WO2020203840A1 - 塩素化塩化ビニル系樹脂 - Google Patents

塩素化塩化ビニル系樹脂 Download PDF

Info

Publication number
WO2020203840A1
WO2020203840A1 PCT/JP2020/014197 JP2020014197W WO2020203840A1 WO 2020203840 A1 WO2020203840 A1 WO 2020203840A1 JP 2020014197 W JP2020014197 W JP 2020014197W WO 2020203840 A1 WO2020203840 A1 WO 2020203840A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl chloride
chloride resin
chlorinated
chlorinated vinyl
chlorine
Prior art date
Application number
PCT/JP2020/014197
Other languages
English (en)
French (fr)
Inventor
典和 増野
健人 村上
樋口 勲夫
康成 日下
孝志 村本
Original Assignee
積水化学工業株式会社
徳山積水工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社, 徳山積水工業株式会社 filed Critical 積水化学工業株式会社
Priority to EP20783517.4A priority Critical patent/EP3909987A4/en
Priority to JP2020524916A priority patent/JP6933777B2/ja
Priority to US17/434,515 priority patent/US12037423B2/en
Publication of WO2020203840A1 publication Critical patent/WO2020203840A1/ja
Priority to US18/740,741 priority patent/US20240327551A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/02Monomers containing chlorine
    • C08F14/04Monomers containing two carbon atoms
    • C08F14/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/22Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L27/24Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment halogenated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • C08K5/57Organo-tin compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention relates to a chlorinated vinyl chloride resin which is excellent in continuous productivity during molding and can achieve both processability and unevenness prevention of molded products.
  • Vinyl chloride resins are generally excellent in mechanical strength, weather resistance and chemical resistance. For this reason, vinyl chloride resins are processed into various molded products and are used in many fields.
  • Patent Document 1 discloses a chlorinated vinyl chloride resin obtained by a specific production method, and such a resin has less initial coloration during heat molding and is excellent in thermal stability. Is disclosed.
  • the chlorinated vinyl chloride resin as described in Patent Document 1 contains many CPVCs that are partially highly chlorinated, when this is molded, it is easily thermally decomposed and a large amount of hydrogen chloride gas is generated. Then, there is a problem that the surface of the mold is contaminated. Further, since the molded product thus obtained is discolored, there is a problem that the continuous productivity at the time of molding processing is inferior and the molding processability is inferior. Further, it is difficult to uniformly mix the highly chlorinated portion and the low chlorinated portion due to the difference in melt viscosity, and the shape of the obtained molded product is uneven, so that a uniform molded product cannot be obtained. There's a problem.
  • the chlorinated vinyl chloride resin of the present invention has a peak intensity A observed in the range of 660 to 700 cm -1 with respect to a peak intensity B observed in the range of 600 to 650 cm -1 in Raman measurement by Raman spectroscopy.
  • the peak average of the ratio (A / B) is 0.50 to 2.00.
  • the peak average is preferably 0.80 or more, and preferably less than 1.30.
  • the peak average of the ratio (A / B) of the peak intensity A to the peak intensity B can be measured by the following method.
  • the Raman spectrum of 50 powdery chlorinated vinyl chloride resin particles is measured using a microscopic Raman spectroscopic analyzer. Thereafter, the resulting Raman spectrum, performs baseline correction by linear approximation, and the peak intensity B observed in the range of 600 ⁇ 650 cm -1, and a peak intensity A observed in the range of 660 ⁇ 700 cm -1 It can be measured by measuring, calculating A / B, and calculating the average of peak intensities.
  • the standard to the peak intensity B observed in the range of 600 ⁇ 650cm -1, 660 ⁇ ratio of the peak intensity A observed in a range of 700 cm -1 (A / B)
  • the deviation is 0.090 or less.
  • the standard deviation of the A / B is more preferably 0.080 or less.
  • the lower limit of the standard deviation of A / B is not particularly limited, but is preferably 0.010 or more.
  • the standard deviation of the A / B can be calculated based on the peak average of the A / B in the Raman measurement and the A / B in each particle.
  • the peak average of A / B and the standard deviation of A / B satisfy the following relationship. 0.500 ⁇ [A / B peak average] + [A / B standard deviation] 1/2 ⁇ 2.300
  • the chlorinated vinyl chloride resin of the present invention has the structural units (a) to (c) represented by the following formulas (a) to (c), and has the following structural units (a), (b) and (c).
  • the ratio of the structural unit (a) is 5.0 mol% or more, the ratio of the structural unit (b) is 40.0 mol% or less, and the ratio of the structural unit (c) is 55.0 mol% with respect to the total number of moles.
  • the following is preferable.
  • Such a chlorinated vinyl chloride resin exhibits uniform gelling characteristics during melt-kneading, and a molded product with less unevenness on the surface can be obtained.
  • the ratio of the constituent unit (a) to the total number of moles of the constituent units (a), (b) and (c) is 5.0 mol% or more. Is preferable, it is more preferably 30.0 mol% or more, further preferably 35.0 mol% or more, preferably 90.0 mol% or less, and 60.0 mol% or less. Is more preferable. Further, the ratio of the structural unit (b) is preferably 5.0 mol% or more with respect to the total number of moles of the structural units (a), (b) and (c), and 15.0 mol% or more.
  • the ratio of the structural unit (c) is preferably 5.0 mol% or more, preferably 25.0 mol% or more, based on the total number of moles of the structural units (a), (b) and (c). It is more preferably 55.0 mol% or less, and more preferably 40.0 mol% or less.
  • the molar ratios of the constituent units (a), (b) and (c) of the chlorinated vinyl chloride resin of the present invention reflect the site where chlorine is introduced when the vinyl chloride resin (PVC) is chlorinated. It was done.
  • the PVC before chlorination is in a state where the constituent unit (a) is 100 mol% and the constituent units (b) and (c) are 0 mol%, but the constituent unit (a) decreases with chlorination.
  • the building blocks (b) and (c) increase. At this time, if the number of unstable structural units (b) increases too much, or if the chlorinated and non-chlorinated parts are biased within the same particles of the chlorinated vinyl chloride resin, the chlorinated state becomes non-uniform.
  • the molar ratios of the structural units (a), (b) and (c) of the chlorinated vinyl chloride resin of the present invention can be measured by molecular structure analysis using NMR. NMR analysis is performed by R. A. Komoroski, R.M. G. Parker, J.M. P. It can be carried out according to the method described in Shocker, Macromolecules, 1985, 18, 1257-1265.
  • the chlorinated vinyl chloride resin of the present invention may contain other structural units other than the above-mentioned structural units (a), (b) and (c) as long as the effects of the present invention are not impaired.
  • the content of the other structural units is preferably 0% by mass or more, and preferably less than 10% by mass in the chlorinated vinyl chloride resin.
  • the ratio of the structural unit (c) and the peak average of the A / B satisfy the following relationship. 0.5 ⁇ Ratio of structural unit (c) (mol%) / [A / B peak average] ⁇ 110 It is more preferable that the ratio of the structural unit (c) and the peak average of the A / B satisfy the following relationship. 3.8 ⁇ Ratio of structural unit (c) (mol%) / [A / B peak average] ⁇ 68.8
  • the chlorinated vinyl chloride resin of the present invention preferably has an additional chlorinated amount of 3.2 to 15.2% by mass.
  • the amount of added chlorination is 3.2% by mass or more, the heat resistance as a molded product becomes sufficient, and when it is 15.2% by mass or less, the moldability is improved.
  • the amount of added chlorination is more preferably 5.2% by mass or more, further preferably 8.2% by mass or more, and further preferably 12.2% by mass or less, 11.2% by mass. % Or less is more preferable.
  • the chlorine content of the vinyl chloride resin is usually 56.8% by mass, but the added chlorine content means the introduction ratio of chlorine to the vinyl chloride resin, and is described in JIS K 7229. It can be measured by the method.
  • the ratio of the structural unit (b) and the amount of added chlorinated is preferably 0.1 or more, and preferably 4.0 or less.
  • the average degree of polymerization of the chlorinated vinyl chloride resin of the present invention is not particularly limited, and is preferably 400 or more, more preferably 500 or more, preferably 2000 or less, and 1500 or less. Is more preferable. By setting the average degree of polymerization within the above range, it is possible to achieve both fluidity at the time of injection and strength of the molded product.
  • the chlorinated vinyl chloride resin of the present invention is a resin obtained by chlorinating a vinyl chloride resin.
  • the vinyl chloride-based resin includes a vinyl chloride homopolymer, a copolymer of a monomer having an unsaturated bond copolymerizable with a vinyl chloride monomer and a vinyl chloride monomer, and a vinyl chloride monomer graft-copolymerized with the polymer.
  • a graft copolymer or the like can be used. These polymers may be used alone or in combination of two or more.
  • the vinyl chloride resin is a copolymer of a vinyl chloride monomer and a monomer having an unsaturated bond copolymerizable with the vinyl chloride monomer, or a graft copolymer obtained by graft-copolymerizing a vinyl chloride monomer with the polymer.
  • the content of the component derived from the vinyl chloride monomer in the vinyl chloride resin is preferably 90% by mass or more. Further, it is preferably 100% by mass or less.
  • Examples of the monomer having an unsaturated bond copolymerizable with the vinyl chloride monomer include ⁇ -olefins, vinyl esters, vinyl ethers, (meth) acrylic acid esters, aromatic vinyls, vinyl halides, and the like. Examples thereof include N-substituted maleimides, and one or more of these are used.
