WO2020207210A1 - 一种fec模式的同步方法、系统、主节点及从节点 - Google Patents

一种fec模式的同步方法、系统、主节点及从节点 Download PDF

Info

Publication number
WO2020207210A1
WO2020207210A1 PCT/CN2020/079741 CN2020079741W WO2020207210A1 WO 2020207210 A1 WO2020207210 A1 WO 2020207210A1 CN 2020079741 W CN2020079741 W CN 2020079741W WO 2020207210 A1 WO2020207210 A1 WO 2020207210A1
Authority
WO
WIPO (PCT)
Prior art keywords
data packet
slave node
fec
synchronization
synchronization data
Prior art date
Application number
PCT/CN2020/079741
Other languages
English (en)
French (fr)
Inventor
张志辉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP20787627.7A priority Critical patent/EP3955484A4/en
Priority to KR1020217035843A priority patent/KR20210149132A/ko
Publication of WO2020207210A1 publication Critical patent/WO2020207210A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/048Speed or phase control by synchronisation signals using the properties of error detecting or error correcting codes, e.g. parity as synchronisation signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0075Transmission of coding parameters to receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node
    • H04L12/40039Details regarding the setting of the power status of a node according to activity on the bus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0075Arrangements for synchronising receiver with transmitter with photonic or optical means

