WO2020207304A1 - 通信方法与设备 - Google Patents

通信方法与设备 Download PDF

Info

Publication number
WO2020207304A1
WO2020207304A1 PCT/CN2020/082629 CN2020082629W WO2020207304A1 WO 2020207304 A1 WO2020207304 A1 WO 2020207304A1 CN 2020082629 W CN2020082629 W CN 2020082629W WO 2020207304 A1 WO2020207304 A1 WO 2020207304A1
Authority
WO
WIPO (PCT)
Prior art keywords
data rate
integrity protection
protection data
terminal device
configuration information
Prior art date
Application number
PCT/CN2020/082629
Other languages
English (en)
French (fr)
Inventor
张向东
李�赫
常俊仁
曾清海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020207304A1 publication Critical patent/WO2020207304A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/12Applying verification of the received information
    • H04L63/123Applying verification of the received information received data contents, e.g. message integrity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/04Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
    • H04L63/0428Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • H04L67/141Setup of application sessions

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a communication method and device.
  • the purpose of the integrity protection function in the LTE network is to prevent user data from being tampered with. Once the receiver finds that the integrity check fails, it can trigger the update process of the encryption and decryption keys. , Use the new key to protect user data.
  • the terminal device sends a session establishment request to the network side device.
  • the session establishment request carries the integrity protection data rate value of the terminal device itself.
  • the network side device judges the terminal device according to the integrity protection requirements of the service. Whether the data rate value of integrity protection can meet the requirements of the service, so as to determine whether to support service-related session establishment. It can be seen that the maximum integrity protection data rate value supported by each terminal device is determined and reported by the device itself, and the network participation is insufficient and inflexible, and the efficiency of session establishment is also low.
  • the present application provides a communication method and equipment, which strengthens network participation and improves the flexibility of network configuration.
  • this application provides a communication method, including:
  • the terminal device receives the integrity protection configuration information sent by the network side device; the configuration information includes one or more integrity protection data rate values;
  • the terminal device sends the first integrity protection data rate value to the network side device.
  • the network can flexibly configure the integrity protection configuration information as required, and one or more integrity protection data rate values contained in the configuration information, which strengthens network participation and improves flexibility.
  • the configuration information includes an integrity protection data rate value list, and the terminal device determines the first integrity protection data rate value according to the configuration information ,include:
  • the terminal device obtains one or more integrity protection data rate values according to the integrity protection data rate value list;
  • the terminal device determines the first integrity protection data rate value according to the acquired one or more integrity protection data rate values.
  • the integrity protection data rate value list in the configuration information includes one or more integrity protection data rate values, and a serial number corresponding to each integrity protection data rate value.
  • the terminal device may send the first integrity protection data rate value to the network side device, or send the number corresponding to the first integrity protection data rate value to the network side device.
  • the configuration information includes the maximum value and step size of the integrity protection data rate, or the minimum value and step size of the integrity protection data rate, so
  • the terminal device determining the first integrity protection data rate value according to the configuration information includes:
  • the terminal device obtains one or more integrity protection data rate values according to the maximum value and the step size of the integrity protection data rate; or, the terminal device obtains one or more integrity protection data rate values according to the minimum value and the step size of the integrity protection data rate.
  • An integrity protection data rate value is
  • the terminal device determines the first integrity protection data rate value according to the acquired one or more integrity protection data rate values.
  • the above configuration information includes an integrity protection data rate value, that is, the maximum or minimum value of the integrity protection data rate.
  • the terminal device can obtain the data rate value list for integrity protection according to the maximum value or the minimum value and the step size.
  • the foregoing configuration method reduces the size of the integrity protection configuration information, and the configuration information sent by the network side device occupies less network resources.
  • the configuration information includes group information of integrity protection data rate values, and the group information is used to indicate one or more integrity protection data rate groups
  • One of the integrity protection data rate groups includes one or more integrity protection data rate values
  • the terminal device determines the first integrity protection data rate value according to the configuration information, including:
  • the terminal device obtains one or more integrity protection data rate values according to the group information
  • the terminal device determines the first integrity protection data rate value according to the acquired one or more integrity protection data rate values.
  • the above configuration information includes group information of an integrity protection data rate value list, that is, grouping multiple integrity protection data rate values in the data rate list to determine the integrity protection data rate value corresponding to each group.
  • the network side device may deliver multiple integrity data rate values in the data rate value list in the form of packets.
  • the sending of the first integrity protection data rate value by the terminal device to the network side device includes:
  • the terminal device sends the group number and the group number corresponding to the first integrity protection data rate value to the network side device.
  • the aforementioned sending mode of the terminal device occupies less network resources.
  • the method further includes:
  • the terminal device receives the update information of the configuration information sent by the network side device.
  • the update of the configuration information makes the first integrity protection data rate value re-determined by the terminal device according to the updated configuration information more accurate.
  • the configuration information further includes integrity protection data rate thresholds corresponding to different characteristics; the method further includes:
  • the terminal device determines whether to initiate a session establishment request according to the integrity protection data rate thresholds corresponding to different features in the configuration information.
  • the features included in the configuration information may be service type, UE type, UE capability information, or other possible features.
  • the configuration information includes integrity protection data rate thresholds corresponding to different service types. After determining its own integrity protection data rate capability value, the terminal device directly compares its own capability value with the service type required by the session The size of the corresponding integrity protection data rate threshold determines whether to initiate a session establishment request, thereby avoiding unnecessary session establishment procedures and releasing network resources occupied by the session establishment procedures.
  • the configuration information includes the integrity protection data rate thresholds corresponding to different UE types. After determining the integrity protection data rate capability value of the terminal device, it directly compares its capability value with the UE type required by the session. The size of the corresponding integrity protection data rate threshold determines whether to initiate a session establishment request, thereby avoiding unnecessary session establishment procedures and releasing network resources occupied by the session establishment procedures.
  • the configuration information includes integrity protection data rate thresholds corresponding to different UE capabilities. After determining its own integrity protection data rate capability value, the terminal device directly compares its own capability value with the UE capability required by the session The size of the corresponding integrity protection data rate threshold determines whether to initiate a session establishment request, thereby avoiding unnecessary session establishment procedures and releasing network resources occupied by the session establishment procedures.
  • this application provides a communication method, including:
  • the network side device sends integrity protection configuration information to the terminal device; the configuration information includes one or more integrity protection data rate values;
  • the network side device receives a first integrity protection data rate value sent by the terminal device, where the first integrity protection data rate value is determined by the terminal device according to the configuration information.
  • the configuration information includes a data rate value list for integrity protection.
  • the configuration information includes the maximum value and the step size of the integrity protection data rate, or the minimum value and the step size of the integrity protection data rate.
  • the configuration information includes group information of integrity protection data rate values, and the group information is used to indicate one or more integrity protection data rate groups
  • One of the integrity protection data rate groups includes one or more integrity protection data rate values.
  • the network side device receives the first integrity protection data rate value sent by the terminal device includes:
  • the network side device receives the group number and the group number corresponding to the first integrity protection data rate value sent by the terminal device; the group number and the group number are based on the terminal device according to the group The information is certain.
  • the method further includes:
  • the network side device sends the update information of the configuration information to the terminal device.
  • the network side device may receive the first integrity protection data rate value sent by multiple terminal devices, and update the configuration information according to the first integrity protection data rate value sent by the multiple terminal devices.
  • the configuration information further includes integrity protection data rate thresholds corresponding to different characteristics.
  • the features included in the configuration information can be service type, UE type, UE capability information, or other possible features, which are not specifically limited in this application.
  • this application provides a terminal device, including:
  • a transceiver module configured to receive integrity protection configuration information sent by a network side device; the configuration information includes one or more integrity protection data rate values;
  • a processing module configured to determine a first integrity protection data rate value according to the configuration information
  • the transceiver module is further configured to send the first integrity protection data rate value to the network side device.
  • the configuration information includes a data rate value list for integrity protection
  • the processing module is specifically configured to:
  • the configuration information includes the maximum value and step size of the integrity protection data rate, or the minimum value and step size of the integrity protection data rate, so
  • the processing module is specifically used for:
  • the configuration information includes group information of integrity protection data rate values, and the group information is used to indicate one or more integrity protection data rate groups
  • One of the integrity protection data rate groups includes one or more integrity protection data rate values
  • the processing module is specifically configured to:
  • the transceiver module is specifically used for:
  • the transceiver module is further configured to receive update information of the configuration information sent by the network side device.
  • the configuration information further includes integrity protection data rate thresholds corresponding to different features
  • the processing module is further configured to determine whether to initiate a session establishment request according to the integrity protection data rate thresholds corresponding to different features in the configuration information.
  • this application provides a network side device, including:
  • the transceiver module is configured to send integrity protection configuration information to the terminal device; the configuration information includes one or more integrity protection data rate values;
  • the transceiver module is further configured to receive a first integrity protection data rate value sent by the terminal device, where the first integrity protection data rate value is determined by the terminal device according to the configuration information.
  • the configuration information includes a data rate value list for integrity protection.
  • the configuration information includes the maximum value and the step size of the integrity protection data rate, or the minimum value and the step size of the integrity protection data rate.
  • the configuration information includes group information of integrity protection data rate values, and the group information is used to indicate one or more integrity protection data rate groups
  • One of the integrity protection data rate groups includes one or more integrity protection data rate values.
  • the transceiver module is specifically used for:
  • the group number and the group number corresponding to the first integrity protection data rate value sent by the terminal device are determined by the terminal device according to the group information.
  • the network side device further includes a processing module; the processing module is configured to update the configuration information;
  • the transceiver module is also used to send update information of the configuration information to the terminal device.
  • the transceiver module is further configured to receive first integrity protection data rate values sent by multiple terminal devices; the processing module is specifically configured to receive first integrity protection data rate values sent by multiple terminal devices The security data rate value updates the configuration information.
  • the configuration information further includes integrity protection data rate thresholds corresponding to different characteristics.
  • the present application provides a terminal device, including: a processor, a memory, and a computer program stored on the memory and capable of running on the processor, the computer program being executed when the processor is executed The steps of the communication method as described in any one of the first aspect of the present application.
  • the present application provides a network-side device including: a processor, a memory, and a computer program stored on the memory and capable of running on the processor, and when the computer program is executed by the processor Implement the steps of the communication method as described in any one of the second aspect of the present application.
  • the present application provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps of the communication method as described in any one of the first aspect of the present application can be implemented.
  • the present application provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps of the communication method as described in any one of the second aspect of the present application can be implemented.
  • this application provides a communication system, including the terminal device described in the fifth aspect of this application and the network side device described in the sixth aspect of this application.
  • the terminal device determines the integrity protection data rate capability value to be reported to the network according to the integrity protection configuration information including one or more integrity protection data rate values pre-sent by the network side device.
  • the integrity protection data rate value is one of the integrity protection data rate values configured on the network side. Since the integrity protection configuration information is issued by the network, network participation is strengthened and flexibility is improved.
  • FIG. 1 is a system architecture diagram of a communication method provided by an embodiment of this application.
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 3 is a schematic flowchart of a communication method provided by another embodiment of this application.
  • FIG. 4 is a schematic flowchart of a communication method provided by still another embodiment of this application.
  • FIG. 5 is a schematic flowchart of a communication method provided by still another embodiment of this application.
  • FIG. 6 is a schematic flowchart of a communication method provided by still another embodiment of this application.
  • FIG. 7 is a schematic flowchart of a communication method provided by still another embodiment of this application.
  • FIG. 8 is a schematic flowchart of a communication method provided by still another embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of a terminal device provided by another embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a network side device provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of a network side device provided by another embodiment of this application.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of a communication device provided by another embodiment of this application.
  • FIG. 15 is a schematic structural diagram of a communication device provided by still another embodiment of this application.
  • LTE Long Term Evolution
  • UMTS Terrestrial Radio Access Universal Mobile Telecommunications System
  • Network UTRAN
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data Rate for GSM Evolution
  • GSM EDGE Radio Access Network GERAN
  • the function of the MME is completed by the Serving GPRS Support (SGSN) service general packet radio service (General Packet Radio Service, GPRS) support node (Serving GPRS Support, SGSN), and the function of the SGW ⁇ PGW is completed by the Gateway GPRS support node (Gateway GPRS). Support Node, GGSN) is completed.
  • SGSN Serving GPRS Support
  • GPRS General Packet Radio Service
  • Gateway GPRS Gateway GPRS support node
  • GGSN Gateway GPRS support node
  • the embodiment of the present application relates to a terminal device.
  • the terminal device may be a device that includes wireless transceiver functions and can cooperate with network devices to provide users with communication services.
  • terminal equipment may refer to User Equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication equipment, User agent or user device.
  • UE User Equipment
  • the terminal device may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), and a wireless Handheld devices with communication functions, computing devices, or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in future 5G networks or networks after 5G, etc. are not limited in the embodiments of the present application.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the embodiments of the present application also relate to network side equipment.
  • the network side device can be a device used to communicate with terminal devices.
  • it can be an access network device, such as a base station (BTS) in the GSM system or CDMA, or a base station in the WCDMA system ( NodeB, NB), it can also be an Evolutional Node B (eNB or eNodeB) in the LTE system, or the network equipment can be a relay station, an access point, an in-vehicle device, a wearable device, and the future 5G network or after 5G
  • the base station, relay station, or access point in the network can be core network equipment, such as SGSN (Serving GPRS Support Node) in the GSM system, and MME (Mobility Management Entity, mobile management entity) in the LTE system Etc.; it can also be an application server device, such as a video application server, a car networking application server, etc.
  • the network-side device involved in the embodiments of the present application may also be referred to as a radio access network (Radio Access Network, RAN) device.
  • the RAN equipment is connected to the terminal equipment and is used to receive data from the terminal equipment and send it to the core network equipment.
  • RAN equipment corresponds to different equipment in different communication systems. For example, it corresponds to base station and base station controller in 2G system, corresponds to base station and radio network controller (RNC) in 3G system, and corresponds to evolution in 4G system.
  • Evolutional Node B (eNB) corresponds to a 5G system in a 5G system, such as the access network equipment (such as gNB, CU, and DU) in the New Radio Access Technology (NR).
  • NR New Radio Access Technology
  • CN equipment corresponds to different equipment in different communication systems.
  • CN Core Network
  • CN equipment corresponds to different equipment in different communication systems.
  • a serving GPRS support node Serving GPRS Support Node, SGSN
  • a gateway GPRS support node Gateway GPRS Support Node, GGSN.
  • MME mobility management entity
  • S-GW serving gateway
  • 5G system it corresponds to a 5G system's core network related equipment (such as NG-Core).
  • FIG. 1 is a system architecture diagram of a communication method provided by an embodiment of the application.
  • the terminal device 11 and the terminal device 12 are terminal devices that reside or access to the access network device 13, and the access network device 13 is connected to the core network device 14.
  • the access network device 13 receives the data sent by the terminal device 11 and the terminal device 12, and sends the data to the core network device 14.
  • the core network device 14 prestores integrity protection configuration information, and the access network device 13 receives the integrity protection configuration information issued by the core network device, and sends the integrity protection configuration information to the terminal device 11 and the terminal device 12.
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of this application. As shown in FIG. 2, the communication method 200 provided in this embodiment includes the following steps:
