WO2022174513A1 - 一种光子辅助矢量太赫兹信号通信系统 - Google Patents

一种光子辅助矢量太赫兹信号通信系统 Download PDF

Info

Publication number
WO2022174513A1
WO2022174513A1 PCT/CN2021/088307 CN2021088307W WO2022174513A1 WO 2022174513 A1 WO2022174513 A1 WO 2022174513A1 CN 2021088307 W CN2021088307 W CN 2021088307W WO 2022174513 A1 WO2022174513 A1 WO 2022174513A1
Authority
WO
WIPO (PCT)
Prior art keywords
vector
optical
intensity modulator
signal
terahertz signal
Prior art date
Application number
PCT/CN2021/088307
Other languages
English (en)
French (fr)
Inventor
赵峰
余建军
李静玲
巩稼民
Original Assignee
西安邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安邮电大学 filed Critical 西安邮电大学
Priority to US17/613,721 priority Critical patent/US20240022333A1/en
Publication of WO2022174513A1 publication Critical patent/WO2022174513A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/90Non-optical transmission systems, e.g. transmission systems employing non-photonic corpuscular radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/532Polarisation modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5051Laser transmitters using external modulation using a series, i.e. cascade, combination of modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5053Laser transmitters using external modulation using a parallel, i.e. shunt, combination of modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems

