WO2020206918A1 - 一种后向离心风轮 - Google Patents

一种后向离心风轮 Download PDF

Info

Publication number
WO2020206918A1
WO2020206918A1 PCT/CN2019/104618 CN2019104618W WO2020206918A1 WO 2020206918 A1 WO2020206918 A1 WO 2020206918A1 CN 2019104618 W CN2019104618 W CN 2019104618W WO 2020206918 A1 WO2020206918 A1 WO 2020206918A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind wheel
wheel
root
edge
centrifugal wind
Prior art date
Application number
PCT/CN2019/104618
Other languages
English (en)
French (fr)
Inventor
徐海明
Original Assignee
中山宜必思科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910275780.3A external-priority patent/CN109899319A/zh
Priority claimed from CN201920461576.6U external-priority patent/CN209908841U/zh
Application filed by 中山宜必思科技有限公司 filed Critical 中山宜必思科技有限公司
Priority to MX2021010819A priority Critical patent/MX2021010819A/es
Publication of WO2020206918A1 publication Critical patent/WO2020206918A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/624Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/626Mounting or removal of fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/304Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • F05D2260/36Retaining components in desired mutual position by a form fit connection, e.g. by interlocking

Definitions

  • the invention relates to a backward centrifugal wind wheel.
  • the impeller in the backward centrifugal fan is generally composed of three parts: a wheel disc, a wheel cover, and a blade. It is used in installations with complex environments, and the conditions of inlet and outlet are complicated.
  • the impeller blades of the backward centrifugal fan are generally designed according to the binary theory.
  • the impeller generally consists of three parts: the wheel disc, the wheel cover, and the blades.
  • the wheel disc, the wheel cover and the blades are stamped separately.
  • the wheel disc and the wheel cover are designed with positioning holes, and the blades are provided with positioning blocks. Pass the positioning blocks through the positioning holes. Flatten and weld, and finally connect as an impeller.
  • the above backward centrifugal wind wheels have the following problems and disadvantages:
  • the backward centrifugal fan is generally installed in the device using this wind wheel, and the intake conditions are complicated; the binary blade designed by the binary theory cannot adapt well to the complicated intake environment, the pressure surface or suction near the blade inlet A boundary separation is formed at the surface, and the deteriorating intake environment seriously affects the diffusion flow of the gas in the entire flow channel. In the end, the performance of the impeller is severely reduced, the noise value is increased, and the noise quality is poor.
  • the first object of the present invention is to provide a backward centrifugal wind wheel, which solves the technical problems of low technical performance, high noise value and low noise quality of the binary blades designed due to the dual theory of the backward centrifugal wind wheel in the prior art.
  • a backward centrifugal wind wheel comprising a wheel disk at the bottom, a wheel cover at the top, and a number of three-dimensional twisted blades.
  • the center of the wheel cover is provided with an air inlet.
  • a number of three-dimensional twisted blades are installed between the wheel and the wheel cover.
  • An air duct is formed between two adjacent ternary twisted blades, and an air outlet is formed on the outer edge of the air duct.
  • the ternary twisted blade includes a front edge, a rear edge, an upper edge and a lower edge, and is characterized in that: a The plane passing the wind wheel axis L1 is the meridian plane A.
  • each point on the leading edge intersects the meridian plane A to form a curve L2.
  • Each point on the curve L2 on the meridian plane A The distance from the rotor axis L1 is the diameter D0.
  • the diameter D0 first gradually decreases from large, and then gradually increases from small; the largest outer diameter of the trailing edge is the diameter of rotation around the rotor axis L1
  • the formed cylindrical surface B, each point on the trailing edge of the ternary twisted blade is projected radially on the cylindrical surface B by the light emitted by the wind wheel axis L1, and the projection formed on the cylindrical surface B is then flattened out Form curve L3, select 5 curvature inflection points a, b, c, d, e in curve L3, 5 curvature inflection points a, b, c, d, e, 5 curvature inflection points a, b, c, d, e.
  • the coordinates (x a , y a ), (x b , y b ), (x c , y c ), (x d , y d ), (x e , y e ) satisfy the following
  • the total length of the projection is Y and the total width is X.
  • the upper edge of the ternary twisted blade has a plurality of first positioning installation blocks protruding upward, the wheel cover is provided with a plurality of first installation holes corresponding to the position of the first positioning installation block, and the first positioning installation block passes through
  • the first mounting hole is riveted to connect the upper edge with the wheel cover;
  • the lower edge of the ternary twisted blade has a number of second positioning and mounting blocks protruding downward, and the wheel disc is provided with a number of second positioning and mounting blocks.
  • the second mounting hole corresponding to the block position, the second positioning mounting block passes through the second mounting hole and is riveted to connect the lower edge with the wheel.
  • the wheel cover includes a cylindrical portion located at the periphery of the air inlet, an arc-shaped mounting portion located in the middle, and a reinforced ring portion located on the periphery that is tilted upward.
  • the suction surface of the ternary twisted blade protrudes from the direction of the pressure surface with a number of lateral stiffeners arranged at intervals.