  • the network side device sends integrity protection configuration information to the terminal device; the configuration information includes one or more integrity protection data rate values;
  • S202 The terminal device determines the first integrity protection data rate value according to the configuration information.
  • S203 The terminal device sends the first integrity protection data rate value to the network side device.
  • the network side device in this implementation may be a core network device or an access network device. If the network side device is a core network device, the core network device sends integrity protection configuration information to the terminal device through the access network device; if the network side device is an access network device, the access network device directly sends the integrity protection configuration information to the terminal device Protect configuration information.
  • the integrity protection configuration information in this embodiment is terminal device integrity protection (Integrity protection, IP) rate capability information pre-configured by the network side device, and the configuration information includes one or more integrity protection data rate values.
  • the terminal device determines the integrity protection data rate capability value reported to the network according to the configuration information, that is, the first integrity protection data rate value, and sends the first integrity protection data rate value to the network side device.
  • the first integrity protection data rate value reported by the terminal device and the integrity protection data rate value actually supported by the terminal device itself may be the same or different.
  • one or more integrity protection data rate values included in the pre-configuration information of the network side device are some discontinuous integrity protection data rate values. These rate values are the division of the integrity protection data rate value feedback by the network.
  • the integrity protection data rate value can be from 0Kbps to 5Gps
  • the network can divide the range from 0Kbps to 5Gps, for example, divided into: 250Kbps, 500Kbps, 1Mbps, 5Mbps, 10Mbps, 20Mbps, 40Mbps, 60Mbps, 80Mbps , 100Mbps, 120Mbps, 140Mbps, 160Mbps, 180Mbps, 200Mbps, 250Mbps, 300Mbps, 400Mbps, 600Mbps, 800Mbps, 1Gbps, 2Gbps, 3Gbps, 4Gbps, 5Gbps.
  • the network expects the UE to select a value from the above values to report.
  • the integrity protection data rate value actually supported by a terminal device itself is 300Kbps, and the data rate value is between the integrity protection data rate value of 200Kbps and 500Kbps in the configuration information.
  • the terminal device determines the first reported data rate according to the configuration information.
  • the integrity protection data rate value is 200Kbps instead of reporting 300Kbps.
  • Another terminal device actually supports the integrity protection data rate value of 350Kbps, which is between the integrity protection data rate value of 200Kbps and 500Kbps in the configuration information.
  • the terminal device determines the first integrity reported according to the configuration information.
  • the protection data rate value is also 200Kbps, instead of reporting 350Kbps.
  • the terminal device reports its own integrity protection data rate capability value based on the configuration information sent in advance by the network side device.
  • the network side device obtains the user-plane security policy, and determines whether to enable user-plane encryption protection and/or user-plane integrity protection according to the user-plane security policy. This part of the content is the prior art and will not be described here.
  • the communication method provided in this embodiment sends integrity protection configuration information including one or more integrity protection data rate values to the terminal device through the network side device; the terminal device determines the first integrity protection data rate according to the integrity protection configuration information The first integrity protection data rate value is one of the integrity data rate values configured on the network side; the terminal device sends the first integrity protection data rate value to the network side device.
  • the above communication process strengthens network participation and improves the flexibility of network configuration.
  • the following four embodiments respectively show different types of integrity protection configuration information.
  • the terminal device performs corresponding steps according to different types of integrity protection configuration information, and determines its own integrity protection data. After the rate capability value, it sends its integrity protection data rate capability value to the network side device.
  • the communication method provided by each embodiment will be described in detail below with reference to the accompanying drawings.
  • FIG. 3 is a schematic flowchart of a communication method provided by another embodiment of this application. As shown in FIG. 3, the communication method 300 provided in this embodiment includes the following steps:
  • the network side device sends integrity protection configuration information to the terminal device; the configuration information includes a data rate value list for integrity protection;
  • the terminal device obtains one or more integrity protection data rate values according to the integrity protection data rate value list;
  • the terminal device determines a first integrity protection data rate value according to the acquired one or more integrity protection data rate values.
  • the terminal device sends the first integrity protection data rate value to the network side device.
  • the integrity protection configuration information in this embodiment includes an integrity protection data rate value list, and the data rate value list includes one or more integrity protection data rate values.
  • the data rate value list includes the following integrity protection data rate values: 250Kbps, 500Kbps, 1Mbps, 5Mbps, 10Mbps, 20Mbps, 40Mbps, 60Mbps, 80Mbps, 100Mbps, 120Mbps, 140Mbps, 160Mbps, 180Mbps, 200Mbps, 250Mbps, 300Mbps, 400Mbps, 600Mbps, 800Mbps, 1Gbps, 2Gbps, 3Gbps, 4Gbps, 5Gbps.
  • the terminal device obtains one or more integrity protection data rate values according to the data rate value list.
  • the terminal device determines the position of the integrity protection data rate value supported by itself in the data rate value list according to the acquired one or more integrity protection data rate values and the integrity protection data rate value supported by itself, from the data rate value list Select the reported first integrity protection data rate value in the. Assuming that the integrity protection data rate value supported by the terminal device itself is C, one or more integrity protection data rate values obtained by the terminal device include two adjacent data rate values A and B. If C is greater than or equal to A and less than B , The terminal device selects and reports the first integrity protection data rate value as A. It can be seen that the first integrity protection data rate value reported by the terminal device is less than or equal to the integrity protection data rate value supported by the terminal device.
  • the integrity protection data rate value supported by the terminal device is 500Mbps, 500Mpbs is between 400Mbps and 600Mbps, and the first integrity protection data rate value reported is 400Mbps; the integrity protection data rate value supported by the terminal device is 250Mbps, The reported first integrity protection data rate value is also 250 Mbps.
  • the data rate value list in this embodiment further includes a serial number corresponding to each integrity protection data rate value.
  • the terminal device determines from the position of the integrity protection data rate value supported by itself in the data rate value list.
  • select the first number corresponding to the reported first integrity protection data rate value and send the first number to the network side device.
  • the network side device determines the corresponding number corresponding to the first number by querying the pre-configured data rate value list.
  • the first integrity protection data rate value reduces the occupancy rate of network resources.
  • the integrity protection configuration information sent by the network-side device to the terminal device includes an integrity protection data rate value list, and the data rate value list includes one or more integrity protection data rate values; the terminal The device determines the first integrity protection data rate value according to the acquired one or more integrity protection data rate values, and sends the first integrity protection data rate value to the network side device.
  • FIG. 4 is a schematic flowchart of a communication method provided by still another embodiment of this application. As shown in FIG. 4, the communication method 400 provided in this embodiment includes the following steps:
  • the network side device sends integrity protection configuration information to the terminal device; the configuration information includes the maximum value and step size of the integrity protection data rate;
  • the terminal device obtains one or more integrity protection data rate values according to the maximum value and the step size of the integrity protection data rate;
  • S403 The terminal device determines the first integrity protection data rate value according to the acquired one or more integrity protection data rate values.
  • S404 The terminal device sends the first integrity protection data rate value to the network side device.
  • the integrity protection configuration information in this embodiment includes the maximum value and the step size of the integrity protection data rate, and the terminal device obtains one or more integrity protection data rate values according to the maximum value and the step size of the integrity protection data rate.
  • the data rate value list for integrity protection pre-configured by the network side device includes the following integrity protection data rate values: 100Mbps, 200Mbps, 300Mbps, 400Mbps, 500Mbps, 600Mbps, 700Mbps, 800Mbps, 100Mbps, 900Mbps.
  • the integrity protection configuration information sent by the network side device to the terminal device only includes the maximum value of the integrity protection data rate of 900 Mbps and the step size of 100 Mpbs.
  • the terminal device obtains all integrity protection data rate values of the integrity protection data rate value list according to the configuration information of this embodiment.
  • the configuration information provided in this embodiment is limited to multiple integrity protection data rate values in the integrity protection data rate value list distributed at equal intervals.
  • the integrity protection configuration information sent by the network side device to the terminal device includes the maximum value and step size of the integrity protection data rate, and the terminal device obtains it according to the maximum value and step size of the integrity protection data rate.
  • One or more integrity protection data rate values determine the first integrity protection data rate value according to the acquired one or more data rate values, and send the first integrity protection data rate value to the network side device.
  • FIG. 5 is a schematic flowchart of a communication method provided by still another embodiment of this application. As shown in FIG. 5, the communication method 500 provided in this embodiment includes the following steps:
  • the network side device sends integrity protection configuration information to the terminal device; the configuration information includes the minimum value and step size of the integrity protection data rate;
  • the terminal device obtains one or more integrity protection data rate values according to the minimum value and the step size of the integrity protection data rate;
  • the terminal device determines a first integrity protection data rate value according to the acquired one or more integrity protection data rate values.
  • S504 The terminal device sends the first integrity protection data rate value to the network side device.
  • the integrity protection configuration information in this embodiment includes the minimum value and step size of the integrity protection data rate, and the terminal device obtains one or more integrity protection data rate values according to the minimum value and step size of the integrity protection data rate.
  • the data rate value list for integrity protection pre-configured by the network side device includes the following integrity protection data rate values: 100Mbps, 200Mbps, 300Mbps, 400Mbps, 500Mbps, 600Mbps, 700Mbps, 800Mbps, 100Mbps, 900Mbps....
  • the integrity protection configuration information sent by the network side device to the terminal device only includes the minimum value of the integrity protection data rate of 100 Mbps and the step size of 100 Mpbs.
  • the terminal device obtains all integrity protection data rate values of the integrity protection data rate value list according to the configuration information of this embodiment.
  • the configuration information provided in this embodiment is limited to multiple integrity protection data rate values in the integrity protection data rate value list distributed at equal intervals.
  • the integrity protection configuration information in this embodiment further includes the maximum value of the integrity protection data rate.
  • the terminal device determines multiple integrity protection data rate values pre-configured by the network side device according to the maximum and minimum values of the integrity protection data rate and the step size.
  • the integrity protection configuration information includes the maximum value of the integrity protection data rate of 900 Mbps, the minimum value of 300 Mbps and the step size of 100 Mbps, then the integrity protection data rate value list includes the following integrity protection data rate values: 300 Mbps, 400 Mbps , 500Mbps, 600Mbps, 700Mbps, 800Mbps, 100Mbps, 900Mbps.
  • the integrity protection configuration information sent by the network side device to the terminal device includes the minimum value and step size of the integrity protection data rate, and the terminal device obtains it according to the minimum value and step size of the integrity protection data rate.
  • One or more integrity protection data rate values determine the first integrity protection data rate value according to the acquired one or more data rate values, and send the first integrity protection data rate value to the network side device.
  • FIG. 6 is a schematic flowchart of a communication method provided by still another embodiment of this application. As shown in FIG. 6, the communication method 600 provided in this embodiment includes the following steps:
  • the network side device sends integrity protection configuration information to the terminal device; the configuration information includes group information of the integrity protection data rate value; the group information is used to indicate one or more integrity protection data rate groups, one of the integrity protection The data rate group contains one or more integrity protection data rate values;
  • the terminal device obtains one or more integrity protection data rate values according to the group information.
  • the terminal device determines the first integrity protection data rate value according to the acquired one or more integrity protection data rate values.
  • the terminal device sends the first integrity protection data rate value to the network side device.
  • the integrity protection configuration information provided in this embodiment includes group information of integrity protection data rate values.
  • the group information is used to indicate one or more integrity protection data rate groups, and an integrity protection data rate group includes one or more integrity protection data rate groups.
  • the integrity protection configuration information includes the following four integrity protection data rate groups, and the integrity protection data rate value corresponding to each integrity protection data rate group:
  • the first group 250Kbps, 500Kbps, 1Mbps;
  • the second group 5Mbps, 10Mbps, 20Mbps, 40Mbps, 60Mbps, 80Mbps, 100Mbps;
  • the third group 120Mbps, 140Mbps, 160Mbps, 180Mbps, 200Mbps, 250Mbps, 300Mbps, 400Mbps, 600Mbps, 800Mbps;
  • the fourth group 1Gbps, 2Gbps, 3Gbps, 4Gbps, 5Gbps.
  • the terminal device obtains one or more integrity protection data rate values according to the group information of the integrity protection data rate values. According to the obtained one or more integrity protection data rate values and the integrity protection data rate value supported by the terminal device, the terminal device determines the integrity protection data rate value supported by itself in the data rate composed of multiple integrity protection data rate values For the position of the value list, select the reported first integrity data rate value from the data rate value list. Wherein, the first integrity protection data rate value is less than or equal to the integrity protection data rate value supported by the terminal device.
  • the terminal device obtains the group number and the group number corresponding to the first integrity protection data rate value according to the group information; the terminal device sends the packet corresponding to the first integrity protection data rate value to the network side device Number and group number.
  • the network side device determines the first integrity protection data rate value corresponding to the group number and the group number by querying pre-configured group information. The foregoing sending mode of the terminal device reduces the occupancy rate of network resources.
  • the integrity protection configuration information sent by the network-side device to the terminal device includes group information of the integrity protection data rate value, and one or more integrity protection data rate values are obtained through the group information; the terminal The device determines the first integrity protection data rate value according to the acquired one or more integrity protection data rate values, and sends the first integrity protection data rate value to the network side device.
  • the integrity protection configuration information pre-stored on the network side device clearly defines the possible integrity protection data rate values, the configuration information is relatively fixed, and the flexibility of the configuration information is low.
  • it is not conducive to the expansion and update of configuration information.
  • the integrity protection data rate capability of terminal equipment will be enhanced in the future. Smaller integrity protection data rate values such as 250Kbps and 500Kbps will not be used, but they will be reported to terminal equipment. In other words, it still takes up instruction space. For example, 5 bits can be used to indicate 32 possible integrity protection data rate values.
  • the terminal device no longer reports 250Kbps or 500Kbps, these two data rate values will still occupy two of the 32 possible values; and For example, most of the time in actual applications, there are few terminal devices whose integrity protection data rate capability supports data rate values above 1Gbps, or there is no data rate value above 1Gbps in a certain period of time in the actual network. For terminal equipment, the integrity protection data rate value of 1Gbps and above will occupy more than 32 possible values. On the other hand, in the configuration information, the integrity protection data rate value is divided roughly. For example, 1Gbps to 2Gbps has a 1G span value. This division method is not conducive to truly reflecting and distinguishing the integrity protection data rate capability of each terminal device. .
  • the communication method provided in this embodiment shows the update process of the integrity protection configuration information of the network side device.
  • the update process deletes unnecessary integrity protection data rate values, or increases a certain data rate value.
  • the number of integrity protection data rate values within the range so as to realize flexible configuration of the integrity protection data rate value, and facilitate the network side device to distinguish the actual capabilities of each terminal device according to the updated configuration information.
  • the communication method provided in this embodiment will be described in detail below in conjunction with FIG. 7.
  • FIG. 7 is a schematic flowchart of a communication method provided by still another embodiment of this application. As shown in FIG. 7, the communication method 700 provided in this embodiment includes the following steps:
  • the network side device receives a first integrity protection data rate value sent by multiple terminal devices.
  • the network side device updates the configuration information according to the first integrity protection data rate value sent by the multiple terminal devices.
  • the network side device sends update information of configuration information to multiple terminal devices.
  • the update of the configuration information by the network-side device includes: adding and/or deleting the integrity protection data rate value in the configuration information.
  • the network side device counts the integrity protection data rate capability of the terminal devices in the current network according to the first integrity protection data rate value sent by multiple terminal devices within a preset time period.
  • the data rate value of the integrity protection data received by the network side device within the preset period is concentrated within a certain data rate value range, indicating that there are more terminal devices in this data rate value range.
  • the network side device can subdivide the data rate value range, increase the number of integrity protection data rate values within the data rate value range, and improve the granularity of the integrity protection data rate value division.
  • the network-side device can correspondingly increase the number of integrity protection data rate values of 300Mbps-400Mbps in the configuration information, such as 300Mbps, 320Mbps, 340Mbps, 360Mbps, 380Mbps, 400Mbps.
  • the network side device counts the integrity protection data rate capability of the terminal devices in the current network according to the first integrity protection data rate value sent by multiple terminal devices within a preset time period, if In the preset time period, the network side device has never received the first integrity protection data rate value sent by any terminal device and falls within a certain data rate value range, indicating that there is no terminal device in this data rate value range in the current network.
  • the network side device may delete the integrity protection data rate value within the data rate value range.
  • the network side device may correspondingly delete the integrity protection data rate value of 3Gbps-4Gbps in the configuration information.
