WO2020207442A1 - 太赫兹信号的生成方法、设备及计算机可读存储介质 - Google Patents

太赫兹信号的生成方法、设备及计算机可读存储介质 Download PDF

Info

Publication number
WO2020207442A1
WO2020207442A1 PCT/CN2020/083996 CN2020083996W WO2020207442A1 WO 2020207442 A1 WO2020207442 A1 WO 2020207442A1 CN 2020083996 W CN2020083996 W CN 2020083996W WO 2020207442 A1 WO2020207442 A1 WO 2020207442A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical
terahertz
frequency
mixed
Prior art date
Application number
PCT/CN2020/083996
Other languages
English (en)
French (fr)
Inventor
宗柏青
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020207442A1 publication Critical patent/WO2020207442A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular to a method, equipment and computer-readable storage medium for generating a terahertz signal.
  • the invention of radio ushered in a new era in human history Among the various radio applications known so far, the two most common and prominent are wireless communication and radar detection.
  • the wireless communication system and the radar sensor system are designed and developed in completely different ways. Although both use RF transceiver functional blocks, there are some application examples of system integration, such as secondary surveillance radar system or identification friend or foe. System, etc., in most cases are generally independent research and development.
  • Radar-communication fusion wireless communication system and radar sensor system fusion
  • the Internet of Vehicles using advanced sensor technology and network technology to comprehensively perceive the condition of roads and vehicles, and realize the communication between multiple systems.
  • Large-scale and big data interaction enhance the safety performance of vehicle driving.
  • the fusion application of wireless communication system and radar sensor system mainly adopts microwave OFDM (Orthogonal Frequency Division Multiplexing, orthogonal frequency division multiplexing technology) technology, which aims to utilize orthogonal frequency division multiplexing technology with high spectrum utilization and resistance.
  • microwave OFDM Orthogonal Frequency Division Multiplexing, orthogonal frequency division multiplexing technology
  • the terahertz signal has the characteristics of high resolution, good directivity, strong anti-interference ability, and better penetration of smoke and dust due to its high frequency.
  • the limited frequency response bandwidth of electronic devices and nonlinear constraints it is difficult to generate terahertz signals using traditional electronic methods, and the transmission loss of terahertz signals is large and the signal coverage is narrow, which is not suitable for long-distance transmission.
  • the main purpose of the present disclosure is to provide a terahertz signal generation method, device, and computer-readable storage medium, which are intended to solve the existing difficulties in terahertz signal generation and the technical problem of poor long-distance transmission performance of terahertz signals.
  • the present disclosure provides a method for generating a terahertz signal.
  • the method for generating a terahertz signal includes the steps of: obtaining a mixed emission signal corresponding to a radar emission signal and a communication emission signal; Coherent first optical signal and second optical signal; modulate the mixed transmit signal into the optical wavelength of the first optical signal by a first single-sideband modulator to obtain a third optical signal;
  • the combiner connected to the first single-sideband modulator couples the third optical signal with the second optical signal to obtain a coupled signal; the coupling is performed by the first photoelectric converter connected to the combiner
  • the signal undergoes photoelectric mixing to convert the coupled signal into a terahertz signal.
  • the present disclosure also provides a terahertz signal generation device, which includes an optical frequency comb, a first optical filter, a first single-sideband modulator, and a second optical frequency comb.
  • Filter, combiner and first photoelectric converter said optical frequency comb is connected to said first optical filter and said second optical filter respectively; said first optical filter is connected to said first single The sideband modulator is connected; the second optical filter and the first single-sideband modulator are respectively connected to the combiner; the combiner is connected to the first photoelectric converter; the optical The frequency comb is used to generate an optical frequency signal; the first optical filter is used to filter the optical frequency signal to obtain a first optical signal; the second optical filter is used to filter the optical frequency signal to obtain A second optical signal that is coherent with the first optical signal; the first single-sideband modulator is used to modulate the acquired radar transmission signal and the mixed transmission signal corresponding to the communication transmission signal to the first optical signal In the optical wavelength, a third optical signal is obtained; the combiner is
  • the present disclosure also provides a computer-readable storage medium with a terahertz signal generation program stored on the computer-readable storage medium, and the terahertz signal generation program is executed when the processor is executed. The steps of the method for generating a terahertz signal as described above.
  • FIG. 1 is a schematic flowchart of a first embodiment of a method for generating a terahertz signal of the present disclosure
  • FIG. 2 is a schematic diagram of the first structure of a terahertz signal generating device in an embodiment of the disclosure
  • FIG. 3 is a schematic diagram of an optical spectrum corresponding to a coupled signal in an embodiment of the disclosure
  • FIG. 4 is a schematic diagram of optical spectrum corresponding to radar receiving signals and communication receiving signals in the embodiments of the disclosure
  • Fig. 5 is a schematic flowchart of a second embodiment of a method for generating a terahertz signal of the present disclosure.
  • FIG. 1 is a schematic flowchart of a first embodiment of the method for generating a terahertz signal in the present disclosure.
  • the embodiment of the present disclosure provides an embodiment of a method for generating a terahertz signal. It should be noted that although the logical sequence is shown in the flowchart, in some cases, the sequence shown here can be executed in a different order than here. Steps out or described.
  • the generation method of terahertz signal is applied to the generating equipment of terahertz signal.
  • the generating equipment of terahertz signal includes optical sparseness, optical filter, single sideband modulator, combiner, splitter, photodetector, circulator , Amplifier and antenna.
  • the optical frequency comb is an optical frequency comb (OFC), which refers to a spectrum composed of a series of frequency components that are evenly spaced and have a coherent and stable phase relationship.
  • OFC optical frequency comb
  • the optical frequency comb is used as the light source.
  • Optical filter is an instrument used for wavelength selection. It can select the desired wavelength from many wavelengths, and light other than this wavelength will be rejected. It can be used for wavelength selection and noise of optical amplifiers. Filtering, gain equalization, optical multiplexing/demultiplexing. In the embodiments of the present disclosure, the optical filter is used to extract communication signals and radar signals, and to separate communication signals and radar signals.
  • a combiner is a radio frequency device that combines two or more radio frequency signals sent from different transmitters into one radio frequency device to send to the antenna for transmission, while avoiding the mutual influence between the signals of each port.
  • the combiner is used to combine two beams of light with different frequencies into one beam.
  • the splitter can separate the multiple frequency band signals input on the line in the wireless communication system into a single frequency band and output to different communication lines.
  • the circulator is a device that transmits electromagnetic waves in a unidirectional loop. In modern radar and microwave multiplex communication systems, devices with unidirectional loop characteristics are required.
  • the circulator has three ports, the input signal and the output signal are rotated in a clockwise direction, the input signal and the output signal can be performed at the same time, and it has a duplex function.
  • the photodetector includes a first photoelectric converter based on a single-line carrier photodetector (UTC-PD), a second photoelectric converter in the mid-band, and a third photoelectric converter in the mid-band.
  • the first photoelectric converter is an ultra-wideband single-row carrier photodetector. In the ultra-wideband single-row carrier photodetector, only high-speed moving electrons are excited carriers. Therefore, The first photoelectric converter has an ultra-fast picosecond-level photon response speed and an ultra-large bandwidth.
  • the second photoelectric converter and the third photoelectric converter are low-speed photoelectric converters (PIN), which are used to convert the output signal of the optical filter into an electric signal in the middle frequency band.
  • the frequency of the signal received by the terahertz signal generator is terahertz, generally 300G, it is impossible to directly analyze the signal. Therefore, the frequency of the received signal needs to be reduced by the photoelectric converter to facilitate the Signal analysis and processing.
  • the optical frequency comb is connected to the first optical filter and the second optical filter
  • the first optical filter is connected to the first single sideband modulator
  • the second optical filter are connected to the combiner
  • the combiner is connected to the first photoelectric converter and the second single-sideband modulator
  • the first photoelectric converter is connected to the circulator
  • the circulator is connected to the antenna and the amplifier respectively Connected
  • the amplifier is connected to the second single-sideband modulator
  • the second single-sideband modulator is connected to the splitter
  • the splitter is connected to the third optical filter and the fourth filter
  • the third optical filter is connected to the first
  • the two photoelectric converters are connected
  • the fourth optical filter is connected with the third photoelectric converter.
  • Methods of generating terahertz signals include:
  • Step S10 Obtain the mixed emission signal corresponding to the radar emission signal and the communication emission signal, and obtain the coherent first optical signal and the second optical signal generated by the optical frequency comb.
  • the mixed transmission signal corresponding to the radar transmission signal and the communication transmission signal is obtained, and the first optical signal and the second optical signal with coherence generated by the optical frequency comb are obtained.
  • the mixed transmission signal is a chirp signal, and the frequency bandwidth occupied by the chirp signal is much larger than the information bandwidth, so a large system processing gain can be obtained in the process of processing the mixed transmission signal.
  • the first optical signal and the second optical signal are single-wavelength light with coherence.
  • Coherence refers to the properties that waves need to have in order to produce significant interference phenomena. More broadly speaking, coherence describes waves and self-waves. The nature of the correlation with other waves for a certain internal physical quantity. It should be noted that the mixed emission signal is a signal generated by an electronic device.
  • the step of obtaining the first optical signal and the second optical signal with coherence generated by the optical frequency comb includes: step a, obtaining the optical frequency signal generated by the optical frequency comb.
