C166 x4 y13 -1.6447488816e-39 1.1343195468e-40 1.8991775123e-38
C168 x2 y15 -2.8187774036e-39 -2.7619104495e-40 1.5280672906e-38
C170 17
y 2.0291936895e-39 2.0683162323e-41 -1.7939075427e-39
C171 X18 2.1406116989e-42 -1.5783619353e-43 1.8307655802e-43
C173 x16 y2 1.4544200669e-42 -8.9277299667e-43 -1.3137336866e-42
C175 x14 y4 -7.9638434091 e-42 2.0550014451e-43 -5.5117990139e-42
C177 x12 y6 -2.9980621319e-42 -1.4406938597e-42 -4.0640284629e-42
C179 x10 y8 -1.6441770385e-41 -1.1910787171e-42 1.8414102010e-41
C181 x8 y10 -8.1194783968e-42 2.3075581349e-42 1.8406372377e-41
C183 x6 y12 -6.9458206074e-42 8.3832784295e-43 -6.8856791973e-41
C185 x4 y14 8.883142373 le-42 -1.4645907564e-43 -1.2379886339e-40
C187 x2 y16 3.3538544962e-42 7.4865970668e-43 -4.0731532460e-41
C189 18
y -7.5231261356e-42 1.6355008700e-44 -2.0905561441e-41
Table 3b for Figure 16
Coefficient Formula M07 M08 M09
C7 x 2 y -1.4328785010e-07 2.8767253989e-07 1.4861984149e-06
C9 y 3 -5.0169931316e-07 -1.3673179784e-07 -9.0960929799e-07
CIO X4 4.5861551563e- 11 1.8562300088e-10 1.3501177015e-09
C12 x2 y2 -1.1682449229e-09 -1.1660213469e-l l 5.2914315907e-09
C14 y4 2.3507310171e-09 -3.3546685877e-10 3.3851271001e-09
C16 x 4 y 4.2331709604e-13 7.6472271672e-13 7.9072510176e-12
C18 x 2 y 3J 4.0783744014e-13 6.5508852064e-13 9.0514131518e- 13
C20 y -6.3103383842e-12 -1.5394651345e-12 -1.6887332773e-l 1
C21 x6 1.2981329783e-16 8.4037528212e-16 7.2107631023e-15
C23 x4 y2 2.3336753317e-15 3.7329072350e-15 4.6681543919e-14
C25 x y4 -2.5040064399e-14 2.7933218218e-15 9.3348554853e-14
C27 y6 3.6798674820e-14 -8.1297329369e-15 1.3121337944e-13
C29 x6 y 3.8540260826e-18 1.2572398416e-17 5.8133594592e-17 C31 x4 y3 2.8605894623e-17 2.7461366369e-17 1.2188167650e-16
C33 x2 y5 -3.1365465880e-16 1.2165589942e-17 4.8907260615e-17
C35 7
y -9.4196117825e-16 -4.4438125095e-17 -7.3101936159e-16
C36 X 1.2130847401e-20 -7.8121196796e-20 3.2880788939e-20
C38 x6 y2 -4.0477441689e-20 -3.3433773563e-19 4.9488647036e-19
C40 x4 y4 1.3368086795e-18 -1.1578625157e-19 1.6898169526e-18
C42 x2 y6 5.0229156393e-18 -5.7586348020e-20 1.6053934236e-18
C44 y -1.4299745509e-17 -2.9939120845e-19 5.7197404980e-18
C46 x8 y -1.7131516043e-22 -2.6472162835e-21 4.9227686968e-22
C48 x6 y3 -5.3062884486e-21 -5.7392662954e-21 3.3942789526e-21
C50 x4 y5 2.6872940949e-20 -6.4399118956e-22 8.5379414586e-21
C52 x2 y7 4.2438502446e- 19 -2.9150646324e-21 1.0354587430e-20
C54 9
y 4.8263330164e-19 -3.1065275121e-21 -2.5866833420e-20
C55 X10 -1.5665336455e-24 1.3702715576e-23 9.6118653479e-25
C57 x8 y2 -1.7788957963e-24 1.0041128835e-22 3.3558687581e-24
C59 x6 y4 -1.0666066376e-22 8.3298494480e-23 1.3850777996e-23
C61 x4 y6 - 1.1674984718e-21 3.1193496910e-23 7.4537855035e-23
C63 x2 y8 -3.1990424375 e-21 -2.2356873305e-23 3.4911065912e-22
C65 yio 1.6610294210e-20 -2.3059787191e-23 -4.4812268605e-22
C67 x10 y 2.8986830212e-26 4.2559392155e-25 1.5705432425e-26
C69 x8 y3 5.8431490750e-25 1.5558110747e-24 2.4485669501e-26
C71 x6 y5 -2.8346748342e-24 8.2431835962e-25 -7.1797130033e-25
C73 x 4 y 7 -2.2783042969e-23 1.3631669397e-25 -3.6176816402e-24
C75 x 2 y 9 -3.782408802 le-22 2.6902742256e-25 -9.7568022868e-24
C77 11
y -9.8169138776e-23 -8.8584403712e-27 1.9803110241e-24
C78 x12 1.0515631485e-28 - 1.4699192196e-27 -1.8387157035e-29
C80 x10 y2 1.0578545655e-27 -1.5116495075e-26 3.7649308065e-28
C82 x8 y4 8.7536944166e-27 -2.1905816952e-26 1.7195829581e-27
C84 x6 y6 -6.1452527112e-27 -3.0515546486e-27 1.3160065932e-27
C86 x4 y8 1.2302421136e-24 -5.3310599240e-28 -4.2672410302e-26
C88 x2 y10 -7.6651186577e-25 5.6702933403e-27 -7.0053665046e-26
C90 y12 -7.7071633787e-24 6.1851018785e-28 1.1419825266e-25
C92 x12 y -2.3999788804e-30 -4.0026016120e-29 -5.9571046460e-31
C94 x10 y3 -3.6864354446e-29 -1.8836150912e-28 -1.7026919053e-30
C96 x8 y5 2.5768979675e-28 -1.9215227260e-28 3.8003219664e-29
C98 x6 y7 3.0911056035e-28 5.1504094185e-30 3.2095252975e-28
CIOO x4 y9 1.7764954193e-26 9.1710811970e-30 9.8284188370e-28
C102 x2 y1 1 1.6973302169e-25 1.2741831096e-29 2.0860727965e-27
C104 13
y -3.4482809553e-26 -8.9758944290e-30 -3.4691991449e-28 C105 x14 -4.7555314742e-33 1.0223306131e-31 -3.4966949517e-34
C107 x12 y2 -9.1543968626e-32 1.2767803423e-30 -2.0867698540e-32
C109 x10 y4 -7.8609717752e-31 3.2291048341e-30 -1.2649353958e-31 cm x8 y6 8.2697172220e-30 7.8280571976e-31 -3.9097645121e-31
Cl 13 x6 y8 -6.3589745294e-29 2.3856359226e-32 1.3615177354e-30 Cl 15 x4 y10 -4.0687799390e-28 1.3803626616e-32 1.2785899962e-29 Cl 17 x 2 y 12 1.1465446480e-27 -4.8700438753e-31 1.0571075292e-29 Cl 19 y14 1.6348207683e-27 -1.9555184235e-31 -1.2186751538e-29 C121 x14 y 8.9912938867e-35 2.1250867785e-33 2.0613856930e-35 C123 x12 y3 1.2472998107e-33 1.1113583540e-32 1.8866522077e-34 C125 x10 y5 -1.2408223447e-32 1.7406973513e-32 -2.5495192789e-34 C127 x8 y7 6.6819235542e-33 4.4299289167e-33 -1.2325093570e-32 C129 x6 y9 -3.0055081032e-31 -7.1679907255e-33 -5.1084942405e-32 C131 x4 y1 1 -5.5447717859e-30 -6.1971448133e-34 -1.3076897479e-31 C133 x2 y13 -3.8135133137e-29 -5.6186581996e-33 -2.4897122838e-31 C135 15
y 1.8102255806e-29 -1.4170055402e-33 1.1131588419e-32 C136 x16 1.3579993736e-37 -4.3103108901e-36 4.1183568175e-38 C138 x14 y2 3.2250043184e-36 -5.6781254721e-35 7.8086717774e-37 C140 x12 y4 3.6265972778e-35 -2.2604205659e-34 6.6247158056e-36 C142 x10 y6 -3.7980428592e-34 -1.0711901569e-34 2.7273639869e-35 C144 x8 y8 -4.2263572962e-35 1.8798442078e-36 4.1139198075e-35 C146 x6 y10 2.2386306228e-32 -4.8862260013e-35 -3.4688676332e-34 C148 x4 y 4.6251726119e-32 5.8632096300e-36 -1.3677886726e-33 C150 x 2 y 14 -3.6380356475e-31 -2.7473908504e-35 -3.5242476834e-34 C152 yl6 -9.4689815552e-32 -5.1477537813e-36 8.2942106360e-34 C154 x16 y - 1.2702143905e-39 -4.8220668395e-38 -2.1864146233e-40 C156 x14 y3 -1.7288176372e-38 -2.5981349705e-37 -3.5206404396e-39 C158 x12 y5 2.2924099326e-37 -5.4113072019e-37 -1.4069263475e-38 C160 x10 y7 -2.3449874018e-37 -3.5625756332e-37 1.576242921 le-37 C162 x8 y9 3.1330521236e-36 3.2509299724e-37 1.1199804619e-36 C164 x6 y1 1 3.5910568620e-35 -7.2194470264e-39 2.9629731827e-36 C166 x4 y13 7.0550002441e-34 8.2664446432e-38 7.1869528674e-36 C168 x2 y15 3.2080231474e-33 -6.5392935648e-38 1.2245936062e-35 C170 17
y -1.9703142266e-33 -9.3347129176e-39 3.8844972846e-37 C171 x18 -1.7342115756e-42 8.3401397595e-41 -6.8644820970e-43 C173 x16 y2 -4.1979733557e-41 1.0429593783e-39 -1.0638346724e-41 C175 x14 y4 -5.9988344258e-40 6.0087467082e-39 -1.2431441492e-40 C177 x12 y6 4.9843433085e-39 4.3561227842e-39 -6.4320671245e-40 C179 x10 y8 2.6898460596e-38 8.2976611230e-40 -1.7056592226e-39 C181 c8 ylO -1.7035559562e-37 1.6139057810e-39 -4.5690444894e-40
C183 x6 y12 -2.3976006216e-36 3.8148901906e-40 2.3124667582e-38
C185 x4 y14 1.2456084555e-36 2.1914578407e-40 4.1766450391e-38
C187 x2 y16 3.5839617512e-35 -6.1943173661e-41 -2.5645755876e-38
C189 18
y -5.982440098 le-36 -6.5541945691e-42 -2.8783972585e-38
Table 3c for Figure 16
Coefficient Formula M10
C7 x 2 y -1.1619556735e-08
C9 y 3 9.6267535999e-09
CIO X4 -2.1724936213e-l l
C12 x2 y2 -5.9884146205e-l 1
C14 y4 -1.4309946983e-l 1
C16 x 4 y -2.868705766 le- 14
C18 x 2 y 3J -5.4800436499e- 15
C20 y 1.3922478017e-14
C21 x6 -4.5292421127e-17
C23 x4 y2 -1.7435062351e-16
C25 x y4 -1.5873033837e-16
C27 y6 -3.5692678948e-17
C29 x6 y -5.0417764698e-20
C31 x4 y3 -5.5113782291e-20
C33 x2 y5 7.0094510892e-21
C35 7
y 2.244365428 le-20
C36 X -8.6423630967e-23
C38 x6 y2 -3.9626818889e-22
C40 x4 y4 -6.1157378107e-22
C42 x2 y6 -3.7171875916e-22
C44 y -7.6132006529e-23
C46 x8 y -7.3841318863e-26
C48 x6 y3 -2.0248611745e-25
C50 x4 y5 -1.3635832446e-25
C52 x2 y7 2.777326999 le-26
C54 9
y 3.6883888148e-26
C55 X10 -1.0527226907e-28
C57 x8 y2 -1.0082114660e-27
C59 x6 y4 -2.2626738145e-27
C61 x4 y6 -2.2706354017e-27
C63 x2 y8 -1.0825148907e-27 C65 ylO -1.0981947524e-28
C67 x10 y -2.4569304874e-31
C69 x8 y3 -1.9665576727e-31
C71 x6 y5 8.2032192594e-34
C73 x 4 y 7 5.6097593847e-31
C75 x 2 y 9 3.2922913244e-31
C77 11
y 9.4787672714e-32
C78 x12 -3.9893531144e-34
C80 x10 y2 1.3609035454e-34
C82 x8 y4 2.3437368815e-33
C84 x6 y6 3.5712114995e-33
C86 x4 y8 2.1593599710e-33
C88 x2 y10 1.0521003819e-33
C90 y12 -4.8696810122e-34
C92 x12 y 4.4454812756e-37
C94 x10 y3 -3.2791419250e-36
C96 x8 y5 -5.5151065625e-36
C98 x6 y7 -8.0374905597e-36
CIOO x4 y9 -6.2640221789e-36
C102 x2 y1 1 -4.1483325549e-37
C104 13
y -1.6999668152e-37
C105 x14 -2.8581665631e-41
C107 x12 y2 -1.6610779258e-38
C109 x10 y4 -7.6444036777e-38 cm x8 y6 -1.4907775962e-37
Cl 13 x6 y8 -1.4323789196e-37 Cl 15 x4 y10 -7.7581165704e-38 Cl 17 x 2 y 12 -2.5380651079e-38 Cl 19 y14 3.1621427266e-41 C121 x14 y -2.5893948454e-42 C123 x12 y3 8.8855722212e-42 C125 x10 y5 1.1642580099e-41 C127 x8 y7 2.1345230441e-41 C129 x6 y9 4.0247239518e-41 C131 x4 y1 1 2.6373581198e-41 C133 x2 y13 -5.8301508333e-43 C135 15
y 9.5872967943e-43 C136 x16 -7.2031404258e-46 C138 x14 y2 4.5466456847e-44 C140 x12 y4 2.7738070182e-43
C142 x10 y6 7.2352098423e-43
C144 x8 y8 9.1727615866e-43
C146 x6 y10 6.4674973671e-43
C148 x4 y 2.6521873613e-43
C150 x 2 y 14 7.0631405299e-44
C152 yl6 -2.0282010420e-45
C154 x16 y 1.5910138418e-48
C156 x14 y3 -3.1565522043e-47
C158 x12 y5 -6.3192786148e-47
C160 x10 y7 -7.8923511646e-47
C162 x8 y9 -1.1147703000e-46
C164 x6 y1 1 -1.1046319988e-46
C166 x4 y13 -3.8070948186e-47
C168 x2 y15 1.2792397916e-47
C170 17
y 2.9656508890e-49
C171 x18 -3.3430171036e-51
C173 x16 y2 -1.0720497036e-49
C175 x14 y4 -6.616603113 le-49
C177 x12 y6 -2.0451246296e-48
C179 x10 y8 -3.3493623262e-48
C181 x8 y10 -3.2223386958e-48
C183 x6 y12 -1.9037914200e-48
C185 x4 y14 -6.7370152882e-49
C187 x2 y16 -1.5421651631e-49
C189 18
y -1.7271699427e-51
Table 3d for Figure 16
Coordinates of the stop edge
Xi [mm] yi [mm] ¾+N/2 [mm] yi+N/2 [mm]
-208.379236 74.438939 204.893801 -51.534650
-211.864671 65.974310 208.877155 -42.572102
-215.350106 55.518004 212.860510 -32.115796
-217.341784 48.049215 217.839703 -13.692781
-219.333461 37.592909 220.329300 2.738556
-220.827219 23.153248 220.827219 11.203185
-220.827219 10.207346 220.827219 20.663652
-219.831380 -1.742718 219.333461 37.592909
-217.839703 13.194862 217.839703 46.057537 -214.852187 -25.642845 216.345945 52.032569
-209.872994 -40.082505 212.860510 63.484713
-203.400043 -54.522166 210.868833 68.463907
-197.922930 -64.480552 207.881317 75.434777
-191.449979 -74.936858 202.902123 85.393164
-184.977028 -83.899406 193.441656 100.330743
-176.014480 -94.853631 185.474947 110.787049
-172.031126 -99.334905 178.006157 119.251677
-158.089385 -113.276646 172.031126 125.226709
-143.151805 -125.724629 162.072739 134.189257
-129.707983 -135.185096 147.633079 145.143482
-122.737113 -139.666370 130.205903 156.097707
-108.297452 -147.633079 111.782888 165.558174
-91.368195 -155.599788 93.359873 173.026964
-79.916051 -160.081062 78.422293 178.006157
-68.961826 -163.566497 58.505520 182.985351
-60.497198 -166.056094 48.547134 184.977028
-47.551295 -169.043610 35.601231 186.968705
-33.609554 -171.533206 12.696943 188.960382
-13.692781 -173.524883 -11.701104 188.960382
13.194862 -173.524883 -20.663652 188.462463
29.626200 -172.031126 -35.601231 186.968705
42.572102 -170.039448 -56.513843 183.483270
62.488875 -165.558174 -69.459745 180.495754
83.899406 -158.587304 -81.409809 177.010319
103.318259 -150.122675 -101.326582 170.039448
112.280807 -145.641401 -113.774565 164.562336
121.741274 -140.164289 -125.724629 158.587304
139.168450 -128.712145 -138.670531 151.118514
145.143482 -124.230871 -154.603949 140.164289
154.603949 -116.264162 -165.558174 131.201741
159.583142 -111.782888 -176.014480 121.243355
173.026964 -98.339066 -181.989512 114.770404
179.997835 -90.372357 -190.952060 103.816178
186.470786 -81.907728 -195.931253 96.845308
194.935414 -69.459745 -200.910446 88.
Table 4 for Figure 16 Wavelength 13.5 nm
NA 0.55
bc 4.00
Py -8.80
Chief ray angle (CRA) 5.06°
Etendue 12.58 mm2
Mean wavefront aberration RMS 7.87 ihl
System transmission 7.68 %
Position of the entry pupil EP (x) -2380.34 mm
Position of the entry pupil EP (y) -2679.38 mm
Object-image offset 2210.98 mm
Working distance between M9 and
81 mm
image field
Reticle tilt 0.0°
Installation length 2301.55 mm
Obscuration 18.5 %
Installation space cuboid (789 x 2546 x 1817) mm
Table 5 for Figure 16
Ml M2 M3 M4 M5
Maximum angle of 13.7 84.2 80.4 80.4 83.4
incidence [deg]
Minimum angle of incidence [deg] 10.4 74.1 74.3 75.8 77.6
Mirror extent (x) [mm] 641.5 409.5 341.1 294.8 324.3
Mirror extent (y) [mm] 257.0 276.8 262.7 290.8 369.8
Maximum mirror diameter 641.6 409.6 356.9 377.9 433.3
[mm]
Table 6a for Figure 16
M6 M7 M8 M9 M10
Maximum angle of incidence 80.3 81.4 77.9 20.3 8.4
[deg]
Minimum angle of incidence [deg] 73.9 72.1 70.5 0.0 5.1
Viirror extent (x) [mm] 348.0 306.2 234.0 292.0 789.4
Viirror extent (y) [mm] 255.4 123.4 264.0 155.7 767.9
Maximum mirror diameter 349.8 306.3 291.5 292.0 790.0
[mm]
Table 6b for Figure 16 On account of the greater reduction in the yz-plane, the corresponding scale ratio of the projection optical unit 37 is shifted upward to greater bn values in comparison to that according to Figure 7. Hence, in comparison with the projection optical unit 7, the projection optical unit 37 no longer satisfies the allowed scale ratios of the scale ratio curves 24i, 247, 24io and 24n. The scale ratio curves for which the projection optical unit 7 was unsuitable are not satisfied by projection optical unit 37 either. The projection optical unit 37 is suitable for the scale ratio curves 246, 24s, 249, 2412 to 24 ½ if all that is taken into account is the Pareto-optimal inscription of rectangular structuring fields 4i into the object specification field 19.
There is no change in the result of the admissible scale ratio curves 24i in the projection optical unit 37 if the auxiliary areas 25 to 28 are additionally taken into account. What emerges if the shadowing region D is additionally taken into account is that the scale ratio curves 246, 24s, 249 and 24i2 are also eliminated from the admissible scale ratio curves 24i. All that remains as admissible scale ratio curves in the projection optical unit 37 are the scale ratio curves 24n to 24i6.
Figures 30 to 43 show a further embodiment of a projection optical unit 38, which can be used instead of the projection optical unit 7 in the projection exposure apparatus 1. Components and functions corresponding to those which were already explained above with reference to Figures 1 to 15, in particular, are denoted by the same reference signs and are not discussed in detail again.
The projection optical unit 38 has a reduction scale bc in the xz-plane of 4.70 and a reduction scale py in the yz-plane of -8.80.
In terms of its basic design, the projection optical unit 38 corresponds to the projection optical unit 7.
The mirrors Ml and M2 overlap in the plan view according to Figure 3.
The optical design data emerge from following Tables 1 to 6, which, in turn, correspond in terms of the basic structure to Tables 1 to 6 relating to the embodiment according to Figure 2. Radii of the surfaces
RadiuSx [mm] Powerx [1/mm] RadiuSy [mm] Powery [1/mm]
M01 -2139.90455825 0.00092764 -1373.11977394 0.00144565
M02 2582.32095828 -0.00016825 3348.09694670 -0.00012977
M03 1832.86151821 -0.00026833 -262737.81292930 0.00000187
M04 3695.54455200 -0.00011887 -6162.06096652 0.00007129
MO 5 -2153.25960440 0.00017981 -4412.62305237 0.00008774
M06 -882.16332363 0.00053588 -1899.40653934 0.00024888
M07 -694.05381126 0.00066078 40178.56498808 -0.00001141
MO 8 -902.11305413 0.00057442 -5798.78102485 0.00008936
M09 1131.39037185 -0.00176774 315.29483148 -0.00634326
M10 -784.57643539 0.00252929 -719.07853325 0.00275967
Table 1 for Figure 30
Decentring (location, angle) the surfaces
Dx [mm] Dy [mm] l)z [mm]
Reticle 0.000000000 1834.113580290 2312.048676749
M01 0.000000000 1684.187265100 598.383052570
M02 0.000000000 1549.068060009 1449.681805403
M03 0.000000000 1371.318189813 1712.099290804
M04 0.000000000 1082.201722234 1862.070558573
M05 0.000000000 738.525366001 1874.311017579
M06 0.000000000 147.580015498 1655.890535477
M07 0.000000000 -62.261412411 1425.850465480
M08 0.000000000 -127.329396917 1196.791838022
M09 0.000000000 148.326521489 105.401883054
Stop 0.000000000 110.051063873 255.419876855
M10 0.000000000 0.000000000 686.757366877
Wafer 0.000000000 0.000000000 0.000000000
ax [°] ay [°] az [°]
Reticle -0.000000000 0.000000000 0.000000000
M01 2.009412367 180.000000000 0.000000000
M02 -68.434609348 0.000000000 0.000000000
M03 -41.652418444 0.000000000 180.000000000
M04 -14.728295691 0.000000000 0.000000000
M05 9.122559278 0.000000000 180.000000000
M06 33.956999305 0.000000000 0.000000000
M07 60.885493189 0.000000000 180.000000000 MO 8 89.158413816 0.000000000 0.000000000
M09 14.243979417 180.000000000 0.000000000
Stop 7.156517725 180.000000000 0.000000000
M10 7.156517725 0.000000000 0.000000000
Wafer 0.000000000 0.000000000 0.000000000
Table 2 for Figure 30
Free-form coefficients of the surfaces
Coefficient Formula M01 M02 M03
C7 x 2 y 1.7426878325e-08 -6.5178691072e-08 2.6835734080e-07
C9 3
y -6.6077346227e-09 -3.8821297444e-07 3.7729483337e-07
CIO X4 -6.5515572520e-12 1.6320428899e-10 8.9525960742e-10
C12 x2 y2 4.5903363770e-l 1 -2.4785872529e-l 1 7.0365174648e-10
C14 y4 -1.1922758913e-10 1.3401644995e-09 -1.2960644957e-10
C16 x 4 y -7.2476667576e-15 1.8947341630e-14 3.1204533391e-12
C18 x 2 y 3 6.1901613041e-14 2.2563270123e-12 -6.1748295267e-14
C20 y 2.0001661605e-14 -6.0673766748e-12 3.5706035244e-12
C21 x6 -1.2920097328e-18 2.9456035020e-16 2.5901148302e-16
C23 x4 y2 -3.6476053184e-17 1.2354164776e-15 2.1471396790e-15
C25 x y4 -1.1810601392e-16 -1.2022816213e-14 1.1114483505e-15
C27 .6
y -1.5203113365e-16 2.6693657963e-14 1.0329823262e-15
C29 x6 y 2.0802977069e-21 -1.7385871642e-18 6.6042918364e-18
C31 x4 y3 - 1.8474904647e- 19 -1.1737178674e-17 1.4144658923e-17
C33 x2 y5 -3.2756705624e-19 6.4671009105e-17 1.9421373406e-17
C35 y7 3.3185857361e-18 -9.5778779803e-17 1.7088481198e-16
C36 x8 1.2782281420e-23 -1.4568858470e-21 2.7774822661e-20
