WO2020203608A1 - 銅精鉱の焙焼条件の決定方法、及び銅精鉱の焙焼方法 - Google Patents

銅精鉱の焙焼条件の決定方法、及び銅精鉱の焙焼方法 Download PDF

Info

Publication number
WO2020203608A1
WO2020203608A1 PCT/JP2020/013538 JP2020013538W WO2020203608A1 WO 2020203608 A1 WO2020203608 A1 WO 2020203608A1 JP 2020013538 W JP2020013538 W JP 2020013538W WO 2020203608 A1 WO2020203608 A1 WO 2020203608A1
Authority
WO
WIPO (PCT)
Prior art keywords
roasting
copper concentrate
partial pressure
furnace
determining
Prior art date
Application number
PCT/JP2020/013538
Other languages
English (en)
French (fr)
Inventor
松田大
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Publication of WO2020203608A1 publication Critical patent/WO2020203608A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • This case relates to a method for determining the roasting conditions for copper concentrate and a method for roasting copper concentrate.
  • the sulfide ore may contain harmful arsenic (for example, Patent Document 1). In that case, it is preferable to carry out a treatment for reducing the quality of arsenic in the copper concentrate and to confirm that the treatment has reduced the quality of arsenic.
  • the purpose of this case is to make it possible to confirm that the grade of arsenic in copper concentrate has been reduced.
  • the method for determining the roasting conditions of a copper concentrate according to the present invention is to roast a copper concentrate containing arsenic in the furnace while supplying a gas containing oxygen to the furnace to obtain the copper concentrate from the copper concentrate.
  • the step of causing the reaction to volatilize the arsenic, the step of measuring the oxygen partial pressure of the gas discharged from the furnace with a zirconia oxygen concentration meter, and the period during which the oxygen partial pressure is 10-14 atm or less are It is characterized by having a step of determining that the reaction is completed when the rate of increase in the oxygen partial pressure exceeds a predetermined value after continuing for a predetermined time.
  • the roasting temperature at the time of roasting the copper concentrate may be 700 ° C. to 800 ° C.
  • the furnace may be a tube furnace.
  • the copper concentrate may be roasted under the conditions determined by any of the above determination methods.
  • the grade of arsenic in the copper concentrate is reduced.
  • roasting may be performed using a large-scale mass-produced roasting furnace (atmosphere furnace).
  • the grade of arsenic in the copper concentrate is reduced as follows.
  • FIG. 1 is a perspective view schematically showing a sample S of copper concentrate.
  • the sample S is placed on the alumina plate 1 so as to have a thickness of about 1 mm to 2 mm, and is roasted in this state.
  • sulfide ore containing arsenic is used as sample S.
  • FIG. 2 is a schematic view of a furnace used for roasting.
  • the furnace 10 is a batch-type tubular furnace provided with a quartz tube 11, in which the above-mentioned sample S is housed together with the alumina plate 1.
  • a supply pipe 12 for supplying the supply gas G in is provided at the inlet of the quartz pipe 11, and a discharge pipe 13 for discharging the exhaust gas G out is provided at the outlet of the quartz pipe 11.
  • a first filter 16 and a second filter 17 are provided inside the quartz tube 11.