  • Step b filtering the optical frequency signal through a first optical filter and a second optical filter respectively connected to the optical frequency comb to obtain a first optical signal and a second optical signal with coherence.
  • the optical frequency comb is used as the light source to generate optical frequency signals, and obtain the optical frequency signals generated by the optical frequency combs, and then send the optical frequency signals to the optical frequency combs connected to the optical frequency combs.
  • the first optical filter and the second optical filter that is, after the optical frequency comb generates the optical frequency signal, the optical frequency comb will respectively send the optical frequency signal to the first optical filter and the second optical filter connected to it.
  • the optical frequency signal is filtered to obtain two coherent optical signals.
  • the optical signal filtered by the first optical filter is recorded as the first optical signal
  • the optical signal filtered by the second filter is recorded as the second optical signal.
  • Step S20 modulate the hybrid transmission signal into the optical wavelength of the first optical signal by a first single-sideband modulator to obtain a third optical signal.
  • the IF frequency division multiplexed signal in the mixed transmission signal is modulated into the optical wavelength of the first optical signal whose carrier frequency is the first carrier frequency through the first single-sideband modulator to obtain the modulated The third light signal. That is, after the first single-sideband modulator receives the mixed transmission signal, it modulates the mixed transmission signal into the optical wavelength of the first optical signal whose carrier frequency is the first carrier frequency to obtain the modulated third optical signal.
  • the first single-sideband modulator may adopt upper sideband modulation in the process of modulating the mixed transmission signal to the optical wavelength of the first optical signal whose carrier frequency is the first carrier frequency. Mode, the lower sideband modulation mode can also be used.
  • the carrier frequency is in the process of signal transmission.
  • the signal instead of directly transmitting the signal, it loads the signal onto a wave of a fixed frequency. This process is called loading.
  • a fixed frequency is strictly speaking.
  • the lower signal frequency is modulated to a relatively higher frequency.
  • the higher frequency modulated by the lower frequency is called the carrier frequency, also called the fundamental frequency.
  • Step S30 Couple the third optical signal with the second optical signal through a combiner connected to the first single-sideband modulator to obtain a coupled signal.
  • the first single-sideband modulator After obtaining the third optical signal, the first single-sideband modulator sends the third optical signal to the combiner connected to the first single-sideband modulator. After the second optical filter obtains the second optical signal, the second optical filter will also send the second optical signal to the combiner. After the combiner receives the second optical signal and the third optical signal, it performs a coupling operation on the second optical signal and the third optical signal to obtain a coupling signal corresponding to the second optical signal and the third optical signal.
  • the carrier frequency of the second optical signal is the second carrier frequency.
  • the first carrier frequency is represented by ⁇ 1
  • the second carrier frequency is represented by ⁇ 2.
  • the optical spectrum corresponding to the coupled signal is shown in the figure 3, where Ifr1 is the frequency of the radar transmission signal in the mixed transmission signal, and IFC is the frequency of the communication transmission signal in the mixed transmission signal. It should be noted that using a combiner to perform a coupling operation on the second optical signal and the third optical signal is equivalent to superimposing the wavelengths of the second optical signal and the third optical signal.
  • Step S40 performing photoelectric mixing on the coupled signal by a first photoelectric converter connected to the combiner to convert the coupled signal into a terahertz signal.
  • the combiner sends the coupling signal to the first photoelectric converter connected to the combiner to perform photoelectric mixing of the coupling signal through the first photoelectric converter to convert the coupling signal into a terahertz signal .
  • the frequency of the generated terahertz signal is equal to the difference between the carrier frequency of the first optical signal and the carrier frequency of the second optical signal, that is, the frequency of the terahertz signal is equal to the difference between the first carrier frequency and the second carrier frequency
  • the difference between is equal to ⁇ 1- ⁇ 2. It can be seen that in the signal transmission process, the frequency difference between the two laser sources corresponds to the frequency of the terahertz signal.
  • the generated terahertz signal carries both the communication transmission signal and the radar transmission signal.
  • the signals in the mixed transmission signal, circulator, amplifier, and antenna are electrical domain signals, and the remaining signals are optical domain signals, that is, the optical frequency comb, optical filter, single sideband modulator, and combined signal in Figure 2
  • Routers, splitters, photoelectric converters, communication transmission signals and radar transmission signals are all optical domain signals.
  • the optical domain signals are generated by optical devices, and the electrical domain signals are generated by electronic devices. Normally, the optical domain signals are The frequency is greater than the frequency of the electrical domain signal.
  • the generated terahertz signal can be tuned into a millimeter wave, that is, the coupled signal can be converted into a millimeter wave signal, so as to achieve continuous tunability of the carrier frequency by tuning the wavelength interval.
  • Millimeter waves refer to electromagnetic waves with frequencies between 30 and 300 GHz (gigahertz)
  • terahertz waves refer to electromagnetic waves with frequencies between 100 GHz and 10 THz (terahertz).
  • the embodiment of the present disclosure generates the coupling signal through the mixing mode of the photoelectric converter, so that the generated coupling signal encoding method is transparent, that is, no additional processing is required on the coupling signal, which simplifies the generation process of the coupling signal .
  • the method for generating a terahertz signal further includes: step c, controlling the terahertz signal to pass through a circulator connected to the first photoelectric converter and then input into an antenna, so as to transmit the terahertz signal signal.
  • the first photoelectric converter sends the terahertz signal to the circulator connected to it, and when the circulator receives the terahertz signal, it sends the terahertz signal to the circulator.
  • the terahertz signal is transmitted into the free space through the antenna, that is, the terahertz signal is transmitted out.
  • the circulator acts as a duplexer, which can transmit and receive signals at the same time.
  • the first optical signal and the second optical signal with coherence generated by the optical frequency comb are obtained, and the mixed transmission signal is passed through the first single sideband.
  • the modulator modulates into the optical wavelength of the first optical signal to obtain a third optical signal; the third optical signal is coupled with the second optical signal through a combiner connected to the first single-sideband modulator to obtain a coupled signal ;
  • the coupled signal is photoelectrically mixed by the first photoelectric converter connected with the combiner to convert the coupled signal into a terahertz signal.
  • the terahertz signal is generated by the photonics method, which breaks through the bandwidth limitation of the electronic device to generate the terahertz signal, and because the single sideband modulation has better anti-fiber dispersion characteristics, the generated terahertz signal is suitable for long distance Transmission, which improves the long-distance transmission performance of terahertz signals.
  • a second embodiment of the method for generating a terahertz signal of the present disclosure is provided.
  • the terahertz signal generation method further includes:
  • Step S50 After receiving the mixed receiving signal corresponding to the radar receiving signal and the communication receiving signal, the mixed receiving signal is sent to the amplifier connected to the circulator to obtain the amplified power of the mixed receiving signal.
  • the circulator After the circulator receives the mixed reception signal corresponding to the radar reception signal and the communication reception signal through the antenna, the circulator sends the mixed reception signal to the amplifier connected to it to amplify the power of the mixed reception signal to obtain the amplified power mixed reception signal.
  • the mixed received signal is a terahertz signal.
  • Step S60 Input the amplified power of the mixed received signal into a second single-sideband modulator connected to the amplifier, and obtain the modulated mixed received signal through the second single-sideband modulator.
  • the amplifier After the amplifier obtains the amplified power mixed reception signal, the amplifier inputs the amplified power mixed reception signal to the second single-sideband modulator connected to the amplifier, and the second single-side modulator performs the amplified power mixed reception The signal is modulated to obtain a modulated mixed received signal.
  • the first single-sideband modulator and the second single-sideband modulator use the same modulation method, that is, the first single-sideband modulator uses the upper sideband modulation method, and the second single-sideband modulator also uses the upper sideband modulation method ;
  • the first single sideband modulator adopts the lower sideband modulation method, and the second single sideband modulator also adopts the lower sideband modulation method.
  • the mixed received signal can be loaded into the spectrum of the coupled signal.
  • the combiner can output two identical optical signals, that is, two identical coupled signals are obtained.
  • One coupled signal is sent to the first photoelectric converter, and the other coupled signal is sent to the second single-sideband modulation.
  • the coupled signal can be reused.
  • the coupled signal is modulated by the first single-sideband modulator and already carries modulation information, that is, it carries a mixed signal corresponding to the radar transmission signal and the communication transmission signal.
  • Step S70 dividing the modulated mixed reception signal into a radar reception signal and a communication reception signal by a splitter connected to the second single sideband modulator.
  • Step S80 Perform filtering processing on the extracted radar reception signal and the communication reception signal to obtain the filtered radar reception signal and the filtered communication reception signal, and filter the filtered radar reception signal
  • the latter communication received signal is correspondingly converted into an electric signal in the middle frequency band.
  • the second single-sideband modulator sends the modulated mixed received signal to the splitter to pass the second single-sideband modulation
  • the splitter connected to the receiver divides the modulated mixed receiving signal into two signals, namely the radar receiving signal and the communication receiving signal.
  • the splitter extracts the radar reception signal and the communication reception signal from the modulated mixed reception signal, and then sends the extracted radar reception signal to it.