C38 x6 y2 1.5216967939e-23 2.7278820391e-20 1.2772764458e-19
C40 x4 y4 1.2938097467e-21 8.8740828054e-20 2.7978434552e-19
C42 x2 y6 1.1674479894e-20 -3.1123618188e-19 4.6044904015e-19
C44 y8 3.6741320793e-20 4.6939452318e-19 8.7141571203e-19
C46 x8 y 2.9708245590e-25 -7.2956377844e-24 -8.4929243345e-22
C48 x6 y3 2.0820324994e-24 -1.6253227122e-23 -5.7169612413e-21
C50 x4 y5 -7.7820665726e-24 -3.9374876656e-22 -1.0684311797e-20
C52 x2 y7 -5.4913952653e-23 6.5027406704e-22 -1.1329965307e-21
C54 9
y -2.5286385054e-22 -4.0777332819e-21 -1.0362875697e-20
C55 X10 -5.5910460048e-28 1.5515233413e-25 - 1.722182674 le-24
C57 x8 y2 -1.9563253726e-27 -5.7125466006e-25 -2.9769220952e-23
C59 x6 y4 -5.9549523053e-26 -1.7487775923e-24 -8.2887135800e-23
C61 x4 y6 -8.0986030379e-25 1.1876875223e-24 -1.4576599193e-22 C63 x2 y8 -3.5613943677e-24 -3.6236768591e-24 -1.0665642394e-22
C65 yio -6.6378117804e-24 2.5270468502e-23 -1.3003317765e-22
C67 x10 y -5.6057283203e-30 -9.3114425900e-28 9.5179289762e-26
C69 x8 y3 -6.7875509534e-29 -5.9330779624e-27 6.2213954914e-25
C71 x6 y5 -2.1418877683e-28 -2.4313343540e-26 2.0958905274e-24
C73 x 4 y 7 1.8943789222e-27 9.6144045223e-27 1.8725521528e-24
C75 x 2 y 9 1.1218812820e-27 1.3595380847e-25 -2.7842281485e-25
C77 11
y 2.5769518506e-26 -1.0596842190e-25 1.2958346246e-24
C78 x12 1.1401952144e-32 -6.8967779571e-30 6.4910042326e-29
C80 x10 y2 6.8379386233e-32 3.0709029780e-29 2.8916929019e-27
C82 x8 y4 1.1577401480e-30 2.3728273309e-28 8.4595970127e-27
C84 x6 y6 2.1532489351e-29 3.7000735485e-28 2.2402346985e-26
C86 x4 y8 1.4734155975e-28 5.6129999308e-29 2.3775952715e-26
C88 x2 y10 4.4717070497e-28 -8.5361931098e-28 1.6797305281e-26
C90 y12 6.7569435968e-28 3.9450041045e-29 1.9445069842e-26
C92 x12 y 6.4787771876e-35 7.3229292234e-32 -5.6719262544e-30
C94 x10 y3 1.1150524699e-33 1.6232470024e-31 -3.7133404049e-29
C96 x8 y5 9.0232110404e-33 1.6005337931e-30 -1.8429814281e-28
C98 x6 y7 -5.9702868130e-33 -8.1745518229e-31 -3.2761208236e-28
CIOO x4 y9 -1.3881804814e-31 -3.9646165913e-30 -1.6213783449e-28
C102 x2 y1 1 2.1379044547e-31 -5.1986539648e-30 1.0039834100e-28
C104 13
y -1.7226884530e-30 6.6618182214e-30 -7.2773663383e-29
C105 x14 -1.3437730198e-37 2.0435086024e-34 -1.2597987623e-33
C107 x12 y2 -1.3100347172e-36 -7.5204158295e-34 -1.6237444587e-31
C109 x10 y4 -1.2452130637e-35 -1.2056306328e-32 -5.0158343359e-31 cm x8 y6 -3.0941833103e-34 -2.8170544082e-32 -1.7822207380e-30
Cl 13 x6 y8 -2.7371807875e-33 -2.3485799792e-32 -2.9690666445e-30 Cl 15 x4 y10 -1.3038379774e-32 9.5982975983e-33 -2.0416162990e-30 Cl 17 x 2 y 12 -3.3095767428e-32 6.1396868068e-32 -1.2542209748e-30 Cl 19 y14 -4.1049963216e-32 -4.8022076570e-32 -1.5969936273e-30 C121 x14 y -4.1869507876e-40 -1.9107523075e-36 1.6073492697e-34 C123 x12 y3 -9.5684481148e-39 5.0089878790e-37 1.0827951000e-33 C125 x10 y5 -1.0234469199e-37 -3.4229212685e-35 7.4506274487e-33 C127 x8 y7 -3.9912185498e-37 2.5499431902e-35 1.9260916369e-32 C129 x6 y9 1.5386513298e-36 3.1662444779e-34 2.2909121177e-32 C131 x4 y1 1 2.3010578573e-36 1.7006679323e-34 5.2765883859e-33 C133 x2 y13 -2.1666529459e-35 7.8480448801e-35 -9.7107544578e-33 C135 15
y 6.8523780149e-35 -6.4708292966e-35 2.8447829420e-33 C136 16
X 8.3836661951e-43 -2.9361486264e-39 -1.2005149446e-38 C138 x 14 2
1 y 1.2495461791e-41 4.0446757730e-39 4.6934231802e-36
C140 x12 y4 8.2825546155e-41 2.4354266225e-37 1.6284108024e-35
C142 x10 y6 2.3753792190e-39 8.0310793376e-37 7.1348066396e-35
C144 x8 y8 2.4310948042e-38 8.6586823142e-37 1.6730096419e-34
C146 x6 y10 1.5087109592e-37 -4.4166548670e-37 1.8829043058e-34
C148 x4 y 5.7874281161e-37 -4.4891097981e-38 7.8757592046e-35
C150 x 2 y 14 1.3048559061e-36 -3.0371904664e-36 3.7193735641e-35
C152 yl6 1.3722358402e-36 2.0537960824e-36 7.4267332410e-35
C154 x16 y 1.1628582951e-45 1.6872905751e-41 -1.7500234054e-39
C156 x14 y3 3.3472954979e-44 -4.4006420188e-41 -1.2418380787e-38
C158 x12 y5 3.8586274398e-43 2.0913818849e-40 -1.1546997293e-37
C160 x10 y7 3.4112763307e-42 -3.7835574685e-40 -3.8405639209e-37
C162 x8 y9 -1.7451105599e-42 -7.2324901234e-39 -6.9471751713e-37
C164 x6 y1 1 -2.2625390237e-41 -9.8899125234e-39 -5.8425013643e-37
C166 x4 y13 3.7607050984e-41 -7.3920269742e-39 -5.9137950757e-38
C168 x2 y15 6.1971201298e-40 1.3766109023e-38 3.8149383042e-37
C170 17
y -1.1625740147e-39 -8.6195153446e-39 -7.5076582033e-38
C171 x18 -2.1302070623e-48 1.3888098448e-44 6.055500945 le-43
C173 x16 y2 -4.4929070879e-47 5.9907239150e-44 -5.4165139736e-41
C175 x14 y4 -2.7543673863e-46 -1.5499279349e-42 -2.2267625954e-40
C177 x12 y6 -8.0554616747e-45 -8.1782490417e-42 -1.1691375917e-39
C179 x10 y8 -8.2456119456e-44 -6.0672809045e-42 -3.4448843864e-39
C181 x8 y10 -6.5744543913e-43 2.2393137325e-41 -5.6750926308e-39
C183 x6 y12 -2.9039002857e-42 3.5210776589e-41 -4.5933148985e-39
C185 x4 y14 -1.0776617680e-41 2.1436301163e-41 -1.2068371748e-39
C187 x2 y16 -2.094306281 Oe-41 -2.0658026914e-41 4.9859670720e-40
C189 18
y -1.9383776928e-41 1.1985345912e-41 -1.5849807288e-39
Table 3a for Figure 30
Coefficient Formula M04 M05 M06
C7 x 2 y 4.9044547045e-08 -1.2254048421e-07 1.4188281251e-07
C9 y 3 -5.8551961877e-08 -1.6355534836e-07 -1.6676901346e-08
CIO X4 2.2293183396e-10 -8.0243321377e-l 1 -4.3095674155e-10
C12 x2 y2 6.7595463166e-l l -2.7465511006e-10 3.4554684261e-l 1
C14 y4 -2.9515361697e-10 -4.3613974817e-l 1 -3.4420202998e-10
C16 x 4 y 4.2322013280e-13 -4.3265721858e-13 -2.1939484758e-13
C18 x 2 y 3J 1.0114823935e-12 3.3018278158e-13 1.9651118091 e- 13
C20 y -3.0610157497e-13 -2.5398756527e-13 9.3245321856e-13
C21 6
X -2.6497746461 e- 16 -3.3200765770e-16 -7.0052255642e-16 C23 x 4 y 2 -1.1522579767e-15 8.2663345626e-16 1.9440757616e-16
C25 x 2 y 4
4 8.6156654725e-16 -5.3154423859e-16 -1.0350128899e-15
C27 y6 -5.4094576217e- 15 9.4323666792e-16 -3.4732517609e-15
C29 x6 y 9.3785147124e-18 -1.633824521 le-18 -9.1915349362e-19
C31 x4 y3 8.5962184370e-18 -6.7719425436e-18 -3.1811637383e- 18
C33 x2 y5 2.8839814733e-17 1.0407984737e-17 1.0035980597e-17
C35 7
y -4.5258879086e-17 -2.0635841621e-18 5.1238777608e-17
C36 X 7.1585237245e-20 -3.8881955432e-20 -2.5526685494e-21
C38 x6 y2 3.9928010539e-21 -1.7922282448e-20 -8.9166478202e-20
C40 x4 y4 1.3227274710e-20 -8.4948473200e-20 -2.9777820410e-19
C42 x2 y6 1.5383699718e-19 -1.1320127204e-19 -4.4074935146e-19
C44 y 3.8918980138e-19 5.5829115865e-20 1.6249087635e-20
C46 x8 y 3.0342591227e-22 9.6547378316e-22 1.1847963269e-22
C48 x6 y3 -6.4569844579e-22 1.0285077169e-21 8.2988568727e-22
C50 x4 y5 -1.4779944302e-21 4.8246509578e-22 2.086029483 le-21
C52 x2 y7 -5.3558349589e-22 -5.9603582667e-22 -4.2415321917e-22
C54 9
y 1.2482188813e-20 1.3540748521e-22 -2.7796812589e-21
C55 X10 -9.4874235962e-24 8.5342385375e-25 2.7347110906e-25
C57 x8 y2 -1.1335744237e-24 2.7807589755e-24 7.8179638514e-24
C59 x6 y4 -4.1494205898e-24 1.3585049470e-23 3.6848113120e-23
C61 x4 y6 5.925750081 le-24 1.8612044652e-23 5.7114037659e-23
C63 x2 y8 -4.3140612220e-23 7.4304562012e-24 5.0004570042e-23
C65 yio -1.0195794955e-22 -7.4438587864e-24 -1.7464983412e-23
C67 x10 y -8.3620661605e-26 -7.1243723293e-26 -5.6550316934e-27
C69 x8 y3 1.5365679961e-25 -1.4501890056e-25 -7.7607085552e-26
C71 x6 y5 1.3564449801e-25 -2.3258016184e-25 -2.9988673556e-25
C73 x 4 y 7 3.6501094907e-25 -8.0792190164e-26 -3.8247064080e-25
C75 x 2 y 9 -1.3555040847e-25 6.7167105724e-26 2.3182336151e-25
C77 11
y -2.0694131967e-24 -3.4103121573e-26 1.7707514958e-25
C78 x12 7.2624419233e-28 1.9520095056e-29 -1.7185048222e-29
C80 x10 y2 3.2908352672e-28 -5.4316538529e-28 -3.8060001116e-28
C82 x8 y4 -2.776728975 le-28 -1.2730986662e-27 -2.3955259270e-27
C84 x6 y6 -3.538474298 le-28 -2.4636342422e-27 -5.0268838155e-27
C86 x4 y8 -1.9145997541e-27 -1.1874988347e-27 -5.7837527099e-27
C88 x2 y10 7.5511935389e-27 -5.0746748116e-28 -4.522273472 le-27
C90 y12 1.4324256907e-26 8.4861245535e-28 1.2650575685e-27
C92 x12 y 8.5617194406e-30 3.4546747274e-30 1.8583824227e-31
C94 x10 y3 -1.5948765804e-29 1.0771752118e-29 4.0713977710e-30
C96 x8 y5 -1.4440690956e-29 1.8689476188e-29 2.0720077629e-29 C98 x6 y7 -1.5746739713e-29 2.6812223039e-29 4.6762808316e-29
CIOO x4 y9 -3.5427908079e-29 -4.1559522242e-31 3.4017118583e-29
C102 x2 y1 1 4.2202776657e-29 6.9004693660e-32 -2.5942152370e-29
C104 13
y 1.9736149377e-28 1.3594277319e-30 -4.4368899660e-30
C105 x14 -2.9624860104e-32 -2.3141254413e-33 4.6123723024e-34
C107 x12 y2 -4.9781847707e-32 4.3638818097e-32 9.6097543935e-33
C109 x10 y4 7.6402356483e-32 8.0179931665e-32 7.5211547315e-32 cm x8 y6 3.3964800074e-32 1.7866857649e-31 1.9966270932e-31
Cl 13 x6 y8 1.1792871634e-31 1.5780526497e-31 2.4225615480e-31 Cl 15 x4 y10 1.8587187146e-31 5.3504133979e-32 3.1450424630e-31 Cl 17 x 2 y 12 -8.0034542128e-31 5.5689769219e-33 2.6231877007e-31 Cl 19 y14 -1.2686780720e-30 -4.5481597303e-32 -4.4628180955e-32 C121 x14 y -4.0014067345e-34 -9.2799503276e-35 -3.6455146015e-36 C123 x12 y3 7.4025166652e-34 -3.9781912207e-34 -1.1872076997e-34 C125 x10 y5 1.0283374990e-33 -7.3237387512e-34 -6.8443400665e-34 C127 x8 y7 2.5991863225e-34 -1.2484560280e-33 -2.0327751700e-33 C129 x6 y9 1.3445063474e-33 -1.2670294228e-33 -3.0682515916e-33 C131 x4 y1 1 1.4332459575e-33 3.3517721056e-34 -1.2289713871e-33 C133 x2 y13 -3.5017840974e-33 -2.2172033346e-34 1.3617011916e-33 C135 15
y -9.9728526205e-33 8.3776140520e-36 -8.0176477156e-36 C136 x16 5.3101677178e-37 8.8933166273e-38 -6.4713827830e-39 C138 x14 y2 3.1597109694e-36 -1.5762798614e-36 -1.0603028315e-37 C140 x12 y4 -4.2657554292e-36 -3.4568453471e-36 -8.5379335633e-37 C142 x10 y6 -5.7802237243e-36 -4.9586437614e-36 -3.1598241898e-36 C144 x8 y8 1.7222327695e-36 -1.1430213062e-35 -1.7510466473e-36 C146 x6 y10 -1.4751199638e-35 -3.0863836471e-36 -2.2529051585e-36 C148 x4 y -4.2122399287e-36 -2.4101776492e-36 -9.5378524753e-36 C150 x 2 y 14 4.4588112986e-35 9.5474526371e-37 -9.7663973696e-36 C152 yl6 6.2502154310e-35 1.0843967254e-36 3.1149530600e-37 C154 x16 y 7.2795880481e-39 9.9981615893e-40 3.3985458469e-41 C156 x14 y3 -1.239520501 le-38 5.6095761702e-39 1.5227869428e-39 C158 x12 y5 -2.7449067544e-38 1.2604150888e-38 9.4885499299e-39 C160 x10 y7 4.6773018281e-40 1.6771936806e-38 3.0434789266e-38 C162 x8 y9 -1.8392052807e-38 3.5415378549e-38 6.7691275982e-38 C164 x6 y1 1 -3.0311868420e-38 1.5987969751e-38 6.7440591056e-38 C166 x4 y13 -1.5591926185e-38 -9.6416452987e-39 1.4372615084e-38 C168 x2 y15 1.0062648317e-37 7.6990819647e-39 -2.6128678682e-38 C170 17
y 2.0735141183e-37 -1.3901671532e-39 1.6577373639e-39 C171 18
X -3.2266407102e-42 - 1.2748604721 e-42 3.2220609631 e-44 C173 x16 y2 -6.9400268388e-41 2.0914817123e-41 1.5652175238e-43
C175 x14 y4 6.9779372892e-41 6.6556382376e-41 -3.6441085312e-42
C177 x12 y6 2.1073006405e-40 4.5709931328e-41 4.5526659303e-42
C179 x10 y8 -1.1169724755e-40 2.1212129889e-40 -6.6711185255e-41
C181 x8 y10 1.9367369422e-40 1.7518613708e-40 -1.6145779366e-40
C183 x6 y12 3.0422155161e-40 2.4477362423e-41 -9.6696970342e-41
C185 x4 y14 -3.3706562710e-41 5.3717046134e-41 1.3766540516e-40
C187 x2 y16 -1.0312017747e-39 -3.8411401401e-41 1.7194670824e-40
C189 18
y -1.3068506882e-39 -5.6376968234e-42 7.0037358232e-42
Table 3b for Figure 30
Coefficient Formula M07 M08 M09
C7 x 2 y -4.2199123517e-08 3.7858844158e-07 1.4387266454e-06
C9 y 3 -1.6536295577e-07 -2.1014199184e-07 -9.1191091762e-07
CIO X4 3.4371960184e-l 1 2.2715641934e-10 1.4749280691e-09
C12 x2 y2 -1.3413443399e-09 -5.2557655318e-10 5.0527124367e-09
C14 y4 1.5115560000e-09 -6.0485840887e-10 2.1024662286e-09
C16 x 4 y -1.8309829720e-13 7.2436355895e-13 6.4286572276e-12
C18 x 2 y 3J 8.9389758201e-13 -1.5610150402e-13 -4.3629294781e-12
C20 y -3.1074413581e-12 -3.0377012351e-12 -1.3806612685e-l 1
C21 x6 2.2871144053e-16 9.5559207163e-16 7.0711038669e-15
C23 x4 y2 -1.0328916552e-15 -6.1318457574e-16 4.2513882354e-14
C25 x y4 2.1078567173e-14 -6.6853430734e-15 7.3312833004e-14
C27 y6 1.8464145453e-13 -1.8102924646e-14 8.2164954357e-14
C29 x6 y 1.1908225322e-17 2.2475187218e-17 5.5486099607e-17
C31 x4 y3 -1.1642440634e- 16 1.9840787095e-17 5.7932606833e-17
C33 x2 y5 -5.7476067787e-16 -2.0582086784e-17 -8.3188796284e-17
C35 y7 2.8768882968e-15 -1.0549654648e-16 -7.5956455942e-16
C36 x8 -6.5138943691e-21 -1.1910842415e-19 3.1849124369e-20
C38 x6 y2 -1.0000774392e-19 6.6116414464e-19 3.9801092548e-19
C40 x4 y4 -1.0305195177e-17 9.4940158150e-19 1.0485960708e-18
C42 x2 y6 -9.9702705983e-17 3.2856429666e-19 6.9017409899e-19
C44 y8 -1.5550656290e-16 -3.5600487918e-19 -1.9726873160e-18
C46 x8 y -1.2830777309e-21 -5.3755682334e-21 6.7267138619e-22
C48 x6 y3 1.3279820395e-20 -9.7655357918e-21 2.7909082415e-21
C50 x4 y5 1.0830820952e-19 1.3273968721e-21 3.5953113164e-21
C52 x2 y7 3.5931792005e-20 -1.8844656328e-20 3.466109441 le-21
C54 9
y -4.9910472804e- 18 -4.1465567345e-21 -2.3453463064e-20
C55 10
X 2.4054899661e-25 3.2110194905e-23 9.9686498624e-25 C57 x8 y2 1.422415638 le-23 -1.3319598251e-22 1.0041219912e-23
C59 x6 y4 1.2943078377e-21 -3.9723055988e-22 6.0406491007e-23
C61 x4 y6 1.8258315233e-20 -2.4989303339e-22 1.1649230484e-22
C63 x2 y8 1.0009545562e-19 -4.5447075661e-22 -3.3831100672e-22
C65 yio 5.7360063013e-20 -1.2229099588e-22 1.2188729200e-21
C67 x10 y 1.3024986420e-25 8.7867723634e-25 -1.8011881632e-26
C69 x8 y3 -7.5489261598e-25 2.3059282823e-24 -1.5169570301e-25
C71 x6 y5 -1.2712644192e-23 -7.2628087777e-25 -8.0566184448e-25
C73 x 4 y 7 2.6850866921e-24 -1.4341350985e-24 -4.2930123980e-24
C75 x 2 y 9 4.5052621647e-22 1.3613329410e-24 -8.3135847265e-24
C77 11
y 3.7915593409e-21 -1.4877136348e-24 5.6039837172e-24
C78 x12 7.7720905965e-30 -5.0733760903e-27 -2.0770542126e-29
C80 x10 y2 -1.2113381735e-27 1.3455123451e-26 -5.4677671675e-28
C82 x8 y4 -1.0198160426e-25 6.9787006799e-26 -6.2191935877e-27
C84 x6 y6 -1.5415270243 e-24 7.4713582272e-26 -3.3952900766e-26
C86 x4 y8 -1.3922552790e-23 3.4326839199e-26 -1.3389117766e-26
C88 x2 y10 -5.2336254256e-23 1.0073016289e-25 2.1818357825e-25
C90 y12 1.7048905096e-23 -9.4477754939e-27 -1.0451074806e-25
C92 x12 y -7.5370053560e-30 -7.9774913998e-29 1.5600549122e-30
C94 x10 y3 1.8593234120e-29 -2.5418246964e-28 1.4067495023e-29
C96 x8 y5 5.2552802658e-28 -9.2421023315e-29 8.4782290040e-29
C98 x6 y7 5.6561839745e-27 7.8404548464e-28 3.3108404577e-28
CIOO x4 y9 -7.0569242124e-26 6.6031105343e-29 1.6942578207e-27
C102 x2 y1 1 -4.2418409627e-25 4.4618878535e-28 2.3040538502e-27
C104 13
y - 1.2591405827e-24 -5.3398381181e-29 -6.3918263678e-28
C105 x14 -9.3303924014e-34 4.5426141530e-31 3.5046263445e-34
C107 x12 y2 4.9815005165e-32 -6.4954628056e-31 3.7610060081e-32
C109 x10 y4 5.2930089600e-30 -5.7849445805e-30 4.6375890219e-31 cm x8 y6 6.992260781 le-29 -1.0491677722e-29 3.5509887424e-30
Cl 13 x6 y8 8.5166946683e-28 -3.3246233966e-30 9.9849567667e-30 Cl 15 x4 y10 4.8736619355e-27 -6.5539204242e-30 -5.3604259143e-30 Cl 17 x 2 y 12 1.3586730354e-26 -9.2031782636e-30 -4.7406311087e-29 Cl 19 y14 -1.9329753797e-26 -4.3192258952e-31 -1.7471472919e-30 C121 x14 y 2.2724358872e-34 3.9123136595e-33 -4.8441914262e-35 C123 x12 y3 -4.4298561543e-35 1.2951865424e-32 -5.2658058251e-34 C125 x10 y5 -6.7641214114e-33 1.9196598630e-32 -4.2534579191e-33 C127 x8 y7 -2.0830127398e-31 -5.6784766772e-32 -1.8423599269e-32 C129 x6 y9 -4.4876940900e-31 -1.0226497074e-31 -7.1087942029e-32 C131 x4 y1 1 4.3028469140e-29 -2.2795459173e-32 -3.0434137025e-31 C133 x 2 y 13 1.5744538975e-28 -1.2021052105e-31 -3.1508039746e-31
C135 15
y 7.0125098133e-29 -2.6699667053e-33 3.1115800209e-32
C136 X16 3.3940091527e-38 -2.1434715567e-35 9.7683483273e-39
C138 x14 y2 -6.9838303510e-37 1.1570604249e-35 -1.1869926267e-36
C140 x12 y4 -1.6116320294e-34 2.1383224297e-34 -1.6494336450e-35
C142 x10 y6 -1.8072079470e-33 6.353500643 le-34 -1.5981836143e-34
C144 x8 y8 -2.2653748130e-32 3.2180561018e-34 -7.2635127591e-34
C146 x6 y10 -2.1426316242e-31 -3.7816216691e-34 -1.1068516289e-33
C148 x4 y -5.5331080288e-31 6.1532835307e-34 1.9301399708e-33
C150 x 2 y 14 -1.3277939014e-30 -5.5905588588e-34 5.3044679989e-33
C152 yl6 3.9847569878e-30 -7.9228995884e-36 9.4236333082e-34
C154 x16 y -2.7517362399e-39 -7.9592487860e-38 6.5213020906e-40
C156 x14 y3 -5.2483430390e-39 -2.4019470457e-37 8.4325697525e-39
C158 x12 y5 7.9559349285e-38 -7.5491247707e-37 8.0499713973e-38
C160 x10 y7 -1.3765228774e-36 8.9723027412e-37 4.4907119904e-37
C162 x8 y9 7.1725776381e-35 5.0215604481e-36 1.4970803156e-36
C164 x6 y11 -5.7607381301e-34 2.0591751453e-36 6.0342273374e-36
C166 x4 y13 -6.3530280703e-33 5.4036363271e-36 2.0229448026e-35
C168 x2 y15 -2.4845058236e-32 -1.0146517706e-36 1.6082603006e-35
C170 17
y 3.5490341420e-32 -5.7258815276e-39 -1.4134207528e-36
C171 X18 -4.0436538836e-43 4.1427230340e-40 -2.3241569178e-43
C173 x16 y2 -3.2988108139e-42 -9.5444511601 e-42 1.6295694202e-41
C175 x14 y4 2.0535415531e-39 -2.5338943718e-39 2.4189829544e-40
C177 x12 y6 2.3990296362e-38 -1.3999973916e-38 2.7089834086e-39
C179 x10 y8 1.8190815639e-37 -1.0016490514e-38 1.6429876492e-38
C181 x8 y10 3.5335522295e-36 1.8917979854e-38 4.7615437482e-38
C183 x6 y12 1.1467647111e-35 1.1249049880e-38 3.0136699870e-38
C185 x4 y14 -3.9745195587e-36 1.2760236382e-38 -1.6243720729e-37
C187 x2 y16 -8.6759892693e-35 -2.9308500771e-40 -2.3678147952e-37
C189 18
y 1.0575439753e-34 1.0698752583e-41 -3.6948489454e-38
Table 3c for Figure 30
Coefficient Formula M10
C7 x 2 y -9.3479519329e-09
C9 y 3 1.0030003070e-08
CIO X4 -2.2276966215e-l 1
C12 x2 y2 -5.8456897718e-l 1
C14 y4 -1.2468906159e-l 1
C16 x 4 y -2.3354834733e-14 C18 x 2 3 4.4940020685e-16
C20 y 1.4894553686e-14
C21 x6 -4.7975060368e-17
C23 x4 y2 -1.7261750961e-16
C25 x y4 -1.4933461801e-16
C27 y6 -3.0106711938e-17
C29 x6 y -3.9498375489e-20
C31 x4 y3 -3.7813299375e-20
C33 x2 y5 2.1516541218e-20
C35 7
y 2.6431238423e-20
C36 X -8.4835205260e-23
C38 x6 y2 -4.0516138664e-22
C40 x4 y4 -5.9844485385e-22
C42 x2 y6 -3.4822727100e-22
C44 y -5.7610349727e-23
C46 x8 y -6.815163041 le-26
C48 x6 y3 -1.5227335878e-25
C50 x4 y5 -7.5124040802e-26
C52 x2 y7 2.4152259923e-26
C54 9
y 6.1704342346e-26
C55 X10 -1.3743942369e-28