  • the first filter 16 is a filter for preventing volatiles from flowing back and ejecting when clogging occurs behind the quartz tube 11.
  • the second filter 17 is a filter for roughing so that the volatile matter does not directly enter the oxygen concentration meter 15 in the subsequent stage and for preventing carryover of the concentrate.
  • a third filter 18 is provided in the middle of the discharge pipe 13 to surely prevent volatile substances from entering the oxygen concentration meter 15 in the subsequent stage.
  • the discharge pipe 13, zirconia oxygen concentration meter is provided as the oxygen concentration meter 15 for measuring the oxygen partial pressure P O2 in the exhaust gas G out. Since the sample S contains only about 0.5% of water, the exhaust gas G out contains almost no water. In addition, dust is surely removed by the above-mentioned filters 17 and 18. These can measure the partial pressure of oxygen P O2 in the exhaust gas G out in zirconia oxygen concentration meter 15. Since the zirconia type oxygen concentration meter 15 may be damaged by moisture, it is preferable to take sufficient care to prevent free air from entering the zirconia type oxygen concentration meter 15.
  • the exhaust gas G out discharged from the oxygen concentration meter 15 is sent to the subsequent stage after being washed with water in, for example, a washing bottle.
  • the exhaust gas G out may be washed with a scrubber (washing tower).
  • FIG. 3 is a diagram showing an example of roasting conditions in the furnace 10.
  • the thickness of the sample S is about 1 mm to 2 mm.
  • the roasting temperature is 400 ° C to 800 ° C.
  • the range of 400 ° C. to 500 ° C. is a temperature range for confirming that the sample S does not volatilize.
  • the holding time for holding the sample S at a temperature equal to or higher than the roasting temperature is 15 to 60 minutes.
  • the reason why the holding time is set in this range is that the sample S does not volatilize sufficiently when the holding time is shorter than 15 minutes, and the sample S volatilizes sufficiently when the holding time is 60 minutes.
  • the holding time does not include the temperature rising time required to raise the temperature of the sample S to the roasting temperature.
  • the beginning of the holding time is the time when the temperature of the sample S is equal to or higher than the roasting temperature, and the end of the holding time is the time when the temperature of the sample S is lower than the roasting temperature.
  • the feed gas G in using a mixed gas of nitrogen and air.
  • the oxygen concentration in the supply gas Gin is less than 5.0% by volume, for example, 0.1% by volume to 0.3% by volume. By setting the oxygen concentration in this range, the oxidation of copper can be suppressed. Further, the flow rate of the feed gas G in is about 2.0L / min.
  • the reaction proceeds in the order of Enargite (Cu 3 AsS 4 ) ⁇ Tennantite (Cu 12 As 4 S 13 ) ⁇ Chalcopyrite (CuFeS 2 ).
  • S 2 is generated by the formula (1) or formula (4), by these S 2 is consumed by the formula (2), the As 2 S 3 from Tennantite (Cu 12 As 4 S 13 ) generating To do. Then, it is considered that the grade of arsenic in the original copper concentrate can be reduced by volatilizing As 2 S 3 according to the formula (3).