  • the roulette includes a top plate, a downwardly inclined annular cone surface and an annular flange protruding downward from the outer edge of the annular cone surface.
  • a mounting platform is recessed in the middle of the top plate, and a motor mounting hole is arranged in the middle of the bottom surface of the mounting platform.
  • the wheel disc, wheel cover and several ternary twisted blades are made of metal materials.
  • the ternary twisted blade is stamped and processed from a metal plate of equal thickness.
  • the first positioning mounting block includes a first root and a first top.
  • the first root is provided with first grooves on both sides.
  • the first root passes through the first mounting hole and rotates the first top to a certain angle to achieve riveting;
  • the mounting block includes a second root and a second top.
  • the two sides of the second root are provided with second grooves.
  • the second root passes through the second mounting hole and rotates the second top at a certain angle to achieve riveting.
  • the angle range of the second top portion relative to the second root portion is 10 degrees to 60 degrees.
  • the relationship between the height H1 of the first groove and the thickness H2 of the wheel cover is that the ratio of H1/H2 is in the range of 0.9 to 1; the relationship between the height H3 of the second groove and the thickness of the wheel H4 is that the ratio of H3/H4 is 0.9 to 1.
  • the relationship between the outer diameter D1 of the wheel disc and the outer diameter D2 of the wheel cover is equal or not equal.
  • the present invention has the following effects:
  • the impeller of the present invention largely eliminates the phenomenon of gas separation in the impeller passage, optimizes the flow inside the entire flow passage, strongly improves the aerodynamic performance of the impeller, reduces the aerodynamic noise of the impeller, and improves the noise quality of the impeller.
  • the design of the front edge of the blade of this impeller with variable angles and diameters can adapt to the complex wind conditions of the impeller, effectively eliminating the phenomenon of boundary layer separation caused by the gas at the inlet that does not fit the blade profile, especially in the blade
  • the area near the leading edge and pressure surface or suction surface; at the trailing edge of the impeller, the design with variable angles and diameters can optimize the gas flow in the impeller and effectively suppress the gas in the impeller due to pressure diffusion. Form a boundary separation phenomenon.
  • Figure 1 is a perspective view of the rear centrifugal wind wheel of the present invention from one angle;
  • Figure 2 is another perspective view of the rear centrifugal wind wheel of the present invention.
  • FIG. 3 is a schematic diagram of the structure of the meridian plane A of the present invention.
  • FIG. 4 is a schematic diagram of the structure of the cylindrical surface B in the present invention.
  • Figure 5 is a perspective exploded view of the wind wheel of the present invention.
  • Figure 6 is a perspective view of the ternary twisted blade of the present invention.
  • Figure 7 is another perspective view of the ternary twisted blade of the present invention.
  • Figure 8 is a top view of the wind wheel of the present invention.
  • Figure 9 is a cross-sectional view of C-C in Figure 8.
  • FIG. 10 is a schematic diagram of the structure of the blade of the present invention.
  • Figure 11 is a partial enlarged view of D in Figure 10;
  • Figure 12 is a partial enlarged view of E in Figure 10;
  • Figure 13 is a schematic diagram of a projection of a certain point on the trailing edge in Figure 4.
  • FIG. 15 is a schematic diagram of the projection plane of each point on the trailing edge being expanded on the cylindrical surface B.
  • this embodiment provides a rearward centrifugal wind wheel, which includes a wheel disc 1 at the bottom, a wheel cover 2 at the top, and a number of three-element twisted blades 3.
  • the center of the wheel cover 2 is provided with In the air inlet 21, a number of ternary twisted blades 3 are installed between the wheel disc 1 and the wheel cover 2.
  • An air duct 4 is formed between two adjacent ternary twisted blades 3, and an air outlet 41 is formed on the outer edge of the air duct 4, so
  • the three-dimensional twisted blade 3 includes a front edge 31, a rear edge 32, an upper edge 33, and a lower edge 34, and is characterized in that: a surface passing the wind wheel axis L1 is a meridian plane A, and the front edge 31 is along the wind wheel axis When L1 rotates, each point on the leading edge 31 intersects the meridian plane A to form a curve L2.
  • the distance between each point on the curve L2 on the meridian plane A and the axis L1 of the wind wheel is the diameter D0, viewed from the direction of the air inlet 21 ,
  • the diameter D0 first gradually decreases from large, and then gradually increases from small;
  • the largest outer diameter of the trailing edge 32 is the cylindrical surface B formed by the rotation diameter around the wind wheel axis L1.
  • the rear of the ternary twisted blade 3 Each point on the edge 32 is projected radially on the cylindrical surface B by the light emitted from the axis L1 of the wind wheel, and the projection formed on the cylindrical surface B is expanded to form a curve L3.
  • 5 curvature inflection points a are selected.
  • the total length of the projection is Y, and the total width is X.
  • the design of the front edge's angle and diameter is variable, which can adapt to the complicated wind conditions of the impeller and effectively eliminate the boundary layer formed by the gas at the inlet because it does not fit the blade profile. Separation phenomenon; the variable design of the angle and diameter of the trailing edge can optimize the flow state of the gas in the impeller, and effectively suppress the boundary separation phenomenon caused by the gas diffusion in the blade channel; optimize the flow inside the entire flow channel, and enhance it strongly