  • Examples of the ⁇ -olefins include ethylene, propylene, butylene and the like
  • examples of the vinyl esters include vinyl acetate and vinyl propionate
  • examples of the vinyl ethers include butyl vinyl ether and cetyl vinyl ether. Be done.
  • Examples of the (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, butyl acrylate, and phenyl methacrylate, and examples of the aromatic vinyls include styrene and ⁇ -methylstyrene.
  • examples of the vinyl halides include vinylidene chloride and vinylidene fluoride
  • examples of the N-substituted maleimides include N-phenylmaleimide and N-cyclohexylmaleimide. Of these, ethylene and vinyl acetate are preferable.
  • the polymer for graft-copolymerizing vinyl chloride is not particularly limited as long as it is for graft-polymerizing vinyl chloride.
  • examples of such a polymer include ethylene-vinyl acetate copolymer, ethylene-vinyl acetate-carbon monoxide copolymer, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate-carbon monoxide copolymer, and the like.
  • Examples thereof include an ethylene-methyl methacrylate copolymer and an ethylene-propylene copolymer.
  • examples thereof include an acrylonitrile-butadiene copolymer, polyurethane, chlorinated polyethylene, chlorinated polypropylene and the like, and these may be used alone or in combination of two or more.
  • the polymerization method of the vinyl chloride-based resin is not particularly limited, and conventionally known water suspension polymerization, bulk polymerization, solution polymerization, emulsion polymerization and the like can be used.
  • the vinyl chloride resin is suspended in an aqueous medium to prepare a suspension, and chlorine is introduced into the reaction vessel.
  • the peak average of the A / B and the standard deviation of the A / B are the pressure, temperature, chlorine concentration, chlorine dioxide concentration, hydrogen peroxide concentration, chlorine consumption rate, and stirring when the vinyl chloride resin is chlorinated. It can be adjusted by changing conditions such as conditions, irradiation intensity of light energy, and wavelength of light.
  • reaction vessel for example, a commonly used vessel such as a stainless steel reaction vessel with a glass lining or a titanium reaction vessel can be used.
  • the method for preparing a suspension by suspending the vinyl chloride resin in an aqueous medium is not particularly limited, and a cake-shaped PVC obtained by demonomerizing the polymerized PVC may be used or dried. May be suspended again in an aqueous medium. Further, a suspension in which substances unfavorable for the chlorination reaction are removed from the polymerization system may be used, but it is preferable to use a cake-like resin obtained by demonomerizing PVC after polymerization.
  • aqueous medium for example, pure water subjected to ion exchange treatment can be used.
  • the amount of the aqueous medium is not particularly limited, but is generally preferably 150 to 400 parts by mass with respect to 100 parts by mass of PVC.
  • the chlorine introduced into the reaction vessel may be either liquid chlorine or gaseous chlorine. It is efficient to use liquid chlorine because a large amount of chlorine can be charged in a short time. Chlorine may be added during the reaction to regulate pressure or replenish chlorine. At this time, in addition to liquid chlorine, gaseous chlorine can be appropriately blown.
  • the gauge pressure in the reaction vessel is not particularly limited, but the higher the chlorine pressure, the easier it is for chlorine to permeate the inside of the PVC particles, so a range of 0 to 2 MPa is preferable.
  • the method of chlorinating PVC in the suspended state is not particularly limited, and for example, a method of accelerating chlorination by exciting PVC binding or chlorine with thermal energy (hereinafter referred to as thermal chlorination), ultraviolet light.
  • thermal chlorination a method of accelerating chlorination by exciting PVC binding or chlorine with thermal energy
  • examples thereof include a method of irradiating light energy such as chlorination to promote chlorination in a photoreactive manner (hereinafter referred to as photochlorination).
  • the heating method for chlorination by thermal energy is not particularly limited, and for example, heating by an external jacket method from the reactor wall is effective. Further, when using light energy such as ultraviolet rays, a device capable of irradiating light energy such as ultraviolet irradiation under high temperature and high pressure conditions is required.
  • the chlorination reaction temperature is preferably 40 to 80 ° C.
  • the ratio of the irradiation intensity (W) of light energy in the case of photochlorination to the total amount (kg) of the raw material PVC and water is preferably 0.001 to 6 (W / kg), and irradiation is performed.
  • the wavelength of light is preferably 280 to 420 nm.
  • a hot chlorine method that does not irradiate ultraviolet rays is preferable, and a method that promotes the chlorination reaction by exciting the bonding of vinyl chloride resin or chlorine with heat alone or heat and hydrogen peroxide is preferable.
  • the amount of light energy required for PVC to be chlorinated is greatly affected by the distance between the PVC and the light source. Therefore, the amount of energy received differs between the surface and the inside of the PVC particles, and chlorination does not occur uniformly. As a result, CPVC with low uniformity can be obtained.
  • a more uniform chlorination reaction becomes possible, and CPVC with high uniformity can be obtained.
  • the heating temperature is more preferably in the range of 50 to 110 ° C.
  • the heating method is not particularly limited, and for example, heating can be performed from the reaction vessel wall by an outer jacket method.
  • the rate of chlorination can be improved.
  • Hydrogen peroxide is preferably added in an amount of 5 to 500 ppm with respect to PVC every hour of the reaction time. If the amount added is too small, the effect of improving the rate of chlorination cannot be obtained. If the amount added is too large, the thermal stability of CPVC will decrease.
  • the chlorination rate is improved, so that the heating temperature can be made relatively low. For example, it may be in the range of 65 to 110 ° C.
  • chlorination after the time when it reaches 5% by mass before the final added chlorination amount is performed in a chlorine consumption rate of 0.010 to 0.015 kg / PVC-kg / 5 min, and further. It is preferable that the chlorine consumption rate is in the range of 0.005 to 0.010 kg / PVC-kg ⁇ 5 min after the time when it reaches 3% by mass before the final added chlorine amount.
  • the chlorine consumption rate refers to the amount of chlorine consumed for 5 minutes per 1 kg of raw material PVC.
  • the ratio of the vortex volume (unit: L) to the total mass (kg) of the raw material PVC and water (vortex volume / total mass of the raw material PVC and water) is 0. It is preferable that the conditions are .009 to 0.143 (L / kg).
  • the above ratio is 0.009 (L / kg) or more, chlorine in the gas phase part in the reactor can be sufficiently taken into the liquid phase part, and the above ratio is 0.143 (L / kg) or less. In this case, chlorine taken into the liquid phase portion is less likely to be re-released to the gas phase portion, so that chlorine can be uniformly chlorinated.
  • the vortex volume means the volume of the vortex generated at the gas-liquid interface during stirring.
  • the vortex volume can be calculated using, for example, the thermal fluid / powder analysis software "R-FLOW" (manufactured by R-Flow Co., Ltd.). Specifically, it can be calculated based on the distance between the center of the stirring blade and the interface between the gas phase portion and the liquid phase portion during stirring.
  • R-FLOW thermal fluid / powder analysis software
  • the rotation speed of the stirring blade during stirring is preferably 10 to 500 rpm, and the capacity of the reaction vessel is preferably 0.01 m 3 to 100 m 3 . Further, the ratio of the distance from the liquid level to the stirring blade and the liquid level height during stirring (distance from the liquid level to the stirring blade / liquid level height) is 0.05 to 0.70 (m / m). It is preferable to adjust the height of the stirring blade as described above.
  • the liquid level height means the distance from the bottom of the reaction vessel to the liquid level of the raw material when the raw material is put into the reaction vessel. Further, the distance from the liquid surface to the stirring blade means the distance from the liquid surface to the uppermost portion of the stirring blade. Further, the ratio of the stirring blade diameter to the reaction vessel diameter (stirring blade diameter / reaction vessel diameter) is preferably 0.3 (m / m) or more, and is 0.9 (m / m) or less. preferable.
  • the concentration of chlorine introduced into the reaction vessel is preferably 95% or more.
  • the chlorine dioxide concentration in the reaction vessel is preferably 5000 ppm or less, more preferably 2500 ppm or less, based on the mass of the introduced chlorine.
  • the lower limit of the chlorine dioxide concentration is not particularly limited, but is preferably 0.1 ppm or more, and more preferably 1 ppm or more.
  • stabilized chlorine dioxide may be added as an additive, or chlorine gas containing chlorine dioxide may be used.
  • a molded product can be produced by molding a molding resin composition containing the chlorinated vinyl chloride resin of the present invention.
  • the molding resin composition containing the chlorinated vinyl chloride resin of the present invention is also one of the present inventions.
  • the preferable lower limit is 65% by mass
  • the more preferable lower limit is 70% by mass
  • the preferable upper limit is 96% by mass
  • the more preferable upper limit is 93. It is mass%.
  • the molding resin composition of the present invention has a stabilizer, a lubricant, a processing aid, an impact modifier, a heat resistance improver, an antioxidant, an ultraviolet absorber, a light stabilizer, a filler, and a thermoplastic, if necessary.
  • Additives such as elastomers and pigments may be added.
  • the stabilizer is not particularly limited, and examples thereof include a heat stabilizer and a heat stabilization aid.
