WO2020206834A1 - 一种利用熔融态高炉渣直接水泥化的方法 - Google Patents

一种利用熔融态高炉渣直接水泥化的方法 Download PDF

Info

Publication number
WO2020206834A1
WO2020206834A1 PCT/CN2019/090843 CN2019090843W WO2020206834A1 WO 2020206834 A1 WO2020206834 A1 WO 2020206834A1 CN 2019090843 W CN2019090843 W CN 2019090843W WO 2020206834 A1 WO2020206834 A1 WO 2020206834A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
blast furnace
molten
furnace slag
molten blast
Prior art date
Application number
PCT/CN2019/090843
Other languages
English (en)
French (fr)
Inventor
张廷安
张子木
豆志河
吕国志
刘燕
赵秋月
傅大学
张伟光
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2020206834A1 publication Critical patent/WO2020206834A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/14Cements containing slag
    • C04B7/147Metallurgical slag
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/38Preparing or treating the raw materials individually or as batches, e.g. mixing with fuel
    • C04B7/42Active ingredients added before, or during, the burning process
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling
    • C04B7/44Burning; Melting
    • C04B7/46Burning; Melting electric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Definitions

  • the present invention belongs to the technical field of blast furnace slag utilization, and specifically relates to a method for direct cementation using molten blast furnace slag.
  • Blast furnace slag is the slag industrial solid waste discharged in the process of blast furnace iron making. Depending on the grade of ore, 0.3 to 1 ton of slag is discharged per 1 ton of iron refining. The lower the ore grade, the greater the amount of slag discharged. Blast furnace slag can be processed into the following materials by various processes. In my country, blast furnace slag is usually processed into water slag, slag crushed stone, expanded slag and slag beads. Water slag is a process in which hot-melted blast furnace slag is placed in water for rapid cooling. There are two main methods: slag pool water quenching or pre-furnace water quenching.
  • Slag is used as building materials for the production of cement and concrete. Because of its potential hydraulic cementing properties, slag can be used as a high-quality cement raw material under the action of activators such as cement clinker, lime, and gypsum, and can be made into slag silicate. Salt cement, gypsum slag cement, lime slag cement, slag brick, slag concrete, etc.
  • Slag crushed stone is a kind of crushed stone material obtained by digging, crushing, magnetic separation and screening after blast furnace slag is naturally cooled or water-cooled in a designated slag pit or slag field to form a relatively dense slag.
  • Molten blast furnace slag is an indispensable by-product in the ironmaking production process, and the recovery and utilization of its abundant sensible heat resources is one of the urgent problems to be solved in the future blast furnace slag treatment process.
  • the "permeable brick prepared by molten blast furnace slag and its preparation method" invented by Li Hong et al., application number: CN201710891647.1, is prepared from the following parts by weight of raw materials: molten blast furnace slag: 70 ⁇ 85 parts; cement: 5 ⁇ 10 parts; Dolomite: 10-20 parts, directly use molten blast furnace slag to prepare permeable bricks, because the molten blast furnace slag has not undergone a water quenching process, both It saves a lot of cooling water, and can efficiently and fully utilize the sensible heat energy of molten slag.
  • blast furnace slag The temperature of blast furnace slag is over 1 400 °C, and each ton of slag contains heat equivalent to 60 kg of standard coal. Therefore, the recovery and comprehensive utilization of waste heat of blast furnace slag is an effective way to save energy and reduce consumption in the steel industry.
  • the purpose of the present invention is to make full use of the mineral resources and sensible heat energy of molten blast furnace slag, and to provide a method for directly cementing molten blast furnace slag, that is, using high-speed iron red mud as a raw material to convert molten blast furnace slag It flows into the high-temperature induction furnace and uses eddy current mixing to adjust the composition at high temperature. According to the requirements of the cement composition, mix the calcium and siliceous raw materials required for the cement composition. The high temperature is homogenized. After the adjustment, the molten slag is cooled, crushed, and ground directly into Cement clinker utilizes the heat of high-temperature slag and saves the process of preparing cement clinker.
