WO2020203468A1 - Sealing ring - Google Patents

Sealing ring Download PDF

Info

Publication number
WO2020203468A1
WO2020203468A1 PCT/JP2020/013015 JP2020013015W WO2020203468A1 WO 2020203468 A1 WO2020203468 A1 WO 2020203468A1 JP 2020013015 W JP2020013015 W JP 2020013015W WO 2020203468 A1 WO2020203468 A1 WO 2020203468A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal ring
pair
peripheral surface
deformed portion
deformed
Prior art date
Application number
PCT/JP2020/013015
Other languages
French (fr)
Japanese (ja)
Inventor
明宏 大和田
貴史 品田
林 達也
Original Assignee
株式会社リケン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リケン filed Critical 株式会社リケン
Priority to CN202080023560.2A priority Critical patent/CN113614424A/en
Publication of WO2020203468A1 publication Critical patent/WO2020203468A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/18Sealings between relatively-moving surfaces with stuffing-boxes for elastic or plastic packings

Definitions

  • the present invention relates to a seal ring that can be used for hydraulic equipment.
  • Seal rings for sealing oil are used in these hydraulic devices.
  • the seal ring is fitted, for example, into a shaft that is inserted into the housing and seals between the shaft and the housing.
  • the seal ring can be closely attached to the shaft and the housing without a gap in order to realize a high sealing property between the shaft and the housing. Therefore, the seal ring is formed of an elastic body such as a resin.
  • Patent Documents 1 and 2 disclose a seal ring made of a resin.
  • the seal ring slides back and forth with respect to the inner peripheral surface of the housing when the hydraulic equipment is driven. For this reason, the hydraulic equipment has a friction loss, which is a drive loss due to the friction between the seal ring and the housing. Therefore, in order to reduce the drive loss of hydraulic equipment, high slidability between the seal ring and the housing is required.
  • Patent Document 3 describes a seal ring capable of achieving both sealing property and slidability.
  • the seal ring is provided with an inclined surface that becomes thinner toward the sliding surface.
  • the seal ring described in Patent Document 3 is likely to be compressed and deformed in the radial direction in a thin portion provided with an inclined surface. Therefore, in this seal ring, the contact pressure with respect to the sliding surface can be suppressed to be small even if the seal ring is sufficiently compressed and deformed in the radial direction. As a result, in this seal ring, high slidability can be obtained without impairing the seal property.
  • an object of the present invention is to provide a seal ring in which stress concentration is unlikely to occur.
  • the seal ring is formed of an elastic body having a tensile elastic modulus of 90 MPa or more at 25 ° C., and includes a flat portion, a first deformed portion, and a second deformed portion. Equipped with.
  • the flat portion has a pair of side surfaces extending along the radial direction.
  • the first deformed portion includes a pair of first inclined surfaces extending from the outer end portions of the pair of side surfaces in the radial direction toward the outside so as to be close to each other, and the pair of first inclined surfaces. It has an outer peripheral surface that connects the outer ends to each other and projects outward.
  • the second deformed portion includes a pair of second inclined surfaces extending from the inner end portions of the pair of side surfaces in the radial direction toward the inside so as to be close to each other, and the pair of second inclined surfaces. It has an inner peripheral surface that connects the inner ends to each other and projects inward.
  • the seal ring is provided with a first deformed portion on the outer peripheral side and a second deformed portion on the inner peripheral side.
  • the first and second deformed portions are provided with first and second inclined surfaces so that compressive deformation in the radial direction is likely to occur. Therefore, this seal ring is easily compressed and deformed in the radial direction on both the outer peripheral side and the inner peripheral side. Therefore, in this seal ring, when the outer peripheral surface is used as the sliding surface, the stress applied to the first deformed portion constituting the outer peripheral surface is relaxed by the second deformed portion. Similarly, when the inner peripheral surface is used as a sliding surface, the stress applied to the second deformed portion constituting the inner peripheral surface is relaxed by the first deformed portion. Therefore, stress concentration is unlikely to occur in this seal ring.
  • this seal ring the radial dimensions d12 and d13 of the first and second deformed portions are sufficiently increased. As a result, the thick flat portion is more reliably fitted in the groove portion, and only the thin first or second deformed portion is arranged outside the groove portion. Therefore, this seal ring is less likely to be pinched in the gap between the housing and the shaft.
  • the total radial dimension of the flat portion, the first deformed portion, and the second deformed portion is D
  • the radial dimension of the flat portion is d11
  • the first deformed portion is D
  • d12 be the radial dimension of the above
  • d13 be the radial dimension of the second deformed portion.
  • the first angle formed by the pair of first inclined surfaces and the pair of side surfaces is 30 ° or more and 40 ° or less
  • the second angle formed by the pair of second inclined surfaces and the pair of side surfaces is 30 ° or more. It may be 40 ° or less.
  • the first radius of curvature of the outer peripheral surface may be 0.64 mm or more and 1.37 mm or less
  • the second radius of curvature of the inner peripheral surface may be 0.64 mm or more and 1.37 mm or less.
  • the shore A hardness of the elastic body at 25 ° C. may be 80 or more. With these configurations, the above effects are particularly well obtained.
  • the present invention can provide a seal ring in which stress concentration is unlikely to occur.
  • FIG. 5 is a cross-sectional view showing a state in which the shaft and the housing shown in FIG. 4 are relatively reciprocating. It is sectional drawing which shows the state which the seal ring which concerns on Comparative Example 1 is fitted in the shaft. It is sectional drawing which shows the state which the shaft shown in FIG. 6 is inserted into a housing.
  • FIG. 5 is a cross-sectional view showing a state in which the shaft and the housing shown in FIG. 7 are relatively reciprocating.
  • FIG. 5 is a cross-sectional view showing a state in which the seal ring according to Comparative Example 2 is incorporated in a shaft and a housing. It is sectional drawing which shows the other structural example using the seal ring shown in FIG. It is a figure which shows the fatigue tester for evaluating the seal ring which concerns on Example and comparative example.
  • FIGS. 1 and 2 are views showing the seal ring 10 according to an embodiment of the present invention.
  • FIG. 1 is a plan view of the seal ring 10.
  • FIG. 2 is a cross-sectional view of the seal ring 10 along the line AA'of FIG.
  • the seal ring 10 is formed in an annular shape centered on the central axis E.
  • FIG. 2 shows a radial cross section of the seal ring 10 along a plane passing through the central axis E shown in FIG.
  • FIG. 2 shows a plane F extending along the radial direction orthogonal to the central axis E and passing through the center in the thickness direction along the central axis E of the seal ring 10.
  • the seal ring 10 has a shape symmetrical with respect to the plane F.
  • the elastic body forming the seal ring 10 is formed of an elastic body having a relatively high rigidity and containing one or more kinds of materials selected from a resin material and a rubber material as main components.
  • the elastic body forming the seal ring 10 may contain components other than the resin material such as various fillers and the rubber material, if necessary.
  • the seal ring 10 includes a flat portion 11 located at the center in the radial direction, a first deformed portion 12 located on the outer peripheral side of the flat portion 11, and a second deformed portion 13 located on the inner peripheral side of the flat portion 11.
  • the flat portion 11, the first deformed portion 12, and the second deformed portion 13 each have a uniform cross-sectional shape over the entire circumference thereof.
  • the flat portion 11 has a flat cross-sectional shape
  • the first deformed portion 12 and the second deformed portion 13 have a cross-sectional shape that tapers as the distance from the flat portion 11 in the radial direction.
  • the first deformed portion 12 and the second deformed portion 13 become thinner in the radial direction from the thickest flat portion 11.
  • the seal ring 10 has a pair of side surfaces 111 facing each other in the central axis E direction, and an outer peripheral surface 121 and an inner peripheral surface 131 facing each other in the radial direction.
  • the flat portion 11 constitutes the side surface 111
  • the first deformed portion 12 constitutes the outer peripheral surface 121
  • the second deformed portion 13 constitutes the inner peripheral surface 131.
  • the flat part 11 has a pair of side surfaces 111 that are parallel to the plane F and has a flat shape along the plane F. Since the flat portion 11 is thicker in the central axis E direction, the flat portion 11 has higher radial rigidity than the first deformed portion 12 and the second deformed portion 13. Therefore, the seal ring 10 is less likely to be compressed and deformed in the radial direction at the flat portion 11.
  • the outer peripheral surface 121 provided on the first deformed portion 12 is a barrel-shaped curved surface that protrudes outward in the radial direction. As shown in FIG. 2, the outer peripheral surface 121 has an arc-shaped cross-sectional shape having a constant first radius of curvature Ra. In the seal ring 10, the outer peripheral surface 121 is configured as a sliding surface that slides with respect to the housing 30 (see FIG. 4 and the like).
  • the first deformed portion 12 is provided with a pair of first inclined surfaces 122 arranged between the outer peripheral surface 121 and each side surface 111.