C57 x8 y2 -8.4089353136e-28
C59 x6 y4 -1.8375694963e-27
C61 x4 y6 -1.8339060459e-27
C63 x2 y8 -7.046472053 le-28
C65 yio -5.5287117125e-29
C67 x10 y -8.1292483029e-32
C69 x8 y3 -1.3707237742e-31
C71 x6 y5 -3.1863352435e-32
C73 x 4 y 7 7.8442623922e-31
C75 x 2 y 9 1.2175886968e-30
C77 11
y 7.8519187583e-32
C78 x12 -3.7592370205e-34
C80 x10 y2 -2.1039416634e-33
C82 x8 y4 -4.5395863218e-33
C84 x6 y6 -3.8333894777e-33
C86 x4 y8 -2.9006605495e-33
C88 x2 y10 -2.5462117883e-33
C90 12
y -1.2734046610e-33 C92 x12 y -4.8080050475e-37
C94 x10 y3 -3.2094979729e-36
C96 x8 y5 -4.2227695119e-36
C98 x6 y7 -5.2203983499e-36
CIOO x4 y9 -9.4881212778e-36
C102 x2 y1 1 -8.5611174483e-36
C104 13
y -9.2384991148e-37
C105 x14 2.7670836087e-40
C107 x12 y2 6.1328990230e-41
C109 x10 y4 -8.1489904906e-39 cm x8 y6 -4.4669886003e-38
Cl 13 x6 y8 -6.2937582037e-38 Cl 15 x4 y10 -2.8311368828e-38 Cl 17 x 2 y 12 2.5370973656e-39 Cl 19 y14 6.4126626237e-39 C121 x14 y 9.9015018098e-43 C123 x12 y3 1.2145891024e-41 C125 x10 y5 1.8366746833e-41 C127 x8 y7 1.5842347005e-41 C129 x6 y9 3.7362009257e-41 C131 x4 y1 1 6.4812451567e-41 C133 x2 y13 4.3250646081e-41 C135 15
y 7.2076923209e-42 C136 x16 -2.3636426603 e-45 C138 x14 y2 -2.0702018365e-44 C140 x12 y4 -5.3912349594e-44 C142 x10 y6 5.2994160668e-44 C144 x8 y8 2.6031702359e-43 C146 x6 y10 2.5283242192e-43 C148 x4 y 6.4380076792e-44 C150 x 2 y 14 -2.6437236406e-44 C152 yl6 -2.1744996396e-44 C154 x16 y -3.5462956348e-48 C156 x14 y3 -3.8527039339e-47 C158 x12 y5 -8.7396993445e-47 C160 x10 y7 -9.1988392396e-47 C162 x8 y9 -6.9951200608e-47 C164 x6 y1 1 -1.1660753751e-46 C166 x4 y13 -1.4460940134e-46 C168 x2 y15 -7.5293474807e-47
C170 17
y -1.3522332498e-47
C171 x18 -9.4076845388e-52
C173 x16 y2 -2.3595185722e-52
C175 x14 y4 -2.4024140922e-50
C177 x12 y6 -4.1090574900e-49
C179 x10 y8 -1.2021621503e-48
C181 x8 y10 -1.6472529567e-48
C183 x6 y12 -1.0973691375e-48
C185 x4 y14 -3.3722116578e-49
C187 x2 y16 -1.5714862072e-50
C189 18
y 1.9633472375e-50
Table 3d for Figure 30
Coordinates of the stop edge
Xi [mm] yi [mm] ¾+N/2 [mm] yi+N/2 [mm]
-207.881317 73.941019 200.412527 -60.497198
-214.354268 57.011762 207.881317 -45.061699
-217.839703 43.567941 214.354268 -27.136603
-219.333461 34.605393 217.341784 -15.186539
-220.329300 24.647006 219.831380 0.248960
-220.329300 6.223992 220.329300 7.219830
-219.831380 0.248960 220.329300 24.647006
-217.341784 -15.186539 219.333461 34.107474
-212.860510 -32.115796 216.843864 47.551295
-205.391720 -50.538811 212.860510 61.493036
-200.910446 -59.501359 207.881317 73.941019
-192.943737 -72.945181 201.906285 85.891083
-182.985351 -86.886922 198.918769 90.870276
-172.031126 -99.832824 191.947898 101.326582
-158.587304 113.276646 186.968705 107.799533
-150.620595 120.247516 178.006157 118.255839
-143.151805 126.222548 170.039448 126.222548
-132.695499 133.691338 162.072739 133.193418
-120.745435 141.160128 152.114353 141.160128
-110.289130 147.135159 145.143482 146.139321
-92.364034 155.599788 131.699660 154.603949
-73.941019 162.570658 114.770404 163.566497
-52.530488 168.545690 98.836985 170.537368 -42.572102 -170.537368 90.870276 173.524883
-25.642845 -173.026964 75.434777 178.504077
-12.199023 -174.022803 57.011762 182.985351
13.194862 -174.022803 37.094989 186.470786
25.144926 -173.026964 16.182378 188.462463
36.597070 -171.533206 -15.186539 188.462463
47.551295 -169.541529 -27.634522 187.466624
60.497198 -166.554013 -40.580425 185.972867
75.434777 -162.072739 -49.542972 184.479109
86.389002 -158.089385 -65.974310 180.993673
102.322421 -151.118514 -87.882760 174.520722
122.737113 -140.164289 -107.301614 167.051932
132.695499 -133.691338 -121.741274 160.081062
143.649724 -125.724629 -139.168450 150.122675
154.106030 -117.260000 -156.097707 138.172612
159.583142 -112.280807 -170.039448 126.222548
172.529045 -99.334905 -182.487431 113.276646
179.001996 -91.866115 -190.454140 103.318259
187.964544 -80.413970 -200.412527 88.380680
196.429172 -67.468068
Table 4 for Figure 30
Wavelength 13.5 nm
NA 0.55
bc 4.70
Py -8.80
Chief ray angle (CRA) 5.18°
Etendue 12.58 mm2
Mean wavefront aberration RMS 16.17 mk
System transmission 7.15 %
Position of the entry pupil EP (x) -2380.86 mm
Position of the entry pupil EP (y) -2185.04 mm
Object-image offset 1834.11 mm
Working distance between M9 and
80 mm
image field
Reticle tilt 0.0°
Installation length 2312.05 mm
Obscuration 18.4 % Installation space cuboid (790 x 2167 x 1810) mm
Table 5 for figure 30
Ml M2 M3 M4 M5
Maximum angle of incidence 8.7 82.6 79.1 80.0 82.2
[deg]
Minimum angle of incidence [deg] 5.4 72.3 72.6 74.6 75.9
Mirror extent (x) [mm] 611.8 368.5 304.5 261.3 284.0
Mirror extent (y) [mm] 258.7 282.0 213.0 239.4 284.0
Maximum mirror diameter 612.2 369.4 306.7 314.7 345.3
[mm]
Table 6a for Figure 30
M6 M7 M8 M9 M10
Maximum angle of incidence 79.5 81.9 78.4 20.2 8.4
[deg]
Minimum angle of incidence [deg] 73.7 72.9 70.8 0.0 5.1
Mirror extent (x) [mm] 329.1 298.1 233.3 291.1 789.9
Mirror extent (y) [mm] 264.4 113.9 228.3 155.7 768.4
Maximum mirror diameter 331.0 298.2 266.8 291.2 790.5
[mm]
Table 6b for Figure 30
In the projection optical unit 38, the mirror M7 has the largest x/y-aspect ratio of approximately 2.62. None of the mirrors Ml to M10 of the projection optical unit 38 has an x/y-aspect ratio that is greater than 2.65.
On account of the greater reduction in the yz-plane, the corresponding scale ratio of the projection optical unit 38 is shifted upward to greater bn values in comparison to that according to Figure 7. Hence, in comparison with the projection optical unit 7, the projection optical unit 38 no longer satisfies the allowed scale ratios of the scale ratio curves 24i, 246, 247, 24io and 24ii. The scale ratio curves for which the projection optical unit 7 was unsuitable are not satisfied by projection optical unit 38 either. The projection optical unit 38 is suitable for the scale ratio curves 24s, 249, 24i2 to 2416 if all that is taken into account is the Pareto-optimal inscription of rectangular structuring fields 4i into the object specification field 19. A further embodiment of the projection optical unit, which has a reduction scale bc in the xz- plane of 4.60 and a reduction scale bg in the yz-plane of -8.80 and otherwise corresponds to the structure of the projection optical unit 38 according to Figures 30 to 43, is additionally suitable for the scale ratio curve 246 of Figure 98.
There is no change in the result of the admissible scale ratio curves 24i in the projection optical unit 38 if the auxiliary areas 25 to 28 (Figure 102) are additionally taken into account.
What emerges if the shadowing region D (Figure 108) is additionally taken into account is that the scale ratio curves 246, 24s, 249 and 24i2 are also eliminated from the admissible scale ratio curves 24i. All that remains as admissible scale ratio curves in the projection optical unit 38 are the scale ratio curves 24n to 24i6.
Figures 44 to 57 show a further embodiment of a projection optical unit 39, which can be used instead of the projection optical unit 7 in the projection exposure apparatus 1. Components and functions corresponding to those which were already explained above with reference to Figures 1 to 15, in particular, are denoted by the same reference signs and are not discussed in detail again.
The projection optical unit 39 has a reduction scale bc in the xz-plane of 4.70 and an integer reduction scale bg in the yz-plane of -8.0.
In terms of its basic design, the projection optical unit 39 corresponds to the projection optical unit 7.
The optical design data emerge from following Tables 1 to 6, which, in turn, correspond in terms of the basic structure to Tables 1 to 6 relating to the embodiment according to Figure 2.
Radii of the surfaces
RadiuSx [mm] Powerx [1/mm] RadiuSy [mm] Powery [1/mm]
M01 -2146.55520611 0.00092427 -1373.48065079 0.00144450
M02 2670.34363441 -0.00016054 3402.46869819 -0.00012600
M03 1740.48606941 -0.00027921 19419.34177163 -0.00002502
M04 3286.81628892 -0.00013482 -5601.02971169 0.00007912 MO 5 -2030.97492965 0.00019630 -4241.39850662 0.00009400
M06 -865.61775732 0.00054641 -1882.70121751 0.00025122
M07 -694.18431263 0.00065049 36391.71605146 -0.00001241
MO 8 -928.95349426 0.00054895 -5894.39247609 0.00008651
M09 1129.26772053 -0.00177106 315.99587854 -0.00632919
M10 -784.78674282 0.00252918 -719.36876887 0.00275918
Table 1 for Figure 44
Decentring (location, angle) the surfaces
Dx [mm] Dy [mm] l)z [mm]
Reticle 0.000000000 1860.595258076 2319.315179189
M01 0.000000000 1710.018371031 598.213484681
M02 0.000000000 1567.122002664 1451.555525145
M03 0.000000000 1385.421129065 1718.307843287
M04 0.000000000 1100.381298430 1867.412015638
M05 0.000000000 724.558212645 1880.613163188
M06 0.000000000 144.771435379 1658.230934640
M07 0.000000000 -62.121336224 1425.663180023
M08 0.000000000 -125.779135276 1197.030536677
M09 0.000000000 146.335536214 104.444993291
Stop 0.000000000 108.590196947 254.671161423
M10 0.000000000 0.000000000 686.859333548
Wafer 0.000000000 0.000000000 0.000000000
ax [°] ay [°] az [°]
Reticle 0.000000000 0.000000000 0.000000000
M01 2.253131245 180.000000000 0.000000000
M02 -68.116315896 0.000000000 0.000000000
M03 -41.676467261 0.000000000 180.000000000
M04 -14.812891259 0.000000000 0.000000000
MO 5 9.486502794 0.000000000 180.000000000
M06 34.664193974 0.000000000 0.000000000
M07 61.392466223 0.000000000 180.000000000
MO 8 89.213301718 0.000000000 0.000000000
M09 14.044652724 180.000000000 0.000000000
Stop 1.372349973 180.000000000 0.000000000
M10 7.051997188 0.000000000 0.000000000
Wafer 0.000000000 0.000000000 0.000000000
Table 2 for Figure 44 Free-form coefficients of the surfaces Coefficient Formula M01 M02 M03
C7 x 2 y 1.9402150523e-08 -1.2495046419e-07 3.3503969534e-07
C9 3
y -8.8767311629e-09 -3.7762659954e-07 3.9798202347e-07
CIO X4 -6.4951289600e- 12 1.5956709901e-10 8.5486852771e-10
C12 x2 y2 3.7788256379e-l 1 7.1674867826e-l l 7.5629574578e-10
C14 y4 -1.1446357086e-10 1.2740083385e-09 -3.7064672869e-l 1
C16 x 4 y -4.4682011902e-15 -5.0626859160e-14 3.0226707580e-12
C18 x 2 y 3 5.7859090898e-14 1.6252499605e-12 2.3630076819e-13
C20 y -4.2598202624e-14 -5.3326066064e-12 3.8301551162e-12
C21 X .6 -1.0971315354e-18 1.8235234876e-16 -1.8654563002e-17
C23 x 4
4 y 2 -2.8118766971e-17 8.7362852296e-16 2.3941067717e-15
C25 x 2 y 4
4 -8.4976714477e-17 -8.3868931174e-15 1.944071841 le-15
C27 .6
y -9.8888652205e-17 2.3577129563e-14 -3.6425045161e-16
C29 x6 y 1.1298822299e-21 -1.0132456143e-18 4.9313100210e-18
C31 x4 y3 -9.1954645496e-20 -8.0026012122e-18 1.3135279171 e- 17
C33 x2 y5 -1.9667975247e-19 4.9826237404e-17 4.4190503539e-17
C35 7
y 2.2617484119e-18 -1.1386481213e-16 2.1408532305e-16
C36 X 2.1756063463e-24 1.8843420388e-22 3.1152192276e-20
C38 x6 y2 -7.9853593540e-23 1.7815660146e-20 9.6896460699e-20
C40 x4 y4 1.5750147450e-21 4.699877935 le-20 1.9832664526e-19
C42 x2 y6 1.1151596614e-20 -3.1060444428e-19 3.9139014460e-19
C44 y8 3.3852664024e-20 6.0662775005e-19 1.8689789160e-18
C46 x8 y 2.0506675377e-25 -4.1805519085e-23 -7.5341752436e-22
C48 x6 y3 -1.5981785388e-25 -6.8073979616e-23 -6.0237485819e-21
C50 x4 y5 -1.229116690 le-23 -5.3087860294e-23 -1.1958702917e-20
C52 x2 y7 -3.7990749193e-23 9.7280970727e-22 -1.0326925944e-20
C54 9
y -1.3362313607e-22 -3.1164692563e-21 -1.2235654053e-20
C55 X10 -2.3371581369e-28 -4.2238868692e-26 -8.3334687285e-25
C57 x8 y2 3.2074710187e-27 -8.7032095669e-26 -2.5662466824e-23
C59 x6 y4 -4.2360541238e-26 7.6687396152e-26 -6.8355413149e-23
C61 x4 y6 -7.322489449 le-25 1.8919308287e-24 -1.2375987086e-22
C63 x2 y8 -2.8296971688e-24 9.5397358409e-25 -1.0176492704e-22
C65 yio -5.3867342722e-24 1.9854936033e-23 -2.4095181824e-22
C67 x10 y -3.7098267252e-30 1.6976171991e-27 9.4308152846e-26
C69 x8 y3 -8.5719507001e-30 6.2485793994e-27 6.7413152916e-25
C71 x6 y5 2.0466765522e-28 -1.7843933212e-26 2.1492086018e-24
C73 x 4 y 7 1.4405687334e-27 -4.2459912385e-26 2.4496492158e-24
C75 x 2 y 9 -1.5592360161e-28 2.9969276318e-26 2.1086437216e-24
C77 11
y 1.1724940522e-26 -1.2782086679e-25 1.1792636552e-24 C78 x12 5.9431702506e-33 2.4183434222e-30 -5.9154135072e-30
C80 x10 y2 -6.5569369173e-32 -4.7731175193e-31 2.6651783666e-27
C82 x8 y4 1.8732496669e-31 6.4341769019e-29 6.8989916093e-27
C84 x6 y6 1.6470892959e-29 2.2632603525e-28 1.8031026829e-26
C86 x4 y8 1.1285474442e-28 8.4023382522e-29 2.2022418077e-26
C88 x2 y10 3.0749035741e-28 -5.5856836978e-28 2.1692996439e-26
C90 y12 4.6562383279e-28 -1.1782314027e-28 2.7865914794e-26
C92 x12 y 4.2744537152e-35 -4.1419403509e-32 -5.7350818564e-30
C94 x10 y3 2.6084830772e-34 -4.9999691135e-31 -4.1719527783e-29
C96 x8 y5 -1.7713879819e-33 -6.5240926515e-31 -1.9124779846e-28
C98 x6 y7 -2.5184069698e-32 8.3171403934e-31 -3.3796668414e-28
CIOO x4 y9 -4.7048085148e-32 2.1495099372e-30 -3.1225668750e-28
C102 x2 y1 1 2.1442905001e-31 1.6624861577e-30 -2.2368185298e-28
C104 13
y -7.3379885985e-31 8.2710526023e-30 1.7085327846e-30
C105 x14 -8.2060713293e-38 -3.0214483458e-35 1.2409976767e-33
C107 x12 y2 5.4281842440e-37 4.1875102894e-34 -1.5707534156e-31
C109 x10 y4 6.3120725074e-36 -1.6741554773e-33 -4.4219209053e-31 cm x8 y6 -1.7803380067e-34 -1.1870268992e-32 -1.4240974463e-30
Cl 13 x6 y8 - 1.9416792429e-33 -2.4754976044e-32 -2.5468192618e-30 Cl 15 x4 y10 -8.6034638985e-33 -1.0489457033e-32 -2.4971142030e-30 Cl 17 x 2 y 12 -1.9130288013e-32 6.8165752844e-33 -2.3737287292e-30 Cl 19 y14 -2.388823721 le-32 -3.3187630401e-32 -1.6465394317e-30 C121 x14 y -2.9218915240e-40 5.4495202027e-37 1.6053485431e-34 C123 x12 y3 -3.2247057307e-39 1.6096968470e-35 1.2777167654e-33 C125 x10 y5 8.6565775941e-39 5.7670350053e-35 7.9886089452e-33 C127 x8 y7 1.8091290017e-37 1.0743972689e-34 1.9589770749e-32 C129 x6 y9 8.5867214884e-37 6.9479333151e-35 2.5354102254e-32 C131 x4 y1 1 -1.3475373052e-36 -5.2841855924e-35 2.1862106178e-32 C133 x2 y13 -1.5229526148e-35 4.5971087785e-36 1.2627607654e-32 C135 15
y 2.6729606030e-35 -1.7039567719e-34 -4.9790511102e-33 C136 x16 5.6980679444e-43 2.8930318503e-40 -6.3338749765e-38 C138 x14 y2 -8.942179653 le-43 -1.7311670878e-38 4.6740658303e-36 C140 x12 y4 -8.0986140095e-41 -4.4200698523e-38 1.6170235702e-35 C142 x10 y6 7.9786626045e-40 3.8457359974e-38 6.0695092772e-35 C144 x8 y8 1.5555343662e-38 3.3042401084e-37 1.4198029163e-34 C146 x6 y10 9.4926396632e-38 7.5159746169e-37 1.8450240940e-34 C148 x4 y 3.2995150786e-37 6.7127031917e-37 1.6185101184e-34 C150 x 2 y 14 6.2090769492e-37 -4.9750166241e-37 1.3875289272e-34 C152 16
y 6.7469733795e-37 1.7809036739e-36 3.9604831751e-35 C154 x16 y 9.0378512589e-46 -3.4223014882e-42 -1.6753978321e-39
C156 x14 y3 1.4095879522e-44 -1.8359768475e-40 -1.5645493550e-38
C158 x12 y5 -8.5057034236e-45 -9.3300931129e-40 -1.2826694957e-37
C160 x10 y7 -4.5253515381e-43 -3.0073019764e-39 -4.0362539635e-37
C162 x8 y9 -4.6413569509e-42 -5.1407389660e-39 -7.1011116174e-37
C164 x6 y1 1 1.8229888273e-42 -5.2617699313e-39 -7.4283964354e-37
C166 x4 y13 7.1705961959e-41 -2.5589502440e-39 -7.5488833214e-37
C168 x2 y15 3.4012475843e-40 2.2485475042e-39 -1.9856797718e-37
C170 17
y -4.1157345838e-40 -5.4287621563e-39 1.9871581084e-37
C171 x18 -1.5527350800e-48 -6.1250561856e-45 1.1663632101e-42
C173 x16 y2 -5.4739239154e-48 2.1511165003e-43 -5.4777860578e-41
C175 x14 y4 2.6224616804e-46 1.2800386523e-42 -2.4815270737e-40
C177 x12 y6 -9.0941127235e-46 3.9443858008e-42 -1.0992862127e-39
C179 x10 y8 -4.3790559513e-44 9.3828285268e-42 -3.0720122129e-39
C181 x8 y10 -3.9315288336e-43 1.2056244312e-41 -5.2162473561e-39
C183 x6 y12 -1.6493308387e-42 9.5767165088e-42 -5.4738296579e-39
C185 x4 y14 -5.1829043793e-42 3.6031856158e-42 -5.4278669395e-39
C187 x2 y16 -8.1297508468e-42 -3.1155754692e-42 -2.6302067986e-39
C189 18
y -8.1196105262e-42 5.8808993882e-42 1.3598608941e-41
Table 3a for Figure 44
Coefficient Formula M04 M05 M06
C7 x 2 y 7.9488243132e-08 -1.3678302663e-07 1.4224260430e-07
C9 y 3 -6.7894770438e-08 -1.7683091393e-07 -2.8831402337e-08
CIO X4 1.6376453507e-10 -1.4309405819e-10 -4.2467395275e-10
C12 x2 y2 8.8445181956e-l 1 -2.7629344162e-10 1.1812792578e- 11
C14 y4 -3.2634191471e-10 -3.4715533685e-l 1 -3.1816123040e-10
C16 x 4 y 5.2374044279e-13 -3.4923229804e-13 -1.690178271 le-13
C18 x 2 y 3J 1.0706095726e-12 4.2806959668e-13 7.7804803645e-14
C20 y -5.0556229898e-13 -2.0556905630e-13 7.8328694995e-13
C21 x6 -1.1915817694e- 15 -1.3301624277e-16 -7.4665243830e-16
C23 x4 y2 -1.1127245781 e- 15 9.2605871247e-16 3.0263759818e-16
C25 x y4 1.3806017853e-15 -6.1035430837e-16 -3.7533897334e-16
C27 y6 -5.8877618037e-15 7.4730757433e-16 -1.4243676117e-15
C29 x6 y 1.3635807883e-17 -2.8074440492e-18 -1.0734339475e-18
C31 x4 y3 1.1687036843e-17 -5.5271370742e-18 -6.1636780277e-18
C33 x2 y5 2.8072700174e- 17 1.1396965450e-17 -8.3190878420e-19
C35 7
y -2.7089468556e-17 -1.2324940985e-17 6.4714857658e-17
C36 X 9.7985811386e-20 -4.2015608986e-20 -3.4122390046e-21 C38 x6 y2 3.2314182516e-21 -2.2844307707e-21 -8.4766121490e-20
C40 x4 y4 -1.8353650448e-20 -5.3027382860e-20 -2.7158280738e-19
C42 x2 y6 1.8018627654e-19 -1.3678265273e-19 -5.0211952705e-19
C44 y 5.2664983302e-19 1.6399718481e-19 -2.7527182113e-19
C46 x8 y -2.4960788400e-22 9.4181247724e-22 1.0508231013e-22
C48 x6 y3 -1.2460631040e-21 5.0203542992e-22 1.0821992275e-21
C50 x4 y5 -2.4213177528e-21 -4.1631373945e-22 3.0914227159e-21
C52 x2 y7 -1.8093116899e-22 -4.7226544202e-22 1.9254774793e-21
C54 9
y 5.4717371780e-21 2.3436718381e-21 -4.5395008219e-21
C55 X10 -7.5921537710e-24 6.7891706644e-25 5.9911614878e-25
C57 x8 y2 -2.1615897784e-24 1.0375387887e-24 7.6575454855e-24
C59 x6 y4 4.0593309833e-24 6.2860475837e-24 3.1436051937e-23
C61 x4 y6 9.4008716253e-24 1.7086771049e-23 4.9097200308e-23
C63 x2 y8 -4.1534363143e-23 1.1872448818e-23 5.9673444707e-23
C65 yio -1.2141388520e-22 -3.3105262529e-23 7.8212783728e-24
C67 x10 y -2.6347911247e-26 -6.2852173634e-26 -2.3735842275e-27
C69 x8 y3 1.7846904840e-25 -8.5667462614e-26 -9.1046938598e-26
C71 x6 y5 3.4563462465e-25 -1.4424513392e-25 -3.7680088551e-25