  • Figure 4 is a schematic diagram showing the relationship between the roasting time and the oxygen partial pressure P O2. As shown in FIG. 4, at time T1, S 2 and O 2 react according to the above equation (5), and the oxygen partial pressure PO 2 suddenly drops to 1 ⁇ 10 -14 atm or less due to the consumption of oxygen in this reaction. descend.
  • FIG. 5 is a flowchart showing a method of determining the roasting conditions of the copper concentrate according to the present embodiment.
  • step S1 while supplying a feed gas G in the furnace 10, roasting copper concentrate in a furnace 10.
  • arsenic in the copper concentrate volatilizes according to the reactions of the above formulas (1) to (5).
  • step S2 measuring the oxygen partial pressure P O2 in the exhaust gas G out at oximeter 15.
  • step S3 after the period in which the oxygen partial pressure P O2 is 10 -14 atm or less continues for a predetermined time T, or increasing rate R of the oxygen partial pressure P O2 exceeds a predetermined value R th Judge whether or not.
  • the predetermined time T is the time during which the reactions of the above formulas (1) to (5) are considered to occur.
  • the rate of increase R is the amount of increase in the oxygen partial pressure PO2 per unit time.
  • the predetermined value Rth is a value that serves as a guide for determining whether or not the reactions of the above-mentioned equations (1) to (5) have been completed.
  • the predetermined value Rth is (10 -4 atm- 10-15 atm) / 2 minutes.
  • FIG. 6 is a diagram showing the grade of the copper concentrate before roasting according to this embodiment.
  • the copper concentrate contains arsenic at a grade of 6.8 wt%.
  • MLA Mineral Liberation Analyzer
  • the grade of FeS 2 was 49 wt%
  • the grade of Cu 3 AsS 4 was 37 wt%.
  • this copper concentrate is used as sample S.
  • FIG. 7 is a graph showing the content of the product obtained by roasting the sample S in the sample S under the condition that the oxygen concentration in the supply gas Gin is 0.1% by volume.
  • the horizontal axis in FIG. 7 indicates the roasting temperature and the roasting time.
  • the label "700 ° C., 30 minutes” indicates that the roasting temperature was 700 ° C. and the holding time was 30 minutes.
  • FIG. 8 is a graph showing the relationship between the content rate of the product produced by roasting in sample S and the roasting time. Incidentally, in FIG. 8, the oxygen partial pressure P O2 in the exhaust gas G out also are shown together.
  • the content of chalcopyrite increased with the lapse of the roasting time, while the contents of Enargite, Tennantite, and Pyrite decreased with the lapse of the roasting time.
  • FIG. 9 is a graph showing the relationship between the oxygen partial pressure PO2 and the roasting time in the exhaust gas G out . In FIG. 9, the roasting temperature is also shown.
  • roasting time T1 the oxygen partial pressure P O2 where became (approximately 18 minutes) has rapidly decreased below 10 -14 atm. Thereafter, roasting time is the oxygen partial pressure P O2 at T2 (about 23 minutes) is reduced to 10 -16 atm. After the time T the oxygen partial pressure P O2 is 10 -14 atm or less has elapsed about 12 minutes, the roasting time T3 (about 40 minutes) the oxygen partial pressure P O2 is rapidly increased when the The value exceeded 10-14 atm.