Definitions

  • the invention relates to the field of communication, in particular to a photon-assisted vector terahertz signal communication system.
  • Photon-assisted millimeter-wave and terahertz broadband communication technologies can realize the seamless integration of optical fiber communication and wireless communication. It has the advantages of large capacity of optical fiber communication and mobility of wireless communication, and can overcome the bandwidth bottleneck of electronic devices. It can not only solve the problem of large-capacity mobile data The problem of high-speed wireless transmission between access and smart devices can also be used in deep space communications and emergency communications. Therefore, photon-assisted millimeter-wave and terahertz communication is a very advantageous technical approach for post-5G and future 6G, and it is also an important technical means for high-speed transmission of spatial information networks.
  • this type of THz generator consists of a radio frequency source, a frequency multiplier, an electrical signal mixer and an electrical signal amplifier.
  • the radio frequency signal source generates a radio frequency signal with a frequency of about tens of GHz, which is up-converted by a frequency multiplier, and an electrical signal mixer is used to generate a modulated signal. After amplification, it is sent by the antenna (Antenna), which requires the bandwidth and gain of electronic equipment Higher, there is a larger conversion loss during modulation and demodulation, and the equipment is usually more expensive.
  • semiconductor lasers such as quantum cascade lasers, it can generate THz signals above 1THz.
  • Terahertz quantum cascade lasers are small in size, compact in structure, and have a short carrier lifetime, and can be modulated at high speed, but they are not suitable for THz emission.
  • the performance requirements of the source are very demanding, and the source used often needs to work at ultra-low temperature, so the availability of the solution is not high.
  • the laser Based on the photon-assisted method, that is, the optical heterodyne method, the laser generates two or more beams of optical signals, modulates the information on the optical carrier, and then combines with the photodetector to generate a frequency of the difference between the two beams. THz signal.
  • an optical signal with a certain frequency interval optical frequency comb
  • the difference between the frequencies of any two beams of light can be selected as the frequency of the THz signal. Its advantage is that frequency adjustment is easier, THz signals of different frequencies can be easily obtained, and it can be used in multi-carrier systems.
  • the vector signal generation scheme based on an external modulator must perform precoding processing on both the amplitude and phase information of the transmitted multi-order quadrature amplitude modulation signal. increase the system complexity.
  • a high-performance arbitrary waveform generator Arbitrary Waveform Generator, AWG
  • digital-to-analog converter Digital Analog Converter, DAC
  • AWG arbitrary Waveform Generator
  • DAC Digital Analog Converter
  • Most of these devices are expensive and consume a lot of power, which greatly increases the system transmission cost.
  • the existing digital-to-analog converters all have electronic bottlenecks. Due to their limited electronic bandwidth of 3dB, it is currently impossible to generate high-order driving signals or high-speed driving signals. These factors limit the future high-speed 5G and super 5G, and even The development of 6G mobile communication.
  • the purpose of the present invention is to provide a photon-assisted vector terahertz signal communication system.
  • the present invention provides the following scheme:
  • a photon-assisted vector terahertz signal communication system comprising: an optical frequency comb generation module, a vector terahertz signal generation module, an optical fiber transmission module, a vector terahertz signal detection module and a vector terahertz signal emission module connected in sequence;
  • the vector The terahertz signal generation module includes a first binary sequence generator, a first electrical amplifier and a first intensity modulator connected in sequence, the first binary sequence generator generates binary data representing the data to be transmitted, the The first intensity modulator performs amplitude modulation on the optical frequency comb entering the first intensity modulator based on the binary data, and the optical signal obtained after being modulated by the first intensity modulator is a vector signal with data to be transmitted. Hertz signal.
  • the vector terahertz signal generation module further includes a polarization maintaining coupler, a second binary sequence generator, a second electrical amplifier and a second intensity modulator connected in sequence, an optical attenuator, a 90° optical phase shifter and polarization beam combiner;
  • the polarization-maintaining coupler divides the optical frequency comb generated by the optical frequency comb generating module into two paths, one path enters the first intensity modulator, and the other path enters the second intensity modulator;
  • the second intensity modulator performs amplitude modulation on the optical frequency comb entering the second intensity modulator based on the binary data generated by the second binary sequence generator and represents the data to be transmitted, and is processed by the second intensity modulator.
  • the optical signal obtained after modulation by the intensity modulator is a vector terahertz signal with data to be transmitted;
  • the optical attenuator adjusts the intensity of the optical signal output by the first intensity modulator or the second intensity modulator, so that the optical signals output by the first intensity modulator and the second intensity modulator the same strength;
  • the 90° optical phase shifter operates to phase shift the optical signal output by the first intensity modulator or the second intensity modulator, so that the first intensity modulator and the second intensity modulator output
  • the phase difference of the optical signal is 90°
  • the polarization beam combiner combines the intensity-attenuated and phase-shifted two optical signals into one.
  • the vector terahertz signal detection module includes a signal separation unit for separating the optical signal from the optical fiber transmission module, including a first optical interleaver, an optical trap, and a second optical interleaver connected in sequence. .
  • the vector terahertz signal detection module includes: a photodetector, and an output end of the photodetector is connected to the vector terahertz signal transmission module.
  • the optical frequency comb generating module includes an external cavity laser, a third intensity modulator, a phase modulator, an intensity modulator driving module and a phase modulator driving module.
  • the external cavity laser, the third intensity modulator and the phase modulator are connected in sequence.
  • the intensity modulator driving module includes a first signal radio frequency source, a first frequency multiplier and a third electric amplifier connected in sequence, and the output end of the third electric amplifier is connected to the output end of the third intensity modulator. drive end connection.
  • the phase modulator driving module includes a second signal radio frequency source, a second frequency multiplier and a fourth electric amplifier connected in sequence, the output end of the fourth electric amplifier and the driving end of the phase modulator connect.