  • the heat stabilizer is not particularly limited, and examples thereof include an organotin stabilizer, a lead stabilizer, a calcium-zinc stabilizer; a barium-zinc stabilizer; and a barium-cadmium stabilizer.
  • organic tin stabilizer examples include dibutyl tin mercapto, dioctyl tin mercapto, dimethyl tin mercapto, dibutyl tin mercapto, dibutyl tin malate, dibutyl tin malate polymer, dioctyl tin malate, dioctyl tin malate polymer, and dibutyl tin laurate. , Dibutyltin laurate polymer and the like.
  • the lead-based stabilizer examples include lead stearate, dibasic lead phosphite, and tribasic lead sulfate. These may be used alone or in combination of two or more.
  • the heat stabilizing aid is not particularly limited, and examples thereof include epoxidized soybean oil, phosphoric acid ester, polyol, hydrotalcite, and zeolite. These may be used alone or in combination of two or more.
  • the external lubricant is used for the purpose of enhancing the sliding effect between the molten resin and the metal surface during molding.
  • the external lubricant is not particularly limited, and examples thereof include paraffin wax, polyolefin wax, ester wax, and montanic acid wax. These may be used alone or in combination of two or more.
  • the processing aid is not particularly limited, and examples thereof include acrylic processing aids such as alkylacrylate-alkylmethacrylate copolymers having a mass average molecular weight of 100,000 to 2,000,000.
  • the acrylic processing aid is not particularly limited, and examples thereof include an n-butyl acrylate-methyl methacrylate copolymer and a 2-ethylhexyl acrylate-methyl methacrylate-butyl methacrylate copolymer. These may be used alone or in combination of two or more.
  • the impact modifier is not particularly limited, and examples thereof include methyl methacrylate-butadiene-styrene copolymer (MBS), chlorinated polyethylene, and acrylic rubber.
  • MFS methyl methacrylate-butadiene-styrene copolymer
  • the heat resistance improving agent is not particularly limited, and examples thereof include ⁇ -methylstyrene-based resins and N-phenylmaleimide-based resins.
  • the antioxidant is not particularly limited, and examples thereof include phenolic antioxidants.
  • the light stabilizer is not particularly limited, and examples thereof include a hindered amine-based light stabilizer and the like.
  • the ultraviolet absorber is not particularly limited, and examples thereof include ultraviolet absorbers such as salicylic acid ester type, benzophenone type, benzotriazole type, and cyanoacrylate type.
  • the filler is not particularly limited, and examples thereof include calcium carbonate and talc.
  • the pigment is not particularly limited, and for example, organic pigments such as azo-based, phthalocyanine-based, slene-based, and dye lake-based; oxide-based, molybdenum chromate-based, sulfide / serene-based, ferrocyanine-based, etc. Examples include inorganic pigments.
  • a molded product molded from the molding resin composition of the present invention is provided. Such a molded product is also one of the present inventions.
  • any conventionally known molding method may be adopted, and examples thereof include an extrusion molding method and an injection molding method.
  • the molded product of the present invention has excellent thermal stability, is in a good appearance, and is less likely to leave water droplets when passing water or the like, and can prevent contamination by mold or the like. It can be suitably used for applications such as pipework equipment and housing materials.
  • the preferable lower limit of the developed area ratio (Sdr) of the interface is 0.0001, and the preferable upper limit is 0.003.
  • the Sdr can be measured using, for example, a 3D shape measuring machine (VR-3100 manufactured by KEYENCE CORPORATION).
  • Example 1 130 kg of ion-exchanged water, 50 kg of vinyl chloride resin having an average degree of polymerization of 1000 and stabilized chlorine dioxide are put into a glass-lined reaction vessel having an internal volume of 300 L, and the mixture is stirred to disperse the vinyl chloride resin in water and suspended in water. After that, the inside of the reaction vessel was heated to raise the temperature of the aqueous suspension to 100 ° C. The stabilized chlorine dioxide was added at a ratio of 200 ppm of chlorine dioxide to the mass of chlorine introduced during chlorination.
  • the inside of the reaction vessel is depressurized to remove oxygen (oxygen amount 100 ppm), and then the chlorine partial pressure is reduced to 0 while stirring with a stirring blade so that the vortex volume generated at the gas-liquid interface by stirring becomes 7.5 L.
  • Chlorine was introduced so as to be 40 MPa, and thermal chlorination was started.
  • the height of the stirring blade is such that the ratio of the distance from the liquid level to the stirring blade to the liquid level height (distance from the liquid level to the stirring blade / liquid level height) is 0.374 (m / m). Adjusted the height.
  • the ratio of the stirring blade diameter to the reaction vessel diameter was 0.54 (m / m).
  • the chlorination temperature was maintained at 100 ° C. and the chlorine partial pressure was maintained at 0.40 MPa, and after the amount of added chlorination reached 4.2% by mass, 200 ppm of hydrogen peroxide solution was peroxidized with respect to the vinyl chloride resin. Addition was started so that the amount of hydrogen peroxide was 15 ppm / Hr, and the average chlorine consumption rate was adjusted to 0.01 kg / PVC-kg ⁇ 5 min. Then, when the amount of added chlorination reached 10.4% by mass, the supply of hydrogen peroxide solution and chlorine gas was stopped, and chlorination was completed.
  • chlorinated vinyl chloride resin slurry is neutralized with sodium hydroxide, washed with water, dehydrated, dried, and hot chlorine.
  • a powdered chlorinated vinyl chloride resin (additional chlorination amount: 10.4% by mass) was obtained.
  • Examples 2 to 13, Comparative Examples 1 to 11 Tables of average degree of polymerization of vinyl chloride resin, concentration of ClO 2 / Cl 2 , vortex volume during stirring, distance from liquid level to stirring blade / liquid level height, average chlorine consumption rate, amount of 200ppm hydrogen peroxide added.
  • a chlorinated vinyl chloride resin was obtained in the same manner as in Example 1 except that the changes were made as described in 1 and 2.
  • the obtained Raman spectrum was subjected to baseline correction by linear approximation with 515 cm -1 to (minimum value observed at 750 to 950 cm -1 ) as the baseline. Furthermore, 600 to a peak intensity observed in the range of 650 cm -1 B (mainly 641cm -1), and to measure the 660-peak intensity observed in the range of 700 cm -1 A (mainly 697cm -1), peak The ratio of the peak intensity A to the intensity B (A / B) was calculated, and the peak average of A / B and the standard deviation of A / B of 50 particles were calculated.
  • a polyethylene-based lubricant Hiwax 220MP manufactured by Mitsui Chemicals Co., Ltd.
  • a fatty acid ester-based lubricant LOXIOL G-32 manufactured by Emery Oleo Chemicals Japan Co., Ltd.
  • the obtained chlorinated vinyl chloride resin composition is supplied to a twin-screw non-directional conical extruder (manufactured by Nagata Seisakusho Co., Ltd., SLM-50) having a diameter of 50 mm, and the resin temperature is 205 ° C., back pressure is 130 kg / cm 2 , and extrusion is performed.
  • a sheet-shaped molded product having a thickness of 2 mm and a width of 80 mm was produced at an amount of 40 kg / hr.
  • the Sdr value of the surface of the obtained molded product was measured using a 3D shape measuring machine (VR-3100 manufactured by KEYENCE CORPORATION). Each Sdr value shown in Table 1 is an average value for five measurement regions. Note that Sdr represents how much the surface area of the measurement area is increased with respect to the area of the measurement area, and Sdr of a completely flat surface is 0.
  • a molded product having a low Sdr has excellent flatness, and when used as a pipe-shaped molded product such as a pipe, it has excellent quietness when running water.
  • Residual water droplets The obtained molded product (thickness 2 mm, width 80 mm, length 150 mm) is immersed in water for 10 seconds, and is taken out vertically from the water at a speed of 150 mm / sec using tweezers. After holding for 10 seconds, the surface of the molded product was observed, and the presence or absence of water droplets having a diameter of 0.5 mm or more was visually confirmed and evaluated according to the following criteria. ⁇ : No water droplets of 0.5 mm or more were confirmed. X: Water droplets of 0.5 mm or more were confirmed. When no water droplets are confirmed on the surface of the molded product, it can be said that the obtained molded product has less residual water droplets during water flow when it is made into a pipe-shaped molded product or the like, and has excellent antifungal properties.
  • Discoloration (discoloration) of the molded product The surface condition of the obtained molded product was visually confirmed and evaluated according to the following criteria. ⁇ : No discoloration was confirmed. X: Discoloration (discoloration) was confirmed.
  • the obtained chlorinated vinyl chloride resin composition is supplied to a twin-screw non-directional conical extruder (manufactured by Nagata Seisakusho Co., Ltd., SLM-50) having a diameter of 50 mm, and the resin temperature is 205 ° C. and back pressure.
  • a sheet-shaped molded product having a thickness of 2 mm and a width of 80 mm was produced at 130 kg / cm 2 and an extrusion rate of 40 kg / hr.
  • the continuous productivity was evaluated by measuring the time from the start of molding to the occurrence of discoloration (discoloration) in the molded product obtained. If it takes a long time for the molded product to be discolored, the mold surface is less likely to be contaminated, and the same work is repeated for a long period of time to produce the product with excellent continuous productivity. You can say that.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、成形加工時の連続生産性に優れ、成形品の加工性とムラ防止性を両立することが可能な塩素化塩化ビニル系樹脂を提供する。 本発明は、ラマン分光法によるラマン測定において、600~650cm-1の範囲に観察されるピーク強度Bに対する、660~700cm-1の範囲に観察されるピーク強度Aの比(A/B)のピーク平均が0.50~2.00であり、かつ、前記A/Bの標準偏差が0.090以下である塩素化塩化ビニル系樹脂である。

