WO2020207338A1 - 完整双排同种中心轮排变速器 - Google Patents

完整双排同种中心轮排变速器 Download PDF

Info

Publication number
WO2020207338A1
WO2020207338A1 PCT/CN2020/083136 CN2020083136W WO2020207338A1 WO 2020207338 A1 WO2020207338 A1 WO 2020207338A1 CN 2020083136 W CN2020083136 W CN 2020083136W WO 2020207338 A1 WO2020207338 A1 WO 2020207338A1
Authority
WO
WIPO (PCT)
Prior art keywords
row
planetary
gear
center wheel
brake
Prior art date
Application number
PCT/CN2020/083136
Other languages
English (en)
French (fr)
Inventor
罗灿
Original Assignee
罗灿
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 罗灿 filed Critical 罗灿
Publication of WO2020207338A1 publication Critical patent/WO2020207338A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/62Gearings having three or more central gears
    • F16H3/64Gearings having three or more central gears composed of a number of gear trains, the drive always passing through all the trains, each train having not more than one connection for driving another train

Definitions

  • the present invention relates to a planetary gear transmission, specifically adopting no less than two rows of planetary rows, in which one row of planetary rows is a complete double-layer star planetary row, and the rest of the planetary rows are of the same kind of center wheel planetary row, and a star-connected planetary row structure Yes, all through the control of the brakes to control the planetary gear transmission.
  • the planetary gear transmission includes: the internal structure of each planetary row, namely the adopted planetary row, the structure formed by interconnecting the planetary rows, that is, the planetary row structure, the input and output lock ends, the controller of the transmission, etc.
  • Ordinary complete planetary row is composed of three parts: sun gear, inner gear ring and planet carrier with planetary gear.
  • the axes of sun gear and inner gear ring are the central axis of planetary row.
  • Sun gear is a kind of center wheel with inner teeth.
  • the circle is another center wheel.
  • Planetary rows are divided into single-layer stars and planetary rows and double-layer stars and planetary rows.
  • the single-layer planetary row has only single-layer planetary wheels, and the number of planetary wheels is equal to the number of planetary wheel sets. From the inside to the outside of the complete single-layer planetary row, the sun gear meshes with the single-layer planet gear, and the single-layer planet gear meshes with the inner ring gear.
  • the planetary wheels of the double-layer planetary row are divided into inner planetary wheels and outer planetary wheels.
  • the number of planetary wheels divided by two is equal to the number of planetary wheel sets. From the inside to the outside of the complete double-layer star planetary row, the sun gear meshes with the inner planet gear, the inner planet gear meshes with the outer planet gear, and the outer planet gear meshes with the inner ring gear.
  • the size of each component of the planetary row is enlarged and reduced in proportion, and its motion law remains unchanged.
  • Multiple planetary rows are connected to each other to form a planetary row structure.
  • a component in the planetary row structure has a rotation speed and is a rotating component, and several components connected to each other and have the same rotation speed are the same rotating component.
  • the star-connected planetary row structure is: for multiple rows of planetary rows, the number of planetary wheel sets is the same, and the size of each planetary row is adjusted, some are scaled up, and some are scaled down, until a certain layer in each planetary row The distances from the axis of the planetary gears to the central axis of the planetary row are equal; align the planetary gears of a certain layer of the planetary row with the planetary gear axes of the adjacent planetary rows and connect them in groups. Such a connection is called a star connection.
  • Each planetary wheel has the same rotation speed, and each planet carrier participating in the connection has another same rotation speed.
  • the planetary row structure formed by the star connection of the planetary rows is the star-connected planetary row structure.
  • each single-layer star planetary row in the star-connected planetary row structure can omit one of the two central wheels, the sun gear or the inner gear ring, to become an incomplete single-layer planetary row.
  • An incomplete single-layer star planetary row has only two components: a central wheel and a planet carrier with planetary wheels.
  • the planetary rows used in the present invention are: one row of planetary rows is a complete double-layer star planetary row, and the remaining planetary rows are incomplete single-layer star planetary rows and are the same kind of center wheel row.
  • each planetary row omits the sun gear and is the same kind of center wheel (inner gear ring) row. From the inside to the outside of the planetary row, a single-layer planetary gear meshes with the inner gear ring.
  • the present invention proposes a complete double-row and same center wheel transmission.
  • Features include the planetary row, planetary row structure, input and output locking ends, and various brakes. The characteristics are as follows:
  • the planetary row used is: the present invention adopts no less than two rows of planetary rows, one of which is a complete double-layered planetary row, and the other planetary rows are the same kind of center wheel row.
  • the same kind of center wheel row includes the same kind of center wheel (sun gear) row and the same kind of center wheel (inner gear) row.
  • Each planetary row in which the same kind of center wheel is a sun gear is called the same kind of center wheel.
  • (Sun gear) row each planetary row in which the same kind of center wheel is an inner ring gear is called the same kind of center wheel (inner gear ring) row.
  • one of the transmissions is selected and used to form a transmission with a complete double-layer star planetary row, and the same kind of center wheel (sun gear) row and a complete double-layer star planetary row are selected to form a complete double row of the same kind of center wheel (Sun gear) planetary gear transmission; select the same kind of center wheel (inner gear) row and a complete double-layer star planetary row to form a complete double row of the same kind of center gear (inner gear) planetary gear transmission.
  • the concept of "planetary row” includes the components of the planetary row and the parts of the components, including the components, the meshing, transmission, support, arrangement and positional relationship between the components, including the components, the structure of each component, omission and parameter settings.
  • the planetary row structure is a star-connected planetary row structure.
  • the star-connected planetary row structure is: for multiple rows of planetary rows, the number of planetary gear sets is the same, and the size of each planetary row is adjusted until the distance from the axis of a certain layer of the planetary gear in each planetary row to the central axis of the planetary row is equal ; Align the axis of a certain layer of planetary wheels with the planetary wheels of adjacent planetary rows and connect them in groups.
  • This connection is called star connection.
  • the planetary row structure formed by the star connection between the planetary rows is the star-connected planetary row. structure. For a double-layer star planetary row, there are two situations for the planetary wheels participating in the star connection.
  • a certain layer of planetary wheels participating in the star connection is the outer planetary wheel
  • the second case is the inner planetary wheel of a certain layer participating in the star connection.
  • Layer planetary wheel The planet carrier of each planetary row in the star-connected planetary row structure together becomes a rotating component, and the center wheel of each planetary row is a rotating component.
  • "planetary row structure" is a specific term, and its concept includes the connection between the planetary rows, and also includes the planetary rows in connection and the components and parts of the planetary rows in connection, such as planetary rows, For example, rotating components, a certain layer of planetary wheels participating in the star connection, etc.
  • the planetary gear of a certain layer is one of the inner planetary gear and the outer planetary gear of the double-layer planetary row.
  • the input and output lock ends are: use the planet carrier as the input end to connect to the power device; any center wheel as the output end to connect to the power use equipment; the other center wheels are each used as a lock end and connected to a brake, which is controlled by the shift control device control. Control a brake to brake and lock the center wheel connected to it, and the rotation speed of the center wheel is zero; control a brake without braking, it will not lock the center wheel connected to it.
  • six types of combinations are often used for the input and output locking ends.
  • the first type of combination is: a complete double row of the same type of center wheel (sun wheel)
  • the inner planetary wheel of the double-layer star planetary row participates in the star connection.
  • the planet carrier is used as the input end, one sun gear is selected as the output end in each planetary row, and the remaining sun gear and the ring gear are each used as a locking end.
  • the second type of combination is: a complete double row of the same kind of center wheel (sun wheel) row is used, and the inner planetary wheel of the double-layer star planetary row participates in the star connection. Take the planet carrier as the input end, each sun gear as a locking end, and the inner gear ring as the output end.
  • the third type of combination is: a complete double row of the same kind of center wheel (sun wheel) is used, and the outer planetary wheel of the double-layer star planetary row participates in the star connection. Take the planet carrier as the input end, each sun gear as a locking end, and the inner gear ring as the output end.
  • the fourth type of combination is: a complete double row of the same kind of center wheel (inner gear) row is used, and the outer planetary wheel of the double-layer star planetary row participates in the star connection.
  • the planet carrier is used as the input end, an inner ring gear is selected as the output end in each planetary row, and the remaining inner ring gear and the sun gear are each used as a locking end.
  • the fifth combination is: a complete double row of the same kind of center wheel (inner gear ring) row.
  • the outer planetary wheel of the double-layer star planetary row participates in the star connection. Take the planet carrier as the input end, each ring gear as a locking end, and the sun gear as the output end.
  • the sixth type of combination is: a complete double row of the same kind of center wheel (inner gear) row is used, and the inner planetary wheel of the double-layer star planetary row participates in the star connection. Take the planet carrier as the input end, each ring gear as a locking end, and the sun gear as the output end.
  • the brakes are: the present invention adopts no less than two brakes as the controller of the transmission, and each is connected to the lock end.
  • Brakes are mature technologies, such as mechanical brakes, electromagnetic brakes, and power-assisted brakes.
  • the brake includes a stator and a mover, the stator is connected with a fixed object, and the mover is connected with a locking end, which can be controlled to be in a braking state, a half braking state and a non-braking state.
  • a clutch with one end connected to a fixed object such as a base is also a brake.
  • each rotating component serves as an input and output locking end, and no rotating component is redundant, which shows that the transmission structure of the present invention is simple.
  • Ordinary complete planetary row assembly can only be assembled axially, which has a certain contradiction with the structure of star-connected planetary row, and assembly is difficult. Since the present invention adopts more incomplete single-layer star and planetary rows, each incomplete single-layer star and planet can be assembled radially after eliminating the axial assembly, and the axial assembly is adopted when the complete planetary row is finally assembled. This expands the assembly method of the planetary gearbox, and the assembly is simple.
  • Ordinary planetary gearboxes shift gears by controlling multi-disc clutches, brakes, and one-way clutches, and use hydraulic control mechanisms for actuation, with complex control structures.
  • the gear position is controlled entirely by controlling the brake, the hydraulic control mechanism may not be used, and the control structure is simple.
  • the operating characteristics of the transmission of the present invention are: control a brake to brake to make the speed of the center wheel connected to it be zero; when the input speed is input, control a brake to brake, the output must form an output speed, and the input speed constitutes a certain
  • the transmission forms a transmission ratio corresponding to a gear; when the other brake is controlled, the output end must form another output speed, which forms another certain proportional relation with the input speed.
  • the transmission forms another transmission ratio, corresponding Another gear; and so on, the transmission of the present invention controls the gear by controlling the braking of each brake.
  • the transmission is half-braking, the transmission is half-linked in the corresponding gear; when all brakes are controlled to not brake, the transmission is in neutral; when two or more brakes are controlled to brake, the transmission stops.
  • the transmission ratio is the ratio of the input rotation speed to the output rotation speed.
  • the transmission ratio is a positive value, the input rotation speed and the output rotation speed have the same direction, and when the transmission ratio is a negative value, the input rotation speed and the output rotation speed are opposite.
  • connection generally refers to direct connection, and indirect connection will be specifically stated.
  • connection generally refers to direct connection, and indirect connection will be specifically stated.
  • connection In each planetary row, the relationship between the planet carrier and the planet wheel is: one is the shaft and the other is the bearing. The number of gear teeth of each component in each planetary row is determined according to actual needs, and the gear modulus of each component of the planetary row does not have to be the same as that of other planetary rows.
  • connection between the input end and the power unit There are two types of connection between the input end and the power unit: direct connection and indirect connection through the side shaft gear; the connection between the output end and the power use equipment includes direct connection and indirect connection through the side shaft gear; the direct connection transmission ratio is 1.0, The indirect transmission ratio is generally negative, such as -1.0.
  • the power plant adopts mature technologies, such as electric power plant, steam power plant, and fuel power plant.
  • the shift control device adopts mature technology, such as an electric control mechanism, a mechanical control mechanism or a hydraulic control mechanism.
  • the multi-layer quill shaft is a mature technology, and the bearing and the shaft and the shafts of each layer can rotate relative to each other, but do not slide relative to each other in the axial direction.
  • Each bearing is a mature technology.
  • the bearing supports the shaft.
  • the bearing and the shaft can rotate relative to each other, but they do not slide relative to each other in the axial direction.
  • the brake is a mature technology.
  • the gear shift control device of the transmission of the present invention is actuated by the stator of the brake, and a hydraulic control mechanism is not necessary.
  • the multi-plate clutch is a mature technology. In the traditional transmission, the multi-plate clutch contains two independent movers. Since the shift control device is actuated by the movers, a hydraulic control mechanism must be adopted.
  • the hydraulic control mechanism is a kind of shift control device and has a complicated structure.
  • Figure 1 Figure 4, Figure 7, Figure 10, Figure 13, Figure 16 are two rows of planetary rows, Figure 2, Figure 5, Figure 8, Figure 11, Figure 14, Figure 17 are three rows of planetary rows, Figure 3, Figure 6.
  • Figure 9, Figure 12, Figure 15, Figure 18 are four rows of planetary rows.
  • the input and output locking ends in Figures 1 to 3 are the fourth combination, in which the planet carrier in Figure 1 and Figure 3 is the shaft, and the planet wheel is the bearing; the planet carrier in Figure 2 is the bearing, and the planet wheel is the shaft.
  • the input and output locking ends in Figures 4 to 6 are the fifth combination, in which the planet carrier in Figure 4 is a shaft and the planet wheels are bearings; the planet carrier in Figures 5 and 6 is a bearing, and the planet wheels are shafts.
  • the input and output locking ends in Figures 7 to 9 are the sixth combination, in which the planet carrier in Figure 7 is a shaft, and the planet wheels are bearings; the planet carrier in Figures 8 and 9 is a bearing, and the planet wheels are shafts.
  • the input and output locking ends in Figures 10 to 12 are the first combination, where the planet carrier in Figure 10 is a shaft, and the planet wheels are bearings; the planet carrier in Figures 11 and 12 is a bearing, and the planet wheels are shafts.
  • the input and output locking ends in Figures 13 to 15 are the second combination, in which the planet carrier in Figure 13 is a shaft, and the planet wheels are bearings; the planet carrier in Figures 14 and 15 is a bearing, and the planet wheels are shafts.
  • the input and output locking ends in Figures 16 to 18 are the third combination, in which the planet carrier in Figure 16 is a shaft, and the planet wheels are bearings; the planet carrier in Figures 17 and 18 is a bearing, and the planet wheels are shafts.
  • the bearings in each figure only indicate the principle of the bearing support structure, and do not reflect the actual number and actual size of the bearings.
  • the number of gears of the transmission of the present invention is equal to the number of brakes, which is equal to the number of planetary rows. Therefore, the number of planetary rows is specifically set according to the actual required gear number of the transmission.
  • the transmission ratio of each gear of the transmission of the present invention depends on the number of central gear teeth and the number of planetary gears of the complete double-layer star planetary row and each incomplete single-layer planetary planetary row. Therefore, each gear transmission ratio is specifically set according to the actual requirements.
  • the number of planetary gear sets is specifically set according to the actual torque to be transmitted by the transmission and the number of teeth of each central gear.
  • the transmission obtained through these specific settings does not change the characteristics of the present invention, and all belong to the protection scope of the present invention.
  • the structure diagrams of the transmission of the present invention with planetary rows not more than four rows are shown in Figs. 1 to 18, and the specific arrangement is demonstrated in each embodiment.
  • the structure diagram of the transmission of the present invention with more than four planetary rows can be deduced by analogy, and its specific settings can be deduced by analogy according to these embodiments, and will not be described in detail.
  • a transmission when keeping all other structures unchanged, only swaps its input end and output end, the new transmission formed is the reverse transmission of the original transmission.