  • the optical frequency comb generating module further includes: a polarization maintaining fiber amplifier, the input end is connected to the output end of the phase modulator, and the output end is connected to the input end of the vector terahertz signal generating module.
  • the optical fiber transmission module includes an optical fiber and an optical fiber amplifier.
  • One end of the optical fiber is connected to the output end of the vector terahertz signal generation module, and the other end is connected to one end of the optical fiber amplifier. The other end is connected to the vector terahertz signal detection module.
  • the vector terahertz signal transmitting module includes an antenna.
  • the present invention discloses the following technical effects: the photon-assisted vector terahertz signal communication system provided by the present invention does not require a digital-to-analog converter, and can use an intensity modulator to complete the generation of a vector terahertz signal, and No additional digital signal processing is required for precoding, and the THz signal generated by it is stable in frequency and easy to adjust. It has important application significance for the development of high-speed, large-capacity super 5G and even 6G mobile communication networks in the future.
  • FIG. 1 is a schematic structural diagram of a photon-assisted vector terahertz signal communication system provided in Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural diagram of a photon-assisted vector terahertz signal communication system according to Embodiment 2 of the present invention.
  • this embodiment provides a photon-assisted vector terahertz signal communication system, which includes: an optical frequency comb generation module 1 , a vector terahertz signal generation module 2 , an optical fiber transmission module 3 , a vector terahertz signal generation module 2 , and a vector terahertz Signal detection module 4 and vector terahertz signal transmission module 5 .
  • the vector terahertz signal generation module 2 includes a polarization maintaining coupler 20, a first binary sequence generator 21, a first electrical amplifier 22 and a first intensity modulator 23 connected in sequence, and a second binary sequence connected in sequence generates 26 , second electric amplifier 25 and second intensity modulator 24 , optical attenuator 27 , 90° optical phase shifter 28 and polarization beam combiner 29 .
  • the polarization maintaining coupler 20 divides the optical frequency comb generated by the optical frequency comb generating module 1 into two paths, one path enters the first intensity modulator 23 and the other path enters the second intensity modulator 24 .
  • the first binary sequence generator 21 generates binary data representing the data to be transmitted, and the first intensity modulator 23 performs amplitude modulation on the optical frequency comb entering the first intensity modulator 23 based on the binary data.
  • the optical signal obtained after 23 modulation is a vector terahertz signal with data to be transmitted.
  • the second intensity modulator 24 performs amplitude modulation on the optical frequency comb entering the second intensity modulator 24 based on the binary data representing the data to be transmitted generated by the second binary sequence generator 26 , and modulates the optical frequency comb through the second intensity modulator 24
  • the resulting optical signal is a vector terahertz signal with data to be transmitted.
  • the optical attenuator 27 adjusts the intensity of the optical signal output by the first intensity modulator 23 or the second intensity modulator 24 , so that the intensity of the optical signal output by the first intensity modulator 23 and the second intensity modulator 24 is the same.
  • the 90° optical phase shifter 28 phase-shifts the optical signal output by the first intensity modulator 23 or the second intensity modulator 24, so that the phases of the optical signals output by the first intensity modulator 23 and the second intensity modulator 24 are phase-shifted. The difference is 90°.
  • the polarization beam combiner 29 combines the intensity-attenuated and phase-shifted two optical signals into one beam.
  • the optical frequency comb generating module 1 includes an external cavity laser 10 , a third intensity modulator 11 , a phase modulator 12 , an intensity modulator driving module, and a phase modulator driving module.
  • the external cavity laser 10 , the third intensity modulator 11 and the phase modulator 12 are connected in sequence.
  • the intensity modulator driving module includes a first signal radio frequency source 14 , a first frequency multiplier 15 and a third electric amplifier 16 connected in sequence, and the output end of the third electric amplifier 16 is connected to the driving end of the third intensity modulator 11 .
  • the phase modulator driving module includes a second signal radio frequency source 19 , a second frequency multiplier 18 and a fourth electric amplifier 17 connected in sequence. The output end of the fourth electric amplifier 17 is connected to the driving end of the phase modulator 12 .
  • the optical frequency comb generation module 1 further includes a polarization maintaining fiber amplifier 13 , the input end is connected to the output end of the phase modulator 12 , and the output end is connected to the input end of the vector terahertz signal generation module 2 .
  • the optical fiber transmission module 3 includes an optical fiber 30 and an optical fiber amplifier 13.
  • One end of the optical fiber 30 is connected to the output end of the vector terahertz signal generation module 2, and the other end is connected to one end of the optical fiber amplifier 13.
  • the other end of the amplifier 13 is connected to the vector terahertz signal detection module 4 .
  • the vector terahertz signal detection module 4 includes a signal separation unit and a photodetector 43 .
  • the signal separation unit is used to separate the optical signal from the optical fiber transmission module 3 , that is, the two beams synthesized by the polarization beam combiner 29 Light separates.
  • the signal separation unit includes a first optical interleaver 40 , an optical trap 41 and a second optical interleaver 42 which are connected in sequence.
  • the input end of the photodetector 43 is connected to the output end of the signal separation unit, and the output end of the photodetector 43 is connected to the vector terahertz signal transmitting module 5 .
  • the vector terahertz signal transmitting module 5 includes an antenna 50 .
  • the external cavity laser 10 generates continuous coherent light with a center frequency fc , and sends the continuous coherent light to the third intensity modulator 11;
  • the first signal radio frequency source 14 emits a radio frequency signal with a frequency of 14.02 GHz
  • the third intensity modulator 11 is driven. are f c , f c +14.02*6, f c -14.02*6 and their outputs are fed to the phase modulator 12 .
  • the radio frequency signal source with a frequency of 9.8 GHz from the second signal radio frequency source 19 is amplified by the second frequency multiplier 18 and the fourth electric amplifier 17 to drive the phase modulator 12, and the amplitude of the driving signal is controlled so that the phase modulator 12 outputs Only the third-order spectral components are included, and the output is sent to the polarization-maintaining coupler 20 through the polarization-maintaining fiber amplifier 13 .