C73 x 4 y 7 3.8578227607e-25 7.8452530849e-26 -5.6525801996e-25
C75 x 2 y 9 - 1.2892123060e-25 -4.2703751544e-26 -5.3903682728e-26
C77 11
y -8.4106590479e-25 -2.6175630360e-25 3.5329728841e-25
C78 x12 4.1770098975e-28 3.0785383524e-29 -3.9875935487e-29
C80 x10 y2 4.5164435087e-28 -4.1341581702e-28 -4.0428831759e-28
C82 x8 y4 -7.5072017673e-28 -6.4778291056e-28 -1.8851025743e-27
C84 x6 y6 -2.3220276410e-27 -1.5062485600e-27 -3.9639495686e-27
C86 x4 y8 -1.0644481319e-27 -1.5613428313e-27 -4.4408031229e-27
C88 x2 y10 6.4555946584e-27 -5.4709235792e-28 -5.3850683559e-27
C90 y12 1.4996548571e-26 3.9113383512e-27 -9.3077745393e-29
C92 x12 y 4.5923673145e-30 2.8655281322e-30 -3.9362878985e-32
C94 x10 y3 - 1.4741737082e-29 7.5067063938e-30 4.2104200589e-30
C96 x8 y5 -2.6709910102e-29 1.2518021436e-29 2.3879003509e-29
C98 x6 y7 -3.9250350903e-29 2.0751882740e-29 5.3969885217e-29
CIOO x4 y9 -2.1149583538e-29 -1.7128878140e-29 4.9325150274e-29
C102 x2 y1 1 2.6039195543e-29 1.9436476129e-29 -6.7123304621e-30
C104 13
y 7.3265152999e-29 1.1887189515e-29 -1.491735243 le-29
C105 x14 -1.1765428804e-32 -2.0984358985e-33 1.2320790070e-33
C107 x12 y2 -5.5217998391e-32 3.5702117826e-32 1.2469940716e-32
C109 x10 y4 6.5022251930e-32 5.2601801308e-32 5.3719688973e-32 cm x8 y6 1.9011888704e-31 1.1227217355e-31 1.3159164191 e-31 Cl 13 x6 y8 2.5749256828e-31 1.0062288158e-31 1.5810812158e-31 Cl 15 x4 y10 1.0658092864e-32 1.2137507826e-31 1.879833331 le-31 Cl 17 x2 y12 -5.8934672281e-31 -5.4057422230e-32 3.0978251822e-31 Cl 19 y14 -1.1100115944e-30 -2.3393977954e-31 -6.0867690100e-33 C121 x14 y -2.4144748536e-34 -7.4926591670e-35 3.0724245233e-36 C123 x12 y3 6.1702758483e-34 -3.1719547262e-34 -1.0613278305e-34 C125 x10 y5 1.2228652351e-33 -4.9565521237e-34 -7.3597394416e-34 C127 x8 y7 1.5776309750e-33 -1.0873431089e-33 -2.2012931327e-33 C129 x6 y9 1.9620860728e-33 -1.0627842306e-33 -3.1653564819e-33 C131 x4 y1 1 1.7376556132e-34 1.2983826573e-33 -1.8749043299e-33 C133 x2 y13 -1.7074498668e-33 -1.6611483837e-33 7.2791327436e-34 C135 15
y -3.3869390528e-33 -4.3968351717e-35 3.0793961289e-34 C136 x16 -4.2028896354e-38 6.5782707666e-38 -1.9874552200e-38 C138 x14 y2 3.1939444062e-36 -1.2520228838e-36 -2.1606351439e-37 C140 x12 y4 -2.3033035059e-36 -2.8664271444e-36 -4.9416465482e-37 C142 x10 y6 -1.0042023954e-35 -2.7901523465e-36 -1.2081349452e-36 C144 x8 y8 -9.4374801539e-36 -9.5163529969e-36 9.2677137770e-37 C146 x6 y10 -1.5536264664e-35 -6.9828235785e-37 4.9607214238e-37 C148 x4 y 6.5822674488e-36 -7.5580209226e-36 -3.8692334041e-36 C150 x 2 y 14 2.8100612126e-35 7.2453195773e-36 -1.1296814279e-35 C152 yl6 4.4527401733e-35 6.0816627360e-36 -1.3040432809e-37 C154 x16 y 4.5845784955e-39 7.8678295339e-40 -4.1298715825e-41 C156 x14 y3 -9.6216281465e-39 4.9032964252e-39 1.1915647395e-39 C158 x12 y5 -2.5766040647e-38 9.5474175876e-39 9.4393443580e-39 C160 x10 y7 -2.1528043371e-38 1.2320183960e-38 3.1785792978e-38 C162 x8 y9 -4.2967285708e-38 3.9736935314e-38 6.6573769477e-38 C164 x6 y1 1 -3.0663443307e-38 8.9794102305e-39 5.9344429540e-38 C166 x4 y13 1.4915677080e-38 -3.1038843607e-38 2.7007335777e-38 C168 x2 y15 4.0144415463e-38 4.6659668873e-38 -1.9353743447e-38 C170 17
y 6.3869698917e-38 -8.7863439251e-39 -1.5195405581e-39 C171 x18 5.3227924067e-42 -8.8571317880e-43 1.2844976295e-43 C173 x16 y2 -6.6920905695e-41 1.5138512613e-41 1.6192051689e-42 C175 x14 y4 1.6977065413e-41 6.3276076569e-41 -4.3937068126e-42 C177 x12 y6 2.5142895832e-40 1.1338578508e-41 -1.3844151710e-41 C179 x10 y8 6.7374436633e-41 2.062916863 le-40 -1.0417777204e-40 C181 x8 y10 4.0998455199e-40 1.2777349567e-40 -1.6146806035e-40 C183 x6 y12 1.7945836941e-40 4.2215318266e-42 -1.1490032963e-40 C185 x4 y14 -2.4273690962e-40 1.8870904320e-40 5.0378540397e-41 C187 x2 y16 -5.4768761100e-40 -2.3881253116e-40 1.8874642456e-40 C189 y18 -7.4874991060e-40 -2.8563901089e-41 9.8113278066e-42
Table 3b for Figure 44
Coefficient Formula M07 M08 M09
C7 x 2 y -6.3583234472e-08 3.3272103797e-07 1.4237168241e-06
C9 y 3 -1.3436287516e-07 -2.0503619379e-07 -9.1730133303e-07
CIO X4 3.3773541262e-l 1 2.1398180325e-10 1.4805329663e-09
C12 x2 y2 -1.1979396872e-09 -5.0678217779e-10 5.0941310898e-09
C14 y4 1.3221144719e-09 -5.7576545456e-10 2.2992982378e-09
C16 x 4 y -1.6004535620e-13 6.4177372943e-13 6.5523690651e-12
C18 x 2 3 2.2617432081e-13 -1.3529134286e-13 -3.7722746102e- 12
C20 y -2.7932771801e-12 -2.7714382119e-12 -1.0176093014e-l 1
C21 x6 2.8696039371e-16 1.0800608910e-15 7.3088128194e-15
C23 x4 y2 -7.4208115155e-16 -4.0933033327e-16 4.3565167433e-14
C25 x y4 1.8355914124e-14 -5.9337614549e-15 7.5364695701e-14
C27 y6 1.9567661604e-13 -1.5532390656e-14 3.9526641698e-14
C29 x6 y 1.3843295161e-17 1.5424314269e-17 5.7335815735e-17
C31 x4 y3 -3.470186442 le- 17 1.1245687570e-17 6.1826337856e-17
C33 x2 y5 -2.3603681104e-16 -2.8971663434e-17 -2.4916733939e-16
C35 y7 3.5928503623e-15 -9.7015402021e-17 -1.2621199843e-15
C36 x8 -1.7843685278e-20 -1.2572498663e-19 2.8541174392e-20
C38 x6 y2 -2.7458686512e- 19 6.4347237925e-19 4.4159449609e-19
C40 x4 y4 -8.3270615176e-18 9.7992905840e-19 9.4185475345e-19
C42 x2 y6 -9.0793555218e-17 3.8268881577e-19 -1.8457121764e-18
C44 y8 -2.1883514894e-16 -4.8138059418e-19 2.5145323292e-19
C46 x8 y -1.4185606740e-21 -4.1555217745e-21 6.1800875472e-22
C48 x6 y3 -1.3179685718e-21 -5.5693301477e-21 1.5976458118e-21
C50 x4 y5 4.1633448906e-20 1.9675590020e-21 -4.832698591 le-21
C52 x2 y7 -4.9583683533e-19 -7.794653793 le-21 3.2154557437e-20
C54 9
y -6.0485922748e-18 -2.5596355101e-21 -7.6032726225e-21
C55 X10 8.9310190432e-25 3.5908817002e-23 6.7152258306e-25
C57 x8 y2 4.7386742665e-23 -1.1779474907e-22 5.8307625438e-24
C59 x6 y4 1.0298289305e-21 -3.9645272152e-22 -5.5377828404e-24
C61 x4 y6 1.6286015766e-20 -2.5051345423e-22 3.2905078383e-23
C63 x2 y8 8.8558809714e-20 -3.5792842077e-22 2.8051210073e-24
C65 yio 1.4307427914e-19 -5.2152717529e-23 2.0372051966e-21
C67 x10 y 1.2722902613e-25 7.2979657076e-25 -1.5025254790e-26
C69 x8 y3 7.5552043258e-25 1.3287817208e-24 -6.1812364134e-26
C71 x6 y5 -6.3727310694e-24 -7.0990383613e-25 -8.1269069074e-26 C73 x 4 y 7 6.1156773788e-23 -1.3745308142e-24 -2.4048910081e-24
C75 x 2 y 9 8.0731106228e-22 -1.1455917368e-24 -1.1510194423e-23
C77 11
y 5.1698914881e-21 -8.7167096706e-25 1.3496310782e-23
C78 x12 -2.1618556329e-29 -5.7624132159e-27 1.3618253092e-29
C80 x10 y2 -4.6284102444e-27 1.0066014840e-26 -2.3778290566e-28
C82 x8 y4 -8.0315844181e-26 6.8858882546e-26 5.2798073718e-28
C84 x6 y6 -1.4398341808e-24 7.8163283118e-26 2.2550797440e-27
C86 x4 y8 -1.2119296826e-23 3.2340285046e-26 1.5706816049e-26
C88 x2 y10 -4.4777327896e-23 6.1724292578e-26 1.8527637828e-25
C90 y12 -3.8045082065e-23 -8.6453560847e-27 -4.2651467694e-25
C92 x12 y -6.6476574355e-30 -7.0579029753e-29 1.4781880005e-30
C94 x10 y3 -7.2390185384e-29 -1.4431201077e-28 8.0671209777e-30
C96 x8 y5 2.1283904399e-28 -4.9252080905e-29 2.7044595257e-29
C98 x6 y7 2.2236132927e-27 6.1566688549e-28 1.6251870190e-28
CIOO x4 y9 -8.7943902625e-26 1.5717105924e-28 1.6101327466e-27
C102 x2 y1 1 -5.4284632248e-25 5.8869843328e-28 2.1366322585e-27
C104 13
y -2.3113167814e-24 -6.3885104675e-29 -1.9400999068e-27
C105 x14 2.5807091080e-34 5.1636008505e-31 -1.1034689067e-33
C107 x12 y2 2.4804255706e-31 -2.8509796755e-31 2.3698389433e-32
C109 x10 y4 4.3822851396e-30 -5.4580360547e-30 5.2357079302e-32 cm x8 y6 6.4361075987e-29 -1.1440863060e-29 4.0986068735e-31
Cl 13 x6 y8 8.3076340052e-28 -3.7819411006e-30 1.7850929836e-30 Cl 15 x4 y10 3.9688258103e-27 -4.3063204989e-30 -9.1901086807e-30 Cl 17 x 2 y 12 1.1342341037e-26 -3.1825931628e-30 -4.1829752333e-29 Cl 19 y14 -3.9823834097e-27 -4.2967205236e-31 4.5098051844e-29 C121 x14 y 1.8256415238e-34 3.6634894622e-33 -4.7429361670e-35 C123 x12 y3 2.9442232100e-33 6.9661950504e-33 -3.5576327988e-34 C125 x10 y5 1.5363127266e-33 1.5315755564e-32 -1.2762234539e-33 C127 x8 y7 -1.1746387012e-31 -5.1048433780e-32 -8.5446309103e-33 C129 x6 y9 3.2092760952e-31 -6.7157168278e-32 -5.7403752538e-32 C131 x4 y1 1 3.9652243593e-29 -2.9587392002e-32 -3.3182338514e-31 C133 x2 y13 1.8324576153e-28 -8.1160591537e-32 -2.2980276783e-31 C135 15
y 4.6797024112e-28 -2.4898315397e-33 1.1507640150e-31 C136 x16 -6.068704656 le-40 -2.4238955584e-35 4.4741025755e-38 C138 x14 y2 -6.6994511277e-36 -7.4435850369e-36 -8.6885587567e-37 C140 x12 y4 -1.4649616189e-34 1.8000840705e-34 -3.3541800894e-36 C142 x10 y6 -1.6184839421e-33 7.1946352166e-34 -2.3959764708e-35 C144 x8 y8 -2.2620469035e-32 3.7105356964e-34 -2.0671308059e-34 C146 x6 y10 -2.1295327527e-31 -1.4999946897e-34 -3.4444382350e-34 C148 x 4
4 y 12 -3.9450596971e-31 2.0977409621e-34 2.0939752407e-33
C150 x 2 y 14 -9.9160595099e-31 -5.2887552263e-34 4.2738844103e-33
C152 yl6 3.4075404529e-30 -1.0112948672e-35 -2.3216661623e-33
C154 x16 y -2.0040694046e-39 -7.8014848430e-38 6.5194208962e-40
C156 x14 y3 -4.5481110533e-38 -1.0926675454e-37 6.9308454977e-39
C158 x12 y5 -4.9516885216e-38 -6.8131293825e-37 2.7629976772e-38
C160 x10 y7 -1.8296205639e-36 1.0271415550e-36 1.4965812557e-37
C162 x8 y9 5.7571043280e-35 3.4977423384e-36 1.0639298782e-36
C164 x6 y1 1 -5.6638976793e-34 1.5594542108e-36 5.7294355153e-36
C166 x4 y13 -4.5531015365e-33 2.4653185108e-36 2.3103462668e-35
C168 x2 y15 -2.9071403363e-32 -1.5332354300e-36 9.2866441153e-36
C170 17
y -2.2395127335e-32 -2.3874094192e-38 -2.9283754687e-36
C171 x18 4.8790285277e-44 4.6495229099e-40 -6.2458941747e-43
C173 x16 y2 7.0084803013e-41 3.7287823615e-40 1.3494957785e-41
C175 x14 y4 2.0477668260e-39 -1.4616311315e-39 8.2285041569e-41
C177 x12 y6 2.2227536047e-38 -1.6170756770e-38 3.6161253742e-40
C179 x10 y8 1.7213771468e-37 -1.2641966168e-38 4.8599252655e-39
C181 x8 y10 3.6844279683e-36 9.5207368070e-39 1.8824668719e-38
C183 x6 y12 1.2336308453e-35 6.7217625728e-39 9.1805220994e-39
C185 x4 y14 -3.2367537078e-38 6.1567620004e-39 -1.6420929832e-37
C187 x2 y16 -1.3288655405e-34 -1.6911925308e-39 -1.6186418807e-37
C189 18
y -2.2375961986e-34 -2.4464748275e-41 4.8578001134e-38
Table 3c for Figure 44
Coefficient Formula M10
C7 x 2 y -9.3432520519e-09
C9 y 3 1.0160187971e-08
CIO X4 -2.2007053607e-l 1
C12 x2 y2 -5.8359502629e-l 1
C14 y4 - 1.248902249 le- 11
C16 x 4 y -2.3783386564e-14
C18 x 2 y 3J 3.0663317332e-16
C20 y 1.3716223317e-14
C21 x6 -4.7810513619e-17
C23 x4 y2 -1.7161749940e-16
C25 x y4 -1.4794853446e-16
C27 y6 -2.9565749394e-17
C29 x6 y -4.0669978522e-20
C31 x 4 3
4 yJ -3.9289350744e-20 C33 x2 y5 2.1419631679e-20
C35 7
y 3.2638197868e-20
C36 X -8.4072009280e-23
C38 x6 y2 -4.0184045382e-22
C40 x4 y4 -5.9049609952e-22
C42 x2 y6 -3.3409509633e-22
C44 y -4.5259998525e-23
C46 x8 y -6.2693620519e-26
C48 x6 y3 -1.4198685918e-25
C50 x4 y5 -6.0119058396e-26
C52 x2 y7 2.1317860398e-26
C54 9
y 5.7812082425e-26
C55 X10 -1.3968590850e-28
C57 x8 y2 -8.5688301862e-28
C59 x6 y4 - 1.8389216215e-27
C61 x4 y6 -1.8720757908e-27
C63 x2 y8 -8.3204769645e-28
C65 yio -2.0959765589e-28
C67 x10 y -1.3457392358e-31
C69 x8 y3 -3.3837482782e-31
C71 x6 y5 -3.8803304552e-31
C73 x 4 y 7 6.6208369542e-31
C75 x 2 y 9 1.4575660475e-30
C77 11
y -1.1765627032e-31
C78 x12 -3.0366418802e-34
C80 x10 y2 -1.8275696503e-33
C82 x8 y4 -4.2650422978e-33
C84 x6 y6 -3.1248197767e-33
C86 x4 y8 -1.0170281945e-33
C88 x2 y10 -6.4333466089e-34
C90 y12 1.8049161521e-34
C92 x12 y -1.6943363984e-37
C94 x10 y3 -1.5349803507e-36
C96 x8 y5 -3.1793608100e-37
C98 x6 y7 - 1.3768406140e-36
CIOO x4 y9 -9.9069175238e-36
C102 x2 y1 1 -1.1101967630e-35
C104 13
y 1.0350161699e-36
C105 14
X -3.2280539622e-40 C107 x12 y2 -1.9003513299e-39
C109 x10 y4 -8.9719402177e-39 cm x8 y6 -4.5999914775e-38
Cl 13 x6 y8 -7.7242855449e-38 Cl 15 x4 y10 -5 2229592206e-38 Cl 17 x 2 y 12 -1.2512496842e-38 Cl 19 y14 -7.1769733072e-40 C121 x14 y -1.0393047452e-43 C123 x12 y3 4.6063463017e-42 C125 x10 y5 -2.3252010183e-42 C127 x8 y7 -1.5269987269e-41 C129 x6 y9 1.9864043645e-41 C131 x4 y1 1 7.5453795308e-41 C133 x2 y13 5.5975730665e-41 C135 15
y -1.2511392770e-42 C136 x16 -1.6301549686e-46 C138 x14 y2 -1.2007484068e-44 C140 x12 y4 -4.9787821738e-44 C142 x10 y6 3.6511098676e-44 C144 x8 y8 3.0243906666e-43 C146 x6 y10 3.8579866168e-43 C148 x4 y 2.1321030034e-43 C150 x 2 y 14 4.2552857813e-44 C152 yl6 -3.0052816072e-45 C154 x16 y -1.9324534346e-48 C156 x14 y3 -2.4628612218e-47 C158 x12 y5 -4.636805373 le-47 C160 x10 y7 -8.8083533623e-48 C162 x8 y9 1.4648609993e-47 C164 x6 y1 1 -8.6006470466e-47 C166 x4 y13 - 1.7718892662e-46 C168 x2 y15 -9.7242038084e-47 C170 17
y 1.1977125862e-48 C171 x18 -3.9511895348e-51 C173 x16 y2 -1.5852831436e-50 C175 x14 y4 -3.6120605080e-50 C177 x12 y6 -3.3897555701e-49 C179 x10 y8 -1.1689145102e-48 C181 x8 y10 -1.8734590016e-48 Table 3d for Figure 44
Coordinates of the stop edge
¾ [mm] yi [mm] ¾+N/2 [mm] yi+N/2 [mm]
109.791210 166.056094 -81.907728 -159.583142
91.368195 173.524883 -70.455584 -163.566497
73.941019 179.001996 -58.007601 -167.051932
53.526327 183.981189 -44.563779 -170.039448
34.605393 186.968705 -32.613716 -172.031126
10.207346 188.960382 -10.705265 -174.022803
-11.203185 188.960382 11.203185 -174.022803
-25.642845 187.964544 24.149087 -173.026964
-45.061699 185.474947 38.588747 -171.035287
-62.488875 181.989512 49.542972 -169.043610
-82.405648 176.512399 61.493036 -166.056094
-95.351550 172.031126 71.949342 -163.068578
-105.309936 168.047771 81.907728 -159.583142
-119.251677 161.574820 99.832824 -152.114353
-133.691338 153.608111 112.778726 -145.641401
-146.637240 145.143482 127.218387 -137.176773
-158.089385 136.678854 142.155966 -126.720467
-171.035287 125.226709 149.126837 -121.243355
-181.989512 113.774565 163.068578 -108.795372
-191.947898 101.326582 169.541529 -102.322421
-197.922930 92.364034 179.997835 -90.372357
-201.408365 86.389002 191.449979 -74.936858
-206.885478 75.932697 200.412527 -59.999278
-210.370913 67.965987 206.387559 -48.049215
-214.852187 54.522166 209.872994 -39.584586
-218.337622 40.082505 213.856349 -28.132442
-219.831380 28.630361 217.341784 -14.688620
-220.329300 21.161571 219.831380 2.240637
-220.329300 10.207346 220.329300 8.713588
-219.831380 1.742718 220.329300 21.161571
-218.835542 -6.223992 219.831380 28.630361 -216.843864 -16.680297 217.839703 42.572102
-213.856349 -28.132442 214.354268 56.513843
-207.881317 -44.563779 211.864671 63.982633
-199.416688 -61.990956 207.383397 74.936858
-190.454140 -76.430616 203.400043 82.903567
-179.997835 -90.372357 197.922930 92.364034
-169.541529 -102.322421 192.943737 99.832824
-161.574820 -110.289130 181.491593 114.272484
-151.616433 -119.251677 169.043610 127.218387
-138.172612 -129.707983 158.089385 136.678854
-128.712145 -136.180934 151.616433 141.658047
-117.260000 -143.151805 137.674692 151.118514
-99.832824 -152.114353 127.716306 157.093546
Table 4 for Figure 44
Wavelength 13.5 nm
NA 0.55
Figure imgf000085_0001
4.70
bg 8.00
Chief ray angle (CRA) 5.06°
Etendue 12.58 mm2
Mean wavefront aberration RMS 17.15 ihl
System transmission 7.20 %
Position of the entry pupil EP (x) -2383.43 mm
Position of the entry pupil EP (y) -2129.47 mm
Object-image offset 1860.60 mm
Working distance between M9 and
80 mm
image field
Reticle tilt 0 0
Installation length 2319.32 mm
Obscuration 18.4 %
Installation space cuboid (791 x 2203 x 1818) mm
Table 5 for Figure 44
Ml M2 M3 M4 M5
Maximum angle of 9.0 83.1 79.3 79.9 82.0
incidence [deg]
Minimum angle of incidence [deg] 5.6 72.2 72.6 74.5 75.7 Mirror extent (x) [mm] 614.4 370.4 303.5 260.0 288.9
Mirror extent (y) [mm] 278.0 313.1 211.0 246.5 276.4
Maximum mirror diameter 614.4 381.3 305.6 316.6 340.6
[mm]
Table 6a for Figure 44
M6 M7 M8 M9 M10
Maximum angle of incidence 79.5 82.1 78.6 20.2 8.3
[deg]
Minimum angle of incidence [deg] 73.7 73.1 71.0 0.0 5.0
Viirror extent (x) [mm] 332.4 299.1 233.2 291.1 790.6
Viirror extent (y) [mm] 261.4 113.5 231.7 155.7 768.2
Maximum mirror diameter 334.5 299.2 269.2 291.1 790.7
[mm]
Table 6b for Figure 44 Provided only the Pareto-optimal inscription of the structuring field 4i into the object
specification field 19 or only the auxiliary areas 25 to 28 is/are taken into account (cf. Figures 98 and 102), what was explained above in respect of the projection optical unit 7 applies in respect of the admissible scale ratio curves 24i. To the extent that the shadowing region D is additionally taken into account (Figure 108), the projection optical unit 39, in contrast to the projection optical unit 7, does not satisfy the scale ratio curve 24i, i.e., the combination of standard reticle and full field. In the projection optical unit 39, admissible scale ratio curves are the scale ratio curves 246 to 24i6.
Figures 58 to 71 show a further embodiment of a projection optical unit 40, which can be used instead of the projection optical unit 7 in the projection exposure apparatus 1. Components and functions corresponding to those which were already explained above with reference to Figures 1 to 15, in particular, are denoted by the same reference signs and are not discussed in detail again.
The projection optical unit 40 has a reduction scale bc in the xz-plane of 4.10 and an integer reduction scale bg in the yz-plane of -8.0.
In terms of its basic design, the projection optical unit 40 corresponds to the projection optical unit 7. The optical design data emerge from following Tables 1 to 6, which, in turn, correspond in terms of the basic structure to Tables 1 to 6 relating to the embodiment according to Figure 2. Radii of the surfaces
RadiuSx [mm] Powerx [1/mm] RadiuSy [mm] Powery [1/mm]
M01 -2153.91318796 0.00090961 -1360.57297980 0.00144000
M02 3031.20790690 -0.00012341 2671.06678857 -0.00014004
M03 2141.17782565 -0.00021490 -13654.46162255 0.00003370
M04 3996.48790982 -0.00010146 -8247.94241382 0.00004916
M05 -2112.23763543 0.00015939 -5853.21581048 0.00005752
M06 -921.16774264 0.00050894 -1825.97789803 0.00025675
M07 -751.08754414 0.00062582 17986.50147715 -0.00002613
M08 -1072.92101512 0.00049812 -4970.77798515 0.00010752
M09 1137.97654265 -0.00175750 314.17776349 -0.00636582
M10 -784.36493151 0.00252999 -718.82637975 0.00276066
Table 1 for Figure 58
Decentring (location, angle) the surfaces