Abstract

銅精鉱の焙焼条件の決定方法は、酸素を含むガスを炉に供給しながら、前記炉の中で砒素を含む銅精鉱を焙焼することにより、前記銅精鉱から前記砒素を揮発させる反応を生じさせる工程と、前記炉から排出される前記ガスにおける酸素分圧をジルコニア式酸素濃度計で測定する工程と、前記酸素分圧が10-14atm以下となる期間が所定の時間だけ継続した後に、前記酸素分圧の上昇率が所定値を超えたときに前記反応が終了したと決定する工程とを有することを特徴とする。 

Description

銅精鉱の焙焼条件の決定方法、及び銅精鉱の焙焼方法
 本件は、銅精鉱の焙焼条件の決定方法、及び銅精鉱の焙焼方法に関する。
 銅鉱山から採取される銅精鉱の大部分は硫化鉱であるが、その硫化鉱に有害な砒素が含まれることがある(例えば特許文献1)。その場合には、銅精鉱における砒素の品位を低減する処理を行うと共に、その処理によって砒素の品位が低減したことを確認できるのが好ましい。
特開2015-196848号公報
 本件は上記に鑑み、銅精鉱における砒素の品位が低減したことを確認できるようにすることを目的とする。
 本発明に係る銅精鉱の焙焼条件の決定方法は、酸素を含むガスを炉に供給しながら、前記炉の中で砒素を含む銅精鉱を焙焼することにより、前記銅精鉱から前記砒素を揮発させる反応を生じさせる工程と、前記炉から排出される前記ガスにおける酸素分圧をジルコニア式酸素濃度計で測定する工程と、前記酸素分圧が10-14atm以下となる期間が所定の時間だけ継続した後に、前記酸素分圧の上昇率が所定値を超えたときに前記反応が終了したと決定する工程とを有することを特徴とする。また、前記銅精鉱を焙焼するときの焙焼温度を700℃~800℃としてもよい。更に、前記炉は管状炉であってもよい。また、上記のいずれかの決定方法で決定された条件で銅精鉱を焙焼してもよい。
 本発明によれば、銅精鉱における砒素の品位が低減したことを確認できる。
銅精鉱の試料を模式的に示す斜視図である。 焙焼に使用する炉の模式図である。 炉における焙焼条件の一例を示す図である。 焙焼時間と酸素分圧との関係を示す模式図である。 本実施形態に係る銅精鉱の焙焼条件の決定方法を示すフローチャートである。 本実施例に係る焙焼前の銅精鉱の品位を示す図である。 本実施例に係る供給ガスにおける酸素濃度を0.1%とする条件で試料を焙焼し、それにより得られた生成物の試料における含有率を示すグラフである。 本実施例において焙焼で生成した生成物の試料における含有率と焙焼時間との関係を示すグラフである。 本実施例において排出ガスにおける酸素分圧と焙焼時間との関係を示すグラフである。
 以下、本発明を実施するための実施形態について説明する。なお、以下では石英管を備えた小型の焙焼炉を例にして説明するが、大型の量産用の焙焼炉(雰囲気炉)を用いて焙焼を行ってもよい。
 本実施形態では、酸素を含む雰囲気中で銅精鉱を焙焼することにより、その銅精鉱における砒素の品位を以下のようにして低減する。
 図1は、銅精鉱の試料Sを模式的に示す斜視図である。試料Sは、厚さが1mm~2mm程度となるようにアルミナ板1の上に載置され、この状態で焙焼される。ここでは、試料Sとして砒素を含む硫化鉱を使用する。
 図2は、焙焼に使用する炉の模式図である。炉10は、石英管11を備えたバッチ式の管状炉であって、その中に前述の試料Sがアルミナ板1と共に収容される。また、石英管11の入口には供給ガスGinを供給するための供給管12が設けられ、石英管11の出口には排出ガスGoutを排出するための排出管13が設けられる。更に、石英管11の内部には第1のフィルタ16と第2のフィルタ17が設けられる。このうち、第1のフィルタ16は、石英管11の後ろで詰まりが発生したときに揮発物が逆流して噴出するのを防止するためのフィルタである。また、第2のフィルタ17は、揮発物が後段の酸素濃度計15に直接入らないようにするための粗取りを行うと共に、精鉱のキャリーオーバを防止するためのフィルタである。そして、排出管13の途中には、揮発物が後段の酸素濃度計15に入るのを確実に防止するための第3のフィルタ18が設けられる。