  • the aerodynamic performance of the impeller reduces the aerodynamic noise of the impeller and improves the noise quality of the impeller.
  • a plane passing the wind wheel axis L1 is the meridian plane A.
  • each point on the leading edge 31 intersects the meridian plane A to form a curve L2.
  • the distance between each point on the curve L2 on the surface A and the axis L1 of the wind wheel is the diameter D0.
  • the diameter D0 When viewed from the direction of the air inlet 21, the diameter D0 first gradually decreases from large, and then gradually increases from small.
  • the variable design of the angle and diameter of the leading edge can adapt to the complicated wind conditions of the impeller, and effectively eliminate the phenomenon of boundary layer separation caused by the gas at the inlet that does not fit the blade profile;
  • the upper edge 33 of the ternary twisted blade 3 has a plurality of first positioning mounting blocks 331 protruding upward, and the wheel cover 2 is provided with a plurality of first mounting holes 20 corresponding to the positions of the first positioning mounting blocks 331.
  • a positioning installation block 331 passes through the first installation hole 20 and is riveted to connect the upper edge 33 with the wheel cover 2; the lower edge 34 of the ternary twisted blade 3 protrudes downward with a number of second positioning installation blocks 340,
  • the wheel 1 is provided with a plurality of second mounting holes 11 corresponding to the positions of the second positioning mounting blocks 340, the second positioning mounting blocks 340 pass through the second mounting holes 11 and riveted to connect the lower edge 34 with the wheel 1
  • the installation structure is simple, the positioning is simple, and the circumferential, radial and circumferential positioning can be realized at the same time.
  • the wheel cover 2 includes a cylindrical portion 22 located on the periphery of the air inlet 21, an arc-shaped mounting portion 23 located in the middle, and a reinforced annular portion 24 tilted upward on the periphery.
  • the structure is simple and strong, which is convenient for airflow diversion.
  • the suction surface 35 of the ternary twisted blade 3 protrudes toward the pressure surface 36 with a number of transverse stiffeners 37 arranged at intervals, and the blade structure is strong.
  • the roulette 1 includes a top plate 12, a downwardly inclined annular conical surface 13 and an annular flange 14 protruding downward from the outer edge of the annular conical surface 13.
  • a mounting platform 15 is recessed in the middle of the top plate 12, and the bottom surface of the mounting platform 15 is arranged in the middle
  • the wheel disc 1, the wheel cover 2 and a number of ternary twisted blades 3 are made of metal materials, with simple structure and easy processing.
  • the ternary twisted blade 3 is stamped and processed from a metal plate of equal thickness, which is simple to process, simplifies the structure, and is easy to manufacture.
  • the first positioning and mounting block 331 includes a first root 3311 and a first top 3312.
  • the first root 3311 has first grooves 3313 on both sides.
  • the first root 3311 passes through the first mounting hole 20 and rotates the first top 3312 to a certain extent.
  • the second positioning mounting block 340 includes a second root 341 and a second top 342.
  • the second root 341 has a second groove 343 on both sides, and the second root 341 passes through the second mounting hole 11 and rotates.
  • the second top part 342 is riveted at a certain angle.
  • the above-mentioned first root portion 3311 passes through the first mounting hole 20 and then rotates the first top portion 3312.
  • the angle range of the rotation of the first top portion 3312 relative to the first root portion 3311 is in the range of 10 degrees to 60 degrees;
  • the second root portion 341 passes through the second root portion 3311.
  • the second top portion 342 is rotated, and the angle of the second top portion 342 relative to the second root portion 341 is in the range of 10 degrees to 60 degrees.
  • the relationship between the height H1 of the first groove 3313 and the thickness H2 of the wheel cover 2 is that the ratio of H1/H2 ranges from 0.9 to 1; the relationship between the height H3 of the second groove 343 and the thickness H4 of the wheel 1 is H3
  • the ratio of /H4 ranges from 0.9 to 1, so that the wheel 1 and the wheel cover 2 are more closely combined, leaving no gaps, and avoiding vertical movement.
  • connection mode of the wheel disc 1, the wheel cover 2 and the several ternary twisted blades 3 of the present invention is relatively simple in the connection mode of the original positioning ruler and the impeller. Radial and circumferential positioning; In the improved version of the connection method, the rotation operation of the positioning rule does not require excessive external force, and is easy to operate, and the fastening force is strengthened; the improved version of the connection method reduces the flattening and welding process, (From the original 2-3 process to 1 process), while reducing the process cost and improving the processing efficiency.
  • the above-mentioned relationship between the outer diameter D1 of the wheel disc 1 and the outer diameter D2 of the wheel cover 2 is equal or unequal. This design can meet different overall machine environments and improve the aerodynamic performance of the overall machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种后向离心风轮,采用三元扭曲叶片(3),前缘(31)沿着风轮轴线(L1)旋转时前缘(31)上的各个点与子午面(A)相交时形成曲线(L2),曲线(L2)上的各点与风轮轴线(L1)的距离为直径(D0),从进风口(21)方向望去,直径(D0)先由大逐渐减小,然后由小又逐渐增大;以后缘(32)在圆柱面(B)上形成的投影再平面展开后形成另一曲线(L3),在另一曲线(L3)中5个曲率拐点(a、b、c、d、e)的坐标(x a,y a)、(x b,y b)、(x c,y c)、(x d,y d)、(x e,y e)满足如下关系: (I),(II)其中Y为投影的总长度(Y),X为总宽度(X)。