Dx [mm] Dy [mm] l)z [mm]
Reticle 0.000000000 2161.963662900 2293.463985442
M01 0.000000000 2014.575340040 608.807746335
M02 0.000000000 1739.573953160 1446.205049270
M03 0.000000000 1518.196503845 1712.479693148
M04 0.000000000 1167.795380476 1865.986053005
M05 0.000000000 787.171013381 1867.738581450
M06 0.000000000 163.995268198 1651.723399936
M07 0.000000000 -63.653209854 1414.068794191
M08 0.000000000 -130.476167915 1189.657570934
M09 0.000000000 147.983152172 106.411634262
Stop 0.000000000 109.784896014 256.209890373
M10 0.000000000 0.000000000 686.742266049
Wafer 0.000000000 0.000000000 0.000000000
ax [°] ay [°] az [°]
Reticle -0.000000000 0.000000000 0.000000000
M01 6.590093567 180.000000000 0.000000000
M02 -61.040048024 0.000000000 0.000000000
M03 -36.958954635 0.000000000 180.000000000 M04 -11.960717071 0.000000000 0.000000000
MO 5 9.427176240 0.000000000 180.000000000
M06 32.675044953 0.000000000 0.000000000
M07 59.824985088 0.000000000 180.000000000
MO 8 88.917183425 0.000000000 0.000000000
M09 14.360885229 180.000000000 0.000000000
Stop 1.573800008 180.000000000 0.000000000
M10 7.152722206 0.000000000 0.000000000
Wafer 0.000000000 0.000000000 0.000000000
Table 2 for Figure 58
Free-form coefficients of the surfaces
Coefficient Formula M01 M02 M03
C7 x 2 y 1.7253489139e-08 -6.8489733052e-08 2.0843277494e-07
C9 3
y 7.9749363717e-10 -5.3748830899e-07 3.5731390147e-07
CIO x4 -6.9020346334e-12 2.6199710848e-10 7.870676563 le-10
C12 x2 y2 3.3872176680e-l 1 -4.3485943610e-12 4.1376756966e-10
C14 y4 -1.1670716609e-10 2.0365190593e-09 -1.3628694979e-10
C16 x 4 y -2.2555301300e-17 -3.5480166953e-13 2.1965350784e-12
C18 x 2 y 3 8.4166488020e-14 1.3800654327e-12 4.2451927234e-13
C20 y -1.0923151873e-13 -9.3653209855e-12 3.1611513285e-12
C21 x6 -1.2315966648e-18 -9.7819269830e-18 5.9468167770e-16
C23 x4 y2 -3.5330767899e-17 1.0734911913e- 15 3.7563002887e-15
C25 x y4 -1.0363692287e-16 -8.7081211286e-15 1.5480856576e-15
C27 y6 -5.1756577448e-16 4.617248381 le-14 2.5330310392e-16
C29 x6 y 5.3133484540e-21 2.5905369889e-19 6.5712831434e-18
C31 x4 y3 -1.0320914016e-19 -3.2915476605e-18 8.1606868614e-18
C33 x2 y5 -1.3353723988e-19 4.9992664875e-17 8.9104237279e-18
C35 y7 1.1728632898e-18 -2.1726372199e-16 4.4472966750e-17
C36 x8 4.3188783854e-24 -1.7542955590e-21 8.4991706332e-21
C38 x6 y2 -2.2429678588e-23 1.2788123028e-20 2.7286382522e-20
C40 x4 y4 1.1219636587e-21 2.7577782317e-20 1.5531371668e-20
C42 x2 y6 6.0463237998e-21 -2.4963305442e-19 1.6428091804e-20
C44 y8 2.8489929482e-21 9.0794992021e-19 7.9767501976e-20
C46 x8 y -3.869218446 le-26 -2.6815378591e-23 -1.6956075609e-22
C48 x6 y3 -2.8209892776e-25 -2.9361551554e-22 -2.3876515087e-22
C50 x4 y5 -2.5566384053e-24 -4.9767508993e-22 -3.0158737609e-22
C52 x2 y7 1.4857630004e-23 8.8278879453e-22 -7.2719134030e-22
C54 9
y -3.6947757520e-23 -4.2768759215e-21 2.5266922972e-22
C55 10
X -2.1831570659e-28 2.0226752891e-25 -7.5002685555e-25 C57 x8 y2 1.0644189736e-27 -1.2734591128e-25 -3.2203296534e-24
C59 x6 y4 -5.0932779608e-26 -4.8732347413e-25 -2.9834475445e-24
C61 x4 y6 -5.2267477328e-25 6.3225939822e-25 -3.0204583298e-26
C63 x2 y8 - 1.0212767616e-24 -6.1880498041e-24 6.4068165352e-25
C65 yio 2.1951683182e-25 3.3612417264e-23 -3.4125046085e-24
C67 x10 y 5.5233286783e-31 1.4914735398e-27 8.1059300195e-27
C69 x8 y3 3.1967089965e-30 1.6828560041e-26 2.8973420196e-26
C71 x6 y5 4.0971014826e-29 4.3181303652e-26 2.9242339955e-26
C73 x 4 y 7 -3.4747403696e-28 5.0939817356e-26 6.3626657208e-26
C75 x 2 y 9 -3 0997269846e-27 9.3649856491e-26 1.7205323285e-25
C77 11
y 1.9799155467e-27 -2.4582494198e-25 9.9327003587e-26
C78 x12 4.7534866210e-33 -9.707379445 le-30 4.8166958861e-29
C80 x10 y2 -3.2620706683e-32 -5.2802581426e-30 2.4968559467e-28
C82 x8 y4 7.2418199372e-31 2.1917136949e-29 3.6132584562e-28
C84 x6 y6 1.4607832428e-29 6.6171129077e-29 2.1867893642e-28
C86 x4 y8 7.0003828236e-29 -1.8548652984e-28 1.2678327946e-28
C88 x2 y10 7.5287332695e-29 -5.9442209286e-28 6.0551744642e-28
C90 y12 -6.8180369024e-29 6.1663240519e-28 7.5571763540e-28
C92 x12 y 5.8135350004e-36 -5.9121523781e-32 5.0247637623e-32
C94 x10 y3 3.6980718880e-35 -6.9555978292e-31 -1.6426956878e-30
C96 x8 y5 -2.1732644796e-35 -2.3403450773e-30 -2.8799498107e-30
C98 x6 y7 5.983627091 le-33 -4.2541775699e-30 -3.7992944526e-31
CIOO x4 y9 7.2845140649e-32 -2.5488573683e-30 -9.4964043959e-30
C102 x2 y1 1 2.1179261177e-31 3.3256618693e-31 -1.6373399048e-29
C104 13
y -2.5199979064e-31 4.5432350990e-30 -5.3307704621e-30
C105 x14 -5.7422589862e-38 2.4911174828e-34 -1.3376634501e-33
C107 x12 y2 3.7256249464e-37 5.9720912710e-34 -9.6749923333e-33
C109 x10 y4 -3.9618629429e-36 1.2123247028e-33 -2.1118371641 e-32 cm x8 y6 -1.8436361781e-34 -1.0994880570e-33 -2.0786234049e-32
Cl 13 x6 y8 -1.5062837673e-33 5.5195940953e-33 -2.0124917876e-33 Cl 15 x4 y10 -4.6400029560e-33 1.6097310935e-32 -3.7250345082e-32 Cl 17 x 2 y 12 -3.1004874585e-33 4.1854957182e-33 -7.8902616124e-32 Cl 19 y14 4.6547252057e-33 -1.9304773647e-32 -4.9753333709e-32 C121 x14 y -1.2268218319e-40 1.1244874804e-36 -1.0212350194e-35 C123 x12 y3 -9.0701554967e-40 1.4956461788e-35 4.1399186534e-35 C125 x10 y5 -3.4014235302e-39 6.1311799847e-35 1.3916837427e-34 C127 x8 y7 -6.7465781696e-38 1.6218999393e-34 -2.9197822714e-35 C129 x6 y9 -7.8105532580e-37 1.4893502685e-34 4.1828454936e-35 C131 x4 y1 1 -3.8875752683e-36 4.3413035846e-37 6.9732981366e-34 C133 x 2 y 13 -5.7123473251e-36 7.5426824837e-35 8.1002947367e-34
C135 15
y 1.3664641192e-35 -2.2273282373e-34 1.8633086421e-34
C136 x16 3.5382563057e-43 -3.1789288726e-39 1.0990626749e-38
C138 x14 y2 -1.6020313895e-42 -1.6859209656e-38 1.8576932736e-37
C140 x12 y4 -1.0127873883e-42 -7.1099677504e-38 6.2080994565e-37
C142 x10 y6 1.0967611659e-39 -1.1729983864e-37 9.5218789081e-37
C144 x8 y8 1.2840161244e-38 -3.0948769654e-37 -2.9790673669e-37
C146 x6 y10 6.7114787655e-38 -3.3722622951e-37 3.2412128450e-37
C148 x4 y 1.4952208127e-37 -9.4218325183e-38 3.4470826745e-36
C150 x 2 y 14 6.1172323403e-38 -7.2447634373e-37 4.5689777639e-36
C152 yl6 -1.4991901405e-37 2.0657707990e-36 1.7520087692e-36
C154 x16 y 5.3369182902e-46 -8.2883102766e-42 1.6783721110e-40
C156 x14 y3 4.6138127934e-45 -1.2716590616e-40 -3.6729130762e-40
C158 x12 y5 1.498886603 le-44 -6.1176139332e-40 -2.3043381810e-39
C160 x10 y7 3.6754249732e-43 -2.2046628624e-39 9.2025446789e-41
C162 x8 y9 2.8057693691e-42 -3.3751566064e-39 2.4194482093e-39
C164 x6 y1 1 2.3161127198e-41 -2.0758041719e-39 -2.9791606548e-39
C166 x4 y13 6.2185159478e-41 -3.5280071620e-40 -1.9548408949e-38
C168 x2 y15 4.6830746241e-41 2.2678920528e-39 -1.3947901977e-38
C170 17
y -2.5581720088e-40 -6.4781792315e-39 -1.2534633466e-39
C171 x18 -8.7106263137e-49 1.5909736637e-44 5.6412310058e-44
C173 x16 y2 1.3065808812e-48 1.5692316677e-43 -1.3730343423e-42
C175 x14 y4 5.7724821550e-47 9.2463053236e-43 -7.1156444255e-42
C177 x12 y6 -2.539932957 le-45 2.7573773750e-42 -1.7209828703e-41
C179 x10 y8 -3.8480556992e-44 7.8803423243e-42 7.4650261022e-42
C181 x8 y10 -2.8906423075e-43 1.0686884566e-41 1.3259734573e-41
C183 x6 y12 -1.0710759915e-42 6.3005191864e-42 -2.0815143454e-41
C185 x4 y14 -1.9093028362e-42 1.3998881812e-42 -1.1081185271e-40
C187 x2 y16 -3.6758206105e-43 -2.5085703463e-42 -8.6419940693e-41
C189 18
y 1.9226105852e-42 7.3627430941e-42 -1.8267900750e-41
Table 3a for Figure 58
Coefficient Formula M04 M05 M06
C7 x 2 y 5.9619652909e-08 -9.6306295638e-08 1.9227451807e-07
C9 y 3 -6.4627956566e-08 -1.0730315483e-07 -2.4556984659e-08
CIO X4 1.1870458782e-10 -1.3108674026e-10 -3.6652240950e-10
C12 x2 y2 4.2484517648e-l l -1.9074600914e-10 5.5260903506e-l 1
C14 y4 -1.7083044460e-10 -8.2387121265e-l 1 -3.0674996888e-10
C16 x 4 y 1.4473484670e-13 -3.9784398048e-13 -2.9162936785e-13 C18 x 2 3 5.0227880905e-13 -4.3076558139e-14 9.4168590585e-14
C20 y -3.2659709148e-13 -1.0065375895e-13 1.2672256858e-12
C21 x6 -6.1264573072e-16 -6.1713208598e-16 -4.1790113004e-16
C23 x4 y2 -4.6722995064e- 16 -9.0367375806e-17 -3.7780225064e-16
C25 x y4 7.1807994596e-16 -4.6021570894e-17 -2.3758008591e-15
C27 y6 -1.3897276106e-15 2.0760637622e-16 -9.0345913028e-16
C29 x6 y 3.5719085175e-18 -1.2768843454e-18 1.0173737480e-19
C31 x4 y3 2.9798599285e-19 -1.3994444742e-18 2.1468282001e-18
C33 x2 y5 6.3089775664e-18 2.5977874654e-18 -2.6327449063e-18
C35 7
y -5.3367998807e-18 4.9671450998e-19 1.3314817802e-17
C36 X 6.9645120498e-20 6.1839204210e-21 -6.6532449871e-21
C38 x6 y2 -1.5138637983e-20 5.6569155116e-21 -1.1111484151e-20
C40 x4 y4 -2.5563494603e-20 6.2582209919e-21 3.1940337834e-21
C42 x2 y6 -9.6885980851e-21 1.7588567507e-21 -1.6348716182e-20
C44 y -4.7478149700e-20 -3.9561450530e-21 -9.0110415754e-20
C46 x8 y -4.9404416862e-23 3.8953242769e-22 1.9732570865e-23
C48 x6 y3 2.9284412084e-22 2.2342683639e-22 1.5014823115e-23
C50 x4 y5 3.2089532220e-22 8.8589786996e-23 4.7205530052e-23
C52 x2 y7 7.8477224013e-23 -2.0504385613e-22 6.3322704908e-22
C54 9
y 6.7281771634e-22 -4.0183954531e-23 -1.2080616869e-22
C55 X10 -4.5115823443e-24 -8.3395504092e-25 5.6849359909e-25
C57 x8 y2 1.1596778963e-24 - 1.1694694180e-24 5.3393565191e-25
C59 x6 y4 3.1371621373e-25 2.2564100079e-25 5.0658246263e-25
C61 x4 y6 4.0215331718e-24 -1.7725373853e-25 -6.065408441 le-24
C63 x2 y8 3.8228936375e-26 -3.7208091364e-25 -2.5528281427e-24
C65 yio 3.6686469783e-24 8.3369265250e-25 2.9620196237e-24
C67 x10 y 1.4823362161e-26 -3.1631210601e-26 -5.4222473970e-28
C69 x8 y3 -2.2670848692e-26 -2.261744947 le-26 3.7763151833e-27
C71 x6 y5 -5.6655763530e-26 -1.9333613343e-26 3.1912780542e-26
C73 x 4 y 7 -3.0351278199e-26 -1.2372637598e-26 3.5585551336e-27
C75 x 2 y 9 5.9678509430e-27 2.0792003000e-26 -2.2045048549e-26
C77 11
y -8.884866543 le-26 -8.2884124295e-28 3.2914028052e-26
C78 x12 5.405561563 le-29 3.7086259933e-29 -2.9034889293e-29
C80 x10 y2 -1.0070011980e-28 1.0421821932e-28 -1.4111767821e-29
C82 x8 y4 1.3952944970e-28 3.6176844261e-32 -6.3893054523e-29
C84 x6 y6 -1.9672629948e-28 -1.1949042112e-28 3.8213016342e-28
C86 x4 y8 -3.9016380745e-28 3.5923689503e-29 1.0487727615e-27
C88 x2 y10 1.0241742480e-28 3.7331109668e-30 1.4143687968e-28
C90 12
y -2.6184014766e-28 -6.3253778652e-29 -4.0071558454e-28 C92 x12 y - 1.2635904019e-30 1.6104337521e-30 2.2399300728e-32
C94 x10 y3 8.2197946604e-31 1.3550720653e-30 -2.7445272907e-31
C96 x8 y5 3.8774777510e-30 8.7886313509e-31 -3.4871047178e-30
C98 x6 y7 5.8338594201e-30 1.6980239554e-30 -7.3536423618e-30
CIOO x4 y9 1.9245525482e-30 6.2198194417e-31 3.2025823509e-31
C102 x2 y1 1 -3.6276058185e-31 -1.2201026444e-30 2.5469791839e-31
C104 13
y 6.7015966339e-30 2.0265864807e-31 -2.8342202196e-30
C105 x14 7.0754461400e-33 -1.2461754197e-33 9.6892314589e-34
C107 x12 y2 6.9483309172e-33 -4.9831878581e-33 -2.1754319445e-34
C109 x10 y4 -1.5898565106e-32 -2.0527081215e-33 4.1480454347e-33 cm x8 y6 -4.1261602263e-33 8.6813841887e-33 -6.8123372762e-34
Cl 13 x6 y8 7.9018580389e-33 6.4964272060e-33 -5.3646066362e-32 Cl 15 x4 y10 1.4730630079e-32 -2.1385527421e-33 -7.4438418697e-32 Cl 17 x 2 y 12 -9.3709053870e-33 1.3163947227e-33 1.6067709967e-33 Cl 19 y14 3.1715227886e-33 2.6117410390e-33 2.6104858817e-32 C121 x14 y 4.861337371 le-35 -4.3151391979e-35 -3.5595430199e-37 C123 x12 y3 -8.2786792099e-36 -4.2965290980e-35 5.6132269713e-36 C125 x10 y5 -1.1455279957e-34 -2.1459475775e-35 1.2496645767e-34 C127 x8 y7 -2.4535902330e-34 -4.5201912620e-35 5.4968822893e-34 C129 x6 y9 -3.0016552398e-34 -6.4684796477e-35 4.5990236264e-34 C131 x4 y1 1 -2.9500717929e-35 -1.8367959378e-35 -4.4852910240e-35 C133 x2 y13 2.328746381 le-35 4.4419693559e-35 3.5004526883e-35 C135 15
y -2.6937728465e-34 -1.0937409663e-35 1.3890479890e-34 C136 x16 -3.5416222941 e-37 3.2068197087e-38 -2.0407530149e-38 C138 x14 y2 -2.9561837697e-37 1.2298273288e-37 1.5095827462e-38 C140 x12 y4 6.9823107816e-37 6.2115864707e-38 -9.8763903728e-38 C142 x10 y6 2.9905367425e-37 -9.0190361713e-38 -7.0845111441e-37 C144 x8 y8 6.7993674269e-37 -5.3235455708e-37 -5.4330376858e-37 C146 x6 y10 1.3317380172e-37 -6.9963833007e-38 2.1142057404e-36 C148 x4 y -2.9602159509e-37 5.6138809191e-38 2.4381231790e-36 C150 x 2 y 14 2.4944798647e-37 -1.0522177669e-37 -5.8238584789e-37 C152 yl6 3.7010074817e-37 -4.1216639607e-38 -8.1739439859e-37 C154 x16 y -7.0030393159e-40 4.6655407513e-40 1.0293113341e-42 C156 x14 y3 -1.0107248761 e-40 5.3664597179e-40 -2.1802812095e-41 C158 x12 y5 1.343793871 le-39 3.5517226807e-40 -1.3268279979e-39 C160 x10 y7 3.1379083042e-39 4.9264089524e-41 -1.0629457603e-38 C162 x8 y9 6.4841206733e-39 1.4339689676e-39 -2.0116502619e-38 C164 x6 y1 1 5.8950381744e-39 3.8000533331e-40 -8.2152472151e-39 C166 x4 y13 -4.9210179434e-40 5.1538948327e-40 9.9025471559e-40 C168 x2 y15 -3.0663656656e-40 -7.7929492046e-40 -9.8625504558e-40
C170 17
y 4.4885903021e-39 2.1192228052e-40 -2.5833680929e-39
C171 x18 5.1309968161e-42 -3.7893844990e-43 1.9301975877e-43
C173 x16 y2 5 2044049694e-42 -1.2285035840e-42 -1.7541043036e-43
C175 x14 y4 -1.1766543123e-41 -3.2203099193e-43 3.9816210665e-43
C177 x12 y6 -2.3390651329e-42 -9.2026115855e-43 1.4637033818e-41
C179 x10 y8 -1.8863113098e-41 6.3836698688e-42 5.3346368013e-41
C181 x8 y10 -2.0670936737e-41 5.9100764857e-42 4.819594653 le-41
C183 x6 y12 -1.4308481467e-41 1.3778084151e-42 -2.7248935524e-41
C185 x4 y14 5.6094917591e-42 -2.0202666259e-42 -3.2644121585e-41
C187 x2 y16 -2.5292311572e-42 2.8173014638e-42 1.7258691433e-41
C189 18
y -1.2590227357e-41 -8.8094576680e-44 8.8535445659e-42
Table 3b for Figure 58
Coefficient Formula M07 M08 M09
C7 x 2 y -1.3688636632e-07 2.7752316055e-07 1.5042562426e-06
C9 y 3 -3.6562839317e-07 -1.9124090722e-07 -7.9138018050e-07
CIO X4 4.3668480726e-l 1 1.8921525902e-10 1.3302421312e-09
C12 x2 y2 - 1.2882387063e-09 -1.7753333696e-10 5.4922412133e-09
C14 y4 2.2478456664e-09 -5.5891573060e-10 2.1170775267e-09
C16 x 4 y 3.9915359069e- 13 6.0252617982e- 13 7.9566805060e-12
C18 x 2 y 3J -2.4915604645e-13 -2.1988915025e-14 -9.5752553040e-13
C20 y -2.6584746885e-12 -2.7033078478e-12 -1.0996575531e-l l
C21 x6 1.0355358507e-16 8.1436100116e-16 7.1009981019e-15
C23 x4 y2 2.1047584927e- 15 2.4368217928e- 15 4.5501453876e-14
C25 x y4 -2.9936124637e-14 -1.9177412720e-15 8.9435770358e-14
C27 y6 3.534364265 le- 14 -1.4538952930e-14 1.6820448385e-13
C29 x6 y 2.6124679416e-18 1.0895336117e-17 5.7466037470e-17
C31 x4 y3 6.4049410027e- 17 1.9188958547e- 17 1.1289868631e-16
C33 x2 y5 -3.9675196784e- 16 - 1.6059149618e- 17 3.0899856353e-16
C35 y7 -2.1261280702e-15 -8.2763028564e-17 -7.8202523094e- 16
C36 x8 1.3918320834e-20 -5.7783778081e-20 3.4817617526e-20
C38 x6 y2 -2.9374535762e-20 - 1.4837821532e- 19 4.7359948801e-19
C40 x4 y4 2.8237799354e- 18 -7.6456622434e-20 1.9919875033e-18
C42 x2 y6 4.7202902322e- 18 -2.9848891376e- 19 1.2507447353e-18
C44 y8 -4.0308349054e-17 -5.4438237525e-19 -8.1704148477e-18
C46 x8 y 2.4441818089e-22 - 1.9762721950e-21 5.3354821362e-22
C48 x6 y3 -9.3939277976e-21 -6.5494127080e-21 3.6406378391e-21
C50 x4 y5 -3.8894701544e-20 -1.0751986352e-21 1.2083820635e-20 C52 x 2 y 7 8.6761679159e-19 -6.2935153381e-21 -4.0177768217e-20
C54 9
y 1.9054480444e-18 -4.8260290311 e-21 -2.9548201347e-20
C55 X10 -1.6763704485e-24 9.5776630875e-24 7.1633088969e-25
C57 x8 y2 -2.3522355178e-24 5.3710306358e-23 4.7848731006e-24
C59 x6 y4 -3.8504521553e-22 1.7992304952e-23 2.5020167924e-23
C61 x4 y6 -3.5244874355e-21 1.7086866548e-23 -4.4998032486e-23
C63 x2 y8 2.2457033940e-21 -4.0440322204e-23 -7.5162676171e-23
C65 yio 5.0619587944e-20 -3.7229786491e-23 1.5977448485e-21
C67 x10 y -1.4918005519e-26 2.3996701840e-25 1.0140406083e-26
C69 x8 y3 7.2827606192e-25 1.7501487158e-24 3.7053241962e-26
C71 x6 y5 5.3841701529e-24 7.4457526928e-25 -1.1874473226e-24
C73 x 4 y 7 2.2248948699e-23 2.8589142707e-25 -7.1050908938e-24
C75 x 2 y 9 -1.0167293967e-21 4.9645130518e-25 -2.8310518027e-24
C77 11
y -6.3948673490e-22 -1.2335835759e-25 8.0553971154e-24
C78 x12 9.8023362020e-29 -9.0597950242e-28 -1.4301072740e-29
C80 x10 y2 9.5407546632e-28 -9.0012049803e-27 2.5474975517e-28
C82 x8 y4 3.3795996453e-26 -8.1036569314e-27 8.3638629985e-28
C84 x6 y6 3.6103028978e-25 4.0004718174e-27 -1.1905055581e-26
C86 x4 y8 2.8855963881e-24 1.1963715502e-27 -2.2323752269e-26
C88 x2 y10 -9.2775186112e-24 7.1173451189e-27 5.0215909185e-26
C90 y12 -2.7377501722e-23 -1.7835859548e-29 -1.6688765299e-25
C92 x12 y -4.4881863690e-32 -1.5502232139e-29 -2.8405056660e-31
C94 x10 y3 -3.2816859289e-29 -2.0807506072e-28 -2.7618250145e-30
C96 x8 y5 -1.284036877 le-28 -1.9828409258e-28 4.5634219065e-29
C98 x6 y7 -5.236891773 le-27 4.2591850131e-30 5.5064600993e-28
CIOO x4 y9 1.1556865438e-26 -2.7573125896e-29 2.0957977789e-27
C102 x2 y1 1 5.6455694788e-25 -2.4874129517e-29 1.6113057471e-27
C104 13
y -1.0346370948e-25 -1.0655637181e-29 -1.3332366400e-27
C105 x14 -3.7234103202e-33 5.2039454247e-32 3.0225972532e-35
C107 x12 y2 -7.7423091829e-32 8.1293667676e-31 -1.3372785026e-32
C109 x10 y4 -2.0407345816e-30 1.8320993449e-30 - 1.185246020 le-31 cm x8 y6 -1.4350174259e-29 -4.0238627499e-31 3.9565424047e-31
Cl 13 x6 y8 -2.7522008894e-28 -6.6840274328e-31 6.2883276405e-30 Cl 15 x4 y10 -8.8286098090e-28 -3.3421321383e-31 9.280733893 le-30 Cl 17 x 2 y 12 6.6836310682e-27 -9.5586709447e-31 -7.6599969563e-30 Cl 19 y14 5.7809272350e-27 -1.9539636427e-31 1.6641174179e-29 C121 x14 y 2.5468486327e-35 5.3956364343e-34 1.1302147627e-35 C123 x12 y3 8.1843079981e-34 1.1722775011e-32 2.0611996164e-34 C125 x10 y5 -3.1786202177e-33 1.8751250564e-32 -3.632876671 le-34 cm x8 y7 1.6128905021e-31 4.8956636439e-33 -1.731 1 198679e-32
C129 x6 y9 1.4856206327e-30 -9.4074941622e-33 -9.8121878044e-32
C131 x4 y11 -1.0461890618e-29 1.9854960869e-33 -2.9138576812e-31
C133 x2 y13 -1.4870774049e-28 -6.8868323549e-33 -2.3053321491e-31
C135 15
y 1.1048434256e-28 -1.4134066773e-33 9.8890261670e-32
C136 x16 9.4024551059e-38 -1.6972328102e-36 2.1539194372e-38
C138 x14 y2 2.5971260384e-36 -3.6232126655e-35 4.9532187641e-37
C140 x12 y4 6.7990164328e-35 -1.5776675424e-34 6.8299244952e-36
C142 x10 y6 3.3334098633e-34 -3.3025407321e-35 1.1263719992e-35