  • the first inclined surface 122 is inclined at a constant angle ⁇ a with respect to the side surface 111 so as to be close to each other from the inside to the outside in the radial direction. As shown in FIG. 2, the first inclined surface 122 has a linear cross-sectional shape.
  • the first deformed portion 12 is provided with a connecting portion 123 for connecting the outer peripheral surface 121 and each of the first inclined surfaces 122, respectively.
  • the connecting portion 123 can be formed, for example, into a curved surface that smoothly connects the outer peripheral surface 121 and each of the first inclined surfaces 122, or a linear shape that directly connects the outer peripheral surface 121 and each of the first inclined surfaces 122. ..
  • first deformed portion 12 is provided with a connecting portion 124 for connecting each side surface 111 and each first inclined surface 122.
  • the connecting portion 124 can be formed, for example, in a curved surface shape that smoothly connects each side surface 111 and each first inclined surface 122, or in a linear shape that directly connects each side surface 111 and each first inclined surface 122. ..
  • the dimension of the first deformed portion 12 in the central axis E direction decreases as the distance from the flat portion 11 is radially outward. Therefore, the first deformed portion 12 has lower radial rigidity than the flat portion 11, and the portion outside the radial direction is more likely to be compressed and deformed in the radial direction. Therefore, the seal ring 10 is easily compressed and deformed in the radial direction in the first deformed portion 12.
  • the inner peripheral surface 131 provided on the second deformed portion 13 is a barrel-shaped curved surface protruding inward in the radial direction.
  • the outer peripheral surface 121 has an arc-shaped cross-sectional shape having a constant second radius of curvature Rb.
  • the outer peripheral surface 121 is configured as a contact surface in contact with the bottom surface (see FIG. 3 and the like) of the groove portion 21 of the shaft 20.
  • the second deformed portion 13 is provided with a pair of second inclined surfaces 132 arranged between the inner peripheral surface 131 and each side surface 111.
  • the second inclined surface 132 is inclined at a constant angle ⁇ b with respect to the side surface 111 so as to be close to each other from the outside to the inside in the radial direction. As shown in FIG. 2, the second inclined surface 132 has a linear cross-sectional shape.
  • the second deformed portion 13 is provided with a connecting portion 133 for connecting the inner peripheral surface 131 and each of the second inclined surfaces 132, respectively.
  • the connecting portion 133 is formed, for example, in a curved surface shape that smoothly connects the inner peripheral surface 131 and each of the second inclined surfaces 132, or in a linear shape that directly connects the inner peripheral surface 131 and each of the second inclined surfaces 132. Can be done.
  • the second deformed portion 13 is provided with a connecting portion 134 for connecting each side surface 111 and each second inclined surface 132, respectively.
  • the connecting portion 134 can be formed, for example, into a curved surface that smoothly connects each side surface 111 and each second inclined surface 132, or a linear shape that directly connects each side surface 111 and each second inclined surface 132. ..
  • the dimension of the second deformed portion 13 in the central axis E direction decreases as the second deformed portion 13 is moved inward in the radial direction from the flat portion 11. Therefore, the second deformed portion 13 has lower radial rigidity than the flat portion 11, and the inner portion in the radial direction is more likely to be compressed and deformed in the radial direction. Therefore, the seal ring 10 is easily compressed and deformed in the radial direction at the second deformed portion 13.
  • the seal ring 10 is difficult to be compression-deformed in the radial direction in the flat portion 11 having high rigidity, and is easily compressed and deformed in the radial direction in the first deformed portion 12 and the second deformed portion 13 having low rigidity. That is, the seal ring 10 is configured so that the first deformed portion 12 and the second deformed portion 13 are selectively compressed and deformed in the radial direction.
  • FIG. 3 is a cross-sectional view showing a state in which the seal ring 10 is mounted on the shaft 20.
  • FIG. 3 shows a grid line for expressing the state of elastic deformation of each configuration in the seal ring 10. That is, in the seal ring 10, when elastic deformation is applied from the state shown in FIG. 3, the spacing between the grid lines changes according to the mode of the deformation.
  • the shaft 20 is a columnar part used in hydraulic equipment, and has a groove portion 21 formed over the entire circumference of the outer peripheral surface thereof. Further, the shaft 20 is formed with a tapered portion 22 by chamfering along the outer edge portion of the groove portion 21. The seal ring 10 is fitted in the groove 21 of the shaft 20.
  • the inner peripheral surface 131 of the second deformed portion 13 is in close contact with the bottom surface of the groove portion 21 of the shaft 20 over the entire circumference thereof. Further, in the seal ring 10 shown in FIG. 3, the first deformed portion 12 does not fit in the groove portion 21 and protrudes radially outward from the outer peripheral surface of the shaft 20.
  • FIG. 4 is a cross-sectional view showing a state in which the shaft 20 shown in FIG. 3 is inserted into the housing 30.
  • the housing 30 is a cylindrical component through which the shaft 20 can be inserted.
  • the diameter of the inner peripheral surface of the housing 30 is larger than the diameter of the outer peripheral surface of the shaft 20 and smaller than the diameter of the outer peripheral surface 121 of the seal ring 10 shown in FIG.
  • the flat portion 11 having high rigidity sinks to the inner peripheral side while compressing and deforming the second deformed portion 13 in the radial direction due to the internal stress generated by the radial compressive deformation of the first deformed portion 12.
  • the internal stress is dispersed from the first deformed portion 12 to the second deformed portion, so that the internal stress of the first deformed portion 12 is relaxed.
  • the internal stress generated by the pressing force applied to the outer peripheral surface 121 is satisfactorily transmitted to the inner peripheral side, and the flat portion 11 smoothly sinks to the inner peripheral side.
  • the maximum value of the internal stress can be suppressed to a small value without stress concentration occurring.
  • the first deformed portion 12 and the second deformed portion 13 having low rigidity in the radial direction are mainly elastically deformed in the radial direction. Therefore, in the seal ring 10, the elastic force can be kept small even in a state where the first deformed portion 12 and the second deformed portion 13 are largely compressed and deformed in the radial direction.
  • the contact pressure of the outer peripheral surface 121 with respect to the housing 30 can be maintained low even in a configuration in which the first deformed portion 12 and the second deformed portion 13 are sufficiently large enough to be compressed and deformed in the radial direction. Therefore, the seal ring 10 can achieve both high sealing performance and high slidability.
  • FIG. 5 is a cross-sectional view showing a state in which the shaft 20 and the housing 30 shown in FIG. 4 are relatively reciprocating.
  • FIG. 5 shows a state in which the housing 30 is moving toward the right side with respect to the shaft 20.
  • the outer peripheral surface 121 is dragged to the right by the inner peripheral surface of the housing 30, and the first deformed portion 12 is elastically deformed.
  • the contact pressure of the outer peripheral surface 121 with respect to the inner peripheral surface of the housing 30 is small, that is, the frictional force applied between the outer peripheral surface 121 and the inner peripheral surface of the housing 30 is small, so that the seal ring 10 is applied to the outer peripheral surface 121.
  • the force in the right direction is suppressed to a small extent.
  • the amount of elastic deformation of the first deformed portion 12 can be kept small.
  • the thick flat portion 11 sinks to the inner peripheral side, so that the seal ring is contained inside the tapered portion 22 in the groove portion 21 of the shaft 20. That is, in the seal ring 10, only the first deformed portion 12 that becomes thinner toward the outside is arranged in the region outside the tapered portion 22 of the shaft 20.
  • the seal ring 10 shown in FIG. 4 the first inclined surface 122 of the first deformed portion 12 is moved outward from the tapered portion 22 in the radial direction. Therefore, as shown in FIG. 5, the seal ring 10 is provided in the space between the tapered portion 22 of the shaft 20 and the inner peripheral surface of the housing 30 even if the outer peripheral surface 121 is dragged by the inner peripheral surface of the housing 30. It is difficult to enter.
  • the seal ring 10 can prevent the seal ring 10 from entering the gap between the shaft 20 and the housing 30 beyond the tapered portion 22 when the hydraulic device is driven. Therefore, in the seal ring 10, it is possible to prevent the occurrence of defects such as breakage due to being sandwiched between the shaft 20 and the housing 30.
  • the seal ring 10 is formed of an elastic body having a relatively high rigidity in order to transmit internal stress well in the radial direction.
  • the tensile elastic modulus of the elastic body forming the seal ring 10 at 25 ° C. is 90 MPa or more, preferably 120 MPa or more.
  • the shore A hardness of the elastic body forming the seal ring 10 at 25 ° C. is preferably 80 or more.
  • the tensile elastic modulus of the elastic body forming the seal ring 10 can be obtained, for example, as stress ( ⁇ ) / strain ( ⁇ ) in a tensile test based on JIS K6251.
  • the elastic body can be processed into a No. 3 dumbbell test piece.
  • the tensile speed in the tensile test can be 500 mm / min.
  • the shore A hardness of the elastic body forming the seal ring 10 can be measured using a type A durometer, for example, based on JIS K7215.
  • a seal ring 10 formed of the elastic body cut out into an appropriate shape can be used.