  • the network side device After updating the integrity protection configuration information according to the first integrity protection data rate value sent by the multiple terminal devices within the preset time period, the network side device sends the update information of the configuration information to the multiple terminal devices.
  • the network-side device sends configuration information update information to multiple terminal devices connected to the network-side device by broadcasting; in another possible implementation manner, the network-side device uses proprietary The signaling sends configuration information update information to a specific terminal device, for example, the network side device sends the configuration information update information in the session update instruction.
  • the terminal devices that have reported the first integrity protection data rate value can continue to use the previously reported integrity protection data rate capability .
  • the terminal device that has already reported the first integrity protection data rate value may also re-determine the first integrity protection data rate value according to the update information of the configuration information, and report the updated first integrity protection data rate value .
  • the communication method provided by the embodiment of the present application is based on the first integrity protection data rate value sent by multiple terminal devices within a preset period of time, and the network side device is updated completely according to the first integrity protection data rate value sent by the multiple terminal devices
  • the configuration information is protected, and the update information of the configuration information is sent to multiple terminal devices, so that the multiple terminal devices report their own integrity protection data rate capability according to the update information of the configuration information.
  • the foregoing process makes the integrity protection data rate value reported by the terminal device more accurate, and is also more conducive to the actual application and future expansion of the integrity protection configuration.
  • the configuration information of this embodiment also includes integrity protection data rate thresholds corresponding to different characteristics.
  • the terminal device judges whether to initiate a certain session service according to the integrity protection data rate thresholds corresponding to different characteristics, avoiding unnecessary session establishment procedures and reducing the occupation of network resources. See the following examples for details.
  • FIG. 8 is a schematic flowchart of a communication method provided by still another embodiment of this application. As shown in FIG. 8, the communication method 800 provided in this embodiment includes the following steps:
  • the network-side device sends integrity protection configuration information to the terminal device, where the configuration information includes one or more integrity protection data rate values and integrity protection data rate thresholds corresponding to different characteristics.
  • the terminal device determines whether to initiate a session establishment request according to the integrity protection data rate thresholds corresponding to different features in the configuration information.
  • the features included in the configuration information of this embodiment may be service type, UE type, UE capability information, or other possible features, which are not specifically limited in this application.
  • the configuration information of the network side device includes integrity protection data rate thresholds corresponding to different service types, where the service types include video service types, voice service types, and desktop sharing service types.
  • the terminal device can determine the integrity protection data rate threshold corresponding to the service type and the first integrity protection data rate value reported by the terminal device according to the session request and configuration information corresponding to the service type initiated by the user. It can be understood that the integrity protection data rate thresholds corresponding to different service types may be the same or different.
  • the implementation method is to refine the configuration information from the dimension of the service type, and the terminal device can judge whether to initiate session establishment requests of different service types.
  • the terminal device determines whether to initiate a session establishment request to the network side device according to the integrity protection configuration information sent by the network side device. Specifically, the terminal device obtains the integrity protection data rate threshold corresponding to the first service type according to the integrity protection data rate thresholds corresponding to different service types in the configuration information; determines the integrity protection data rate capability supported by itself; The size of the integrity protection data rate capability value and the integrity protection data rate threshold value corresponding to the first service type: if the integrity protection data rate capability value supported by itself is greater than or equal to the integrity protection data rate threshold value corresponding to the first service type, The terminal device initiates a session establishment request to the network side device; if the integrity protection data rate capability value supported by the terminal device is less than the integrity protection data rate threshold corresponding to the first service type, the terminal device rejects the user-initiated data rate corresponding to the first service type. Session request.
  • the configuration information of the network-side device includes integrity protection data rate thresholds corresponding to different UE types.
  • the terminal device determines the integrity protection data rate threshold corresponding to the terminal device type and the first integrity protection data rate value reported by the terminal device according to the session request and configuration information initiated by the user. It can be understood that the integrity protection data rate thresholds corresponding to different UE types may be the same or different.
  • the implementation is to refine the configuration information from the UE type dimension, and the terminal device side can determine whether to initiate session establishment requests of different UE types.
  • the configuration information of the network-side device includes integrity protection data rate thresholds corresponding to different UE capabilities.
  • the terminal device determines the integrity protection data rate threshold corresponding to the capability of the terminal device and the first integrity protection data rate value reported by the terminal device according to the session request and configuration information initiated by the user. It can be understood that the integrity protection data rate thresholds corresponding to different UE capabilities may be the same or different.
  • the implementation is to refine the configuration information from the UE capability dimension, and the terminal device can determine whether to initiate session establishment requests with different UE capabilities.
  • the session establishment request includes the first integrity protection data rate value of the terminal device, and the first integrity protection data rate value is determined by the terminal device according to its own support
  • the data rate capability value of the integrity protection is determined by the configuration information received from the network device.
  • the network side device sends to the terminal device the integrity protection including one or more integrity protection data rate values and the integrity protection data rate threshold values corresponding to different characteristics.
  • Configuration information the terminal device determines whether to initiate a session establishment request according to the integrity protection data rate thresholds corresponding to different features in the configuration information. The foregoing process avoids unnecessary session establishment procedures and releases network resources occupied by the session establishment procedures.
  • FIG. 9 is a schematic structural diagram of a terminal device provided by an embodiment of the application. As shown in FIG. 9, the terminal device 900 includes:
  • the transceiver module 901 is configured to receive integrity protection configuration information sent by the network side device; the configuration information includes one or more integrity protection data rate values;
  • the processing module 902 is configured to determine a first integrity protection data rate value according to the configuration information
  • the transceiver module 901 is further configured to send the first integrity protection data rate value to the network side device.
  • the configuration information includes a data rate value list for integrity protection
  • the processing module 902 is specifically configured to:
  • the configuration information includes the maximum value and step size of the integrity protection data rate, or the minimum value and step size of the integrity protection data rate, and the processing module 902 is specifically configured to:
  • the configuration information includes group information of integrity protection data rate values, and the group information is used to indicate one or more integrity protection data rate groups, and one integrity protection data rate group includes one or more integrity protection data rate groups.
  • An integrity protection data rate value the processing module 902 is specifically configured to:
  • the transceiver module 901 is specifically configured to:
  • the transceiver module 901 is further configured to receive update information of the configuration information sent by the network side device.
  • the configuration information further includes integrity protection data rate thresholds corresponding to different characteristics.
  • the features included in the configuration information may also be service type, UE type, UE capability information, or other possible features, which are not specifically limited in this application.
  • the processing module 902 is further configured to determine whether to initiate a session establishment request according to the integrity protection data rate thresholds corresponding to different features in the configuration information.
  • processing module 902 in the embodiment of the present application may be implemented by a processor or processor-related circuit components
  • transceiver module 901 may be implemented by a transceiver or transceiver-related circuit components.
  • FIG. 10 is a schematic structural diagram of a terminal device provided by another embodiment of this application. As shown in FIG. 10, an embodiment of the present application further provides a terminal device 1000, and the terminal device 1000 includes:
  • the processor 1002 is used to perform the operations performed by the processing module 902 in the foregoing embodiment
  • the transceiver 1003 is used to perform the operations performed by the transceiver module 901 in the foregoing embodiment.
  • the terminal device 900 or the terminal device 1000 may correspond to the terminal device in the communication methods 200 to 600 and 800 of the embodiment of the present application, and the operation of the terminal device 900 or each module in the terminal device 1000
  • the and/or functions are used to implement the corresponding procedures of the methods in FIGS. 2 to 6 and 8 respectively. For brevity, details are not described herein again.
  • FIG. 11 is a schematic structural diagram of a network side device provided by an embodiment of this application. As shown in FIG. 11, the network side device 1100 includes:
  • the transceiver module 1101 is configured to send integrity protection configuration information to the terminal device; the configuration information includes one or more integrity protection data rate values;
  • the transceiver module 1101 is further configured to receive a first integrity protection data rate value sent by the terminal device, where the first integrity protection data rate value is determined by the terminal device according to the configuration information.
  • the configuration information includes a data rate value list for integrity protection.
  • the configuration information includes the maximum value and step size of the integrity protection data rate, or the minimum value and step size of the integrity protection data rate.
  • the configuration information includes group information of integrity protection data rate values, and the group information is used to indicate one or more integrity protection data rate groups, and one integrity protection data rate group includes one or more integrity protection data rate groups. An integrity protection data rate value.
  • the transceiver module 1101 is specifically configured to:
  • the group number and the group number corresponding to the first integrity protection data rate value sent by the terminal device are determined by the terminal device according to the group information.
  • the network side device 1100 further includes a processing module 1102.
  • the processing module 1102 is used to update the configuration information
  • the transceiver module 1101 is further configured to send update information of the configuration information to the terminal device.
  • the transceiver module 1101 is further configured to receive first integrity protection data rate values sent by multiple terminal devices; the processing module 1102 is specifically configured to receive first integrity protection data rate values sent by multiple terminal devices An integrity protection data rate value updates the configuration information.
  • the configuration information further includes integrity protection data rate thresholds corresponding to different characteristics.
  • the features included in the configuration information may be service type, UE type, UE capability information, or other possible features, which are not specifically limited in this application.
  • processing module 1102 in the embodiment of the present application may be implemented by a processor or processor-related circuit components
  • transceiver module 1101 may be implemented by a transceiver or transceiver-related circuit components.
  • FIG. 12 is a schematic structural diagram of a network side device provided by another embodiment of this application. As shown in FIG. 12, an embodiment of the present application further provides a network side device 1200, and the network side device 1200 includes:
  • the processor 1202 is configured to execute the operations performed by the processing module 1101 in the foregoing embodiment
  • the transceiver 1203 is configured to execute the operations performed by the transceiver module 1101 in the foregoing embodiment.
  • the network side device 1100 or the network side device 1200 may correspond to the network side device in the communication methods 200 to 800 of the embodiment of the present application, and each of the network side device 1100 or the network side device 1200
  • the operations and/or functions of the modules are to implement the corresponding processes of the methods in FIGS. 2 to 8 respectively, and for simplicity, the details are not repeated here.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the program When the program is executed by a processor, it can implement the method steps corresponding to the terminal device in the communication method provided in the above method embodiment.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the method steps corresponding to the network side device in the communication method provided in the foregoing method embodiment can be realized.
  • the embodiment of the present application also provides a communication device, which may be a terminal device or a circuit.
  • the communication device may be used to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 13 shows a simplified structural diagram of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • only one memory and processor are shown in FIG. 13. In actual terminal equipment products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device
  • the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1301 and a processing unit 1302.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1301 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1301 as the sending unit, that is, the transceiver unit 1301 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, receiver, or receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1301 is used to perform sending and receiving operations on the terminal device side in the foregoing method embodiment, and the processing unit 1302 is used to perform other operations on the terminal device in the foregoing method embodiment except for the transceiving operation.
  • the transceiving unit 1301 is used to perform the sending operation on the terminal device side in step 203 in FIG. 2, and/or the transceiving unit 1301 is also used to perform other transceiving on the terminal device side in the embodiment of the present application.
  • the processing unit 1302 is configured to execute step 202 in FIG. 2, and/or the processing unit 1302 is also configured to execute other processing steps on the terminal device side in the embodiment of the present application.
  • the transceiver unit 1301 is used to perform the sending operation on the terminal device side in step 304 in FIG. 3, and/or the transceiver unit 1302 is also used to perform other terminal device side operations in the embodiment of the present application.
  • the processing unit 1302 is configured to execute step 302 and step 303 in FIG. 3, and/or the processing unit 1302 is also configured to execute other processing steps on the terminal device side in the embodiment of the present application.
  • the transceiver unit 1301 is used to perform the sending operation on the terminal device side in step 404 in FIG. 4, and/or the transceiver unit 1301 is also used to perform other terminal device side operations in the embodiment of the present application.
  • the processing unit 1302 is configured to execute step 402 and step 403 in FIG. 4, and/or the processing unit 1302 is also configured to execute other processing steps on the terminal device side in the embodiment of the present application.
  • the transceiver unit 1301 is used to perform the sending operation on the terminal device side in step 504 in FIG. 5, and/or the transceiver unit 1301 is also used to perform other terminal device side operations in the embodiment of the present application.
  • the processing unit 1302 is configured to execute step 502 and step 503 in FIG. 5, and/or the processing unit 1302 is also configured to execute other processing steps on the terminal device side in the embodiment of the present application.
  • the transceiver unit 1301 is used to perform the sending operation on the terminal device side in step 604 in FIG. 6, and/or the transceiver unit 1301 is also used to perform other terminal device side operations in the embodiment of the present application.
  • the processing unit 1302 is configured to execute step 602 and step 603 in FIG. 6, and/or the processing unit 1302 is also configured to execute other processing steps on the terminal device side in the embodiment of the present application.
  • processing unit 1302 is configured to perform step 803 in FIG. 8, and/or the processing unit 1302 is further configured to perform other processing steps on the terminal device side in the embodiment of the present application.
  • the chip When the communication device is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor or microprocessor or integrated circuit integrated on the chip.
  • the device can perform functions similar to the processor 1001 in FIG. 10.
  • the device includes a processor 1401, a data sending processor 1402, and a data receiving processor 1403.
  • the processing module 902 in the foregoing embodiment may be the processor 1401 in FIG. 14 and complete corresponding functions.
  • the transceiver module 901 in the foregoing embodiment may be the sending data processor 1402 and/or the receiving data processor 1403 in FIG. 14.
  • the channel encoder and the channel decoder are shown in FIG. 14, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are only illustrative.
  • the device 1500 includes one or more radio frequency units, such as a remote radio unit (RRU) 1510 and one or Multiple baseband units (BBU) (also referred to as digital units, DU) 1520.
  • RRU remote radio unit
  • BBU Multiple baseband units
  • the RRU 1510 may be called a transceiver module, which corresponds to the transceiver module 1101 in FIG. 11.
  • the transceiver module may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 1511 ⁇ RF unit 1512.
  • the RRU 1510 part is mainly used for receiving and sending radio frequency signals and converting radio frequency signals and baseband signals, for example, for sending instruction information to terminal equipment.
  • the 1510 part of the BBU is mainly used for baseband processing and control of the base station.
  • the RRU 1510 and the BBU 1520 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1520 is the control center of the base station, and may also be called a processing module, which may correspond to the processing module 1102 in FIG. 11, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing module
  • the BBU may be used to control the base station to execute the operation procedure of the network side device in the foregoing method embodiment, for example, to generate the foregoing indication information.
  • the BBU 1520 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network (such as an LTE network) of a single access standard, or support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1520 also includes a memory 1521 and a processor 1522.
  • the memory 1521 is used to store necessary instructions and data.
  • the processor 1522 is used to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the network side device in the foregoing method embodiment.
  • the memory 1521 and the processor 1522 may serve one or more boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • An embodiment of the present application also provides a communication system, including the terminal device described in any of the foregoing embodiments, and the network side device described in any of the foregoing embodiments.
  • processors mentioned in the embodiments of this application may be a central processing unit (Central Processing Unit, CPU), or may be other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application-specific integrated circuits ( Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM, SLDRAM synchronous connection dynamic random access memory
  • DR RAM Direct Rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, rather than corresponding to the embodiments of the present application
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network-side device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法与设备。该通信方法包括:网络侧设备向终端设备发送包括一个或多个完整性保护数据速率值的完整性保护配置信息;终端设备根据完整性保护配置信息确定第一完整性保护数据速率值,其中第一完整性保护数据速率值为网络侧配置的完整性数据速率值之一;终端设备向网络侧设备发送第一完整性保护数据速率值。上述通信过程加强了网络参与度,提高了网络配置的灵活性。