  • the connected fourth optical filter sends the extracted communication reception signal to the third optical filter connected to it to filter the radar reception signal and the communication reception signal through the optical filter to obtain the filtered radar reception signal And the filtered communication receiving signal.
  • the third optical filter When the third optical filter receives the communication reception signal, it filters the communication reception signal to obtain the filtered communication reception signal, and sends the filtered communication reception signal to the second photoelectric converter connected to it; After receiving the radar reception signal, the four-optical filter performs filtering processing on the radar reception signal to obtain a filtered radar reception signal, and sends the filtered radar reception signal to a third photoelectric converter connected to it.
  • the second photoelectric converter receives the filtered communication reception signal, it converts the filtered communication reception signal into a mid-band electrical signal; when the third photoelectric converter receives the filtered radar reception signal, it will filter the received signal The radar receiving signal is converted into an electrical signal in the mid-frequency band.
  • the radar receiving signal will produce Doppler shift due to the reflection of the external detection target, so there will be a frequency difference in the radar receiving signal relative to the radar transmitting signal. If the frequency of the radar receiving signal is recorded as IFR2, both the first optical signal and the second optical signal can be modulated to the mixed receiving signal.
  • the optical spectrum of the output signal is shown in Figure 4, where the communication receiving signal passes through After the third optical filter, the frequency of the optical frequency component of the filtered communication received signal is 2 ⁇ 1- ⁇ 2+IFc, where ⁇ 1 is the carrier frequency of the first optical signal, and ⁇ 2 is the second optical signal
  • the carrier frequency of, IFC is the frequency of the communication transmission signal; after the radar received signal passes through the fourth optical filter, the resulting filtered radar received signal corresponds to the frequencies of the two optical frequency components ⁇ 1+IFr1 and ⁇ 1+IFr2, where , Ifr1 is the frequency of the radar transmitting signal, and Ifr2 is the frequency of the radar receiving signal.
  • the frequency of the mixed reception signal is ⁇ 1+IFc
  • the frequency of the radar reception signal is 2 ⁇ 1- ⁇ 2+IFr2.
  • the radar transmission signal is a chirp signal, which is a signal whose frequency changes linearly with time and has a certain slope.
  • the chirp signal will be changed. It is a low-frequency signal with a fixed slope to achieve cross-correlation of the frequency of the radar received signal.
  • the embodiments of the present disclosure improve the bandwidth and resolution of the radar received signal by realizing the cross-correlation of the radar received signal in the optical domain.
  • This embodiment is based on the photonics method to receive the communication reception signal and the mixed reception signal corresponding to the radar reception signal, and correspondingly convert the radar reception signal and the communication reception signal into a mid-band electrical signal under the optical filtering and photoelectric converter in the optical domain. It avoids the use of high-frequency signal generators, reduces the cost of correspondingly converting radar reception signals and communication reception signals into electrical signals, and reduces the photoelectric conversion during the corresponding conversion of radar reception signals and communication reception signals into electrical signals.
  • Device requirements; and the embodiments of the present disclosure are based on photonics to realize the generation and reception of mixed transmission signals and mixed reception signals, breaking through the bandwidth limitation of electronic methods, and improving the resolution and communication speed of radar receiving signals.
  • the embodiments of the present disclosure convert the filtered radar reception signal and the filtered communication reception signal into a mid-band electrical signal, avoiding the frequency of the received radar reception signal and communication reception signal from being terahertz, that is, the frequency of the received signal Too high to directly analyze the signal. Therefore, by converting the filtered radar reception signal and the filtered communication reception signal into a mid-band electrical signal, the impact on the received radar reception signal and communication reception signal is reduced. The difficulty of analysis improves the efficiency of analyzing the received radar signal and communication signal.
  • the combiner after the combiner obtains the coupling signal, it outputs two identical coupling signals, one is sent to the first photoelectric converter, and the other is sent to the second single-sideband modulator. Therefore, in the receiving To mix the received signal, the transmitting front-end light source can be reused, that is, the coupling signal (the coupling signal is obtained after the communication transmission signal and the radar transmission signal are coupled), which reduces the number of light sources used and simplifies the generation of terahertz signals.
  • the coupling signal the coupling signal is obtained after the communication transmission signal and the radar transmission signal are coupled
  • the step of converting the filtered radar reception signal into an electrical signal includes: step d, performing square law detection on the filtered radar reception signal to convert the filtered radar reception signal into an intermediate frequency domain Electrical signal.
  • the third photoelectric converter after obtaining the filtered and filtered radar reception signal, performs square-law detection on the filtered radar reception signal to convert the filtered radar reception signal into an electrical signal in the intermediate frequency domain.
  • Signal that is, the received signal of the terahertz chirp radar is converted into an electrical signal in the intermediate frequency domain.
  • square law detection is performed on the filtered radar reception signal, that is, the square law detection is performed on the two optical frequency components corresponding to the filtered radar reception signal.
  • the square-law detection is to obtain a signal of twice the frequency by squaring during demodulation, and then pass band-pass filtering to remove the DC component, and then pass the frequency divider to obtain the signal of the same frequency as the transmitter carrier, and finally pass the coherent
  • the original signal can be obtained by demodulating.
  • FIG. 2 is a schematic diagram of the first structure of a terahertz signal generating device in an embodiment of the disclosure.
  • the generating device of the terahertz signal includes an optical frequency comb, a first optical filter, a first single-sideband modulator, a second optical filter, a combiner, and a first photoelectric converter; the optical frequency comb is respectively connected with The first optical filter is connected to the second optical filter; the first optical filter is connected to the first single sideband modulator; the second optical filter is connected to the first single side Band modulators are respectively connected to the combiner; the combiner is connected to the first photoelectric converter; the optical frequency comb is used to generate optical frequency signals; the first optical filter is used to The optical frequency signal is filtered to obtain a first optical signal; the second optical filter is used to filter the optical frequency signal to obtain a second optical signal that is coherent with the first optical signal; the first The single-sideband modulator is used to modulate the acquired radar transmission signal and the mixed transmission signal corresponding to the communication transmission signal into the optical wavelength of the first optical signal to obtain a third optical signal; the combiner is used to combine the first optical signal The three optical signals are coupled with the
  • the terahertz signal generation device further includes a circulator and an antenna, the circulator is connected to the first photoelectric converter, the antenna is connected to the circulator; the circulator is used for Receiving the terahertz signal sent by the first photoelectric converter, and transmitting the terahertz signal through the antenna.
  • the terahertz signal generation device further includes an amplifier, a second single-sideband modulator, a splitter, a third optical filter, a fourth optical filter, a second photoelectric converter, and a third Photoelectric converter;
  • the amplifier is connected to the circulator and the second single-sideband modulator;
  • the second single-sideband modulator is connected to the amplifier, the combiner, and the splitter, respectively
  • the splitter is connected with the second single-sideband modulator, the third optical filter and the fourth optical filter respectively;
  • the three optical filter is connected with the second photoelectric converter, so
  • the fourth optical filter is connected to the third photoelectric converter;
  • the circulator is used to receive a mixed reception signal corresponding to a radar reception signal and a communication reception signal through an antenna, and send the mixed reception signal to the amplifier;
  • the amplifier is used to amplify the power of the mixed receiving signal to obtain the mixed receiving signal after the amplified power, and send the mixed receiving signal after the amplified power to the second single sideband modulator
  • the specific implementation of the terahertz signal generation device of the present disclosure is basically the same as the above-mentioned embodiments of the terahertz signal generation method, and will not be repeated here.
  • the embodiment of the present disclosure also proposes a computer-readable storage medium, the computer-readable storage medium stores a terahertz signal generation program, and when the terahertz signal generation program is executed by a processor, the above The steps of the terahertz signal generation method.
  • the present disclosure obtains the first optical signal and the second optical signal with coherence generated by the optical frequency comb after obtaining the mixed transmission signal corresponding to the radar transmission signal and the communication transmission signal, and passes the mixed transmission signal through the first single-sideband modulation
  • the third optical signal is modulated into the optical wavelength of the first optical signal by the device; the third optical signal is coupled with the second optical signal through the combiner connected to the first single-sideband modulator to obtain the coupled signal;
  • the coupling signal is optically mixed by the first photoelectric converter connected to the combiner to convert the coupling signal into a terahertz signal.
  • the terahertz signal is generated by the photonics method, which breaks through the bandwidth limitation of the electronic device to generate the terahertz signal, and because the single sideband modulation has better anti-fiber dispersion characteristics, the generated terahertz signal is suitable for long distance Transmission, which improves the long-distance transmission performance of terahertz signals.
  • the technical solution of the present disclosure essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes a number of instructions to enable a terminal device (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the method described in each embodiment of the present disclosure.
  • a terminal device which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Abstract