  • the seal ring 10 it is necessary to increase the radial dimensions of the first deformed portion 12 and the second deformed portion 13 to some extent in order to allow the flat portion 11 to sink deeply into the groove portion 21 of the shaft 20. There is. Further, in the seal ring 10, it is not preferable that the radial dimension of the flat portion 11 is too small in order to secure the mechanical strength.
  • the total radial dimension D (diametrical dimension D of the seal ring 10) of the flat portion 11, the first deformed portion 12, and the second deformed portion 13 and the flat portion 11 are shown.
  • the radial dimension d11, the radial dimension d12 of the first deformed portion 12, and the radial dimension d13 of the second deformed portion 13 are shown.
  • the dimensions D, d11, d12, and d13 satisfy the following relationship. 0.2 ⁇ D ⁇ d11 ⁇ 0.56 ⁇ D 0.22 ⁇ D ⁇ d12 ⁇ 0.4 ⁇ D 0.22 ⁇ D ⁇ d12 ⁇ 0.4 ⁇ D
  • ⁇ b is determined. Specifically, it is preferable that the first angle ⁇ a of the first inclined surface 122 and the second angle ⁇ b of the second inclined surface 132 are both 30 ° or more and 40 ° or less.
  • the first radius of curvature Ra of the outer peripheral surface 121 and the second radius of curvature Rb of the inner peripheral surface 131 are provided so that the first deformed portion 12 and the second deformed portion 13 are appropriately compressed and deformed in the radial direction. Is determined. Specifically, both the first radius of curvature Ra of the outer peripheral surface 121 and the second radius of curvature Rb of the inner peripheral surface 131 are preferably 0.64 mm or more and 1.37 mm or less.
  • first radius of curvature Ra of the outer peripheral surface 121 and the second radius of curvature Rb of the inner peripheral surface 131 are equal, and the first angle ⁇ a of the first inclined surface 122 and the second angle ⁇ b of the second inclined surface 132 are equal. It is preferable that they are equal. That is, in the seal ring 10, it is preferable that the first deformed portion 12 and the second deformed portion 13 have the same cross-sectional shape.
  • the amount of compressive deformation in the radial direction of the first deformed portion 12 and the second deformed portion 13 becomes the same in the state of being incorporated in the shaft 20 and the housing 30 shown in FIG. 4, and the internal stress is reduced. Best dispersed. Therefore, in the seal ring 10 having this configuration, stress concentration is less likely to occur.
  • FIG. 6 is a cross-sectional view showing a state in which the seal ring 10a according to Comparative Example 1 is fitted into the groove 21 of the shaft 20.
  • the seal ring 10a is composed of a deformed portion 12a on the outer peripheral side and a flat portion 11a. That is, the seal ring 10a does not have a configuration corresponding to the second deformed portion 13 on the inner peripheral side of the seal ring 10 according to the present embodiment.
  • FIG. 7 is a cross-sectional view showing a state in which the shaft 20 shown in FIG. 6 is inserted into the housing 30.
  • the internal stress generated in the deformed portion 12a due to the pressing force applied from the inner peripheral surface of the housing 30 is not transmitted to the inner peripheral side. Therefore, in the seal ring 10a, the internal stress is not relaxed, so that stress concentration is likely to occur.
  • the seal ring 10a stress concentration is likely to occur in the region R shown by the dot pattern in FIG. 7 near the boundary between the deformed portion 12a and the flat portion 11a. Therefore, the seal ring 10a is liable to cause problems such as fatigue wear due to stress concentration, so that the durability as high as that of the seal ring 10 according to the present embodiment cannot be obtained.
  • the thick flat portion 11a does not sink to the inside of the tapered portion 22 in the groove portion 21 of the shaft 20. Therefore, in the seal ring 10a, a part of the flat portion 11a projects onto the tapered portion 22 of the shaft 20 due to elastic deformation.
  • FIG. 8 is a cross-sectional view showing a state in which the shaft 20 and the housing 30 shown in FIG. 7 are relatively reciprocating. At this time, the inner peripheral surface of the housing 30 drags the deformed portion 12a of the seal ring 10a to the right with a part of the seal ring 10a sandwiched between the inner peripheral surface of the housing 30 and the tapered portion 22 of the shaft 20.
  • the seal ring 10a As a result, in the seal ring 10a, a strong force in the right direction is applied from the inner peripheral surface of the housing 30 to the deformed portion 12a, and the deformed portion 12a is placed in the space between the tapered portion 22 of the shaft 20 and the inner peripheral surface of the housing 30. Be drawn in. Therefore, the seal ring 10a easily enters the gap between the shaft 20 and the housing 30 beyond the tapered portion 22.
  • the seal ring 10a is sandwiched between the shaft 20 and the housing 30, the reciprocating movement between the shaft 20 and the housing 30 may be hindered, and the hydraulic equipment may malfunction. Further, if the seal ring 10a sandwiched between the shaft 20 and the housing 30 is broken, there is a possibility that debris may be mixed into the hydraulic equipment.
  • FIG. 9 is a cross-sectional view showing a state in which the seal ring 10b according to Comparative Example 2 is incorporated in the shaft 20 and the housing 30.
  • the seal ring 10b has the same shape as the seal ring 10 according to the present embodiment, but is different from the configuration of the present embodiment in that it is formed of a low-rigidity elastic body having a tensile elastic modulus of less than 90 MPa at 25 ° C. different.
  • the internal stress generated in the first deformed portion 12b is not relaxed and tends to concentrate. Specifically, in the seal ring 10b, stress concentration is likely to occur in the region R shown by the dot pattern in FIG. 9 near the boundary between the first deformed portion 12b and the flat portion 11a. Therefore, it is difficult to obtain high durability with the seal ring 10b.
  • FIG. 10 is a cross-sectional view showing a state in which the seal ring 10 is incorporated into a shaft 20a having a flat outer peripheral surface and a housing 30a having a groove portion 31a formed on the inner peripheral surface.
  • the shaft 20a is inserted into the housing 30a in which the seal ring 10 is fitted in the groove 31a.
  • the inner peripheral surface 131 is in contact with the outer peripheral surface of the shaft 20a
  • the outer peripheral surface 121a is in contact with the bottom surface of the groove portion 31a of the housing 30a.
  • the first deformed portion 12 and the second deformed portion 13 in the seal ring 10 perform functions opposite to those shown in FIG.
  • the effect of the seal ring 10 which is less likely to cause stress concentration and can achieve both high sealing property and high slidability can be obtained as in the configuration shown in FIG.
  • Sample S1 has the configuration of the seal ring 10a according to Comparative Example 1.
  • Samples S2 to S4 have the structure of the seal ring 10b according to Comparative Example 2.
  • Samples S5 to S7 have the configuration of the seal ring 10 according to the present embodiment.
  • sample S1 according to Comparative Example 1 is different from the configuration of the present embodiment in that the second deformed portion on the inner peripheral side is not provided.
  • Samples S2 to S4 according to Comparative Example 2 are different from the configuration of the present embodiment in that they are formed of a low-rigidity elastic body having a tensile elastic modulus of less than 90 at 25 ° C.
  • Samples S5 to S7 are examples of this embodiment.
  • the fatigue tester 50 shown in FIG. 11 was used for the fatigue test of each sample.
  • the fatigue tester 50 includes a shaft 51 in which a groove into which each sample is fitted is formed, and a housing 52 in which the shaft 51 can be inserted.
  • the tightening ratio (%) which is the ratio of the amount of compression deformation in the radial direction to the radial dimension D (see FIG. 2) in each sample, uses the distance L between the bottom surface of the groove portion of the shaft 51 and the inner peripheral surface of the housing 52. Therefore, it can be calculated as 100 ⁇ (DL) / D. In the fatigue test of each sample, the tightening rate was adjusted to about 11%.
  • the fatigue wear amount and tightening rate were calculated from the radial dimension D after the fatigue test.
  • the amount of fatigue wear of each sample is calculated as the amount of change in the radial dimension D before and after the fatigue test.
  • the tightening rate of a sample whose dimension D after the fatigue test is smaller than the distance L is calculated as a negative value.
  • Table 2 shows the fatigue wear amount and tightening rate of each sample.
  • the seal ring 10 even if the first angle ⁇ a of the first inclined surface 122 in the first deformed portion 12 and the second angle ⁇ b of the second inclined surface 132 in the second deformed portion 13 are different from each other. Good. Also in this case, it is preferable that the angles ⁇ a and ⁇ b of the inclined surfaces 122 and 132 of the deformed portions 12 and 13 are all 30 ° or more and 40 ° or less.
  • the angles ⁇ a and ⁇ b of the inclined surfaces 122 and 132 of the deformed portions 12 and 13 may not be constant, for example, may be continuously changed. That is, the cross-sectional shape of the inclined surfaces 122 and 132 of the deformed portions 12 and 13 does not have to be linear, and may be, for example, a convex or concave curved shape.