  • a method for direct cementation using molten blast furnace slag includes the following steps:
  • step (1) the molten blast furnace slag is charged in a vortex batching method to solve the problem of difficulty in batching.
  • the molten blast furnace slag includes chemical composition and mass percentage: CaO
  • slag temperature is 1400-1550°C.
  • the specific process of adjusting the components of the molten slag is: adding calcareous raw materials, siliceous raw materials and/or iron raw materials, wherein: the calcareous raw materials are selected from limestone and calcium carbide slag At least one of the siliceous materials; at least one of kaolin, clay, fly ash, and tailings slag; and iron materials At least one of mud, iron slag, and steel slag.
  • step (2) the operation of adjusting the composition of the molten slag is carried out in an induction furnace with a heating element.
  • the cooling method is air cooling, and during the air cooling process, hot air can be captured for preheating of raw materials in the ironmaking process.
  • the direct cementation method using molten blast furnace slag of the present invention can reduce water consumption per ton of slag
  • the method of the present invention adopts eddy current to add ingredients, which can solve the problem of difficulty in adding solid powder at high temperature.
  • a furnace with an induction heating element is used to adjust the composition of the molten slag, which can solve the problem of supplementary heating during the batching process.
  • FIG. 1 is a schematic diagram of the process flow diagram of the method for direct cementation using molten blast furnace slag of the present invention.
  • FIG. 1 The process flow diagram of the method for direct cementation using molten blast furnace slag in the following embodiments is shown in FIG. 1.
  • a method for direct cementation using molten blast furnace slag includes the following steps: [0027] The mass percentage of the chemical composition of the molten blast furnace slag of the raw material is CaO 39%, Si0 2 34%, Al 2 0 3 9%
  • the balance is rare metals and other impurities, and the slag temperature is 1550°C.
  • the molten slag is air-cooled to room temperature, crushed, and ground to form cement clinker.
  • the cement clinker contains CaO and SiO 2
  • A1 2 0 3, Fe 2 0 3 content was respectively 62%, 24%, 4%, 2.5%, satisfying the requirements of the cement clinker composition, the strength of cement Portland cement 425 # meet national standards, the process air The captured hot air is used to preheat the raw materials in the ironmaking process.
  • a method for direct cementation using molten blast furnace slag including the following steps:
  • the mass percentage of the chemical composition of the raw material molten blast furnace slag is CaO 40%, SiO 2 32%, Al 2 0 3 10%
  • the balance is rare metals and other impurities, and the slag temperature is 1500°C.
  • the molten slag is air-cooled to room temperature, crushed, and ground to form cement clinker.
  • the cement clinker contains CaO and SiO 2
  • A1 2 0 3, Fe 2 0 3 content was respectively 63%, 22%, 4%, 2.5%, satisfying the requirements of the cement clinker composition, the strength of cement Portland cement 425 # meet national standards, the process air The captured hot air is used to preheat the raw materials in the ironmaking process.
  • a method for directly cementing molten blast furnace slag includes the following steps:
  • the mass percentage of the chemical composition of the molten blast furnace slag of the raw material is CaO 42%, SiO 2 40%, and Al 2 0 3 12%.
  • the balance is rare metals and other impurities.
  • the slag temperature is 1400°C.
  • the molten slag is air-cooled to room temperature, crushed, and ground to make cement clinker.
  • the cement clinker contains CaO and SiO 2
  • A1 2 0 3, Fe 2 0 3 content was respectively 63%, 23%, 5%, 2.5%, to meet the cement clinker composition It is required that the cement strength meets the national standard of ordinary Portland cement 425#, and the air-cooling process captures hot air to preheat the raw materials in the ironmaking process.

Abstract

一种利用熔融态高炉渣直接水泥化的方法,工艺步骤为:(1)将熔融态高炉渣流入到涡流感应加热式高温还原炉中保温;(2)根据水泥成分要求,配入钙质原料、硅质原料、铁质原料等,高温均匀化;(3)组分调控后熔融渣经风冷冷却、破碎、研磨直接成为水泥熟料;(4)风冷过程可以捕集热风用于炼铁过程的原料预热。