  • the polarization-maintaining coupler 20 is divided into upper and lower transmission polarized lights; wherein, the upper-path polarized light is sent into the first intensity modulator 23, and the binary signal data1 representing the data to be transmitted generated by the first binary sequence generator 21 is passed through.
  • the first electric amplifier 22 drives the first intensity modulator 23 after being amplified, and the output signal of the first intensity modulator 23 is sent to the optical attenuator 27; the second binary sequence generator 26 generates a binary signal data2 representing the data to be transmitted After being amplified by the second electric amplifier 25, the second intensity modulator 24 is driven, and the polarized light of the lower path is sent to the second intensity modulator 24, and its output is sent to the 90° optical phase shifter 28; The output optical powers are equal, and the 90° optical phase shifter 28 makes the phase difference between the upper and lower paths equal to 90°.
  • the upper and lower polarized lights are combined into one beam after the polarization beam combiner 29, and sent into the first optical interleaver 40 of 50/200 GHz after the optical fiber amplifier 31, and the output of the first optical interleaver 40 is sent into the optical trap 41 to filter. Except for the center carrier, the output of the optical notch filter 41 is sent to the second optical interleaver 42 of 50/100 GHz, and its output spectral components are f c -84.12-3*39.2, f c +84.12+3*39.2, and its spectral interval is 403.44GHz.
  • the output of the second optical interleaver 42 passes through the photodetector 43 to generate a vector QPSK signal with a frequency of 403.44 GHz, the output of which can be expressed as I out , I out ⁇ data2 2 (t)cos[j2 ⁇ (2f RF1 +6f RF2 ) t]-data1 2 (t)sin[j2 ⁇ (2f RF1 +6f RF2 )t], where f RF1 is 84.12 GHz, f RF2 is 39.2 GHz, and 2f RF1 +6f RF2 is 403.44 GHz.
  • the output of the photodetector 43 is transmitted into the free space through the antenna 50 to realize the wireless transmission of the terahertz vector signal.
  • the generated terahertz signal has small phase noise and stable frequency; the frequency of the generated THz signal is easy to adjust.
  • the two spectrums of the beat frequency in this embodiment are generated by the same light source, so the phase noise of the THz signal generated after the beat frequency is small and the frequency is stable.
  • the spectral distribution of the optical frequency comb can be constructed. By selecting the spectral components in the THz band at any interval, the signal in the THz band can be generated after photoelectric detection.
  • This method is used to generate The frequency of the THz signal can be adjusted; and this method can be used in a multi-carrier system. By loading different signals on spectral components of different orders, multi-carrier transmission can be realized, and the system transmission capacity can be improved.
  • the generation of the vector QPSK signal is completed by using the intensity modulator, without the need for an expensive arbitrary waveform generator (AWG) and a digital-to-analog converter (DAC), and the binary signal generated by the binary sequence generator representing the data to be transmitted can be directly converted.
  • a beam of light is divided into two beams after passing through the polarization maintaining coupler, and then the intensity modulator is used to load dta1 and data2 into the two beams of light respectively, and the phase difference between the two beams of light is 90° through the 90° optical phase shifter;
  • the beamer combines the X polarization and Y polarization directions of the two beams into one beam. After electrical detection, vector modulation can be realized, and the generation of the vector signal does not require precoding.
  • this embodiment provides a photon-assisted vector terahertz signal communication system, which includes: an optical frequency comb generation module 1 , a vector terahertz signal generation module 2 , an optical fiber transmission module 3 , a vector terahertz signal generation module 2 connected in sequence
  • the vector terahertz signal generation module 2 includes a first binary sequence generator 21, a first electric amplifier 22 and a first intensity modulator 23 connected in sequence, the first two
  • the binary sequence generator 21 generates binary data representing the data to be transmitted, and the first intensity modulator 23 performs amplitude modulation on the optical frequency comb entering the first intensity modulator 23 based on the binary data. After modulation by the first intensity modulator 23
  • the resulting optical signal is a vector terahertz signal with data to be transmitted.
  • the optical frequency comb generating module 1 includes an external cavity laser 10 , a third intensity modulator 11 , a phase modulator 12 , an intensity modulator driving module, and a phase modulator driving module.
  • the external cavity laser 10 , the third intensity modulator 11 and the phase modulator 12 are connected in sequence.
  • the intensity modulator driving module includes a first signal radio frequency source 14 , a first frequency multiplier 15 and a third electric amplifier 16 connected in sequence, and the output end of the third electric amplifier 16 is connected to the driving end of the third intensity modulator 11 .
  • the phase modulator driving module includes a second signal radio frequency source 19 , a second frequency multiplier 18 and a fourth electric amplifier 17 connected in sequence. The output end of the fourth electric amplifier 17 is connected to the driving end of the phase modulator 12 .
  • the optical frequency comb generation module 1 further includes a polarization maintaining fiber amplifier 13 , the input end is connected to the output end of the phase modulator 12 , and the output end is connected to the input end of the vector terahertz signal generation module 2 .
  • the optical fiber transmission module 3 includes an optical fiber 30 and an optical fiber amplifier 31.
  • One end of the optical fiber 30 is connected to the output end of the vector terahertz signal generation module 2, and the other end is connected to one end of the optical fiber amplifier 31.
  • the other end of the amplifier 31 is connected to the vector terahertz signal detection module 4 .
  • the vector terahertz signal detection module 4 includes: a photodetector 43 , and the output end of the photodetector 43 is connected to the vector terahertz signal emission module 5 .
  • the vector terahertz signal transmitting module 5 includes an antenna 50 .
  • the intensity modulator and the phase modulation are cascaded, and the spectral distribution of the optical frequency comb is constructed through the design of the system parameters.
  • the spectral components By selecting the spectral components at any interval of the THz band, a signal in the THz band can be generated after photoelectric detection.
  • the frequency of the THz signal produced by this method can be adjusted.
  • the vector QPSK signal is generated by using the intensity modulator, without expensive arbitrary waveform generator (AWG) and digital-to-analog converter (DAC).
  • the amplifier is amplified and used to drive the modulator.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种光子辅助矢量太赫兹信号通信系统。该系统包括依次连接的光频梳生成模块、矢量太赫兹信号生成模块、光纤传输模块、矢量太赫兹信号探测模块以及矢量太赫兹信号发射模块;矢量太赫兹信号生成模块包括依次连接的第一二进制序列发生器、第一电放大器和第一强度调制器,第一二进制序列发生器产生待传输数据的二进制数据,第一强度调制器基于二进制数据对进入第一强度调制器的光频梳进行幅值调制,经第一强度调制器调制后得到的光信号为带有待传输数据的矢量太赫兹信号。本发明无需数模转换器,利用强度调制器便可完成矢量太赫兹信号的生成,并且无需额外的数字信号处理来进行预编码,产生的THz信号频率稳定,调节方便。