  • the radius of curvature Ra of the outer peripheral surface 121 of the first deformed portion 12 and the radius of curvature Rb of the inner peripheral surface 131 of the second deformed portion 13 may be different from each other.
  • the cross sections of the outer peripheral surface 121 and the inner peripheral surface 131 do not have to be arcuate, and may be curved, for example, in which the radii of curvature Ra and Rb change continuously.
  • the shape of the seal ring 10 does not have to be strictly symmetrical with respect to the plane F.
  • the outer peripheral surface 121 and the inner peripheral surface 131 may be displaced to one side of the pair of side surfaces 111.
  • the angles ⁇ a of the first inclined surface 122 may be different from each other, and the angles ⁇ a of the second inclined surface 132 may be different from each other.
  • the seal ring 10 can obtain the same effect as described above when used not only for sealing oil but also for sealing liquids and gases other than oil. Therefore, the seal ring 10 can be used not only for hydraulic equipment but also for, for example, hydraulic equipment using water pressure and pneumatic equipment using air pressure.

Abstract

[Problem] To provide a sealing ring in which stress concentration does not readily occur. [Solution] This sealing ring is formed from an elastic body with a tensile elastic modulus of 90MPa or greater at 25°C, and comprises a pair of side surfaces, a first deformation section, and a second deformation section. The pair of side surfaces extend along a radial direction. The first deformation section has a pair of first slanted surfaces extending from radial direction outer side end sections of the pair of side surfaces so as to approach one another toward said outer side, and an outer circumferential surface connecting outer side end sections of the pair of first slanted surfaces to one another and protruding to said outer side. The second deformation section has a pair of second slanted surfaces extending from radial direction inner side end sections of the pair of side surfaces so as to approach one another toward said inner side, and an inner circumferential surface connecting inner side end sections of the pair of second slanted surfaces to one another and protruding to said inner side.

Description

シールリングSeal ring
 本発明は、油圧機器に利用可能なシールリングに関する。 The present invention relates to a seal ring that can be used for hydraulic equipment.
 油圧式の無段変速機などの各種油圧機器が搭載された自動車が知られている。これらの油圧機器には、オイルをシールするためのシールリングが用いられる。シールリングは、例えば、ハウジングに挿通されるシャフトに嵌め込まれ、シャフトとハウジングとの間を封止する。 Automobiles equipped with various hydraulic devices such as hydraulic continuously variable transmissions are known. Seal rings for sealing oil are used in these hydraulic devices. The seal ring is fitted, for example, into a shaft that is inserted into the housing and seals between the shaft and the housing.
 シールリングは、シャフトとハウジングとの間の高いシール性を実現するために、シャフト及びハウジングに隙間なく密着可能であることが好ましい。このため、シールリングは、例えば、樹脂などの弾性体で形成される。特許文献1,2には、樹脂で形成されたシールリングが開示されている。 It is preferable that the seal ring can be closely attached to the shaft and the housing without a gap in order to realize a high sealing property between the shaft and the housing. Therefore, the seal ring is formed of an elastic body such as a resin. Patent Documents 1 and 2 disclose a seal ring made of a resin.
 シールリングは、油圧機器の駆動時に、ハウジングの内周面に対して往復摺動する。このため、油圧機器には、シールリングとハウジングとの間の摩擦による駆動損失である摩擦損失が生じる。したがって、油圧機器の駆動損失の低減のためには、シールリングとハウジングとの間の高い摺動性が求められる。 The seal ring slides back and forth with respect to the inner peripheral surface of the housing when the hydraulic equipment is driven. For this reason, the hydraulic equipment has a friction loss, which is a drive loss due to the friction between the seal ring and the housing. Therefore, in order to reduce the drive loss of hydraulic equipment, high slidability between the seal ring and the housing is required.
 しかしながら、一般的なシールリングにおいては、シール性と摺動性とがトレードオフの関係になりやすい。これに対し、特許文献3には、シール性と摺動性とを両立可能なシールリングが記載されている。このシールリングには、摺動面に向けて肉薄になる傾斜面が設けられている。 However, in a general seal ring, the sealability and the slidability tend to be in a trade-off relationship. On the other hand, Patent Document 3 describes a seal ring capable of achieving both sealing property and slidability. The seal ring is provided with an inclined surface that becomes thinner toward the sliding surface.
 特許文献3に記載のシールリングでは、傾斜面が設けられた肉薄の部分において径方向に圧縮変形しやすくなる。このため、このシールリングでは、充分に径方向に圧縮変形させても、被摺動面に対する接触圧力を小さく抑えることができる。これにより、このシールリングでは、シール性を損なわずに高い摺動性が得られる。 The seal ring described in Patent Document 3 is likely to be compressed and deformed in the radial direction in a thin portion provided with an inclined surface. Therefore, in this seal ring, the contact pressure with respect to the sliding surface can be suppressed to be small even if the seal ring is sufficiently compressed and deformed in the radial direction. As a result, in this seal ring, high slidability can be obtained without impairing the seal property.
特開2012-255495号公報Japanese Unexamined Patent Publication No. 2012-255495 特開2013-194884号公報Japanese Unexamined Patent Publication No. 2013-194884 国際公開第2017-146037号明細書International Publication No. 2017-146037
 本願の発明者は、特許文献3に記載のシールリングでは、径方向に大きく圧縮変形する傾斜面が設けられた部分の付近において応力集中が発生しやすいことを見出した。これに対し、本願の発明者は、シールリングにおいて、疲労摩耗の低減などの更なる性能の改善のために、応力集中を抑制することが有効であるものと考えた。 The inventor of the present application has found that in the seal ring described in Patent Document 3, stress concentration is likely to occur in the vicinity of a portion provided with an inclined surface that is significantly compressively deformed in the radial direction. On the other hand, the inventor of the present application considered that it is effective to suppress stress concentration in the seal ring in order to further improve the performance such as reduction of fatigue wear.
 以上のような事情に鑑み、本発明の目的は、応力集中が発生しにくいシールリングを提供することにある。 In view of the above circumstances, an object of the present invention is to provide a seal ring in which stress concentration is unlikely to occur.
 上記目的を達成するため、本発明の一形態に係るシールリングは、25℃における引張弾性率が90MPa以上の弾性体で形成され、平坦部と、第1変形部と、第2変形部と、を具備する。
 上記平坦部は、径方向に沿って延びる一対の側面を有する。
 上記第1変形部は、上記一対の側面の上記径方向の外側の端部から上記外側に向けて相互に近接するように延びる一対の第1傾斜面と、上記一対の第1傾斜面の上記外側の端部を相互に接続し、上記外側に突出する外周面と、を有する。
 上記第2変形部は、上記一対の側面の上記径方向の内側の端部から上記内側に向けて相互に近接するように延びる一対の第2傾斜面と、上記一対の第2傾斜面の上記内側の端部を相互に接続し、上記内側に突出する内周面と、を有する。
In order to achieve the above object, the seal ring according to one embodiment of the present invention is formed of an elastic body having a tensile elastic modulus of 90 MPa or more at 25 ° C., and includes a flat portion, a first deformed portion, and a second deformed portion. Equipped with.
The flat portion has a pair of side surfaces extending along the radial direction.
The first deformed portion includes a pair of first inclined surfaces extending from the outer end portions of the pair of side surfaces in the radial direction toward the outside so as to be close to each other, and the pair of first inclined surfaces. It has an outer peripheral surface that connects the outer ends to each other and projects outward.
The second deformed portion includes a pair of second inclined surfaces extending from the inner end portions of the pair of side surfaces in the radial direction toward the inside so as to be close to each other, and the pair of second inclined surfaces. It has an inner peripheral surface that connects the inner ends to each other and projects inward.
 このシールリングには、外周側に第1変形部が設けられ、内周側に第2変形部が設けられている。第1及び第2変形部には、径方向の圧縮変形が生じやすくなるように第1及び第2傾斜面が設けられている。このため、このシールリングは、外周側及び内周側のいずれにおいても径方向に圧縮変形しやすい。
 したがって、このシールリングでは、外周面を摺動面とする場合に、外周面を構成する第1変形部に加わる応力が第2変形部によって緩和される。同様に、内周面を摺動面とする場合に、内周面を構成する第2変形部に加わる応力が第1変形部によって緩和される。このため、このシールリングでは、応力集中が発生しにくい。
 また、このシールリングでは、第1及び第2変形部の径方向の寸法d12,d13を充分に大きくする。これにより、肉厚の平坦部がより確実に溝部内に収まり、溝部外には肉薄の第1又は第2変形部のみが配置される。したがって、このシールリングは、ハウジングとシャフトとの間の隙間に挟み込まれにくくなる。
The seal ring is provided with a first deformed portion on the outer peripheral side and a second deformed portion on the inner peripheral side. The first and second deformed portions are provided with first and second inclined surfaces so that compressive deformation in the radial direction is likely to occur. Therefore, this seal ring is easily compressed and deformed in the radial direction on both the outer peripheral side and the inner peripheral side.