  • the number of gears of the reverse transmission remains unchanged, and the new gear ratio of the reverse transmission is the reciprocal of the original gear ratio of the original transmission.
  • the characteristics of the reverse transmission of the transmission of the present invention are: the planetary row used is unchanged, the planetary row structure is unchanged, the brakes are unchanged, the input and output locking ends are changed to: use the planet carrier as the output end to connect the power use equipment, any one The center wheel is used as the input end to connect to the power unit, and the remaining center wheels are each used as a locking end to connect to a brake; the six types of combinations often used at the input and output locking ends are changed to: the first type of combination is: use a complete double row of the same center Wheel (sun gear) row, the inner planetary wheel of the double-layer star planetary row participates in the star connection, and the planet carrier is used as the output end.
  • each planetary row one sun gear is selected as the input end, and the remaining sun gear and inner ring gear are each as one Locking end;
  • the second type of combination is: use a complete double row of the same kind of center wheel (sun wheel) row, the inner planetary wheel of the double-layer star planetary row participates in the star connection, with the planet carrier as the output end, and each sun wheel as each One locking end, the inner gear ring as the input end;
  • the third type of combination is: a complete double row of the same kind of center wheel (sun wheel), the outer planetary wheel of the double-layer star planetary row participates in the star connection, and the planet carrier is the output Each sun gear is used as a locking end, and the inner ring gear is used as the input end;
  • the fourth type of combination is: a complete double row of the same kind of center wheel (inner gear) row, an outer planetary wheel with a double-layer star planetary row Participate in the star connection, with the planet carrier as the output end, select an inner ring gear
  • the outer planet wheel of the double-layer star planetary row participates in the star connection, with the planet carrier as the output end, each inner gear ring as a locking end, and the sun gear as the input end; the sixth combination is: the same kind of complete double row
  • the center wheel (inner gear) row, the inner planetary gear of the double-layer star planetary row participates in the star connection, with the planet carrier as the output end, each inner gear as a locking end, and the sun gear as the input end; its operating characteristics constant.
  • the reverse transmission of the transmission of the present invention also belongs to the protection scope of the present invention.
  • the advantage of the complete double-row and same center wheel transmission of the present invention is that it is proposed to use no less than two rows of planetary rows, one of which is a complete double-layer star planetary row, and the other planetary rows are the same kind of center wheel row. ; Proposed a star-connected planetary gear structure, and proposed an input and output lock end, which is simpler than the transmission structure of the existing planetary gearbox, and expands the assembly method of the planetary gearbox. It is proposed to control the gear position by controlling the braking of each brake, which is simpler than the existing planetary gearbox control structure.
  • Figure 1 is a schematic diagram of a complete double-row transmission of the same type of center wheel (inner gear) row adopting two-row planetary rows according to the present invention.
  • the input and output locking ends are the fourth type of combination.
  • 1 is a complete double row inner gear ring
  • 2 is the same kind of center wheel row inner gear
  • 3 is a complete double row sun gear
  • 4 is a same kind of center wheel planetary gear
  • 5 is a complete double row inner planetary axle
  • 6 is Complete double-row outer planetary axle
  • 7 is the brake (there are two)
  • 8 is the input arrow
  • 9 is the output arrow.
  • Figure 2 is a schematic diagram of a complete double-row transmission of the same type of center wheel (inner gear) row using three rows of planetary rows according to the present invention, and the input and output locking ends are the fourth combination.
  • 1 is a complete double row inner gear ring
  • 2 is a No. 2 same kind center wheel row inner gear ring
  • 3 is a No. 3 same kind center wheel row inner gear ring
  • 4 is a complete double row sun gear
  • 5 is No. 2 same kind center Wheel row planetary gears
  • 6 is the same kind of center row planetary gears on the third
  • 7 is a complete double-row inner planetary axle
  • 8 is a complete double-row outer planetary axle
  • 9 is a brake (there are three)
  • 10 is an input arrow
  • 11 Is the output arrow.
  • Figure 3 is a schematic diagram of a complete double-row transmission of the same type of center wheel (inner gear) row adopting four rows of planetary rows according to the present invention, and the input and output locking ends are the fourth combination.
  • 1 is a complete double row inner gear ring
  • 2 is the same type center wheel row inner gear ring
  • 3 is the same type center wheel row inner gear ring
  • 4 is the same type center wheel row inner gear ring
  • 5 is Complete double-row sun gear
  • 6 is the same kind of center wheel planetary wheel on No. 2
  • 7 is the same kind of center wheel planetary wheel on No. 3
  • 8 is the same kind of center wheel planetary wheel on No. 4
  • 9 is a complete double-row inner planet Axle
  • 10 is a complete double-row outer planetary axle
  • 11 is a brake (there are four)
  • 12 is an input arrow
  • 13 is an output arrow.
  • Fig. 4 is a schematic diagram of a complete double-row transmission of the same type of center wheel (inner gear) row using two-row planetary rows according to the present invention, and the input and output locking ends are the fifth combination.
  • 1 is a complete double row inner gear ring
  • 2 is the same kind of center wheel row inner gear
  • 3 is a complete double row sun gear
  • 4 is a same kind of center wheel planetary gear
  • 5 is a complete double row inner planetary axle
  • 6 is Complete double-row outer planetary axle
  • 7 is the brake (there are two)
  • 8 is the input arrow
  • 9 is the output arrow.
  • Figure 5 is a schematic diagram of a complete double-row transmission of the same type of center wheel (inner gear) row adopting three rows of planetary rows according to the present invention, and the input and output locking ends are the fifth combination.
  • 1 is a complete double row inner gear ring
  • 2 is a No. 2 same kind center wheel row inner gear ring
  • 3 is a No. 3 same kind center wheel row inner gear ring
  • 4 is a complete double row sun gear
  • 5 is No. 2 same kind center Wheel row planetary gears
  • 6 is the same kind of center row planetary gears on the third
  • 7 is a complete double-row inner planetary axle
  • 8 is a complete double-row outer planetary axle
  • 9 is a brake (there are three)
  • 10 is an input arrow
  • 11 Is the output arrow.
  • Fig. 6 is a schematic diagram of a complete double-row transmission of the same type of center wheel (inner gear) row adopting four rows of planetary rows according to the present invention, and the input and output locking ends are the fifth combination.
  • 1 is a complete double row inner gear ring
  • 2 is the same type center wheel row inner gear ring
  • 3 is the same type center wheel row inner gear ring
  • 4 is the same type center wheel row inner gear ring
  • 5 is Complete double-row sun gear
  • 6 is the same kind of center wheel planetary wheel on No. 2
  • 7 is the same kind of center wheel planetary wheel on No. 3
  • 8 is the same kind of center wheel planetary wheel on No. 4
  • 9 is a complete double-row inner planet Axle
  • 10 is a complete double-row outer planetary axle
  • 11 is a brake (there are four)
  • 12 is an input arrow
  • 13 is an output arrow.
  • Fig. 7 is a schematic diagram of a complete double-row transmission of the same type of center wheel (inner gear) row adopting two-row planetary rows according to the present invention, and the input and output locking ends are the sixth type combination.
  • 1 is a complete double row inner gear ring
  • 2 is the same kind of center wheel row inner gear
  • 3 is a complete double row sun gear
  • 4 is a same kind of center wheel planetary gear
  • 5 is a complete double row inner planetary axle
  • 6 is Complete double-row outer planetary axle
  • 7 is the brake (there are two)
  • 8 is the input arrow
  • 9 is the output arrow.
  • Fig. 8 is a schematic diagram of a complete double-row transmission of the same kind of center wheel (inner gear) row adopting three rows of planetary rows according to the present invention, and the input and output locking ends are the sixth combination.
  • 1 is a complete double row inner gear ring
  • 2 is a No. 2 same kind center wheel row inner gear ring
  • 3 is a No. 3 same kind center wheel row inner gear ring
  • 4 is a complete double row sun gear
  • 5 is No.
  • Fig. 9 is a schematic diagram of a complete double-row transmission of the same type of center wheel (inner gear) row adopting four rows of planetary rows according to the present invention, and the input and output locking ends are the sixth combination.
  • 1 is a complete double row inner gear ring
  • 2 is the same type center wheel row inner gear ring
  • 3 is the same type center wheel row inner gear ring
  • 4 is the same type center wheel row inner gear ring
  • 5 is Complete double-row sun gear
  • 6 is the same kind of center wheel planetary wheel on No. 2
  • 7 is the same kind of center wheel planetary wheel on No. 3
  • 8 is the same kind of center wheel planetary wheel on No. 4
  • 9 is a complete double-row inner planet Axle
  • 10 is a complete double-row outer planetary axle
  • 11 is a brake (there are four)
  • 12 is an input arrow
  • 13 is an output arrow.
  • Fig. 10 is a schematic diagram of a complete double-row transmission of the same type of center wheel (sun gear) using two-row planetary rows according to the present invention.
  • the input and output locking ends are the first combination.
  • 1 is a complete double-row sun gear
  • 2 is the same kind of central wheel row sun gear
  • 3 is a complete double row inner gear ring
  • 4 is the same kind of central wheel planetary gear
  • 5 is a complete double row inner planetary axle
  • 6 is a complete Double-row outer planetary axles
  • 7 is a brake (there are two)
  • 8 is an input arrow
  • 9 is an output arrow.
  • Fig. 11 is a schematic diagram of a complete double-row transmission of the same type of center wheel (sun gear) row using three rows of planetary rows according to the present invention, and the input and output locking ends are the first combination.
  • 1 is a complete double row sun gear
  • 2 is the same type center wheel row sun gear on the second
  • 3 is the same type center wheel row sun gear
  • 4 is a complete double row inner gear ring
  • 5 is the same type center wheel row on the second Star wheel
  • 6 is the same type of center wheel planetary wheel on the third
  • 7 is a complete double-row inner planetary wheel shaft
  • 8 is a complete double-row outer planetary wheel shaft
  • 9 is a brake (there are three)
  • 10 is an input arrow
  • 11 is an output arrow.
  • Fig. 12 is a schematic diagram of a complete double-row transmission of the same type of center wheel (sun gear) using four-row planetary rows according to the present invention.
  • the input and output locking ends are the first combination.
  • 1 is a complete double-row sun wheel
  • 2 is a same type center wheel sun wheel
  • 3 is a same type center wheel sun wheel
  • 4 is a same type center wheel sun wheel
  • 5 is a complete double row inside Ring gear
  • 6 is the same kind of center wheel planetary gear of No. 2
  • 7 is the same kind of center wheel planetary gear of No. 3
  • 8 is the same kind of center wheel planetary gear of No. 4
  • 9 is a complete double row inner planetary wheel shaft
  • 10 It is a complete double-row outer planetary axle
  • 11 is a brake (there are four)
  • 12 is an input arrow
  • 13 is an output arrow.
  • Fig. 13 is a schematic diagram of a complete double-row and same-type center wheel (sun gear) row transmission using two rows of planetary rows according to the present invention, and the input and output locking ends are the second combination.
  • 1 is a complete double-row sun gear
  • 2 is the same kind of central wheel row sun gear
  • 3 is a complete double row inner gear ring
  • 4 is the same kind of central wheel planetary gear
  • 5 is a complete double row inner planetary axle
  • 6 is a complete Double-row outer planetary axles
  • 7 is a brake (there are two)
  • 8 is an input arrow
  • 9 is an output arrow.
  • Fig. 14 is a schematic diagram of a complete double-row same-type center wheel (sun gear) row transmission using three rows of planetary rows according to the present invention, and the input and output locking ends are the second combination.
  • 1 is a complete double row sun gear
  • 2 is the same type center wheel row sun gear on the second
  • 3 is the same type center wheel row sun gear
  • 4 is a complete double row inner gear ring
  • 5 is the same type center wheel row on the second Star wheel
  • 6 is the same type of center wheel planetary wheel on the third
  • 7 is a complete double-row inner planetary wheel shaft
  • 8 is a complete double-row outer planetary wheel shaft
  • 9 is a brake (there are three)
  • 10 is an input arrow
  • 11 is an output arrow.
  • Fig. 15 is a schematic diagram of a complete double-row transmission of the same kind of center wheel (sun gear) row adopting four rows of planetary rows according to the present invention, and the input and output locking ends are the second combination.
  • 1 is a complete double-row sun wheel
  • 2 is a same type center wheel sun wheel
  • 3 is a same type center wheel sun wheel
  • 4 is a same type center wheel sun wheel
  • 5 is a complete double row inside Ring gear
  • 6 is the same kind of center wheel planetary gear of No. 2
  • 7 is the same kind of center wheel planetary gear of No. 3
  • 8 is the same kind of center wheel planetary gear of No. 4
  • 9 is a complete double row inner planetary wheel shaft
  • 10 It is a complete double-row outer planetary axle
  • 11 is a brake (there are four)
  • 12 is an input arrow
  • 13 is an output arrow.
  • Fig. 16 is a schematic diagram of a complete double row of the same type of center wheel (sun gear) transmission using two rows of planetary rows according to the present invention.
  • the input and output locking ends are the third combination.
  • 1 is a complete double-row sun gear
  • 2 is the same kind of central wheel row sun gear
  • 3 is a complete double row inner gear ring
  • 4 is the same kind of central wheel planetary gear
  • 5 is a complete double row inner planetary axle
  • 6 is a complete Double-row outer planetary axles
  • 7 is a brake (there are two)
  • 8 is an input arrow
  • 9 is an output arrow.
  • Fig. 17 is a schematic diagram of a complete double-row transmission of the same type of center wheel (sun gear) row adopting three rows of planetary rows according to the present invention, and the input and output locking ends are the third combination.
  • 1 is a complete double row sun gear
  • 2 is the same type center wheel row sun gear on the second
  • 3 is the same type center wheel row sun gear
  • 4 is a complete double row inner gear ring
  • 5 is the same type center wheel row on the second Star wheel
  • 6 is the same type of center wheel planetary wheel on the third
  • 7 is a complete double-row inner planetary wheel shaft
  • 8 is a complete double-row outer planetary wheel shaft
  • 9 is a brake (there are three)
  • 10 is an input arrow
  • 11 is an output arrow.
  • Fig. 18 is a schematic diagram of a complete double-row same-type center wheel (sun gear) row transmission using four rows of planetary rows according to the present invention, and the input and output locking ends are the third combination.
  • 1 is a complete double-row sun wheel
  • 2 is a same type center wheel sun wheel
  • 3 is a same type center wheel sun wheel
  • 4 is a same type center wheel sun wheel
  • 5 is a complete double row inside Ring gear
  • 6 is the same kind of center wheel planetary gear of No. 2
  • 7 is the same kind of center wheel planetary gear of No. 3
  • 8 is the same kind of center wheel planetary gear of No. 4
  • 9 is a complete double row inner planetary wheel shaft
  • 10 It is a complete double-row outer planetary axle
  • 11 is a brake (there are four)
  • 12 is an input arrow
  • 13 is an output arrow.
  • the planetary rows in each figure are shown as half-frame schematic diagrams according to industry practice.
  • the input and output are indicated by arrows, and the brake is indicated by the schematic diagram of the stator grounding.
  • the components in each figure only indicate the structural relationship, and do not reflect the actual size.
  • Embodiment 1 An example of a complete double-row transmission of the same type of center wheel (ring gear) of the present invention using two-row planetary rows, with the input and output locking ends being the fourth combination.
  • Features include the planetary row, planetary row structure, input and output locking ends and various brakes.
  • the planetary row used is: this embodiment adopts two rows of planetary rows, a row of complete double-layer planetary rows and a row of the same kind of center wheel (inner gear) row.
  • the number of planetary gear sets in the two planetary rows is 2.
  • the planet wheel is the bearing, and the planet carrier is the shaft.
  • the planetary row structure is a star-connected planetary row structure, and the outer planetary wheels of the double-layer star planetary row participate in the star connection.
  • Zq1 is the number of teeth of a complete double-row internal gear
  • Zq2 is the number of teeth of the same central gear
  • Zt1 is the number of complete double-row sun gears
  • Xn is the number of complete double-row inner planet gears
  • Xw is a complete double-row outer planet Number of gear teeth
  • X2 is the number of planetary gear teeth in the same center wheel row.
  • the input and output lock ends are: the planet carrier is used as the input end to connect the power unit, the complete double row inner gear ring (1) is used as the output end to connect the power use equipment, the same kind of center wheel row inner gear ring (2), complete double row sun
  • the wheels (3) each serve as a locking end and are connected with a brake (7). These connections are achieved through a quill, see Figure 1.
  • the brakes are: this embodiment uses two brakes, each connected to a locking end.
  • the brake is an electromagnetic brake, which is controlled by the shift control device.
  • the transmission of this embodiment has a simple transmission structure and a simple control structure. The gear position is controlled by controlling two brakes to brake.
  • Embodiment 2 An example of a complete double-row transmission of the same type of center wheel (inner gear) row of the present invention using three rows of planetary rows, and the input and output locking ends are the fourth combination.
  • Features include the planetary row, planetary row structure, input and output locking ends and various brakes.
  • the planetary rows used are: this embodiment adopts three rows of planetary rows, one row of complete double-layer planetary rows and two rows of the same kind of center wheel (inner gear ring) row.
  • the number of planetary gear sets in the three rows of planetary rows is 2.
  • the planet wheel is the shaft, and the planet carrier is the bearing.
  • the planetary row structure is a star-connected planetary row structure, and the outer planetary wheels of the double-layer star planetary row participate in the star connection.
  • Zq1 is the number of teeth of the complete double-row inner gear
  • Zq2 is the number of teeth of the same type of center wheel on the second row