Description

通信方法与设备
本申请要求于2019年4月8日提交中国专利局、申请号为201910277254.0、申请名称为“通信方法与设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信方法与设备。
背景技术
随着通信技术的发展,越来越多的终端设备需要接入到无线网络,无线网络的信息安全问题受到越来越多的关注。以LTE(Long Term Evolution,长期演进)网络为例,LTE网络中的完整性保护功能的目的在于防止用户数据被篡改,一旦接收端发现完整性校验失败,可以触发加解密密钥的更新过程,使用新密钥对用户数据进行保护。
一种完整性保护流程中,终端设备向网络侧设备发送会话建立请求,在会话建立请求中携带终端设备自身的完整性保护数据速率值,网络侧设备根据业务的完整性保护需求,判断终端设备的完整性保护数据速率值是否能够满足业务的要求,从而确定是否支持业务相关的会话建立。可见,各终端设备支持的最大完整性保护数据速率值设备自己确定并上报的,网络参与度不够,不灵活,同时会话建立的效率也较低。
发明内容
本申请提供一种通信方法与设备,加强了网络参与度,提高了网络配置的灵活性。
第一方面,本申请提供一种通信方法,包括:
终端设备接收网络侧设备发送的完整性保护配置信息;所述配置信息包括一个或多个完整性保护数据速率值;
所述终端设备根据所述配置信息确定第一完整性保护数据速率值;
所述终端设备向所述网络侧设备发送所述第一完整性保护数据速率值。
由于所述完整性保护配置信息是网络配置的,网络可以根据需要灵活配置完整性保护配置信息,及其配置信息包含的一个或多个完整性保护数据速率值,加强了网络参与度,提高了灵活性。
结合第一方面,在第一方面的一种可能的实现方式中,所述配置信息包括完整性保护的数据速率值列表,所述终端设备根据所述配置信息确定第一完整性保护数据速率值,包括:
所述终端设备根据完整性保护的数据速率值列表获取一个或多个完整性保护数据速率值;
所述终端设备根据获取的所述一个或多个完整性保护数据速率值,确定第一完整性保护数据速率值。
可选地,所述配置信息中的完整性保护的数据速率值列表包括一个或多个完整性保护数据速率值,以及,每一个完整性保护数据速率值对应的编号。终端设备在确定 第一完整性保护数据速率值之后,可以向网络侧设备发送第一完整性保护数据速率值,或者向网络侧设备发送第一完整性保护数据速率值对应的编号。
结合第一方面,在第一方面的一种可能的实现方式中,所述配置信息包括完整性保护数据速率的最大值和步长,或者,完整性保护数据速率的最小值和步长,所述终端设备根据所述配置信息确定第一完整性保护数据速率值,包括:
所述终端设备根据完整性保护数据速率的最大值和步长获取一个或多个完整性保护数据速率值;或者,所述终端设备根据完整性保护数据速率的最小值和步长获取一个或多个完整性保护数据速率值;
所述终端设备根据获取的所述一个或多个完整性保护数据速率值,确定第一完整性保护数据速率值。
上述配置信息包括一个完整性保护数据速率值,即完整性保护数据速率的最大值或者最小值。终端设备根据该最大值或者最小值,结合步长,即可得到完整性保护的数据速率值列表。上述配置方式压缩了完整性保护配置信息的大小,网络侧设备发送的配置信息占用的网络资源更小。
结合第一方面,在第一方面的一种可能的实现方式中,所述配置信息包括完整性保护数据速率值的组信息,所述组信息用于指示一个或者多个完整性保护数据速率组,一个所述完整性保护数据速率组包含一个或多个完整性保护数据速率值,所述终端设备根据所述配置信息确定第一完整性保护数据速率值,包括:
所述终端设备根据所述组信息,获取一个或多个完整性保护数据速率值;
所述终端设备根据获取的所述一个或多个完整性保护数据速率值,确定第一完整性保护数据速率值。
上述配置信息包括完整性保护的数据速率值列表的组信息,即将数据速率列表中多个完整性保护数据速率值进行分组,确定各个分组对应的完整性保护数据速率值。对应的,网络侧设备可以以分组的形式下发数据速率值列表中的多个完整性数据速率值。
可选地,所述终端设备向所述网络侧设备发送所述第一完整性保护数据速率值,包括:
所述终端设备根据所述组信息获取所述第一完整性保护数据速率值对应的分组号和组内编号;
所述终端设备向所述网络侧设备发送所述第一完整性保护数据速率值对应的分组号和组内编号。
终端设备的上述发送方式占用的网络资源更小。
结合第一方面,在第一方面的一种可能的实现方式中,所述方法还包括:
所述终端设备接收所述网络侧设备发送的所述配置信息的更新信息。
对配置信息的更新,使得终端设备根据更新后的配置信息重新确定的第一完整性保护数据速率值更加精准。
可选地,所述配置信息还包括不同特征对应的完整性保护数据速率阈值;所述方法还包括:
所述终端设备根据所述配置信息中不同特征对应的完整性保护数据速率阈值判断 是否发起会话建立请求。
具体地,所述配置信息中包含的特征可以是业务类型,UE类型,UE能力信息,也可以是其他可能的特征。
在一种可能的实现方式中,配置信息中包括不同业务类型对应的完整性保护数据速率阈值,终端设备在确定自身完整性保护数据速率能力值之后,直接比较自身能力值与会话要求的业务类型对应的完整性保护数据速率阈值的大小,确定是否发起会话建立请求,从而避免了不必要的会话建立流程,释放了会话建立流程占用的网络资源。
在一种可能的实现方式中,配置信息中包括不同UE类型对应的完整性保护数据速率阈值,终端设备在确定自身完整性保护数据速率能力值之后,直接比较自身能力值与会话要求的UE类型对应的完整性保护数据速率阈值的大小,确定是否发起会话建立请求,从而避免了不必要的会话建立流程,释放了会话建立流程占用的网络资源。
在一种可能的实现方式中,配置信息中包括不同UE能力对应的完整性保护数据速率阈值,终端设备在确定自身完整性保护数据速率能力值之后,直接比较自身能力值与会话要求的UE能力对应的完整性保护数据速率阈值的大小,确定是否发起会话建立请求,从而避免了不必要的会话建立流程,释放了会话建立流程占用的网络资源。
第二方面,本申请提供一种通信方法,包括:
网络侧设备向终端设备发送完整性保护配置信息;所述配置信息包括一个或多个完整性保护数据速率值;
所述网络侧设备接收所述终端设备发送的第一完整性保护数据速率值,所述第一完整性保护数据速率值是所述终端设备根据所述配置信息确定的。
结合第二方面,在第二方面的一种可能的实现方式中,所述配置信息包括完整性保护的数据速率值列表。
结合第二方面,在第二方面的一种可能的实现方式中,所述配置信息包括完整性保护数据速率的最大值和步长,或者,完整性保护数据速率的最小值和步长。
结合第二方面,在第二方面的一种可能的实现方式中,所述配置信息包括完整性保护数据速率值的组信息,所述组信息用于指示一个或者多个完整性保护数据速率组,一个所述完整性保护数据速率组包含一个或多个完整性保护数据速率值。
可选地,所述网络侧设备接收所述终端设备发送的第一完整性保护数据速率值,包括:
所述网络侧设备接收所述终端设备发送的所述第一完整性保护数据速率值对应的分组号和组内编号;所述分组号和所述组内编号是所述终端设备根据所述组信息确定的。
结合第二方面,在第二方面的一种可能的实现方式中,所述网络侧设备向终端设备发送完整性保护配置信息之后,所述方法还包括:
所述网络侧设备向所述终端设备发送所述配置信息的更新信息。
可选地,所述网络侧设备可以接收多个终端设备发送的第一完整性保护数据速率值,并根据多个所述终端设备发送的第一完整性保护数据速率值更新所述配置信息。
可选地,所述配置信息还包括不同特征对应的完整性保护数据速率阈值。具体地,所述配置信息中包含的特征可以是业务类型,UE类型,UE能力信息,也可以是其他可 能的特征,本申请不作具体限定。
第三方面,本申请提供一种终端设备,包括:
收发模块,用于接收网络侧设备发送的完整性保护配置信息;所述配置信息包括一个或多个完整性保护数据速率值;
处理模块,用于根据所述配置信息确定第一完整性保护数据速率值;
所述收发模块,还用于向所述网络侧设备发送所述第一完整性保护数据速率值。
结合第三方面,在第三方面的一种可能的实现方式中,所述配置信息包括完整性保护的数据速率值列表,所述处理模块,具体用于:
根据完整性保护的数据速率值列表获取一个或多个完整性保护数据速率值;
根据获取的所述一个或多个完整性保护数据速率值,确定第一完整性保护数据速率值。
结合第三方面,在第三方面的一种可能的实现方式中,所述配置信息包括完整性保护数据速率的最大值和步长,或者,完整性保护数据速率的最小值和步长,所述处理模块,具体用于:
根据完整性保护数据速率的最大值和步长获取一个或多个完整性保护数据速率值;或者,根据完整性保护数据速率的最小值和步长获取一个或多个完整性保护数据速率值;
根据获取的所述一个或多个完整性保护数据速率值,确定第一完整性保护数据速率值。
结合第三方面,在第三方面的一种可能的实现方式中,所述配置信息包括完整性保护数据速率值的组信息,所述组信息用于指示一个或者多个完整性保护数据速率组,一个所述完整性保护数据速率组包含一个或多个完整性保护数据速率值,所述处理模块,具体用于:
根据所述组信息,获取一个或多个完整性保护数据速率值;
根据获取的所述一个或多个完整性保护数据速率值,确定第一完整性保护数据速率值。
可选地,所述收发模块,具体用于:
根据所述组信息获取所述第一完整性保护数据速率值对应的分组号和组内编号;
向所述网络侧设备发送所述第一完整性保护数据速率值对应的分组号和组内编号。
结合第三方面,在第三方面的一种可能的实现方式中,所述收发模块,还用于接收所述网络侧设备发送的所述配置信息的更新信息。
可选地,所述配置信息还包括不同特征对应的完整性保护数据速率阈值;
所述处理模块,还用于根据所述配置信息中不同特征对应的完整性保护数据速率阈值判断是否发起会话建立请求。
第四方面,本申请提供一种网络侧设备,包括:
收发模块,用于向终端设备发送完整性保护配置信息;所述配置信息包括一个或多个完整性保护数据速率值;
所述收发模块,还用于接收所述终端设备发送的第一完整性保护数据速率值,所述第一完整性保护数据速率值是所述终端设备根据所述配置信息确定的。
结合第四方面,在第四方面的一种可能的实现方式中,所述配置信息包括完整性保护的数据速率值列表。
结合第四方面,在第四方面的一种可能的实现方式中,所述配置信息包括完整性保护数据速率的最大值和步长,或者,完整性保护数据速率的最小值和步长。
结合第四方面,在第四方面的一种可能的实现方式中,所述配置信息包括完整性保护数据速率值的组信息,所述组信息用于指示一个或者多个完整性保护数据速率组,一个所述完整性保护数据速率组包含一个或多个完整性保护数据速率值。
可选地,所述收发模块,具体用于:
接收所述终端设备发送的所述第一完整性保护数据速率值对应的分组号和组内编号;所述分组号和所述组内编号是所述终端设备根据所述组信息确定的。
结合第四方面,在第四方面的一种可能的实现方式中,所述网络侧设备还包括处理模块;所述处理模块,用于更新所述配置信息;
所述收发模块,还用于向所述终端设备发送所述配置信息的更新信息。
可选地,所述收发模块,还用于接收多个所述终端设备发送的第一完整性保护数据速率值;所述处理模块,具体用于根据多个所述终端设备发送的第一完整性保护数据速率值更新所述配置信息。
可选地,所述配置信息还包括不同特征对应的完整性保护数据速率阈值。
第五方面,本申请提供一种终端设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如本申请第一方面中任一项所述的通信方法的步骤。
第六方面,本申请提供一种网络侧设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如本申请第二方面中任一项所述的通信方法的步骤。
第七方面,本申请提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现如本申请第一方面中任一项所述的通信方法的步骤。
第八方面,本申请提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现如本申请第二方面中任一项所述的通信方法的步骤。
第九方面,本申请提供一种通信系统,包括本申请第五方面所述的终端设备,以及本申请第六方面所述的网络侧设备。
本申请中,终端设备根据网络侧设备预先发送的包括一个或多个完整性保护数据速率值的完整性保护配置信息,确定向网络上报的完整性保护数据速率能力值,所述向网络上报的完整性保护数据速率值为网络侧配置的完整性保护数据速率值之一。由于完整性保护配置信息是网络下发的,加强了网络参与度,提高了灵活性。
附图说明
图1为本申请实施例提供的通信方法的系统架构图;
图2为本申请一实施例提供的通信方法的流程示意图;
图3为本申请另一实施例提供的通信方法的流程示意图;
图4为本申请再一实施例提供的通信方法的流程示意图;
图5为本申请再一实施例提供的通信方法的流程示意图;
图6为本申请再一实施例提供的通信方法的流程示意图;
图7为本申请再一实施例提供的通信方法的流程示意图;
图8为本申请再一实施例提供的通信方法的流程示意图;
图9为本申请一实施例提供的终端设备的结构示意图;
图10为本申请另一实施例提供的终端设备的结构示意图;
图11为本申请一实施例提供的网络侧设备的结构示意图;
图12为本申请另一实施例提供的网络侧设备的结构示意图;
图13为本申请一实施例提供的通信装置的结构示意图;
图14为本申请另一实施例提供的通信装置的结构示意图;
图15为本申请再一实施例提供的通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
应理解,本申请实施例的技术方案可以应用于长期演进(Long Term Evolution,LTE)架构,还可以应用于通用移动通信系统(Universal Mobile Telecommunications System,UMTS)陆地无线接入网(UMTS Terrestrial Radio Access Network,UTRAN)架构,或者全球移动通信系统(Global System for Mobile Communication,GSM)/增强型数据速率GSM演进(Enhanced Data Rate for GSM Evolution,EDGE)系统的无线接入网(GSM EDGE Radio Access Network,GERAN)架构。在UTRAN架构或/GERAN架构中,MME的功能由服务通用分组无线业务(General Packet Radio Service,GPRS)支持节点(Serving GPRS Support,SGSN)完成,SGW\PGW的功能由网关GPRS支持节点(Gateway GPRS Support Node,GGSN)完成。本申请实施例的技术方案还可以应用于其他通信系统,例如公共陆地移动网络(Public Land Mobile Network,PLMN)系统,甚至未来的5G通信系统或5G之后的通信系统等,本申请实施例对此不作限定。
本申请实施例涉及终端设备。终端设备可以为包含无线收发功能、且可以与网络设备配合为用户提供通讯服务的设备。具体地,终端设备可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。例如,终端设备可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络或5G之后的网络中的终端设备等,本申请实施例对此不作限定。
本申请实施例还涉及网络侧设备。网络侧设备可以是用于与终端设备进行通信的设备,例如,可以是接入网设备,比如,GSM系统或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络或5G之后的网络中基站、中继站或者接入点等;可以是核心网设备,比如GSM系统中的SGSN(Serving GPRS Support Node,服务GRPS支撑节点),LTE系统中的MME(Mobility Management Entity, 移动管理实体)等;也可以是应用服务器设备,比如视频应用服务器,车联网应用服务器等。
本申请实施例中涉及的网络侧设备也可称为无线接入网(Radio Access Network,RAN)设备。RAN设备与终端设备连接,用于接收终端设备的数据并发送给核心网设备。RAN设备在不同通信系统中对应不同的设备,例如,在2G系统中对应基站与基站控制器,在3G系统中对应基站与无线网络控制器(Radio Network Controller,RNC),在4G系统中对应演进型基站(Evolutional Node B,eNB),在5G系统中对应5G系统,如新无线接入系统(New Radio Access Technology,NR)中的接入网设备(例如gNB,CU,DU)。
本申请实施例还涉及核心网(Core Network,CN)设备。CN设备在不同的通信系统中对应不同的设备,例如,在3G系统中对应服务GPRS支持节点(Serving GPRS Support Node,SGSN)或网关GPRS支持节点(Gateway GPRS Support Node,GGSN),在4G系统中对应移动管理实体(Mobility Management Entity,MME)或服务网关(Serving GateWay,S-GW),在5G系统中对应5G系统的核心网相关设备(例如NG-Core)。