Definitions

  • the present invention requires the priority of a Chinese patent application filed with the Chinese Patent Office, the application number is 201910298537.3, and the invention title is "a synchronization method, system, master node and slave node in an FEC mode" on April 12, 2019.
  • the application The entire content of is incorporated in the present invention by reference.
  • the present invention relates to the field of optical network communication, in particular to a synchronization method, a master node, a slave node and a system of an FEC (Forward Error Correction) mode.
  • FEC Forward Error Correction
  • the interface between MAC (Media Access Control Address, Media Access Control) and PHY (Port Physical Layer) of high-speed Ethernet has evolved from the original XGMII (10 Gigabit Media Independent Interface, 10Gb media independent interface) interface to CGMII (100 Gigabit Media Independent Interface, 10Gb media independent interface), and at the same time, the PHY hierarchy has an additional FEC function layer.
  • the FEC sublayer is located between the PCS (Physical Coding Sublayer) and PMA (Physical Medium Attachment, Physical Medium Attachment) sublayers.
  • the signal is processed in a certain format before being transmitted.
  • the slave node decodes according to the prescribed algorithm to find out the wrong code and correct the error.
  • At least one embodiment of the present invention provides an FEC mode synchronization method, a master node, a slave node, and a system.
  • the FEC mode of the slave node is automatically synchronized with the master node, thereby improving the efficiency and stability of signal transmission Sex.
  • At least one embodiment of the present invention provides a synchronization method in FEC mode, including: receiving a synchronization data packet sent by the master node, wherein the synchronization data packet includes the FEC of the master node Transmission mode: adjust the FEC transmission mode of the slave node according to the FEC transmission mode of the master node.
  • the embodiment of the present invention also provides a synchronization method of the FEC mode, including: constructing a synchronization data packet, wherein the synchronization data packet includes the FEC transmission mode of the master node; sending the synchronization data packet to the slave node, wherein, The slave node adjusts the FEC transmission mode of the slave node according to the FEC transmission mode of the master node.
  • the embodiment of the present invention also provides a slave node, including: a receiving module, which receives a synchronization data packet sent by the master node, wherein the synchronization data packet includes the FEC transmission mode of the master node; The FEC transmission mode of the master node adjusts the FEC transmission mode of the slave node.
  • the embodiment of the present invention also provides a master node, including: a construction module for constructing a synchronization data packet, wherein the synchronization data packet contains the FEC transmission mode of the master node; a sending module is used for sending the synchronization data Packet to the slave node, where the slave node adjusts the FEC transmission mode of the slave node according to the FEC transmission mode of the master node.
  • the embodiment of the present invention also provides a system for FEC mode synchronization, which includes a master node and a slave node.
  • the master node constructs a synchronization data packet, wherein the synchronization data packet contains the FEC transmission mode of the master node;
  • the synchronization data packet is sent to the slave node; the slave node receives the synchronization data packet to obtain the FEC transmission mode of the master node, and adjusts its own FEC transmission mode according to the obtained FEC transmission mode.
  • FIG. 1 is a flowchart of a method for FEC mode synchronization according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for FEC mode synchronization according to another embodiment of the present invention.
  • Figure 3 is a schematic diagram of the synchronous data packet structure.
  • Figure 4 is a schematic diagram of a slave node according to an embodiment of the present invention.
  • Figure 5 is a schematic diagram of a master node according to an embodiment of the present invention.
  • Fig. 6 is a system block diagram of FEC mode synchronization according to an embodiment of the present invention.
  • FIG. 7 is a system block diagram of FEC mode synchronization according to another embodiment of the present invention.
  • FIG. 8 is a flow chart of a one-step method of the FEC mode synchronization process according to an embodiment of the present invention.
  • Fig. 9 is a flow chart of a two-step method of FEC mode synchronization process according to an embodiment of the present invention.
  • service data packets are used to carry the FEC transmission mode of the master node.
  • the FEC mode of the slave node cannot be synchronized with the FEC mode of the master node.
  • the embodiment of the present invention proposes an FEC mode synchronization method, a master node, a slave node, and a system to solve the problem that the FEC mode of the slave node cannot be synchronized with the FEC mode of the master node due to service failure.
  • the FEC mode synchronization method in the embodiment of the present invention includes the following steps.
  • Step 101 Receive a synchronization data packet sent by the master node, where the synchronization data packet includes at least the destination address, source address, Ethernet rate of the master node, optical module type of the master node, FEC mode of the master node, and synchronization status, as shown in Figure 3. Show.
  • Step 102 Adjust the FEC transmission mode of the slave node according to the FEC transmission mode of the master node.
  • Step 102 specifically includes the following steps.
  • Step 1021 Verify the synchronization status of the synchronization data packet.
  • the slave node verifies the destination address, source address, Ethernet rate of the master node, optical module type of the master node, FEC mode of the master node, and synchronization status of the data packet in the synchronization data packet sent by the master node.
  • the isochronous data packet may also include reserved bits to transmit other information that may be needed in the future.
  • Step 1022 When the synchronization state of the synchronous data packet is an asynchronous state, check that the address of the slave node is consistent with the destination address of the synchronous data packet, and the Ethernet rate of the slave node is within the frequency deviation range of the Ethernet rate of the synchronous data packet , And when the optical module type of the slave node is consistent with the optical module compatibility table, the FEC mode of the slave node is adjusted according to the FEC mode in the synchronization data packet.
  • the address of the slave node is inconsistent with the destination address of the synchronization data packet
  • the Ethernet rate of the slave node is not within the frequency deviation range of the Ethernet rate of the synchronization data packet
  • the optical module type of the slave node and the optical module compatibility table When they are consistent, the FEC mode of the slave node is not adjusted.
  • the FEC mode of the slave node is not adjusted.
  • the synchronization state of the data packet is a normal synchronization state (such as Sync), it will not be processed; if the synchronization state of the data packet is an asynchronous state, check that the address of the slave node is consistent with the destination address of the synchronization data packet and the master When the Ethernet rate of the node and the Ethernet rate of the slave node are within the range of plus or minus 100 ppm frequency deviation, and the optical module type of the slave node is consistent with the optical module compatibility table, modify the FEC of the slave node according to the FEC transmission mode in the synchronous data packet Transfer mode, and give the master node state machine status response message.
  • a normal synchronization state such as Sync
  • the Ethernet rate of the master node and the Ethernet rate of the slave node are not within the range of plus or minus 100 ppm frequency deviation, or the optical module type of the slave node is inconsistent with the optical module compatibility table, Then the FEC mode of the slave node is not changed, and the master node state machine status response message is given.