C144 x8 y8 7.3984535304e-33 7.0159809934e-35 -1.8988518951e-34
C146 x6 y10 8.3645430246e-32 -3.8690482208e-35 -1.06794471 10e-33
C148 x4 y 4.1339559386e-32 4.9865422491e-35 -8.1208067476e-34
C150 x 2 y 14 - 1.9638322655e-30 -2.0372670898e-35 1.0106034997e-33
C152 yl6 1.669608961 le-31 -5.1667769524e-36 -1.1 175822688e-33
C154 x16 y -5.5773939377e-40 -8.0080153729e-39 -1.0344734125e-40
C156 x14 y3 -8.5527847535e-39 -2.5407072091e-37 -3.4430160947e-39
C158 x12 y5 1.2994777601e-37 -5.9333201884e-37 -1.3421373869e-38
C160 x10 y7 -1.5028450332e-36 -4.0585245549e-37 2.2729668884e-37
C162 x8 y9 -2.5395921073e-35 4.5660813580e-37 1.6870445746e-36
C164 x6 y11 -1.4169933882e-34 6.2254031361e-39 6.4229187941e-36
C166 x4 y13 2.0030442912e-33 2.7841895073e-37 1.6097691047e-35
C168 x2 y15 1.4672106654e-32 -1.6325771950e-38 1.1623854035e-35
C170 17
y -1.7899306439e-32 -9.2771947433e-39 -3.1878097815e-36 cm x18 -1.1513361727e-42 2.4622996073e-41 -4.1203849009e-43
C173 x16 y2 -3.2380065067e-41 6.0932687405e-40 -6.1216041895e-42
C175 x14 y4 -9.0269500168e-40 4.663365961 le-39 -1.2554925228e-40
cm x12 y6 -4.3580940818e-39 2.8315772094e-39 -5.3772451628e-40
C179 x10 y8 -6.6198645363e-38 -1.0891088355e-39 1.4543997489e-39
C181 x8 y10 -1.2364920485e-36 1.0784338447e-39 1.9049482393e-38
C183 x6 y12 -8.5360931507e-36 2.3563661099e-40 5.7000090045e-38
C185 x4 y14 1.6729255587e-35 5.1554645133e-40 1.9740886141e-39
C187 x2 y16 2.052426996 le-34 2.0047489560e-41 -6.1674065396e-38
C189 18
y -1.5298757076e-34 -6.1493259847e-42 3.6309767029e-38
Table 3c for Figure 58
Coefficient Formula M10
C7 x2 y -1.1963579370e-08
C9 y3 8.7322952596e-09
CIO x4 -2.1296980535e-l l C12 x 2 y 2 -6.0081531496e-l l
C14 y4 -1.3100686441e-l l
C16 x 4 y -2.9453202317e-14
C18 x 2 3 -7.0711311368e-15
C20 y 1.2413476816e-14
C21 x6 -4.4751375902e- 17
C23 x4 y2 -1.7381468208e-16
C25 x y4 -1.5538256681e-16
C27 y6 -3.6495586839e-17
C29 x6 y -5.1034460824e-20
C31 x4 y3 -5.8777424732e-20
C33 x2 y5 8.8723819629e-22
C35 7
y 1.7063977474e-20
C36 X -8.5217152131e-23
C38 x6 y2 -3.9426334467e-22
C40 x4 y4 -6.0261397447e-22
C42 x2 y6 -3.6936580816e-22
C44 y -5.4368523802e-23
C46 x8 y -7.4001974119e-26
C48 x6 y3 -2.0694915444e-25
C50 x4 y5 -1.6445257935e-25
C52 x2 y7 -7.1379877112e-27
C54 9
y 6.5250253448e-26
C55 X10 -1.0368467343e-28
C57 x8 y2 -9.9146699432e-28
C59 x6 y4 -2.2750636360e-27
C61 x4 y6 -2.2897755783e-27
C63 x2 y8 -9.6658117555e-28
C65 yio -1.8069831798e-28
C67 x10 y -2.6447499153e-31
C69 x8 y3 -2.8737519246e-31
C71 x6 y5 -8.4741638906e-33
C73 x 4 y 7 8.9348304973e-31
C75 x 2 y 9 8.1135191352e-31
C77 11
y -4.9988190927e-32
C78 x12 -3.7377373928e-34
C80 x10 y2 -1.3859805746e-34
C82 x8 y4 2.5011587910e-33
C84 x6 y6 4.8799118600e-33 C86 x4 y8 3.0429500103e-33
C88 x2 y10 5.7864904180e-34
C90 y12 2.7996785737e-36
C92 x12 y 5.5993360240e-37
C94 x10 y3 -2.7299448452e-36
C96 x8 y5 -5.1780931527e-36
C98 x6 y7 -1.0420851865e-35
CIOO x4 y9 -1.1848327853e-35
C102 x2 y1 1 -5.4107225260e-36
C104 13
y 1.4375366590e-38
C105 x14 -2.6630257208e-40
C107 x12 y2 -1.3505746627e-38
C109 x10 y4 -7.3804603968e-38 cm x8 y6 -1.5912474468e-37
Cl 13 x6 y8 -1.5669435176e-37 Cl 15 x4 y10 -8.1237037712e-38 Cl 17 x 2 y 12 -2.3319945230e-38 Cl 19 y14 -2.9277377350e-39 C121 x14 y -2.9283626370e-42 C123 x12 y3 6.9897787563e-42 C125 x10 y5 7.3512149217e-42 C127 x8 y7 2.5558690249e-41 C129 x6 y9 6.5477665394e-41 C131 x4 y1 1 6.1164214533e-41 C133 x2 y13 2.303760423 le-41 C135 15
y 1.9618549164e-42 C136 x16 1.7117161010e-46 C138 x14 y2 3.0372117389e-44 C140 x12 y4 2.5156057362e-43 C142 x10 y6 7.5608820786e-43 C144 x8 y8 1.0196410225e-42 C146 x6 y10 7.0059399446e-43 C148 x4 y 2.6948856854e-43 C150 x 2 y 14 6.9453820365e-44 C152 yl6 1.0740173035e-44 C154 x16 y 1.8455339326e-48 C156 x14 y3 -3.0358148708e-47 C158 x12 y5 -5.5075196919e-47 C160 x10 y7 -7.8164171642e-47 C162 x8 y9 - 1.5626762420e-46
C164 x6 y1 1 -2.0595102987e-46
C166 x4 y13 -1.2440679310e-46
C168 x2 y15 -3.3188164228e-47
C170 17
y -3.1229343880e-48
C171 x18 -4.3867520979e-51
C173 x16 y2 -7.8207881113e-50
C175 x14 y4 -5.8730867189e-49
C177 x12 y6 -2.0542952173e-48
C179 x10 y8 -3.5639631397e-48
C181 x8 y10 -3.4675250746e-48
C183 x6 y12 -1.916438411 le-48
C185 x4 y14 -6.5130085142e-49
C187 x2 y16 -1.6111568227e-49
C189 18
y -2.5128543295e-50
Table 3d for Figure 58
Coordinates of the stop edge
¾ [mm] yi [mm] ¾+N/2 [mm] yi+N/2 [mm]
-159.085223 112.280807 130.703822 156.097707
-143.649724 125.226709 116.762081 163.566497
-128.712145 135.683015 105.807856 168.545690
-113.774565 144.645563 84.397325 176.512399
-98.836985 152.114353 76.430616 179.001996
-84.895244 158.089385 60.497198 182.985351
-73.443100 162.072739 45.061699 185.972867
-61.493036 165.558174 30.622038 187.964544
-54.024246 167.549852 20.165733 188.960382
-42.074183 170.039448 8.713588 189.458302
-24.149087 172.529045 -9.709427 189.458302
-10.705265 173.524883 -25.642845 188.462463
10.705265 173.524883 -38.588747 186.968705
32.613716 171.533206 -62.986794 182.487431
49.542972 168.545690 -84.397325 176.512399
65.476391 164.562336 -91.866115 174.022803
80.413970 159.583142 -106.803694 168.047771
96.845308 -153.110191 -116.762081 163.566497
113.774565 -144.645563 -128.214225 157.591465
127.218387 -136.678854 -139.168450 151.118514 .180934 -130.703822 -146.637240 146.139321
.139321 -123.235032 -158.089385 137.674692
.587304 -112.778726 -164.064416 132.695499
.529045 -98.836985 -168.545690 128.712145
.989512 -87.882760 -180.495754 116.762081
.454140 -76.430616 -186.968705 109.293291
.931253 -67.965987 -191.947898 102.820340
.910446 -59.501359 -202.404204 86.886922
.885478 -47.551295 -209.872994 71.451423
.864671 -35.103312 -212.860510 63.982633
.848026 -22.655329 -216.843864 51.036730
.333461 -6.721911 -218.835542 42.074183
.827219 6.223992 -220.329300 32.115796
.827219 26.638684 -220.827219 26.638684
.835542 42.074183 -220.827219 5.726072
.350106 56.513843 -218.835542 -9.211507
.370913 70.455584 -215.848026 -22.655329
.400043 84.895244 -212.860510 -32.613716
.910446 89.376518 -206.885478 -47.551295
.952060 104.314098 -201.408365 -58.505520
.993673 116.264162 -196.927092 -66.472229
.549852 129.707983 -185.474947 -83.401486
.068578 133.691338 -173.026964 -98.339066
.130998 145.143482
Table 4 for Figure 58
Wavelength 13.5 nm
NA 0.55
bc 4.10
bg -8.00
Chi ef ray angl e (CR A) 5.05°
Etendue 12.58 mm2
Mean wavefront aberration RMS 8.58 ihl
System transmission 7.62 %
Position of the entry pupil EP (x) -2379.88 mm
Position of the entry pupil EP (y) -2499.49 mm
Object-image offset 2161.96 mm Working distance between M9 and
81 mm
image field
Reticle tilt 0 0
Installation length 2293.46 mm
Obscuration 18.4 %
Installation space cuboid (790 x 2505 x 1811) mm
Table 5 for Figure 58
Ml M2 M3 M4 M5
Maximum angle of 13.3 84.3 79.8 80.7 83.5
incidence [deg]
Minimum angle of incidence [deg] 9.9 73.9 74.0 75.9 77.4
Mirror extent (x) [mm] 634.8 403.7 334.3 288.6 318.2
Mirror extent (y) [mm] 274.7 305.9 259.1 292.1 353.1
Maximum mirror diameter 635.2 403.9 346.3 370.0 412.2
[mm]
Table 6a for Figure 58
M6 M7 M8 M9 M10
Maximum angle of incidence 79.8 81.9 77.9 20.4 8.4
[deg]
Minimum angle of incidence [deg] 73.7 72.2 70.2 0.0 5.1
Viirror extent (x) [mm] 347.0 305.2 234.3 292.1 790.1
Viirror extent (y) [mm] 261.8 115.9 255.8 155.7 768.1
Maximum mirror diameter 348.6 305.3 285.2 292.3 790.3
[mm]
Table 6b for Figure 58
In respect of the admissible scale ratio curves 24i, what was explained above in respect of the projection optical unit 7 applies to the projection optical unit 40. Figures 72 to 85 show a further embodiment of a projection optical unit 41, which can be used instead of the projection optical unit 7 in the projection exposure apparatus 1. Components and functions corresponding to those which were already explained above with reference to Figures 1 to 15, in particular, are denoted by the same reference signs and are not discussed in detail again. The projection optical unit 41 has a reduction scale bc in the xz-plane of 4.30 and a reduction scale py in the yz-plane of -8.40.
In terms of its basic design, the projection optical unit 41 corresponds to the projection optical unit 7.
The optical design data emerge from following Tables 1 to 6, which, in turn, correspond in terms of the basic structure to Tables 1 to 6 relating to the embodiment according to Figure 2. Radii of the surfaces
RadiuSx [mm] Powerx [1/mm] RadiuSy [mm] Powery [1/mm]
M01 -2148.13972878 0.00091660 -1364.19829486 0.00144333
M02 2840.54829920 -0.00013866 2882.42778989 -0.00013665
M03 2074.90028844 -0.00022662 -16002.63929082 0.00002938
M04 3963.79277236 -0.00010423 -7793.24133377 0.00005301
M05 -2159.70388258 0.00016406 -5199.32226015 0.00006815
M06 -913.56415887 0.00051148 -1867.67731654 0.00025019
M07 -730.19600220 0.00064446 22740.84364639 -0.00002069
M08 -994.79418417 0.00053260 -5293.79178082 0.00010009
M09 1133.41067821 -0.00176459 314.74977190 -0.00635425
M10 -784.35890122 0.00252979 -718.85984473 0.00276029
Table 1 for Figure 72
Decentring (location, angle) the surfaces
Dx [mm] Dy [mm] l)z [mm]
Reticle 0.000000000 2038.392305181 2297.219728265
M01 0.000000000 1890.314777047 604.685836832
M02 0.000000000 1660.860854555 1448.962676486
M03 0.000000000 1455.924014496 1712.021956375
M04 0.000000000 1132.191083826 1862.177739783
M05 0.000000000 772.997433895 1868.703783568
M06 0.000000000 161.405739311 1653.719091282
M07 0.000000000 -61.760657692 1419.453558142
M08 0.000000000 -128.587585821 1192.284497655
M09 0.000000000 148.800863970 106.530337423
Stop 0.000000000 110.392074085 256.292107008 M10 0.000000000 0.000000000 686.727755014
Wafer 0.000000000 0.000000000 0.000000000
ax [°] ay [°] az [°]
Reticle -0.000000000 0.000000000 0.000000000
M01 5.102179737 180.000000000 0.000000000
M02 -63.437599040 0.000000000 0.000000000
M03 -38.481329317 0.000000000 180.000000000
M04 -12.961985173 0.000000000 0.000000000
MO 5 9.163278542 0.000000000 180.000000000
M06 32.878689694 0.000000000 0.000000000
M07 59.998755692 0.000000000 180.000000000
MO 8 88.969464462 0.000000000 0.000000000
M09 14.357878811 180.000000000 0.000000000
Stop 1.652742640 180.000000000 0.000000000
M10 7.192193522 0.000000000 0.000000000
Wafer 0.000000000 0.000000000 0.000000000
Table 2 for Figure 72
Free-form coefficients of the surfaces
Coefficient Formula M01 M02 M03
C7 x 2 y 1.7365310846e-08 -6.0343356543e-08 2.0501077670e-07
C9 3
y 2.3566902634e-09 -4.9658495637e-07 3.6842969532e-07
CIO X4 -6.9237303387e- 12 2.2741322381e-10 8.8221004032e-10
C12 x2 y2 4.0840339390e-l 1 -1.1726796694e-l l 4.8012549912e-10
C14 y4 -1.1483665592e-10 1.8216907480e-09 -1.3820038020e-10
C16 x 4 y -3 4248860004e- 15 - 1.779226942 le- 13 2.6898427019e-12
C18 x 2 y 3 8.2131350272e-14 1.6823351389e-12 4.1766372884e-13
C20 y -6.1749233084e-14 -8.3930319568e-12 3.4739747926e-12
C21 X .6 -1.1079000560e-18 7.8889098030e-17 5.0748219081e-16
C23 x 4
4 y 2 -3.3957619260e-17 3.6930968800e-16 4.1706763880e-15
C25 x 2 y 4
4 -1.0318830451e-16 -1.0573150338e-14 2.3580708684e-15
C27 .6
y -5.3902435498e-16 4.0355380796e-14 1.0553047104e-15
C29 x6 y 2.7418541785e-21 -7.7009175813e-19 7.9818128932e-18
C31 x4 y3 -1.6747153427e-19 -3.5966141424e-18 1.4097178664e-17
C33 x2 y5 -1.7719360100e-19 5.8468665921e-17 6.8956747602e-18
C35 7
y 1.3364453401e-18 -1.7153486777e-16 6.8636030182e-17
C36 X 7.9030757794e-24 -1.4884540118e-21 1.2637108485e-20
C38 x6 y2 -5.9420525635e-23 2.4943130960e-20 7.4316800507e-20
C40 x4 y4 9.012717363 le-22 4.9302364129e-20 8.6160468162e-20 C42 x2 y6 1.0781262015e-20 -2.6164962588e-19 -1.4527691729e-20
C44 y 1.2754067715e-20 6.9221861253e-19 9.9322710473e-20
C46 x8 y 1.6567217047e-25 -2.3692410287e-23 -4.0742247073e-22
C48 x6 y3 1.9161852480e-24 -2.2305708459e-22 -1.4181143598e-21
C50 x4 y5 1.8951826736e-24 -5.5806434083e-22 -1.3339991364e-21
C52 x2 y7 9.7708995176e-24 5.3027053656e-22 1.5159207757e-21
C54 9
y 3.6204022982e-23 -3.9285485751e-21 -1.6697748235e-22
C55 X10 -3.8004043444e-28 2.3607485281e-25 -1.1119702066e-24
C57 x8 y2 1.2408050817e-27 -5.3255210788e-25 -1.0845598855e-23
C59 x6 y4 -2.8347832247e-26 -2.1017890336e-24 -2.174602444 le-23
C61 x4 y6 -7.1309480226e-25 -7.6311156472e-25 -1.6004755492e-23
C63 x2 y8 -2.4113951478e-24 -5.8399872025e-24 1.763283691 le-23
C65 yio - 1.3941884290e-24 3.2197155780e-23 2.6192920205e-24
C67 x10 y -3.7417725609e-30 1.1711775069e-27 3.1285750479e-26
C69 x8 y3 -5.5176013803e-29 7.4650570563e-27 1.5403810547e-25
C71 x6 y5 -2.8047564124e-28 3.2650962330e-26 2.7206812573e-25
C73 x 4 y 7 -5.7736685569e-28 7.6416550637e-26 7.6829099900e-26
C75 x 2 y 9 -3.1085248480e-27 1.4167353722e-25 -2.5551500034e-25
C77 11
y -2.6633585239e-27 -2.2718730140e-25 2.7043398312e-25
C78 x12 8.0048263301e-33 -1.2538487186e-29 7.1761816244e-29
C80 x10 y2 -5.6118794530e-33 1.3167192512e-29 8.6685067282e-28
C82 x8 y4 1.4298861506e-31 1.7422143645e-28 2.0985152849e-27
C84 x6 y6 1.6640474118e-29 2.8265219972e-28 3.3832850056e-27
C86 x4 y8 1.2493638058e-28 -1.3488520149e-28 7.5092146108e-28
C88 x2 y10 2.4625545297e-28 -7.1327077137e-28 -2.4415888920e-27
C90 y12 1.1257695043e-28 6.2001497466e-28 9.7990149333e-28
C92 x12 y 5.8810044071e-35 -4.7244429694e-32 -1.0995287350e-30
C94 x10 y3 9.211002433 le-34 -3.4182739957e-31 -8.6230496939e-30
C96 x8 y5 7.2666617452e-33 -1.5788212501e-30 -2.3221557242e-29
C98 x6 y7 2.6567793698e-32 -5.6336083442e-30 -1.9078406747e-29
CIOO x4 y9 9.2581969118e-32 -5.7591491878e-30 3.7829006747e-30
C102 x2 y1 1 1.9847704727e-31 -3.8662623382e-30 2.6726747355e-29
C104 13
y -1.4962747560e-31 4.0747194506e-30 -2.3263971315e-29
C105 x14 -9.4872264230e-38 3.5260147174e-34 -2.2050351838e-33
C107 x12 y2 -3.4173568058e-37 2.4503815485e-34 -3.9323005565e-32
C109 x10 y4 2.1670548824e-36 -5.4206493377e-33 -1.0725248401e-31 cm x8 y6 -1.7526844602e-34 -1.2909251687e-32 -2.5066932016e-31
Cl 13 x6 y8 -2.2966260973e-33 -2.2635788914e-33 -2.2407852170e-31 Cl 15 x4 y10 -1.0117353340e-32 2.5481969732e-32 6.1870830904e-32 Cl 17 x 2 y 12 -1.4390438477e-32 3.1832631483e-32 2.2699760254e-31 Cl 19 y14 -6.8415725204e-33 -2.0635911170e-32 -1.2674630669e-31
C121 x14 y -4.7603889878e-40 9.4149983704e-37 1.6437661228e-35
C123 x12 y3 -8.1742112648e-39 9.2786821968e-36 2.2847135076e-34
C125 x10 y5 -7.5924887834e-38 4.1350502851e-35 9.0732765342e-34
C127 x8 y7 -4.2923605365e-37 1.9760015677e-34 1.0283579276e-33
C129 x6 y9 -1.3823817624e-36 3.1387777065e-34 5.4183912915e-34
C131 x4 y1 1 -5.5332166204e-36 1.0133966523e-34 -6.9740971360e-34
C133 x2 y13 -3.7883902297e-36 1.4781918533e-34 -1.1852596092e-33
C135 15
y 1.7537884070e-35 -2.1107297141e-34 1.1384880678e-33 C136 x16 5.8134479570e-43 -4.8718047953e-39 2.2997139768e-38
C138 x14 y2 5.4931191530e-42 -1.6883278427e-38 9.3840759757e-37
C140 x12 y4 -1.8913693040e-41 5.7143234826e-38 2.8864958205e-36
C142 x10 y6 9.0203399482e-40 1.8537900018e-37 8.6904244018e-36
C144 x8 y8 1.7071493529e-38 -1.4022881409e-37 1.1037447383e-35
C146 x6 y10 1.2537108072e-37 -6.4609289024e-37 6.1312390846e-36
C148 x4 y 3.9029767670e-37 -5.9512154809e-37 -8.3499243145e-36
C150 x 2 y 14 4.4095102186e-37 -2.0601666540e-36 -9.5680443063e-36
C152 yl6 2.3084471775e-37 2.1462904301e-36 6.9879429188e-36
C154 x16 y 1.4993507744e-45 -7.4209413139e-42 -6.7499739728e-41
C156 x14 y3 2.9080194316e-44 -9.4866972882e-41 -2.2976093219e-39
C158 x12 y5 2.8766571252e-43 -4.2545234385e-40 -1.3340026248e-38
C160 x10 y7 2.3414866026e-42 -2.5324688129e-39 -1.8683264155e-38
C162 x8 y9 7.7051789933e-42 -6.3389515645e-39 -1.5467684724e-38
C164 x6 y1 1 3.4670262144e-41 -5.5352748606e-39 4.5402834304e-40
C166 x4 y13 1.0281975847e-40 -5.0538416708e-40 1.8267074328e-38
C168 x2 y15 -9.8860625908e-42 7.3516789717e-39 2.4968581747e-38
C170 17
y -4.2446276147e-40 -7.1097305336e-39 -1.8712018602e-38 C171 x18 -1.4316718267e-48 2.6097665500e-44 4.0248945504e-44
C173 x16 y2 -2.3486538205e-47 2.0378904977e-43 -9.1099411645e-42
C175 x14 y4 8.2477460993e-48 5.3128957556e-44 -3.2148597851e-41
C177 x12 y6 -2.1587439138e-45 -2.7950902967e-43 -1.2220342037e-40
C179 x10 y8 -4.5767223304e-44 7.6555464629e-42 -1.7249473173 e-40
C181 x8 y10 -4.7358957323e-43 2.0385911166e-41 -1.7910389147e-40
C183 x6 y12 -2.3679233139e-42 1.7738118143e-41 -8.9081151170e-43
C185 x4 y14 -5.9181076796e-42 3.9699993657e-42 2.1440088748e-40
C187 x2 y16 -5.3961047672e-42 -9.1528380558e-42 1.8536561975e-40
C189 18
y -3.1683786825e-42 8.4639493637e-42 -1.2577358535e-40
Table 3a for Figure 72 Coefficient Formula M04 M05 M06
C7 x 2 y 5.3438811424e-08 -1.0496184531e-07 1.7644778636e-07
C9 3
y -6.7980032749e-08 -1.2083968815e-07 -2.3665582746e-08
CIO X4 1.7460610681e-10 -1.0156577960e-10 -3.9943321227e-10
C12 x2 y2 5.7691545827e-l 1 -2.0628942502e-10 6.8413895782e-l 1
C14 y4 -2.0053907196e- 10 -8.3671106840e-l 1 -3.1324679932e-10
C16 x 4 y 1.5841794528e-13 -4.6459707293e-13 -2.9578109121e-13
C18 x 2 y 3 5.7020816823e-13 1.6916351121e-15 1.1538444727e-13
C20 y -3.9261020325e-13 -1.0360135395e-13 1.1167065554e-12
C21 .6
X -2.2177435908e-16 -5.5002671440e-16 -5.0296248719e-16
C23 x 4
4 y 2 -5.6829442353e- 16 6.3844614459e-17 -2.1210078501e-16
C25 x 2 y 4
4 7.7757581226e-16 6.9813021254e-17 -2.0359656263e-15
C27 .6
y -2.1754945916e-15 3.9362470391e-16 -2.2513813538e- 15
C29 x6 y 6.0464628247e- 18 -1.8418494940e-18 2.7805696416e-19
C31 x4 y3 3.3526890566e-18 -1.7296391059e-18 3.3796207461e-18
C33 x2 y5 1.1578666515e-17 5.3220554636e-18 7.3474535697e-18
C35 7
y -9.3274690108e- 18 -8.2082087105e-19 2.6072208784e-17
C36 X 8.6859260732e-20 7.3589683615e-21 -8.6757474685e-21
C38 x6 y2 - 1.2955242238e-20 1.0085025322e-20 -3.3179800628e-20
C40 x4 y4 -1.2534597171e-20 -2.2581005265e-20 -8.6213191000e-20
C42 x2 y6 4.6701690210e-20 -1.4529234314e-20 -1.8439340355e-19
C44 y8 -9.3674731938e-21 -1.1325123068e-20 -3.6052056902e-20
C46 x8 y -2.0131505981e-22 6.6710910162e-22 2.1717804229e-23
C48 x6 y3 -2.8002362260e-22 4.9100316790e-22 -1.2057698365e-22
C50 x4 y5 -2.0163603577e-22 2.5468976354e-23 -3.7282073790e-22
C52 x2 y7 -4.5408213677e-22 -5.9292111170e-22 -8.9961667928e-22
C54 9
y 1.6128692652e-21 1.9764333871e-22 -6.9152293082e-22