图1为本申请实施例提供的通信方法的系统架构图。如图1所示,终端设备11和终端设备12为驻留或者接入到接入网设备13下的终端设备,接入网设备13与核心网设备14连接。接入网设备13接收终端设备11和终端设备12发送的数据,并将数据发送给核心网设备14。核心网设备14预存完整性保护配置信息,接入网设备13接收核心网设备下发的完整性保护配置信息,并将完整性保护配置信息发送给终端设备11和终端设备12。
图2为本申请一实施例提供的通信方法的流程示意图。如图2所示,本实施例提供的通信方法200包括如下步骤:
S201、网络侧设备向终端设备发送完整性保护配置信息;配置信息包括一个或多个完整性保护数据速率值;
S202、终端设备根据配置信息确定第一完整性保护数据速率值;
S203、终端设备向网络侧设备发送第一完整性保护数据速率值。
本实施中的网络侧设备可以为核心网设备,也可以为接入网设备。若网络侧设备为核心网设备,则核心网设备通过接入网设备向终端设备发送完整性保护配置信息;若网络侧设备为接入网设备,则接入网设备直接向终端设备发送完整性保护配置信息。
本实施例的完整性保护配置信息是网络侧设备预先配置的终端设备完整性保护(Integrity protection,IP)速率能力信息,该配置信息包括一个或多个完整性保护数据速率值。终端设备根据该配置信息确定向网络上报的完整性保护数据速率能力值,即第一完整性保护数据速率值,并向网络侧设备发送第一完整性保护数据速率值。
需要说明的是,终端设备上报的第一完整性保护数据速率值与终端设备自身实际支持的完整性保护数据速率值可能相同,也可能不同。例如,网络侧设备预先配置信息包括的一个或多个完整性保护数据速率值,是一些不连续的完整性保护数据速率值,这些速率值是网络对于完整性保护数据速率值反馈进行的划分,比如,完整性保护数据速率值可以是从0Kbps到5Gps,那么,网络可以对0Kbps到5Gps这个范围进行划 分,比如,划分为:250Kbps,500Kbps,1Mbps,5Mbps,10Mbps,20Mbps,40Mbps,60Mbps,80Mbps,100Mbps,120Mbps,140Mbps,160Mbps,180Mbps,200Mbps,250Mbps,300Mbps,400Mbps,600Mbps,800Mbps,1Gbps,2Gbps,3Gbps,4Gbps,5Gbps。网络希望UE从上述数值中选择数值进行上报。例如,某一终端设备自身实际支持的完整性保护数据速率值为300Kbps,该数据速率值介于配置信息中完整性保护数据速率值200Kbps与500Kbps之间,终端设备根据配置信息确定上报的第一完整性保护数据速率值为200Kbps,而不是上报300Kbps。另外一终端设备自身实际支持的完整性保护数据速率值为350Kbps,该数据速率值介于配置信息中完整性保护数据速率值200Kbps与500Kbps之间,终端设备根据配置信息确定上报的第一完整性保护数据速率值也为200Kbps,而不是上报350Kbps。也就是说,终端设备是基于网络侧设备预先发送的配置信息进行自身完整性保护数据速率能力值的上报。网络侧设备获取用户面安全策略,根据用户面安全策略确定是否开启用户面加密保护和/或用户面完整性保护,这部分内容为现有技术,此处不展开描述。
本实施例提供的通信方法,通过网络侧设备向终端设备发送包括一个或多个完整性保护数据速率值的完整性保护配置信息;终端设备根据完整性保护配置信息确定第一完整性保护数据速率值,第一完整性保护数据速率值为网络侧配置的完整性数据速率值之一;终端设备向网络侧设备发送第一完整性保护数据速率值。上述通信过程加强了网络参与度,提高了网络配置的灵活性。
在上述实施例的基础上,下面四个实施例分别示出了不同类型的完整性保护配置信息,终端设备根据不同类型的完整性保护配置信息执行相应的步骤,并在确定自身完整性保护数据速率能力值后,向网络侧设备发送自身完整性保护数据速率能力值。下面结合附图对各实施例提供的通信方法进行详细说明。
图3为本申请另一实施例提供的通信方法的流程示意图。如图3所示,本实施例提供的通信方法300包括如下步骤:
S301、网络侧设备向终端设备发送完整性保护配置信息;配置信息包括完整性保护的数据速率值列表;
S302、终端设备根据完整性保护的数据速率值列表获取一个或多个完整性保护数据速率值;
S303、终端设备根据获取的一个或多个完整性保护数据速率值,确定第一完整性保护数据速率值;
S304、终端设备向网络侧设备发送第一完整性保护数据速率值。
本实施例的完整性保护配置信息包括完整性保护的数据速率值列表,该数据速率值列表包括一个或多个完整性保护数据速率值。示例性的,数据速率值列表中包括以下完整性保护数据速率值:250Kbps,500Kbps,1Mbps,5Mbps,10Mbps,20Mbps,40Mbps,60Mbps,80Mbps,100Mbps,120Mbps,140Mbps,160Mbps,180Mbps,200Mbps,250Mbps,300Mbps,400Mbps,600Mbps,800Mbps,1Gbps,2Gbps,3Gbps,4Gbps,5Gbps。终端设备根据数据速率值列表获取一个或多个完整性保护数据速率值。
终端设备根据获取的一个或多个完整性保护数据速率值,以及自身支持的完整性保护数据速率值,确定自身支持的完整性保护数据速率值在数据速率值列表的位置, 从数据速率值列表中选择上报的第一完整性保护数据速率值。假设终端设备自身支持的完整性保护数据速率值为C,终端设备获取的一个或多个完整性保护数据速率值包括A和B两个相邻的数据速率值,如果C大于等于A且小于B,则终端设备选择上报的第一完整性保护数据速率值为A。可见,终端设备上报的第一完整性保护数据速率值小于或者等于终端设备支持的完整性保护数据速率值。例如,终端设备支持的完整性保护数据速率值为500Mbps,500Mpbs介于400Mbps和600Mbps之间,上报的第一完整性保护数据速率值为400Mbps;终端设备支持的完整性保护数据速率值为250Mbps,上报的第一完整性保护数据速率值也为250Mbps。
在一种可能的实现方式中,本实施例的数据速率值列表还包括各个完整性保护数据速率值对应的编号。对应的,终端设备在获取一个或多个完整性保护数据速率值以及各个完整性保护数据速率值对应的编号之后,根据自身支持的完整性保护数据速率值在数据速率值列表的位置,确定从数据速率值列表中选择上报的第一完整性保护数据速率值对应的第一编号,向网络侧设备发送该第一编号,网络侧设备通过查询预先配置的数据速率值列表确定第一编号对应的第一完整性保护数据速率值。终端设备的上述发送方式,减小了对网络资源的占用率。
本实施提供的通信方法中,网络侧设备向终端设备发送的完整性保护配置信息包括完整性保护的数据速率值列表,该数据速率值列表中包括一个或多个完整性保护数据速率值;终端设备根据获取的一个或多个完整性保护数据速率值确定第一完整性保护数据速率值,并向网络侧设备发送第一完整性保护数据速率值。上述通信过程加强了网络参与度,提高了网络配置的灵活性。
图4为本申请再一实施例提供的通信方法的流程示意图。如图4所示,本实施例提供的通信方法400包括如下步骤:
S401、网络侧设备向终端设备发送完整性保护配置信息;配置信息包括完整性保护数据速率的最大值和步长;
S402、终端设备根据完整性保护数据速率的最大值和步长获取一个或多个完整性保护数据速率值;
S403、终端设备根据获取的一个或多个完整性保护数据速率值,确定第一完整性保护数据速率值;
S404、终端设备向网络侧设备发送第一完整性保护数据速率值。
本实施例的完整性保护配置信息包括完整性保护数据速率的最大值和步长,终端设备根据完整性保护数据速率的最大值和步长获取一个或多个完整性保护数据速率值。示例性的,假设网络侧设备预先配置的完整性保护的数据速率值列表中包括以下完整性保护数据速率值:100Mbps,200Mbps,300Mbps,400Mbps,500Mbps,600Mbps,700Mbps,800Mbps,100Mbps,900Mbps。网络侧设备向终端设备发送的完整性保护配置信息中仅包括完整性保护数据速率的最大值900Mbps和步长100Mpbs。终端设备根据本实施例的配置信息获取完整性保护的数据速率值列表的所有完整性保护数据速率值。本实施例提供的配置信息仅限于完整性保护的数据速率值列表中的多个完整性保护数据速率值为等间距分布。
本实施例提供的通信方法中,网络侧设备向终端设备发送的完整性保护配置信息 包括完整性保护数据速率的最大值和步长,终端设备根据完整性保护数据速率的最大值和步长获取一个或多个完整性保护数据速率值,根据获取到的一个或多个数据速率值确定第一完整性保护数据速率值,并向网络侧设备发送第一完整性保护数据速率值。上述通信过程加强了网络参与度,提高了网络配置的灵活性。
图5为本申请再一实施例提供的通信方法的流程示意图。如图5所示,本实施例提供的通信方法500包括如下步骤:
S501、网络侧设备向终端设备发送完整性保护配置信息;配置信息包括完整性保护数据速率的最小值和步长;
S502、终端设备根据完整性保护数据速率的最小值和步长获取一个或多个完整性保护数据速率值;
S503、终端设备根据获取的一个或多个完整性保护数据速率值,确定第一完整性保护数据速率值;
S504、终端设备向网络侧设备发送第一完整性保护数据速率值。
本实施例的完整性保护配置信息包括完整性保护数据速率的最小值和步长,终端设备根据完整性保护数据速率的最小值和步长获取一个或多个完整性保护数据速率值。示例性的,假设网络侧设备预先配置的完整性保护的数据速率值列表中包括以下完整性保护数据速率值:100Mbps,200Mbps,300Mbps,400Mbps,500Mbps,600Mbps,700Mbps,800Mbps,100Mbps,900Mbps…。网络侧设备向终端设备发送的完整性保护配置信息中仅包括完整性保护数据速率的最小值100Mbps和步长100Mpbs。终端设备根据本实施例的配置信息获取完整性保护的数据速率值列表的所有完整性保护数据速率值。本实施例提供的配置信息仅限于完整性保护的数据速率值列表中的多个完整性保护数据速率值为等间距分布。
在一种可能的实现方式中,本实施例的完整性保护配置信息还包括完整性保护数据速率的最大值。终端设备根据完整性保护数据速率的最大值和最小值以及步长,确定网络侧设备预先配置的多个完整性保护数据速率值。示例性的,完整性保护配置信息包括完整性保护数据速率的最大值900Mbps,最小值300Mbps和步长100Mbps,则完整性保护的数据速率值列表中包括以下完整性保护数据速率值:300Mbps,400Mbps,500Mbps,600Mbps,700Mbps,800Mbps,100Mbps,900Mbps。
本实施例提供的通信方法中,网络侧设备向终端设备发送的完整性保护配置信息包括完整性保护数据速率的最小值和步长,终端设备根据完整性保护数据速率的最小值和步长获取一个或多个完整性保护数据速率值,根据获取到的一个或多个数据速率值确定第一完整性保护数据速率值,并向网络侧设备发送第一完整性保护数据速率值。上述通信过程加强了网络参与度,提高了网络配置的灵活性。
图6为本申请再一实施例提供的通信方法的流程示意图。如图6所示,本实施例提供的通信方法600包括如下步骤:
S601、网络侧设备向终端设备发送完整性保护配置信息;配置信息包括完整性保护数据速率值的组信息;组信息用于指示一个或者多个完整性保护数据速率组,一个所述完整性保护数据速率组包含一个或多个完整性保护数据速率值;
S602、终端设备根据组信息获取一个或多个完整性保护数据速率值;
S603、终端设备根据获取的一个或多个完整性保护数据速率值,确定第一完整性保护数据速率值;
S604、终端设备向网络侧设备发送第一完整性保护数据速率值。
本实施例提供的完整性保护配置信息包括完整性保护数据速率值的组信息,组信息用于指示一个或者多个完整性保护数据速率组,一个完整性保护数据速率组包含一个或多个完整性保护数据速率值。示例性的,完整性保护配置信息中包括以下4个完整性保护数据速率组,以及每一个完整性保护数据速率组对应的完整性保护数据速率值:
第一组:250Kbps,500Kbps,1Mbps;
第二组:5Mbps,10Mbps,20Mbps,40Mbps,60Mbps,80Mbps,100Mbps;
第三组:120Mbps,140Mbps,160Mbps,180Mbps,200Mbps,250Mbps,300Mbps,400Mbps,600Mbps,800Mbps;
第四组:1Gbps,2Gbps,3Gbps,4Gbps,5Gbps。
终端设备根据完整性保护数据速率值的组信息获取一个或多个完整性保护数据速率值。终端设备根据获取的一个或多个完整性保护数据速率值,以及自身支持的完整性保护数据速率值,确定自身支持的完整性保护数据速率值在多个完整性保护数据速率值组成的数据速率值列表的位置,从数据速率值列表中选择上报的第一完整性数据速率值。其中,第一完整性保护数据速率值小于或者等于终端设备支持的完整性保护数据速率值。
在一种可能的实现方式中,终端设备根据组信息获取第一完整性保护数据速率值对应的分组号和组内编号;终端设备向网络侧设备发送第一完整性保护数据速率值对应的分组号和组内编号。网络侧设备通过查询预先配置的组信息确定分组号和组内编号对应第一完整性保护数据速率值。终端设备的上述发送方式,减小了对网络资源的占用率。
本实施例提供的通信方法中,网络侧设备向终端设备发送的完整性保护配置信息包括完整性保护数据速率值的组信息,通过该组信息获取一个或多个完整性保护数据速率值;终端设备根据获取的一个或多个完整性保护数据速率值确定第一完整性保护数据速率值,并向网络侧设备发送第一完整性保护数据速率值。上述通信过程加强了网络参与度,提高了网络配置的灵活性。
目前,网络侧设备预存的完整性保护配置信息把可能的完整性保护数据速率值都明确定义了,配置信息较为固定,配置信息的灵活性较低。一方面,不利于对配置信息的扩展更新,例如未来终端设备的完整性保护数据速率能力增强,250Kbps,500Kbps等较小的完整性保护数据速率值将不会被用到,但是对于终端设备上报来说,仍然占用着指示空间。例如,5个比特位可用于指示32种可能的完整性保护数据速率值,若终端设备不再上报250Kbps或者500Kbps,这两个数据速率值仍将占用32种可能值中的两个值;再例如,实际应用中大多数时间内,很少有终端设备的完整性保护数据速率能力支持1Gbps以上的数据速率值,或者,在实际网络中的某一时间段没有支持1Gbps以上的数据速率值的终端设备,1Gbps以及1Gbps以上的完整性保护数据速率值将占用32个可能值中的多个值。另一方面,配置信息中对完整性保护数据速率值的 划分力度比较粗,例如1Gbps至2Gbps有1G的跨度值,该划分方式不利于真实地反应和区分各终端设备的完整性保护数据速率能力。
基于上述问题,本实施例提供的通信方法示出了网络侧设备对完整性保护配置信息的更新过程,通过更新过程删减不必要的完整性保护数据速率值,或者,增加某一数据速率值范围内的完整性保护数据速率值的数量,从而实现对完整性保护数据速率值的灵活配置,便于网络侧设备根据更新后的配置信息区分各终端设备的实际能力。下面结合图7对本实施例提供的通信方法进行详细说明。
图7为本申请再一实施例提供的通信方法的流程示意图。如图7所示,本实施例提供的通信方法700包括如下步骤:
S701、网络侧设备接收多个终端设备发送的第一完整性保护数据速率值;
S702、网络侧设备根据多个终端设备发送的第一完整性保护数据速率值更新配置信息;
S703、网络侧设备向多个终端设备发送配置信息的更新信息。
本实施例中,网络侧设备对配置信息的更新包括:对配置信息中完整性保护数据速率值的增加,和/或,删除。
在一种可能的实现方式中,网络侧设备根据预设时段内的多个终端设备发送的第一完整性保护数据速率值,统计当前网络中终端设备的完整性保护数据速率能力情况,若在预设时段内网络侧设备接收到完整性保护数据速率值集中在某一数据速率值范围内,说明该数据速率值范围的终端设备较多,为了进一步区分各终端设备的完整性保护数据速率能力,网络侧设备可以对该数据速率值范围进行细分,增加该数据速率值范围内的完整性保护数据速率值的数量,提高对完整性保护数据速率值划分的颗粒度。示例性的,若在预设时段内网络侧设备接收到完整性保护数据速率值集中在300Mbps-400Mbps,网络侧设备可以对应增加配置信息中300Mbps-400Mbps的完整性保护数据速率值的数量,如300Mbps,320Mbps,340Mbps,360Mbps,380Mbps,400Mbps。
在另一种可能的实现方式中,网络侧设备根据预设时段内的多个终端设备发送的第一完整性保护数据速率值,统计当前网络中终端设备的完整性保护数据速率能力情况,若在预设时段内网络侧设备从未接收到任何终端设备发送的第一完整性保护数据速率值落在某一数据速率值范围内,说明当前网络中不存在该数据速率值范围的终端设备,网络侧设备可以删除该数据速率值范围内的完整性保护数据速率值。示例性的,若在预设时段内网络侧设备从未接收到完整性保护数据速率值在3Gbps-4Gbps,网络侧设备可以对应删除配置信息中3Gbps-4Gbps的完整性保护数据速率值。
网络侧设备根据多个终端设备在预设时段内发送的第一完整性保护数据速率值更新完整性保护配置信息之后,向多个终端设备发送配置信息的更新信息。在一种可能的实现方式中,网络侧设备通过广播的方式向与网络侧设备连接的多个终端设备发送配置信息的更新信息;在另一种可能的实现方式中,网络侧设备通过专有信令向特定的某个终端设备发送配置信息的更新信息,例如网络侧设备在会话更新指令中下发配置信息的更新信息。