  • optical module compatibility table is used to verify whether the optical module type supports the FEC mode configuration from the node.
  • the master node state machine is used to record the current FEC mode synchronization state and define several states of the state machine, such as but not limited to the initial state (such as Initial), error state (such as Error), synchronization state (Sync), etc.
  • initial state such as Initial
  • error state such as Error
  • Sync synchronization state
  • the method further includes: sending the synchronization status of the FEC transmission mode of the slave node to the master node.
  • the master node state machine state response message is given, and the response message includes a synchronization state (such as Sync) and an error state (such as Error).
  • the FEC mode synchronization method in the embodiment of the present invention includes the following steps.
  • Step 201 The master node constructs a synchronization data packet, where the synchronization data packet contains the FEC transmission mode of the master node.
  • Step 202 Send a synchronization data packet to the slave node, where the slave node adjusts the FEC transmission mode of the slave node according to the FEC transmission mode of the master node.
  • Step 202 specifically includes the following steps.
  • Step 2021 verify the synchronization status of the synchronization data packet.
  • the slave node verifies the destination address, source address, Ethernet rate of the master node, optical module type of the master node, FEC mode of the master node, and synchronization status of the data packet in the synchronization data packet sent by the master node.
  • the isochronous data packet may also include reserved bits to transmit other information that may be needed in the future.
  • Step 2022 When the synchronization state of the synchronous data packet is the asynchronous state, check that the address of the slave node is consistent with the destination address of the synchronous data packet, and the Ethernet rate of the slave node is within the frequency deviation range of the Ethernet rate of the synchronous data packet , And when the optical module type of the slave node is consistent with the optical module compatibility table, the FEC mode of the slave node is adjusted according to the FEC mode in the synchronization data packet.
  • the address of the slave node is inconsistent with the destination address of the synchronization data packet
  • the Ethernet rate of the slave node is not within the frequency deviation range of the Ethernet rate of the synchronization data packet
  • the optical module type of the slave node and the optical module compatibility table When they are consistent, the FEC mode of the slave node is not adjusted.
  • the FEC mode of the slave node is not adjusted.
  • the synchronization state of the data packet is a normal synchronization state (such as Sync), it will not be processed; if the synchronization state of the data packet is an asynchronous state, check that the address of the slave node is consistent with the destination address of the synchronization data packet and the master When the Ethernet rate of the node and the Ethernet rate of the slave node are within the range of plus or minus 100 ppm frequency deviation, and the optical module type of the slave node is consistent with the optical module compatibility table, modify the FEC of the slave node according to the FEC transmission mode in the synchronous data packet Transfer mode, and give the master node state machine status response message.
  • a normal synchronization state such as Sync
  • the Ethernet rate of the master node and the Ethernet rate of the slave node are not within the range of plus or minus 100 ppm frequency deviation, or the optical module type of the slave node is inconsistent with the optical module compatibility table, Then the FEC mode of the slave node is not changed, and the master node state machine status response message is given.
  • optical module compatibility table is used to verify whether the optical module type supports the FEC mode configuration from the node.
  • the master node state machine is used to record the current FEC mode synchronization state and define several states of the state machine, such as but not limited to the initial state (such as Initial), error state (such as Error), synchronization state (Sync), etc.
  • initial state such as Initial
  • error state such as Error
  • Sync synchronization state
  • the method further includes: step 204, when the FEC transmission mode of the master node changes, update the FEC transmission mode of the master node in the synchronization data packet.
  • the FEC transmission mode of the master node determines whether the FEC transmission mode of the master node has changed. If there is a change, set it according to the new FEC transmission mode, update the current master node FEC transmission mode, and respond to the state machine status Sync to the master node to perform master-slave node FEC The transfer mode is synchronized.
  • the slave node in the embodiment of the present invention specifically includes the following steps.
  • the receiving module 41 receives the synchronization data packet sent by the master node, where the synchronization data packet includes the FEC transmission mode of the master node.
  • the adjustment module 42 is configured to adjust the FEC transmission mode of the slave node according to the FEC transmission mode of the master node.
  • the adjustment module 42 specifically includes the following steps.
  • the verification unit 4201 is used to verify the synchronization status of the synchronization data packet.
  • the first adjustment unit 4202 is configured to check that the address of the slave node is consistent with the destination address of the synchronization data packet when the synchronization state of the synchronization data packet is the asynchronous state, and the Ethernet rate of the slave node is in the synchronization state.
  • the FEC mode of the slave node is adjusted according to the FEC mode in the synchronization data packet.
  • the second adjustment unit 4204 is configured to check any of the following: the address of the slave node is inconsistent with the destination address of the synchronization data packet, and the Ethernet rate of the slave node is not within the frequency deviation range of the Ethernet rate of the synchronization data packet If the optical module type of the slave node is consistent with the optical module compatibility table, the FEC mode of the slave node is not adjusted.
  • the third adjustment unit 4206 is configured to not adjust the FEC mode of the slave node when the synchronization state of the synchronization data packet is the normal synchronization state.
  • the synchronization state of the data packet is a normal synchronization state (such as Sync), it will not be processed; if the synchronization state of the data packet is an asynchronous state, check that the address of the slave node is consistent with the destination address of the synchronization data packet and the master When the Ethernet rate of the node and the Ethernet rate of the slave node are within the range of plus or minus 100 ppm frequency deviation, and the optical module type of the slave node is consistent with the optical module compatibility table, modify the FEC of the slave node according to the FEC transmission mode in the synchronous data packet Transfer mode, and give the master node state machine status response message.
  • a normal synchronization state such as Sync
  • the Ethernet rate of the master node and the Ethernet rate of the slave node are not within the range of plus or minus 100 ppm frequency deviation, or the optical module type of the slave node is inconsistent with the optical module compatibility table, Then the FEC mode of the slave node is not changed, and the master node state machine status response message is given.
  • optical module compatibility table is used to verify whether the optical module type supports the FEC mode configuration from the node.
  • the master node state machine is used to record the current FEC mode synchronization state and define several states of the state machine, such as but not limited to the initial state (such as Initial), error state (such as Error), synchronization state (Sync), etc.