Description

一种后向离心风轮 技术领域:
本发明涉及一种后向离心风轮。
背景技术:
后向离心风机中的叶轮一般由轮盘、轮盖、叶片三部分组成,应用在环境复杂的装机中,进气出气条件复杂。后向离心风机的叶轮叶片一般按照二元理论进行设计。叶轮一般由轮盘、轮盖、叶片三部分组成,轮盘、轮盖、叶片分别冲压而成,轮盘、轮盖上设计定位孔,叶片上设置定位块,将定位块穿过定位孔后压平并焊接,最终联接为一个叶轮。以上后向离心风轮存在如下问题和缺点:
一、后向离心风机一般安装在运用此风轮的装置中,进气条件复杂;二元理论设计的二元叶片不能很好地适应复杂的进气环境,在叶片进口附近的压力面或吸力面处形成边界分离,恶化的进气环境严重影响整个流道内气体的扩压流动,最终叶轮的性能严重下降,噪音值升高,噪音品质低劣。
二、二元理论设计的常规后向离心叶片配合适当的盘盖型线,通常在叶轮出口处、轮盖与吸力面附近的区域容易产生边界分离,造成叶轮出口速度不均匀,噪音升高。
三、当叶轮的加工工艺不是整体出模,而是轮盘、轮盖、叶片分别以冲压的方式加工而成,通过轮盖、轮盘上的定位孔在叶轮外壁定位,然后对叶片上的定位块以铆接压平、继而焊接的方式加强紧固力,叶片与轮盖内壁的结合处采取焊接方式连接。其中叶片的定位块与叶片间一体化,无空隙。缺点:1、当叶片厚度较大,在压平叶片上的定位块时,外力过大,易造成定位块附近的叶片、轮盖、轮盘部分变形,偏离原设计参数,对叶轮的性能产生负面影响;2、定位块难以压平,定位块与叶轮外侧留有空隙,不利于加强紧固力,易松动;3、不易定位,叶片的定位块被压平后,仅实现轴向定位,还有两个自由度难以控制,已造成叶片偏离原设计位置;4、工序复杂。
发明内容:
本发明的第一目的是提供一种后向离心风轮,解决现有技术中由于后向离心风轮二元理论设计的二元叶片技术性能低下,噪音值高,噪音品质低劣的技术问题。
本发明的目的是通过下述技术方案予以实现的:
一种后向离心风轮,包括位于底部的轮盘、位于顶部的轮盖和若干片三元扭曲叶片,轮盖中心设有进风口,轮盘和轮盖之间安装若干片三元扭曲叶片,相邻两三元扭曲叶片之间形成风道,在风道的外边缘形成出风口,所述的三元扭曲叶片包括前缘、后缘、上缘和下缘,其特征在于:设置一过风轮轴线L1的面为子午面A,前缘沿着风轮轴线L1旋转时前缘上的各个点与子午面A相交时形成曲线L2,在子午面A上的曲线L2上的各点与风轮轴线L1的距离为直径D0,从进风口方向望去,直径D0先由大逐渐减小,然后由小又逐渐增大;以后缘的最大外径为旋转直径绕风轮轴线L1旋转所形成的圆柱面B,所述三元扭曲叶片的后缘上的各点经由风轮轴线L1发出的光线径向照射投影在圆柱面B上,在圆柱面B上形成的投影再平面展开后形成曲线L3,在曲线L3中选择5个曲率拐点a、b、c、d、e,5个曲率拐点a、b、c、d、e,5个曲率拐点a、b、c、d、e的坐标(x a,y a)、(x b,y b)、(x c,y c)、(x d,y d)、(x e,y e)满足如下关系:
Figure PCTCN2019104618-appb-000001
Figure PCTCN2019104618-appb-000002
其中投影的总长度为Y,总宽度为X。
所述三元扭曲叶片的上缘往上凸出有若干第一定位安装块,所述的轮盖设置若干个与第一定位安装块位置对应的第一安装孔,第一定位安装块穿过第一安装孔并铆合使上缘与轮盖连接起来;所述三元扭曲叶片的下缘往下凸出有若 干第二定位安装块,所述的轮盘设置若干个与第二定位安装块位置对应的第二安装孔,第二定位安装块穿过第二安装孔并铆合使下缘与轮盘连接起来。
轮盖包括位于进风口外围的圆筒部、位于中间的弧形安装部和位于外围往上翘起的加强环形部。
三元扭曲叶片的吸力面往压力面方向凸出若干条间隔布局的横向加强筋。
轮盘包括顶板、向下倾斜的环形锥面和从环形锥面外边缘往下凸出的环形翻边,顶板中间凹陷有一个安装平台,安装平台的底面中间设置有电机安装孔。
轮盘、轮盖和若干片三元扭曲叶片是金属材料制造。
三元扭曲叶片是由等厚的金属板冲压加工而成。