需要说明的是,多个终端设备在接收到网络侧设备发送的配置信息的更新信息之后,已经上报过第一完整性保护数据速率值的终端设备可以继续使用之前上报的完整 性保护数据速率能力。可选地,已经上报过第一完整性保护数据速率值的终端设备也可以根据配置信息的更新信息重新确定第一完整性保护数据速率值,并上报更新后的第一完整性保护数据速率值。
本申请实施例提供的通信方法,基于多个终端设备在预设时段内发送的第一完整性保护数据速率值,网络侧设备根据多个终端设备发送的第一完整性保护数据速率值更新完整性保护配置信息,并将配置信息的更新信息发送给多个终端设备,以使多个终端设备根据配置信息的更新信息上报自身完整性保护数据速率能力。上述过程使得终端设备上报的完整性保护数据速率值更准确,也更有利于完整性保护配置的实际应用和未来扩展。
在上述各实施例的基础上,本实施例的配置信息还包括不同特征对应的完整性保护数据速率阈值。终端设备根据不同特征对应的完整性保护数据速率阈值判断是否发起某一会话业务,避免无谓的会话建立流程,减小对网络资源的占用。具体参见下述实施例。
图8为本申请再一实施例提供的通信方法的流程示意图。如图8所示,本实施例提供的通信方法800包括如下步骤:
S801、网络侧设备向终端设备发送完整性保护配置信息,配置信息包括一个或多个完整性保护数据速率值,以及不同特征对应的完整性保护数据速率阈值;
S802、终端设备根据配置信息中不同特征对应的完整性保护数据速率阈值判断是否发起会话建立请求。
具体地,本实施例的配置信息中包含的特征可以是业务类型,UE类型,UE能力信息,也可以是其他可能的特征,本申请不作具体限定。
一种可能的实现方式中,网络侧设备的配置信息包括不同业务类型对应的完整性保护数据速率阈值,其中业务类型包括视频业务类型、语音业务类型、桌面共享业务类型等。对应的,终端设备可以根据用户发起的业务类型对应的会话请求和配置信息确定该业务类型对应的完整性保护数据速率阈值和终端设备上报的第一完整性保护数据速率值。可以理解,不同业务类型对应的完整性保护数据速率阈值可能相同,也可能不同。该实现方式是从业务类型维度对配置信息进行细化,在终端设备侧即可判断是否发起不同业务类型的会话建立请求。
示例性的,终端设备在获取用户发起的第一业务类型对应的会话请求之后,根据网络侧设备发送的完整性保护配置信息判断是否向网络侧设备发起会话建立请求。具体地,终端设备根据配置信息中不同业务类型对应的完整性保护数据速率阈值,获取第一业务类型对应的完整性保护数据速率阈值;确定自身支持的完整性保护数据速率能力;比较自身支持的完整性保护数据速率能力值与第一业务类型对应的完整性保护数据速率阈值的大小:若自身支持的完整性保护数据速率能力值大于或者等于第一业务类型对应的完整性保护数据速率阈值,则终端设备向网络侧设备发起会话建立请求;若自身支持的完整性保护数据速率能力值小于第一业务类型对应的完整性保护数据速率阈值,则终端设备拒绝用户发起的第一业务类型对应的会话请求。
在一种可能的实现方式中,网络侧设备的配置信息包括不同UE类型对应的完整性保护数据速率阈值。对应的,终端设备根据用户发起的会话请求和配置信息确定该 终端设备类型对应的完整性保护数据速率阈值和终端设备上报的第一完整性保护数据速率值。可以理解,不同UE类型对应的完整性保护数据速率阈值可能相同,也可能不同。该实现方式是从UE类型维度对配置信息进行细化,在终端设备侧即可判断是否发起不同UE类型的会话建立请求。
在一种可能的实现方式中,网络侧设备的配置信息包括不同UE能力对应的完整性保护数据速率阈值。对应的,终端设备根据用户发起的会话请求和配置信息确定该终端设备能力对应的完整性保护数据速率阈值和终端设备上报的第一完整性保护数据速率值。可以理解,不同UE能力对应的完整性保护数据速率阈值可能相同,也可能不同。该实现方式是从UE能力维度对配置信息进行细化,在终端设备侧即可判断是否发起不同UE能力的会话建立请求。
可选地,若终端设备向网络侧设备发起会话建立请求,会话建立请求中包括终端设备的第一完整性保护数据速率值,所述第一完整性保护数据速率值,是终端设备根据自身支持的完整性保护数据速率能力值与从网络设备接收的所述配置信息确定的。
基于上述几种实现方式,本实施例提供的通信方法中,网络侧设备向终端设备发送包括一个或多个完整性保护数据速率值,以及不同特征对应的完整性保护数据速率阈值的完整性保护配置信息,终端设备根据配置信息中不同特征对应的完整性保护数据速率阈值判断是否发起会话建立请求。上述过程,避免了不必要的会话建立流程,释放了会话建立流程占用的网络资源。
上文描述了本申请实施例提供的通信方法,下文将描述本申请实施例提供的终端设备与网络侧设备。
图9为本申请一实施例提供的终端设备的结构示意图。如图9所示,终端设备900包括:
收发模块901,用于接收网络侧设备发送的完整性保护配置信息;所述配置信息包括一个或多个完整性保护数据速率值;
处理模块902,用于根据所述配置信息确定第一完整性保护数据速率值;
所述收发模块901,还用于向所述网络侧设备发送所述第一完整性保护数据速率值。
可选地,所述配置信息包括完整性保护的数据速率值列表,所述处理模块902,具体用于:
根据完整性保护的数据速率值列表获取一个或多个完整性保护数据速率值;
根据获取的所述一个或多个完整性保护数据速率值,确定第一完整性保护数据速率值。
可选地,所述配置信息包括完整性保护数据速率的最大值和步长,或者,完整性保护数据速率的最小值和步长,所述处理模块902,具体用于:
根据完整性保护数据速率的最大值和步长获取一个或多个完整性保护数据速率值;或者,根据完整性保护数据速率的最小值和步长获取一个或多个完整性保护数据速率值;
根据获取的所述一个或多个完整性保护数据速率值,确定第一完整性保护数据速率值。
可选地,所述配置信息包括完整性保护数据速率值的组信息,所述组信息用于指示一个或者多个完整性保护数据速率组,一个所述完整性保护数据速率组包含一个或多个完整性保护数据速率值,所述处理模块902,具体用于:
根据所述组信息,获取一个或多个完整性保护数据速率值;
根据获取的所述一个或多个完整性保护数据速率值,确定第一完整性保护数据速率值。
可选地,所述收发模块901,具体用于:
根据所述组信息获取所述第一完整性保护数据速率值对应的分组号和组内编号;
向所述网络侧设备发送所述第一完整性保护数据速率值对应的分组号和组内编号。
可选地,所述收发模块901,还用于接收所述网络侧设备发送的所述配置信息的更新信息。
可选地,所述配置信息还包括不同特征对应的完整性保护数据速率阈值。具体地,所述配置信息中包含的特征还可以是业务类型,UE类型,UE能力信息,也可以是其他可能的特征,本申请不作具体限定。
可选地,所述处理模块902,还用于根据所述配置信息中不同特征对应的完整性保护数据速率阈值判断是否发起会话建立请求。
应理解,本申请实施例中的处理模块902可以由处理器或处理器相关电路组件实现,收发模块901可以由收发器或收发器相关电路组件实现。
图10为本申请另一实施例提供的终端设备的结构示意图。如图10所示,本申请实施例还提供一种终端设备1000,该终端设备1000包括:
处理器1002,存储器1001与收发器1003,其中,存储器1001中存储指令或程序,处理器1002用于执行存储器1001中存储的指令或程序。存储器1001中存储的指令或程序被执行时,该处理器1002用于执行上述实施例中处理模块902执行的操作,收发器1003用于执行上述实施例中收发模块901执行的操作。
应理解,根据本申请实施例的终端设备900或终端设备1000可对应于本申请实施例的通信方法200至600以及800中的终端设备,并且终端设备900或终端设备1000中的各个模块的操作和/或功能分别为了实现图2至图6以及图8中的各个方法的相应流程,为了简洁,在此不再赘述。
图11为本申请一实施例提供的网络侧设备的结构示意图。如图11所示,网络侧设备1100包括:
收发模块1101,用于向终端设备发送完整性保护配置信息;所述配置信息包括一个或多个完整性保护数据速率值;
所述收发模块1101,还用于接收所述终端设备发送的第一完整性保护数据速率值,所述第一完整性保护数据速率值是所述终端设备根据所述配置信息确定的。
可选地,所述配置信息包括完整性保护的数据速率值列表。
可选地,所述配置信息包括完整性保护数据速率的最大值和步长,或者,完整性保护数据速率的最小值和步长。
可选地,所述配置信息包括完整性保护数据速率值的组信息,所述组信息用于指示一个或者多个完整性保护数据速率组,一个所述完整性保护数据速率组包含一个或 多个完整性保护数据速率值。
可选地,所述收发模块1101,具体用于:
接收所述终端设备发送的所述第一完整性保护数据速率值对应的分组号和组内编号;所述分组号和所述组内编号是所述终端设备根据所述组信息确定的。
可选地,所述网络侧设备1100还包括处理模块1102。
所述处理模块1102,用于更新所述配置信息;
所述收发模块1101,还用于向所述终端设备发送所述配置信息的更新信息。
可选地,所述收发模块1101,还用于接收多个所述终端设备发送的第一完整性保护数据速率值;所述处理模块1102,具体用于根据多个所述终端设备发送的第一完整性保护数据速率值更新所述配置信息。
可选地,所述配置信息还包括不同特征对应的完整性保护数据速率阈值。具体地,所述配置信息中包含的特征可以是业务类型,UE类型,UE能力信息,也可以是其他可能的特征,本申请不作具体限定。
应理解,本申请实施例中的处理模块1102可以由处理器或处理器相关电路组件实现,收发模块1101可以由收发器或收发器相关电路组件实现。
图12为本申请另一实施例提供的网络侧设备的结构示意图。如图12所示,本申请实施例还提供一种网络侧设备1200,该网络侧设备1200包括:
处理器1202,存储器1201与收发器1203,其中,存储器1201中存储指令或程序,处理器1202用于执行存储器1201中存储的指令或程序。存储器1201中存储的指令或程序被执行时,该处理器1202用于执行上述实施例中处理模块1101执行的操作,收发器1203用于执行上述实施例中收发模块1101执行的操作。
应理解,根据本申请实施例的网络侧设备1100或网络侧设备1200可对应于本申请实施例的通信方法200至800中的网络侧设备,并且网络侧设备1100或网络侧设备1200中的各个模块的操作和/或功能分别为了实现图2至图8中的各个方法的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的通信方法中与终端设备对应的方法步骤。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的通信方法中与网络侧设备对应的方法步骤。
本申请实施例还提供一种通信装置,该通信装置可以是终端设备也可以是电路。该通信装置可以用于执行上述方法实施例中由终端设备所执行的动作。
当该通信装置为终端设备时,图13示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图13中,终端设备以手机作为例子。如图13所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输 出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图13中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图13所示,终端设备包括收发单元1301和处理单元1302。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1301中用于实现接收功能的器件视为接收单元,将收发单元1301中用于实现发送功能的器件视为发送单元,即收发单元1301包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1301用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元1302用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元1301用于执行图2中的步骤203中终端设备侧的发送操作,和/或收发单元1301还用于执行本申请实施例中终端设备侧的其他收发步骤。处理单元1302,用于执行图2中的步骤202,和/或处理单元1302还用于执行本申请实施例中终端设备侧的其他处理步骤。
再例如,在另一种实现方式中,收发单元1301用于执行图3中步骤304中终端设备侧的发送操作,和/或收发单元1302还用于执行本申请实施例中终端设备侧的其他收发步骤。处理单元1302用于执行图3中的步骤302、步骤303,和/或处理单元1302还用于执行本申请实施例中终端设备侧的其他处理步骤。
又例如,在再一种实现方式中,收发单元1301用于执行图4中步骤404中终端设备侧的发送操作,和/或收发单元1301还用于执行本申请实施例中终端设备侧的其他收发步骤。处理单元1302,用于执行图4中的步骤402、步骤403,和/或处理单元1302还用于执行本申请实施例中终端设备侧的其他处理步骤。
又例如,在再一种实现方式中,收发单元1301用于执行图5中步骤504中终端设备侧的发送操作,和/或收发单元1301还用于执行本申请实施例中终端设备侧的其他收发步骤。处理单元1302,用于执行图5中的步骤502、步骤503,和/或处理单元1302还用于执行本申请实施例中终端设备侧的其他处理步骤。
又例如,在再一种实现方式中,收发单元1301用于执行图6中步骤604中终端设 备侧的发送操作,和/或收发单元1301还用于执行本申请实施例中终端设备侧的其他收发步骤。处理单元1302,用于执行图6中的步骤602、步骤603,和/或处理单元1302还用于执行本申请实施例中终端设备侧的其他处理步骤。
又例如,在再一种实现方式中,处理单元1302,用于执行图8中的步骤803,和/或处理单元1302还用于执行本申请实施例中终端设备侧的其他处理步骤。
当该通信装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
本实施例中的通信装置为终端设备时,可以参照图14所示的设备。作为一个例子,该设备可以完成类似于图10中处理器1001的功能。在图14中,该设备包括处理器1401,发送数据处理器1402,接收数据处理器1403。上述实施例中的处理模块902可以是图14中的该处理器1401,并完成相应的功能。上述实施例中的收发模块901可以是图14中的发送数据处理器1402,和/或接收数据处理器1403。虽然图14中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
本实施例中的通信装置为网络侧设备时,该网络侧设备可以如图15所示,装置1500包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1510和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1520。所述RRU 1510可以称为收发模块,与图11中的收发模块1101对应,可选地,该收发模块还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1511和射频单元1512。所述RRU 1510部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU 1510部分主要用于进行基带处理,对基站进行控制等。所述RRU 1510与BBU 1520可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1520为基站的控制中心,也可以称为处理模块,可以与图11中的处理模块1102对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理模块)可以用于控制基站执行上述方法实施例中关于网络侧设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 1520可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1520还包括存储器1521和处理器1522。所述存储器1521用以存储必要的指令和数据。所述处理器1522用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络侧设备的操作流程。所述存储器1521和处理器1522可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
本申请实施例还提供一种通信系统,包括上述任一实施例所述的终端设备,以及上述任一实施例中所述的网络侧设备。
应理解,本申请实施例中提及的处理器可以是中央处理单元(Central Processing  Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如 多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络侧设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (33)