  • initial state such as Initial
  • error state such as Error
  • Sync synchronization state
  • a synchronization module 44 is further included: configured to send the synchronization status of the FEC transmission mode of the slave node to the master node.
  • the master node state machine state response message is given, and the response message includes a synchronization state (such as Sync) and an error state (such as Error).
  • the master node in the embodiment of the present invention specifically includes the following steps.
  • the construction module 51 is used to construct a synchronization data packet, wherein the synchronization data packet contains the FEC transmission mode of the master node.
  • the sending module 52 is configured to send the synchronization data packet to the slave node, where the slave node adjusts the FEC transmission mode of the slave node according to the FEC transmission mode of the master node.
  • the master node further includes: an update module 53, which updates the master node FEC transmission mode in the synchronization data packet when the master node FEC transmission mode changes.
  • the FEC transmission mode of the master node determines whether the FEC transmission mode of the master node has changed. If there is a change, set it according to the new FEC transmission mode, update the current master node FEC transmission mode, and respond to the state machine status Sync to the master node to perform master-slave node FEC The transfer mode is synchronized.
  • the FEC mode synchronization system of the embodiment of the present invention specifically includes a master node 61 and a slave node 62, where the master node constructs a synchronization data packet, wherein the synchronization data packet contains the FEC transmission of the master node Mode; the master node sends the synchronization data packet to the slave node; the slave node receives the synchronization data packet to obtain the FEC transmission mode of the master node, and adjusts its own FEC transmission mode according to the acquired FEC transmission mode.
  • the slave node checks the synchronization state of the synchronization data packet; when the synchronization state of the synchronization data packet is an asynchronous state, when checking that the address of the slave node is consistent with the destination address of the synchronization data packet, and the slave node
  • the Ethernet rate of the node is within the frequency deviation range of the Ethernet rate of the synchronous data packet, and the optical module type of the slave node is consistent with the optical module compatibility table, adjust the FEC mode of the slave node according to the FEC mode in the synchronous data packet .
  • the address of the slave node is inconsistent with the destination address of the synchronization data packet
  • the Ethernet rate of the slave node is not within the frequency deviation range of the Ethernet rate of the synchronization data packet
  • the optical module type of the slave node When it is consistent with the optical module compatibility table, the FEC mode of the slave node is not adjusted.
  • the FEC mode of the slave node is not adjusted.
  • system further includes: a state machine 71 and a control unit 72, wherein the state machine sends the synchronization state of the FEC transmission mode of the slave node to the master node.
  • the control unit updates the FEC transmission mode of the master node in the synchronization data packet when the FEC transmission mode of the master node changes.
  • the operation process of mode synchronization of a certain FEC node in the network is selected as follows.
  • the control unit configures the FEC transmission mode of the master node of a certain FEC node in the network.
  • the control unit detects the state of the state machine.
  • the slave node receives the FEC working mode synchronization data packet, and verifies the destination address, source address, Ethernet rate of the master node, the optical module type of the master node, the FEC mode of the master node, and the data packet in the received synchronization data packet Sync status. Check that the address of the slave node is consistent with the destination address of the synchronization data packet, the Ethernet rate of the master node and the Ethernet rate of the slave node are within plus or minus 100 ppm frequency deviation, and the optical module type of the slave node is consistent with the optical module compatibility table. Continue to execute (5), otherwise reply Error to the master node, and then jump to (1).
  • the FEC transmission mode synchronization data packet constructed through the out-of-band transmission of the optical monitoring channel.
  • the constructed FEC transmission mode synchronization data packet can be transmitted to the slave node through the optical monitoring out-of-band mode, and the slave node starts the FEC mode synchronization process of the master and slave nodes after receiving the specific FEC mode synchronization data packet.
  • the FEC transmission mode synchronization data packet constructed through the in-band transmission of the electrical monitoring channel.
  • the constructed FEC transmission mode synchronization data packet can be transmitted to the slave node through the in-band mode of the business electrical monitoring. After the slave node receives the specific FEC mode synchronization data packet, the master-slave node FEC mode synchronization process is started.
  • the slave node checks the destination address, source address, Ethernet rate of the master node, optical module type of the master node, FEC mode of the master node, and synchronization status of the data packet. , Adjust directly without notifying the master node, that is, modify the FEC transmission mode of the slave node immediately after receiving the modification request. This method has a relatively high execution efficiency.
  • FEC transmissions interact with each other.
  • the slave node automatically synchronizes the time transfer mode of the master node
  • a two-step method can be used, that is, the slave node checks the destination address, source address, master node's Ethernet rate, master node optical module type, master node FEC mode, and data packet After confirming that the obtained FEC transmission mode is legal and available and the synchronization packet data matches, the master node needs to be notified of the verification status of the FEC transmission mode.
  • the master node will reply to the slave node after receiving the confirmation message.
  • the node synchronizes the FEC transmission mode after receiving the confirmation message from the master node. This method has better security and stability.
  • the present invention also provides a storage medium in which a computer program is stored, wherein the computer program is configured to execute any of the above-mentioned methods when running.
  • the present invention also provides an electronic device including a memory and a processor, the memory stores a computer program, and the processor is configured to run the computer program to execute any of the above methods.
  • the embodiments of the present invention also provide a computer program product
  • the computer program product includes a computer program stored on a non-transitory computer-readable storage medium
  • the computer program includes program instructions, when the program instructions are When executed by a computer, the computer is caused to execute the method in any of the foregoing method embodiments.
  • Such software may be distributed on a computer-readable medium, and the computer-readable medium may include a computer storage medium (or a non-transitory medium) and a communication medium (or a transitory medium).
  • the term computer storage medium includes volatile and non-volatile memory implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules, or other data). Flexible, removable and non-removable media.
  • Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassette, tape, magnetic disk storage or other magnetic storage device, or Any other medium used to store desired information and that can be accessed by a computer.
  • communication media usually contain computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as carrier waves or other transmission mechanisms, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Small-Scale Networks (AREA)