  • Zq3 is the number of teeth of the same type of center wheel on the third row
  • Zt1 is the number of complete double-row sun gear
  • Xn is The number of teeth of a complete double-row inner planetary gear
  • Xw is the number of teeth of a complete double-row outer planetary gear
  • X2 is the number of planetary gears of the same kind of center wheel row No.
  • X3 is the number of planetary gears of the same kind of center wheel row No. 3.
  • the input and output lock ends are: the planet carrier is used as the input end to connect to the power unit, the complete double-row inner gear (1) is used as the output end to connect to the power use equipment, the second and the same kind of center wheel inner gear (2), No. 3
  • the inner gear ring (3) of the same center wheel row and the complete double-row sun gear (4) are respectively connected with a brake (9) as a locking end. These connections are achieved through quill shafts, see Figure 2.
  • the brakes are: this embodiment adopts three brakes, each connected to a locking end.
  • the brake is an electromagnetic brake, which is controlled by the shift control device.
  • the forward second gear and reverse first gear transmission of this embodiment has a simple transmission structure and a simple control structure. The gear position is controlled by controlling three brakes.
  • Embodiment 3 An example of a complete double-row central wheel (inner gear) row transmission of the present invention using four rows of planetary rows, with the input and output locking ends being the fourth type combination.
  • Features include the planetary row, planetary row structure, input and output locking ends and various brakes.
  • the planetary rows used are: this embodiment adopts four rows of planetary rows, one row of complete double-layer planetary rows and three rows of the same kind of center wheel (inner gear) row.
  • the number of planetary gear sets in the four rows of planetary rows is 2.
  • the planet wheel is the shaft, and the planet carrier is the bearing.
  • the planetary row structure is a star-connected planetary row structure, and the outer planetary wheels of the double-layer star planetary row participate in the star connection.
  • Zq1 is the number of teeth of the complete double-row internal gear
  • Zq2 is the number of internal gears of the same type of center wheel row 2
  • Zq3 is the number of internal gears of the same type center wheel row of No. 3
  • Zq4 is the number of internal gears of the same type center wheel row of No.
  • Zt1 is the number of complete double-row sun gear teeth
  • Xn is the number of complete double-row inner planetary gear teeth
  • Xw is the number of complete double-row outer planetary gear teeth
  • X2 is the number of planetary gear teeth of the same kind of center wheel row of No. 2
  • X3 is No. 3
  • X4 is the number of planetary gears in the same center wheel row on the 4th.
  • the input and output lock ends are: the planet carrier is used as the input end to connect to the power unit, the complete double-row inner gear (1) is used as the output end to connect to the power use equipment, the second and the same kind of center wheel inner gear (2), No. 3
  • the inner gear ring (3) of the same kind of center wheel row, the inner gear ring (4) of the same kind of center wheel row of No. 4, and the complete double row sun gear (5) are respectively connected with a brake (11) as a locking end.
  • the brakes are: this embodiment adopts four brakes, each connected to a locking end.
  • the brake is an electromagnetic brake, which is controlled by the shift control device.
  • the forward three-speed and one-speed transmission of this embodiment has a simple transmission structure and a simple control structure.
  • the gears are controlled by controlling four brakes.
  • the gear ratios between adjacent gears are approximately equal, and the deviation is less than 1%.
  • Embodiment 4 An example of a complete double-row transmission of the same type of center wheel (inner gear) row of the present invention using two-row planetary rows, with the input and output locking ends being the fifth combination.
  • Features include the planetary row, planetary row structure, input and output locking ends and various brakes.
  • the planetary row used is: this embodiment adopts two rows of planetary rows, a row of complete double-layer planetary rows and a row of the same kind of center wheel (inner gear) row.
  • the number of planetary gear sets in the two planetary rows is 2.
  • the planet wheel is the bearing, and the planet carrier is the shaft.
  • the planetary row structure is a star-connected planetary row structure, and the outer planetary wheels of the double-layer star planetary row participate in the star connection.
  • Zq1 is the number of teeth of a complete double-row internal gear
  • Zq2 is the number of teeth of the same central gear
  • Zt1 is the number of complete double-row sun gears
  • Xn is the number of complete double-row inner planet gears
  • Xw is a complete double-row outer planet Number of gear teeth
  • X2 is the number of planetary gear teeth in the same center wheel row.
  • the input and output locking ends are: the planet carrier is used as the input end to connect the power unit, the complete double-row sun gear (3) is used as the output end to connect the power use equipment, the same kind of central wheel row inner ring gear (2), complete double row inner gear
  • the rings (1) each serve as a locking end and are connected to a brake (7). See Figure 4.
  • the brakes are: this embodiment uses two brakes, each connected to a locking end.
  • the brake is an electromagnetic brake, which is controlled by the shift control device.
  • the transmission ratio is -1/2.75, which corresponds to a gear position.
  • the transmission ratio is -1/3.50, which corresponds to the second gear.
  • the transmission of this embodiment has a simple transmission structure and a simple control structure. The gear position is controlled by controlling two brakes to brake.
  • Embodiment 5 An example of a complete double-row central wheel (inner gear) row transmission of the present invention using three rows of planetary rows, with the input and output locking ends being the fifth combination.
  • Features include the planetary row, planetary row structure, input and output locking ends and various brakes.
  • the planetary rows used are: this embodiment adopts three rows of planetary rows, one row of complete double-layer planetary rows and two rows of the same kind of center wheel (inner gear ring) row.
  • the number of planetary gear sets in the three rows of planetary rows is 2.
  • the planet wheel is the shaft, and the planet carrier is the bearing.
  • the planetary row structure is a star-connected planetary row structure, and the outer planetary wheels of the double-layer star planetary row participate in the star connection.
  • Zq1 is the number of teeth of the complete double-row inner gear
  • Zq2 is the number of teeth of the same type of center wheel on the second row
  • Zq3 is the number of teeth of the same type of center wheel on the third row
  • Zt1 is the number of complete double-row sun gear
  • Xn is The number of teeth of a complete double-row inner planetary gear
  • Xw is the number of teeth of a complete double-row outer planetary gear
  • X2 is the number of planetary gears of the same kind of center wheel row No.
  • X3 is the number of planetary gears of the same kind of center wheel row No. 3.
  • the input and output locking end is: the planet carrier is used as the input end to connect the power unit, the complete double-row sun gear (4) is used as the output end to connect the power use equipment, the second and the same kind of central wheel row inner gear (2) and the third are the same
  • a central wheel row inner gear ring (3) and a complete double row inner gear ring (1) each serve as a locking end and are connected to a brake (9). See Figure 5.
  • the brakes are: this embodiment adopts three brakes, each connected to a locking end.
  • the brake is an electromagnetic brake, which is controlled by the shift control device.
  • the transmission of this embodiment has a simple transmission structure and a simple control structure.
  • the gears are controlled by controlling three brakes.
  • the gear ratios between adjacent gears are approximately equal, and the deviation is less than 1.5%.
  • Embodiment 6 An example of a complete double-row central gear (inner gear) row transmission of the present invention using four rows of planetary rows, and the input and output locking ends are the fifth combination.
  • Features include the planetary row, planetary row structure, input and output locking ends and various brakes.
  • the planetary rows used are: this embodiment adopts four rows of planetary rows, one row of complete double-layer planetary rows and three rows of the same kind of center wheel (inner gear) row.
  • the number of planetary gear sets in the four rows of planetary rows is 2.
  • the planet wheel is the shaft, and the planet carrier is the bearing.
  • the planetary row structure is a star-connected planetary row structure, and the outer planetary wheels of the double-layer star planetary row participate in the star connection.
  • Zq1 is the number of teeth of the complete double-row internal gear
  • Zq2 is the number of internal gears of the same type of center wheel row 2
  • Zq3 is the number of internal gears of the same type center wheel row of No. 3
  • Zq4 is the number of internal gears of the same type center wheel row of No.
  • Zt1 is the number of complete double-row sun gear teeth
  • Xn is the number of complete double-row inner planetary gear teeth
  • Xw is the number of complete double-row outer planetary gear teeth
  • X2 is the number of planetary gear teeth of the same kind of center wheel row of No. 2
  • X3 is No. 3
  • X4 is the number of planetary gears in the same center wheel row on the 4th.
  • the input and output locking ends are: the planet carrier is used as the input end to connect to the power unit, the complete double-row sun gear (5) is used as the output end to connect the power use equipment, the second and the same kind of central wheel row inner gear (2) and the third are the same One kind of center wheel row inner gear ring (3), No. 4 same kind of center wheel row inner gear ring (4), complete double row inner gear ring (1) each as a locking end connected to a brake (11). See Figure 6.
  • the brakes are: this embodiment adopts four brakes, each connected to a locking end.
  • the brake is an electromagnetic brake, which is controlled by the shift control device.
  • the transmission ratio is -1/1.667, which corresponds to a gear position. When all four brakes are not applied, the transmission is in neutral.
  • the transmission structure of this embodiment is simple, and the control structure is simple.
  • the gears are controlled by controlling four brakes.
  • the gear ratios between adjacent gears are approximately equal, and the deviation is less than 1.5%.
  • the reverse transmission of this embodiment uses the planet carrier as the output end, the complete double-row sun gear as the input end, the same type of center wheel inner gear ring on the second, the same type center wheel inner ring gear on the third, and the same center wheel on the fourth
  • the row inner gear ring and the complete double row inner gear ring each serve as a locking end; the transmission ratios of the first to fourth gears are -3.5, -2.75, -2.130, -1.667, respectively.
  • Embodiment 7 An example of a complete double-row transmission of the same type of center wheel (ring gear) of the present invention using two-row planetary rows, with the input and output locking ends being the sixth type combination.
  • Features include the planetary row, planetary row structure, input and output locking ends and various brakes.
  • the planetary row used is: this embodiment adopts two rows of planetary rows, a row of complete double-layer planetary rows and a row of the same kind of center wheel (inner gear) row.
  • the number of planetary gear sets in the two planetary rows is 2.
  • the planet wheel is the bearing, and the planet carrier is the shaft.
  • the planetary row structure is a star-connected planetary row structure, and the inner planetary wheels of the double-layer star planetary row participate in the star connection.
  • Zq1 is the number of teeth of a complete double-row internal gear
  • Zq2 is the number of teeth of the same central gear
  • Zt1 is the number of complete double-row sun gears
  • Xn is the number of complete double-row inner planet gears
  • Xw is a complete double-row outer planet Number of gear teeth
  • X2 is the number of planetary gear teeth in the same center wheel row.
  • the input and output locking ends are: the planet carrier is used as the input end to connect the power unit, the complete double-row sun gear (3) is used as the output end to connect the power use equipment, the same kind of central wheel row inner ring gear (2), complete double row inner gear
  • the rings (1) each serve as a locking end and are connected to a brake (7). See Figure 7.
  • the brakes are: this embodiment uses two brakes, each connected to a locking end.
  • the brake is an electromagnetic brake, which is controlled by the shift control device.
  • the transmission structure of this embodiment has a simple transmission structure and a simple control structure. The gear position is controlled by controlling two brakes.
  • Embodiment 8 An example of a complete double-row same-type center wheel (inner gear) row transmission of the present invention using three rows of planetary rows, and the input and output locking ends are the sixth combination.
  • Features include the planetary row, planetary row structure, input and output locking ends and various brakes.
  • the planetary rows used are: this embodiment adopts three rows of planetary rows, one row of complete double-layer planetary rows and two rows of the same kind of center wheel (inner gear ring) row.
  • the number of planetary gear sets in the three rows of planetary rows is 2.
  • the planet wheel is the shaft, and the planet carrier is the bearing.
  • the planetary row structure is a star-connected planetary row structure, and the inner planetary wheels of the double-layer star planetary row participate in the star connection.
  • Zq1 is the number of teeth of the complete double-row inner gear
  • Zq2 is the number of teeth of the same type of center wheel on the second row
  • Zq3 is the number of teeth of the same type of center wheel on the third row
  • Zt1 is the number of complete double-row sun gear
  • Xn is The number of teeth of a complete double-row inner planetary gear
  • Xw is the number of teeth of a complete double-row outer planetary gear
  • X2 is the number of planetary gears of the same kind of center wheel row No.
  • X3 is the number of planetary gears of the same kind of center wheel row No. 3.
  • the input and output locking end is: the planet carrier is used as the input end to connect the power unit, the complete double-row sun gear (4) is used as the output end to connect the power use equipment, the second and the same kind of central wheel row inner gear (2) and the third are the same
  • a central wheel row inner gear ring (3) and a complete double row inner gear ring (1) each serve as a locking end and are connected to a brake (9). See Figure 8.
  • the brakes are: this embodiment adopts three brakes, each connected to a locking end.
  • the brake is an electromagnetic brake, which is controlled by the shift control device.
  • the reverse transmission of this embodiment uses the planet carrier as the output end, the complete double-row sun gear as the input end, the No. 2 inner gear ring of the same kind of center wheel, the No. 3 inner gear ring of the same kind of center wheel, and the complete double row inner gear.
  • Each serves as a locking end; its reverse gear ratio is -7.0, the first gear ratio is 7.0, and the second gear ratio is 5.444.
  • Embodiment 9 An example of a complete double-row central gear (inner gear ring) row transmission of the present invention using four rows of planetary rows, and the input and output locking ends are the sixth combination.
  • Features include the planetary row, planetary row structure, input and output locking ends and various brakes.
  • the planetary rows used are: this embodiment adopts four rows of planetary rows, one row of complete double-layer planetary rows and three rows of the same kind of center wheel (inner gear) row.
  • the number of planetary gear sets in the four rows of planetary rows is 2.
  • the planet wheel is the shaft, and the planet carrier is the bearing.
  • the planetary row structure is a star-connected planetary row structure, and the inner planetary wheels of the double-layer star planetary row participate in the star connection.
  • Zq1 is the number of teeth of the complete double-row internal gear
  • Zq2 is the number of internal gears of the same type of center wheel row 2
  • Zq3 is the number of internal gears of the same type center wheel row of No. 3
  • Zq4 is the number of internal gears of the same type center wheel row of No.
  • Zt1 is the number of complete double-row sun gear teeth
  • Xn is the number of complete double-row inner planetary gear teeth
  • Xw is the number of complete double-row outer planetary gear teeth
  • X2 is the number of planetary gear teeth of the same kind of center wheel row of No. 2
  • X3 is No. 3
  • X4 is the number of planetary gears in the same center wheel row on the 4th.
  • the input and output locking ends are: the planet carrier is used as the input end to connect to the power unit, the complete double-row sun gear (5) is used as the output end to connect the power use equipment, the second and the same kind of central wheel row inner gear (2) and the third are the same One kind of center wheel row inner gear ring (3), No. 4 same kind of center wheel row inner gear ring (4), complete double row inner gear ring (1) each as a locking end connected to a brake (11). See Figure 9.
  • the brakes are: this embodiment adopts four brakes, each connected to a locking end.
  • the brake is an electromagnetic brake, which is controlled by the shift control device.
  • the transmission structure of this embodiment is simple, and the control structure is simple.
  • the gear position is controlled by controlling the four brakes.
  • the reverse transmission of this embodiment uses the planet carrier as the output end, the complete double-row sun gear as the input end, the same type of center wheel inner gear ring on the second, the same type center wheel inner ring gear on the third, and the same center wheel on the fourth
  • the row inner gear ring and the complete double row inner gear ring each serve as a locking end; its reverse gear ratio -7.0, first gear ratio 7.0, second gear ratio 5.444, third gear ratio 4.272, between adjacent gears
  • the gear ratio spacing is approximately equal, and the deviation is less than 1%.
  • Embodiment 10 An example of a complete double-row same-type center wheel (sun gear) row transmission of the present invention using two rows of planetary rows, and the input and output locking ends are the first combination.
  • Features include the planetary row, planetary row structure, input and output locking ends and various brakes.
  • the planetary row used is: this embodiment adopts two rows of planetary rows, a row of complete double-layer star planetary rows and a row of the same kind of center wheel (sun wheel) row.
  • the number of planetary gear sets in the two planetary rows is 2.
  • the planet wheel is the bearing, and the planet carrier is the shaft.
  • the planetary row structure is a star-connected planetary row structure, and the inner planetary wheels of the double-layer star planetary row participate in the star connection.
  • Zq1 is the number of teeth of a complete double-row inner ring gear
  • Zt1 is the number of teeth of a complete double-row sun gear
  • Zt2 is the number of teeth of the same central wheel row
  • Xn is the number of complete double-row inner planet gears
  • Xw is a complete double-row outer planet Number of gear teeth