Description

一种光子辅助矢量太赫兹信号通信系统
本申请要求于2021年02月19日提交中国专利局、申请号为202110188426.4、发明名称为“一种光子辅助矢量太赫兹信号通信系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,特别是涉及一种光子辅助矢量太赫兹信号通信系统。
背景技术
虽然5G接入的峰值速率为1~20Gbit/s,但仍不能满足未来宽带通信日益增长的数据流量要求,不久将来数据传输速率将达到400Gbit/s甚至1Tbit/s,因此需要探索新的传输频段。光子辅助毫米波、太赫兹宽带通信技术可实现光纤通信和无线通信的无缝融合,具有光纤通信大容量和无线通信移动性的优势,能够克服电子器件的带宽瓶颈,不仅可以解决大容量移动数据接入和智能设备间高速率无线传输的问题,还能用于深空通信和应急通信等方面。因此,光子辅助毫米波、太赫兹通信是后5G和未来6G极具优势的技术途径,也是空间信息网络高速传输的重要技术手段。
目前,THz产生主要有三种方法:(1)基于纯电子器件,这类THz发生器由射频源、倍频器、电信号混频器及电信号放大器组成。射频信号源产生频率约为几十GHz的射频信号,经过倍频器上变频,使用电信号混频器产生调制信号,经放大后由天线(Antenna)发送,其对电子设备带宽和增益的要求较高,调制和解调时有较大的转换损失,设备通常较为昂贵。(2)基于半导体激光器,如量子级联激光器,可产生1THz以上的THz信号,太赫兹量子级联激光器体积小,结构紧凑,载流子寿命很短,可进行高速调制,但其对THz发射源的性能要求非常苛刻,采用的源往往需要在超低温下工作,因此方案可用性不高。(3)基于光子辅助方式,即光学外差法,激光器产生2束或多束光信号,将信息调制到光载波上,再结合光电探测器,即可产生频率为2束光频率之差的THz信号。若能产生具有一定频率间隔的光信号(光频梳),那么可选择任意2束光的频率之差作为 THz信号的频率。其优势是频率调节较容易,能方便地获得不同频率的THz信号,并且可用于多载波系统。
由于目前所采用的光电探测器具有拍频平方率探测原理,因此基于外部调制器的矢量信号产生方案必须对所发送多阶正交振幅调制信号的幅度和相位信息都进行预编码处理,大幅度地增加了系统复杂度。另外,在传统的光子辅助太赫兹矢量信号产生方案中,通常需要高性能的任意波形发生器(Arbitrary Waveform Generator,AWG)或者数模转换器(Digital Analog Converter,DAC)来实现数字信号向模拟信号的转换,这些器件大多价格昂贵,功耗较大,大大地增加了系统传输成本。另外,现有的数模转换器均存在电子瓶颈,由于其有限的3dB电子带宽,导致目前无法产生高阶的驱动信号或者高速的驱动信号,这些因素均限制了未来高速5G以及超5G,乃至6G移动通信的发展。
发明内容
本发明的目的是提供一种光子辅助矢量太赫兹信号通信系统。
为实现上述目的,本发明提供了如下方案:
一种光子辅助矢量太赫兹信号通信系统,包括:依次连接的光频梳生成模块、矢量太赫兹信号生成模块、光纤传输模块、矢量太赫兹信号探测模块以及矢量太赫兹信号发射模块;所述矢量太赫兹信号生成模块包括依次连接的第一二进制序列发生器、第一电放大器和第一强度调制器,所述第一二进制序列发生器产生表示待传输数据的二进制数据,所述第一强度调制器基于所述二进制数据对进入所述第一强度调制器的光频梳进行幅值调制,经所述第一强度调制器调制后得到的光信号为带有待传输数据的矢量太赫兹信号。
可选的,所述矢量太赫兹信号生成模块还包括保偏耦合器,依次连接的第二二进制序列发生器、第二电放大器和第二强度调制器,光衰减器,90°光相移器以及偏振合束器;
所述保偏耦合器将光频梳生成模块生成的光频梳分为两路,一路进入所述第一强度调制器,另一路进入所述第二强度调制器;
所述第二强度调制器基于所述第二二进制序列发生器产生的表示待传输数据的二进制数据对进入所述第二强度调制器的光频梳进行幅值调制,经所述第二强度调制器调制后得到的光信号为带有待传输数据的矢量太赫兹信号;
所述光衰减器对所述第一强度调制器或所述第二强度调制器输出的光信号强度进行调整,以使所述第一强度调制器与所述第二强度调制器输出的光信号强度相同;
所述90°光相移器对所述第一强度调制器或所述第二强度调制器输出的光信号相移操作,以使所述第一强度调制器与所述第二强度调制器输出的光信号的相位差为90°;
偏振合束器将经强度衰减以及相位偏移的两束光信号合为一束。
可选的,所述矢量太赫兹信号探测模块包括信号分离单元,用于将光纤传输模块传来的光信号分离,包括依次连接的第一光交织器、光陷波器以及第二光交织器。
可选的,所述矢量太赫兹信号探测模块包括:光电探测器,所述光电探测器的输出端与所述矢量太赫兹信号发射模块连接。
可选的,所述光频梳生成模块包括外腔激光器、第三强度调制器、相位调制器、强度调制器驱动模块以及相位调制器驱动模块。其中,所述外腔激光器、所述第三强度调制器以及所述相位调制器依次连接。
可选的,所述强度调制器驱动模块包括依次连接的第一信号射频源、第一倍频器以及第三电放大器,所述第三电放大器的输出端与所述第三强度调制器的驱动端连接。
可选的,所述相位调制器驱动模块包括依次连接的第二信号射频源、第二倍频器以及第四电放大器,所述第四电放大器的输出端与所述相位调制器的驱动端连接。
可选的,所述光频梳生成模块还包括:保偏光纤放大器,输入端与所述相位调制器的输出端连接,输出端与所述矢量太赫兹信号生成模块输入端连接。
可选的,所述光纤传输模块包括光纤和光纤放大器,所述光纤的一端与所述矢量太赫兹信号生成模块的输出端连接,另一端与所述光纤放大器 的一端连接,所述光纤放大器的另一端与所述矢量太赫兹信号探测模块连接。
可选的,所述矢量太赫兹信号发射模块包括天线。
根据本发明提供的具体实施例,本发明公开了以下技术效果:本发明提供的光子辅助矢量太赫兹信号通信系统无需数模转换器,利用强度调制器便可完成矢量太赫兹信号的生成,并且无需额外的数字信号处理来进行预编码,其产生的THz信号频率稳定,调节方便。对于未来高速率、大容量超5G乃至6G移动通信网络的发展具有重要的应用意义。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1提供的光子辅助矢量太赫兹信号通信系统的结构示意图;
图2为本发明实施例2提供的光子辅助矢量太赫兹信号通信系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
实施例1