 また、排出管13には、排出ガスGoutにおける酸素分圧PO2を測定するための酸素濃度計15としてジルコニア式酸素濃度計が設けられる。試料Sには0.5%程度の水分しか含まれていないため、排出ガスGoutには水分がほとんど含まれない。また、前述の各フィルタ17、18によってダストが確実に除去される。これらによって、ジルコニア式酸素濃度計15で排出ガスGoutにおける酸素分圧PO2を測定することができる。なお、ジルコニア式酸素濃度計15は水分で故障するおそれがあるため、フリーエアがジルコニア式酸素濃度計15に入らないように十分に配慮するのが好ましい。
 その酸素濃度計15から排出された排出ガスGoutは、例えば洗浄瓶等において水で洗浄された後に後段に送出される。なお、スクラバ(洗浄塔)で排出ガスGoutを洗浄してもよい。
 図3は、炉10における焙焼条件の一例を示す図である。図3に示すように、試料Sの厚さは1mm~2mm程度とする。また、焙焼温度は400℃~800℃とする。この温度範囲のうち、400℃~500℃の範囲は、試料Sが揮発しないことを確認するための温度範囲である。また、焙焼温度を700℃~800℃とすることにより、Sの分圧に関係なくPyriteが分解してPyrrhotiteで安定するようになる。そして、試料Sを焙焼温度以上の温度に保持する保持時間は15分~60分とする。保持時間をこの範囲としたのは、15分よりも短い保持時間では試料Sが十分に揮発せず、保持時間が60分であれば試料Sが十分に揮発するためである。なお、この保持時間には、試料Sを焙焼温度に昇温するのに要する昇温時間は含まれない。また、保持時間の始期は、試料Sが焙焼温度以上の温度になった時点であり、保持時間の終期は、試料Sが焙焼温度よりも低い温度になった時点である。
 供給ガスGinとしては窒素と空気との混合ガスを使用する。そして、その供給ガスGinにおける酸素濃度は5.0体積%未満、例えば0.1体積%~0.3体積%とする。酸素濃度をこの範囲とすることで、銅の酸化を抑制することができる。更に、供給ガスGinの流量は2.0L/min程度とする。
 このように酸素を含む雰囲気中で試料Sを焙焼すると、以下の反応が生じると推定される。
 8Cu3AsS4(s) → 2Cu12As4S13(s) + 3S2(g) …(1)
 2Cu12As4S13(s) + 24FeS(s) + 5S2(g)
         →24CuFeS2(s) + 4As2S3(l) …(2)
 2As2S3(l) → As4S6(g) …(3)
 2FeS2(s) → 2FeS(s) + S2(g) …(4)
 S2(g) + 2O2(g) → 2SO2(g) …(5)
 この反応によれば、Enargite(CuAsS) → Tennantite(Cu12As13) → Chalcopyrite(CuFeS)の順に反応が進むことになる。
 また、式(1)や式(4)でSが発生し、これらのSが式(2)で消費されることにより、Tennantite(Cu12As13)からAsが発生する。そして、そのAsが式(3)に従って揮発することにより、元の銅精鉱中の砒素の品位が低減できると考えられる。
 図4は、焙焼時間と酸素分圧PO2との関係を示す模式図である。
 図4に示すように、時刻T1では、前述の式(5)に従ってSとOが反応し、この反応における酸素の消費によって酸素分圧PO2が1×10-14atm以下に急激に低下する。
 そして、時刻T2では更に酸素が消費されて酸素分圧PO2が1×10-16atmにまで低下する。
 その後、時刻T3において、前述の式(4)のようにPyriteからPyrrhotiteになる反応で発生する気体の硫黄の酸化が終わり、前述の式(5)の反応が終息したことで酸素分圧PO2が急激に上昇し、その値が1×10-14atmを超えるようになる。
 これによれば、酸素分圧PO2が1×10-14atmとなる期間が所定の時間Tだけ継続し、その後の時刻T3において酸素分圧PO2が急激に上昇したときに、銅精鉱中の砒素の品位が十分に低減したことを確認できる。
 そこで、このように酸素分圧PO2に基づいて焙焼条件を決定する決定方法について次に説明する。
 図5は、本実施形態に係る銅精鉱の焙焼条件の決定方法を示すフローチャートである。
 まず、工程S1において、供給ガスGinを炉10に供給しながら、炉10の中で銅精鉱を焙焼する。これにより、前述の式(1)~(5)の反応に従って銅精鉱中の砒素が揮発する。