C55 X10 -8.2471639467e-24 -1.8678786692e-24 8.9420492317e-25
C57 x8 y2 1.7631153366e-24 -2.9299397440e-24 2.3395751195e-24
C59 x6 y4 2.1814446542e-25 4.0828814313e-24 1.0130493302e-23
C61 x4 y6 3.8179846196e-24 2.8645392645e-24 1.3917583268e-23
C63 x2 y8 -1.0151752082e-23 -6.8211075693e-25 2.3692156037e-23
C65 yio -1.7209547172e-24 1.6813567055e-24 2.7403002308e-25
C67 x10 y 2.7514575547e-26 -5.7156817930e-26 -1.2658809439e-27
C69 x8 y3 4.8804045169e-26 -6.0410195657e-26 8.6608927159e-27
C71 x6 y5 6.1278818630e-27 -5.4167264716e-26 8.4859132591e-26
C73 x 4 y 7 2.0155194148e-26 -4.3302166872e-27 6.4977089146e-26
C75 x 2 y 9 6.6843584914e-26 6.0198198690e-26 2.0288001310e-25 C77 11
y -2.5404778524e-25 -2.8740488140e-26 4.3445094615e-26
C78 x12 2.982767796 le-28 1.1537955322e-28 -5.2351734690e-29
C80 x10 y2 -1.8448502322e-28 2.7225948422e-28 -7.2100488852e-29
C82 x8 y4 1.2368166754e-30 -1.8226721392e-28 -6.8724074790e-28
C84 x6 y6 -3.0372837677e-28 -7.452293853 le-28 -1.044492991 le-27
C86 x4 y8 -4.1572908134e-28 8.5111338471e-29 -1.6264319562e-27
C88 x2 y10 1.2189273127e-27 6.3922176674e-29 -2.8651634902e-27
C90 y12 1.7341371957e-28 - 1.1695102217e-28 -4.3321193942e-28
C92 x12 y -2.0397151353e-30 3.0834937086e-30 7.0354123356e-32
C94 x10 y3 -4.2371093554e-30 3.8654556606e-30 7.5906198859e-33
C96 x8 y5 -1.7466483865e-30 3.7857542592e-30 -8.5589328797e-30
C98 x6 y7 4.8283192281e-30 4.7361839502e-30 -1.0600049615e-29
CIOO x4 y9 -9.6270215822e-31 -4.5496643435e-31 -5.6605656581e-30
C102 x2 y1 1 -3.8907791157e-30 -3.4183383810e-30 -1.8235912513e-29
C104 13
y 2.2537247167e-29 1.9042145660e-30 -2.1348828960e-30
C105 x14 3.1640286760e-33 -4.3225996592e-33 1.8625029669e-33
C107 x12 y2 1.3473857640e-32 -1.2318532238e-32 -6.1412199298e-34
C109 x10 y4 -3.4796169342e-33 -2.7236689556e-33 2.4839642815e-32 cm x8 y6 1.4265856842e-32 5.1687119258e-32 7.2925558733e-32
Cl 13 x6 y8 1.0337084513e-32 3.0210447115e-32 4.0453804454e-32 Cl 15 x4 y10 1.2861928313e-32 -1.5929623371e-32 1.4254705036e-31 Cl 17 x 2 y 12 -7.3974614854e-32 1.6775464990e-34 2.1840791768e-31 Cl 19 y14 -3.8268610243 e-32 4.6987072990e-33 3.5021579641e-32 C121 x14 y 7.6475372798e-35 -8.8269284637e-35 -1.4803996130e-36 C123 x12 y3 1.8259943521e-34 -1.2499018389e-34 -1.9610547099e-35 C125 x10 y5 1.260211471 le-34 -1.2634414851e-34 3.2358855872e-34 C127 x8 y7 -1.2578462944e-34 -1.8865278088e-34 1.0144040846e-33 C129 x6 y9 -5.0005870709e-34 -1.8330394547e-34 3.6475572026e-34 C131 x4 y1 1 1.3280389898e-34 3.1488561311 e-35 4.1817917628e-34 C133 x2 y13 1.2949954463e-34 1.2465926967e-34 8.2462357019e-34 C135 15
y -1.0612573329e-33 -6.8281849396e-35 9.2380336220e-35 C136 x16 -5.2263702504e-37 9.9831981940e-38 -3.9386070623e-38 C138 x14 y2 -5.7423499737e-37 2.6120032919e-37 7.6284468689e-38 C140 x12 y4 3.5418657777e-37 2.5278862198e-37 -3.4444180776e-37 C142 x10 y6 -1.1793645802e-36 -1.0660180917e-36 -3.4027129082e-36 C144 x8 y8 1.1383174845e-36 -2.5141641976e-36 -3.5740679012e-36 C146 x6 y10 7.1341837925e-38 4.3225287749e-38 -1.3336143283e-36 C148 x4 y 2.0141582612e-37 4.9399400072e-37 -7.4390884232e-36 C150 x 2 y 14 1.9140110847e-36 -2.1800208956e-37 -9.3595354532e-36 C152 yl6 3.0285280687e-36 -5.2866229869e-38 -1.1423899096e-36
C154 x16 y -1.1075529633e-39 1.0209535062e-39 8.6492075053e-42
C156 x14 y3 -3.0844236729e-39 1.5801110360e-39 4.6137330446e-40
C158 x12 y5 -2.3829473642e-39 1.9796638212e-39 -3.6165233166e-39
C160 x10 y7 -8.9231385723e-40 1.5179460559e-39 -2.3878351950e-38
C162 x8 y9 9.9616254148e-39 5.4230800433e-39 -2.8584562982e-38
C164 x6 y1 1 1.2917692175e-38 6.8314981925e-40 -2.4433247953e-39
C166 x4 y13 -5.0041923192e-39 5.3334936174e-40 -1.3054168958e-38
C168 x2 y15 -1.2861767635e-39 -2.4955164539e-39 -1.4389314364e-38
C170 17
y 2.0587416459e-38 1.1043048552e-39 -1.6853398245e-39
C171 x18 1.0172805571e-41 -1.0318939994e-42 3.6581588748e-43
C173 x16 y2 1.0284984367e-41 -1.9484420800e-42 -1.1208279748e-42
C175 x14 y4 -9.2215764168e-42 -2.9505316426e-42 -8.2681788795e-43
C177 x12 y6 2.6845328509e-41 4.9711258306e-42 5.4314390467e-41
C179 x10 y8 -6.497762494 le-42 3.8330304073e-41 1.4262801822e-40
C181 x8 y10 -5.8711093928e-41 2.4524006646e-41 9.0849198955e-41
C183 x6 y12 -1.8376648577e-41 -3.8245735303e-42 2.9044303574e-41
C185 x4 y14 -5.3573846118e-42 -1.0313295608e-41 1.6251830010e-40
C187 x2 y16 -1.6730875460e-41 8.7088488916e-42 1.6553570937e-40
C189 18
y -8.0612771879e-41 -1.3667857149e-42 1.1948621320e-41
Table 3b for Figure 72
Coefficient Formula M07 M08 M09
C7 x 2 y -9.9163854003e-08 3.3327495630e-07 1.4942746122e-06
C9 y 3 -2.7955639978e-07 -1.9831651423e-07 -8.6661468433e-07
CIO X4 3.9034117708e-l l 2.1290051696e-10 1.3697659959e-09
C12 x2 y2 -1.3799390195e-09 -3.0095276882e-10 5.2330849021e-09
C14 y4 2.0694821863e-09 -5.8587906163e-10 1.9958742343e-09
C16 x 4 y 1.4574708934e-13 6.8209252757e-13 7.1845363047e-12
C18 x 2 y 3J 2.9683471463e-13 -1.1879948138e-13 -2.5965549872e-12
C20 y -6.0539627206e-14 -2.8478090468e-12 -1.2852139008e-l 1
C21 x6 9.1877835666e-17 9.7881654725e-16 6.9424338805e-15
C23 x4 y2 -2.5538607242e-16 1.3371399094e-15 4.4241134799e-14
C25 x y4 -2.1584971240e-14 -3.3096093431e-15 8.4353079879e-14
C27 y6 6.2796934068e-14 -1.5115022579e-14 1.5336550469e-13
C29 x6 y 8.6473613202e-18 2.6089811326e-17 5.6636394083e-17
C31 x4 y3 -1.0092321064e-17 3.0255111493e-17 9.2968065933e-17
C33 x2 y5 -8.3571092798e-16 -1.4236299061e-17 2.2906100134e-16
C35 7
y -4.3390705060e-15 -8.2207712686e-17 -5.1921114908e-16 C36 x 1.7343902984e-20 -7.9071230709e-20 3.1776988834e-20
C38 x6 y2 3.2288560760e-19 4.1999217337e-20 4.2655309513e-19
C40 x4 y4 8.0553168453e-19 1.2689838657e-19 1.7446959404e-18
C42 x2 y6 -1.5644721903e-17 -2.5428337346e-19 2.1847356802e-18
C44 y -8.6369427875e-17 -4.9827914502e-19 -3.4138338575e-18
C46 x8 y -5.7516102037e-22 -6.8163388904e-21 5.4815557875e-22
C48 x6 y3 1.7222528808e-21 -1.3456420091e-20 3.1244442984e-21
C50 x4 y5 -6.1792808728e-21 -3.5823712183e-21 1.1018210543e-20
C52 x2 y7 1.6375799033e-18 -8.7613822280e-21 -1.3368603127e-20
C54 9
y 4.1103859789e-18 -4.8748535697e-21 -7.6685932312e-20
C55 X10 -2.2996520737e-24 1.6192306026e-23 1.0563678914e-24
C57 x8 y2 -5.5034366086e-23 3.2256712971e-23 6.8784222705e-24
C59 x6 y4 -1.116549603 le-22 -8.5133794687e-23 4.2649304250e-23
C61 x4 y6 -1.1868737784e-21 -2.3212368916e-23 2.9190678903e-23
C63 x2 y8 2.6697263938e-20 -7.0290941087e-23 -3.3565645824e-22
C65 yio 1.0017746029e-19 -4.6333634034e-23 7.8550416403e-22
C67 x10 y 5.9591383667e-26 1.0494669826e-24 1.9421287088e-27
C69 x8 y3 -3.773868266 le-25 3.4722869826e-24 3.5329103894e-26
C71 x6 y5 3.1860840880e-24 1.4301964733e-24 -8.5189587423e-25
C73 x 4 y 7 1.6241025890e-23 5.6447330337e-25 -6.5048280888e-24
C75 x 2 y 9 -1.8533661732e-21 5.8721919245e-25 -1.0995953393e-23
C77 11
y -1.7562490793e-21 -2.1135505685e-25 1.0360801263e-23
C78 x12 1.5211127747e-28 -2.0172606727e-27 -3.3778010319e-29
C80 x10 y2 5.6123680217e-27 -1.1103382964e-26 2.1504473684e-29
C82 x8 y4 1.0211210144e-26 1.0030346583e-26 -1.0303141894e-27
C84 x6 y6 1.8318497948e-25 1.7197485007e-26 -1.8589777820e-26
C86 x4 y8 1.6073313896e-24 5.7553825425e-27 -3.3046076821e-26
C88 x2 y10 -2.8297794145e-23 8.1451490043e-27 9.7731691521e-26
C90 y12 -5.5774261760e-23 -2.6064491969e-28 -8.5416017167e-26
C92 x12 y -3.9776856560e-30 -8.8212903202e-29 2.9374810419e-31
C94 x10 y3 2.8333500279e-29 -4.2951867129e-28 -2.4461510023e-30
C96 x8 y5 1.2317199907e-28 -3.2299624952e-28 3.6672514884e-29
C98 x6 y7 -7.7811151561e-27 -8.2588979398e-29 3.9232294859e-28
CIOO x4 y9 1.7986896056e-26 7.3335057300e-30 1.9868950069e-27
C102 x2 y1 1 1.0514850944e-24 -6.2059556439e-29 3.0136082578e-27
C104 13
y 6.5879005859e-26 -1.0669738806e-29 -8.5181047792e-28
C105 x14 -5.9955235351e-33 1.4738665184e-31 6.5891369546e-34
C107 x12 y2 -3.1833468848e-31 1.4529010181e-30 -2.9130325399e-34
C109 x10 y4 -1.0575735583e-30 3.7569938768e-31 -7.0501257509e-33 cm x8 y6 1.5488903745e-30 -1.8021914232e-30 1.1318479620e-30
Cl 13 x6 y8 -3.0795949505e-28 -2.9112549149e-30 6.8462217335e-30 Cl 15 x4 y10 -2.6729861247e-28 6.9921502429e-31 8.012845171 le-30 Cl 17 x2 y12 1.5578007195e-26 -1.5529624457e-30 -1.5582947536e-29 Cl 19 y14 1.3416673563e-26 -2.0545997259e-31 1.2239949021e-29 C121 x14 y 1.3542805415e-34 3.8902314806e-33 -9.2502046050e-36 C123 x12 y3 -8.4835816735e-34 2.5691451601e-32 1.8848789689e-34 C125 x10 y5 -1.9269506856e-32 2.8280410786e-32 -5.3702954064e-34 C127 x8 y7 3.0046945413e-31 2.0534434970e-32 -1.3795033545e-32 C129 x6 y9 2.2775173298e-30 -2.3678032444e-32 -7.4526696812e-32 C131 x4 y1 1 -1.2705670385e-29 1.3648369723e-32 -3.0414481484e-31 C133 x2 y13 -2.9355915375e-28 -1.1244621065e-32 -3.5544744604e-31 C135 15
y 1.6224684514e-28 -1.4936482118e-33 -1.3192133427e-32 C136 x16 1.4065909932e-37 -5.7342616952e-36 1.1692301359e-38 C138 x14 y2 9.2574791135e-36 -8.5006497021e-35 7.2129065303e-38 C140 x12 y4 5.5468482917e-35 -1.1211175423e-34 3.4675674221e-36 C142 x10 y6 -4.326194956 le-34 1.7244765351e-35 -2.6322561090e-35 C144 x8 y8 8.9251804922e-33 2.8783258114e-34 -3.0582452569e-34 C146 x6 y10 1.0615321336e-31 -1.0673232927e-34 -1.0076930550e-33 C148 x4 y -1.1907584609e-31 8.0692822109e-35 -2.8445237575e-34 C150 x 2 y 14 -4.2965902834e-30 -4.1309441461e-35 1.8619360433e-33 C152 yl6 -2.5085316780e-31 -5.0736763495e-36 -6.6782448024e-34 C154 x16 y -1.7949962354e-39 -6.9537312746e-38 1.8156340976e-40 C156 x14 y3 8.0327554897e-39 -5.9885968469e-37 -3.2398646224e-39 C158 x12 y5 4.8883707662e-37 -8.4279738727e-37 -7.2267956723e-39 C160 x10 y7 -3.9452777494e-36 -1.1784839822e-36 2.2129749716e-37 C162 x8 y9 -4.1320644552e-35 1.1116803366e-36 1.3247789548e-36 C164 x6 y1 1 -2.9141937934e-34 -3.9207359852e-37 5.4935237760e-36 C166 x4 y13 2.4640988284e-33 1.2919583376e-37 1.8762573713e-35 C168 x2 y15 3.1597759333e-32 -8.2573605867e-38 1.5711613601e-35 C170 17
y -3.2959853415e-32 -7.0033043308e-39 4.0057107527e-36 C171 x18 - 1.4997419975e-42 9.0513220649e-41 -3.5595206643e-43 C173 x16 y2 -1.0802568735e-40 1.8461077168e-39 -3.2113165098e-43 C175 x14 y4 -1.0166580789e-39 4.5636512564e-39 -8.6702631133e-41 C177 x12 y6 8.4188152202e-39 2.3031597322e-39 1.0031549113e-40 C179 x10 y8 -5.9960761375e-38 -6.2778003312e-39 4.8743149422e-39 C181 x8 y10 -1.8227731841e-36 1.1287028017e-39 2.5577957989e-38 C183 x6 y12 -1.2376013000e-35 -9.0390315541e-40 4.7260701283e-38 C185 x4 y14 3.6074268664e-35 -1.3967121303e-40 -4.2712054826e-38 C187 x2 y16 4.6249227368e-34 -7.8192796629e-41 -9.4817542658e-38
C189 y18 -2.6793715300e-34 -8.5522697680e-43 -4.0086243176e-39
Table 3c for Figure 72
Coefficient Formula M10
C7 x 2 y -1.1135925881e-08
C9 y 3 9.4489474997e-09
CIO X4 -2.1648054275e-l l
C12 x2 y2 -5.9621091352e-l 1
C14 y4 -1.2663811344e-l 1
C16 x 4 y -2.7176472556e-14
C18 x 2 y 3J -4.0009778226e-15
C20 y 1.4141511737e-14
C21 x6 -4.5880482545e-17
C23 x4 y2 -1.7392393674e-16
C25 x y4 -1.5369695774e-16
C27 y6 -3.4244784588e-17
C29 x6 y -4.6184111376e-20
C31 x4 y3 -4.9710892138e-20
C33 x2 y5 9.9588944303e-21
C35 7
y 1.8390633337e-20
C36 X -8.5853232786e-23
C38 x6 y2 -3.9929038177e-22
C40 x4 y4 -6.0247845405e-22
C42 x2 y6 -3.6291038858e-22
C44 y -6.5259311158e-23
C46 x8 y -6.9598342785e-26
C48 x6 y3 - 1.9694698871 e-25
C50 x4 y5 - 1.5366496782e-25
C52 x2 y7 -1.3481080044e-26
C54 9
y 6.4525194182e-26
C55 X10 -9.9184590239e-29
C57 x8 y2 -9.410768984 le-28
C59 x6 y4 -2.1218619138e-27
C61 x4 y6 -2.2000785725e-27
C63 x2 y8 -9.7595243866e-28
C65 yio -1.0121292730e-28
C67 x10 y -2.4208704823e-31
C69 x8 y3 -5.3668659158e-32 C71 x6 y5 4.8860557274e-31
C73 x 4 y 7 1.3512155626e-30
C75 x 2 y 9 1.1566716304e-30
C77 11
y 6.0919566890e-32
C78 x12 -5.2169877879e-34
C80 x10 y2 -8.9079149109e-34
C82 x8 y4 -3.9369126360e-34
C84 x6 y6 1.2013242523e-33
C86 x4 y8 2.6080180505e-33
C88 x2 y10 7.0083888101e-34
C90 y12 -2.926329971 le-34
C92 x12 y 6.6404057867e-37
C94 x10 y3 -4.1870528170e-36
C96 x8 y5 -1.0283900608e-35
C98 x6 y7 -1.6300053824e-35
CIOO x4 y9 - 1.5892262825e-35
C102 x2 y1 1 -7.1860406460e-36
C104 13
y -2.6312672352e-37
C105 x14 5.953389041 le-40
C107 x12 y2 -7.9071848175e-39
C109 x10 y4 -4.7254806588e-38 cm x8 y6 -1.0173634653e-37
Cl 13 x6 y8 -1.2292476274e-37 Cl 15 x4 y10 -8.4972375049e-38 Cl 17 x 2 y 12 -2.1554756540e-38 Cl 19 y14 -1.5251829282e-39 C121 x14 y -3.7334662648e-42 C123 x12 y3 1.3852955180e-41 C125 x10 y5 4.0060655442e-41 C127 x8 y7 7.8273915649e-41 C129 x6 y9 1.0909902290e-40 C131 x4 y1 1 8.6264792829e-41 C133 x2 y13 2.9282855343e-41 C135 15
y 1.3311609400e-42 C136 x16 -2.0525221154e-45 C138 x14 y2 7.1994464354e-45 C140 x12 y4 1.3022102958e-43 C142 x10 y6 3.9938141782e-43 C144 x8 y8 6.0660879120e-43 C146 x6 y10 6.0465487080e-43
C148 x4 y12 3.266924870 le-43
C150 x 2 y 14 5.2430792755e-44
C152 yl6 3.3990271908e-45
C154 x16 y 3.822810290 le-48
C156 x14 y3 -4.1011846530e-47
C158 x12 y5 -1.2390697768e-46
C160 x10 y7 -2.2932781098e-46
C162 x8 y9 -3.1144747690e-46
C164 x6 y1 1 -3.0757424604e-46
C166 x4 y13 -1.7431168639e-46
C168 x2 y15 -4.0194271308e-47
C170 17
y 1.9477460832e-49
C171 x18 -2.6364435798e-51
C173 x16 y2 -3.9046752420e-50
C175 x14 y4 -3.6463571037e-49
C177 x12 y6 -1.2618972590e-48
C179 x10 y8 -2.1743524254e-48
C181 x8 y10 -2.5364506860e-48
C183 x6 y12 -1.9388279237e-48
C185 x4 y14 -8.2307322204e-49
C187 x2 y16 -1.1858465375e-49
C189 18
y -8.6176846395e-51
Table 3d for Figure 72
Coordinates of the stop edge
¾ [mm] yi [mm] ¾+N/2 [mm] yi+N/2 [mm]
-9.717937 189.126008 -27.160388 -172.680268
-30.150523 187.630941 -6.229447 -174.175335
-50.583109 184.640806 6.727803 -174.175335
-65.035426 181.650672 16.196562 -173.676980
-75.999252 178.660537 37.625859 -171.185201
-95.933482 172.181912 48.589686 -169.191778
-111.382511 165.703287 57.061734 -167.198355
-126.333183 158.227951 74.504185 -162.214797
-133.310164 154.241105 92.943348 -155.237817
-148.759192 144.273990 114.372645 -144.772346
-158.726307 136.798654 125.336472 -138.293721
-168.693422 128.326606 144.772346 -124.838116 - I l l -
-179.158893 117.861135 153.244394 -117.861135
-183.145739 113.375934 163.211509 -108.890732
-188.129296 107.395665 177.663826 -93.441703
-195.106277 97.926905 182.647383 -87.461434
-203.079969 84.969656 189.624364 -77.992675
-210.555305 69.520627 194.607921 -70.517339
-213.545440 61.546935 201.584902 -58.556801
-217.033930 49.586397 209.060238 -42.609417
-218.528997 43.107773 213.545440 -30.648879
-220.024064 33.639013 217.532286 -16.196562
-221.020776 21.678475 219.027353 -8.222870
-221.020776 11.213004 220.522420 3.239312
-220.522420 2.740957 221.020776 10.714649
-218.030641 -13.704783 221.020776 21.180119
-216.037218 -22.176831 220.522420 28.655456
-213.047084 -32.143946 219.027353 40.117638
-206.568459 -48.589686 217.532286 47.592974
-199.093123 -63.042003 215.538863 55.068311
-193.611210 -72.012406 212.050372 65.533781
-188.627652 -79.487742 206.070103 79.487742
-182.149027 -87.959790 198.096411 93.441703
-167.696710 -104.405530 188.129296 107.395665
-162.713153 -109.389088 179.657249 117.362780
-150.254259 -120.352914 170.686845 126.333183
-137.297010 -130.320029 158.726307 136.798654
-125.336472 -138.293721 145.270702 146.765769
-117.861135 -142.778923 127.329895 157.729595
-98.425261 -152.746038 111.382511 165.703287
-89.454857 -156.732884 90.451569 174.175335
-79.986098 -160.221374 74.504185 179.158893
-64.537070 -165.204932 56.065022 183.644095
-53.074888 -168.195066 34.635725 187.132585
-43.606128 -170.188489 10.216293 189.126008
Table 4 for Figure 72
Wavelength 13.5 nm
NA 0.55
P x 4.30 bg -8.40
Chief ray angle (CRA) 5.16°
Etendue 12.58 mm2
Mean wavefront aberration RMS 12.81 ihl
System transmission 7.47 %
Position of the entry pupil EP (x) -2380.79 mm
Position of the entry pupil EP (y) -2367.68 mm
Object-image offset 2038.39 mm
Working distance between M9 and
81 mm
image field
Reticle tilt 0.0°
Installation length 2297.22 mm
Obscuration 18.4 %
Installation space cuboid (790 x 2376 x 1807) mm
Table 5 for Figure 72
Ml M2 M3 M4 M5
Maximum angle of incidence 11.8 83.7 79.6 80.6 83.0
[deg]
Minimum angle of incidence [deg] 8.5 73.4 73.5 75.5 76.9
Mirror extent (x) [mm] 625.3 389.3 323.1 276.3 303.5
Mirror extent (y) [mm] 265.0 294.8 240.4 266.9 331.0
Maximum mirror diameter 625.5 331.0 347.8 390.2
[mm] 390.0
Table 6a for Figure 72
M6 M7 M8 M9 M10
Maximum angle of incidence 79.8 81.7 78.0 20.3 8.4
[deg]
Minimum angle of incidence [deg] 73.8 72.4 70.4 0.0 5.2
Mirror extent (x) [mm] 338.2 301.0 233.0 292.0 790.1
Mirror extent (y) [mm] 263.3 112.0 247.5 155.7 768.1
Maximum mirror diameter 340.1 301.1 278.5 292.1 790.3
[mm]
Table 6b for Figure 72 In the projection optical unit 41, the mirror M7 has the largest x/y-aspect ratio of approximately 2.69. None of the mirrors Ml to M10 of the projection optical unit 41 has an x/y-aspect ratio that is greater than 2.7. If only the Pareto-optimal inscription of structuring fields 4i into the field specification field 19 is considered, what was already explained above in respect of the projection optical unit 7 applies to the admissible scale ratio curves 24i in the case of the projection optical unit 41. This also applies when additionally considering the auxiliary areas 25 to 28. If the shadowing region D is additionally taken into account, the scale ratio curves 24s, 249 and 24ii to 24i6 remain admissible for the projection optical unit 41.
In principle, the respective projection optical unit for the projection exposure apparatus 1 can be embodied in such a way that the first reduction scale bc and/or the second reduction scale bn has an integer configuration.
In order to produce a microstructured or nanostructured component, the projection exposure apparatus 1 is used as follows: first, the reflection mask 10 or the reticle and the substrate or the wafer 11 are provided. Subsequently, a structure on the reticle 10 is projected onto a light- sensitive layer of the wafer 11 with the aid of the projection exposure apparatus 1. Then, a microstructure or nanostructure on the wafer 11, and hence the microstructured component, is produced by developing the light-sensitive layer.