Therefore, in this seal ring, when the outer peripheral surface is used as the sliding surface, the stress applied to the first deformed portion constituting the outer peripheral surface is relaxed by the second deformed portion. Similarly, when the inner peripheral surface is used as a sliding surface, the stress applied to the second deformed portion constituting the inner peripheral surface is relaxed by the first deformed portion. Therefore, stress concentration is unlikely to occur in this seal ring.
Further, in this seal ring, the radial dimensions d12 and d13 of the first and second deformed portions are sufficiently increased. As a result, the thick flat portion is more reliably fitted in the groove portion, and only the thin first or second deformed portion is arranged outside the groove portion. Therefore, this seal ring is less likely to be pinched in the gap between the housing and the shaft.
 上記シールリングでは、上記平坦部、上記第1変形部、及び上記第2変形部の上記径方向の合計寸法をDとし、上記平坦部の上記径方向の寸法をd11とし、上記第1変形部の上記径方向の寸法をd12とし、上記第2変形部の上記径方向の寸法をd13とすると、
 0.2×D≦d11≦0.56×D
 0.22×D≦d12≦0.4×D
 0.22×D≦d13≦0.4×D
 の関係を満足することが好ましい。
 このシールリングでは、機械的強度を確保しつつ、平坦部をシャフトの溝部内により深く沈みこせることができる。
In the seal ring, the total radial dimension of the flat portion, the first deformed portion, and the second deformed portion is D, the radial dimension of the flat portion is d11, and the first deformed portion. Let d12 be the radial dimension of the above, and d13 be the radial dimension of the second deformed portion.
0.2 × D ≦ d11 ≦ 0.56 × D
0.22 × D ≦ d12 ≦ 0.4 × D
0.22 × D ≦ d13 ≦ 0.4 × D
It is preferable to satisfy the relationship.
With this seal ring, the flat portion can be deeply submerged in the groove portion of the shaft while ensuring mechanical strength.
 上記一対の第1傾斜面と上記一対の側面との成す第1角度が30°以上40°以下であり、上記一対の第2傾斜面と上記一対の側面との成す第2角度が30°以上40°以下であってもよい。
 上記外周面の第1曲率半径が0.64mm以上1.37mm以下であり、上記内周面の第2曲率半径が0.64mm以上1.37mm以下であってもよい。
 上記弾性体の25℃におけるショアA硬度が80以上であってもよい。
 これらの構成では、上記の効果が特に良好に得られる。
The first angle formed by the pair of first inclined surfaces and the pair of side surfaces is 30 ° or more and 40 ° or less, and the second angle formed by the pair of second inclined surfaces and the pair of side surfaces is 30 ° or more. It may be 40 ° or less.
The first radius of curvature of the outer peripheral surface may be 0.64 mm or more and 1.37 mm or less, and the second radius of curvature of the inner peripheral surface may be 0.64 mm or more and 1.37 mm or less.
The shore A hardness of the elastic body at 25 ° C. may be 80 or more.
With these configurations, the above effects are particularly well obtained.
 以上のように、本発明では、応力集中が発生しにくいシールリングを提供することができる。 As described above, the present invention can provide a seal ring in which stress concentration is unlikely to occur.
本発明の一実施形態に係るシールリングの平面図である。It is a top view of the seal ring which concerns on one Embodiment of this invention. 図1に示すシールリングの図1のA-A'線に沿った断面図である。It is sectional drawing which follows the AA' line of FIG. 1 of the seal ring shown in FIG. 図2に示すシールリングがシャフトに嵌め込まれた状態を示す断面図である。It is sectional drawing which shows the state which the seal ring shown in FIG. 2 is fitted in a shaft. 図3に示すシャフトがハウジングに挿通させられた状態を示す断面図である。It is sectional drawing which shows the state which the shaft shown in FIG. 3 is inserted into a housing. 図4に示すシャフトとハウジングとが相対的に往復動している状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state in which the shaft and the housing shown in FIG. 4 are relatively reciprocating. 比較例1に係るシールリングがシャフトに嵌め込まれた状態を示す断面図である。It is sectional drawing which shows the state which the seal ring which concerns on Comparative Example 1 is fitted in the shaft. 図6に示すシャフトがハウジングに挿通させられた状態を示す断面図である。It is sectional drawing which shows the state which the shaft shown in FIG. 6 is inserted into a housing. 図7に示すシャフトとハウジングとが相対的に往復動している状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state in which the shaft and the housing shown in FIG. 7 are relatively reciprocating. 比較例2に係るシールリングがシャフト及びハウジングに組み込まれた状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state in which the seal ring according to Comparative Example 2 is incorporated in a shaft and a housing. 図2に示すシールリングを用いた他の構成例を示す断面図である。It is sectional drawing which shows the other structural example using the seal ring shown in FIG. 実施例及び比較例に係るシールリングを評価するための疲労試験機を示す図である。It is a figure which shows the fatigue tester for evaluating the seal ring which concerns on Example and comparative example.
 以下、図面を参照しながら、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1.シールリング10の全体構成
 1.1 概略構成
 図1及び図2は、本発明の一実施形態に係るシールリング10を示す図である。図1は、シールリング10の平面図である。図2は、シールリング10の図1のA-A'線に沿った断面図である。図1に示すように、シールリング10は、中心軸Eを中心とする環状に形成されている。
1. 1. Overall Configuration of Seal Ring 10 1.1 Schematic Configuration FIGS. 1 and 2 are views showing the seal ring 10 according to an embodiment of the present invention. FIG. 1 is a plan view of the seal ring 10. FIG. 2 is a cross-sectional view of the seal ring 10 along the line AA'of FIG. As shown in FIG. 1, the seal ring 10 is formed in an annular shape centered on the central axis E.
 つまり、図2は、シールリング10における図1に示す中心軸Eを通る平面に沿った径方向の断面を示している。図2には、中心軸Eと直交する径方向に沿って延び、シールリング10の中心軸Eに沿った厚さ方向の中央を通る平面Fが示されている。シールリング10は、平面Fについて対称な形状を有する。 That is, FIG. 2 shows a radial cross section of the seal ring 10 along a plane passing through the central axis E shown in FIG. FIG. 2 shows a plane F extending along the radial direction orthogonal to the central axis E and passing through the center in the thickness direction along the central axis E of the seal ring 10. The seal ring 10 has a shape symmetrical with respect to the plane F.
 シールリング10を形成する弾性体は、樹脂材料及びゴム材料から選択される1種類又は2種類以上の材料を主成分とする剛性が比較的高い弾性体で形成される。シールリング10を形成する弾性体には、必要に応じて、各種充填剤などの樹脂材料及びゴム材料以外の成分が含まれていてもよい。 The elastic body forming the seal ring 10 is formed of an elastic body having a relatively high rigidity and containing one or more kinds of materials selected from a resin material and a rubber material as main components. The elastic body forming the seal ring 10 may contain components other than the resin material such as various fillers and the rubber material, if necessary.
 シールリング10は、径方向の中央部に位置する平坦部11と、平坦部11の外周側に位置する第1変形部12と、平坦部11の内周側に位置する第2変形部13と、を有する。シールリング10では、平坦部11、第1変形部12、及び第2変形部13がそれぞれ、その全周にわたって均一な断面形状を有する。 The seal ring 10 includes a flat portion 11 located at the center in the radial direction, a first deformed portion 12 located on the outer peripheral side of the flat portion 11, and a second deformed portion 13 located on the inner peripheral side of the flat portion 11. Has. In the seal ring 10, the flat portion 11, the first deformed portion 12, and the second deformed portion 13 each have a uniform cross-sectional shape over the entire circumference thereof.
 図2に示すように、シールリング10では、平坦部11が平坦な断面形状を有し、第1変形部12及び第2変形部13が平坦部11から径方向に離れるにつれて先細りする断面形状を有する。つまり、第1変形部12及び第2変形部13は、最も肉厚の平坦部11から径方向に離れるにつれて肉薄になっている。 As shown in FIG. 2, in the seal ring 10, the flat portion 11 has a flat cross-sectional shape, and the first deformed portion 12 and the second deformed portion 13 have a cross-sectional shape that tapers as the distance from the flat portion 11 in the radial direction. Have. That is, the first deformed portion 12 and the second deformed portion 13 become thinner in the radial direction from the thickest flat portion 11.
 シールリング10は、中心軸E方向に対向する一対の側面111と、径方向に相互に対向する外周面121及び内周面131と、を有する。シールリング10では、平坦部11が側面111を構成し、第1変形部12が外周面121を構成し、第2変形部13が内周面131を構成する。 The seal ring 10 has a pair of side surfaces 111 facing each other in the central axis E direction, and an outer peripheral surface 121 and an inner peripheral surface 131 facing each other in the radial direction. In the seal ring 10, the flat portion 11 constitutes the side surface 111, the first deformed portion 12 constitutes the outer peripheral surface 121, and the second deformed portion 13 constitutes the inner peripheral surface 131.