Description

塩素化塩化ビニル系樹脂
本発明は、成形加工時の連続生産性に優れ、成形品の加工性とムラ防止性を両立することが可能な塩素化塩化ビニル系樹脂に関する。
塩化ビニル系樹脂は、一般に、機械的強度、耐候性及び耐薬品性に優れている。このため、塩化ビニル系樹脂は、各種の成形体に加工されており、多くの分野で使用されている。
しかしながら、塩化ビニル系樹脂は、耐熱性に劣るため、塩化ビニル系樹脂を塩素化することにより耐熱性を向上させた塩素化塩化ビニル系樹脂(CPVC)が開発されている。
例えば、特許文献1には、特定の製造方法により得られた塩素化塩化ビニル系樹脂が開示されており、このような樹脂は、加熱成形時の初期着色が少なく、また、熱安定性に優れることが開示されている。
国際公開第2014/178362号
しかしながら、特許文献1に記載のような塩素化塩化ビニル系樹脂は、部分的に高塩素化されたCPVCが多く存在するため、これを成形加工すると熱分解されやすく、多くの塩化水素ガスが発生して、金型表面が汚染されるという問題がある。また、このように得られた成形品にはヤケが生じるため、成形加工時の連続生産性に劣り、成形加工性が劣るという問題がある。更に、高塩素化部分と低塩素化部分とは、溶融粘度の違いによって均一に混合することが困難であり、得られる成形体の形状にムラが多く、均一な成形品を得ることができないという問題がある。
本発明は、上記従来技術の課題に鑑み、成形加工時の連続生産性に優れ、成形品の加工性とムラ防止性を両立することが可能な塩素化塩化ビニル系樹脂を提供することを目的とする。
本発明は、ラマン分光法によるラマン測定において、600~650cm-1の範囲に観察されるピーク強度Bに対する、660~700cm-1の範囲に観察されるピーク強度Aの比(A/B)のピーク平均が0.50~2.00であり、かつ、前記A/Bの標準偏差が0.090以下である塩素化塩化ビニル系樹脂である。
以下に本発明を詳述する。
本発明の塩素化塩化ビニル系樹脂は、ラマン分光法によるラマン測定において、600~650cm-1の範囲に観察されるピーク強度Bに対する、660~700cm-1の範囲に観察されるピーク強度Aの比(A/B)のピーク平均が0.50~2.00である。
上記A/Bのピーク平均が上記範囲内であることで、成形品のムラ防止性を向上させることができるとともに、成形加工時の連続生産性に優れたものとすることができる。
上記ピーク平均は、0.80以上であることが好ましく、1.30未満であることが好ましい。
なお、上記ピーク強度Bに対するピーク強度Aの比(A/B)のピーク平均は、以下の方法により測定することができる。
具体的には、まず、粉末状の塩素化塩化ビニル系樹脂の粒子50個について、顕微ラマン分光分析装置を用いて、ラマンスペクトルを測定する。その後、得られたラマンスペクトルにおいて、直線近似によるベースライン補正を行い、600~650cm-1の範囲に観察されるピーク強度Bと、660~700cm-1の範囲に観察されるピーク強度Aとを測定し、A/Bを算出し、ピーク強度についての平均を算出することで測定することができる。
本発明の塩素化塩化ビニル系樹脂において、600~650cm-1の範囲に観察されるピーク強度Bに対する、660~700cm-1の範囲に観察されるピーク強度Aの比(A/B)の標準偏差は0.090以下である。
上記A/Bの標準偏差が0.090以下であることで、成形品のムラ防止性及び成形加工時の連続生産性をより向上させることができる。
上記A/Bの標準偏差は、0.080以下であることがより好ましい。上記A/Bの標準偏差の下限は特に限定されないが、0.010以上であることが好ましい。
なお、上記A/Bの標準偏差は、上記ラマン測定におけるA/Bのピーク平均と各粒子におけるA/Bとに基づいて算出することができる。
なお、塩素化塩化ビニル系樹脂のラマンスペクトルの解析では以下の知見も見出された。
具体的には、塩素化塩化ビニル系樹脂の製造方法の違いにより、2921cm-1に観察されるCHのCH伸縮に由来するピークの強度及び2977cm-1に観察されるピークの強度に変化が見られた。当該ピークを詳細に解析することで、より詳細に塩素化塩化ビニル系樹脂の構造の違いを分析することができる。
また、光塩素化された塩素化塩化ビニル系樹脂では、1600~1700cm-1に二重結合由来と思われるピークが存在することを見出し、加熱等により劣化した塩素化塩化ビニル系樹脂では1131cm-1及び1510cm-1に共役二重結合由来と思われるピークが新たに生成することを見出した。
本発明の塩素化塩化ビニル系樹脂は、上記A/Bのピーク平均と上記A/Bの標準偏差とが以下の関係を満たすことが好ましい。
0.500≦[A/Bのピーク平均]+[A/Bの標準偏差]1/2≦2.300
本発明の塩素化塩化ビニル系樹脂は、下記式(a)~(c)に示す構成単位(a)~(c)を有し、下記構成単位(a)、(b)及び(c)の合計モル数に対して、構成単位(a)の割合が5.0モル%以上、構成単位(b)の割合が40.0モル%以下、構成単位(c)の割合が55.0モル%以下であることが好ましい。このような塩素化塩化ビニル系樹脂は、溶融混練時に均一なゲル化特性を示し、表面にムラの少ない成形品を得ることができる。
本発明の塩素化塩化ビニル系樹脂は、上記構成単位(a)、(b)及び(c)の合計モル数に対して、構成単位(a)の割合が5.0モル%以上であることが好ましく、30.0モル%以上であることがより好ましく、35.0モル%以上であることが更に好ましく、90.0モル%以下であることが好ましく、60.0モル%以下であることがより好ましい。
また、上記構成単位(a)、(b)及び(c)の合計モル数に対して、構成単位(b)の割合が5.0モル%以上であることが好ましく、15.0モル%以上であることがより好ましく、40.0モル%以下であることが好ましく、30.0モル%以下がより好ましく、25.0モル%以下であることが更に好ましい。
更に、上記構成単位(a)、(b)及び(c)の合計モル数に対して、構成単位(c)の割合が5.0モル%以上であることが好ましく、25.0モル%以上であることがより好ましく、55.0モル%以下であることが好ましく、40.0モル%以下であることがより好ましい。
Figure JPOXMLDOC01-appb-C000001
本発明の塩素化塩化ビニル系樹脂の構成単位(a)、(b)及び(c)のモル比は、塩化ビニル系樹脂(PVC)が塩素化される際の塩素が導入される部位を反映したものである。塩素化前のPVCは、構成単位(a)が100モル%、構成単位(b)及び(c)が0モル%の状態にあるが、塩素化に伴って構成単位(a)が減少し、構成単位(b)及び(c)が増加する。この際、不安定な構成単位(b)が増えすぎたり、塩素化塩化ビニル系樹脂の同一粒子内で塩素化されている部位とされていない部位が偏ったりすると、塩素化状態の不均一性が大きくなる。この不均一性が大きくなると、塩素化塩化ビニル系樹脂を溶融混練する際にゲル化特性にバラつきが生じ、成形品表面の平滑性が大きく損なわれる。
一方で、本発明では、構成単位(a)、(b)及び(c)のモル比を上述の範囲内とすることで、塩素化塩化ビニル系樹脂の均一性が高くなり、溶融混練時に良好なゲル化特性を発揮することができる。
本発明の塩素化塩化ビニル系樹脂の構成単位(a)、(b)及び(c)のモル比は、NMRを用いた分子構造解析により測定することができる。NMR分析は、R.A.Komoroski,R.G.Parker,J.P.Shocker,Macromolecules,1985,18,1257-1265に記載の方法に準拠して行うことができる。
本発明の塩素化塩化ビニル系樹脂は、本発明の効果を損なわない範囲で、上記構成単位(a)、(b)及び(c)以外の他の構成単位を含んでいてもよい。
上記他の構成単位の含有量は、塩素化塩化ビニル系樹脂中、0質量%以上であることが好ましく、10質量%未満であることが好ましい。
本発明の塩素化塩化ビニル系樹脂において、上記構成単位(c)の割合と上記A/Bのピーク平均は以下の関係を満たすことが好ましい。
0.5≦構成単位(c)の割合(モル%)/[A/Bのピーク平均]≦110
上記構成単位(c)の割合と上記A/Bのピーク平均は以下の関係を満たすことがより好ましい。