Abstract

本申请公开了一种FEC模式的同步方法、系统、主节点及从节点,其中,从节点接收主节点发送的同步数据包,其中,同步数据包中包含所述主节点的FEC传送模式;根据主节点的FEC传送模式调整从节点的FEC传送模式。

Description

一种FEC模式的同步方法、系统、主节点及从节点
交叉引用
本发明要求在2019年04月12日提交中国专利局、申请号为201910298537.3、发明名称为“一种FEC模式的同步方法、系统、主节点及从节点”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本发明涉及光网络通信领域,尤其涉及一种FEC(Forward Error Correction,前向纠错)模式的同步方法、主节点、从节点及系统。
背景技术
高速以太网的MAC(Media Access Control Address,媒体访问控制)与PHY(Port Physical Layer,端口物理层)的接口由原来的XGMII(10 Gigabit Media Independent Interface,10Gb独立于媒体的接口)接口演变成CGMII(100 Gigabit Media Independent Interface,10Gb独立于媒体的接口),同时PHY的层次结构上多了FEC功能层。其中,FEC子层位于PCS(Physical Coding Sublayer,物理编码子层)和PMA(Physical Medium Attachment,物理媒介适配层)子层之间,信号在被传输之前预先对其按一定的格式处理,在从节点则按规定的算法进行解码以达到找出错码并纠错的目的。高速以太网的FEC模式除了与业务相关,不同的光模块对FEC模式的开启有不同的默认设置,如果传输收发端FEC模式不一致就会导致以太网业务无法正常输出。目前的FEC的模式同步有两种:1)采用强制方式,主从节点手动强制设置成一致的模式;或者2)采用从节点轮训配置方式,主节点模式保持不变,从节点依次配置FEC模式和非FEC模式。但是人工操作繁琐,对于复杂的现场应用场景会耗费大量人力时间,浪费人工成本。而采用从节点轮训配置方 式时,非FEC模式同步问题导致业务不通时,此时的轮训配置方式会失效。
发明内容
本发明至少一实施例提供了一种FEC模式的同步方法、主节点、从节点及系统,通过构建同步数据包,使从节点的FEC模式自动与主节点同步,从而提高信号传输的效率及稳定性。
为了达到本发明目的,本发明至少一实施例提供了一种FEC模式的同步方法,包括:接收所述主节点发送的同步数据包,其中,所述同步数据包中包含所述主节点的FEC传送模式;根据所述主节点的FEC传送模式调整从节点的FEC传送模式。
本发明实施例还提供了一种FEC模式的同步方法,包括:构建同步数据包,其中,所述同步数据包中包含主节点的FEC传送模式;发送所述同步数据包给从节点,其中,所述从节点根据所述主节点的FEC传送模式调整从节点的FEC传送模式。
本发明实施例还提供了一种从节点,包括:接收模块,接收所述主节点发送的同步数据包,其中,所述同步数据包中包含主节点的FEC传送模式;调整模块,用于根据所述主节点的FEC传送模式调整从节点的FEC传送模式。
本发明实施例还提供了一种主节点,包括:构建模块,用于构建同步数据包,其中,所述同步数据包中包含主节点的FEC传送模式;发送模块,用于发送所述同步数据包给从节点,其中,所述从节点根据所述主节点的FEC传送模式调整从节点的FEC传送模式。
本发明实施例还提供了一种FEC模式同步的系统,包括主节点与从节点,主节点构建同步数据包,其中,所述同步数据包中包含主节点的FEC传送模式;所述主节点将所述同步数据包发送给从节点;所述从节点接收所述同步数据包以获取所述主节点的FEC传送模式,并根据获取的FEC传送模式调 整自身的FEC传送模式。
附图说明
附图用来提供对本发明技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本发明的技术方案,并不构成对本发明技术方案的限制。
图1为本发明实施例的FEC模式同步的方法的流程图。
图2为本发明另一实施例的FEC模式同步的方法的流程图。
图3为同步数据包结构示意图。
图4为本发明实施例的从节点的示意图。
图5为本发明实施例的主节点的示意图。
图6为本发明实施例的FEC模式同步的系统框图。
图7为本发明另一实施例的FEC模式同步的系统框图。
图8为本发明实施例FEC模式同步过程一步法的流程图。
图9为本发明实施例FEC模式同步过程二步法的流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
现有技术中使用业务数据包来携带主节点FEC传送模式,当业务不通时会出现从节点的FEC模式无法与主节点FEC模式同步的问题。
本发明实施例提出一种FEC模式的同步方法、主节点、从节点和系统, 以解决因业务不通而导致的从节点的FEC模式无法与主节点FEC模式同步的问题。
如图1所示,本发明实施例的FEC模式的同步方法,包括如下步骤。
步骤101,接收主节点发送的同步数据包,其中,同步数据包至少包含目的地址、源地址、主节点的以太网速率、主节点光模块类型、主节点FEC模式、同步状态,如图3所示。
步骤102,根据主节点的FEC传送模式调整从节点的FEC传送模式。
其中步骤102,具体包括以下步骤。
步骤1021,校验同步数据包的同步状态。
其中,从节点校验主节点发送的同步数据包中的目的地址、源地址、主节点的以太网速率、主节点光模块类型、主节点FEC模式以及数据包的同步状态。该同步数据包还可以包括预留位,用以传送其他未来可能需要的信息。
步骤1022,在同步数据包的同步状态为非同步状态时,当检查从节点的地址与同步数据包的目的地址一致,且从节点的以太网速率在同步数据包的以太网速率频偏范围内,且从节点光模块类型与光模块兼容表一致时,根据同步数据包中的FEC模式调整从节点的FEC模式。
当检查以下任意一项时:从节点的地址与同步数据包的目的地址不一致、从节点的以太网速率不在同步数据包的以太网速率频偏范围内、从节点光模块类型与光模块兼容表一致时,不调整该从节点的FEC模式。
在同步数据包的同步状态为正常同步状态时,不调整该从节点的FEC模式。
其中,如果该数据包的同步状态为正常同步状态(如Sync),则不予处理;如果该数据包的同步状态为非同步状态,检查从节点的地址与同步数据包的目的地址一致且主节点的以太网速率与从节点的以太网速率在正负100ppm频偏范围内,且从节点光模块类型与光模块兼容表一致时,根据该同步数据包中的FEC传送模式修改从节点的FEC传送模式,并给予主节点状态机状 态应答消息。如果检查从节点的地址与同步数据包的目的地址不一致或者主节点的以太网速率与从节点的以太网速率不在正负100ppm频偏范围内或者从节点光模块类型与光模块兼容表不一致时,则从节点的FEC模式不予改变,并给予主节点状态机状态应答消息。
其中,不同光模块支持的FEC模式不同,光模块兼容表用以从节点校验其光模块类型是否支持FEC模式配置。
其中,主节点状态机用以记录当前FEC模式同步状态,定义状态机的几个状态,例如但不限初始状态(如Initial)、错误状态(如Error)、同步状态(Sync)等。
在一实施例中,步骤102之后还包括:将从节点的FEC传送模式的同步状态发送给主节点。
其中,当该数据包的同步状态为非同步状态,在调整从节点FEC模式后,给予主节点状态机状态应答消息,该应答消息包括同步状态(如Sync)、错误状态(如Error)。
如图2所示,本发明实施例的FEC模式的同步方法,包括如下步骤。
步骤201,主节点构建同步数据包,其中,同步数据包中包含主节点的FEC传送模式。
步骤202,发送同步数据包给从节点,其中,从节点根据所述主节点的FEC传送模式调整从节点的FEC传送模式。
步骤202,具体包括以下步骤。
步骤2021,校验同步数据包的同步状态。
其中,从节点校验主节点发送的同步数据包中的目的地址、源地址、主节点的以太网速率、主节点光模块类型、主节点FEC模式以及数据包的同步状态。该同步数据包还可以包括预留位,用以传送其他未来可能需要的信息。
步骤2022,在同步数据包的同步状态为非同步状态时,当检查从节点的地址与同步数据包的目的地址一致,且从节点的以太网速率在同步数据包的 以太网速率频偏范围内,且从节点光模块类型与光模块兼容表一致时,根据同步数据包中的FEC模式调整从节点的FEC模式。
当检查以下任意一项时:从节点的地址与同步数据包的目的地址不一致、从节点的以太网速率不在同步数据包的以太网速率频偏范围内、从节点光模块类型与光模块兼容表一致时,不调整该从节点的FEC模式。
在同步数据包的同步状态为正常同步状态时,不调整该从节点的FEC模式。