本公开公开了一种太赫兹信号的生成方法、设备及计算机可读存储介质,该方法包括步骤:获取雷达发射信号和通信发射信号对应的混合发射信号,以及获取光频梳产生的具有相干性的第一光信号和第二光信号;将所述混合发射信号通过第一单边带调制器调制到所述第一光信号的光波长中,得到第三光信号;通过与所述第一单边带调制器连接的合路器将所述第三光信号与所述第二光信号耦合,得到耦合信号;通过与所述合路器连接的第一光电转换器对所述耦合信号进行光电混频,以将所述耦合信号转换成太赫兹信号。

Description

太赫兹信号的生成方法、设备及计算机可读存储介质
本公开要求享有2019年04月11日提交的名称为“太赫兹信号的生成方法、设备及计算机可读存储介质”的中国专利申请CN201910282789.7的优先权,其全部内容通过引用并入本文中。
技术领域
本公开涉及无线通信技术领域,尤其涉及一种太赫兹信号的生成方法、设备及计算机可读存储介质。
背景技术
无线电的发明使人类的历史进入了一个新纪元。在迄今已知的各种无线电应用中,最普遍和最突出的两种是无线通信和雷达探测。无线通信系统和雷达传感系统以完全不同的方式设计和开发,尽管两者都使用了射频收发功能组块,但彼此之间除了系统融合的一些应用实例,例如二次监视雷达系统或敌我识别系统等,在大多数情况下一般都是独立研究和发展。
雷达-通信融合(无线通信系统和雷达传感系统融合)技术可以应用在车联网中,利用先进的传感技术和网络技术,对道路和车辆的状况进行全面的感知,实现多个系统间的大范围、大数据交互,增强车辆行驶的安全性能。目前阶段的无线通信系统和雷达传感系统的融合应用主要采用微波OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用技术)技术,旨在利用正交频分复用技术频谱利用率高、抗干扰能力强的特点。但是,在传统的微波技术中,微波频段的有限带宽成为阻碍其发展的最大因素,已经无法满足下一代无线通信对高速率,提高工作频率以获取更大带宽已是必然趋势。从雷达性能来看,微波频段雷达信号的分辨率有限,激光雷达则容易受恶劣天气环境影响导致性能降低甚至失效。相比较而言,太赫兹信号由于频率很高,因此它具有分辨率高、指向性好、抗干扰能力强、对烟雾灰尘有更好的穿透性等特点。但是由于电子器件频率响应带宽受限和非线性制约等因素,太赫兹信号的产生采用传统电子方法实现困难,且太赫兹信号传输损耗大和信号覆盖范围窄,不适于远距离传输。
发明内容
本公开的主要目的在于提供一种太赫兹信号的生成方法、设备及计算机可读存储介质,旨在解决现有太赫兹信号生成苦难,且太赫兹信号远距离传输性能差的技术问题。
为实现上述目的,本公开提供一种太赫兹信号的生成方法,所述太赫兹信号的生成方法包括步骤:获取雷达发射信号和通信发射信号对应的混合发射信号,以及获取光频梳产生的具有相干性的第一光信号和第二光信号;将所述混合发射信号通过第一单边带调制器调制到所述第一光信号的光波长中,得到第三光信号;通过与所述第一单边带调制器连接的合路器将所述第三光信号与所述第二光信号耦合,得到耦合信号;通过与所述合路器连接的第一光电转换器对所述耦合信号进行光电混频,以将所述耦合信号转换成太赫兹信号。
此外,为实现上述目的,本公开还提供一种太赫兹信号的生成设备,所述太赫兹信号的生成设备包括光频梳、第一光滤波器、第一单边带调制器、第二光滤波器、合路器和第一光电转换器;所述光频梳分别与所述第一光滤波器和所述第二光滤波器连接;所述第一光滤波器与所述第一单边带调制器连接;所述第二光滤波器和所述第一单边带调制器分别与所述合路器连接;所述合路器与所述第一光电转换器连接;所述光频梳用于生成光频信号;所述第一光滤波器用于对所述光频信号进行滤波,得到第一光信号;所述第二光滤波器用于对所述光频信号进行滤波,得到与所述第一光信号具有相干性的第二光信号;所述第一单边带调制器用于将获取的雷达发射信号和通信发射信号对应的混合发射信号调制到所述第一光信号的光波长中,得到第三光信号;所述合路器用于将所述第三光信号与所述第二光信号耦合,得到耦合信号;所述第一光电转换器用于对所述耦合信号进行光电混频,以将所述耦合信号转换成太赫兹信号。
此外,为实现上述目的,本公开还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有太赫兹信号的生成程序,所述太赫兹信号的生成程序被处理器执行时实现如上所述的太赫兹信号的生成方法的步骤。
附图说明
图1是本公开太赫兹信号的生成方法第一实施例的流程示意图;
图2为本公开实施例中太赫兹信号的生成设备的第一种结构示意图;
图3为本公开实施例中耦合信号对应的光学频谱示意图;
图4为本公开实施例中雷达接收信号和通信接收信号对应的光学频谱示意图;
图5是本公开太赫兹信号的生成方法第二实施例的流程示意图。
本公开目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
本公开提供一种太赫兹信号的生成方法,参照图1,图1为本公开太赫兹信号的生成方法第一实施例的流程示意图。
本公开实施例提供了太赫兹信号的生成方法的实施例,需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
太赫兹信号的生成方法应用于太赫兹信号的生成设备,太赫兹信号的生成设备包括光频疏、光滤波器、单边带调制器、合路器、分路器、光电探测器、环形器、放大器和天线。
其中,光频梳为光学频率梳(OFC),是指在频谱上由一系列均匀间隔且具有相干稳定相位关系的频率分量组成的光谱。在本公开实施例中,光频梳作为光源。
光滤波器是用来进行波长选择的仪器,它可以从众多的波长中挑选出所需的波长,而除此波长以外的光将会被拒绝通过,它可以用于波长选择、光放大器的噪声滤除、增益均衡、光复用/解复用。在本公开实施例中,光滤波器用于提取通信信号和雷达信号,以及用于分离通信信号和雷达信号。
合路器是将两路或者多路从不同发射机发出的射频信号合为一路送到天线发射的射频器件,同时避免各个端口信号之间的相互影响。在本公开实施例中,合路器用于将两束不同频率的光合成一束。
分路器可以将无线通信系统中线路上输入的多种频段信号分离为单一的频段输出到不同的通信线路中。
环形器是一种使电磁波单向环形传输的器件,在近代雷达和微波多路通信系统中都 要用单方向环行特性的器件。在本公开实施例中,环形器具有三个端口,输入信号和输出信号都按照顺时针方向回旋,输入信号和输出信号能够同时进行,具备双工的功能。
光电探测器包括基于单行载流子光电探测器(UTC-PD)的第一光电转换器、中频段的第二光电转换器和中频段的第三光电转换器。在本公开实施例中,第一光电转换器为超宽带单行载流子光电探测器,在超宽带单行载流子光电探测器中,只有高速移动的电子是激发态的载流子,因此,第一光电转换器具有超快的皮秒量级光子响应速度和超大的带宽。第二光电转换器和第三光电转换器为低速光电转换器(PIN),用于将光滤波器的输出信号转换为中频段的电信号。需要说明的是,由于太赫兹信号的生成设备所接收信号的频率为太赫兹,一般为300G,是无法直接分析该信号的,因此,需要通过光电转换器降低所接收信号的频率,以便于对信号的分析处理。
参照图2,在本公开实施例中,光频梳分别与第一光滤波器和第二光滤波器连接,第一光滤波器与第一单边带调制器连接,第一单边带调制器和第二光滤波器与合路器连接,合路器分别与第一光电转换器和第二单边带调制器连接,第一光电转换器与环形器连接,环形器分别与天线和放大器连接,放大器与第二单边带调制器连接,第二单边带调制器与分路器连接,分路器分别与第三光滤波器和第四滤波器连接,第三光滤波器与第二光电转换器连接,第四光滤波器与第三光电转换器连接。
太赫兹信号的生成方法包括:
步骤S10,获取雷达发射信号和通信发射信号对应的混合发射信号,以及获取光频梳产生的具有相干性的第一光信号和第二光信号。
在本公开实施例中,获取雷达发射信号和通信发射信号对应的混合发射信号,以及获取光频梳产生的具有相干性的第一光信号和第二光信号。其中,混合发射信号为线性调频信号,线性调频信号占用的频带宽度远大于信息带宽,所以在处理混合发射信号过程中可以获得很大的系统处理增益。第一光信号和第二光信号为具有相干性的单波长光,相干性是指为了产生显著的干涉现象,波所需具备的性质,更广义地说,相干性描述波与自己波、波与其它波之间对于某种内秉物理量的关联性质。需要说明的是,混合发射信号是由电子器件生成的信号。