参见图1,本实施例提供了一种光子辅助矢量太赫兹信号通信系统,该系统包括:依次连接的光频梳生成模块1、矢量太赫兹信号生成模块2、 光纤传输模块3、矢量太赫兹信号探测模块4以及矢量太赫兹信号发射模块5。
矢量太赫兹信号生成模块2包括保偏耦合器20,依次连接的第一二进制序列发生器21、第一电放大器22和第一强度调制器23,依次连接的第二二进制序列发生器26、第二电放大器25和第二强度调制器24,光衰减器27,90°光相移器28以及偏振合束器29。保偏耦合器20将光频梳生成模块1生成的光频梳分为两路,一路进入第一强度调制器23,另一路进入第二强度调制器24。第一二进制序列发生器21产生表示待传输数据的二进制数据,第一强度调制器23基于二进制数据对进入第一强度调制器23的光频梳进行幅值调制,经第一强度调制器23调制后得到的光信号为带有待传输数据的矢量太赫兹信号。第二强度调制器24基于第二二进制序列发生器26产生的表示待传输数据的二进制数据对进入第二强度调制器24的光频梳进行幅值调制,经第二强度调制器24调制后得到的光信号为带有待传输数据的矢量太赫兹信号。光衰减器27对第一强度调制器23或第二强度调制器24输出的光信号强度进行调整,以使第一强度调制器23与第二强度调制器24输出的光信号强度相同。90°光相移器28对第一强度调制器23或第二强度调制器24输出的光信号相移操作,以使第一强度调制器23与第二强度调制器24输出的光信号的相位差为90°。偏振合束器29将经强度衰减以及相位偏移的两束光信号合为一束。
作为本实施例的一种实施方式,光频梳生成模块1包括外腔激光器10、第三强度调制器11、相位调制器12、强度调制器驱动模块以及相位调制器驱动模块。其中,外腔激光器10、第三强度调制器11以及相位调制器12依次连接。其中,强度调制器驱动模块包括依次连接的第一信号射频源14、第一倍频器15以及第三电放大器16,第三电放大器16的输出端与第三强度调制器11的驱动端连接。相位调制器驱动模块包括依次连接的第二信号射频源19、第二倍频器18以及第四电放大器17,第四电放大器17的输出端与相位调制器12的驱动端连接。
作为本实施例的一种实施方式,光频梳生成模块1还包括保偏光纤放大器13,输入端与相位调制器12的输出端连接,输出端与矢量太赫兹信号生成模块2输入端连接。
作为本实施例的一种实施方式,光纤传输模块3包括光纤30和光纤放大器13,光纤30的一端与矢量太赫兹信号生成模块2的输出端连接,另一端与光纤放大器13的一端连接,光纤放大器13的另一端与矢量太赫兹信号探测模块4连接。
在本实施例中,矢量太赫兹信号探测模块4包括信号分离单元和光电探测器43,信号分离单元用于将光纤传输模块3传来的光信号分离,即将偏振合束器29合成的两束光分开。信号分离单元包括依次连接的第一光交织器40、光陷波器41以及第二光交织器42。光电探测器43的输入端与信号分离单元的输出端连接,光电探测器43的输出端与矢量太赫兹信号发射模块5连接。
作为本实施例的一种实施方式,矢量太赫兹信号发射模块5包括天线50。
本实施例中,外腔激光器10产生中心频率为f c的连续相干光,并将该连续相干光发送至第三强度调制器11;第一信号射频源14发出的频率为14.02GHz的射频信号源经第一倍频器15六倍频之后与第三电放大器16放大之后驱动第三强度调制器11,第三强度调制器11工作在双边带调制模式,第三强度调制器11输出光谱频率为f c、f c+14.02*6、f c-14.02*6,并且将其输出送入相位调制器12。第二信号射频源19发出的频率为9.8GHz的射频信号源经第二倍频器18四倍频与第四电放大器17放大之后驱动相位调制器12,控制驱动信号幅度让相位调制器12输出仅包括三阶频谱分量,输出经保偏光纤放大器13后送入保偏耦合器20。保偏耦合器20后分为上下两路传输的偏振光;其中,上路偏振光送入第一强度调制器23,第一二进制序列发生器21产生的表示待传输数据的二进制信号data1经第一电放大器22放大之后驱动第一强度调制器23,第一强度调制器23的输出信号送入光衰减器27;第二二进制序列发生器26产生的 表示待传输数据的二进制信号data2经第二电放大器25放大之后驱动第二强度调制器24,下路偏振光送入第二强度调制器24,其输出送入90°光相移器28;调节光衰减器27使得两路的输出光功率相等,90°光相移器28使得上下两路的相位差等于90°。上下两路偏振光经偏振合束器29之后合一束光,经光纤放大器31之后送入50/200GHz的第一光交织器40,第一光交织器40输出送入光陷波器41滤除中心载波,光陷波器41输出送入50/100GHz的第二光交织器42,其输出光谱分量为f c-84.12-3*39.2、f c+84.12+3*39.2,其光谱间隔为403.44GHz。第二光交织器42的输出经过光电探测器43,产生频率为403.44GHz的矢量QPSK信号,其输出可表示为I out,I out∝data2 2(t)cos[j2π(2f RF1+6f RF2)t]-data1 2(t)sin[j2π(2f RF1+6f RF2)t]其中,f RF1为84.12GHz,f RF2为39.2GHz,2f RF1+6f RF2为403.44GHz。光电探测器43的输出通过天线50发射到自由空间中,实现太赫兹矢量信号的无线发射。
本实施例提供的光子辅助矢量太赫兹信号通信系统具有以下优势:
1)采用光学方法产生400GHz的太赫兹信号,其产生的太赫兹信号相位噪声小,频率稳定;其产生的THz信号频率便于调节。相对于普通的多光源外差产生THz信号,本实施例进行拍频的两束光谱由同一光源产生,故其拍频后产生的THz信号相位噪声小,频率稳定。利用强度调制器与相位调制级联,通过系统参数的设计,构造出光频梳的光谱分布,可以通过挑选任意间隔为THz波段的光谱分量,光电探测之后可产生THz波段的信号,采用此方法产生的THz信号频率可以调节;并且此方法可用于多载波系统,通过对不同阶数的光谱分量加载不同的信号,可实现多载波传输,可以提升系统传输容量。
2)采用强度调制器完成了矢量QPSK信号的生成,无需造价昂贵的 任意波形发生器(AWG)和数模转换器(DAC),可直接将二进制序列发生器产生的代表待传输数据的二进制信号经电放大器放大后用来驱动调制器。一束光经保偏耦合器后一分为二,然后利用强度调制器分别将dta1与data2加载到两束光,通过90°光相移器是两束光相位相差90°;再利用偏振合束器将两束光中的X偏振与Y偏振方向合为一束光,经电探测后,可实现矢量调制,并且其矢量信号的产生无需预编码。
实施例2