  • X2 is the number of planetary gear teeth in the same center wheel row.
  • the input and output locking ends are: the planet carrier is used as the input end to connect the power unit, the complete double row sun gear (1) is used as the output end to connect the power use equipment, the same kind of center wheel row sun gear (2), complete double row inner ring gear (3) Each is connected to a brake (7) as a locking end. These connections are made through quill shafts, see Figure 10.
  • the brakes are: this embodiment uses two brakes, each connected to a locking end.
  • the brake is an electromagnetic brake, which is controlled by the shift control device.
  • the second-speed transmission of this embodiment has a simple transmission structure and a simple control structure. The gear position is controlled by controlling two brakes to brake.
  • Embodiment 11 An example of a complete double-row central wheel (sun gear) row transmission of the present invention with three rows of planetary rows.
  • the input and output locking ends are the first combination.
  • Features include the planetary row, planetary row structure, input and output locking ends and various brakes.
  • the planetary rows used are: this embodiment adopts three rows of planetary rows, one row of complete double-layer star planetary rows and two rows of the same kind of center wheel (sun wheel) row.
  • the number of planetary gear sets in the three rows of planetary rows is 2.
  • the planet wheel is the shaft and the planet carrier is the bearing
  • the planetary row structure is a star-connected planetary row structure, and the inner planetary wheels of the double-layer star planetary row participate in the star connection.
  • Zq1 is the number of complete double-row internal gear ring teeth
  • Zt1 is the number of complete double-row sun gear teeth
  • Zt2 is the number of sun gear teeth of the same kind of center wheel row No. 2
  • Zt3 is the number of sun gear teeth of the same kind of center wheel row No. 3
  • Xn is complete The number of teeth of the inner planetary gear of the double row
  • Xw is the number of teeth of the outer planetary gear of the complete double row
  • X2 is the number of planetary gears of the same kind of center wheel row of No.
  • X3 is the number of planetary gears of the same kind of center wheel row of No. 3.
  • the input and output lock ends are: the planet carrier is used as the input to connect the power unit, the complete double-row sun gear (1) is used as the output to connect to the power use equipment, the second and the same kind of center wheel sun gear (2), the third is the same
  • the central wheel row sun gear (3) and the complete double row inner gear ring (4) each serve as a locking end and are connected to a brake (9). These connections are achieved through a multilayer quill, see Figure 11.
  • the brakes are: this embodiment adopts three brakes, each connected to a locking end.
  • the brake is an electromagnetic brake, which is controlled by the shift control device.
  • the transmission structure of this embodiment has a simple transmission structure and a simple control structure.
  • the gears are controlled by controlling three brakes.
  • the gear ratios between adjacent gears are approximately equal, and the deviation is less than 1%.
  • Embodiment 12 An example of a complete double-row central wheel (sun gear) row transmission of the present invention using four rows of planetary rows, and the input and output locking ends are the first combination.
  • Features include the planetary row, planetary row structure, input and output locking ends and various brakes.
  • the planetary rows used are: this embodiment adopts four rows of planetary rows, one row of complete double-layer star planetary rows and three rows of the same kind of center wheel (sun wheel) row.
  • the number of planetary gear sets in the four rows of planetary rows is 2.
  • the planet wheel is the shaft, and the planet carrier is the bearing.
  • the planetary row structure is a star-connected planetary row structure, and the inner planetary wheels of the double-layer star planetary row participate in the star connection.
  • Zq1 is the number of teeth of a complete double-row inner gear
  • Zt1 is the number of teeth of a complete double-row sun gear
  • Zt2 is the number of sun gear teeth of the same kind of center wheel row of No. 2
  • Zt3 is the number of sun gear teeth of the same kind of center wheel row of No.
  • Zt4 is four Number of sun gear teeth of the same kind of center wheel row
  • Xn is the number of complete double-row inner planetary gear teeth
  • Xw is the number of complete double-row outer planetary gear teeth
  • X2 is the number of planetary gear teeth of the same kind of center wheel row No. 2
  • X3 is the same kind of No. 3
  • X4 is the number of planetary gears in the same kind of center wheel row No. 4.
  • the input and output lock ends are: the planet carrier is used as the input to connect the power unit, the complete double-row sun gear (1) is used as the output to connect to the power use equipment, the second and the same kind of center wheel sun gear (2), the third is the same The center wheel row sun gear (3), the No. 4 same type center wheel row sun gear (4), and the complete double row inner gear ring (5) are each connected to a brake (11) as a locking end. These connections are achieved through multi-layer quill shafts, see Figure 12.
  • the brakes are: this embodiment adopts four brakes, each connected to a locking end.
  • the brake is an electromagnetic brake, which is controlled by the shift control device.
  • the transmission ratio is 1.846, which corresponds to the reverse gear.
  • the forward three-speed and reverse one-speed transmission has a simple transmission structure and a simple control structure. The gear position is controlled by controlling four brakes.
  • Embodiment 13 An example of a complete double-row central wheel (sun gear) row transmission of the present invention using two-row planetary rows, and the input and output locking ends are the second combination.
  • Features include the planetary row, planetary row structure, input and output locking ends and various brakes.
  • the planetary row used is: this embodiment adopts two rows of planetary rows, a row of complete double-layer star planetary rows and a row of the same kind of center wheel (sun wheel) row.
  • the number of planetary gear sets in the two planetary rows is 2.
  • the planet wheel is the bearing, and the planet carrier is the shaft.
  • the planetary row structure is a star-connected planetary row structure, and the inner planetary wheels of the double-layer star planetary row participate in the star connection.
  • Zq1 is the number of teeth of a complete double-row inner ring gear
  • Zt1 is the number of teeth of a complete double-row sun gear
  • Zt2 is the number of teeth of the same central wheel row
  • Xn is the number of complete double-row inner planet gears
  • Xw is a complete double-row outer planet Number of gear teeth
  • X2 is the number of planetary gear teeth in the same center wheel row.
  • the input and output lock ends are: the planet carrier is used as the input to connect to the power unit, the complete double-row ring gear (3) is used as the output to connect to the power use equipment, the same kind of central wheel row sun gear (2), complete double row sun gear (1) Each is connected to a brake (7) as a locking end. These connections are achieved through a multi-layer quill, see Figure 13.
  • the brakes are: this embodiment uses two brakes, each connected to a locking end.
  • the brake is an electromagnetic brake, which is controlled by the shift control device.
  • the transmission of this embodiment has a simple transmission structure and a simple control structure. The gear position is controlled by controlling two brakes to brake.
  • Embodiment 14 An example of a complete double-row central wheel (sun gear) row transmission of the present invention using three rows of planetary rows.
  • the input and output locking ends are the second combination.
  • Features include the planetary row, planetary row structure, input and output locking ends and various brakes.
  • the planetary rows used are: this embodiment adopts three rows of planetary rows, one row of complete double-layer star planetary rows and two rows of the same kind of center wheel (sun wheel) row.
  • the number of planetary gear sets in the three rows of planetary rows is 2.
  • the planet wheel is the shaft, and the planet carrier is the bearing.
  • the planetary row structure is a star-connected planetary row structure, and the inner planetary wheels of the double-layer star planetary row participate in the star connection.
  • Zq1 is the number of complete double-row internal gear ring teeth
  • Zt1 is the number of complete double-row sun gear teeth
  • Zt2 is the number of sun gear teeth of the same kind of center wheel row No. 2
  • Zt3 is the number of sun gear teeth of the same kind of center wheel row No. 3
  • Xn is complete The number of teeth of the inner planetary gear of the double row
  • Xw is the number of teeth of the outer planetary gear of the complete double row
  • X2 is the number of planetary gears of the same kind of center wheel row of No.
  • X3 is the number of planetary gears of the same kind of center wheel row of No. 3.
  • the input and output locking end is: the planet carrier is used as the input end to connect the power unit, the complete double-row inner ring gear (4) is used as the output end to connect the power use equipment, the second and the same kind of center wheel row sun gear (2), the third is the same
  • the central wheel row sun gear (3) and the complete double row sun gear (1) each serve as a locking end and are connected to a brake (9). These connections are achieved through a multi-layer quill, see Figure 14.
  • the brakes are: this embodiment adopts three brakes, each connected to a locking end.
  • the brake is an electromagnetic brake, which is controlled by the shift control device.
  • the transmission of this embodiment has a simple transmission structure and a simple control structure.
  • the gears are controlled by controlling three brakes.
  • the gear ratios between adjacent gears are approximately equal, and the deviation is less than 0.5%.
  • Embodiment 15 An example of a complete double-row central wheel (sun gear) row transmission of the present invention with four rows of planetary rows.
  • the input and output locking ends are the second combination.
  • Features include the planetary row, planetary row structure, input and output locking ends and various brakes.
  • the planetary rows used are: this embodiment adopts four rows of planetary rows, one row of complete double-layer star planetary rows and three rows of the same kind of center wheel (sun wheel) row.
  • the number of planetary gear sets in the four rows of planetary rows is 2.
  • the planet wheel is the shaft, and the planet carrier is the bearing.
  • the planetary row structure is a star-connected planetary row structure, and the inner planetary wheels of the double-layer star planetary row participate in the star connection.
  • Zq1 is the number of teeth of a complete double-row inner gear
  • Zt1 is the number of teeth of a complete double-row sun gear
  • Zt2 is the number of sun gear teeth of the same kind of center wheel row of No. 2
  • Zt3 is the number of sun gear teeth of the same kind of center wheel row of No.
  • Zt4 is four Number of sun gear teeth of the same kind of center wheel row
  • Xn is the number of complete double-row inner planetary gear teeth
  • Xw is the number of complete double-row outer planetary gear teeth
  • X2 is the number of planetary gear teeth of the same kind of center wheel row No. 2
  • X3 is the same kind of No. 3
  • X4 is the number of planetary gears in the same kind of center wheel row No. 4.
  • the input and output locking end is: the planet carrier is used as the input end to connect the power unit, the complete double-row inner gear ring (5) is used as the output end to connect the power use equipment, the second and the same kind of center wheel row sun gear (2), the third is the same One type of central wheel row sun gear (3), No. 4 same type central wheel row sun gear (4), complete double row sun gear (1) each as a locking end connected to a brake (11). These connections are achieved through multi-layer quill shafts, see Figure 15.
  • the brakes are: this embodiment adopts four brakes, each connected to a locking end.
  • the brake is an electromagnetic brake, which is controlled by the shift control device.
  • the transmission of this embodiment has a simple transmission structure and a simple control structure.
  • the gears are controlled by controlling four brakes.
  • the gear ratios between adjacent gears are approximately equal, and the deviation is less than 0.6%.
  • Embodiment 16 An example of a complete double-row central wheel (sun gear) row transmission of the present invention using two-row planetary rows, with the input and output locking ends being the third type combination.
  • Features include the planetary row, planetary row structure, input and output locking ends and various brakes.
  • the planetary row used is: this embodiment adopts two rows of planetary rows, a row of complete double-layer star planetary rows and a row of the same kind of center wheel (sun wheel) row.
  • the number of planetary gear sets in the two planetary rows is 2.
  • the planet wheel is the bearing, and the planet carrier is the shaft.
  • the planetary row structure is a star-connected planetary row structure, and the outer planetary wheels of the double-layer star planetary row participate in the star connection.
  • Zq1 is the number of teeth of a complete double-row inner ring gear
  • Zt1 is the number of teeth of a complete double-row sun gear
  • Zt2 is the number of teeth of the same central wheel row
  • Xn is the number of complete double-row inner planet gears
  • Xw is a complete double-row outer planet Number of gear teeth
  • X2 is the number of planetary gear teeth in the same center wheel row.
  • the input and output lock ends are: the planet carrier is used as the input to connect to the power unit, the complete double-row ring gear (3) is used as the output to connect to the power use equipment, the same kind of central wheel row sun gear (2), complete double row sun gear (1) Connect a brake (7) each. These connections are achieved through multi-layer quill shafts, see Figure 16.
  • the brakes are: this embodiment uses two brakes, each connected to a locking end.
  • the brake is an electromagnetic brake, which is controlled by the shift control device.
  • the transmission ratio is 1.333, which corresponds to a first gear.
  • the transmission ratio is 0.521, which corresponds to the second gear.
  • the transmission of this embodiment has a simple transmission structure and a simple control structure. The gear position is controlled by controlling two brakes to brake.
  • Embodiment 17 An example of a complete double-row central wheel (sun gear) row transmission of the present invention using three rows of planetary rows, and the input and output locking ends are the third combination.
  • Features include the planetary row, planetary row structure, input and output locking ends and various brakes.
  • the planetary rows used are: this embodiment adopts three rows of planetary rows, one row of complete double-layer star planetary rows and two rows of the same kind of center wheel (sun wheel) row.
  • the number of planetary gear sets in the three rows of planetary rows is 2.
  • the planet wheel is the shaft, and the planet carrier is the bearing.
  • the planetary row structure is a star-connected planetary row structure, and the outer planetary wheels of the double-layer star planetary row participate in the star connection.
  • Zq1 is the number of complete double-row internal gear ring teeth
  • Zt1 is the number of complete double-row sun gear teeth
  • Zt2 is the number of sun gear teeth of the same kind of center wheel row No. 2
  • Zt3 is the number of sun gear teeth of the same kind of center wheel row No. 3
  • Xn is complete The number of teeth of the inner planetary gear of the double row
  • Xw is the number of teeth of the outer planetary gear of the complete double row
  • X2 is the number of planetary gears of the same kind of center wheel row of No.
  • X3 is the number of planetary gears of the same kind of center wheel row of No. 3.
  • the input and output locking end is: the planet carrier is used as the input end to connect the power unit, the complete double-row inner ring gear (4) is used as the output end to connect the power use equipment, the second and the same kind of center wheel row sun gear (2), the third is the same
  • the central wheel row sun gear (3) and the complete double row sun gear (1) each serve as a locking end and are connected to a brake (9). These connections are achieved through a multi-layer quill, see Figure 17.
  • the brakes are: this embodiment adopts three brakes, each connected to a locking end.
  • the brake is an electromagnetic brake, which is controlled by the shift control device.
  • the transmission structure of this embodiment has a simple transmission structure and a simple control structure.
  • the gears are controlled by controlling three brakes.
  • the gear ratios between adjacent gears are approximately equal, and the deviation is less than 0.1%.
  • Embodiment 18 An example of a complete double-row central wheel (sun gear) row transmission of the present invention with four rows of planetary rows.
  • the input and output locking ends are the third combination.
  • Features include the planetary row, planetary row structure, input and output locking ends and various brakes.
  • the planetary rows used are: this embodiment adopts four rows of planetary rows, one row of complete double-layer star planetary rows and three rows of the same kind of center wheel (sun wheel) row.
  • the number of planetary gear sets in the four rows of planetary rows is 2.
  • the planet wheel is the shaft, and the planet carrier is the bearing.
  • the planetary row structure is a star-connected planetary row structure, and the outer planetary wheels of the double-layer star planetary row participate in the star connection.
  • Zq1 is the number of teeth of a complete double-row inner gear
  • Zt1 is the number of teeth of a complete double-row sun gear
  • Zt2 is the number of sun gear teeth of the same kind of center wheel row of No. 2
  • Zt3 is the number of sun gear teeth of the same kind of center wheel row of No.
  • Zt4 is four Number of sun gear teeth of the same kind of center wheel row
  • Xn is the number of complete double-row inner planetary gear teeth
  • Xw is the number of complete double-row outer planetary gear teeth
  • X2 is the number of planetary gear teeth of the same kind of center wheel row No. 2
  • X3 is the same kind of No. 3
  • X4 is the number of planetary gears in the same kind of center wheel row No. 4.
  • the input and output locking end is: the planet carrier is used as the input end to connect the power unit, the complete double-row inner gear ring (5) is used as the output end to connect the power use equipment, the second and the same kind of center wheel row sun gear (2), the third is the same One type of central wheel row sun gear (3), No. 4 same type central wheel row sun gear (4), complete double row sun gear (1) each as a locking end connected to a brake (11). These connections are made through a multi-layer quill, see Figure 18.
  • the brakes are: this embodiment adopts four brakes, each connected to a locking end.
  • the brake is an electromagnetic brake, which is controlled by the shift control device.
  • the transmission ratio is 0.326, which corresponds to the fourth gear. When all four brakes are not applied, the transmission is in neutral.
  • the transmission of this embodiment has a simple transmission structure and a simple control structure.
  • the gears are controlled by controlling four brakes.
  • the gear ratios between adjacent gears are approximately equal, and the deviation is less than 1%.