3.8≦構成単位(c)の割合(モル%)/[A/Bのピーク平均]≦68.8
上記関係を満たすことで、成形品のムラ防止性を向上させることができるとともに、成形加工時の連続生産性に優れたものとすることができる。
本発明の塩素化塩化ビニル系樹脂は、付加塩素化量が3.2~15.2質量%であることが好ましい。
上記付加塩素化量を3.2質量%以上とすることで、成形品としての耐熱性が充分なものとなり、15.2質量%以下とすることで、成形性が向上する。
上記付加塩素化量は、5.2質量%以上であることがより好ましく、8.2質量%以上であることが更に好ましく、12.2質量%以下であることがより好ましく、11.2質量%以下であることが更に好ましい。
なお、塩化ビニル系樹脂の塩素含有量は通常56.8質量%であるが、上記付加塩素化量は、塩化ビニル系樹脂に対する塩素の導入割合を意味するものであり、JIS K 7229に記載の方法により測定することができる。
本発明の塩素化塩化ビニル系樹脂は、塩素化状態の不均一性が少なく、成形時のヤケの発生を抑制できるという観点から、上記構成単位(b)の割合と上記付加塩素化量との比(構成単位(b)の割合/付加塩素化量)が0.1以上であることが好ましく、4.0以下であることが好ましい。
本発明の塩素化塩化ビニル系樹脂の平均重合度は、特に限定されず、400以上であることが好ましく、500以上であることがより好ましく、2000以下であることが好ましく、1500以下であることがより好ましい。
上記平均重合度を上述の範囲内とすることで、射出時の流動性と成型品の強度を両立することができる。
本発明の塩素化塩化ビニル系樹脂は、塩化ビニル系樹脂が塩素化されてなる樹脂である。
上記塩化ビニル系樹脂としては、塩化ビニル単独重合体のほか、塩化ビニルモノマーと共重合可能な不飽和結合を有するモノマーと塩化ビニルモノマーとの共重合体、重合体に塩化ビニルモノマーをグラフト共重合したグラフト共重合体等を用いることができる。これら重合体は単独で用いられてもよいし、2種以上が併用されてもよい。
また、上記塩化ビニル系樹脂が塩化ビニルモノマーと共重合可能な不飽和結合を有するモノマーと塩化ビニルモノマーとの共重合体、又は、重合体に塩化ビニルモノマーをグラフト共重合したグラフト共重合体である場合、上記塩化ビニル系樹脂における塩化ビニルモノマーに由来する成分の含有量は90質量%以上であることが好ましい。また、100質量%以下であることが好ましい。
上記塩化ビニルモノマーと共重合可能な不飽和結合を有するモノマーとしては、例えば、α-オレフィン類、ビニルエステル類、ビニルエーテル類、(メタ)アクリル酸エステル類、芳香族ビニル類、ハロゲン化ビニル類、N-置換マレイミド類等が挙げられ、これらの1種若しくは2種以上が使用される。
上記α-オレフィン類としては、エチレン、プロピレン、ブチレン等が挙げられ、上記ビニルエステル類としては、酢酸ビニル、プロピオン酸ビニル等が挙げられ、上記ビニルエーテル類としては、ブチルビニルエーテル、セチルビニルエーテル等が挙げられる。
また、上記(メタ)アクリル酸エステル類としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチルアクリレート、フェニルメタクリレート等が挙げられ、上記芳香族ビニル類としては、スチレン、α-メチルスチレン等が挙げられる。
更に、上記ハロゲン化ビニル類としては、塩化ビニリデン、フッ化ビニリデン等が挙げられ、上記N-置換マレイミド類としては、N-フェニルマレイミド、N-シクロヘキシルマレイミド等が挙げられる。
なかでも、エチレン、酢酸ビニルが好ましい。
上記塩化ビニルをグラフト共重合する重合体としては、塩化ビニルをグラフト重合させるものであれば特に限定されない。このような重合体としては、例えば、エチレン-酢酸ビニル共重合体、エチレン-酢酸ビニル-一酸化炭素共重合体、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート-一酸化炭素共重合体、エチレン-メチルメタクリレート共重合体、エチレン-プロピレン共重合体等が挙げられる。また、アクリロニトリル-ブタジエン共重合体、ポリウレタン、塩素化ポリエチレン、塩素化ポリプロピレン等が挙げられ、これらは単独で用いられてもよいし、2種以上が併用されても良い。
上記塩化ビニル系樹脂の重合方法は、特に限定されず、従来公知の水懸濁重合、塊状重合、溶液重合、乳化重合等を用いることができる。
本発明の塩素化塩化ビニル系樹脂を製造する方法としては、例えば、反応容器中において、塩化ビニル系樹脂を水性媒体に懸濁して懸濁液を調製し、前記反応容器内に塩素を導入し、前記懸濁液を加熱することによって前記塩化ビニル系樹脂を塩素化する方法が挙げられる。
また、上記A/Bのピーク平均及び上記A/Bの標準偏差は、塩化ビニル系樹脂を塩素化する際の圧力、温度、塩素濃度、二酸化塩素濃度、過酸化水素濃度、塩素消費速度、攪拌条件、光エネルギーの照射強度、光の波長等の条件を変更することで調整することができる。
上記反応容器としては、例えば、グラスライニングが施されたステンレス製反応容器、チタン製反応容器等の一般に使用されている容器を使用することができる。
上記塩化ビニル系樹脂を水性媒体に懸濁して懸濁液を調製する方法は、特に限定されず、重合後のPVCを脱モノマー処理したケーキ状のPVCを用いてもよいし、乾燥させたものを再度、水性媒体で懸濁化してもよい。また、重合系中より、塩素化反応に好ましくない物質を除去した懸濁液を使用してもよいが、重合後のPVCを脱モノマー処理したケーキ状の樹脂を用いることが好ましい。
上記水性媒体としては、例えば、イオン交換処理された純水を用いることができる。水性媒体の量は、特に限定されないが、一般にPVCの100質量部に対して150~400質量部が好ましい。
上記反応容器内に導入する塩素は、液体塩素及び気体塩素のいずれであってもよい。短時間に多量の塩素を仕込めるため、液体塩素を用いることが効率的である。圧力を調整するためや塩素を補給するために、反応途中に塩素を追加してもよい。このとき、液体塩素の他に気体塩素を適宜吹き込むこともできる。
上記反応容器内のゲージ圧力は、特に限定されないが、塩素圧力が高いほど塩素がPVC粒子の内部に浸透し易いため、0~2MPaの範囲が好ましい。
上記懸濁した状態でPVCを塩素化する方法は、特に限定されず、例えば、熱エネルギーによりPVCの結合や塩素を励起させて塩素化を促進する方法(以下、熱塩素化という)、紫外光線等の光エネルギーを照射して光反応的に塩素化を促進する方法(以下、光塩素化という)等が挙げられる。熱エネルギーにより塩素化する際の加熱方法は、特に限定されず、例えば、反応器壁からの外部ジャケット方式による加熱が効果的である。また、紫外光線等の光エネルギーを使用する場合は、高温、高圧の条件下での紫外線照射等の光エネルギー照射が可能な装置が必要である。光塩素化の場合の塩素化反応温度は、40~80℃が好ましい。また、光塩素化の場合の光エネルギーの照射強度(W)と原料PVC及び水の合計量(kg)との比は、0.001~6(W/kg)とすることが好ましく、照射する光の波長は280~420nmであることが好ましい。
上記塩素化方法の中では、紫外線照射を行わない熱塩素方法が好ましく、熱のみ又は熱及び過酸化水素により塩化ビニル系樹脂の結合や塩素を励起させ塩素化反応を促進する方法が好ましい。
上記光エネルギーによる塩素化反応の場合、PVCが塩素化されるのに必要な光エネルギーの大きさは、PVCと光源との距離に大きく影響を受ける。そのため、PVC粒子の表面と内部とでは、受けるエネルギー量が相違し、塩素化が均一に生じない。その結果、均一性の低いCPVCが得られる。一方、紫外線照射を行わず、熱により塩素化する方法では、より均一な塩素化反応が可能となり、均一性の高いCPVCを得ることができる。
上記加熱のみで塩素化する場合は、40~120℃の範囲であることが好ましい。温度が低すぎると、塩素化速度が低下する。温度が高すぎると、塩素化反応と並行して脱HCl反応が起こり、得られたCPVCが着色する。加熱温度は、50~110℃の範囲であることがより好ましい。加熱方法は、特に限定されず、例えば、外部ジャケット方式で反応容器壁から加熱することができる。