其中,如果该数据包的同步状态为正常同步状态(如Sync),则不予处理;如果该数据包的同步状态为非同步状态,检查从节点的地址与同步数据包的目的地址一致且主节点的以太网速率与从节点的以太网速率在正负100ppm频偏范围内,且从节点光模块类型与光模块兼容表一致时,根据该同步数据包中的FEC传送模式修改从节点的FEC传送模式,并给予主节点状态机状态应答消息。如果检查从节点的地址与同步数据包的目的地址不一致或者主节点的以太网速率与从节点的以太网速率不在正负100ppm频偏范围内或者从节点光模块类型与光模块兼容表不一致时,则从节点的FEC模式不予改变,并给予主节点状态机状态应答消息。
其中,不同光模块支持的FEC模式不同,光模块兼容表用以从节点校验其光模块类型是否支持FEC模式配置。
其中,主节点状态机用以记录当前FEC模式同步状态,定义状态机的几个状态,例如但不限初始状态(如Initial)、错误状态(如Error)、同步状态(Sync)等。
该方法还包括:步骤204,在主节点FEC传送模式改变时,更新同步数据包中的主节点FEC传送模式。
其中,判断主节点的FEC传送模式是否有改变,如果有改变,则按照新的FEC传送模式进行设置,更新当前主节点FEC传送模式,并应答状态机状态Sync给主节点,进行主从节点FEC传送模式同步。
如果没有改变,则不做处理,按照原有的FEC工作模式运行,并应答状态机状态Error给主节点,进行主从节点FEC传送模式同步。
如图4所示,本发明实施例的从节点,具体包括以下步骤。
接收模块41,接收主节点发送的同步数据包,其中,同步数据包中包含主节点的FEC传送模式。
调整模块42,用于根据主节点的FEC传送模式调整从节点的FEC传送模式。
其中,所述调整模块42,具体包括以下步骤。
校验单元4201,用于校验同步数据包的同步状态。
第一调整单元4202,用于在该同步数据包的同步状态为非同步状态时,当检查该从节点的地址与该同步数据包的目的地址一致,且该从节点的以太网速率在该同步数据包的以太网速率频偏范围内,且该从节点光模块类型与光模块兼容表一致时,根据该同步数据包中的FEC模式调整该从节点的FEC模式。
第二调整单元4204,用于当检查以下任意一项时:该从节点的地址与该同步数据包的目的地址不一致、该从节点的以太网速率不在该同步数据包的以太网速率频偏范围内、该从节点光模块类型与光模块兼容表一致时,不调整该从节点的FEC模式。
第三调整单元4206,用于在该同步数据包的同步状态为正常同步状态时,不调整该从节点的FEC模式。
其中,如果该数据包的同步状态为正常同步状态(如Sync),则不予处理;如果该数据包的同步状态为非同步状态,检查从节点的地址与同步数据包的目的地址一致且主节点的以太网速率与从节点的以太网速率在正负100ppm频偏范围内,且从节点光模块类型与光模块兼容表一致时,根据该同步数据包中的FEC传送模式修改从节点的FEC传送模式,并给予主节点状态机状态应答消息。如果检查从节点的地址与同步数据包的目的地址不一致或者主 节点的以太网速率与从节点的以太网速率不在正负100ppm频偏范围内或者从节点光模块类型与光模块兼容表不一致时,则从节点的FEC模式不予改变,并给予主节点状态机状态应答消息。
其中,不同光模块支持的FEC模式不同,光模块兼容表用以从节点校验其光模块类型是否支持FEC模式配置。
其中,主节点状态机用以记录当前FEC模式同步状态,定义状态机的几个状态,例如但不限初始状态(如Initial)、错误状态(如Error)、同步状态(Sync)等。
在一实施例中,还包括同步模块44:用于将从节点的FEC传送模式的同步状态发送给主节点。
其中,当该数据包的同步状态为非同步状态,在调整从节点FEC模式后,给予主节点状态机状态应答消息,该应答消息包括同步状态(如Sync)、错误状态(如Error)。
如图5所示,本发明实施例的主节点,具体包括以下步骤。
构建模块51,用于构建同步数据包,其中,所述同步数据包中包含主节点的FEC传送模式。
发送模块52,用于发送该同步数据包给从节点,其中,该从节点根据该主节点的FEC传送模式调整从节点的FEC传送模式。
该主节点还包括:更新模块53,在主节点FEC传送模式改变时,更新同步数据包中的主节点FEC传送模式。
其中,判断主节点的FEC传送模式是否有改变,如果有改变,则按照新的FEC传送模式进行设置,更新当前主节点FEC传送模式,并应答状态机状态Sync给主节点,进行主从节点FEC传送模式同步。
如果没有改变,则不做处理,按照原有的FEC工作模式运行,并应答状态机状态Error给主节点,进行主从节点FEC传送模式同步。
如图6所示,本发明实施例的FEC模式同步的系统,具体包括主节点61与从节点62,其中,该主节点构建同步数据包,其中,该同步数据包中包含主节点的FEC传送模式;该主节点将该同步数据包发送给从节点;该从节点接收该同步数据包以获取该主节点的FEC传送模式,并根据获取的FEC传送模式调整自身的FEC传送模式。具体包括:该从节点校验该同步数据包的同步状态;在该同步数据包的同步状态为非同步状态时,当检查该从节点的地址与该同步数据包的目的地址一致,且该从节点的以太网速率在该同步数据包的以太网速率频偏范围内,且该从节点光模块类型与光模块兼容表一致时,根据该同步数据包中的FEC模式调整该从节点的FEC模式。
当检查以下任意一项时:该从节点的地址与该同步数据包的目的地址不一致、该从节点的以太网速率不在该同步数据包的以太网速率频偏范围内、该从节点光模块类型与光模块兼容表一致时,不调整该从节点的FEC模式。
在该同步数据包的同步状态为正常同步状态时,不调整该从节点的FEC模式。
又一实施例,如图7,该系统还包括:状态机71和控制单元72,其中,该状态机将从节点的FEC传送模式的同步状态发送给主节点。
该控制单元在所述主节点FEC传送模式改变时,更新所述同步数据包中的主节点FEC传送模式。
下面通过具体应用实例进一步说明本申请。
应用示例一
本应用实例中选取网络中某FEC节点模式同步的操作过程,具体如下。
(1)控制单元配置网络中某FEC节点的主节点FEC传送模式。
(2)控制单元检测状态机状态。
(3)检测状态机为是否为Error状态,是则跳转执行(1),否则继续执行(4)。
(4)从节点接收FEC工作模式同步数据包,校验接收到的同步数据包 中目的地址、源地址、主节点的以太网速率、主节点的光模块类型、主节点的FEC模式以及数据包的同步状态。检查从节点的地址与同步数据包的目的地址一致且主节点的以太网速率与从节点的以太网速率在正负100ppm频偏范围内,且从节点光模块类型与光模块兼容表一致时则继续执行(5),否则应答Error给主节点,然后跳转到(1)。
(5)判断新配置的FEC传送模式是否有改变;是则继续执行(6),否则不做处理,按照原有的FEC工作模式运行,并应答状态机状态Error给主节点,然后跳转到(1)。
(6)按照新的FEC传送模式进行设置,更新当前FEC节点(即)FEC传送模式,并应答状态机状态Sync给主节点,然后跳转到(1)。
(7)主从节点FEC传送模式同步完成。
应用示例二
通过光监控通道带外传送构造的FEC传送模式同步数据包。
应用场景中,构造的FEC传输模式同步数据包可通过光监控带外方式传送到从节点,从节点接收到特定的FEC模式同步数据包后启动主从节点FEC模式同步过程。
应用示例三
通过电监控通道带内传送构造的FEC传送模式同步数据包。
应用场景中,构造的FEC传输模式同步数据包可通过业务电监控带内方式传送到从节点,从节点接收到特定的FEC模式同步数据包后启动主从节点FEC模式同步过程。
应用示例四
通过FEC传送模式同步过程一步法,如图8所示。
主节点与从节点之间FEC传送模式同步过程中,从节点经过校验目的地址、源地址、主节点的以太网速率、主节点光模块类型、主节点的FEC模式以及数据包的同步状态后,直接进行调整,无需通知主节点,即收到修改请 求即刻修改从节点FEC传送模式,这种方式执行效率比较高。
应用示例五
通过FEC传送模式同步过程两步法,如图9所示。
实际应用场景中,FEC传送之间是互相交互的。从节点自动同步主节点时间传送模式时,可采用两步法,即从节点经过校验目的地址、源地址、主节点的以太网速率、主节点光模块类型、主节点的FEC模式以及数据包的同步状态后,在确认获取到的FEC传送模式合法可用且同步包数据匹配后,需同步告知主节点FEC传送模式的校验状态,主节点收到此确认消息后再回复给从节点,从节点收到主节点的回复的确认消息后方才同步FEC传送模式,这种方式安全性与稳定性比较好。
本发明还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一所述的方法。
本发明还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一所述的方法。
此外,本发明实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述任意方法实施例中的方法。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算 机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (13)