在一实施方式中,获取光频梳产生的具有相干性的第一光信号和第二光信号的步骤包括:步骤a,获取光频梳生成的光频信号。步骤b,通过分别与所述光频梳连接的第一光滤波器和第二光滤波器对所述光频信号进行滤波,以得到具有相干性的第一光信号和第二光信号。
在一实施方式中,在本公开实施例中,光频梳作为光源,可生成光频信号,并获取光频梳生成的光频信号,然后将光频信号分别发送至与光频梳连接的第一光滤波器和第二光滤波器中。即当光频梳生成光频信号后,光频梳将将光频信号分别发送至与其连接的第一光滤波器和第二光滤波器中。当第一光滤波器和第二光滤波器接收到光频信号后,对光频信号进行滤波处理,得到具有相干性的两个光信号。在本公开实施例中,将第一光滤波器滤波后所得的光信号记为第一光信号,将第二滤波器滤波后所得的光信号记为第二光信号。
步骤S20,将所述混合发射信号通过第一单边带调制器调制到所述第一光信号的光波长中,得到第三光信号。
在得到混合发射信号后,将混合发射信号中的中频频分复用信号通过第一单边带调制器调制到载波频率为第一载波频率的第一光信号的光波长中,得到调制后的第三光信号。即在第一单边带调制器接收到混合发射信号后,将混合发射信号调制到载波频率为第一载波频率的第一光信号的光波长中,得到调制后的第三光信号。在一实施方式中,第一单边带调制器在将混合发射信号调制到载波频率为第一载波频率的第一光信号的光波长过程中,第一单边带调制器可采用上边带调制方式,也可采用下边带调制方式。载波频率是在信号传输的过程中,并不是将信号直接进行传输,而是将信号负载到一个固定频率的波上,这个过程称为加载,这样的一个固定频率,严格的讲,就是把一个较低的信号频率调制到一个相对较高的频率上去,这被低频调制的较高频率就叫载波频率,也叫基频。
步骤S30,通过与所述第一单边带调制器连接的合路器将所述第三光信号与所述第二光信号耦合,得到耦合信号。
当得到第三光信号后,第一单边带调制器将第三光信号发送至与第一单边带调制器连接的合路器中。在第二光滤波器得到第二光信号后,第二光滤波器也会将第二光信号发送至合路器中。当合路器接收到第二光信号和第三光信号后,对第二光信号和第三光信号进行耦合操作,得到第二光信号和第三光信号对应的耦合信号。在一实施方式中,第二光信号的载波频率为第二载波频率,在本公开实施例中,第一载波频率为ω1表示,第二载波频率用ω2表示,耦合信号对应的光学频谱如图3所示,其中,IFr1为混合发射信号中雷达发射信号的频率,IFc为混合发射信号中通信发射信号的频率。需要说明的是,用合路器对第二光信号和第三光信号进行耦合操作,相当于将第二光信号和第三光信号的波长进行叠加。
步骤S40,通过与所述合路器连接的第一光电转换器对所述耦合信号进行光电混频,以将所述耦合信号转换成太赫兹信号。
当得到耦合信号后,合路器将耦合信号发送给与合路器连接的第一光电转换器,以通过第一光电转换器对耦合信号进行光电混频,以将耦合信号转换成太赫兹信号。其中,所生成的太赫兹信号的频率等于第一光信号的载波频率与第二光信号的载波频率之间的差值,即太赫兹信号的频率等于第一载波频率与第二载波频率之间的差值,等于ω1-ω2。由此可知,在信号发射过程中,双激光源之间的频率差对应着太赫兹信号的频率。需要说明的是,由于第一光电转换器的混频作用,所生成的太赫兹信号同时携带了通信发射信号和雷达发射信号。在图2中,混合发射信号、环形器、放大器和天线中的信号为电域信号,剩余信号为光域信号,即图2中的光频梳、光滤波器、单边带调制器、合路器、分路器、光电转换器、通信发射信号和雷达发射信号都为光域信号,光域信号是由光器件产生,电域信号是由电子器件产生,正常情况下,光域信号的频率大于电域信号的频率。
可以理解的是,可将所生成的太赫兹信号调谐成毫米波,即可将耦合信号转换成毫米波信号,以通过调谐波长间隔实现载波频率的连续可调谐。毫米波是指频率在30~300GHz(千兆赫兹)之间的电磁波,太赫兹波是指频率在100GHz~10THz(太赫兹)之间的电磁波。
在一实施方式中,本公开实施例通过光电转换器的混频方式产生耦合信号,使所生成的耦合信号编码方式透明,即不需要对耦合信号进行额外的处理,简化了耦合信号的生成流程。
在一实施方式中,太赫兹信号的生成方法还包括:步骤c,控制所述太赫兹信号经过与所述第一光电转换器连接的环形器后输入到天线中,以将发射所述太赫兹信号。
在一实施方式中,当生成太赫兹信号后,第一光电转换器将太赫兹信号发送给与其连接的环形器,当环形器接收到太赫兹信号后,将太赫兹信号发送给与环形器连接的天线中,通过该天线将太赫兹信号发射到自由空间中,即将太赫兹信号发射出去。在本公开实施例中,环形器作为双工器,能同时发射信号和接收信号。
本实施例通过获取到雷达发射信号和通信发射信号对应的混合发射信号后,获取光频梳产生的具有相干性的第一光信号和第二光信号,将混合发射信号通过第一单边带调制器调制到第一光信号的光波长中,得到第三光信号;通过与第一单边带调制器连接的合路器将第三光信号与所述第二光信号耦合,得到耦合信号;通过与合路器连接的第一 光电转换器对耦合信号进行光电混频,以将耦合信号转换成太赫兹信号。本实施例通过光子学的方法生成太赫兹信号,突破了电子器件生成太赫兹信号的带宽限制,且由于单边带调制具有较好的抗光纤色散特性,因此所生成的太赫兹信号适合远距离传输,即提高了太赫兹信号的远传输距离性能。
在一实施方式中,提出本公开太赫兹信号的生成方法第二实施例。
所述太赫兹信号的生成方法第二实施例与所述太赫兹信号的生成方法第一实施例的区别在于,参照图5,太赫兹信号的生成方法还包括:
步骤S50,当接收到雷达接收信号和通信接收信号对应的混合接收信号后,将所述混合接收信号发送至与环形器连接的放大器,以得到放大功率后的所述混合接收信号。
当环形器通过天线接收到雷达接收信号和通信接收信号对应的混合接收信号后,环形器将混合接收信号发送至与其连接的放大器中,以放大混合接收信号的功率,得到放大功率后的混合接收信号。可以理解的是,该混合接收信号为太赫兹信号。
步骤S60,将放大功率后的所述混合接收信号输入至与所述放大器连接的第二单边带调制器中,通过所述第二单边带调制器得到调制后的所述混合接收信号。
当放大器得到放大功率后的混合接收信号后,放大器将放大功率后的混合接收信号输入至与放大器连接的第二单边带调制器中,第二单边待调制器对放大功率后的混合接收信号进行调制,得到调制后的混合接收信号。其中,第一单边带调制器和第二单边带调制器采用相同的调制方式,即第一单边带调制器采用上边带调制方式,第二单边带调制器也采用上边带调制方式;第一单边带调制器采用下边带调制方式,第二单边带调制器也采用下边带调制方式。
需要说明的是,通过第二单边带调制器,可将混合接收信号加载在耦合信号的光谱中。由图2可知,合路器可输出两路相同的光信号,即得到两路相同的耦合信号,一路耦合信号发送给了第一光电转换器,一路耦合信号发送给了第二单边带调制器,以在第二单边带调制器接收到混合接收信号时,可再次利用该耦合信号。可以理解的是,耦合信号经过第一单边带调制器调制,已经携带有调制信息,即携带有雷达发射信号和通信发射信号对应的混合信号。
步骤S70,通过与所述第二单边带调制器连接的分路器将调制后的所述混合接收信号分成雷达接收信号和通信接收信号。
步骤S80,对提取的所述雷达接收信号和所述通信接收信号进行滤波处理,得到滤波后的所述雷达接收信号和滤波后的所述通信接收信号,并将滤波后的雷达接收信号和滤波后的所述通信接收信号对应转换成中频段的电信号。
在一实施方式中,由图2可知,当得到调制后的混合接收信号后,第二单边带调制器将调制后的混合接收信号发送给分路器,以通过与第二单边带调制器连接的分路器将调制后的混合接收信号分成两路信号,即分成雷达接收信号和通信接收信号。在一实施方式中,当分路器接收到调制后的混合接收信号后,分路器在调制后的混合接收信号中提取雷达接收信号和通信接收信号,然后将所提取的雷达接收信号发送给与其连接的第四光滤波器,将所提取的通信接收信号发送给与其连接的第三光滤波器,以通过光滤波器对雷达接收信号和通信接收信号进行滤波处理,得到滤波后的雷达接收信号和滤波后的通信接收信号。