 次に、工程S2に移り、排出ガスGoutにおける酸素分圧PO2を酸素濃度計15で測定する。
 続いて、工程S3に移り、酸素分圧PO2が10-14atm以下となる期間が所定の時間Tだけ継続した後に、前記酸素分圧PO2の上昇率Rが所定値Rthを超えたかどうかを判定する。なお、所定の時間Tは、前述の式(1)~(5)の反応が生じていると考えられる時間である。また、上昇率Rは、単位時間当たりの酸素分圧PO2の上昇量である。そして、所定値Rthは、前述の式(1)~(5)の反応が終了したかどうかの判断の目安となる値である。ここでは、酸素分圧が10-15atmから10-4atmを超えるのに要する時間が2分以内のときに式(1)~(5)の反応が終了したと判断する。この場合の所定値Rthは、(10-4atm-10-15atm)/2分となる。
 そして、上昇率Rが所定値Rthを超えたと判断された場合に、銅精鉱から砒素が揮発する反応が終了したと決定する。
 以上により、本実施形態に係る銅精鉱の焙焼条件の決定方法の基本工程を終了する。
 上記した本実施形態によれば、排出ガスGoutにおける酸素分圧PO2に基づいて、銅精鉱における砒素の品位が低減できたことを確認できる。焙焼を開始してから砒素の揮発が完了するまでの時間は、焙焼温度や供給ガスGinにおける酸素濃度等の様々な要因によって定まるが、本実施形態ではこれらの要因にとらわれずに酸素分圧PO2を測定するだけで簡単に砒素の品位が低減したことを確認できる。
 更に、このように決定された焙焼条件で銅精鉱を焙焼することにより、砒素を含む低廉な銅精鉱を銅の製錬に使用することも可能となる。
 次に、本発明の実施例について説明する。
 図6は、本実施例に係る焙焼前の銅精鉱の品位を示す図である。図1に示すように、この例では銅精鉱に砒素が6.8wt%の品位で含まれる。また、この銅精鉱をMLA(Mineral Liberation Analyzer)で分析したところ、FeSの品位が49wt%であり、CuAsSの品位が37wt%であった。本実施例ではこの銅精鉱を試料Sとして使用する。
 図7は、供給ガスGinにおける酸素濃度を0.1体積%とする条件で試料Sを焙焼し、それにより得られた生成物の試料Sにおける含有率を示すグラフである。
 なお、図7の横軸は、焙焼温度と焙焼時間を示す。例えば、「700℃、30分」のラベルは、焙焼温度を700℃とし、保持時間を30分としたことを示す。
 図7から明らかなように、焙焼によってChalcopyrite(CuFeS)の含有率が上昇している。一方、Tennantite(Cu12As13)、Pyrrhotite(FeS)の含有率は少し上昇してから低下し、Enargite(CuAsS)、Pyrite(FeS)の含有率は低下している。
 この結果から、前述のようにEnargite → Tennantite → Chalcopyriteの順に反応が進み、前述の式(1)~(5)の反応が実際に生じていることが裏付けられた。
 また、図8は、焙焼で生成した生成物の試料Sにおける含有率と焙焼時間との関係を示すグラフである。なお、図8には、排出ガスGoutにおける酸素分圧PO2も併記してある。
 図8に示すように、焙焼時間の経過と共にChalcopyriteの含有率が増えるのに対し、Enargite、Tennantite、及びPyriteの含有率は焙焼時間の経過と共に低下した。
 図9は、排出ガスGoutにおける酸素分圧PO2と焙焼時間との関係を示すグラフである。なお、図9では焙焼温度も併記してある。
 図9に示すように、焙焼時間がT1(約18分)となったところで酸素分圧PO2が10-14atm以下に急激に低下した。その後、焙焼時間がT2(約23分)のときに酸素分圧PO2が10-16atmにまで低下した。そして、酸素分圧PO2が10-14atm以下となる時間Tが12分程度経過した後、焙焼時間がT3(約40分)のときに酸素分圧PO2が急激に上昇してその値が10-14atmを超えた。
 このような酸素分圧PO2の急激な変化を捉えることにより、図4を参照して説明したように、銅精鉱における砒素の品位が低減したことを確認することができる。
 以上、本発明の実施形態について詳述したが、本発明は係る特定の実施形態または実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 