第一定位安装块包括第一根部和第一顶部,第一根部的两侧带有第一凹槽,第一根部穿过第一安装孔并旋转第一顶部一定的角度实现铆接;第二定位安装块包括第二根部和第二顶部,第二根部的两侧带有第二凹槽,第二根部穿过第二安装孔并旋转第二顶部一定的角度实现铆接。
第一根部穿过第一安装孔后旋转第一顶部,第一顶部相对第一根部旋转的角度范围是10度至60度的范围;第二根部穿过第二安装孔后旋转第二顶部,第二顶部相对第二根部旋转的角度范围是10度至60度的范围。
第一凹槽的高度H1与轮盖的厚度H2的关系是H1/H2的比值范围是0.9至1;第二凹槽的高度H3与轮盘的厚度H4的关系是H3/H4的比值范围是0.9至1。
轮盘的外径D1与轮盖的外径D2的关系是相等或者不相等。
本发明与现有技术相比,具有如下效果:
1)本发明的叶轮很大程度地消除了叶道内的气体分离现象,优化整个流道内部的流动,强势地提升叶轮的气动性能,降低叶轮的气动噪音,提升叶轮的噪音品质。该款叶轮的叶片前缘处,角度与直径多变的设计可适应复杂的叶轮进风条件,有效地消除气体在进口处因不贴合叶片型线而形成边界层分离现象,尤其是在叶片前缘与压力面或者吸力面处的附近区域;该款叶轮的叶片后缘处,角度与直径多变的设计可优化气体在叶轮内的流动状态,有效地抑制气体在叶 道内因扩压而形成边界分离现象。
2)本发明的其它优点在实施例部分展开详细描述。
附图说明:
图1是本发明的后向离心风轮的一个角度的立体图;
图2是本发明的后向离心风轮的另一角度立体图;
图3是本发明中子午面A的结构示意图;
图4是本发明中圆柱面B的结构示意图;
图5是本发明中风轮的立体分解图;
图6是本发明中三元扭曲叶片的立体图;
图7是本发明中三元扭曲叶片的另一角度立体图;
图8是本发明中风轮的俯视图;
图9是图8中C-C的剖视图;
图10是本发明中叶片的结构示意图;
图11是图10中D的局部放大图;
图12是图10中E的局部放大图;
图13是图4中后缘的某一点的投影示意图;
图14是前缘上的各个点旋转后与子午面A相交形成的示意图;
图15是后缘上的各个点在圆柱面B上投影平面展开后形成的示意图。
具体实施方式:
下面通过具体实施例并结合附图对本发明作进一步详细的描述。
实施例一:
如图1至图15所示,本实施例提供一种后向离心风轮,包括位于底部的轮盘1、位于顶部的轮盖2和若干片三元扭曲叶片3,轮盖2中心设有进风口21,轮盘1和轮盖2之间安装若干片三元扭曲叶片3,相邻两三元扭曲叶片3之间形成风道4,在风道4的外边缘形成出风口41,所述的三元扭曲叶片3包括前缘 31、后缘32、上缘33和下缘34,其特征在于:设置一过风轮轴线L1的面为子午面A,前缘31沿着风轮轴线L1旋转时前缘31上的各个点与子午面A相交时形成曲线L2,在子午面A上的曲线L2上的各点与风轮轴线L1的距离为直径D0,从进风口21方向望去,直径D0先由大逐渐减小,然后由小又逐渐增大;以后缘32的最大外径为旋转直径绕风轮轴线L1旋转所形成的圆柱面B,所述三元扭曲叶片3的后缘32上的各点经由风轮轴线L1发出的光线径向照射投影在圆柱面B上,在圆柱面B上形成的投影再平面展开后形成曲线L3,在曲线L3中选择5个曲率拐点a、b、c、d、e,5个曲率拐点a、b、c、d、e的坐标(x a,y a)、(x b,y b)、(x c,y c)、(x d,y d)、(x e,y e)满足如下关系:
Figure PCTCN2019104618-appb-000003
Figure PCTCN2019104618-appb-000004
其中投影的总长度为Y,总宽度为X,前缘的角度与直径多变的设计可适应复杂的叶轮进风条件,有效地消除气体在进口处因不贴合叶片型线而形成边界层分离现象;后缘的角度与直径多变的设计可优化气体在叶轮内的流动状态,有效地抑制气体在叶道内因扩压而形成边界分离现象;优化整个流道内部的流动,强势地提升叶轮的气动性能,降低叶轮的气动噪音,提升叶轮的噪音品质。