当第三光滤波器接收到通信接收信号后,对通信接收信号进行滤波处理,得到滤波后的通信接收信号,并将滤波后的通信接收信号发送给与其连接的第二光电转换器;当第四光滤波器接收到雷达接收信号后,对雷达接收信号进行滤波处理,得到滤波后的雷达接收信号,并将滤波后的雷达接收信号发送给与其连接的第三光电转换器。当第二光电转换器接收到滤波后的通信接收信号后,将滤波后的通信接收信号转换成中频段的电信号;当第三光电转换器接收到滤波后的雷达接收信号后,将滤波后的雷达接收信号转换成中频段的电信号。
需要说明的是,雷达接收信号由于经过外部探测目标反射,会产生多普勒平移,故相对于雷达发射信号,雷达接收信号会存在一个频率差。若将雷达接收信号的频率记为IFr2,则第一光信号和第二光信号都可调制到混合接收信号,此时,输出信号的光学频谱如图4所示,其中,在通信接收信号通过第三光滤波器后,所得的滤波后的通信接收信号的光频分量的频率为2ω1-ω2+IFc,其中,ω1为所述第一光信号的载波频率,ω2为所述第二光信号的载波频率,IFc为通信发射信号的频率;在雷达接收信号通过第四光滤波器后,所得的滤波后的雷达接收信号对应两个光频分量的频率为ω1+IFr1和ω1+IFr2,其中,IFr1为雷达发射信号的频率,IFr2为雷达接收信号的频率。在一实施方式中,由图4可知,混合接收信号的频率为ω1+IFc,雷达接收信号的频率为2ω1-ω2+IFr2。
在本公开实施例中,雷达发射信号属于线性调频信号,是一种频率随时间线性变化的信号,具有一定斜度,但是雷达发射信号和雷达接收信号经过混频后,会将线性调频 信号变为一个斜率固定的低频信号,以实现去雷达接收信号频率的互相关去斜。本公开实施例通过在光域实现雷达接收信号的互相关去斜,提高了雷达接收信号的带宽和分辨率。
本实施例基于光子学方式接收通信接收信号和雷达接收信号对应的混合接收信号,并在光域通过光学滤波和光电转换器下将雷达接收信号和通信接收信号对应转换成中频段的电信号,避免了高频信号发生器的使用,降低了将雷达接收信号和通信接收信号对应转换成电信号的成本,以及降低了将雷达接收信号和通信接收信号对应转换成电信号过程中,对光电转换器件的要求;且本公开实施例基于光子学方式实现混合发射信号和混合接收信号的生成和接收,突破了电子方式的带宽限制,提高了雷达接收信号的分辨率和通信速度。
本公开实施例通过将滤波后的雷达接收信号和滤波后的通信接收信号转换成中频段电信号,避免了所接收的雷达接收信号和通信接收信号的频率为太赫兹,即所接收信号的频率太高,无法直接进行信号分析,因此,通过将滤波后的所述雷达接收信号和滤波后的所述通信接收信号转换成中频段电信号,降低了对所接收的雷达接收信号和通信接收信号分析的难度,提高了对所接收的雷达接收信号和通信接收信号分析的效率。
在一实施方式中,在合路器得到耦合信号后,会输出两路相同的耦合信号,一路发送至第一光电转换器中,一路发送至第二单边带调制器中,因此,在接收到混合接收信号,可重复利用发射前端光源,即重复利用耦合信号(该耦合信号是通信发射信号和雷达发射信号耦合后得到的),减少了光源的使用数量,简化的太赫兹信号的生成设备的系统结构。
在一实施方式中,所述将滤波后的雷达接收信号转换成电信号的步骤包括:步骤d,对滤波后的雷达接收信号进行平方律检波,以将滤波后的雷达接收信号转换成中频域的电信号。
在一实施方式中,在得到滤波后的滤波后的雷达接收信号后,第三光电转换器对滤波后的雷达接收信号进行平方律检波,以将滤波后的雷达接收信号转换成中频域的电信号,即将太赫兹线性调频雷达接收信号转换成中频域的电信号。需要说明的是,对滤波后的雷达接收信号进行平方律检波,即对滤波后的雷达接收信号对应的两个光频分量进行平方律检波。其中,平方律检波是在解调的时候,通过平方运算来获取两倍频率的信号,然后经过带通滤波去掉直流成分,再通过分频器得到与发射机载波相同频率的信号,最终通过相干解调就可以获取原始信号。
此外,本公开还提供一种太赫兹信号的生成设备。如图2所示,图2为本公开实施例中太赫兹信号的生成设备的第一种结构示意图。
所述太赫兹信号的生成设备包括光频梳、第一光滤波器、第一单边带调制器、第二光滤波器、合路器和第一光电转换器;所述光频梳分别与所述第一光滤波器和所述第二光滤波器连接;所述第一光滤波器与所述第一单边带调制器连接;所述第二光滤波器和所述第一单边带调制器分别与所述合路器连接;所述合路器与所述第一光电转换器连接;所述光频梳用于生成光频信号;所述第一光滤波器用于对所述光频信号进行滤波,得到第一光信号;所述第二光滤波器用于对所述光频信号进行滤波,得到与所述第一光信号具有相干性的第二光信号;所述第一单边带调制器用于将获取的雷达发射信号和通信发射信号对应的混合发射信号调制到所述第一光信号的光波长中,得到第三光信号;所述合路器用于将所述第三光信号与所述第二光信号耦合,得到耦合信号;所述第一光电转换器用于对所述耦合信号进行光电混频,以将所述耦合信号转换成太赫兹信号。
在一实施方式中,所述太赫兹信号的生成设备还包括环形器和天线,所述环形器与所述第一光电转换器连接,所述天线与所述环形器连接;所述环形器用于接收所述第一光电转换器发送的太赫兹信号,并通过天线发射太赫兹信号。
在一实施方式中,所述太赫兹信号的生成设备还包括放大器、第二单边带调制器、分路器、第三光滤波器、第四光滤波器、第二光电转换器和第三光电转换器;所述放大器与分别与所述环形器和所述第二单边带调制器连接;所述第二单边带调制器分别与所述放大器、所述合路器和所述分路器连接;所述分路器分别与所述第二单边带调制器、第三光滤波器和第四光滤波器连接;所述三光滤波器与所述第二光电转换器连接,所述第四光滤波器与所述第三光电转换器连接;所述环形器用于通过天线接收雷达接收信号和通信接收信号对应的混合接收信号,并将所述混合接收信号发送给所述放大器;所述放大器用于放大所述混合接收信号的功率,以得到放大功率后的所述混合接收信号,并将放大功率后的所述混合接收信号发送给所述第二单边带调制器;所述第二单边带调制器用于调制所述混合接收信号,并将调制后的所述混合接收信号发送给所述分路器;所述分路器用于在调制后的所述混合接收信号中提取雷达接收信号和通信接收信号,并将提取的雷达接收信号发送给第四光滤波器,以及将提取的通信接收信号发送给第三光滤波器;所述第三光滤波器用于对提取的通信接收信号进行滤波处理,得到滤波后的通信接收信号,并将滤波后的通信接收信号发送给第二光电转换器;所述第四光滤波器用于 对提取的雷达接收信号进行滤波处理,得到滤波后的雷达接收信号,并将滤波后的雷达接收信号发送给第三光电转换器;所述第二光电转换器用于将滤波后的所述通信接收信号转换成中频段的电信号;所述第三光电转换器用于将滤波后的所述雷达接收信号转换成中频段的电信号。
本公开太赫兹信号的生成设备具体实施方式与上述太赫兹信号的生成方法各实施例基本相同,在此不再赘述。
此外,本公开实施例还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有太赫兹信号的生成程序,所述太赫兹信号的生成程序被处理器执行时实现如上所述的太赫兹信号的生成方法的步骤。
本公开计算机可读存储介质具体实施方式与上述太赫兹信号的生成方法各实施例基本相同,在此不再赘述。
本公开通过获取到雷达发射信号和通信发射信号对应的混合发射信号后,获取光频梳产生的具有相干性的第一光信号和第二光信号,将混合发射信号通过第一单边带调制器调制到第一光信号的光波长中,得到第三光信号;通过与第一单边带调制器连接的合路器将第三光信号与所述第二光信号耦合,得到耦合信号;通过与合路器连接的第一光电转换器对耦合信号进行光电混频,以将耦合信号转换成太赫兹信号。本实施例通过光子学的方法生成太赫兹信号,突破了电子器件生成太赫兹信号的带宽限制,且由于单边带调制具有较好的抗光纤色散特性,因此所生成的太赫兹信号适合远距离传输,即提高了太赫兹信号的远传输距离性能。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上述本公开实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法 可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
以上仅为本公开的优选实施例,并非因此限制本公开的专利范围,凡是利用本公开说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本公开的专利保护范围内。