Abstract

一种完整双排同种中心轮排变速器,包括行星排、行星排结构、输入输出锁止端和各制动器(7);该变速器采用不少于二排的行星排,一排行星排是完整双层星行星排,其余行星排是同种中心轮排,组成星连接行星排结构;输入输出锁止端以行星架作为输入端,任取一个中心轮(1)作为输出端,其余中心轮(2、3)各作为一个锁止端,锁止端各连接一个制动器(7);制动器(7)受换档控制装置控制处于制动状态、半制动状态和非制动状态;该变速器通过控制各制动器(7)制动来控制档位。

Description

完整双排同种中心轮排变速器 技术领域
本发明涉及一种行星排变速器,具体为采用不少于二排行星排,其中一排行星排为完整双层星行星排、其余行星排为同种中心轮行星排的,星连接行星排结构的,全通过控制各制动器制动来控制档位的行星排变速器。
背景技术
为了变换转矩和转速,很多传动系统都配置了行星排变速器。不同行星排变速器采用的行星排、行星排结构、输入输出锁止端、控制器各有技术特征。现有行星排变速器传动结构复杂,通过控制多片离合器、制动器、单向离合器来换档,控制结构复杂。此前本人发明申报了全通过控制各制动器制动来控制档位的行星排变速器,控制结构简单,采用普通行星排,星连接行星排结构,传动结构比较简单。机械行业需要传动结构更简单的,全通过控制各制动器制动来控制档位的控制结构简单的行星排变速器。本发明就是提出这样的行星排变速器。
行星排变速器包括:各行星排的内部构造即采用的行星排,各行星排相互连接形成的结构即行星排结构,输入输出锁止端,变速器的控制器等。
普通完整行星排由太阳轮、内齿圈与带行星轮的行星架三种部件组成,其中太阳轮与内齿圈的轴线都是行星排的中心轴线,太阳轮是一种中心轮,内齿圈是另一种中心轮。行星排分为单层星行星排与双层星行星排,各有运动规律。单层星行星排只有单层行星轮,其行星轮个数等于其行星轮组数目。完整单层星行星排从内向外是太阳轮与单层行星轮啮合、单层行星轮与内齿圈啮合。双层星行星排的行星轮分为内层行星轮与外层行星轮,其行星轮个数除以二等于其行星轮组数目。完整双层星行星排从内向外是太阳轮与内层行星轮啮合、内层行星轮与外层行星轮啮合、外层行星轮与内齿圈啮合。行星排各部件尺寸等比放大缩小,其运动规律不变。多个行星排相互连接组成行星排结构,行星排结构中的一个部件拥有一个转速是一个旋转构件,几个部件相互连接拥有同一个转速就同是一个旋转构件。所述星连接行星排结构即:对多排行星排,设置它们的行星轮组数目相同,调整各行星排尺寸大小,有的等比放大、有的等比缩小,直至各行星排中某层行星轮轴线到行星排中心轴线的距离都相等;把行星排的某层行星轮与相邻行星排的行星轮轴线对齐并分组相连接,这样的连接称为星连接,星连接使参与连接的各行星轮拥有一个相同的转速,参与连接的各个行星架拥有另一个相同的转速,各行星排以星连接方式组成的行星排结构就是星连接行星排结构。对双层星行星排,参与星连接的行星轮有两种情况,第一种情况参与星连接的某层行星轮是外层行星轮,第二种情况参与星连接的某层行星轮是内层行星轮。根据实际需要,星连接行星排结构中的各单层星行星排可以省略太阳轮或内齿圈这两种中心轮的其中之一,成为不完整单层星行星 排。不完整单层星行星排只有一个中心轮、一个带行星轮的行星架这两个部件。本发明采用的各行星排是:一排行星排是完整双层星行星排,其余行星排是不完整单层星行星排且是同种中心轮排。同种中心轮排有两种:第一种,各行星排均省略了内齿圈,是同种中心轮(太阳轮)排,行星排从内向外是太阳轮与单层行星轮啮合。第二种,各行星排均省略了太阳轮,是同种中心轮(内齿圈)排,行星排从内向外是单层行星轮与内齿圈啮合。
发明内容
为设计制造传动结构更简单的,全通过控制各制动器制动来控制档位的控制结构简单的行星排变速器,本发明提出完整双排同种中心轮排变速器。特征包括采用的行星排、行星排结构、输入输出锁止端、各制动器等几个方面。各方面特征如下:
采用的行星排是:本发明采用不少于二排行星排,其中一排行星排是完整双层星行星排,其余行星排是同种中心轮排。所述同种中心轮排包括同种中心轮(太阳轮)排、同种中心轮(内齿圈)排这两种,同一种中心轮均是太阳轮的各行星排称为同种中心轮(太阳轮)排,同一种中心轮均是内齿圈的各行星排称为同种中心轮(内齿圈)排。本发明在一个变速器中选取采用其中一种来与一个完整双层星行星排组成变速器,选取同种中心轮(太阳轮)排与一个完整双层星行星排就组成完整双排同种中心轮(太阳轮)行星排变速器;选取同种中心轮(内齿圈)排与一个完整双层星行星排就组成完整双排同种中心轮(内齿圈)行星排变速器。本发明中,“行星排”概念包括行星排的部件以及部件的零件,包括各部件、各零件之间的啮合、传动、支撑、排列及位置关系,包括各部件、各零件的构造、省略与参数设置。
行星排结构是星连接行星排结构。所述星连接行星排结构即:对多排行星排,设置它们的行星轮组数目相同,调整各行星排尺寸大小,直至各行星排中某层行星轮轴线到行星排中心轴线的距离都相等;把行星排中某层行星轮与相邻行星排的行星轮轴线对齐并分组相连接,这样的连接称为星连接,行星排之间以星连接方式形成的行星排结构就是星连接行星排结构。对双层星行星排,参与星连接的行星轮有两种情况,第一种情况参与星连接的某层行星轮是外层行星轮,第二种情况参与星连接的某层行星轮是内层行星轮。星连接行星排结构中各行星排的行星架共同成为一个旋转构件,各行星排的中心轮各是一个旋转构件。本发明中“行星排结构”是专用名词,其概念包括各行星排之间的连接,还包括处于连接中的各行星排和处于连接中的行星排各部件以及各零件,比如各行星排,比如旋转构件、参与星连接的某层行星轮等。所述某层行星轮是双层星行星排的内层行星轮、外层行星轮之一。
输入输出锁止端是:以行星架作为输入端连接动力装置;任取一个中心轮作为输出端连接动力使用设备;其余中心轮各作为一个锁止端各连接一个制动器,制动器受换档控制装置控制。控制一个制动器制动就锁止与之连接的中心轮,该中心轮转速为零;控制一个制动器 不制动就不锁止与之连接的中心轮。配合采用的行星排以及双层星行星排参与星连接的某层行星轮情况,输入输出锁止端常采用六类组合,第一类组合是:采用完整双排同种中心轮(太阳轮)排,双层星行星排的内层行星轮参与星连接。以行星架作为输入端,各行星排中选择一个太阳轮作为输出端,其余太阳轮和内齿圈各作为一个锁止端。第二类组合是:采用完整双排同种中心轮(太阳轮)排,双层星行星排的内层行星轮参与星连接。以行星架作为输入端,各太阳轮各作为一个锁止端,内齿圈作为输出端。第三类组合是:采用完整双排同种中心轮(太阳轮),双层星行星排的外层行星轮参与星连接。以行星架作为输入端,各太阳轮各作为一个锁止端,内齿圈作为输出端。第四类组合是:采用完整双排同种中心轮(内齿圈)排,双层星行星排的外层行星轮参与星连接。以行星架作为输入端,各行星排中选择一个内齿圈作为输出端,其余内齿圈和太阳轮各作为一个锁止端。第五类组合是:采用完整双排同种中心轮(内齿圈)排。双层星行星排的外层行星轮参与星连接。以行星架作为输入端,各内齿圈各作为一个锁止端,太阳轮作为输出端。第六类组合是:采用完整双排同种中心轮(内齿圈)排,双层星行星排的内层行星轮参与星连接。以行星架作为输入端,各内齿圈各作为一个锁止端,太阳轮作为输出端。
各制动器是:本发明采用不少于二个制动器作为变速器的控制器,各与锁止端连接。制动器为成熟技术,例如机械制动器、电磁制动器、助力制动器等。制动器含定子与动子,定子与固定物连接,动子与锁止端连接,可受控制处于制动状态、半制动状态和非制动状态。按机械原理,一端与机座等固定物连接的离合器也属于制动器。
本发明的星连接行星排结构,每一个旋转构件都作为输入输出锁止端,没有任何旋转构件是冗余,这说明本发明变速器传动结构简单。普通完整行星排的装配方式只能轴向装配,这与星连接行星排结构有一定矛盾,装配较难。由于本发明采用了较多不完整单层星行星排,各不完整单层星行星排除了轴向装配还可以径向装配,最后装配完整行星排时采用轴向装配。这就拓展了行星排变速器的装配方式,装配简单。普通行星排变速器通过控制多片离合器、制动器、单向离合器来换档,采用液压控制机构作动,控制结构复杂。本发明全通过控制制动器制动来控制档位,可以不采用液压控制机构,控制结构简单。
本发明变速器的运作特征是:控制一个制动器制动使与之连接的中心轮转速为零;输入端输入转速时,控制一个制动器制动,输出端必然形成一个输出转速,与输入转速构成一个确定的比例关系,变速器形成一个传动比,对应一个档位;控制另一个制动器制动,输出端必然形成另一个输出转速,与输入转速构成另一个确定的比例关系,变速器形成另一个传动比,对应另一个档位;依此类推,本发明变速器通过控制各制动器制动来控制档位。当控制一个制动器半制动时,变速器在相应的这个档位半联动;当控制各制动器均不制动时,变速 器为空档;当控制两个以上制动器制动时,变速器停转。所述传动比即输入转速与输出转速的比值,传动比为正值时输入转速与输出转速方向相同,传动比为负值时输入转速与输出转速方向相反。
所述直接连接即通过机械相连使被连接的对象转速相同,所述间接连接即通过机械传动使两个被传动对象的转速确定性地相关。单独的“连接”一般指直接连接,间接连接会专门明示。各行星排中,行星架与行星轮这两者的相互关系为:一者为轴,另一者为轴承。各行星排中各部件齿轮齿数根据实际需要确定,行星排各部件的齿轮模数与其他行星排各部件的齿轮模数不必须相同。所述输入端与动力装置的连接有直接连接和通过旁轴齿轮间接连接两种;输出端与动力使用设备的连接有直接连接和通过旁轴齿轮间接连接两种;直接连接传动比为1.0,间接连接传动比一般为负值,例如-1.0。所述动力装置采用成熟技术,比如电动力装置、汽动力装置、燃油动力装置。所述换档控制装置采用成熟技术,比如电动控制机构、机械控制机构或液压控制机构。所述多层套筒轴为成熟技术,轴承与轴之间、各层轴之间可以相对转动,但沿轴向不相对滑移。各轴承为成熟技术,轴承承托着轴,轴承与轴之间可以相对转动,但沿轴向不相对滑移。所述制动器为成熟技术,本发明变速器的换档控制装置通过制动器的定子作动,不必须采用液压控制机构。所述多片离合器为成熟技术,传统变速器中多片离合器含两个独立的动子,由于其换档控制装置通过动子作动,必须采用液压控制机构。所述液压控制机构是换档控制装置的一种,结构很复杂。
图1、图4、图7、图10、图13、图16为二排行星排,图2、图5、图8、图11、图14、图17为三排行星排,图3、图6、图9、图12、图15、图18为四排行星排。图1至图3中的输入输出锁止端为第四类组合,其中图1、图3中的行星架为轴,行星轮为轴承;图2中的行星架为轴承,行星轮为轴。图4至图6中的输入输出锁止端为第五类组合,其中图4中的行星架为轴,行星轮为轴承;图5、图6中的行星架为轴承,行星轮为轴。图7至图9中的输入输出锁止端为第六类组合,其中图7中的行星架为轴,行星轮为轴承;图8、图9中的行星架为轴承,行星轮为轴。图10至图12中的输入输出锁止端为第一类组合,其中图10中的行星架为轴,行星轮为轴承;图11、图12中的行星架为轴承,行星轮为轴。图13至图15中的输入输出锁止端为第二类组合,其中图13中的行星架为轴,行星轮为轴承;图14、图15中的行星架为轴承,行星轮为轴。图16至图18中的输入输出锁止端为第三类组合,其中图16中的行星架为轴,行星轮为轴承;图17、图18中的行星架为轴承,行星轮为轴。各图中的轴承只示意轴承支撑结构原理,不反映轴承的实际数量、实际尺寸。
本发明变速器的档位数等于制动器数,等于采用的行星排排数,所以根据实际需要的变速器档位数具体设置采用的行星排排数。本发明变速器各档位传动比取决于所采用的完整双 层星行星排和各不完整单层星行星排的中心轮齿数、行星轮齿数,所以根据实际需要的各档位传动比具体设置各行星排中心轮齿数、行星轮齿数。行星轮轮组数目主要根据变速器实际需要传递的扭矩、结合各中心轮齿数来具体设置。通过这些具体设置得出的变速器不改变本发明的特征,均属于本发明的保护范围。采用行星排排数不多于四排的本发明变速器的结构简图在图1至图18有展示,其具体设置在各实施例中有示范。采用行星排排数多于四排的本发明变速器的结构简图可以类推,其具体设置可根据这些实施例类推,就不详述了。
一个变速器,当保持其他所有结构不变,只对换其输入端与输出端,形成的新变速器就是原变速器的逆变速器。逆变速器的档位数保持不变,逆变速器新的各档位传动比为原变速器对应原档位传动比的倒数。本发明变速器的逆变速器的特征是:采用的行星排不变,行星排结构不变,各制动器不变,输入输出锁止端改为:以行星架作为输出端连接动力使用设备,任取一个中心轮作为输入端连接动力装置,其余中心轮各作为一个锁止端各连接一个制动器;输入输出锁止端常采用的六类组合改为:第一类组合是:采用完整双排同种中心轮(太阳轮)排,双层星行星排的内层行星轮参与星连接,以行星架作为输出端,各行星排中选择一个太阳轮作为输入端,其余太阳轮和内齿圈各作为一个锁止端;第二类组合是:采用完整双排同种中心轮(太阳轮)排,双层星行星排的内层行星轮参与星连接,以行星架作为输出端,各太阳轮各作为一个锁止端,内齿圈作为输入端;第三类组合是:采用完整双排同种中心轮(太阳轮),双层星行星排的外层行星轮参与星连接,以行星架作为输出端,各太阳轮各作为一个锁止端,内齿圈作为输入端;第四类组合是:采用完整双排同种中心轮(内齿圈)排,双层星行星排的外层行星轮参与星连接,以行星架作为输出端,各行星排中选择一个内齿圈作为输入端,其余内齿圈和太阳轮各作为一个锁止端;第五类组合是:采用完整双排同种中心轮(内齿圈)排。双层星行星排的外层行星轮参与星连接,以行星架作为输出端,各内齿圈各作为一个锁止端,太阳轮作为输入端;第六类组合是:采用完整双排同种中心轮(内齿圈)排,双层星行星排的内层行星轮参与星连接,以行星架作为输出端,各内齿圈各作为一个锁止端,太阳轮作为输入端;其运作特征不变。本发明变速器的逆变速器也属于本发明的保护范围。
上述采用的行星排、行星排结构、输入输出锁止端和各制动器的特征,以及运作特征、逆变速器特征,是本发明的创新。在本发明之前,业内没有相同特征的行星排变速器。
本发明完整双排同种中心轮排变速器的有益之处在于:提出了采用不少于二排行星排,其中一排行星排是完整双层星行星排,其余行星排是同种中心轮排;提出了星连接行星排结构,提出了输入输出锁止端,比现有行星排变速器的传动结构更简单,且拓展了行星排变速器的装配方式。提出了全通过控制各制动器制动来控制档位,比现有行星排变速器控制结构 简单。
附图说明
图1为本发明采用二排行星排的完整双排同种中心轮(内齿圈)排变速器示意图,输入输出锁止端为第四类组合。1为完整双排内齿圈,2为同种中心轮排内齿圈,3为完整双排太阳轮,4为同种中心轮排行星轮,5为完整双排内层行星轮轴,6为完整双排外层行星轮轴,7为制动器(有二个),8为输入箭头,9为输出箭头。
图2为本发明采用三排行星排的完整双排同种中心轮(内齿圈)排变速器示意图,输入输出锁止端为第四类组合。1为完整双排内齿圈,2为二号同种中心轮排内齿圈,3为三号同种中心轮排内齿圈,4为完整双排太阳轮,5为二号同种中心轮排行星轮,6为三号同种中心轮排行星轮,7为完整双排内层行星轮轴,8为完整双排外层行星轮轴,9为制动器(有三个),10为输入箭头,11为输出箭头。
图3为本发明采用四排行星排的完整双排同种中心轮(内齿圈)排变速器示意图,输入输出锁止端为第四类组合。1为完整双排内齿圈,2为二号同种中心轮排内齿圈,3为三号同种中心轮排内齿圈,4为四号同种中心轮排内齿圈,5为完整双排太阳轮,6为二号同种中心轮排行星轮,7为三号同种中心轮排行星轮,8为四号同种中心轮排行星轮,9为完整双排内层行星轮轴,10为完整双排外层行星轮轴,11为制动器(有四个),12为输入箭头,13为输出箭头。
图4为本发明采用二排行星排的完整双排同种中心轮(内齿圈)排变速器示意图,输入输出锁止端为第五类组合。1为完整双排内齿圈,2为同种中心轮排内齿圈,3为完整双排太阳轮,4为同种中心轮排行星轮,5为完整双排内层行星轮轴,6为完整双排外层行星轮轴,7为制动器(有二个),8为输入箭头,9为输出箭头。
图5为本发明采用三排行星排的完整双排同种中心轮(内齿圈)排变速器示意图,输入输出锁止端为第五类组合。1为完整双排内齿圈,2为二号同种中心轮排内齿圈,3为三号同种中心轮排内齿圈,4为完整双排太阳轮,5为二号同种中心轮排行星轮,6为三号同种中心轮排行星轮,7为完整双排内层行星轮轴,8为完整双排外层行星轮轴,9为制动器(有三个),10为输入箭头,11为输出箭头。
图6为本发明采用四排行星排的完整双排同种中心轮(内齿圈)排变速器示意图,输入输出锁止端为第五类组合。1为完整双排内齿圈,2为二号同种中心轮排内齿圈,3为三号同种中心轮排内齿圈,4为四号同种中心轮排内齿圈,5为完整双排太阳轮,6为二号同种中心轮排行星轮,7为三号同种中心轮排行星轮,8为四号同种中心轮排行星轮,9为完整双排内层行星轮轴,10为完整双排外层行星轮轴,11为制动器(有四个),12为输入箭头,13为输 出箭头。
图7为本发明采用二排行星排的完整双排同种中心轮(内齿圈)排变速器示意图,输入输出锁止端为第六类组合。1为完整双排内齿圈,2为同种中心轮排内齿圈,3为完整双排太阳轮,4为同种中心轮排行星轮,5为完整双排内层行星轮轴,6为完整双排外层行星轮轴,7为制动器(有二个),8为输入箭头,9为输出箭头。
图8为本发明采用三排行星排的完整双排同种中心轮(内齿圈)排变速器示意图,输入输出锁止端为第六类组合。1为完整双排内齿圈,2为二号同种中心轮排内齿圈,3为三号同种中心轮排内齿圈,4为完整双排太阳轮,5为二号同种中心轮排行星轮,6为三号同种中心轮排行星轮,7为完整双排内层行星轮轴,8为完整双排外层行星轮轴,9为制动器(有三个),10为输入箭头,11为输出箭头。
图9为本发明采用四排行星排的完整双排同种中心轮(内齿圈)排变速器示意图,输入输出锁止端为第六类组合。1为完整双排内齿圈,2为二号同种中心轮排内齿圈,3为三号同种中心轮排内齿圈,4为四号同种中心轮排内齿圈,5为完整双排太阳轮,6为二号同种中心轮排行星轮,7为三号同种中心轮排行星轮,8为四号同种中心轮排行星轮,9为完整双排内层行星轮轴,10为完整双排外层行星轮轴,11为制动器(有四个),12为输入箭头,13为输出箭头。
图10为本发明采用二排行星排的完整双排同种中心轮(太阳轮)排变速器示意图,输入输出锁止端为第一类组合。1为完整双排太阳轮,2为同种中心轮排太阳轮,3为完整双排内齿圈,4为同种中心轮排行星轮,5为完整双排内层行星轮轴,6为完整双排外层行星轮轴,7为制动器(有二个),8为输入箭头,9为输出箭头。
图11为本发明采用三排行星排的完整双排同种中心轮(太阳轮)排变速器示意图,输入输出锁止端为第一类组合。1为完整双排太阳轮,2为二号同种中心轮排太阳轮,3为三号同种中心轮排太阳轮,4为完整双排内齿圈,5为二号同种中心轮排行星轮,6为三号同种中心轮排行星轮,7为完整双排内层行星轮轴,8为完整双排外层行星轮轴,9为制动器(有三个),10为输入箭头,11为输出箭头。
图12为本发明采用四排行星排的完整双排同种中心轮(太阳轮)排变速器示意图,输入输出锁止端为第一类组合。1为完整双排太阳轮,2为二号同种中心轮排太阳轮,3为三号同种中心轮排太阳轮,4为四号同种中心轮排太阳轮,5为完整双排内齿圈,6为二号同种中心轮排行星轮,7为三号同种中心轮排行星轮,8为四号同种中心轮排行星轮,9为完整双排内层行星轮轴,10为完整双排外层行星轮轴,11为制动器(有四个),12为输入箭头,13为输出箭头。