  1. 一种通信方法,其特征在于,包括:
    终端设备接收网络侧设备发送的完整性保护配置信息;所述配置信息包括一个或多个完整性保护数据速率值;
    所述终端设备根据所述配置信息确定第一完整性保护数据速率值;
    所述终端设备向所述网络侧设备发送所述第一完整性保护数据速率值。
  2. 根据权利要求1所述的方法,其特征在于,所述配置信息包括完整性保护的数据速率值列表,所述终端设备根据所述配置信息确定第一完整性保护数据速率值,包括:
    所述终端设备根据完整性保护的数据速率值列表获取一个或多个完整性保护数据速率值;
    所述终端设备根据获取的所述一个或多个完整性保护数据速率值,确定第一完整性保护数据速率值。
  3. 根据权利要求1所述的方法,其特征在于,所述配置信息包括完整性保护数据速率的最大值和步长,或者,完整性保护数据速率的最小值和步长,所述终端设备根据所述配置信息确定第一完整性保护数据速率值,包括:
    所述终端设备根据完整性保护数据速率的最大值和步长获取一个或多个完整性保护数据速率值;或者,所述终端设备根据完整性保护数据速率的最小值和步长获取一个或多个完整性保护数据速率值;
    所述终端设备根据获取的所述一个或多个完整性保护数据速率值,确定第一完整性保护数据速率值。
  4. 根据权利要求1所述的方法,其特征在于,所述配置信息包括完整性保护数据速率值的组信息,所述组信息用于指示一个或者多个完整性保护数据速率组,一个所述完整性保护数据速率组包含一个或多个完整性保护数据速率值,所述终端设备根据所述配置信息确定第一完整性保护数据速率值,包括:
    所述终端设备根据所述组信息,获取一个或多个完整性保护数据速率值;
    所述终端设备根据获取的所述一个或多个完整性保护数据速率值,确定第一完整性保护数据速率值。
  5. 根据权利要求4所述的方法,其特征在于,所述终端设备向所述网络侧设备发送所述第一完整性保护数据速率值,包括:
    所述终端设备根据所述组信息获取所述第一完整性保护数据速率值对应的分组号和组内编号;
    所述终端设备向所述网络侧设备发送所述第一完整性保护数据速率值对应的分组号和组内编号。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络侧设备发送的所述配置信息的更新信息。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述配置信息还包括不同特征对应的完整性保护数据速率阈值;所述方法还包括:
    所述终端设备根据所述配置信息中不同特征对应的完整性保护数据速率阈值判断是否发起会话建立请求。
  8. 一种通信方法,其特征在于,包括:
    网络侧设备向终端设备发送完整性保护配置信息;所述配置信息包括一个或多个完整性保护数据速率值;
    所述网络侧设备接收所述终端设备发送的第一完整性保护数据速率值,所述第一完整性保护数据速率值是所述终端设备根据所述配置信息确定的。
  9. 根据权利要求8所述的方法,其特征在于,所述配置信息包括完整性保护的数据速率值列表。
  10. 根据权利要求8所述的方法,其特征在于,所述配置信息包括完整性保护数据速率的最大值和步长,或者,完整性保护数据速率的最小值和步长。
  11. 根据权利要求8所述的方法,其特征在于,所述配置信息包括完整性保护数据速率值的组信息,所述组信息用于指示一个或者多个完整性保护数据速率组,一个所述完整性保护数据速率包含一个或多个完整性保护数据速率值。
  12. 根据权利要求11所述的方法,其特征在于,所述网络侧设备接收所述终端设备发送的第一完整性保护数据速率值,包括:
    所述网络侧设备接收所述终端设备发送的所述第一完整性保护数据速率值对应的分组号和组内编号;所述分组号和所述组内编号是所述终端设备根据所述组信息确定的。
  13. 根据权利要求8至12任一项所述的方法,其特征在于,所述网络侧设备向终端设备发送完整性保护配置信息之后,所述方法还包括:
    所述网络侧设备向所述终端设备发送所述配置信息的更新信息。
  14. 根据权利要求8至13任一项所述的方法,其特征在于,所述配置信息还包括不同特征对应的完整性保护数据速率阈值。
  15. 一种终端设备,其特征在于,包括:
    收发模块,用于接收网络侧设备发送的完整性保护配置信息;所述配置信息包括一个或多个完整性保护数据速率值;
    处理模块,用于根据所述配置信息确定第一完整性保护数据速率值;
    所述收发模块,还用于向所述网络侧设备发送所述第一完整性保护数据速率值。
  16. 根据权利要求15所述的终端设备,其特征在于,所述配置信息包括完整性保护的数据速率值列表,所述处理模块,具体用于:
    根据完整性保护的数据速率值列表获取一个或多个完整性保护数据速率值;
    根据获取的所述一个或多个完整性保护数据速率值,确定第一完整性保护数据速率值。
  17. 根据权利要求15所述的终端设备,其特征在于,所述配置信息包括完整性保护数据速率的最大值和步长,或者,完整性保护数据速率的最小值和步长,所述处理模块,具体用于:
    根据完整性保护数据速率的最大值和步长获取一个或多个完整性保护数据速率值;或者,根据完整性保护数据速率的最小值和步长获取一个或多个完整性保护数据速率值;
    根据获取的所述一个或多个完整性保护数据速率值,确定第一完整性保护数据速率值。
  18. 根据权利要求15所述的终端设备,其特征在于,所述配置信息包括完整性保护数据速率值的组信息,所述组信息用于指示一个或者多个完整性保护数据速率组,一个所述完整性保护数据速率组包含一个或多个完整性保护数据速率值,所述处理模块,具体用 于:
    根据所述组信息,获取一个或多个完整性保护数据速率值;
    根据获取的所述一个或多个完整性保护数据速率值,确定第一完整性保护数据速率值。
  19. 根据权利要求18所述的终端设备,其特征在于,所述收发模块,具体用于:
    根据所述组信息获取所述第一完整性保护数据速率值对应的分组号和组内编号;
    向所述网络侧设备发送所述第一完整性保护数据速率值对应的分组号和组内编号。
  20. 根据权利要求15至19任一项所述的终端设备,其特征在于,所述收发模块,还用于接收所述网络侧设备发送的所述配置信息的更新信息。
  21. 根据权利要求15至20任一项所述的终端设备,其特征在于,所述配置信息还包括不同特征对应的完整性保护数据速率阈值;
    所述处理模块,还用于根据所述配置信息中不同特征对应的完整性保护数据速率阈值判断是否发起会话建立请求。
  22. 一种网络侧设备,其特征在于,包括:
    收发模块,用于向终端设备发送完整性保护配置信息;所述配置信息包括一个或多个完整性保护数据速率值;
    收发模块,还用于接收所述终端设备发送的第一完整性保护数据速率值,所述第一完整性保护数据速率值是所述终端设备根据所述配置信息确定的。
  23. 根据权利要求22所述的网络侧设备,其特征在于,所述配置信息包括完整性保护的数据速率值列表。
  24. 根据权利要求22所述的网络侧设备,其特征在于,所述配置信息包括完整性保护数据速率的最大值和步长,或者,完整性保护数据速率的最小值和步长。
  25. 根据权利要求22所述的网络侧设备,其特征在于,所述配置信息包括完整性保护数据速率值的组信息,所述组信息用于指示一个或者多个完整性保护数据速率组,一个所述完整性保护数据速率包含一个或多个完整性保护数据速率值。
  26. 根据权利要求25所述的网络侧设备,其特征在于,所述收发模块,具体用于:
    接收所述终端设备发送的所述第一完整性保护数据速率值对应的分组号和组内编号;所述分组号和所述组内编号是所述终端设备根据所述组信息确定的。
  27. 根据权利要求22至26任一项所述的网络侧设备,其特征在于,所述网络侧设备还包括处理模块;所述处理模块,用于更新所述配置信息;
    所述收发模块,还用于向所述终端设备发送所述配置信息的更新信息。
  28. 根据权利要求22至27任一项所述的网络侧设备,其特征在于,所述配置信息还包括不同特征对应的完整性保护数据速率阈值。
  29. 一种终端设备,其特征在于,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至7中任一项所述的通信方法的步骤。
  30. 一种网络侧设备,其特征在于,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求8至14中任一项所述的通信方法的步骤。
  31. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算 机程序,所述计算机程序被处理器执行时实现如权利要求1至7中任一项所述的通信方法。
  32. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求8至14中任一项所述的通信方法。
  33. 一种通信系统,其特征在于,包括权利要求15至21中任一项所述的终端设备,以及权利要求22至28中任一项所述的网络侧设备。
PCT/CN2020/082629 2019-04-08 2020-03-31 通信方法与设备 WO2020207304A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910277254.0 2019-04-08
CN201910277254.0A CN111800369B (zh) 2019-04-08 2019-04-08 通信方法与设备