上記塩素化において、懸濁液にさらに過酸化水素を添加することが好ましい。過酸化水素を添加することにより、塩素化の速度を向上させることができる。過酸化水素は、反応時間1時間毎に、PVCに対して5~500ppmの量を添加することが好ましい。添加量が少なすぎると、塩素化の速度を向上させる効果が得られない。添加量が多すぎると、CPVCの熱安定性が低下する。
上記過酸化水素を添加する場合、塩素化速度が向上するため、加熱温度を比較的低くすることができる。例えば、65~110℃の範囲であってよい。
上記塩素化の際に、最終付加塩素化量から5質量%手前に達した時点以降の塩素化を、塩素消費速度が0.010~0.015kg/PVC-kg・5minの範囲で行い、さらに、最終付加塩素化量から3質量%手前に達した時点以降の塩素化を、塩素消費速度が0.005~0.010kg/PVC-kg・5minの範囲で行うことが好ましい。ここで、塩素消費速度とは、原料PVC1kgあたりの5分間の塩素消費量を指す。
上記方法で塩素化を行うことにより、塩素化状態の不均一性が少なく、熱安定性の優れたCPVCを得ることができる。
上記塩素化方法では、懸濁液を攪拌しながら塩素化することが好ましい。また、懸濁液を攪拌する際の攪拌条件としては、ボルテックス体積(単位:L)と原料PVC及び水の合計質量(kg)との比(ボルテックス体積/原料PVC及び水の合計質量)が0.009~0.143(L/kg)となる条件とすることが好ましい。
上記比が0.009(L/kg)以上であることにより、反応器内の気相部の塩素を液相部に充分に取り込むことができ、上記比が0.143(L/kg)以下であると液相部に取り込んだ塩素が気相部に再放出されにくくなるため、均一に塩素化することが可能となる。
なお、上記ボルテックス体積は、攪拌の際に気液界面に発生する渦の体積を意味する。
上記ボルテックス体積は、例えば、熱流体・粉体解析ソフト「R-FLOW」(アールフロー社製)を用いて算出することができる。
具体的には、攪拌翼の中心と攪拌時の気相部と液相部との界面との距離に基づいて算出することができる。なお、攪拌時には、攪拌動力である攪拌翼により液中には圧力が生じ、液相部はプラス圧、気相部はマイナス圧となる。このため、気相部と液相部との界面は、プラス圧とマイナス圧との境界部分として確認することができる。
なお、攪拌時の攪拌翼の回転数は、10~500rpmであることが好ましく、反応容器の容量は0.01m~100mであることが好ましい。
また、攪拌時における液面から攪拌翼までの距離と液面高さとの比(液面から攪拌翼までの距離/液面高さ)が0.05~0.70(m/m)となるように攪拌翼の高さを調整することが好ましい。なお、上記液面高さとは、反応容器に原料を投入した際の反応容器底部から原料液面までの距離を意味する。また、上記液面から攪拌翼までの距離とは、液面から攪拌翼最上部までの距離を意味する。
更に、攪拌翼径と反応容器径との比(攪拌翼径/反応容器径)が0.3(m/m)以上であることが好ましく、0.9(m/m)以下であることが好ましい。
上記塩素化方法において、反応容器に導入される塩素の濃度は、95%以上であることが好ましい。
また、上記塩素化方法においては、反応容器中の二酸化塩素濃度を導入される塩素の質量に対して5000ppm以下とすることが好ましく、2500ppm以下とすることがより好ましい。また、上記二酸化塩素濃度の下限は特に限定されないが、0.1ppm以上であることが好ましく、1ppm以上であることがより好ましい。
なお、上記塩素化方法では、安定化二酸化塩素を添加剤として投入してもよく、二酸化塩素を含む塩素ガスを用いてもよい。
本発明の塩素化塩化ビニル系樹脂を含有する成形用樹脂組成物を成形することで、成形体を作製することができる。
本発明の塩素化塩化ビニル系樹脂を含有する成形用樹脂組成物もまた本発明の1つである。
本発明の成形用樹脂組成物における本発明の塩素化塩化ビニル系樹脂の含有量は、好ましい下限が65質量%、より好ましい下限が70質量%、好ましい上限が96質量%、より好ましい上限が93質量%である。
本発明の成形用樹脂組成物は、必要に応じて、安定剤、滑剤、加工助剤、衝撃改質剤、耐熱向上剤、酸化防止剤、紫外線吸収剤、光安定剤、充填剤、熱可塑性エラストマー、顔料等の添加剤が添加されていてもよい。
上記安定剤としては、特に限定されず、例えば、熱安定剤、熱安定化助剤等が挙げられる。上記熱安定剤としては、特に限定されず、例えば、有機錫系安定剤、鉛系安定剤、カルシウム-亜鉛系安定剤;バリウム-亜鉛系安定剤;バリウム-カドミウム系安定剤等が挙げられる。
上記有機錫系安定剤としては、例えば、ジブチル錫メルカプト、ジオクチル錫メルカプト、ジメチル錫メルカプト、ジブチル錫メルカプト、ジブチル錫マレート、ジブチル錫マレートポリマー、ジオクチル錫マレート、ジオクチル錫マレートポリマー、ジブチル錫ラウレート、ジブチル錫ラウレートポリマー等が挙げられる。
上記鉛系安定剤としては、ステアリン酸鉛、二塩基性亜リン酸鉛、三塩基性硫酸鉛等が挙げられる。これらは単独で使用してもよく、2種以上を併用してもよい。
上記熱安定化助剤としては、特に限定されず、例えば、エポキシ化大豆油、リン酸エステル、ポリオール、ハイドロタルサイト、ゼオライト等が挙げられる。これらは単独で使用してもよく、2種以上を併用してもよい。
上記滑剤としては、内部滑剤、外部滑剤が挙げられる。
内部滑剤は、成形加工時の溶融樹脂の流動粘度を下げ、摩擦発熱を防止する目的で使用される。上記内部滑剤としては特に限定されず、例えば、ブチルステアレート、ラウリルアルコール、ステアリルアルコール、エポキシ大豆油、グリセリンモノステアレート、ステアリン酸、ビスアミド等が挙げられる。これらは単独で使用してもよく、2種以上を併用してもよい。
上記外部滑剤は、成形加工時の溶融樹脂と金属面との滑り効果を上げる目的で使用される。外部滑剤としては特に限定されず、例えば、パラフィンワックス、ポリオレフィンワックス、エステルワックス、モンタン酸ワックス等が挙げられる。これらは単独で使用してもよく、2種以上を併用してもよい。
上記加工助剤としては、特に限定されず、例えば、質量平均分子量10万~200万のアルキルアクリレート-アルキルメタクリレート共重合体等のアクリル系加工助剤等が挙げられる。上記アクリル系加工助剤としては特に限定されず、例えば、n-ブチルアクリレート-メチルメタクリレート共重合体、2-エチルヘキシルアクリレート-メチルメタクリレート-ブチルメタクリレート共重合体等が挙げられる。これらは単独で使用してもよく、2種以上を併用してもよい。
上記衝撃改質剤としては特に限定されず、例えば、メタクリル酸メチル-ブタジエン-スチレン共重合体(MBS)、塩素化ポリエチレン、アクリルゴム等が挙げられる。
上記耐熱向上剤としては特に限定されず、例えば、α-メチルスチレン系、N-フェニルマレイミド系樹脂等が挙げられる。
上記酸化防止剤としては特に限定されず、例えば、フェノール系酸化防止剤等が挙げられる。
上記光安定剤としては特に限定されず、例えば、ヒンダードアミン系等の光安定剤等が挙げられる。
上記紫外線吸収剤としては特に限定されず、例えば、サリチル酸エステル系、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系等の紫外線吸収剤等が挙げられる。
上記充填剤としては特に限定されず、例えば、炭酸カルシウム、タルク等が挙げられる。
上記顔料としては特に限定されず、例えば、アゾ系、フタロシアニン系、スレン系、染料レーキ系等の有機顔料;酸化物系、クロム酸モリブデン系、硫化物・セレン化物系、フェロシアニン化物系等の無機顔料等が挙げられる。
更に、本発明の成形用樹脂組成物から成形された成形体が提供される。このような成形体もまた本発明の1つである。
上記成形の方法としては、従来公知の任意の成形方法が採用されてよく、例えば、押出成形法、射出成形法等が挙げられる。
本発明の成形体は、優れた熱安定性を有し、且つ、外観の状態が良好であり、また、通水時等に水滴が残留しにくくカビ等による汚染を防止できるため、建築部材、管工機材、住宅資材等の用途に好適に用いることができる。