如图4和图13所示,圆柱面B上假设有一个截面B0可沿风轮轴线L1上下移动,当截面B0移动到某个位置时,截面B0与风轮轴线L1相交点为O,相交点O为圆心,截面B0与后缘32的相交点为S,从相交点O发出的光线径向照射到相交点S时在圆柱面B形成后缘的投影点S1,这样通过截面B0可沿风轮轴线L1上下移动,可以获得后缘32上的各点在圆柱面B上的投影,后缘32上的各点在圆柱面B上形成的投影再平面展开后形成曲线L3。
如图14所示,设置一过风轮轴线L1的面为子午面A,前缘31沿着风轮轴线L1旋转时前缘31上的各个点与子午面A相交时形成曲线L2,在子午面A上的曲线L2上的各点与风轮轴线L1的距离为直径D0,从进风口21方向望去,直径D0 先由大逐渐减小,然后由小又逐渐增大。前缘的角度与直径多变的设计可适应复杂的叶轮进风条件,有效地消除气体在进口处因不贴合叶片型线而形成边界层分离现象;
所述三元扭曲叶片3的上缘33往上凸出有若干第一定位安装块331,所述的轮盖2设置若干个与第一定位安装块331位置对应的第一安装孔20,第一定位安装块331穿过第一安装孔20并铆合使上缘33与轮盖2连接起来;所述三元扭曲叶片3的下缘34往下凸出有若干第二定位安装块340,所述的轮盘1设置若干个与第二定位安装块340位置对应的第二安装孔11,第二定位安装块340穿过第二安装孔11并铆合使下缘34与轮盘1连接起来,安装结构简单,定位简单,还同时实现周向、径向和周向定位。
轮盖2包括位于进风口21外围的圆筒部22、位于中间的弧形安装部23和位于外围往上翘起的加强环形部24,结构简单,结构强度大,便于气流导流。
三元扭曲叶片3的吸力面35往压力面36方向凸出若干条间隔布局的横向加强筋37,叶片结构强度大。
轮盘1包括顶板12、向下倾斜的环形锥面13和从环形锥面13外边缘往下凸出的环形翻边14,顶板12中间凹陷有一个安装平台15,安装平台15的底面中间设置有电机安装孔16,结构简单,结构强度高,不易变形,。
轮盘1、轮盖2和若干片三元扭曲叶片3是金属材料制造,结构简单,加工容易。
三元扭曲叶片3是由等厚的金属板冲压加工而成,加工简单,简化结构,便于生产制造。
第一定位安装块331包括第一根部3311和第一顶部3312,第一根部3311的两侧带有第一凹槽3313,第一根部3311穿过第一安装孔20并旋转第一顶部3312一定的角度实现铆接;第二定位安装块340包括第二根部341和第二顶部342,第二根部341的两侧带有第二凹槽343,第二根部341穿过第二安装孔11并旋转第二顶部342一定的角度实现铆接。
上述的第一根部3311穿过第一安装孔20后旋转第一顶部3312,第一顶部3312相对第一根部3311旋转的角度范围是10度至60度的范围;第二根部341穿过第二安装孔11后旋转第二顶部342,第二顶部342相对第二根部341旋转的角度范围是10度至60度的范围。对第一根部3311旋转的一定角度范时,使轮盖2与轮盘1结合更紧密,放水性更好,
上述的第一凹槽3313的高度H1与轮盖2的厚度H2的关系是H1/H2的比值范围是0.9至1;第二凹槽343的高度H3与轮盘1的厚度H4的关系是H3/H4的比值范围是0.9至1,这样使轮盘1与轮盖2结合更加紧密,不留空隙,避免上下窜动。
本发明的轮盘1、轮盖2和若干片三元扭曲叶片3在连接方式上,相对原始的定位尺与叶轮的连接方式,本发明的改进版连接方式上定位简单,同时实现轴向、径向、周向定位;改进版连接方式上中,对定位尺的旋转操作不需要过大的外力,且易操作,紧固力加强;改进版连接方式上减少压平、焊接等工艺流程,(由原来的2-3个工序变为1个工序),同时降低工艺成本,提高加工效率。
上述的轮盘1的外径D1与轮盖2的外径D2的关系是相等或者不相等,该设计可满足不同的整机环境,提高整机的气动性能。
以上实施例为本发明的较佳实施方式,但本发明的实施方式不限于此,其他任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均为等效的置换方式,都包含在本发明的保护范围之内。