 1.2 各部の構成
 平坦部11は、一対の側面111が平面Fに平行な平面であり、平面Fに沿った平坦な形状を有する。平坦部11は、中心軸E方向に肉厚であるため、第1変形部12及び第2変形部13よりも径方向の剛性が高い。したがって、シールリング10は、平坦部11において径方向に圧縮変形しにくい。
1.2 Configuration of Each Part The flat part 11 has a pair of side surfaces 111 that are parallel to the plane F and has a flat shape along the plane F. Since the flat portion 11 is thicker in the central axis E direction, the flat portion 11 has higher radial rigidity than the first deformed portion 12 and the second deformed portion 13. Therefore, the seal ring 10 is less likely to be compressed and deformed in the radial direction at the flat portion 11.
 第1変形部12に設けられた外周面121は、径方向外側に突出する樽状の曲面である。図2に示すように、外周面121は、一定の第1曲率半径Raの円弧状の断面形状を有する。シールリング10では、外周面121がハウジング30(図4等参照)に対して摺動する摺動面として構成される。 The outer peripheral surface 121 provided on the first deformed portion 12 is a barrel-shaped curved surface that protrudes outward in the radial direction. As shown in FIG. 2, the outer peripheral surface 121 has an arc-shaped cross-sectional shape having a constant first radius of curvature Ra. In the seal ring 10, the outer peripheral surface 121 is configured as a sliding surface that slides with respect to the housing 30 (see FIG. 4 and the like).
 第1変形部12には、外周面121と各側面111との間にそれぞれ配置された一対の第1傾斜面122が設けられている。第1傾斜面122は、径方向の内側から外側に向けて相互に近接するように、側面111に対して一定の角度θaで傾斜している。図2に示すように、第1傾斜面122は直線状の断面形状を有する。 The first deformed portion 12 is provided with a pair of first inclined surfaces 122 arranged between the outer peripheral surface 121 and each side surface 111. The first inclined surface 122 is inclined at a constant angle θa with respect to the side surface 111 so as to be close to each other from the inside to the outside in the radial direction. As shown in FIG. 2, the first inclined surface 122 has a linear cross-sectional shape.
 また、第1変形部12には、外周面121と各第1傾斜面122とをそれぞれ接続する接続部123が設けられている。接続部123は、例えば、外周面121と各第1傾斜面122とを滑らかに接続する曲面状や、外周面121と各第1傾斜面122とを直接接続する線状に形成することができる。 Further, the first deformed portion 12 is provided with a connecting portion 123 for connecting the outer peripheral surface 121 and each of the first inclined surfaces 122, respectively. The connecting portion 123 can be formed, for example, into a curved surface that smoothly connects the outer peripheral surface 121 and each of the first inclined surfaces 122, or a linear shape that directly connects the outer peripheral surface 121 and each of the first inclined surfaces 122. ..
 更に、第1変形部12には、各側面111と各第1傾斜面122とをそれぞれ接続する接続部124が設けられている。接続部124は、例えば、各側面111と各第1傾斜面122とを滑らかに接続する曲面状や、各側面111と各第1傾斜面122とを直接接続する線状に形成することができる。 Further, the first deformed portion 12 is provided with a connecting portion 124 for connecting each side surface 111 and each first inclined surface 122. The connecting portion 124 can be formed, for example, in a curved surface shape that smoothly connects each side surface 111 and each first inclined surface 122, or in a linear shape that directly connects each side surface 111 and each first inclined surface 122. ..
 このように、第1変形部12は、平坦部11から径方向外側に離れるにつれて中心軸E方向の寸法が減少する。したがって、第1変形部12では、平坦部11よりも径方向の剛性が低く、径方向外側の部分ほど径方向に圧縮変形しやすくなる。したがって、シールリング10は、第1変形部12において径方向に圧縮変形しやすい。 As described above, the dimension of the first deformed portion 12 in the central axis E direction decreases as the distance from the flat portion 11 is radially outward. Therefore, the first deformed portion 12 has lower radial rigidity than the flat portion 11, and the portion outside the radial direction is more likely to be compressed and deformed in the radial direction. Therefore, the seal ring 10 is easily compressed and deformed in the radial direction in the first deformed portion 12.
 第2変形部13に設けられた内周面131は、径方向内側に突出する樽状の曲面である。図2に示すように、外周面121は、一定の第2曲率半径Rbの円弧状の断面形状を有する。シールリング10では、外周面121がシャフト20の溝部21の底面(図3等参照)と接触する接触面として構成される。 The inner peripheral surface 131 provided on the second deformed portion 13 is a barrel-shaped curved surface protruding inward in the radial direction. As shown in FIG. 2, the outer peripheral surface 121 has an arc-shaped cross-sectional shape having a constant second radius of curvature Rb. In the seal ring 10, the outer peripheral surface 121 is configured as a contact surface in contact with the bottom surface (see FIG. 3 and the like) of the groove portion 21 of the shaft 20.
 第2変形部13には、内周面131と各側面111との間にそれぞれ配置された一対の第2傾斜面132が設けられている。第2傾斜面132は、径方向の外側から内側に向けて相互に近接するように、側面111に対して一定の角度θbで傾斜している。図2に示すように、第2傾斜面132は直線状の断面形状を有する。 The second deformed portion 13 is provided with a pair of second inclined surfaces 132 arranged between the inner peripheral surface 131 and each side surface 111. The second inclined surface 132 is inclined at a constant angle θb with respect to the side surface 111 so as to be close to each other from the outside to the inside in the radial direction. As shown in FIG. 2, the second inclined surface 132 has a linear cross-sectional shape.
 また、第2変形部13には、内周面131と各第2傾斜面132とをそれぞれ接続する接続部133が設けられている。接続部133は、例えば、内周面131と各第2傾斜面132とを滑らかに接続する曲面状や、内周面131と各第2傾斜面132とを直接接続する線状に形成することができる。 Further, the second deformed portion 13 is provided with a connecting portion 133 for connecting the inner peripheral surface 131 and each of the second inclined surfaces 132, respectively. The connecting portion 133 is formed, for example, in a curved surface shape that smoothly connects the inner peripheral surface 131 and each of the second inclined surfaces 132, or in a linear shape that directly connects the inner peripheral surface 131 and each of the second inclined surfaces 132. Can be done.
 更に、第2変形部13には、各側面111と各第2傾斜面132とをそれぞれ接続する接続部134が設けられている。接続部134は、例えば、各側面111と各第2傾斜面132とを滑らかに接続する曲面状や、各側面111と各第2傾斜面132とを直接接続する線状に形成することができる。 Further, the second deformed portion 13 is provided with a connecting portion 134 for connecting each side surface 111 and each second inclined surface 132, respectively. The connecting portion 134 can be formed, for example, into a curved surface that smoothly connects each side surface 111 and each second inclined surface 132, or a linear shape that directly connects each side surface 111 and each second inclined surface 132. ..
 このように、第2変形部13は、平坦部11から径方向内側に離れるにつれて中心軸E方向の寸法が減少する。したがって、第2変形部13では、平坦部11よりも径方向の剛性が低く、径方向内側の部分ほど径方向に圧縮変形しやすくなる。したがって、シールリング10は、第2変形部13において径方向に圧縮変形しやすい。 As described above, the dimension of the second deformed portion 13 in the central axis E direction decreases as the second deformed portion 13 is moved inward in the radial direction from the flat portion 11. Therefore, the second deformed portion 13 has lower radial rigidity than the flat portion 11, and the inner portion in the radial direction is more likely to be compressed and deformed in the radial direction. Therefore, the seal ring 10 is easily compressed and deformed in the radial direction at the second deformed portion 13.
 上記のとおり、シールリング10は、剛性の高い平坦部11において径方向に圧縮変形しにくく、剛性の低い第1変形部12及び第2変形部13において径方向に圧縮変形しやすい。つまり、シールリング10は、第1変形部12及び第2変形部13が選択的に径方向に圧縮変形するように構成されている。 As described above, the seal ring 10 is difficult to be compression-deformed in the radial direction in the flat portion 11 having high rigidity, and is easily compressed and deformed in the radial direction in the first deformed portion 12 and the second deformed portion 13 having low rigidity. That is, the seal ring 10 is configured so that the first deformed portion 12 and the second deformed portion 13 are selectively compressed and deformed in the radial direction.
2.シールリング10の詳細
 2.1 シールリング10の作用効果
 図3は、シールリング10がシャフト20に装着された状態を示す断面図である。図3には、シールリング10における各構成の弾性変形の状態を表現するための格子線が示されている。つまり、シールリング10では、図3に示す状態から弾性変形が加わると、その変形の態様に応じて格子線の間隔が変化する。
2. Details of the seal ring 10 2.1 Action and effect of the seal ring 10 FIG. 3 is a cross-sectional view showing a state in which the seal ring 10 is mounted on the shaft 20. FIG. 3 shows a grid line for expressing the state of elastic deformation of each configuration in the seal ring 10. That is, in the seal ring 10, when elastic deformation is applied from the state shown in FIG. 3, the spacing between the grid lines changes according to the mode of the deformation.