参见图2,本实施例提供了一种光子辅助矢量太赫兹信号通信系统,该系统包括:依次连接的光频梳生成模块1、矢量太赫兹信号生成模块2、光纤传输模块3、矢量太赫兹信号探测模块4以及矢量太赫兹信号发射模块5;矢量太赫兹信号生成模块2包括依次连接的第一二进制序列发生器21、第一电放大器22和第一强度调制器23,第一二进制序列发生器21产生表示待传输数据的二进制数据,第一强度调制器23基于二进制数据对进入第一强度调制器23的光频梳进行幅值调制,经第一强度调制器23调制后得到的光信号为带有待传输数据的矢量太赫兹信号。
作为本实施例的一种实施方式,光频梳生成模块1包括外腔激光器10、第三强度调制器11、相位调制器12、强度调制器驱动模块以及相位调制器驱动模块。其中,外腔激光器10、第三强度调制器11以及相位调制器12依次连接。其中,强度调制器驱动模块包括依次连接的第一信号射频源14、第一倍频器15以及第三电放大器16,第三电放大器16的输出端与第三强度调制器11的驱动端连接。相位调制器驱动模块包括依次连接的第二信号射频源19、第二倍频器18以及第四电放大器17,第四电放大器17的输出端与相位调制器12的驱动端连接。
作为本实施例的一种实施方式,光频梳生成模块1还包括保偏光纤放大器13,输入端与相位调制器12的输出端连接,输出端与矢量太赫兹信号生成模块2输入端连接。
作为本实施例的一种实施方式,光纤传输模块3包括光纤30和光纤放大器31,光纤30的一端与矢量太赫兹信号生成模块2的输出端连接,另一端与光纤放大器31的一端连接,光纤放大器31的另一端与矢量太赫兹信号探测模块4连接。
作为本实施例的一种实施方式,矢量太赫兹信号探测模块4包括:光电探测器43,光电探测器43的输出端与矢量太赫兹信号发射模块5连接。
作为本实施例的一种实施方式,矢量太赫兹信号发射模块5包括天线50。
本实施例利用强度调制器与相位调制级联,通过系统参数的设计,构造出光频梳的光谱分布,可以通过挑选任意间隔为THz波段的光谱分量,光电探测之后可产生THz波段的信号,采用此方法产生的THz信号频率可以调节。采用强度调制器完成了矢量QPSK信号的生成,无需造价昂贵的任意波形发生器(AWG)和数模转换器(DAC),可直接将二进制序列发生器产生的代表待传输数据的二进制信号经电放大器放大后用来驱动调制器。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种光子辅助矢量太赫兹信号通信系统,其特征在于,包括:依次连接的光频梳生成模块、矢量太赫兹信号生成模块、光纤传输模块、矢量太赫兹信号探测模块以及矢量太赫兹信号发射模块;所述矢量太赫兹信号生成模块包括依次连接的第一二进制序列发生器、第一电放大器和第一强度调制器,所述第一二进制序列发生器产生表示待传输数据的二进制数据,所述第一强度调制器基于所述二进制数据对进入所述第一强度调制器的光频梳进行幅值调制,经所述第一强度调制器调制后得到的光信号为带有待传输数据的矢量太赫兹信号。
  2. 根据权利要求1所述的光子辅助矢量太赫兹信号通信系统,其特征在于,所述矢量太赫兹信号生成模块还包括保偏耦合器,依次连接的第二二进制序列发生器、第二电放大器和第二强度调制器,光衰减器,90°光相移器以及偏振合束器;
    所述保偏耦合器将光频梳生成模块生成的光频梳分为两路,一路进入所述第一强度调制器,另一路进入所述第二强度调制器;
    所述第二强度调制器基于所述第二二进制序列发生器产生的表示待传输数据的二进制数据对进入所述第二强度调制器的光频梳进行幅值调制,经所述第二强度调制器调制后得到的光信号为带有待传输数据的矢量太赫兹信号;
    所述光衰减器对所述第一强度调制器或所述第二强度调制器输出的光信号强度进行调整,以使所述第一强度调制器与所述第二强度调制器输出的光信号强度相同;
    所述90°光相移器对所述第一强度调制器或所述第二强度调制器输出的光信号相移操作,以使所述第一强度调制器与所述第二强度调制器输出的光信号的相位差为90°;
    偏振合束器将经强度衰减以及相位偏移的两束光信号合为一束。
  3. 根据权利要求2所述的光子辅助矢量太赫兹信号通信系统,其特征在于,所述矢量太赫兹信号探测模块包括信号分离单元,用于将光纤传输模块传来的光信号分离,包括依次连接的第一光交织器、光陷波器以及 第二光交织器。
  4. 根据权利要求1或2所述的光子辅助矢量太赫兹信号通信系统,其特征在于,所述矢量太赫兹信号探测模块包括:光电探测器,所述光电探测器的输出端与所述矢量太赫兹信号发射模块连接。
  5. 根据权利要求1或2所述的光子辅助矢量太赫兹信号通信系统,其特征在于,所述光频梳生成模块包括外腔激光器、第三强度调制器、相位调制器、强度调制器驱动模块以及相位调制器驱动模块,其中,所述外腔激光器、所述第三强度调制器以及所述相位调制器依次连接。
  6. 根据权利要求5所述的光子辅助矢量太赫兹信号通信系统,其特征在于,所述强度调制器驱动模块包括依次连接的第一信号射频源、第一倍频器以及第三电放大器,所述第三电放大器的输出端与所述第三强度调制器的驱动端连接。
  7. 根据权利要求5所述的光子辅助矢量太赫兹信号通信系统,其特征在于,所述相位调制器驱动模块包括依次连接的第二信号射频源、第二倍频器以及第四电放大器,所述第四电放大器的输出端与所述相位调制器的驱动端连接。
  8. 根据权利要求5所述的光子辅助矢量太赫兹信号通信系统,其特征在于,所述光频梳生成模块还包括:保偏光纤放大器,输入端与所述相位调制器的输出端连接,输出端与所述矢量太赫兹信号生成模块输入端连接。
  9. 根据权利要求1或2所述的光子辅助矢量太赫兹信号通信系统,其特征在于,所述光纤传输模块包括光纤和光纤放大器,所述光纤的一端与所述矢量太赫兹信号生成模块的输出端连接,另一端与所述光纤放大器的一端连接,所述光纤放大器的另一端与所述矢量太赫兹信号探测模块连接。
  10. 根据权利要求1或2所述的光子辅助矢量太赫兹信号通信系统,其特征在于,所述矢量太赫兹信号发射模块包括天线。
PCT/CN2021/088307 2021-02-19 2021-04-20 一种光子辅助矢量太赫兹信号通信系统 WO2022174513A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/613,721 US20240022333A1 (en) 2021-02-19 2021-04-20 Photonics-aided vector terahertz signal communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110188426.4A CN112994803B (zh) 2021-02-19 2021-02-19 一种光子辅助矢量太赫兹信号通信系统
CN202110188426.4 2021-02-19