Claims (11)

  1. 一种后向离心风轮,包括位于底部的轮盘(1)、位于顶部的轮盖(2)和若干片三元扭曲叶片(3),轮盖(2)中心设有进风口(21),轮盘(1)和轮盖(2)之间安装若干片三元扭曲叶片(3),相邻两三元扭曲叶片(3)之间形成风道(4),在风道(4)的外边缘形成出风口(41),所述的三元扭曲叶片(3)包括前缘(31)、后缘(32)、上缘(33)和下缘(34),其特征在于:设置一过风轮轴线L1的面为子午面A,前缘(31)沿着风轮轴线L1旋转时前缘(31)上的各个点与子午面A相交时形成曲线L2,在子午面A上的曲线L2上的各点与风轮轴线L1的距离为直径D0,从进风口(21)方向望去,直径D0先由大逐渐减小,然后由小又逐渐增大;以后缘(32)的最大外径为旋转直径绕风轮轴线L1旋转所形成的圆柱面B,所述三元扭曲叶片(3)的后缘(32)上的各点经由风轮轴线L1发出的光线径向照射投影在圆柱面B上,在圆柱面B上形成的投影再平面展开后形成曲线L3,在曲线L3中选择5个曲率拐点a、b、c、d、e,5个曲率拐点a、b、c、d、e的坐标(x a,y a)、(x b,y b)、(x c,y c)、(x d,y d)、(x e,y e)满足如下关系:
    Figure PCTCN2019104618-appb-100001
    Figure PCTCN2019104618-appb-100002
    其中投影的总长度为Y,总宽度为X。
  2. 根据权利要求1所述的一种后向离心风轮,其特征在于:所述三元扭曲叶片(3)的上缘(33)往上凸出有若干第一定位安装块(331),所述的轮盖(2)设置若干个与第一定位安装块(331)位置对应的第一安装孔(20),第一定位安装块(331)穿过第一安装孔(20)并铆合使上缘(33)与轮盖(2)连接起来;所述三元扭曲叶片(3)的下缘(34)往下凸出有若干第二定位安装块(340),所述的轮盘(1)设置若干个与第二定位安装块(340)位置对应的第二安装孔(11),第二定位安装块(340)穿过第二安装孔(11)并铆合使下缘(34)与 轮盘(1)连接起来。
  3. 根据权利要求2所述的一种后向离心风轮,其特征在于:轮盖(2)包括位于进风口(21)外围的圆筒部(22)、位于中间的弧形安装部(23)和位于外围往上翘起的加强环形部(24)。
  4. 根据权利要求1或2或3所述的一种后向离心风轮,其特征在于:三元扭曲叶片(3)的吸力面(35)往压力面(36)方向凸出若干条间隔布局的横向加强筋(37)。
  5. 根据权利要求1或2或3所述的一种后向离心风轮,其特征在于:轮盘(1)包括顶板(12)、向下倾斜的环形锥面(13)和从环形锥面(13)外边缘往下凸出的环形翻边(14),顶板(12)中间凹陷有一个安装平台(15),安装平台(15)的底面中间设置有电机安装孔(16)。
  6. 根据权利要求1或2或3所述的一种后向离心风轮,其特征在于:轮盘(1)、轮盖(2)和若干片三元扭曲叶片(3)是金属材料制造。
  7. 根据权利要求6所述的一种后向离心风轮,其特征在于:三元扭曲叶片(3)是由等厚的金属板冲压加工而成。
  8. 根据权利要求6所述的一种后向离心风轮,其特征在于:第一定位安装块(331)包括第一根部(3311)和第一顶部(3312),第一根部(3311)的两侧带有第一凹槽(3313),第一根部(3311)穿过第一安装孔(20)并旋转第一顶部(3312)一定的角度实现铆接;第二定位安装块(340)包括第二根部(341)和第二顶部(342),第二根部(341)的两侧带有第二凹槽(343),第二根部(341)穿过第二安装孔(11)并旋转第二顶部(342)一定的角度实现铆接。
  9. 根据权利要求8所述的一种后向离心风轮,其特征在于:第一根部(3311)穿过第一安装孔(20)后旋转第一顶部(3312),第一顶部(3312)相对第一根部(3311)旋转的角度范围是10度至60度的范围;第二根部(341)穿过第二安装孔(11)后旋转第二顶部(342),第二顶部(342)相对第二根部(341)旋转的角度范围是10度至60度的范围。
  10. 根据权利要求9所述的一种后向离心风轮,其特征在于:第一凹槽(3313)的高度H1与轮盖(2)的厚度H2的关系是H1/H2的比值范围是0.9至1;第二凹槽(343)的高度H3与轮盘(1)的厚度H4的关系是H3/H4的比值范围是0.9至1。
  11. 根据权利要求1或2或3所述的一种后向离心风轮,其特征在于:轮盘(1)的外径D1与轮盖(2)的外径D2的关系是相等或者不相等。
PCT/CN2019/104618 2019-04-08 2019-09-06 一种后向离心风轮 WO2020206918A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MX2021010819A MX2021010819A (es) 2019-04-08 2019-09-06 Ventilador centrifugo con paletas hacia atras.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910275780.3A CN109899319A (zh) 2019-04-08 2019-04-08 一种后向离心风轮
CN201910275780.3 2019-04-08
CN201920461576.6U CN209908841U (zh) 2019-04-08 2019-04-08 一种后向离心风轮
CN201920461576.6 2019-04-08