 シャフト20は、油圧機器に用いられる円柱状の部品であり、その外周面の全周にわたって形成された溝部21を有する。また、シャフト20には、溝部21の外縁部に沿って面取りすることにより、テーパ部22が形成されている。シールリング10は、シャフト20の溝部21に嵌め込まれている。 The shaft 20 is a columnar part used in hydraulic equipment, and has a groove portion 21 formed over the entire circumference of the outer peripheral surface thereof. Further, the shaft 20 is formed with a tapered portion 22 by chamfering along the outer edge portion of the groove portion 21. The seal ring 10 is fitted in the groove 21 of the shaft 20.
 図3に示すシールリング10では、第2変形部13の内周面131がその全周にわたってシャフト20の溝部21の底面に密着している。また、図3に示すシールリング10では、第1変形部12が、溝部21に収まりきらずに、シャフト20の外周面よりも径方向外側に突出している。 In the seal ring 10 shown in FIG. 3, the inner peripheral surface 131 of the second deformed portion 13 is in close contact with the bottom surface of the groove portion 21 of the shaft 20 over the entire circumference thereof. Further, in the seal ring 10 shown in FIG. 3, the first deformed portion 12 does not fit in the groove portion 21 and protrudes radially outward from the outer peripheral surface of the shaft 20.
 図4は、図3に示すシャフト20がハウジング30に挿通させられた状態を示す断面図である。ハウジング30は、シャフト20を挿通可能な円筒状の部品である。ハウジング30の内周面の径は、シャフト20の外周面の径よりも大きく、図3に示すシールリング10の外周面121の径よりも小さい。 FIG. 4 is a cross-sectional view showing a state in which the shaft 20 shown in FIG. 3 is inserted into the housing 30. The housing 30 is a cylindrical component through which the shaft 20 can be inserted. The diameter of the inner peripheral surface of the housing 30 is larger than the diameter of the outer peripheral surface of the shaft 20 and smaller than the diameter of the outer peripheral surface 121 of the seal ring 10 shown in FIG.
 したがって、シャフト20がハウジング30に挿通させられる際に、ハウジング30の内周面からシールリング10の外周面121に径方向内側への押圧力が加わる。シールリング10では、外周面121がハウジング30の内周面から押圧力を受けると、第1変形部12が径方向に圧縮変形する。 Therefore, when the shaft 20 is inserted into the housing 30, a pressing force is applied radially inward from the inner peripheral surface of the housing 30 to the outer peripheral surface 121 of the seal ring 10. In the seal ring 10, when the outer peripheral surface 121 receives a pressing force from the inner peripheral surface of the housing 30, the first deformed portion 12 is compressed and deformed in the radial direction.
 このとき、剛性の高い平坦部11は、第1変形部12の径方向の圧縮変形によって発生する内部応力によって、第2変形部13を径方向に圧縮変形させながら内周側に沈み込む。これにより、シールリング10では、第1変形部12から第2変形部に内部応力が分散されるため、第1変形部12の内部応力が緩和される。 At this time, the flat portion 11 having high rigidity sinks to the inner peripheral side while compressing and deforming the second deformed portion 13 in the radial direction due to the internal stress generated by the radial compressive deformation of the first deformed portion 12. As a result, in the seal ring 10, the internal stress is dispersed from the first deformed portion 12 to the second deformed portion, so that the internal stress of the first deformed portion 12 is relaxed.
 剛性の比較的高い弾性体で形成されたシールリング10では、外周面121に加わる押圧力によって生じる内部応力が内周側に良好に伝達され、平坦部11が内周側にスムーズに沈み込む。これにより、図4に示すシールリング10では、応力集中が発生せずに、内部応力の最大値を小さく抑えることができる。 In the seal ring 10 formed of an elastic body having relatively high rigidity, the internal stress generated by the pressing force applied to the outer peripheral surface 121 is satisfactorily transmitted to the inner peripheral side, and the flat portion 11 smoothly sinks to the inner peripheral side. As a result, in the seal ring 10 shown in FIG. 4, the maximum value of the internal stress can be suppressed to a small value without stress concentration occurring.
 弾性体における応力集中は、疲労強度の低下の原因となる。したがって、シールリング10では、応力集中を抑制することによって、疲労摩耗を少なく留めることができる。また、シールリング10では、脆性破壊の起点となりうる応力集中が発生しにくいため、高い耐久性が得られる。 Stress concentration in the elastic body causes a decrease in fatigue strength. Therefore, in the seal ring 10, fatigue wear can be kept low by suppressing stress concentration. Further, in the seal ring 10, high durability can be obtained because stress concentration, which can be a starting point of brittle fracture, is unlikely to occur.
 また、図4に示すシールリング10では、径方向に剛性の低い第1変形部12及び第2変形部13が主に径方向に弾性変形している。したがって、シールリング10では、第1変形部12及び第2変形部13が大きく径方向に圧縮変形させられた状態においても、弾性力を小さく留めることができる。 Further, in the seal ring 10 shown in FIG. 4, the first deformed portion 12 and the second deformed portion 13 having low rigidity in the radial direction are mainly elastically deformed in the radial direction. Therefore, in the seal ring 10, the elastic force can be kept small even in a state where the first deformed portion 12 and the second deformed portion 13 are largely compressed and deformed in the radial direction.
 このため、シールリング10では、第1変形部12及び第2変形部13を充分に大きく径方向に圧縮変形させる構成においても、外周面121のハウジング30に対する接触圧力を低く維持することができる。したがって、シールリング10は、高いシール性及び高い摺動性を両立することができる。 Therefore, in the seal ring 10, the contact pressure of the outer peripheral surface 121 with respect to the housing 30 can be maintained low even in a configuration in which the first deformed portion 12 and the second deformed portion 13 are sufficiently large enough to be compressed and deformed in the radial direction. Therefore, the seal ring 10 can achieve both high sealing performance and high slidability.
 図5は、図4に示すシャフト20とハウジング30とが相対的に往復動している状態を示す断面図である。図5は、ハウジング30がシャフト20に対して右側に向けて移動している状態を示している。図5に示すシールリング10では、外周面121がハウジング30の内周面に右方向に引きずられて第1変形部12が弾性変形している。 FIG. 5 is a cross-sectional view showing a state in which the shaft 20 and the housing 30 shown in FIG. 4 are relatively reciprocating. FIG. 5 shows a state in which the housing 30 is moving toward the right side with respect to the shaft 20. In the seal ring 10 shown in FIG. 5, the outer peripheral surface 121 is dragged to the right by the inner peripheral surface of the housing 30, and the first deformed portion 12 is elastically deformed.
 しかしながら、シールリング10では、外周面121のハウジング30の内周面に対する接触圧力が小さく、つまり外周面121とハウジング30の内周面との間に加わる摩擦力が小さいため、外周面121に加わる右方向の力が小さく抑えられる。これにより、シールリング10では、第1変形部12の弾性変形量を小さく留めることができる。 However, in the seal ring 10, the contact pressure of the outer peripheral surface 121 with respect to the inner peripheral surface of the housing 30 is small, that is, the frictional force applied between the outer peripheral surface 121 and the inner peripheral surface of the housing 30 is small, so that the seal ring 10 is applied to the outer peripheral surface 121. The force in the right direction is suppressed to a small extent. As a result, in the seal ring 10, the amount of elastic deformation of the first deformed portion 12 can be kept small.
 また、シールリングでは、肉厚の平坦部11が内周側に沈み込むことにより、シャフト20の溝部21におけるテーパ部22よりも内側に収まっている。つまり、シールリング10では、シャフト20のテーパ部22より外側の領域に、外側に向けて肉薄になる第1変形部12のみが配置されている。 Further, in the seal ring, the thick flat portion 11 sinks to the inner peripheral side, so that the seal ring is contained inside the tapered portion 22 in the groove portion 21 of the shaft 20. That is, in the seal ring 10, only the first deformed portion 12 that becomes thinner toward the outside is arranged in the region outside the tapered portion 22 of the shaft 20.
 図4に示すシールリング10では、第1変形部12の第1傾斜面122が径方向外向きにテーパ部22から遠ざかっている。このため、シールリング10は、図5に示すように、外周面121がハウジング30の内周面に引きずられても、シャフト20のテーパ部22とハウジング30の内周面との間の空間に進入しにくい。 In the seal ring 10 shown in FIG. 4, the first inclined surface 122 of the first deformed portion 12 is moved outward from the tapered portion 22 in the radial direction. Therefore, as shown in FIG. 5, the seal ring 10 is provided in the space between the tapered portion 22 of the shaft 20 and the inner peripheral surface of the housing 30 even if the outer peripheral surface 121 is dragged by the inner peripheral surface of the housing 30. It is difficult to enter.