图13为本发明采用二排行星排的完整双排同种中心轮(太阳轮)排变速器示意图,输入输出锁止端为第二类组合。1为完整双排太阳轮,2为同种中心轮排太阳轮,3为完整双排内齿圈,4为同种中心轮排行星轮,5为完整双排内层行星轮轴,6为完整双排外层行星轮轴,7为制动器(有二个),8为输入箭头,9为输出箭头。
图14为本发明采用三排行星排的完整双排同种中心轮(太阳轮)排变速器示意图,输入输出锁止端为第二类组合。1为完整双排太阳轮,2为二号同种中心轮排太阳轮,3为三号同种中心轮排太阳轮,4为完整双排内齿圈,5为二号同种中心轮排行星轮,6为三号同种中心轮排行星轮,7为完整双排内层行星轮轴,8为完整双排外层行星轮轴,9为制动器(有三个),10为输入箭头,11为输出箭头。
图15为本发明采用四排行星排的完整双排同种中心轮(太阳轮)排变速器示意图,输入输出锁止端为第二类组合。1为完整双排太阳轮,2为二号同种中心轮排太阳轮,3为三号同种中心轮排太阳轮,4为四号同种中心轮排太阳轮,5为完整双排内齿圈,6为二号同种中心轮排行星轮,7为三号同种中心轮排行星轮,8为四号同种中心轮排行星轮,9为完整双排内层行星轮轴,10为完整双排外层行星轮轴,11为制动器(有四个),12为输入箭头,13为输出箭头。
图16为本发明采用二排行星排的完整双排同种中心轮(太阳轮)排变速器示意图,输入输出锁止端为第三类组合。1为完整双排太阳轮,2为同种中心轮排太阳轮,3为完整双排内齿圈,4为同种中心轮排行星轮,5为完整双排内层行星轮轴,6为完整双排外层行星轮轴,7为制动器(有二个),8为输入箭头,9为输出箭头。
图17为本发明采用三排行星排的完整双排同种中心轮(太阳轮)排变速器示意图,输入输出锁止端为第三类组合。1为完整双排太阳轮,2为二号同种中心轮排太阳轮,3为三号同种中心轮排太阳轮,4为完整双排内齿圈,5为二号同种中心轮排行星轮,6为三号同种中心轮排行星轮,7为完整双排内层行星轮轴,8为完整双排外层行星轮轴,9为制动器(有三个),10为输入箭头,11为输出箭头。
图18为本发明采用四排行星排的完整双排同种中心轮(太阳轮)排变速器示意图,输入输出锁止端为第三类组合。1为完整双排太阳轮,2为二号同种中心轮排太阳轮,3为三号同种中心轮排太阳轮,4为四号同种中心轮排太阳轮,5为完整双排内齿圈,6为二号同种中心轮排行星轮,7为三号同种中心轮排行星轮,8为四号同种中心轮排行星轮,9为完整双排内层行星轮轴,10为完整双排外层行星轮轴,11为制动器(有四个),12为输入箭头,13为输出箭头。
各图中行星排均按业内惯例以半幅结构简图示意。输入、输出以箭头示意,制动器以定 子接地的简图示意。各图中部件只示意结构关系,未反映真实尺寸。
具体实施方式
实施例1:采用二排行星排的本发明完整双排同种中心轮(内齿圈)排变速器的一例,输入输出锁止端为第四类组合。特征包括采用的行星排、行星排结构、输入输出锁止端和各制动器等。
采用的行星排是:本实施例采用二排行星排,一排完整双层星行星排和一排同种中心轮(内齿圈)排。使二排行星排的行星轮组数目均为2。行星轮为轴承,行星架为轴。
行星排结构是星连接行星排结构,双层星行星排的外层行星轮参与星连接。设Zq1为完整双排内齿圈齿数,Zq2为同种中心轮排内齿圈齿数,Zt1为完整双排太阳轮齿数,Xn为完整双排内层行星轮齿数,Xw为完整双排外层行星轮齿数,X2为同种中心轮排行星轮齿数。本实施例中各部件齿轮齿数确定为:Zq1=80,Zq2=82,Zt1=30,Xn=17,Xw=17,X2=23。
输入输出锁止端是:以行星架作为输入端连接动力装置,完整双排内齿圈(1)作为输出端连接动力使用设备,同种中心轮排内齿圈(2)、完整双排太阳轮(3)各作为一个锁止端各连接一个制动器(7)。这些连接是通过套筒轴实现的,参见图1。
各制动器是:本实施例采用二个制动器,各与一个锁止端连接。制动器为电磁制动器,受换档控制装置控制。
控制一个制动器制动就锁止与之连接的中心轮,该中心轮转速为零;控制一个制动器不制动就不锁止与之连接的中心轮。连接完整双排太阳轮(3)的制动器(7)制动时,传动比为1.60,对应二档档位。连接同种中心轮排内齿圈(2)的制动器(7)制动时,传动比为4.126,对应一档档位。二个制动器均不制动时,变速器为空档。本实施例变速器,传动结构简单,控制结构简单,通过控制两个制动器制动来控制档位。
实施例2:采用三排行星排的本发明完整双排同种中心轮(内齿圈)排变速器的一例,输入输出锁止端为第四类组合。特征包括采用的行星排、行星排结构、输入输出锁止端和各制动器等。
采用的行星排是:本实施例采用三排行星排,一排完整双层星行星排和二排同种中心轮(内齿圈)排。使三排行星排的行星轮组数目均为2。行星轮为轴,行星架为轴承。
行星排结构是星连接行星排结构,双层星行星排的外层行星轮参与星连接。设Zq1为完整双排内齿圈齿数,Zq2为二号同种中心轮排内齿圈齿数,Zq3为三号同种中心轮排内齿圈齿数,Zt1为完整双排太阳轮齿数,Xn为完整双排内层行星轮齿数,Xw为完整双排外层行星轮齿数,X2为二号同种中心轮排行星轮齿数,X3为三号同种中心轮排行星轮齿数。本实施例中各部件齿轮齿数确定为:Zq1=80,Zq2=100,Zq3=100,Zt1=30,Xn=17,Xw=17,X2=26,X3=18。
输入输出锁止端是:以行星架作为输入端连接动力装置,完整双排内齿圈(1)作为输出端连接动力使用设备,二号同种中心轮排内齿圈(2)、三号同种中心轮排内齿圈(3)、完整双排太阳轮(4)各作为一个锁止端各连接一个制动器(9)。这些连接是通过套筒轴实现的,参见图2。
各制动器是:本实施例采用三个制动器,各与一个锁止端连接。制动器为电磁制动器,受换档控制装置控制。
控制一个制动器制动就锁止与之连接的中心轮,该中心轮转速为零;控制一个制动器不制动就不锁止与之连接的中心轮。连接完整双排太阳轮(4)的制动器(9)制动时,传动比为1.60,对应正二档档位。连接二号同种中心轮排内齿圈(2)的制动器(9)制动时,传动比为5.474,对应正一档档位。连接三号同种中心轮排内齿圈(3)的制动器(9)制动时,传动比为-5.538,对应倒档档位。三个制动器均不制动时,变速器为空档。本实施例正二档倒一档变速器,传动结构简单,控制结构简单,通过控制三个制动器制动来控制档位。
实施例3:采用四排行星排的本发明完整双排同种中心轮(内齿圈)排变速器的一例,输入输出锁止端为第四类组合。特征包括采用的行星排、行星排结构、输入输出锁止端和各制动器等。
采用的行星排是:本实施例采用四排行星排,一排完整双层星行星排和三排同种中心轮(内齿圈)排。使四排行星排的行星轮组数目均为2。行星轮为轴,行星架为轴承。
行星排结构是星连接行星排结构,双层星行星排的外层行星轮参与星连接。设Zq1为完整双排内齿圈齿数,Zq2为二号同种中心轮排内齿圈齿数,Zq3为三号同种中心轮排内齿圈齿数,Zq4为四号同种中心轮排内齿圈齿数,Zt1为完整双排太阳轮齿数,Xn为完整双排内层行星轮齿数,Xw为完整双排外层行星轮齿数,X2为二号同种中心轮排行星轮齿数,X3为三号同种中心轮排行星轮齿数,X4为四号同种中心轮排行星轮齿数。本实施例中各部件齿轮齿数确定为:Zq1=80,Zq2=68,Zq3=80,Zq4=88,Zt1=36,Xn=17,Xw=17,X2=19,X3=19,X4=17。
输入输出锁止端是:以行星架作为输入端连接动力装置,完整双排内齿圈(1)作为输出端连接动力使用设备,二号同种中心轮排内齿圈(2)、三号同种中心轮排内齿圈(3)、四号同种中心轮排内齿圈(4)、完整双排太阳轮(5)各作为一个锁止端各连接一个制动器(11)。这些连接是通过套筒轴实现的,参见图3。
各制动器是:本实施例采用四个制动器,各与一个锁止端连接。制动器为电磁制动器,受换档控制装置控制。
控制一个制动器制动就锁止与之连接的中心轮,该中心轮转速为零;控制一个制动器不制动就不锁止与之连接的中心轮。连接完整双排太阳轮(5)的制动器(11)制动时,传动比 为1.818,对应正三档档位。连接二号同种中心轮排内齿圈(2)的制动器(11)制动时,传动比为4.176对应正二档档位。连接三号同种中心轮排内齿圈(3)的制动器(11)制动时,传动比为9.50,对应正一档档位。连接四号同种中心轮排内齿圈(4)的制动器(11)制动时,传动比为-10.0,对应倒档档位。四个制动器均不制动时,变速器为空档。本实施例正三档倒一档变速器,传动结构简单,控制结构简单,通过控制四个制动器制动来控制档位,其相邻档位之间的齿比间距近似相等,偏差小于1%。
实施例4:采用二排行星排的本发明完整双排同种中心轮(内齿圈)排变速器的一例,输入输出锁止端为第五类组合。特征包括采用的行星排、行星排结构、输入输出锁止端和各制动器等。
采用的行星排是:本实施例采用二排行星排,一排完整双层星行星排和一排同种中心轮(内齿圈)排。使二排行星排的行星轮组数目均为2。行星轮为轴承,行星架为轴。
行星排结构是星连接行星排结构,双层星行星排的外层行星轮参与星连接。设Zq1为完整双排内齿圈齿数,Zq2为同种中心轮排内齿圈齿数,Zt1为完整双排太阳轮齿数,Xn为完整双排内层行星轮齿数,Xw为完整双排外层行星轮齿数,X2为同种中心轮排行星轮齿数。本实施例中各部件齿轮齿数确定为:Zq1=90,Zq2=90,Zt1=20,Xn=20,Xw=20,X2=24。
输入输出锁止端是:以行星架作为输入端连接动力装置,完整双排太阳轮(3)作为输出端连接动力使用设备,同种中心轮排内齿圈(2)、完整双排内齿圈(1)各作为一个锁止端各连接一个制动器(7)。参见图4。
各制动器是:本实施例采用二个制动器,各与一个锁止端连接。制动器为电磁制动器,受换档控制装置控制。
控制一个制动器制动就锁止与之连接的中心轮,该中心轮转速为零;控制一个制动器不制动就不锁止与之连接的中心轮。连接同种中心轮排内齿圈(2)的制动器(7)制动时,传动比为-1/2.75,对应一档档位。连接完整双排内齿圈(1)的制动器(7)制动时,传动比为-1/3.50,对应二档档位。二个制动器均不制动时,变速器为空档。本实施例变速器,传动结构简单,控制结构简单,通过控制两个制动器制动来控制档位。
实施例5:采用三排行星排的本发明完整双排同种中心轮(内齿圈)排变速器的一例,输入输出锁止端为第五类组合。特征包括采用的行星排、行星排结构、输入输出锁止端和各制动器等。
采用的行星排是:本实施例采用三排行星排,一排完整双层星行星排和二排同种中心轮(内齿圈)排。使三排行星排的行星轮组数目均为2。行星轮为轴,行星架为轴承。
行星排结构是星连接行星排结构,双层星行星排的外层行星轮参与星连接。设Zq1为完 整双排内齿圈齿数,Zq2为二号同种中心轮排内齿圈齿数,Zq3为三号同种中心轮排内齿圈齿数,Zt1为完整双排太阳轮齿数,Xn为完整双排内层行星轮齿数,Xw为完整双排外层行星轮齿数,X2为二号同种中心轮排行星轮齿数,X3为三号同种中心轮排行星轮齿数。本实施例中各部件齿轮齿数确定为:Zq1=90,Zq2=90,Zq3=72,Zt1=20,Xn=20,Xw=20,X2=24,X3=23。
输入输出锁止端是:以行星架作为输入端连接动力装置,完整双排太阳轮(4)作为输出端连接动力使用设备,二号同种中心轮排内齿圈(2)、三号同种中心轮排内齿圈(3)、完整双排内齿圈(1)各作为一个锁止端各连接一个制动器(9)。参见图5。
各制动器是:本实施例采用三个制动器,各与一个锁止端连接。制动器为电磁制动器,受换档控制装置控制。
控制一个制动器制动就锁止与之连接的中心轮,该中心轮转速为零;控制一个制动器不制动就不锁止与之连接的中心轮。连接完整双排内齿圈(1)的制动器(9)制动时,传动比为-1/3.50,对应三档档位。连接二号同种中心轮排内齿圈(2)的制动器(9)制动时,传动比为-1/2.75,对应二档档位。连接三号同种中心轮排内齿圈(3)的制动器(9)制动时,传动比为-1/2.13,对应一档档位。三个制动器均不制动时,变速器为空档。本实施例变速器,传动结构简单,控制结构简单,通过控制三个制动器制动来控制档位,相邻档位之间的齿比间距近似相等,偏差小于1.5%。
实施例6:采用四排行星排的本发明完整双排同种中心轮(内齿圈)排变速器的一例,输入输出锁止端为第五类组合。特征包括采用的行星排、行星排结构、输入输出锁止端和各制动器等。
采用的行星排是:本实施例采用四排行星排,一排完整双层星行星排和三排同种中心轮(内齿圈)排。使四排行星排的行星轮组数目均为2。行星轮为轴,行星架为轴承。
行星排结构是星连接行星排结构,双层星行星排的外层行星轮参与星连接。设Zq1为完整双排内齿圈齿数,Zq2为二号同种中心轮排内齿圈齿数,Zq3为三号同种中心轮排内齿圈齿数,Zq4为四号同种中心轮排内齿圈齿数,Zt1为完整双排太阳轮齿数,Xn为完整双排内层行星轮齿数,Xw为完整双排外层行星轮齿数,X2为二号同种中心轮排行星轮齿数,X3为三号同种中心轮排行星轮齿数,X4为四号同种中心轮排行星轮齿数。本实施例中各部件齿轮齿数确定为:Zq1=90,Zq2=90,Zq3=72,Zq4=64,Zt1=20,Xn=20,Xw=20,X2=24,X3=23,X4=24。
输入输出锁止端是:以行星架作为输入端连接动力装置,完整双排太阳轮(5)作为输出端连接动力使用设备,二号同种中心轮排内齿圈(2)、三号同种中心轮排内齿圈(3)、四号同种中心轮排内齿圈(4)、完整双排内齿圈(1)各作为一个锁止端各连接一个制动器(11)。参见图6。
各制动器是:本实施例采用四个制动器,各与一个锁止端连接。制动器为电磁制动器,受换档控制装置控制。
控制一个制动器制动就锁止与之连接的中心轮,该中心轮转速为零;控制一个制动器不制动就不锁止与之连接的中心轮。连接完整双排内齿圈(1)的制动器(11)制动时,传动比为-1/3.50,对应四档档位。连接二号同种中心轮排内齿圈(2)的制动器(11)制动时,传动比为-1/2.75,对应三档档位。连接三号同种中心轮排内齿圈(3)的制动器(11)制动时,传动比为-1/2.130,对应二档档位。连接四号同种中心轮排内齿圈(4)的制动器(11)制动时,传动比为-1/1.667,对应一档档位。四个制动器均不制动时,变速器为空档。本实施例传动结构简单,控制结构简单,通过控制四个制动器制动来控制档位,相邻档位之间的齿比间距近似相等,偏差小于1.5%。本实施例的逆变速器以行星架作为输出端,完整双排太阳轮作为输入端,二号同种中心轮排内齿圈、三号同种中心轮排内齿圈、四号同种中心轮排内齿圈、完整双排内齿圈各作为一个锁止端;一档至四档四个档位的传动比分别为-3.5、-2.75、-2.130、-1.667。
实施例7:采用二排行星排的本发明完整双排同种中心轮(内齿圈)排变速器的一例,输入输出锁止端为第六类组合。特征包括采用的行星排、行星排结构、输入输出锁止端和各制动器等。
采用的行星排是:本实施例采用二排行星排,一排完整双层星行星排和一排同种中心轮(内齿圈)排。使二排行星排的行星轮组数目均为2。行星轮为轴承,行星架为轴。
行星排结构是星连接行星排结构,双层星行星排的内层行星轮参与星连接。设Zq1为完整双排内齿圈齿数,Zq2为同种中心轮排内齿圈齿数,Zt1为完整双排太阳轮齿数,Xn为完整双排内层行星轮齿数,Xw为完整双排外层行星轮齿数,X2为同种中心轮排行星轮齿数。本实施例中各部件齿轮齿数确定为:Zq1=128,Zq2=108,Zt1=16,Xn=16,Xw=40,X2=18。
输入输出锁止端是:以行星架作为输入端连接动力装置,完整双排太阳轮(3)作为输出端连接动力使用设备,同种中心轮排内齿圈(2)、完整双排内齿圈(1)各作为一个锁止端各连接一个制动器(7)。参见图7。
各制动器是:本实施例采用二个制动器,各与一个锁止端连接。制动器为电磁制动器,受换档控制装置控制。
控制一个制动器制动就锁止与之连接的中心轮,该中心轮转速为零;控制一个制动器不制动就不锁止与之连接的中心轮。连接完整双排内齿圈(1)的制动器(7)制动时,传动比为-1/7.0,对应倒一档档位。连接同种中心轮排内齿圈(2)的制动器(7)制动时,传动比为1/7.0,对应正一档档位。二个制动器均不制动时,变速器为空档。本实施例变速器,传动结 构简单,控制结构简单,通过控制两个制动器制动来控制档位。
实施例8:采用三排行星排的本发明完整双排同种中心轮(内齿圈)排变速器的一例,输入输出锁止端为第六类组合。特征包括采用的行星排、行星排结构、输入输出锁止端和各制动器等。
采用的行星排是:本实施例采用三排行星排,一排完整双层星行星排和二排同种中心轮(内齿圈)排。使三排行星排的行星轮组数目均为2。行星轮为轴,行星架为轴承。
行星排结构是星连接行星排结构,双层星行星排的内层行星轮参与星连接。设Zq1为完整双排内齿圈齿数,Zq2为二号同种中心轮排内齿圈齿数,Zq3为三号同种中心轮排内齿圈齿数,Zt1为完整双排太阳轮齿数,Xn为完整双排内层行星轮齿数,Xw为完整双排外层行星轮齿数,X2为二号同种中心轮排行星轮齿数,X3为三号同种中心轮排行星轮齿数。本实施例中各部件齿轮齿数确定为:Zq1=128,Zq2=108,Zq3=80,Zt1=16,Xn=16,Xw=40,X2=18,X3=18。
输入输出锁止端是:以行星架作为输入端连接动力装置,完整双排太阳轮(4)作为输出端连接动力使用设备,二号同种中心轮排内齿圈(2)、三号同种中心轮排内齿圈(3)、完整双排内齿圈(1)各作为一个锁止端各连接一个制动器(9)。参见图8。
各制动器是:本实施例采用三个制动器,各与一个锁止端连接。制动器为电磁制动器,受换档控制装置控制。
控制一个制动器制动就锁止与之连接的中心轮,该中心轮转速为零;控制一个制动器不制动就不锁止与之连接的中心轮。连接完整双排内齿圈(1)的制动器(9)制动时,传动比为-1/7.0。连接二号同种中心轮排内齿圈(2)的制动器(9)制动时,传动比为1/7.0。连接三号同种中心轮排内齿圈(3)的制动器(9)制动时,传动比为1/5.444。三个制动器均不制动时,变速器为空档。本实施例传动结构简单,控制结构简单,通过控制三个制动器制动来控制档位。本实施例的逆变速器以行星架作为输出端,完整双排太阳轮作为输入端,二号同种中心轮排内齿圈、三号同种中心轮排内齿圈、完整双排内齿圈各作为一个锁止端;其倒档传动比-7.0,一档传动比7.0,二档传动比5.444。
实施例9:采用四排行星排的本发明完整双排同种中心轮(内齿圈)排变速器的一例,输入输出锁止端为第六类组合。特征包括采用的行星排、行星排结构、输入输出锁止端和各制动器等。
采用的行星排是:本实施例采用四排行星排,一排完整双层星行星排和三排同种中心轮(内齿圈)排。使四排行星排的行星轮组数目均为2。行星轮为轴,行星架为轴承。
行星排结构是星连接行星排结构,双层星行星排的内层行星轮参与星连接。设Zq1为完整双排内齿圈齿数,Zq2为二号同种中心轮排内齿圈齿数,Zq3为三号同种中心轮排内齿圈齿 数,Zq4为四号同种中心轮排内齿圈齿数,Zt1为完整双排太阳轮齿数,Xn为完整双排内层行星轮齿数,Xw为完整双排外层行星轮齿数,X2为二号同种中心轮排行星轮齿数,X3为三号同种中心轮排行星轮齿数,X4为四号同种中心轮排行星轮齿数。本实施例中各部件齿轮齿数确定为:Zq1=128,Zq2=108,Zq3=80,Zq4=72,Zt1=16,Xn=16,Xw=40,X2=18,X3=18,X4=22。