Publications (1)

Publication Number Publication Date
WO2020206918A1 true WO2020206918A1 (zh) 2020-10-15

Family

ID=72663701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104618 WO2020206918A1 (zh) 2019-04-08 2019-09-06 一种后向离心风轮

Country Status (3)

Country Link
US (1) US11015611B2 (zh)
MX (1) MX2021010819A (zh)
WO (1) WO2020206918A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD951301S1 (en) * 2019-04-03 2022-05-10 Eugene Juanatas Hoehn Centrifugal impeller assembly
USD979607S1 (en) * 2020-02-03 2023-02-28 W.S. Darley & Co. Impeller for a pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204371773U (zh) * 2014-12-16 2015-06-03 宁波朗迪叶轮机械有限公司 离心通风机叶轮
JP2016108994A (ja) * 2014-12-04 2016-06-20 株式会社Ihi 圧縮機インペラ、遠心圧縮機、及び過給機
US20170023001A1 (en) * 2014-03-27 2017-01-26 Lg Electronics Inc. Centrifugal fan
CN109899319A (zh) * 2019-04-08 2019-06-18 中山宜必思科技有限公司 一种后向离心风轮

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817357B2 (ja) * 1978-03-07 1983-04-06 川崎重工業株式会社 多段タ−ボ形圧縮機
US9394913B2 (en) * 2012-03-22 2016-07-19 Panasonic Intellectual Property Management Co., Ltd. Centrifugal compressor
EP3205883A1 (de) * 2016-02-09 2017-08-16 Siemens Aktiengesellschaft Laufrad für einen zentrifugalturboverdichter
JP6746943B2 (ja) * 2016-02-23 2020-08-26 株式会社Ihi 遠心圧縮機インペラ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170023001A1 (en) * 2014-03-27 2017-01-26 Lg Electronics Inc. Centrifugal fan
JP2016108994A (ja) * 2014-12-04 2016-06-20 株式会社Ihi 圧縮機インペラ、遠心圧縮機、及び過給機
CN204371773U (zh) * 2014-12-16 2015-06-03 宁波朗迪叶轮机械有限公司 离心通风机叶轮
CN109899319A (zh) * 2019-04-08 2019-06-18 中山宜必思科技有限公司 一种后向离心风轮

Also Published As

Publication number Publication date
MX2021010819A (es) 2021-10-01
US11015611B2 (en) 2021-05-25
US20200318647A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
US8052386B1 (en) Mixed flow roof exhaust fan
CN104641121B (zh) 螺旋桨式风扇以及具备该螺旋桨式风扇的空调机
KR20140133433A (ko) 원심팬
US9234524B2 (en) Boundary layer controlled logarithmic spiral blade
CN109899319A (zh) 一种后向离心风轮
WO2020206918A1 (zh) 一种后向离心风轮
CA3013253C (en) Impeller fan blade angles
JP2013124624A (ja) 遠心ターボ機械
US20230332615A1 (en) Turbofan and air-conditioning apparatus
JP2012052443A (ja) プロペラファン
WO2020042551A1 (zh) 一种轴流风轮及其应用的轴流风机
CN110608196B (zh) 一种带半叶高小叶片的楔形扩压器
CN209908841U (zh) 一种后向离心风轮
JP2008025463A (ja) 送風機羽根車
CN209925295U (zh) 鱼鳍形仿生降噪离心风机
CN110566500A (zh) 一种离心通风机的叶轮
CN206874554U (zh) 叶轮、风机和电机
CN212584013U (zh) 一种仿生叶片离心通风机叶轮
CN213953981U (zh) 一体式离心风扇
CN211009265U (zh) 一种离心通风机的叶轮
KR20220072522A (ko) 임펠러
CN207879687U (zh) 一种具有轮盖加强结构的离心风机叶轮
CN214742354U (zh) 一种提效轴流风机集流器
CN217440358U (zh) 叶片、叶轮及通风设备
CN215860960U (zh) 一种离心风机叶轮及应用其的离心风机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924542

Country of ref document: EP

Kind code of ref document: A1