  1. 一种FEC模式的同步方法,其中,
    接收所述主节点发送的同步数据包,其中,所述同步数据包中包含所述主节点的FEC传送模式;
    根据所述主节点的FEC传送模式调整从节点的FEC传送模式。
  2. 根据权利要求1所述的方法,其中,所述同步数据包包含目的地址、源地址、主节点的以太网速率、主节点光模块类型、主节点FEC模式、同步状态。
  3. 根据权利要求2所述的方法,其中,所述根据所述主节点的FEC传送模式调整从节点的FEC传送模式,具体包括:
    校验所述同步数据包的同步状态;
    在所述同步数据包的同步状态为非同步状态时,当检查所述从节点的地址与所述同步数据包的目的地址一致,且所述从节点的以太网速率在所述同步数据包的以太网速率频偏范围内,且所述从节点光模块类型与光模块兼容表一致时,根据所述同步数据包中的FEC模式调整所述从节点的FEC模式;
    当检查以下任意一项时:所述从节点的地址与所述同步数据包的目的地址不一致、所述从节点的以太网速率不在所述同步数据包的以太网速率频偏范围内、所述从节点光模块类型与光模块兼容表一致时,不调整所述从节点的FEC模式;
    在所述同步数据包的同步状态为正常同步状态时,不调整所述从节点的FEC模式。
  4. 根据权利要求1所述的方法,其中,所述根据所述主节点的FEC传送模式调整从节点的FEC传送模式之后还包括:将所述从节点的FEC传送模式的同步状态发送给所述主节点。
  5. 一种FEC模式的同步方法,其中,包括:
    构建同步数据包,其中,所述同步数据包中包含主节点的FEC传送模式;
    发送所述同步数据包给从节点,其中,所述从节点根据所述主节点的FEC传送模式调整从节点的FEC传送模式。
  6. 根据权利要求5所述的方法,其中,所述从节点根据所述主节点的FEC传送模式调整从节点的FEC传送模式,具体包括:
    校验所述同步数据包的同步状态;
    在所述同步数据包的同步状态为非同步状态时,当检查所述从节点的地址与所述同步数据包的目的地址一致,且所述从节点的以太网速率在所述同步数据包的以太网速率频偏范围内,且所述从节点光模块类型与光模块兼容表一致时,根据所述同步数据包中的FEC模式调整所述从节点的FEC模式;
    当检查以下任意一项时:所述从节点的地址与所述同步数据包的目的地址不一致、所述从节点的以太网速率不在所述同步数据包的以太网速率频偏范围内、所述从节点光模块类型与光模块兼容表一致时,不调整所述从节点的FEC模式;
    在所述同步数据包的同步状态为正常同步状态时,不调整所述从节点的FEC模式。
  7. 根据权利要求5所述的方法,其中,所述方法还包括:在所述主节点FEC传送模式改变时,更新所述同步数据包中的主节点FEC传送模式。
  8. 一种从节点,其中,包括:
    接收模块,接收所述主节点发送的同步数据包,其中,所述同步数据包中包含主节点的FEC传送模式;
    调整模块,用于根据所述主节点的FEC传送模式调整从节点的FEC传送模式。
  9. 根据权利要求8所述的从节点,其中,所述调整模块,具体包括:
    校验单元,用于校验所述同步数据包的同步状态;
    第一调整单元,用于在所述同步数据包的同步状态为非同步状态时,当检查所述从节点的地址与所述同步数据包的目的地址一致,且所述从节点的 以太网速率在所述同步数据包的以太网速率频偏范围内,且所述从节点光模块类型与光模块兼容表一致时,根据所述同步数据包中的FEC模式调整所述从节点的FEC模式;
    第二调整单元,用于当检查以下任意一项时:所述从节点的地址与所述同步数据包的目的地址不一致、所述从节点的以太网速率不在所述同步数据包的以太网速率频偏范围内、所述从节点光模块类型与光模块兼容表一致时,不调整所述从节点的FEC模式;
    第三调整单元,用于在所述同步数据包的同步状态为正常同步状态时,不调整所述从节点的FEC模式。
  10. 一种主节点,其中,包括:
    构建模块,用于构建同步数据包,其中,所述同步数据包中包含主节点的FEC传送模式;
    发送模块,用于发送所述同步数据包给从节点,其中,所述从节点根据所述主节点的FEC传送模式调整从节点的FEC传送模式。
  11. 一种FEC模式同步的系统,包括主节点与从节点,其中,
    所述主节点构建同步数据包,其中,所述同步数据包中包含主节点的FEC传送模式;
    所述主节点将所述同步数据包发送给从节点;
    所述从节点接收所述同步数据包以获取所述主节点的FEC传送模式,并根据获取的FEC传送模式调整自身的FEC传送模式。
  12. 根据权利要求11所述的系统,其中,所述根据获取的FEC传送模式调整自身的FEC传送模式,具体包括:
    所述从节点校验所述同步数据包的同步状态;
    在所述同步数据包的同步状态为非同步状态时,当检查所述从节点的地址与所述同步数据包的目的地址一致,且所述从节点的以太网速率在所述同步数据包的以太网速率频偏范围内,且所述从节点光模块类型与光模块兼容 表一致时,根据所述同步数据包中的FEC模式调整所述从节点的FEC模式;
    当检查以下任意一项时:所述从节点的地址与所述同步数据包的目的地址不一致、所述从节点的以太网速率不在所述同步数据包的以太网速率频偏范围内、所述从节点光模块类型与光模块兼容表一致时,不调整所述从节点的FEC模式;
    在所述同步数据包的同步状态为正常同步状态时,不调整所述从节点的FEC模式。
  13. 根据权利要求11所述的系统,其中,还包括以下至少之一:
    状态调整单元,所述状态调整单元将所述从节点的FEC传送模式的同步状态发送给所述主节点;或
    控制单元,所述控制单元在所述主节点FEC传送模式改变时,更新所述同步数据包中的主节点FEC传送模式。
PCT/CN2020/079741 2019-04-12 2020-03-17 一种fec模式的同步方法、系统、主节点及从节点 WO2020207210A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20787627.7A EP3955484A4 (en) 2019-04-12 2020-03-17 FEC MODE SYNCHRONIZATION METHOD AND SYSTEM AND PRIMARY NODE AND SLAVE NODE
KR1020217035843A KR20210149132A (ko) 2019-04-12 2020-03-17 Fec 모드의 동기화 방법, 시스템, 프라이머리 노드 및 슬레이브 노드