Description

一种利用熔融态高炉渣直接水泥化的方法 技术领域
[0001] 本发明属于高炉渣利用技术领域, 具体涉及一种利用熔融态高炉渣直接水泥化 的方法。
背景技术
[0002] 高炉渣是高炉炼铁过程中排出的渣工业固体废物, 依矿石品位不同, 每炼 1吨 铁排出 0.3〜 1吨渣, 矿石品位越低,排渣量越大。 高炉溶渣可采用各种工艺加工 成下列各种材料。 我国通常是把高炉渣加工成水渣、 矿渣碎石、 膨胀矿渣和矿 渣珠等。 水渣是把热熔状态的高炉渣置于水中急速冷却的过程, 主要有渣池水 淬或炉前水淬两种方式。 水渣作建材用于生产水泥和混凝土, 由于水渣具有潜 在的水硬胶凝性能, 在水泥熟料、 石灰、 石膏等激发剂作用下, 可以作为优质 的水泥原料, 可制成矿渣硅酸盐水泥、 石膏矿渣水泥、 石灰矿渣水泥、 矿渣砖 、 矿渣混凝土等。 矿渣碎石是高炉渣在指定的渣坑或渣场自然冷却或淋水冷却 形成较为致密的矿渣后, 经过挖掘、 破碎、 磁选和筛分而得到的一种碎石材料
[0003] 为实现高炉渣的高效利用以及有价元素提取, 我国进行了大量的研发工作, 如 王毅等人发明的“一种高炉渣与转炉渣综合利用的方法, 申请号: CN2016100450 48.3”先将高炉渣粉末和转炉渣粉末充分混合搅匀, 然后与盐酸反应: 得到第一 浸出液和第二固相物, 然后从所述第二固相物中分离出得到硅胶; 然后将第一 浸出液与氢氧化钠反应得到第二浸出液和第二固相物, 然后将所述第二固相物 依次进行冲洗与烘干, 得到钙铝基层状双氢氧化物产品。
[0004] 熔融态高炉渣是炼铁生产过程中必不可少的副产物, 其丰富的显热资源的回收 利用是未来高炉渣处理过程中亟待解决的问题之一。 李红等发明的“利用熔融高 炉渣制备的透水砖及其制备方法, 申请号: CN201710891647.1”由如下重量份数 的原料制备而成: 熔融高炉渣: 70〜 85份; 水泥: 5〜 10份; 白云石: 10〜 20份 , 直接利用熔融高炉渣制备透水砖, 由于熔融高炉渣未经过水淬处理工艺, 既 节约了大量冷却用水, 又能高效、 充分利用熔渣显热能量。 高炉渣出渣温度达 1 400 °C以上,每吨渣含有相当于 60 kg标准煤的热量 .因此, 做好高炉渣的余热回 收和综合利用, 是钢铁行业节能降耗的有效途径。
发明概述
技术问题
问题的解决方案
技术解决方案
[0005] 本发明的目的是为了充分利用熔融态高炉渣的矿物资源和显热能量, 提供一种 利用熔融态高炉渣直接水泥化的方法, 即以高铁赤泥为原料, 将熔融态高炉渣 流入高温感应炉中高温下采用渦流搅拌方式配料调整组成, 根据水泥成分要求 配入水泥成分所需钙质原料、 硅质原料等, 高温均匀化, 调整后熔融渣经冷却 、 破碎、 研磨直接成为水泥熟料, 利用高温炉渣的热量又省去了制备水泥熟料 的过程。
[0006] 为实现上述目的, 本发明采用以下技术方案:
[0007] 一种利用熔融态高炉渣直接水泥化的方法, 包括以下步骤:
[0008] (1)将熔融态高炉渣流入到渦流搅拌式感应加热炉中,
Figure imgf000004_0001
[0009] (2)根据水泥熟料成分要求, 将熔融渣调整组分后, 搅拌均匀化, 并进行补热温 度至 1400~1550°C;
[0010] (3)调整组分后熔融渣经冷却至室温、 破碎、 研磨直接成为水泥熟料, 满足普通 硅酸盐水泥 425#国家标准。
[0011] 所述的步骤 (1)中, 采用渦流配料方式进行熔融态高炉渣加料, 以解决配料加入 难的问题。
[0012] 所述的步骤 (1)中, 熔融态高炉渣包括化学组成及质量百分含量为: CaO
31-50% , Si0 2 31~44% , Al 20 3 6~18%, 余量为稀有金属及其他杂质, 熔渣温 度 1400-1550°C。
[0013] 所述的步骤 (2)中, 熔融渣调整组分具体过程为: 加入钙质原料、 硅质原料和 / 或铁质原料, 其中: 所述的钙质原料选用石灰石、 电石渣中的至少一种; 硅质 原料选用高岭土、 黏土、 粉煤灰、 尾矿渣中的至少一种; 铁质原料选用高铁赤 泥、 铁渣、 钢渣中的至少一种。