输入输出锁止端是:以行星架作为输入端连接动力装置,完整双排太阳轮(5)作为输出端连接动力使用设备,二号同种中心轮排内齿圈(2)、三号同种中心轮排内齿圈(3)、四号同种中心轮排内齿圈(4)、完整双排内齿圈(1)各作为一个锁止端各连接一个制动器(11)。参见图9。
各制动器是:本实施例采用四个制动器,各与一个锁止端连接。制动器为电磁制动器,受换档控制装置控制。
控制一个制动器制动就锁止与之连接的中心轮,该中心轮转速为零;控制一个制动器不制动就不锁止与之连接的中心轮。连接完整双排内齿圈(1)的制动器(11)制动时,传动比为-1/7.0。连接二号同种中心轮排内齿圈(2)的制动器(11)制动时,传动比为1/7.0。连接三号同种中心轮排内齿圈(3)的制动器(11)制动时,传动比为1/5.444。连接四号同种中心轮排内齿圈(4)的制动器(11)制动时,传动比为1/4.273。四个制动器均不制动时,变速器为空档。本实施例传动结构简单,控制结构简单,通过控制四个制动器制动来控制档位。本实施例的逆变速器以行星架作为输出端,完整双排太阳轮作为输入端,二号同种中心轮排内齿圈、三号同种中心轮排内齿圈、四号同种中心轮排内齿圈、完整双排内齿圈各作为一个锁止端;其倒档传动比-7.0,一档传动比7.0,二档传动比5.444,三档传动比4.272,相邻档位之间的齿比间距近似相等,偏差小于1%。
实施例10:采用二排行星排的本发明完整双排同种中心轮(太阳轮)排变速器的一例,输入输出锁止端为第一类组合。特征包括采用的行星排、行星排结构、输入输出锁止端和各制动器等。
采用的行星排是:本实施例采用二排行星排,一排完整双层星行星排和一排同种中心轮(太阳轮)排。使二排行星排的行星轮组数目均为2。行星轮为轴承,行星架为轴。
行星排结构是星连接行星排结构,双层星行星排的内层行星轮参与星连接。设Zq1为完整双排内齿圈齿数,Zt1为完整双排太阳轮齿数,设Zt2为同种中心轮排太阳轮齿数,Xn为完整双排内层行星轮齿数,Xw为完整双排外层行星轮齿数,X2为同种中心轮排行星轮齿数。本实施例中各部件齿轮齿数确定为:Zt1=48,Zt2=68,Zq1=92,Xn=17,Xw=17,X2=17。
输入输出锁止端是:以行星架作为输入端连接动力装置,完整双排太阳轮(1)作为输出 端连接动力使用设备,同种中心轮排太阳轮(2)、完整双排内齿圈(3)各作为一个锁止端各连接一个制动器(7)。这些连接是通过套筒轴实现的,参见图10。
各制动器是:本实施例采用二个制动器,各与一个锁止端连接。制动器为电磁制动器,受换档控制装置控制。
控制一个制动器制动就锁止与之连接的中心轮,该中心轮转速为零;控制一个制动器不制动就不锁止与之连接的中心轮。连接完整双排内齿圈(3)的制动器(7)制动时,传动比为-1.091,对应二档档位。连接同种中心轮排太阳轮(2)的制动器(7)制动时,传动比为-2.40,对应一档档位。二个制动器均不制动时,变速器为空档。本实施例二档变速器,传动结构简单,控制结构简单,通过控制两个制动器制动来控制档位。
实施例11:采用三排行星排的本发明完整双排同种中心轮(太阳轮)排变速器的一例,输入输出锁止端为第一类组合。特征包括采用的行星排、行星排结构、输入输出锁止端和各制动器等。
采用的行星排是:本实施例采用三排行星排,一排完整双层星行星排和二排同种中心轮(太阳轮)排。使三排行星排的行星轮组数目均为2。行星轮为轴,行星架为轴承
行星排结构是星连接行星排结构,双层星行星排的内层行星轮参与星连接。设Zq1为完整双排内齿圈齿数,Zt1为完整双排太阳轮齿数,设Zt2为二号同种中心轮排太阳轮齿数,Zt3为三号同种中心轮排太阳轮齿数,Xn为完整双排内层行星轮齿数,Xw为完整双排外层行星轮齿数,X2为二号同种中心轮排行星轮齿数,X3为三号同种中心轮排行星轮齿数。本实施例中各部件齿轮齿数确定为:Zt1=48,Zt2=82,Zt3=74,Zq1=92,Xn=17,Xw=17,X2=17,X3=17。
输入输出锁止端是:以行星架作为输入端连接动力装置,完整双排太阳轮(1)作为输出端连接动力使用设备,二号同种中心轮排太阳轮(2)、三号同种中心轮排太阳轮(3)、完整双排内齿圈(4)各作为一个锁止端各连接一个制动器(9)。这些连接是通过多层套筒轴实现的,参见图11。
各制动器是:本实施例采用三个制动器,各与一个锁止端连接。制动器为电磁制动器,受换档控制装置控制。
控制一个制动器制动就锁止与之连接的中心轮,该中心轮转速为零;控制一个制动器不制动就不锁止与之连接的中心轮。连接完整双排内齿圈(4)的制动器(9)制动时,传动比为-1.091,对应三档档位。连接二号同种中心轮排太阳轮(2)的制动器(9)制动时,传动比为-1.412,对应二档档位。连接三号同种中心轮排太阳轮(3)的制动器(9)制动时,传动比为-1.846,对应一档档位。三个制动器均不制动时,变速器为空档。本实施例变速器,传动结构简单,控制结构简单,通过控制三个制动器制动来控制档位,相邻档位之间的齿比 间距近似相等,偏差小于1%。
实施例12:采用四排行星排的本发明完整双排同种中心轮(太阳轮)排变速器的一例,输入输出锁止端为第一类组合。特征包括采用的行星排、行星排结构、输入输出锁止端和各制动器等。
采用的行星排是:本实施例采用四排行星排,一排完整双层星行星排和三排同种中心轮(太阳轮)排。使四排行星排的行星轮组数目均为2。行星轮为轴,行星架为轴承。
行星排结构是星连接行星排结构,双层星行星排的内层行星轮参与星连接。设Zq1为完整双排内齿圈齿数,Zt1为完整双排太阳轮齿数,设Zt2为二号同种中心轮排太阳轮齿数,Zt3为三号同种中心轮排太阳轮齿数,Zt4为四号同种中心轮排太阳轮齿数,Xn为完整双排内层行星轮齿数,Xw为完整双排外层行星轮齿数,X2为二号同种中心轮排行星轮齿数,X3为三号同种中心轮排行星轮齿数,X4为四号同种中心轮排行星轮齿数。本实施例中各部件齿轮齿数确定为:Zt1=48,Zt2=82,Zt3=74,Zt4=22,Zq1=92,Xn=17,Xw=17,X2=17,X3=17,X4=17。
输入输出锁止端是:以行星架作为输入端连接动力装置,完整双排太阳轮(1)作为输出端连接动力使用设备,二号同种中心轮排太阳轮(2)、三号同种中心轮排太阳轮(3)、四号同种中心轮排太阳轮(4)、完整双排内齿圈(5)各作为一个锁止端各连接一个制动器(11)。这些连接是通过多层套筒轴实现的,参见图12。
各制动器是:本实施例采用四个制动器,各与一个锁止端连接。制动器为电磁制动器,受换档控制装置控制。
控制一个制动器制动就锁止与之连接的中心轮,该中心轮转速为零;控制一个制动器不制动就不锁止与之连接的中心轮。连接完整双排内齿圈(5)的制动器(11)制动时,传动比为-1.091,对应正三档档位。连接二号同种中心轮排太阳轮(2)的制动器(11)制动时,传动比为-1.412,对应正二档档位。连接三号同种中心轮排太阳轮(3)的制动器(11)制动时,传动比为-1.846对应正一档档位。连接四号同种中心轮排太阳轮(4)的制动器(11)制动时,传动比为1.846,对应倒档档位。四个制动器均不制动时,变速器为空档。本实施例正三档倒一档变速器,传动结构简单,控制结构简单,通过控制四个制动器制动来控制档位。
实施例13:采用二排行星排的本发明完整双排同种中心轮(太阳轮)排变速器的一例,输入输出锁止端为第二类组合。特征包括采用的行星排、行星排结构、输入输出锁止端和各制动器等。
采用的行星排是:本实施例采用二排行星排,一排完整双层星行星排和一排同种中心轮(太阳轮)排。使二排行星排的行星轮组数目均为2。行星轮为轴承,行星架为轴。
行星排结构是星连接行星排结构,双层星行星排的内层行星轮参与星连接。设Zq1为完整双排内齿圈齿数,Zt1为完整双排太阳轮齿数,设Zt2为同种中心轮排太阳轮齿数,Xn为完整双排内层行星轮齿数,Xw为完整双排外层行星轮齿数,X2为同种中心轮排行星轮齿数。本实施例中各部件齿轮齿数确定为:Zt1=16,Zt2=44,Zq1=112,Xn=31,Xw=17,X2=41。
输入输出锁止端是:以行星架作为输入端连接动力装置,完整双排内齿圈(3)作为输出端连接动力使用设备,同种中心轮排太阳轮(2)、完整双排太阳轮(1)各作为一个锁止端各连接一个制动器(7)。这些连接是通过多层套筒轴实现的,参见图13。
各制动器是:本实施例采用二个制动器,各与一个锁止端连接。制动器为电磁制动器,受换档控制装置控制。
控制一个制动器制动就锁止与之连接的中心轮,该中心轮转速为零;控制一个制动器不制动就不锁止与之连接的中心轮。连接完整双排太阳轮(1)的制动器(7)制动时,传动比为1.167,对应二档档位。连接同种中心轮排太阳轮(2)的制动器(7)制动时,传动比为1.423,对应一档档位。二个制动器均不制动时,变速器为空档。本实施例变速器,传动结构简单,控制结构简单,通过控制两个制动器制动来控制档位。
实施例14:采用三排行星排的本发明完整双排同种中心轮(太阳轮)排变速器的一例,输入输出锁止端为第二类组合。特征包括采用的行星排、行星排结构、输入输出锁止端和各制动器等。
采用的行星排是:本实施例采用三排行星排,一排完整双层星行星排和二排同种中心轮(太阳轮)排。使三排行星排的行星轮组数目均为2。行星轮为轴,行星架为轴承。
行星排结构是星连接行星排结构,双层星行星排的内层行星轮参与星连接。设Zq1为完整双排内齿圈齿数,Zt1为完整双排太阳轮齿数,设Zt2为二号同种中心轮排太阳轮齿数,Zt3为三号同种中心轮排太阳轮齿数,Xn为完整双排内层行星轮齿数,Xw为完整双排外层行星轮齿数,X2为二号同种中心轮排行星轮齿数,X3为三号同种中心轮排行星轮齿数。本实施例中各部件齿轮齿数确定为:Zt1=16,Zt2=44,Zt3=40,Zq1=112,Xn=31,Xw=17,X2=41,X3=26。
输入输出锁止端是:以行星架作为输入端连接动力装置,完整双排内齿圈(4)作为输出端连接动力使用设备,二号同种中心轮排太阳轮(2)、三号同种中心轮排太阳轮(3)、完整双排太阳轮(1)各作为一个锁止端各连接一个制动器(9)。这些连接是通过多层套筒轴实现的,参见图14。
各制动器是:本实施例采用三个制动器,各与一个锁止端连接。制动器为电磁制动器,受换档控制装置控制。
控制一个制动器制动就锁止与之连接的中心轮,该中心轮转速为零;控制一个制动器不制动就不锁止与之连接的中心轮。连接完整双排太阳轮(1)的制动器(11)制动时,传动比为1.167,对应三档档位。连接二号同种中心轮排太阳轮(2)的制动器(11)制动时,传动比为1.423,对应二档档位。连接三号同种中心轮排太阳轮(3)的制动器(11)制动时,传动比为1.742,对应一档档位。三个制动器均不制动时,变速器为空档。本实施例变速器,传动结构简单,控制结构简单,通过控制三个制动器制动来控制档位,相邻档位之间的齿比间距近似相等,偏差小于0.5%。
实施例15:采用四排行星排的本发明完整双排同种中心轮(太阳轮)排变速器的一例,输入输出锁止端为第二类组合。特征包括采用的行星排、行星排结构、输入输出锁止端和各制动器等。
采用的行星排是:本实施例采用四排行星排,一排完整双层星行星排和三排同种中心轮(太阳轮)排。使四排行星排的行星轮组数目均为2。行星轮为轴,行星架为轴承。
行星排结构是星连接行星排结构,双层星行星排的内层行星轮参与星连接。设Zq1为完整双排内齿圈齿数,Zt1为完整双排太阳轮齿数,设Zt2为二号同种中心轮排太阳轮齿数,Zt3为三号同种中心轮排太阳轮齿数,Zt4为四号同种中心轮排太阳轮齿数,Xn为完整双排内层行星轮齿数,Xw为完整双排外层行星轮齿数,X2为二号同种中心轮排行星轮齿数,X3为三号同种中心轮排行星轮齿数,X4为四号同种中心轮排行星轮齿数。本实施例中各部件齿轮齿数确定为:Zt1=16,Zt2=44,Zt3=40,Zt4=42,Zq1=112,Xn=31,Xw=17,X2=41,X3=26,X4=22。
输入输出锁止端是:以行星架作为输入端连接动力装置,完整双排内齿圈(5)作为输出端连接动力使用设备,二号同种中心轮排太阳轮(2)、三号同种中心轮排太阳轮(3)、四号同种中心轮排太阳轮(4)、完整双排太阳轮(1)各作为一个锁止端各连接一个制动器(11)。这些连接是通过多层套筒轴实现的,参见图15。
各制动器是:本实施例采用四个制动器,各与一个锁止端连接。制动器为电磁制动器,受换档控制装置控制。
控制一个制动器制动就锁止与之连接的中心轮,该中心轮转速为零;控制一个制动器不制动就不锁止与之连接的中心轮。连接完整双排太阳轮(1)的制动器(13)制动时,传动比为1.167,对应四档档位。连接二号同种中心轮排太阳轮(2)的制动器(13)制动时,传动比为1.423,对应三档档位。连接三号同种中心轮排太阳轮(3)的制动器(13)制动时,传动比为1.742,对应二档档位。连接四号同种中心轮排太阳轮(4)的制动器(13)制动时,传动比为2.120,对应一档档位。四个制动器均不制动时,变速器为空档。本实施例变速器, 传动结构简单,控制结构简单,通过控制四个制动器制动来控制档位,相邻档位之间的齿比间距近似相等,偏差小于0.6%。
实施例16:采用二排行星排的本发明完整双排同种中心轮(太阳轮)排变速器的一例,输入输出锁止端为第三类组合。特征包括采用的行星排、行星排结构、输入输出锁止端和各制动器等。
采用的行星排是:本实施例采用二排行星排,一排完整双层星行星排和一排同种中心轮(太阳轮)排。使二排行星排的行星轮组数目均为2。行星轮为轴承,行星架为轴。
行星排结构是星连接行星排结构,双层星行星排的外层行星轮参与星连接。设Zq1为完整双排内齿圈齿数,Zt1为完整双排太阳轮齿数,设Zt2为同种中心轮排太阳轮齿数,Xn为完整双排内层行星轮齿数,Xw为完整双排外层行星轮齿数,X2为同种中心轮排行星轮齿数。本实施例中各部件齿轮齿数确定为:Zt1=20,Zt2=70,Zq1=80,Xn=20,Xw=20,X2=19。
输入输出锁止端是:以行星架作为输入端连接动力装置,完整双排内齿圈(3)作为输出端连接动力使用设备,同种中心轮排太阳轮(2)、完整双排太阳轮(1)各连接一个制动器(7)。这些连接是通过多层套筒轴实现的,参见图16。
各制动器是:本实施例采用二个制动器,各与一个锁止端连接。制动器为电磁制动器,受换档控制装置控制。
控制一个制动器制动就锁止与之连接的中心轮,该中心轮转速为零;控制一个制动器不制动就不锁止与之连接的中心轮。连接完整双排太阳轮(1)的制动器(7)制动时,传动比为1.333,对应一档档位。连接同种中心轮排太阳轮(2)的制动器(7)制动时,传动比为0.521,对应二档档位。二个制动器均不制动时,变速器为空档。本实施例变速器,传动结构简单,控制结构简单,通过控制两个制动器制动来控制档位。
实施例17:采用三排行星排的本发明完整双排同种中心轮(太阳轮)排变速器的一例,输入输出锁止端为第三类组合。特征包括采用的行星排、行星排结构、输入输出锁止端和各制动器等。
采用的行星排是:本实施例采用三排行星排,一排完整双层星行星排和二排同种中心轮(太阳轮)排。使三排行星排的行星轮组数目均为2。行星轮为轴,行星架为轴承。
行星排结构是星连接行星排结构,双层星行星排的外层行星轮参与星连接。设Zq1为完整双排内齿圈齿数,Zt1为完整双排太阳轮齿数,设Zt2为二号同种中心轮排太阳轮齿数,Zt3为三号同种中心轮排太阳轮齿数,Xn为完整双排内层行星轮齿数,Xw为完整双排外层行星轮齿数,X2为二号同种中心轮排行星轮齿数,X3为三号同种中心轮排行星轮齿数。本实施例中各部件齿轮齿数确定为:Zt1=20,Zt2=20,Zt3=70,Zq1=80,Xn=20,Xw=20,X2=25,X3=19。
输入输出锁止端是:以行星架作为输入端连接动力装置,完整双排内齿圈(4)作为输出端连接动力使用设备,二号同种中心轮排太阳轮(2)、三号同种中心轮排太阳轮(3)、完整双排太阳轮(1)各作为一个锁止端各连接一个制动器(9)。这些连接是通过多层套筒轴实现的,参见图17。
各制动器是:本实施例采用三个制动器,各与一个锁止端连接。制动器为电磁制动器,受换档控制装置控制。
控制一个制动器制动就锁止与之连接的中心轮,该中心轮转速为零;控制一个制动器不制动就不锁止与之连接的中心轮。连接完整双排太阳轮(1)的制动器(9)制动时,传动比为1.333,对应一档档位。连接二号同种中心轮排太阳轮(2)的制动器(9)制动时,传动比为0.833,对应二档档位。连接三号同种中心轮排太阳轮(3)的制动器(9)制动时,传动比为0.521,对应三档档位。三个制动器均不制动时,变速器为空档。本实施例变速器,传动结构简单,控制结构简单,通过控制三个制动器制动来控制档位,相邻档位之间的齿比间距近似相等,偏差小于0.1%。
实施例18:采用四排行星排的本发明完整双排同种中心轮(太阳轮)排变速器的一例,输入输出锁止端为第三类组合。特征包括采用的行星排、行星排结构、输入输出锁止端和各制动器等。
采用的行星排是:本实施例采用四排行星排,一排完整双层星行星排和三排同种中心轮(太阳轮)排。使四排行星排的行星轮组数目均为2。行星轮为轴,行星架为轴承。
行星排结构是星连接行星排结构,双层星行星排的外层行星轮参与星连接。设Zq1为完整双排内齿圈齿数,Zt1为完整双排太阳轮齿数,设Zt2为二号同种中心轮排太阳轮齿数,Zt3为三号同种中心轮排太阳轮齿数,Zt4为四号同种中心轮排太阳轮齿数,Xn为完整双排内层行星轮齿数,Xw为完整双排外层行星轮齿数,X2为二号同种中心轮排行星轮齿数,X3为三号同种中心轮排行星轮齿数,X4为四号同种中心轮排行星轮齿数。本实施例中各部件齿轮齿数确定为:Zt1=20,Zt2=20,Zt3=70,Zt4=116,Zq1=80,Xn=20,Xw=20,X2=25,X3=19,X4=14。
输入输出锁止端是:以行星架作为输入端连接动力装置,完整双排内齿圈(5)作为输出端连接动力使用设备,二号同种中心轮排太阳轮(2)、三号同种中心轮排太阳轮(3)、四号同种中心轮排太阳轮(4)、完整双排太阳轮(1)各作为一个锁止端各连接一个制动器(11)。这些连接是通过多层套筒轴实现的,参见图18。
各制动器是:本实施例采用四个制动器,各与一个锁止端连接。制动器为电磁制动器,受换档控制装置控制。
控制一个制动器制动就锁止与之连接的中心轮,该中心轮转速为零;控制一个制动器不制动就不锁止与之连接的中心轮。连接完整双排太阳轮(1)的制动器(11)制动时,传动比为1.333,对应一档档位。连接二号同种中心轮排太阳轮(2)的制动器(11)制动时,传动比为0.833,对应二档档位。连接三号同种中心轮排太阳轮(3)的制动器(11)制动时,传动比为0.521,对应三档档位。连接四号同种中心轮排太阳轮(4)的制动器(11)制动时,传动比为0.326,对应四档档位。四个制动器均不制动时,变速器为空档。本实施例变速器,传动结构简单,控制结构简单,通过控制四个制动器制动来控制档位,相邻档位之间的齿比间距近似相等,偏差小于1%。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,在不脱离本发明精神和范围的前提下本发明还会有各种变化与改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求及同等物界定。