本発明の成形体は、界面の展開面積比(Sdr)の好ましい下限が0.0001、好ましい上限が0.003である。これにより表面が均一な成形体とすることができる。
上記Sdrは、例えば、3D形状測定機(キーエンス社製、VR-3100)を用いて測定することができる。
本発明によれば、成形加工時の連続生産性に優れ、成形品の加工性とムラ防止性を両立することが可能な塩素化塩化ビニル系樹脂を提供できる。
以下、実施例を挙げて本発明を更に詳しく説明する。本発明は以下の実施例のみに限定されない。
(実施例1)
内容積300Lのグラスライニング製反応容器に、イオン交換水130kgと平均重合度1000の塩化ビニル樹脂50kgと安定化二酸化塩素を投入し、攪拌して塩化ビニル樹脂を水中に分散させ水懸濁状態にした後、反応容器内を加熱して水懸濁液を100℃に昇温した。なお、上記安定化二酸化塩素は、塩素化の際に導入する塩素の質量に対して二酸化塩素の量が200ppmとなる割合で添加した。次いで、反応容器中を減圧して酸素を除去(酸素量100ppm)した後、攪拌によって気液界面に発生するボルテックス体積が7.5Lとなるように攪拌翼により攪拌しながら塩素分圧が0.40MPaになるように塩素を導入して熱塩素化を開始した。この際、液面から攪拌翼までの距離と液面高さとの比(液面から攪拌翼までの距離/液面高さ)が0.374(m/m)となるように攪拌翼の高さを調整した。また、攪拌翼径と反応容器径との比(攪拌翼径/反応容器径)は0.54(m/m)であった。
その後、塩素化温度を100℃、塩素分圧を0.40MPaに保ち、付加塩素化量が4.2質量%に到達した後、200ppmの過酸化水素水を、塩化ビニル樹脂に対して過酸化水素として15ppm/Hrとなるように添加開始し、平均塩素消費速度が0.01kg/PVC-kg・5minになるように調整した。その後、付加塩素化量が10.4質量%に達した時点で、過酸化水素水と塩素ガスの供給を停止し、塩素化を終了した。
次いで、窒素ガスを通気して、未反応塩素を除去し、得られた塩素化塩化ビニル系樹脂スラリーを水酸化ナトリウムで中和し、水で洗浄し、脱水した後、乾燥して、熱塩素化された粉末状の塩素化塩化ビニル系樹脂(付加塩素化量が10.4質量%)を得た。
(実施例2~13、比較例1~11)
塩化ビニル樹脂の平均重合度、ClO/Clの濃度、攪拌時のボルテックス体積、液面から攪拌翼までの距離/液面高さ、平均塩素消費速度、200ppm過酸化水素の添加量を表1及び2の通りに変更した以外は実施例1と同様にして、塩素化塩化ビニル系樹脂を得た。
(評価)
実施例、比較例で得られた塩素化塩化ビニル系樹脂について、以下の評価を行った。結果を表1に示した。
(1)付加塩素化量の測定
得られた塩素化塩化ビニル系樹脂について、JIS K 7229に準拠して付加塩素化量を測定した。
(2)分子構造解析
得られた塩素化塩化ビニル系樹脂について、R.A.Komoroski,R.G.Parker,J.P.Shocker,Macromolecules,1985,18,1257-1265に記載のNMR測定方法に準拠して分子構造解析を行い、構成単位(a)~(c)の含有量を測定した。
NMR測定条件は以下の通りである。
装置:FT-NMRJEOLJNM-AL-300
測定核:13C(プロトン完全デカップリング)
パルス幅:90°
PD:2.4sec
溶媒:o-ジクロロベンゼン:重水素化ベンゼン(C5D5)=3:1
試料濃度:約20%
温度:110℃
基準物質:ベンゼンの中央のシグナルを128ppmとした
積算回数:20000回
(3)粒子ラマン分光分析
得られた塩素化塩化ビニル系樹脂について、顕微ラマン分光装置(サーモフィッシャーサイエンティフィック社製、Almega XR)を用いてラマンスペクトルを測定した。なお、ラマンスペクトルの測定においては、得られた粉末状の塩素化塩化ビニル系樹脂について、任意に採取した50個の粒子に対して、波長532nmのレーザーを用いて、露光時間1秒、スキャン回数32回により行った。粒子そのものに対して、ラマン分光分析を行うことで、粒子表面のピーク強度が得られる。また、ラマンシフトの波数は、金属シリコンのピークを520.5cm-1として校正した。
得られたラマンスペクトルに対して、515cm-1~(750~950cm-1に観察される極小値)をベースラインとして直線近似によるベースライン補正を行った。更に、600~650cm-1の範囲に観察されるピーク強度B(主として641cm-1)、及び、660~700cm-1の範囲に観察されるピーク強度A(主として697cm-1)を測定し、ピーク強度Bに対するピーク強度Aの比(A/B)を算出し、50個の粒子のA/Bのピーク平均及びA/Bの標準偏差を算出した。
(4)界面の展開面積比(Sdr)
(塩素化塩化ビニル系樹脂組成物の作製)
得られた塩素化塩化ビニル系樹脂100質量部に対して、耐衝撃改質剤5.5質量部を添加した。更に、熱安定剤1.5質量部を添加して混合した。なお、耐衝撃改質剤としては、カネエースB-564(カネカ社製、メタクリル酸メチル-ブタジエン-スチレン共重合体)を用いた。また、熱安定剤としては、TVS#1380(日東化成社製、有機錫系安定性)を用いた。
更に、ポリエチレン系滑剤(三井化学社製、Hiwax220MP)2.0質量部、脂肪酸エステル系滑剤(エメリーオレオケミカルズジャパン社製、LOXIOL G-32)0.3質量部を添加した。その後、スーパーミキサーで均一に混合して、塩素化塩化ビニル系樹脂組成物を得た。
(押出成形体の作製)
得られた塩素化塩化ビニル系樹脂組成物を、直径50mmの2軸異方向コニカル押出機(長田製作所社製、SLM-50)に供給し、樹脂温度205℃、背圧130kg/cm、押出量40kg/hrで厚さ2mm、幅80mmのシート状成形体を作製した。
(Sdrの測定)
得られた成形体の表面について、3D形状測定機(キーエンス社製、VR-3100)を用いてSdr値を測定した。表1に示す各Sdr値は、5点の測定領域に関する平均値である。
なお、Sdrは、測定領域の面積に対して、測定領域の表面積がどの程度増大しているかを割合で表したものであり、完全に平坦な面のSdrは0となる。Sdrが低い成形体は平面性に優れたものとなり、例えば、配管等のパイプ状成形体として用いた場合、流水時の静音性に優れたものとなる。
(5)残水滴
得られた成形体(厚さ2mm、幅80mm、長さ150mm)を水に10秒間浸し、ピンセットを用いて水から150mm/秒の速さで長さ方向に垂直に取り出して10秒間保持した後、成形体表面を観察し、直径が0.5mm以上の水滴の有無を目視にて確認し、以下の基準で評価した。
〇:0.5mm以上の水滴が確認されなかった。
×:0.5mm以上の水滴が確認された。
なお、成形体の表面に水滴が確認されない場合、得られた成形体はパイプ状成形体等とした際に通水時の残水滴が少なく、防カビ性に優れたものであるといえる。
(6)成形体のヤケ(変色)
得られた成形体の表面状態を目視で確認し、以下の基準で評価した。
〇:ヤケ(変色)が確認されなかった。
×:ヤケ(変色)が確認された。
(7)表面形状(ムラ)
得られた成形体の表面形状を目視及び触診することにより確認し、以下の基準で評価した。
〇:目視及び触診により表面の凹凸が確認できなかった。
△:目視により表面の凹凸は確認できないが、触診により表面の凹凸を確認できた。
×:目視により表面の凹凸を確認できた。
(8)連続生産性
得られた塩素化塩化ビニル系樹脂組成物を、直径50mmの2軸異方向コニカル押出機(長田製作所社製、SLM-50)に供給し、樹脂温度205℃、背圧130kg/cm、押出量40kg/hrで厚さ2mm、幅80mmのシート状成形体を作製した。成形開始から得られた成形体にヤケ(変色)が発生するまでの時間を測定し、連続生産性を評価した。
なお、成形体にヤケ(変色)が発生するまでの時間が長い場合、金型表面の汚染が生じにくく、長時間に渡って同様の作業を繰り返して製品を生産する連続生産性に優れたものであるといえる。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
本発明によれば、成形加工時の連続生産性に優れ、成形品の加工性とムラ防止性を両立することが可能な塩素化塩化ビニル系樹脂を提供できる。