Publications (1)

Publication Number Publication Date
WO2022174513A1 true WO2022174513A1 (zh) 2022-08-25

Family

ID=76394322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088307 WO2022174513A1 (zh) 2021-02-19 2021-04-20 一种光子辅助矢量太赫兹信号通信系统

Country Status (3)

Country Link
US (1) US20240022333A1 (zh)
CN (1) CN112994803B (zh)
WO (1) WO2022174513A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113746561B (zh) * 2021-09-08 2022-07-29 西安邮电大学 一种基于ook调制激光产生qpsk信号的装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140233957A1 (en) * 2013-02-15 2014-08-21 Fujitsu Limited Optical signal processing apparatus, transmission apparatus, and optical signal processing method
CN108712214A (zh) * 2018-05-08 2018-10-26 浙江大学 一种可调谐多带太赫兹脉冲无线通信发射装置
CN110224764A (zh) * 2019-06-13 2019-09-10 复旦大学 基于isb和多载波使用pm和im生成矢量太赫兹信号的方法
CN111224720A (zh) * 2020-02-25 2020-06-02 西安邮电大学 双强度调制器级联的太赫兹矢量信号生成系统及方法
WO2020207442A1 (zh) * 2019-04-11 2020-10-15 中兴通讯股份有限公司 太赫兹信号的生成方法、设备及计算机可读存储介质
CN112039595A (zh) * 2020-11-06 2020-12-04 网络通信与安全紫金山实验室 光载太赫兹波/毫米波生成系统及方法、发射机
CN112415829A (zh) * 2020-11-18 2021-02-26 北京邮电大学 基于赫增德尔调制器的太赫兹波信号生成方法及装置
CN112532325A (zh) * 2020-11-25 2021-03-19 浙江大学 一种多维复用的光子太赫兹通信系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4551689A (en) * 1983-02-25 1985-11-05 Comtech Telecommunications Corp. RF Local oscillator with low phase noise
WO2009012419A2 (en) * 2007-07-17 2009-01-22 Opvista Incorporated Optical wavelength-division-multiplexed (wdm) comb generator using a single laser
CN102045127B (zh) * 2009-10-23 2014-12-10 华为技术有限公司 光解偏振复用的接收装置、发送装置、系统及方法
EP2559173B1 (en) * 2010-04-13 2015-09-16 Xieon Networks S.à r.l. Method and device for transmission and reception of a polarization multiplexed optical signal
JP6234777B2 (ja) * 2013-10-31 2017-11-22 株式会社日立製作所 光多値送信器および光トランスポンダ
CN103941515B (zh) * 2014-04-09 2016-11-09 上海交通大学 梳齿频率间隔可扫频的光频梳产生装置及产生方法
US9634786B2 (en) * 2015-02-13 2017-04-25 Georgia Tech Research Corporation Communication systems with phase-correlated orthogonally-polarized light-stream generator
US9906305B2 (en) * 2015-03-11 2018-02-27 Zte Corporation Quadrature amplitude modulation (QAM) vector signal generation by external modulator
US10044444B2 (en) * 2015-08-01 2018-08-07 Zte Corporation Photonic vector signal generation without precoding
US10122466B2 (en) * 2015-10-29 2018-11-06 Zte Corporation Photonic vector signal generation using heterodyne beating
US10177850B2 (en) * 2016-07-18 2019-01-08 Zte Corporation Dual polarization vector signal generation and detection
CN106848825B (zh) * 2017-04-12 2018-12-25 上海交通大学 通过级联光调制器产生超平坦光频梳的方法
US11005178B2 (en) * 2017-11-21 2021-05-11 Phase Sensitive Innovations, Inc. Antenna and antenna array configurations, antenna systems and related methods of operation
US11245473B2 (en) * 2018-08-03 2022-02-08 Telefonaktiebolaget Lm Ericsson (Publ) Optimum three dimensional constellations for optical interconnects employing stokes vector receivers
US20200112384A1 (en) * 2018-10-04 2020-04-09 Zte Corporation Optical fiber wireless integration system using dual polarization antenna
US11050491B2 (en) * 2019-10-08 2021-06-29 Fadhel M Ghannouchi Radio access network using radio over fibre

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140233957A1 (en) * 2013-02-15 2014-08-21 Fujitsu Limited Optical signal processing apparatus, transmission apparatus, and optical signal processing method
CN108712214A (zh) * 2018-05-08 2018-10-26 浙江大学 一种可调谐多带太赫兹脉冲无线通信发射装置
WO2020207442A1 (zh) * 2019-04-11 2020-10-15 中兴通讯股份有限公司 太赫兹信号的生成方法、设备及计算机可读存储介质
CN110224764A (zh) * 2019-06-13 2019-09-10 复旦大学 基于isb和多载波使用pm和im生成矢量太赫兹信号的方法
CN111224720A (zh) * 2020-02-25 2020-06-02 西安邮电大学 双强度调制器级联的太赫兹矢量信号生成系统及方法
CN112039595A (zh) * 2020-11-06 2020-12-04 网络通信与安全紫金山实验室 光载太赫兹波/毫米波生成系统及方法、发射机
CN112415829A (zh) * 2020-11-18 2021-02-26 北京邮电大学 基于赫增德尔调制器的太赫兹波信号生成方法及装置
CN112532325A (zh) * 2020-11-25 2021-03-19 浙江大学 一种多维复用的光子太赫兹通信系统

Also Published As

Publication number Publication date
US20240022333A1 (en) 2024-01-18
CN112994803B (zh) 2022-02-08
CN112994803A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
JP3981337B2 (ja) 光ファイバ−ラジオ混合双方通信装置及び方法
CN101951294B (zh) 宽带连续可调谐微波/毫米波信号产生装置
CN111464240B (zh) 基于偏振复用强度调制器的矢量射频信号发生系统
WO2022174513A1 (zh) 一种光子辅助矢量太赫兹信号通信系统
Van Gasse et al. Analog radio-over-fiber transceivers based on III–V-on-silicon photonics
Kanno et al. 16-Gbaud QPSK radio transmission using optical frequency comb with recirculating frequency shifter for 300-GHz RoF signal
Liu et al. Full-duplex WDM-RoF system based on OFC with dual frequency microwave signal generation and wavelength reuse
CN111917475B (zh) 基于单个调制器同时提供有线和单边带无线业务的系统
CN110505016B (zh) 一种基于推挽调制器的电矢量毫米波生成方法
CN111740781B (zh) 一种w波段矢量qpsk毫米波信号的产生装置和方法
Kanno Seamless Convergence Between Terahertz Radios and Optical Fiber Communication Toward 7G Systems
CN115913371A (zh) 一种光子辅助太赫兹光纤无线通信实时传输系统
CN101144916A (zh) 采用单调制器产生光毫米波方法及装置
US10284295B2 (en) Radio over fiber network node, radio access point, and communication system
CN109194405A (zh) 全双工光纤无线融合通信系统
Dass et al. Flexible V-band mmwave analog-RoF transmission of 5G and WiGig signals using an InP-SiN integrated laser module
Nagatsuma et al. Photonic generation of millimeter and terahertz waves and its applications
KR100715865B1 (ko) 반도체 광증폭기 마하젠더 간섭계를 이용한 전광 주파수 상향 변환 방법
CN108521300B (zh) 一种光载无线射频信号产生装置及方法
CN112350777A (zh) 一种基于推挽调制器的双矢量毫米波的发生系统及方法
CN113740833A (zh) 一种微波光子雷达通信一体化系统及方法
Nagatsuma et al. Photonics-Based Transmitters and Receivers
Coronel et al. Optoelectronic Oscillator at S-Band and C-Band for 5G Telecommunications Purpose
Kanno et al. Seamless W-Band radio-to-optical signal conversion with direct IQ down-converter
Kanno Millimeter-and terahertz-wave radio systems enabled by photonics technology for 5G/iot and beyond

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17613721

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926230

Country of ref document: EP

Kind code of ref document: A1