Claims (10)

  1. 一种太赫兹信号的生成方法,其中,所述太赫兹信号的生成方法包括以下步骤:
    获取雷达发射信号和通信发射信号对应的混合发射信号,以及获取光频梳产生的具有相干性的第一光信号和第二光信号;
    将所述混合发射信号通过第一单边带调制器调制到所述第一光信号的光波长中,得到第三光信号;
    通过与所述第一单边带调制器连接的合路器将所述第三光信号与所述第二光信号耦合,得到耦合信号;
    通过与所述合路器连接的第一光电转换器对所述耦合信号进行光电混频,以将所述耦合信号转换成太赫兹信号。
  2. 如权利要求1所述的太赫兹信号的生成方法,其中,所述获取光频梳产生的具有相干性的第一光信号和第二光信号的步骤包括:
    获取光频梳生成的光频信号;
    通过分别与所述光频梳连接的第一光滤波器和第二光滤波器对所述光频信号进行滤波,以得到具有相干性的第一光信号和第二光信号。
  3. 如权利要求1所述的太赫兹信号的生成方法,其中,所述太赫兹信号的频率等于所述第一光信号的载波频率与所述第二光信号的载波频率之间的差值。
  4. 如权利要求1所述的太赫兹信号的生成方法,其中,所述通过与所述合路器连接的第一光电转换器对所述耦合信号进行光电混频,以将所述耦合信号转换成太赫兹信号的步骤之后,还包括:
    控制所述太赫兹信号经过与所述第一光电转换器连接的环形器后输入到天线中,以将发射所述太赫兹信号。
  5. 如权利要求1至3任一项所述的太赫兹信号的生成方法,其中,所述通过与所述合路器连接的第一光电转换器对所述耦合信号进行光电混频,以将所述耦合信号转换成 太赫兹信号的步骤之后,还包括:
    当接收到雷达接收信号和通信接收信号对应的混合接收信号后,将所述混合接收信号发送至与环形器连接的放大器,以得到放大功率后的所述混合接收信号;
    将放大功率后的所述混合接收信号输入至与所述放大器连接的第二单边带调制器中,通过所述第二单边带调制器得到调制后的所述混合接收信号;
    通过与所述第二单边带调制器连接的分路器在调制后的所述混合接收信号中提取雷达接收信号和通信接收信号;
    对提取的所述雷达接收信号和所述通信接收信号进行滤波处理,得到滤波后的所述雷达接收信号和滤波后的所述通信接收信号,并将滤波后的所述雷达接收信号和滤波后的所述通信接收信号对应转换成中频段的电信号。
  6. 如权利要求5所述的太赫兹信号的生成方法,其中,滤波后的所述通信接收信号的频率为:2ω1-ω2+IFc,其中,ω1为所述第一光信号的载波频率,ω2为所述第二光信号的载波频率,IFc为所述通信发射信号的频率。
  7. 如权利要求5所述的太赫兹信号的生成方法,其中,所述第一单边带调制器和所述第二单边带调制器采用相同的调制方式。
  8. 如权利要求5所述的太赫兹信号的生成方法,其中,所述将滤波后的所述雷达接收信号转换成中频段的电信号的步骤包括:
    对滤波后的所述雷达接收信号进行平方律检波,以将滤波后的所述雷达接收信号转换成中频域的电信号。
  9. 一种太赫兹信号的生成设备,其中,所述太赫兹信号的生成设备包括光频梳、第一光滤波器、第一单边带调制器、第二光滤波器、合路器和第一光电转换器;
    所述光频梳分别与所述第一光滤波器和所述第二光滤波器连接;
    所述第一光滤波器与所述第一单边带调制器连接;
    所述第二光滤波器和所述第一单边带调制器分别与所述合路器连接;
    所述合路器与所述第一光电转换器连接;
    所述光频梳用于生成光频信号;
    所述第一光滤波器用于对所述光频信号进行滤波,得到第一光信号;
    所述第二光滤波器用于对所述光频信号进行滤波,得到与所述第一光信号具有相干性的第二光信号;
    所述第一单边带调制器用于将获取的雷达发射信号和通信发射信号对应的混合发射信号调制到所述第一光信号的光波长中,得到第三光信号;
    所述合路器用于将所述第三光信号与所述第二光信号耦合,得到耦合信号;
    所述第一光电转换器用于对所述耦合信号进行光电混频,以将所述耦合信号转换成太赫兹信号。
  10. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有太赫兹信号的生成程序,所述太赫兹信号的生成程序被处理器执行时实现如权利要求1至8中任一项所述的太赫兹信号的生成方法的步骤。
PCT/CN2020/083996 2019-04-11 2020-04-09 太赫兹信号的生成方法、设备及计算机可读存储介质 WO2020207442A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910282789.7 2019-04-11
CN201910282789.7A CN111817789A (zh) 2019-04-11 2019-04-11 太赫兹信号的生成方法、设备及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2020207442A1 true WO2020207442A1 (zh) 2020-10-15