[0014] 所述的步骤 (2)中, 熔融渣调整组分操作在带有发热体的感应炉中进行。
[0015] 所述的步骤 (3)中, 冷却方式为风冷, 并在风冷过程可以捕集热风用于炼铁过程 的原料预热。
发明的有益效果
有益效果
[0016] 与现有技术相比, 本发明的特点和有益效果是:
[0017] (1)本发明的利用熔融态高炉渣直接水泥化的方法充分利用高炉渣中所有矿物资 源, 同时减少高炉渣的排放;
[0018] (2)采用本发明的利用熔融态高炉渣直接水泥化的方法能够使每吨炉渣减少水耗
10-15吨。
[0019] (3)充分利用熔融高炉渣的热能, 使利用熔融高炉渣制备水泥熟料的生产过程无 需另外进行加热焙烧, 也节省了燃料。 相对于传统水泥生产工艺可大幅降低了 生产能耗。
[0020] (4)本发明方法采用渦流加入配料, 可以解决高温加入固体粉料难的问题。
[0021] (5)熔融渣调整组分时采用带感应发热体的炉子, 可以解决配料过程补热的问题 对附图的简要说明
附图说明
[0022] 图 1为本发明的利用熔融态高炉渣直接水泥化的方法工艺流程示意图。
发明实施例
本发明的实施方式
[0023] 下面结合实施例对本发明作进一步的详细说明。
[0024] 以下实施例中的利用熔融态高炉渣直接水泥化的方法的工艺流程示意图如图 1 所示。
[0025] 实施例 1
[0026] 一种利用熔融态高炉渣直接水泥化的方法, 包括以下步骤: [0027] 原料熔融态高炉渣化学组成质量百分含量为 CaO 39%, Si0 2 34%、 A1 20 3 9%
, 余量为稀有金属及其他杂质, 熔渣温度 1550°C。
[0028] (1)将熔融态高炉渣流入到渦流搅拌感应加热高温炉中保温 l h;
[0029] (2)根据水泥成分要求, 配入石灰、 含铁渣, 并在 1400°C下进行高温均匀化;
[0030] (3)熔融渣经风冷至室温、 破碎、 研磨, 制成水泥熟料, 水泥熟料中 CaO、 SiO 2
、 A1 20 3、 Fe 20 3的含量分别为 62%、 24%、 4%、 2.5% , 满足水泥熟料的成分要 求, 水泥强度满足普通硅酸盐水泥 425#国家标准, 风冷过程捕集热风用于炼铁 过程的原料预热。
[0031] 实施例 2
[0032] 一种利用熔融态高炉渣直接水泥化的方法, 包括以下步骤:
[0033] 原料熔融态高炉渣化学组成质量百分含量为 CaO 40%, SiO 2 32%、 A1 20 3 10%
, 余量为稀有金属及其他杂质, 熔渣温度 1500°C。
[0034] (1)将熔融态高炉渣流入到搅拌试高温感应炉中保温 1.5 h;
[0035] (2)根据水泥成分要求, 配入电石渣、 高铁赤泥, 并在 1500°C下进行高温均匀化
[0036] (3)熔融渣经风冷至室温、 破碎、 研磨, 制成水泥熟料, 水泥熟料中 CaO、 SiO 2
、 A1 20 3、 Fe 20 3的含量分别为 63%、 22%、 4%、 2.5% , 满足水泥熟料的成分要 求, 水泥强度满足普通硅酸盐水泥 425#国家标准, 风冷过程捕集热风用于炼铁 过程的原料预热。
[0037] 实施例 3
[0038] 一种利用熔融态高炉渣直接水泥化的方法, 包括以下步骤:
[0039] 原料熔融态高炉渣化学组成质量百分含量为 CaO 42%, SiO 2 40%、 A1 20 3 12%
, 余量为稀有金属及其他杂质, 熔渣温度 1400°C。
[0040] (1)将熔融态高炉渣流入到搅拌试高温感应炉中保温 1.5 h;
[0041] (2)根据水泥成分要求, 配入石灰石、 铁渣, 使其符合水泥要求, 并在 1550°C下 进行高温均匀化;
[0042] (3)熔融渣经风冷至室温、 破碎、 研磨, 制成水泥熟料, 水泥熟料中 CaO、 SiO 2
、 A1 20 3、 Fe 20 3的含量分别为 63%、 23%、 5%、 2.5% , 满足水泥熟料的成分要 求, 水泥强度满足普通硅酸盐水泥 425#国家标准, 风冷过程捕集热风用于炼铁 过程的原料预热。