Claims (3)

  1. ラマン分光法によるラマン測定において、600~650cm-1の範囲に観察されるピーク強度Bに対する、660~700cm-1の範囲に観察されるピーク強度Aの比(A/B)のピーク平均が0.50~2.00であり、かつ、前記A/Bの標準偏差が0.090以下である、塩素化塩化ビニル系樹脂。
  2. 請求項1記載の塩素化塩化ビニル系樹脂を含有する、成形用樹脂組成物。
  3. 請求項2記載の成形用樹脂組成物から成形された、成形体。
PCT/JP2020/014197 2019-03-29 2020-03-27 塩素化塩化ビニル系樹脂 WO2020203840A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20783517.4A EP3909987A4 (en) 2019-03-29 2020-03-27 CHLORATED VINYL CHLORIDE BASED RESIN
JP2020524916A JP6933777B2 (ja) 2019-03-29 2020-03-27 塩素化塩化ビニル系樹脂
US17/434,515 US12037423B2 (en) 2019-03-29 2020-03-27 Chlorinated vinyl-chloride-based resin
US18/740,741 US20240327551A1 (en) 2019-03-29 2024-06-12 Chlorinated vinyl-chloride-based resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019068508 2019-03-29
JP2019-068508 2019-03-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/434,515 A-371-Of-International US12037423B2 (en) 2019-03-29 2020-03-27 Chlorinated vinyl-chloride-based resin
US18/740,741 Continuation US20240327551A1 (en) 2019-03-29 2024-06-12 Chlorinated vinyl-chloride-based resin

Publications (1)

Publication Number Publication Date
WO2020203840A1 true WO2020203840A1 (ja) 2020-10-08

Family

ID=72668514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014197 WO2020203840A1 (ja) 2019-03-29 2020-03-27 塩素化塩化ビニル系樹脂

Country Status (5)

Country Link
US (2) US12037423B2 (ja)
EP (1) EP3909987A4 (ja)
JP (2) JP6933777B2 (ja)
TW (1) TW202041545A (ja)
WO (1) WO2020203840A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220135783A1 (en) * 2019-03-29 2022-05-05 Sekisui Chemical Co., Ltd. Chlorinated vinyl chloride resin

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1038807A (ja) * 1996-07-23 1998-02-13 Hamamatsu Photonics Kk プラスチックの判別方法およびプラスチックの判別装置
JP2006328166A (ja) * 2005-05-25 2006-12-07 Sekisui Chem Co Ltd 塩素化塩化ビニル系樹脂及びその成形体
WO2008062526A1 (fr) * 2006-11-24 2008-05-29 Sekisui Chemical Co., Ltd. Résines de chlorure de vinyle chlorées et leur procédé de fabrication
WO2014178362A1 (ja) 2013-05-01 2014-11-06 株式会社カネカ 塩素化塩化ビニル系樹脂の製造装置および製造方法
WO2015046454A1 (ja) * 2013-09-27 2015-04-02 積水化学工業株式会社 塩素化塩化ビニル系樹脂を含む成形用樹脂組成物及びその成形体
WO2015046456A1 (ja) * 2013-09-27 2015-04-02 積水化学工業株式会社 塩素化塩化ビニル系樹脂を含む成形用樹脂組成物及びその成形体
WO2016013638A1 (ja) * 2014-07-24 2016-01-28 積水化学工業株式会社 成形用樹脂組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246852A (ja) 2006-03-20 2007-09-27 Kaneka Corp 塩素化塩化ビニル系樹脂の製造方法
JP2008031265A (ja) * 2006-07-27 2008-02-14 Kaneka Corp 塩素化塩化ビニル系樹脂の製造方法
WO2015152260A1 (ja) 2014-03-31 2015-10-08 積水化学工業株式会社 塩素化塩化ビニル系樹脂の製造方法
US20220135783A1 (en) * 2019-03-29 2022-05-05 Sekisui Chemical Co., Ltd. Chlorinated vinyl chloride resin
JP6944055B2 (ja) * 2019-03-29 2021-10-06 積水化学工業株式会社 塩素化塩化ビニル系樹脂

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1038807A (ja) * 1996-07-23 1998-02-13 Hamamatsu Photonics Kk プラスチックの判別方法およびプラスチックの判別装置
JP2006328166A (ja) * 2005-05-25 2006-12-07 Sekisui Chem Co Ltd 塩素化塩化ビニル系樹脂及びその成形体
WO2008062526A1 (fr) * 2006-11-24 2008-05-29 Sekisui Chemical Co., Ltd. Résines de chlorure de vinyle chlorées et leur procédé de fabrication
WO2014178362A1 (ja) 2013-05-01 2014-11-06 株式会社カネカ 塩素化塩化ビニル系樹脂の製造装置および製造方法
WO2015046454A1 (ja) * 2013-09-27 2015-04-02 積水化学工業株式会社 塩素化塩化ビニル系樹脂を含む成形用樹脂組成物及びその成形体
WO2015046456A1 (ja) * 2013-09-27 2015-04-02 積水化学工業株式会社 塩素化塩化ビニル系樹脂を含む成形用樹脂組成物及びその成形体
WO2016013638A1 (ja) * 2014-07-24 2016-01-28 積水化学工業株式会社 成形用樹脂組成物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
R. A. KOMOROSKIR. G. PARKERJ. P. SHOCKER, MACROMOLECULES, vol. 18, 1985, pages 1257 - 1265
See also references of EP3909987A4

Also Published As

Publication number Publication date
EP3909987A4 (en) 2022-10-05
JP6933777B2 (ja) 2021-09-08
US12037423B2 (en) 2024-07-16
US20240327551A1 (en) 2024-10-03
JP2021169636A (ja) 2021-10-28
US20220144979A1 (en) 2022-05-12
JPWO2020203840A1 (ja) 2021-04-30
TW202041545A (zh) 2020-11-16
EP3909987A1 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
JP4901130B2 (ja) 塩素化塩化ビニル系樹脂の製造方法
US20240327551A1 (en) Chlorinated vinyl-chloride-based resin
JP2021185240A (ja) 塩素化塩化ビニル系樹脂
EP3127926A1 (en) Production method for chlorinated vinyl chloride resin
JP7041264B2 (ja) 塩素化塩化ビニル系樹脂
CN110621737B (zh) 成形用树脂组合物
JP7488850B2 (ja) 成形用樹脂組成物及び成形体
CN114051512A (zh) 氯化聚氯乙烯系树脂组合物及氯化聚氯乙烯系树脂成形体
JP6916392B2 (ja) 塩素化塩化ビニル系樹脂
WO2023048247A1 (ja) 塩素化塩化ビニル系樹脂、成形用樹脂組成物及び成形体
WO2023048245A1 (ja) 塩素化塩化ビニル系樹脂、成形用樹脂組成物及び成形体
WO2021065941A1 (ja) 成形用樹脂組成物及び成形体
WO2022210365A1 (ja) 塩素化塩化ビニル系樹脂組成物及び塩素化塩化ビニル系樹脂成形体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020524916

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783517

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020783517

Country of ref document: EP

Effective date: 20210810

NENP Non-entry into the national phase

Ref country code: DE