Publications (1)

Publication Number Publication Date
WO2020207304A1 true WO2020207304A1 (zh) 2020-10-15

Family

ID=72751915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082629 WO2020207304A1 (zh) 2019-04-08 2020-03-31 通信方法与设备

Country Status (2)

Country Link
CN (1) CN111800369B (zh)
WO (1) WO2020207304A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018138379A1 (en) * 2017-01-30 2018-08-02 Telefonaktiebolaget Lm Ericsson (Publ) Methods for integrity protection of user plane data
CN109246705A (zh) * 2017-06-15 2019-01-18 维沃移动通信有限公司 一种数据无线承载完整性保护配置方法、终端及网络设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101686501B (zh) * 2008-09-26 2013-06-05 华为技术有限公司 一种通信系统中速率的调整、获取方法和装置
CN107113594B (zh) * 2015-01-16 2021-01-29 三星电子株式会社 设备到设备通信系统的安全发送和接收发现消息的方法
TWI816160B (zh) * 2016-01-05 2023-09-21 美商內數位專利控股公司 在傳訊平面上傳送小資料nas協定之增強的裝置及方法
CN107786954B (zh) * 2016-08-24 2020-10-02 上海朗帛通信技术有限公司 一种无线传输中的方法和装置
EP3596953B1 (en) * 2017-03-17 2023-05-31 Telefonaktiebolaget LM Ericsson (Publ) Security solution for switching on and off security for up data between ue and ran in 5g
WO2018201506A1 (zh) * 2017-05-05 2018-11-08 华为技术有限公司 一种通信方法及相关装置
WO2019031924A1 (en) * 2017-08-10 2019-02-14 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR DATA PROCESSING IN A WIRELESS COMMUNICATION SYSTEM

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018138379A1 (en) * 2017-01-30 2018-08-02 Telefonaktiebolaget Lm Ericsson (Publ) Methods for integrity protection of user plane data
CN109246705A (zh) * 2017-06-15 2019-01-18 维沃移动通信有限公司 一种数据无线承载完整性保护配置方法、终端及网络设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Discussion on AS UP Integrity Protection support in LTE", "3GPP TSG-RAN WG2#103 R2-1812549", 10 August 2018 (2018-08-10), XP051522144 *
LG ELECTRONICS ET AL.: "Correction of UE 5GSM Core Network Capability", "3GPP TSG-SA WG2 MEETING #132 S2-1903505", 2 April 2019 (2019-04-02), XP051719655 *

Also Published As

Publication number Publication date
CN111800369A (zh) 2020-10-20
CN111800369B (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
US11178576B2 (en) Parameter conversions between an evolved packet system network and a 5G network
US11477689B2 (en) Method and apparatus for establishing guaranteed bit rate (GBR) quality of service (QoS) flow in session
TW201735716A (zh) 數據傳輸的方法、基站及終端設備
US20200351714A1 (en) Communication Method for Deterministic Transmission and Related Apparatus
US11489760B2 (en) Multicast group creation method, multicast group joining method, and apparatus
US11838792B2 (en) Data transmission method, network device, and terminal device
WO2018127018A1 (zh) 多链接通信方法、设备和终端
WO2016191963A1 (zh) 一种建立承载的方法、用户设备及基站
WO2018127219A1 (zh) 一种减少中断时延的方法、装置及用户设备
WO2017193392A1 (zh) 通信方法、网络设备和终端设备
WO2020155076A1 (zh) 业务处理方法、设备、芯片及计算机程序
WO2021081824A1 (zh) 无线通信方法和终端设备
US11265922B2 (en) Method for accessing wireless local area network, terminal device, and network device
WO2020042037A1 (zh) 无线通信方法和通信设备
WO2020207304A1 (zh) 通信方法与设备
WO2023020297A1 (zh) 中继选择方法和装置
WO2020233496A1 (zh) 安全会话方法和装置
WO2021023185A1 (zh) 一种接入限制检测方法和装置
WO2021147672A1 (zh) 会话处理方法及通信装置
EP3448085A1 (en) Method and device for adjusting coding rate
WO2020103050A1 (zh) 一种数据通道的建立方法及装置、网络设备
WO2020042038A1 (zh) 通信方法和设备
WO2020082381A1 (zh) 一种接入控制方法、终端及存储介质
US11968728B2 (en) Method of configuring service data adaptation protocol entity and device
WO2021208817A1 (zh) 网络资源控制的方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20787805

Country of ref document: EP

Kind code of ref document: A1