Claims (3)

  1. 完整双排同种中心轮排变速器,特征包括采用的行星排、行星排结构、输入输出锁止端、各制动器等几个方面,各方面特征是:
    采用的行星排是:本发明采用不少于二排行星排,其中一排行星排是完整双层星行星排,其余行星排是同种中心轮排,所述同种中心轮行星排包括同种中心轮(太阳轮)行星排、同种中心轮(内齿圈)行星排这两种,同一种中心轮均是太阳轮的各行星排称为同种中心轮(太阳轮)行星排,同一种中心轮均是内齿圈的各行星排称为同种中心轮(内齿圈)行星排,本发明在一个变速器中选取采用其中一种来与一个完整双层星行星排组成变速器,选取同种中心轮(太阳轮)行星排与一个完整双层星行星排就组成完整双排同种中心轮(太阳轮)行星排变速器,选取同种中心轮(内齿圈)行星排与一个完整双层星行星排就组成完整双排同种中心轮(内齿圈)行星排变速器;
    行星排结构是星连接行星排结构,所述星连接行星排结构即:对多排行星排,设置它们的行星轮组数目相同,调整各行星排尺寸大小,直至各行星排中行星轮轴线到行星排中心轴线的距离都相等,把行星排中某层行星轮与相邻行星排的行星轮轴线对齐并分组相连接,这样的连接称为星连接,这样的行星排结构就是星连接行星排结构,对双层星行星排,参与星连接的行星轮有两种情况,第一种情况参与星连接的某层行星轮是外层行星轮,第二种情况参与星连接的某层行星轮是内层行星轮;
    输入输出锁止端是:以行星架作为输入端连接动力装置,任取一个中心轮作为输出端连接动力使用设备,其余中心轮各作为一个锁止端各连接一个制动器,制动器受换档控制装置控制;各制动器是:本发明采用不少于二个制动器作为变速器的控制器,各与锁止端连接,制动器可受控制处于制动状态、半制动状态和非制动状态。
  2. 如权利要求1所述的完整双排同种中心轮排变速器,其运作特征是:控制一个制动器制动使与之连接的中心轮转速为零;输入端输入转速时,控制一个制动器制动,输出端必然形成一个输出转速,与输入转速构成一个确定的比例关系,变速器形成一个传动比,对应一个档位;控制另一个制动器制动,输出端必然形成另一个输出转速,与输入转速构成另一个确定的比例关系,变速器形成另一个传动比,对应另一个档位;依此类推,本发明变速器通过控制各制动器制动来控制档位;当控制一个制动器半制动时,变速器在相应的这个档位半联动;当控制各制动器均不制动时,变速器为空档;当控制两个以上制动器制动时,变速器停转。
  3. 如权利要求1所述的完整双排同种中心轮排变速器,其特征还在于:本发明变速器的逆变速器,采用的行星排不变,行星排结构不变,各制动器不变,输入输出锁止端改为:以行星架作为输出端连接动力使用设备,任取一个中心轮作为输入端连接动力装置,其余中心 轮各作为一个锁止端各连接一个制动器;其运作特征不变;本发明变速器的逆变速器也属于本发明的保护范围。
PCT/CN2020/083136 2019-04-07 2020-04-03 完整双排同种中心轮排变速器 WO2020207338A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910273885.5A CN110017355A (zh) 2019-04-07 2019-04-07 完整双排同种中心轮排变速器
CN201910273885.5 2019-04-07

Publications (1)

Publication Number Publication Date
WO2020207338A1 true WO2020207338A1 (zh) 2020-10-15

Family

ID=67190636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083136 WO2020207338A1 (zh) 2019-04-07 2020-04-03 完整双排同种中心轮排变速器

Country Status (2)

Country Link
CN (1) CN110017355A (zh)
WO (1) WO2020207338A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110017355A (zh) * 2019-04-07 2019-07-16 罗灿 完整双排同种中心轮排变速器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120009283A (ko) * 2010-07-23 2012-02-01 현대자동차주식회사 차량용 무단변속기
DE102010045350A1 (de) * 2010-09-14 2012-03-15 Schaeffler Technologies Gmbh & Co. Kg Schaltbares Planetenradgetriebe, Antriebssystem und Fahrzeug
DE102016221177A1 (de) * 2016-10-27 2018-05-03 Schaeffler Technologies AG & Co. KG Planetenradgetriebe
CN110017355A (zh) * 2019-04-07 2019-07-16 罗灿 完整双排同种中心轮排变速器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120009283A (ko) * 2010-07-23 2012-02-01 현대자동차주식회사 차량용 무단변속기
DE102010045350A1 (de) * 2010-09-14 2012-03-15 Schaeffler Technologies Gmbh & Co. Kg Schaltbares Planetenradgetriebe, Antriebssystem und Fahrzeug
DE102016221177A1 (de) * 2016-10-27 2018-05-03 Schaeffler Technologies AG & Co. KG Planetenradgetriebe
CN110017355A (zh) * 2019-04-07 2019-07-16 罗灿 完整双排同种中心轮排变速器

Also Published As

Publication number Publication date
CN110017355A (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
CN104514849B (zh) 多级变速器
US5129870A (en) Multiple-ratio automatic transmission with releasable hyperboloidal couplings
CN103423388A (zh) 多级变速器
WO2020207339A1 (zh) 完整单排同种中心轮排变速器
US9683632B2 (en) Multistage gearbox for motor vehicles
CN101280827A (zh) 八速自动变速器
CN105134893A (zh) 具有中间轴的多速变速器
CN109630626B (zh) 一种八前八倒行星变速机构
WO2020207338A1 (zh) 完整双排同种中心轮排变速器
CN106523628A (zh) 一种八挡行星自动变速器
WO2019020131A1 (zh) 变线速行星排传动机构
US8936527B2 (en) Transmission with radially stacked gear sets including annular gear
WO2020207340A1 (zh) 同种中心轮行星排变速器
CN104896041B (zh) 自动变速器
CN203431108U (zh) 复合式行星齿轮组变速箱
CN104964006A (zh) 八档汽车自动变速器
CN104033543A (zh) 多级变速器
CN108131428A (zh) 一种六挡行星自动变速器
CN103671767A (zh) 多级变速器及操作方法
WO2019228265A1 (zh) 变线速减速离合器
CN107489744A (zh) 多离合变速器
CN104006120A (zh) 一种多挡自动变速器
WO2019085880A1 (zh) 星连接多排制动变速器
CN204828513U (zh) 八档汽车自动变速器
CN207261588U (zh) 一种用于自动变速箱的七档电控机械式行星自动变速器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20787708

Country of ref document: EP

Kind code of ref document: A1