Claims (4)

  1.  酸素を含むガスを炉に供給しながら、前記炉の中で砒素を含む銅精鉱を焙焼することにより、前記銅精鉱から前記砒素を揮発させる反応を生じさせる工程と、
     前記炉から排出される前記ガスにおける酸素分圧をジルコニア式酸素濃度計で測定する工程と、
     前記酸素分圧が10-14atm以下となる期間が所定の時間だけ継続した後に、前記酸素分圧の上昇率が所定値を超えたときに前記反応が終了したと決定する工程と、
     を有することを特徴とする銅精鉱の焙焼条件の決定方法。
  2.  前記銅精鉱を焙焼するときの焙焼温度を700℃~800℃とすることを特徴とする請求項1に記載の銅精鉱の焙焼条件の決定方法。
  3.  前記炉は管状炉であることを特徴とする請求項1または請求項2に記載の銅精鉱の焙焼条件の決定方法。
  4.  請求項1~3のいずれか一項に記載の決定方法で決定された条件で銅精鉱を焙焼することを特徴とする銅精鉱の焙焼方法。
     
PCT/JP2020/013538 2019-03-29 2020-03-26 銅精鉱の焙焼条件の決定方法、及び銅精鉱の焙焼方法 WO2020203608A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-066604 2019-03-29
JP2019066604A JP7179665B2 (ja) 2019-03-29 2019-03-29 銅精鉱の焙焼条件の決定方法、及び銅精鉱の焙焼方法

Publications (1)

Publication Number Publication Date
WO2020203608A1 true WO2020203608A1 (ja) 2020-10-08

Family

ID=72667794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013538 WO2020203608A1 (ja) 2019-03-29 2020-03-26 銅精鉱の焙焼条件の決定方法、及び銅精鉱の焙焼方法

Country Status (3)

Country Link
JP (1) JP7179665B2 (ja)
CL (1) CL2021002504A1 (ja)
WO (1) WO2020203608A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196848A (ja) * 2014-03-31 2015-11-09 Jx日鉱日石金属株式会社 砒素の処理方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196848A (ja) * 2014-03-31 2015-11-09 Jx日鉱日石金属株式会社 砒素の処理方法

Also Published As

Publication number Publication date
CL2021002504A1 (es) 2022-04-29
JP2020164928A (ja) 2020-10-08
JP7179665B2 (ja) 2022-11-29

Similar Documents

Publication Publication Date Title
TWI248831B (en) Method for controlling mercury emissions in flue gas
US8828341B1 (en) Sulfite control to reduce mercury re-emission
CN101485956A (zh) 汞除去装置及汞除去方法
KR20080082639A (ko) 이산화염소 및 과산화수소를 이용한 배기 제어 시스템
EP2939728A1 (en) Exhaust gas processing device and exhaust gas processing method
WO2020203608A1 (ja) 銅精鉱の焙焼条件の決定方法、及び銅精鉱の焙焼方法
AU692912B2 (en) Continuous procedure for the simultaneous collection and precipitation of mercury in gases containing it
JP7155379B2 (ja) 銅精鉱の焙焼方法
EP1226092B1 (en) Process for removing selenium and mercury from aqueous solutions
CA2070087C (en) Recovery of cyanide from precious metal tailings
FI62002B (fi) Foerfarande och anordning foer separering av kvicksilver ur svveldioxidhaltiga heta och fuktiga gaser
JPH01500588A (ja) 液状硫黄からの硫化水素の触媒除去
WO2019085569A1 (en) NOx ABATEMENT METHOD FOR PRECIOUS METAL REFINERY AND RECYCLING PROCESSES
AU2015212687B2 (en) Method and arrangement for removing gaseous elementary mercury from a stream of gas
EP0278537A1 (de) Verfahren zum Abscheiden von gasförmigem Queckilber aus Gasen
WO2014103397A1 (ja) 硫化レニウムからの過レニウム酸水溶液の製造方法
US4010030A (en) Removal of arsenic, antimony and bismuth from molten copper with sulfur hexafluoride
US20130047788A1 (en) Method and device for processing flue dust
EP0709126B1 (en) Continuous procedure for the simultaneous collection and precipitacion of mercury in gases containing it
EP1216753B1 (fr) Procédé de régénération d'une solution catalytique redox comprenant la mesure de l'oxygène dissous dans l'effluent de régénération et son application en désulferation
JP6317197B2 (ja) 過レニウム酸水溶液の製造方法、過レニウム酸カリウムの製造方法、過レニウム酸アンモニウムの製造方法及びレニウムメタルの製造方法
JP5854985B2 (ja) 硫化レニウムからの過レニウム酸水溶液の製造方法
JPS5934219B2 (ja) 製錬ガス中の水銀除去法
BE1007417A3 (fr) Procede de lixiviation de concentre sulfure de zinc et de ferrite de zinc.
RU1838436C (ru) Способ извлечени золота из золотосодержащих отходов

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20782921

Country of ref document: EP

Kind code of ref document: A1