Claims

权利要求书
[权利要求 1] 一种利用熔融态高炉渣直接水泥化的方法, 其特征在于, 包括以下步 骤:
(!)将熔融态高炉渣流入到渦流搅拌式感应加热炉中,
Figure imgf000008_0001
(2)根据水泥熟料成分要求, 将熔融渣调整组分后, 搅拌均匀化, 并 进行补热温度至 1400~1550°C;
(3)调整组分后熔融渣经冷却至室温、 破碎、 研磨直接成为水泥熟料 , 满足普通硅酸盐水泥 425#国家标准。
[权利要求 2] 根据权利要求 1所述的利用熔融态高炉渣直接水泥化的方法, 其特征 在于, 所述的步骤 (1)中, 采用渦流配料方式进行熔融态高炉渣加料 , 以解决配料加入难的问题。
[权利要求 3] 根据权利要求 1所述的利用熔融态高炉渣直接水泥化的方法, 其特征 在于, 所述的步骤 (1)中, 熔融态高炉渣包括化学组成及质量百分含 量为: CaO 31-50% , Si0 2 31~44% , A1 20 3 6~18% , 余量为氢氧及 稀有金属, 熔渣温度 1400-1550°C
[权利要求 4] 根据权利要求 1所述的利用熔融态高炉渣直接水泥化的方法, 其特征 在于, 所述的步骤 (2)中, 熔融渣调整组分具体过程为: 加入钙质原 料、 硅质原料和 /或铁质原料, 其中: 所述的钙质原料选用石灰石、 电石渣中的至少一种; 硅质原料选用高岭土、 黏土、 粉煤灰、 尾矿渣 中的至少一种; 铁质原料选用高铁赤泥、 铁渣、 钢渣中的至少一种。
[权利要求 5] 根据权利要求 1所述的利用熔融态高炉渣直接水泥化的方法, 其特征 在于, 所述的步骤 (2)中, 熔融渣调整组分操作在带有发热体的感应 炉中进行。
[权利要求 6] 根据权利要求 1所述的利用熔融态高炉渣直接水泥化的方法, 其特征 在于, 所述的步骤 (3)中, 冷却方式为风冷, 并在风冷过程可以捕集 热风用于炼铁过程的原料预热。
PCT/CN2019/090843 2019-04-11 2019-06-12 一种利用熔融态高炉渣直接水泥化的方法 WO2020206834A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910290620.6A CN109928653A (zh) 2019-04-11 2019-04-11 一种利用熔融态高炉渣直接水泥化的方法
CN201910290620.6 2019-04-11

Publications (1)

Publication Number Publication Date
WO2020206834A1 true WO2020206834A1 (zh) 2020-10-15

Family

ID=66989769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090843 WO2020206834A1 (zh) 2019-04-11 2019-06-12 一种利用熔融态高炉渣直接水泥化的方法

Country Status (2)