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910298537.3 2019-04-12
CN201910298537.3A CN111817819B (zh) 2019-04-12 2019-04-12 一种fec模式的同步方法、系统、主节点及从节点

Publications (1)

Publication Number Publication Date
WO2020207210A1 true WO2020207210A1 (zh) 2020-10-15

Family

ID=72751916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079741 WO2020207210A1 (zh) 2019-04-12 2020-03-17 一种fec模式的同步方法、系统、主节点及从节点

Country Status (4)

Country Link
EP (1) EP3955484A4 (zh)
KR (1) KR20210149132A (zh)
CN (1) CN111817819B (zh)
WO (1) WO2020207210A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060245454A1 (en) * 2005-04-27 2006-11-02 Rockwell Automation Technologies, Inc. Time synchronization, deterministic data delivery and redundancy for cascaded nodes on full duplex ethernet networks
US8433969B1 (en) * 2010-11-18 2013-04-30 Applied Micro Circuits Corporation Forward error correction (FEC) auto negotiation for an optical transport network (OTN)
US20170006567A1 (en) * 2015-06-30 2017-01-05 International Business Machines Corporation Network clock synchronization
CN109428676A (zh) * 2017-08-30 2019-03-05 深圳市中兴微电子技术有限公司 一种前向纠错编解码模式的同步方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4080397B2 (ja) * 2003-08-27 2008-04-23 三菱電機株式会社 並列計算機
KR101080970B1 (ko) * 2004-12-27 2011-11-09 엘지전자 주식회사 광대역 무선접속 시스템에 적용되는 디코드 정보 전송 방법
CN102292983B (zh) * 2009-03-09 2014-04-23 Lg电子株式会社 用于发送和接收信号的装置以及用于发送和接收信号的方法
CN101594206A (zh) * 2009-06-23 2009-12-02 中兴通讯股份有限公司 前向纠错编解码模式的同步方法及装置
CN101795174A (zh) * 2010-01-20 2010-08-04 华为技术有限公司 10g epon系统中的数据传输方法、装置及系统
CN102195738B (zh) * 2010-03-02 2015-06-10 中兴通讯股份有限公司 用于吉比特无源光网络系统下行帧同步的处理方法及装置
US9654250B2 (en) * 2014-11-10 2017-05-16 Futurewei Technologies, Inc. Adding operations, administration, and maintenance (OAM) information in 66-bit code
CN104507156B (zh) * 2014-12-17 2018-10-30 西南大学 针对无线网络的基于ieee 1588ptp机制的时间同步改进方法
CN106330372B (zh) * 2015-06-29 2019-02-22 中兴通讯股份有限公司 一种光传送网络中时钟时间传送模式同步的方法及装置
JP2019033504A (ja) * 2018-10-01 2019-02-28 Necプラットフォームズ株式会社 受信装置、送受信装置、受信方法及び送受信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060245454A1 (en) * 2005-04-27 2006-11-02 Rockwell Automation Technologies, Inc. Time synchronization, deterministic data delivery and redundancy for cascaded nodes on full duplex ethernet networks
US8433969B1 (en) * 2010-11-18 2013-04-30 Applied Micro Circuits Corporation Forward error correction (FEC) auto negotiation for an optical transport network (OTN)
US20170006567A1 (en) * 2015-06-30 2017-01-05 International Business Machines Corporation Network clock synchronization
CN109428676A (zh) * 2017-08-30 2019-03-05 深圳市中兴微电子技术有限公司 一种前向纠错编解码模式的同步方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"IEEE Standard for Ethernet Amendment 6: Physical Layer Specifications and Management Parameters for Ethernet Passive Optical Networks Protocol over Coax;IEEE Std 802.3bn-2016 (Amendment to IEEE Std 802.3-2015 as amended by IEEE Std 802.3bw-2015, IEEE Std 802.3by-2016, IEEE Std 802.3bq-2016, IEEE Std", LAN/MAN STANDARDS COMMITTEE OF THE IEEE COMPUTER SOCIETY, 7 December 2016 (2016-12-07), Piscataway, NJ, USA , pages 1 - 34, XP068113030 *
See also references of EP3955484A4 *

Also Published As

Publication number Publication date
EP3955484A4 (en) 2023-01-11
EP3955484A1 (en) 2022-02-16
CN111817819B (zh) 2023-06-02
CN111817819A (zh) 2020-10-23
KR20210149132A (ko) 2021-12-08

Similar Documents

Publication Publication Date Title
US11108636B2 (en) Integrity verification for managing network configurations
EP2416508A2 (en) Synchronization for data transfer between physical layers
US11838181B2 (en) Flexible ethernet group management method, device, and computer-readable storage medium
US20160156427A1 (en) Clock recovery in a packet based network
JP2012039446A (ja) 通信システム及び通信装置
US11924314B2 (en) Message transmission method, message transmission device, network side device and storage medium
TWI728514B (zh) 時刻同步系統、時間主局、管理主局及時刻同步方法
WO2021129578A1 (zh) 同步信息的配置方法、装置、网络设备和存储介质
US20110305173A1 (en) Phase and frequency re-lock in synchronous ethernet devices
US8498276B2 (en) Guardian scrubbing strategy for distributed time-triggered protocols
US20220070020A1 (en) Subscriber station for a serial bus system and method for communication in a serial bus system
CN107667491A (zh) 增强计算机网络中的同步
US20220200722A1 (en) Slot negotiation method and device
CN102195996B (zh) 一种堆叠系统的时间同步方法、堆叠系统和成员设备
WO2020207210A1 (zh) 一种fec模式的同步方法、系统、主节点及从节点
WO2018223962A1 (zh) 聚合链路时钟控制方法及系统
WO2005067195A1 (fr) Procede de synchroniser les generateurs horloges dans un reseau
CN106533597B (zh) 一种时间源的选择方法及网元节点
CN111327418B (zh) 一种基于G.hn的域名及密码更新方法及系统
EP4192137A1 (en) Time synchronization failure processing method, apparatus and system, and storage medium
US20220337384A1 (en) Clock Port Attribute Recovery Method, Device, and System
WO2024011973A1 (zh) 门控调度的方法、控制器、节点、计算机可读介质
CN112865899B (zh) 一种调整物理层phy主从模式的方法及装置
WO2022001285A1 (zh) 一种自动配置灵活以太FlexE的方法及装置
KR101735622B1 (ko) 고가용성 시스템 및 그의 시간 동기화 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217035843

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020787627

Country of ref document: EP

Effective date: 20211112