Family

ID=72750972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083996 WO2020207442A1 (zh) 2019-04-11 2020-04-09 太赫兹信号的生成方法、设备及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN111817789A (zh)
WO (1) WO2020207442A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112994803A (zh) * 2021-02-19 2021-06-18 西安邮电大学 一种光子辅助矢量太赫兹信号通信系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112039595B (zh) * 2020-11-06 2021-02-26 网络通信与安全紫金山实验室 光载太赫兹波/毫米波生成系统及方法、发射机
CN112821956B (zh) * 2020-12-29 2022-07-26 网络通信与安全紫金山实验室 一种太赫兹信号的生成方法及装置
CN112866168B (zh) * 2021-03-05 2021-09-14 上海交通大学 用于太赫兹通信感知一体化的SI-DFT-s-OFDM系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104009812A (zh) * 2014-05-14 2014-08-27 清华大学 一种基于快速激光扫描的微波信号测量方法
US20150236789A1 (en) * 2014-01-24 2015-08-20 Kerry VAHALA Dual-frequency optical source
CN106411405A (zh) * 2016-09-27 2017-02-15 西安空间无线电技术研究所 一种高平坦高边带抑制比多载波信号生成系统及方法
US20170078016A1 (en) * 2002-10-03 2017-03-16 Ciena Corporation Optical Dispersion Compensation in the Electrical Domain in an Optical Communications System
CN106685535A (zh) * 2017-01-16 2017-05-17 电子科技大学 一种可重构的微波光子下变频方法及装置
CN107231160A (zh) * 2017-07-10 2017-10-03 南京航空航天大学 微波光子镜频抑制混频方法及装置
CN108418629A (zh) * 2018-02-09 2018-08-17 西南交通大学 一种基于双光频梳的宽带微波测量装置
CN108919244A (zh) * 2018-05-18 2018-11-30 南京航空航天大学 微波光子全波段雷达探测方法及微波光子全波段雷达

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353769A (ja) * 2004-06-09 2005-12-22 Nippon Telegr & Teleph Corp <Ntt> 周波数可変ミリ波光源とその光ミリ波信号発生方法
CN103048121B (zh) * 2012-12-24 2015-07-01 南京航空航天大学 一种光器件测量方法及测量装置
CN107222263B (zh) * 2017-04-27 2019-05-31 南京航空航天大学 一种基于相干光频梳的微波光子收发信机
CN108712214B (zh) * 2018-05-08 2019-10-18 浙江大学 一种可调谐多带太赫兹脉冲无线通信发射装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170078016A1 (en) * 2002-10-03 2017-03-16 Ciena Corporation Optical Dispersion Compensation in the Electrical Domain in an Optical Communications System
US20150236789A1 (en) * 2014-01-24 2015-08-20 Kerry VAHALA Dual-frequency optical source
CN104009812A (zh) * 2014-05-14 2014-08-27 清华大学 一种基于快速激光扫描的微波信号测量方法
CN106411405A (zh) * 2016-09-27 2017-02-15 西安空间无线电技术研究所 一种高平坦高边带抑制比多载波信号生成系统及方法
CN106685535A (zh) * 2017-01-16 2017-05-17 电子科技大学 一种可重构的微波光子下变频方法及装置
CN107231160A (zh) * 2017-07-10 2017-10-03 南京航空航天大学 微波光子镜频抑制混频方法及装置
CN108418629A (zh) * 2018-02-09 2018-08-17 西南交通大学 一种基于双光频梳的宽带微波测量装置
CN108919244A (zh) * 2018-05-18 2018-11-30 南京航空航天大学 微波光子全波段雷达探测方法及微波光子全波段雷达

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, YA ET AL.: "Optical Frequency Comb Technology for Microwave Photonics Applications", SCIENCE & TECHNOLOGY REVIEW, 31 December 2016 (2016-12-31), DOI: 20200624171801A *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112994803A (zh) * 2021-02-19 2021-06-18 西安邮电大学 一种光子辅助矢量太赫兹信号通信系统
WO2022174513A1 (zh) * 2021-02-19 2022-08-25 西安邮电大学 一种光子辅助矢量太赫兹信号通信系统

Also Published As

Publication number Publication date
CN111817789A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
WO2020207442A1 (zh) 太赫兹信号的生成方法、设备及计算机可读存储介质
CN111538028B (zh) 基于光子采样的偏振复用微波光子雷达探测方法及系统
KR101809371B1 (ko) 고속 첩 신호를 이용한 차량용 RadCom 시스템 및 방법
US8135288B2 (en) System and method for a photonic system
US8923702B2 (en) Signal receiving method based on microwave photonics technologies
CN112099048B (zh) 基于时分-差频复用的微波光子mimo雷达探测方法及系统
CN110221292B (zh) 一种微波光子多波段雷达成像系统及方法
KR20030084155A (ko) 광섬유-라디오 혼합 양방향 통신 장치 및 방법
CN109375200B (zh) 基于光子上变频的光载分布式雷达探测方法及装置
KR101830478B1 (ko) 광학 주입 잠금 소스를 가진 통신 디바이스 및 관련 방법들
CN107947867B (zh) 一种基于多频相位调制的单边带频谱产生装置及方法
CN104683035B (zh) 一种用于高频窄带信号的光下变频方法及系统
US8059968B2 (en) Modulation device for generating optical signal with quadruple frequency and method thereof
US20230324504A1 (en) Integrated photonics millimeter wave (mmw) radar communication system based on analog phase modulation scheme
CN111965915A (zh) 基于光学频率梳的太赫兹波信号生成系统及方法
US20110091217A1 (en) Apparatus and method for transporting multiple radio signals over optical fiber
CN116626693A (zh) 一种基于光子倍频的相干微波光子雷达探测方法和系统
Ragheb et al. Photonics-based multi-band/multi-mode radar signal generation
Chen et al. A novel photonic-based MIMO radar architecture with all channels sharing a single transceiver
CN113608227B (zh) 光子辅助雷达混频与直达波自干扰对消一体化装置及方法
CN114047507B (zh) 微波-激光雷达一体化集成芯片及应用系统与探测方法
CN114024616B (zh) 一种偏振态独立调制实现的多路变频结构
CN111752064A (zh) 一种相位可调的虚部抑制下变频装置及方法
CN113114380B (zh) 基于光子采样及相干接收的微波光子雷达探测方法及系统
CN113740833A (zh) 一种微波光子雷达通信一体化系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20788319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/02/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20788319

Country of ref document: EP

Kind code of ref document: A1