Country Link
CN (1) CN109928653A (zh)
WO (1) WO2020206834A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110981232B (zh) * 2019-11-19 2020-12-01 武汉理工大学 一种钢渣掺杂胶黏剂及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85105291A (zh) * 1985-07-10 1987-01-07 日本磁力选矿株式会社 利用炼钢渣的方法
CN87102197A (zh) * 1987-03-18 1988-11-02 孙竹良 高炉熔融矿渣直接转换成水泥熟料的新工艺
CN1792944A (zh) * 2005-12-30 2006-06-28 刘继清 用高炉液态渣生产硅酸盐水泥熟料的方法及其装置
CN101302568A (zh) * 2008-05-23 2008-11-12 郑州永通特钢有限公司 一种有色金属工业废渣综合回收利用的方法
CN101660014A (zh) * 2009-09-24 2010-03-03 中钢集团鞍山热能研究院有限公司 熔融高炉渣显热回收方法及装置
CN101941807A (zh) * 2010-07-07 2011-01-12 杨振立 高温熔融态矿渣生产的水泥熟料、生产工艺流程及装备
KR101343813B1 (ko) * 2012-10-18 2013-12-20 한국세라믹기술원 시멘트 클링커의 제조장치
CN107721216A (zh) * 2017-08-22 2018-02-23 上海驰春节能科技有限公司 一种利用高炉熔融渣液相烧成水泥熟料的工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85105291A (zh) * 1985-07-10 1987-01-07 日本磁力选矿株式会社 利用炼钢渣的方法
CN87102197A (zh) * 1987-03-18 1988-11-02 孙竹良 高炉熔融矿渣直接转换成水泥熟料的新工艺
CN1792944A (zh) * 2005-12-30 2006-06-28 刘继清 用高炉液态渣生产硅酸盐水泥熟料的方法及其装置
CN101302568A (zh) * 2008-05-23 2008-11-12 郑州永通特钢有限公司 一种有色金属工业废渣综合回收利用的方法
CN101660014A (zh) * 2009-09-24 2010-03-03 中钢集团鞍山热能研究院有限公司 熔融高炉渣显热回收方法及装置
CN101941807A (zh) * 2010-07-07 2011-01-12 杨振立 高温熔融态矿渣生产的水泥熟料、生产工艺流程及装备
KR101343813B1 (ko) * 2012-10-18 2013-12-20 한국세라믹기술원 시멘트 클링커의 제조장치
CN107721216A (zh) * 2017-08-22 2018-02-23 上海驰春节能科技有限公司 一种利用高炉熔融渣液相烧成水泥熟料的工艺

Also Published As

Publication number Publication date
CN109928653A (zh) 2019-06-25

Similar Documents

Publication Publication Date Title
CN102757211B (zh) 一种利用特制矿渣和尾料钢渣生产的加气混凝土砌块及其生产方法
CN105541143B (zh) 一种利用干法回转窑系统生产高强度低碳水泥熟料的方法
CN101927524B (zh) 一种用转炉钢渣泥生产免烧矿渣砖的方法
CN103159450B (zh) 一种用钢渣制成的泡沫混凝土砌块的生产方法
CN108821618B (zh) 利用高铝石灰石制备的低钙硅酸盐水泥熟料及其制备方法
CN111393043B (zh) 一种利用劣质石灰石生产的水泥及其制备方法
CN104529312B (zh) 大掺量高强度镍渣砖及其制备方法
CN104556702B (zh) 一种利用冶金渣制备高碱度微晶玻璃的方法
CN111977997B (zh) 一种实现钢渣还原改质的控制方法和水淬渣及其用途
WO2020206833A1 (zh) 一种高铁赤泥涡流熔融还原脱碱提铁直接水泥化的方法
CN112851152B (zh) 一种利用铅锌冶炼炉渣的水泥熟料、水泥及其制备方法
WO2020206830A1 (zh) 一种赤泥回收钠、铁和钛同时熔融渣直接水泥化的方法
AU2020103182A4 (en) Cementitious Material Containing Coal-to-liquids Coarse Slag and Preparation Method Thereof
WO2020206831A1 (zh) 一种钙化-碳化高铁赤泥回收铁及尾渣水泥化的方法
CN110183120A (zh) 利用原状电解锰渣和钢渣尾泥生产水泥活性掺合料的方法
CN105254193A (zh) 一种以废弃物为原料的水泥及水泥熟料的制备方法
CN113174456A (zh) 一种底顶复合吹熔融还原高铁赤泥的综合利用方法
CN106148699B (zh) 利用赤泥和红土镍矿制备铁镍合金副产活性矿热炉粒化渣的方法
CN106242280B (zh) 一种以液态高炉熔渣为主原料的乳浊玻璃及其制备方法
CN107759176A (zh) 矿渣粉的固体废弃物综合利用制作建材材料
CN101450843B (zh) 铁铝复合矿综合利用的方法
CN110156445A (zh) 一种转底炉用高强耐磨浇注料及其制备方法
CN112126774A (zh) 一种利用高炉水渣生产烧结矿的方法
CN106966617B (zh) 一次低温烧成贝利特-硫铝酸盐-硫铁铝酸盐-硫硅酸钙水泥熟料的方法
WO2020206834A1 (zh) 一种利用熔融态高炉渣直接水泥化的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924025

Country of ref document: EP

Kind code of ref document: A1