Claims

Patent Claims
1. Imaging optical unit (7; 37; 38; 39; 40; 41) for a projection exposure apparatus (1), for imaging an object field (4) into an image field (8),
wherein the projection exposure apparatus (1) is embodied in such a way that a rectangular structuring field (4i) on an object (10) to be imaged, which carries structures to be imaged, is imaged in the entirety thereof into an imaging field (21) by displacing the structuring field (4i) relative to the object field (4), said imaging field being displaced relative to the image field (8) in a manner synchronized with the object displacement,
wherein the structuring field (4i) is situated within a larger object specification field (19) that is defined by the object (10) and delimited by a rectangular specification field basic shape and convexly curved specification field comer regions (20),
wherein the object field (4) is spanned by a first field direction (x) and a second field direction (y) perpendicular thereto,
wherein the imaging optical unit (7; 37; 38; 39; 40; 41) has a first reduction scale bc in the first field direction (x), given by a ratio of the extent in the first field direction (x) of, firstly, the structuring field (4i) and, secondly, the imaging field (21),
wherein the imaging optical unit (7; 37; 38; 39; 40; 41) has a second reduction scale bg in the second field direction (y), given by a ratio of the extent in the second field direction (y) of, firstly, the structuring field (4i) and, secondly, the imaging field (21), wherein the reduction scales bc and bn are chosen in such a way that an area of the structuring field (4i) is no more than 10% smaller than the area of the largest, rectangular Pareto structuring field which can be fitted into the object specification field (19).
2. Imaging optical unit according to Claim 1, characterized in that the reduction scale bc in the first field direction (x) is integer and/or in that the second reduction scale bn in the second field direction (y) is integer.
3. Imaging optical unit according to Claim 1 or 2, characterized by a ratio (bc/bg) of
a first reduction scale (bc) in the first field direction (x) and a second reduction scale (bn) in the second field direction (y),
which leads to the x/y-aspect ratio of the structuring field (4i) which can be inscribed in the object specification field (19) when the rounded specification field corner regions (20) are taken into account, wherein an area of the structuring field (4i) deviates by less than 10% from the area of the Pareto structuring field with a Pareto-optimal x/y-aspect ratio.
4. Imaging optical unit according to any one of Claims 1 to 3, characterized in that the
imaging field (21) has dimensions of 26 mm x 16.5 mm in the two field directions (x, y).
5. Imaging optical unit according to any one of Claims 1 to 3, characterized in that the object specification field (19) has an extent of 1514 mm in both field directions (x, y).
6. Imaging optical unit according to any one of Claims 1 to 5, characterized in that the
specification field corner regions (20) are rounded with a radius of curvature of 19 mm.
7. Method for designing an imaging optical unit (7; 37; 38; 39; 40; 41) according to any one of Claims 1 to 6, including the following steps:
specifying
— a first reduction scale (bc) of the imaging optical unit (7; 37; 38; 39; 40; 41) in a first field direction (x) and
— a second reduction scale (bg) of the imaging optical unit (7; 37; 38; 39; 40; 41) in a second field direction (y),
wherein the following is included when ascertaining the reduction scales (b /bn) to be specified:
— a shape of the object specification field (19), which is delimited by the rectangular specification field basic shape and the convexly rounded specification field comer regions (20),
— dimensions of the image field (8) in both field directions (x, y),
specifying an arrangement of optical components (Ml to M8, AS) of the imaging optical unit (7; 37; 38; 39; 40; 41), by means of which the reduction scales (b /bn) are produced between the object field (4) and the image field (8).
8. Method according to Claim 7, characterized in that the ascertainment of the reduction scales (b /bn) to be specified incorporates a need for at least one auxiliary area (25 to 28) on the object specification field (19), wherein no structures to be imaged are present on the auxiliary area (25 to 28), and so the structuring field (4i) does not overlap with the auxiliary area (25 to 28).
9. Method according to Claim 3 or 4, characterized in that the ascertainment of the reduction scale ratio (b /bn) to be specified incorporates a need for at least one stop-shadowed area (D) on the specification field (19), wherein no structures to be imaged are present on the stop- shadowed area (D), and so the structuring field (4i) does not overlap with the stop-shadowed area (D).
10. Optical system
comprising an imaging optical unit according to any one of Claims 1 to 6,
comprising a reticle holder (10a) for holding the object (10), said reticle holder being displaceable along a field direction (y), which represents an object displacement direction, with the aid of a reticle displacement drive (10b),
comprising a substrate holder (12) for holding a wafer (11), on which the structures to be imaged are imaged, wherein the substrate holder (12) is displaceable by means of a substrate displacement drive (12a) in a manner synchronized with the reticle displacement drive (10b).
11. Optical system comprising an imaging optical unit according to one of Claims 1 to 6 and comprising an illumination optical unit (6) for illuminating the object field (4) with illumination and imaging light (3).
12. Optical system according to Claim 11, characterized by an EUV light source (2).
13. Projection exposure apparatus for projection lithography, comprising an optical system
according to Claims 10 to 12.
14. Projection exposure apparatus according to Claim 13, characterized in that a reduction factor of the projection optical unit in the object displacement direction is greater than in the direction perpendicular thereto.
15. Method for producing a structured component, including the following method steps:
providing a reticle (10) and a wafer (11),
projecting a structure on the reticle (10) onto a light-sensitive layer of the wafer (11) with the aid of the projection exposure apparatus according to Claim 13 or 14, producing a microstructure or nanostructure on the wafer (11).
PCT/EP2020/057854 2019-04-11 2020-03-20 Imaging optical unit for imaging an object field into an image field, and projection exposure apparatus comprising such an imaging optical unit WO2020207768A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019205271.1A DE102019205271A1 (en) 2019-04-11 2019-04-11 Imaging optics for imaging an object field in an image field as well as projection exposure system with such imaging optics
DE102019205271.1 2019-04-11

Publications (2)

Publication Number Publication Date
WO2020207768A1 true WO2020207768A1 (en) 2020-10-15
WO2020207768A8 WO2020207768A8 (en) 2020-12-03

Family

ID=70292933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/057854 WO2020207768A1 (en) 2019-04-11 2020-03-20 Imaging optical unit for imaging an object field into an image field, and projection exposure apparatus comprising such an imaging optical unit

Country Status (3)

Country Link
DE (1) DE102019205271A1 (en)
TW (1) TW202043839A (en)
WO (1) WO2020207768A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022208493A1 (en) 2022-01-17 2023-07-20 Carl Zeiss Smt Gmbh Optical system for EUV projection lithography

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113761459B (en) * 2021-08-20 2022-09-27 杭州罗莱迪思科技股份有限公司 Curvature distribution-based hyperboloid lens calculation method and application thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10155711A1 (en) 2001-11-09 2003-05-22 Fraunhofer Ges Forschung Mirror for the EUV spectral region used in X-ray techniques comprises a layer arrangement having a number of partial layer systems applied on a substrate
US6577443B2 (en) 1998-05-30 2003-06-10 Carl-Zeiss Stiftung Reduction objective for extreme ultraviolet lithography
US20070058269A1 (en) 2005-09-13 2007-03-15 Carl Zeiss Smt Ag Catoptric objectives and systems using catoptric objectives
DE102009011328A1 (en) 2009-03-05 2010-08-19 Carl Zeiss Smt Ag Projection optics for use in projection exposure apparatus utilized for producing e.g. microchip, has beam path formed between object field and mirror and another beam path formed after another mirror, where paths intersect each other
DE102009045096A1 (en) 2009-09-29 2010-10-07 Carl Zeiss Smt Ag Lighting system for microlithographic-projection exposure system for illuminating object field in object level with illumination radiation, has two mirrors, where one mirror is flat mirror
US8027022B2 (en) 2007-07-24 2011-09-27 Carl Zeiss Smt Gmbh Projection objective
WO2012126867A1 (en) 2011-03-22 2012-09-27 Carl Zeiss Smt Gmbh Deflection mirror and projection exposure apparatus for microlithography comprising such a deflection mirror
DE102012202675A1 (en) 2012-02-22 2013-01-31 Carl Zeiss Smt Gmbh Imaging optics for use in optical system of projection exposure system, has imaging lights carrying components and mirror for grazing incidence of imaging light, where mirror for touching incident is arranged in image beam path
DE102012208016A1 (en) 2012-05-14 2013-05-08 Carl Zeiss Smt Gmbh Illumination lens for lighting system of scanner to manufacture e.g. memory chips, has optical component for guiding light to field, where lens is formed such that beam tufts are overlaid for coinciding edges of beam tufts in sections
US20160085061A1 (en) 2013-07-29 2016-03-24 Carl Zeiss Smt Gmbh Projection optical unit for imaging an object field into an image field, and projection exposure apparatus comprising such a projection optical unit
US20170176868A1 (en) * 2014-02-24 2017-06-22 Asml Netherlands B.V. Lithographic apparatus and method
US20170285493A1 (en) * 2016-04-05 2017-10-05 Carl Zeiss Smt Gmbh Projection exposure method and projection exposure apparatus
DE102017206541A1 (en) 2016-08-17 2018-02-22 Carl Zeiss Smt Gmbh illumination optics

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015209827B4 (en) * 2015-05-28 2019-06-06 Carl Zeiss Smt Gmbh Imaging optics for imaging an object field in an image field, optical system and projection exposure apparatus with such an imaging optics

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6577443B2 (en) 1998-05-30 2003-06-10 Carl-Zeiss Stiftung Reduction objective for extreme ultraviolet lithography
DE10155711A1 (en) 2001-11-09 2003-05-22 Fraunhofer Ges Forschung Mirror for the EUV spectral region used in X-ray techniques comprises a layer arrangement having a number of partial layer systems applied on a substrate
US20070058269A1 (en) 2005-09-13 2007-03-15 Carl Zeiss Smt Ag Catoptric objectives and systems using catoptric objectives
US8027022B2 (en) 2007-07-24 2011-09-27 Carl Zeiss Smt Gmbh Projection objective
DE102009011328A1 (en) 2009-03-05 2010-08-19 Carl Zeiss Smt Ag Projection optics for use in projection exposure apparatus utilized for producing e.g. microchip, has beam path formed between object field and mirror and another beam path formed after another mirror, where paths intersect each other
DE102009045096A1 (en) 2009-09-29 2010-10-07 Carl Zeiss Smt Ag Lighting system for microlithographic-projection exposure system for illuminating object field in object level with illumination radiation, has two mirrors, where one mirror is flat mirror
WO2012126867A1 (en) 2011-03-22 2012-09-27 Carl Zeiss Smt Gmbh Deflection mirror and projection exposure apparatus for microlithography comprising such a deflection mirror
DE102012202675A1 (en) 2012-02-22 2013-01-31 Carl Zeiss Smt Gmbh Imaging optics for use in optical system of projection exposure system, has imaging lights carrying components and mirror for grazing incidence of imaging light, where mirror for touching incident is arranged in image beam path
DE102012208016A1 (en) 2012-05-14 2013-05-08 Carl Zeiss Smt Gmbh Illumination lens for lighting system of scanner to manufacture e.g. memory chips, has optical component for guiding light to field, where lens is formed such that beam tufts are overlaid for coinciding edges of beam tufts in sections
US20160085061A1 (en) 2013-07-29 2016-03-24 Carl Zeiss Smt Gmbh Projection optical unit for imaging an object field into an image field, and projection exposure apparatus comprising such a projection optical unit
US20170176868A1 (en) * 2014-02-24 2017-06-22 Asml Netherlands B.V. Lithographic apparatus and method
US20170285493A1 (en) * 2016-04-05 2017-10-05 Carl Zeiss Smt Gmbh Projection exposure method and projection exposure apparatus
DE102017206541A1 (en) 2016-08-17 2018-02-22 Carl Zeiss Smt Gmbh illumination optics

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Pareto-Optimum - Wikipedia", 9 July 2020 (2020-07-09), XP055713297, Retrieved from the Internet <URL:https://de.wikipedia.org/wiki/Pareto-Optimum> [retrieved on 20200709] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022208493A1 (en) 2022-01-17 2023-07-20 Carl Zeiss Smt Gmbh Optical system for EUV projection lithography

Also Published As

Publication number Publication date
DE102019205271A1 (en) 2020-10-15
TW202043839A (en) 2020-12-01
WO2020207768A8 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
US10656400B2 (en) Imaging optical unit and projection exposure unit including same
US10527832B2 (en) Imaging optical unit and projection exposure apparatus including same
US10558026B2 (en) Projection optical unit for imaging an object field into an image field, and projection exposure apparatus comprising such a projection optical unit
US9983484B2 (en) Illumination optical unit for EUV projection lithography
US10330903B2 (en) Imaging optical unit for imaging an object field into an image field, and projection exposure apparatus including such an imaging optical unit
US10545323B2 (en) Projection optical unit for EUV projection lithography
US11137688B2 (en) Optical system for transferring original structure portions of a lithography mask, projection optical unit for imaging an object field in which at least one original structure portion of the lithography mask is arrangeable, and lithography mask
US10254653B2 (en) Imaging optical unit for imaging an object field into an image field, and projection exposure apparatus including such an imaging optical unit
WO2020207768A1 (en) Imaging optical unit for imaging an object field into an image field, and projection exposure apparatus comprising such an imaging optical unit
JP5634403B2 (en) Microlithography projection exposure apparatus having two or more operating states
WO2023247238A1 (en) Imaging euv optical unit for imaging an object field into an image field
WO2023247170A1 (en) Imaging euv optical unit for imaging an object field into an image field
US11119413B2 (en) Imaging optical unit for imaging an object field into an image field
US20240094637A1 (en) Imaging optical unit
US20240103382A1 (en) Imaging optical unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20719566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20719566

Country of ref document: EP

Kind code of ref document: A1