 これらにより、シールリング10は、油圧機器の駆動時に、テーパ部22を超えてシャフト20とハウジング30との間の隙間に進入することを防止することができる。このため、シールリング10では、シャフト20とハウジング30との間に挟み込まれることによる破断などの不具合の発生を防止することができる。 As a result, the seal ring 10 can prevent the seal ring 10 from entering the gap between the shaft 20 and the housing 30 beyond the tapered portion 22 when the hydraulic device is driven. Therefore, in the seal ring 10, it is possible to prevent the occurrence of defects such as breakage due to being sandwiched between the shaft 20 and the housing 30.
 2.2 シールリング10の具体的構成
 上記のとおり、シールリング10は、内部応力を径方向に良好に伝達させるために、剛性の比較的高い弾性体で形成される。具体的に、シールリング10を形成する弾性体の25℃における引張弾性率は90MPa以上であり、120MPa以上であることが好ましい。また、シールリング10を形成する弾性体の25℃におけるショアA硬度は80以上であることが好ましい。
2.2 Specific configuration of the seal ring 10 As described above, the seal ring 10 is formed of an elastic body having a relatively high rigidity in order to transmit internal stress well in the radial direction. Specifically, the tensile elastic modulus of the elastic body forming the seal ring 10 at 25 ° C. is 90 MPa or more, preferably 120 MPa or more. Further, the shore A hardness of the elastic body forming the seal ring 10 at 25 ° C. is preferably 80 or more.
 シールリング10を形成する弾性体の引張弾性率は、例えば、JIS K6251に基づく引張試験における応力(σ)/歪み(ε)として得ることができる。引張試験の際には、弾性体を3号形ダンベル試験片に加工することができる。また、引張試験における引張速度は500mm/minとすることができる。 The tensile elastic modulus of the elastic body forming the seal ring 10 can be obtained, for example, as stress (σ) / strain (ε) in a tensile test based on JIS K6251. At the time of the tensile test, the elastic body can be processed into a No. 3 dumbbell test piece. Further, the tensile speed in the tensile test can be 500 mm / min.
 シールリング10を形成する弾性体のショアA硬度は、例えば、JIS K7215に基づき、タイプAデュロメータを用いて測定することができる。ショアA硬度の測定サンプルとしては、例えば、当該弾性体で形成されたシールリング10を適当な形状に切り出したものを用いることができる。 The shore A hardness of the elastic body forming the seal ring 10 can be measured using a type A durometer, for example, based on JIS K7215. As the measurement sample of the shore A hardness, for example, a seal ring 10 formed of the elastic body cut out into an appropriate shape can be used.
 また、上記のとおり、シールリング10では、平坦部11をシャフト20の溝部21内に深く沈みこませるために、第1変形部12及び第2変形部13の径方向の寸法をある程度大きくする必要がある。また、シールリング10では、機械的強度を確保するために、平坦部11の径方向の寸法が小さすぎることは好ましくない。 Further, as described above, in the seal ring 10, it is necessary to increase the radial dimensions of the first deformed portion 12 and the second deformed portion 13 to some extent in order to allow the flat portion 11 to sink deeply into the groove portion 21 of the shaft 20. There is. Further, in the seal ring 10, it is not preferable that the radial dimension of the flat portion 11 is too small in order to secure the mechanical strength.
 図2には、シールリング10について、平坦部11、第1変形部12、及び第2変形部13の径方向の合計寸法D(シールリング10の径方向の寸法D)と、平坦部11の径方向の寸法d11と、第1変形部12の径方向の寸法d12と、第2変形部13の径方向の寸法d13と、が示されている。 In FIG. 2, regarding the seal ring 10, the total radial dimension D (diametrical dimension D of the seal ring 10) of the flat portion 11, the first deformed portion 12, and the second deformed portion 13 and the flat portion 11 are shown. The radial dimension d11, the radial dimension d12 of the first deformed portion 12, and the radial dimension d13 of the second deformed portion 13 are shown.
 上記の観点から、シールリング10では、寸法D,d11,d12,d13が以下の関係を満足することが好ましい。
 0.2×D≦d11≦0.56×D
 0.22×D≦d12≦0.4×D
 0.22×D≦d12≦0.4×D
From the above viewpoint, in the seal ring 10, it is preferable that the dimensions D, d11, d12, and d13 satisfy the following relationship.
0.2 × D ≦ d11 ≦ 0.56 × D
0.22 × D ≦ d12 ≦ 0.4 × D
0.22 × D ≦ d12 ≦ 0.4 × D
 更に、シールリング10では、第1変形部12及び第2変形部13が径方向に適切に圧縮変形するように、第1傾斜面122の第1角度θa及び第2傾斜面132の第2角度θbが決定される。具体的に、第1傾斜面122の第1角度θa及び第2傾斜面132の第2角度θbはいずれも、30°以上40°以下であることが好ましい。 Further, in the seal ring 10, the first angle θa of the first inclined surface 122 and the second angle of the second inclined surface 132 so that the first deformed portion 12 and the second deformed portion 13 are appropriately compressed and deformed in the radial direction. θb is determined. Specifically, it is preferable that the first angle θa of the first inclined surface 122 and the second angle θb of the second inclined surface 132 are both 30 ° or more and 40 ° or less.
 また、シールリング10では、第1変形部12及び第2変形部13が径方向に適切に圧縮変形するように、外周面121の第1曲率半径Ra及び内周面131の第2曲率半径Rbが決定される。具体的に、外周面121の第1曲率半径Ra及び内周面131の第2曲率半径Rbはいずれも、0.64mm以上1.37mm以下であることが好ましい。 Further, in the seal ring 10, the first radius of curvature Ra of the outer peripheral surface 121 and the second radius of curvature Rb of the inner peripheral surface 131 are provided so that the first deformed portion 12 and the second deformed portion 13 are appropriately compressed and deformed in the radial direction. Is determined. Specifically, both the first radius of curvature Ra of the outer peripheral surface 121 and the second radius of curvature Rb of the inner peripheral surface 131 are preferably 0.64 mm or more and 1.37 mm or less.
 加えて、外周面121の第1曲率半径Raと内周面131の第2曲率半径Rbとが等しく、第1傾斜面122の第1角度θaと第2傾斜面132の第2角度θbとが等しいことが好ましい。つまり、シールリング10では、第1変形部12と第2変形部13とが同等の断面形状を有することが好ましい。 In addition, the first radius of curvature Ra of the outer peripheral surface 121 and the second radius of curvature Rb of the inner peripheral surface 131 are equal, and the first angle θa of the first inclined surface 122 and the second angle θb of the second inclined surface 132 are equal. It is preferable that they are equal. That is, in the seal ring 10, it is preferable that the first deformed portion 12 and the second deformed portion 13 have the same cross-sectional shape.
 これにより、シールリング10では、図4に示すシャフト20及びハウジング30に組み込まれた状態において、第1変形部12及び第2変形部13の径方向の圧縮変形量が同程度となり、内部応力が最も良好に分散される。したがって、この構成のシールリング10では、更に応力集中が発生しにくくなる。 As a result, in the seal ring 10, the amount of compressive deformation in the radial direction of the first deformed portion 12 and the second deformed portion 13 becomes the same in the state of being incorporated in the shaft 20 and the housing 30 shown in FIG. 4, and the internal stress is reduced. Best dispersed. Therefore, in the seal ring 10 having this configuration, stress concentration is less likely to occur.
 2.3 比較例
 図6は、比較例1に係るシールリング10aがシャフト20の溝部21に嵌め込まれた状態を示す断面図である。シールリング10aは、外周側の変形部12aと、平坦部11aと、で構成されている。つまり、シールリング10aは、本実施形態に係るシールリング10における内周側の第2変形部13に対応する構成を有さない。
2.3 Comparative Example FIG. 6 is a cross-sectional view showing a state in which the seal ring 10a according to Comparative Example 1 is fitted into the groove 21 of the shaft 20. The seal ring 10a is composed of a deformed portion 12a on the outer peripheral side and a flat portion 11a. That is, the seal ring 10a does not have a configuration corresponding to the second deformed portion 13 on the inner peripheral side of the seal ring 10 according to the present embodiment.
 図7は、図6に示すシャフト20がハウジング30に挿通させられた状態を示す断面図である。シールリング10aでは、ハウジング30の内周面から加わる押圧力によって変形部12aに生じる内部応力が内周側に伝達されない。したがって、シールリング10aでは、内部応力が緩和されないため、応力集中が発生しやすくなる。 FIG. 7 is a cross-sectional view showing a state in which the shaft 20 shown in FIG. 6 is inserted into the housing 30. In the seal ring 10a, the internal stress generated in the deformed portion 12a due to the pressing force applied from the inner peripheral surface of the housing 30 is not transmitted to the inner peripheral side. Therefore, in the seal ring 10a, the internal stress is not relaxed, so that stress concentration is likely to occur.
 具体的に、シールリング10aでは、変形部12aと平坦部11aとの境界部付近にある図7にドットパターンで示す領域Rに応力集中が発生しやすい。したがって、シールリング10aでは、応力集中に起因する疲労摩耗などの不具合が発生しやすくなるため、本実施形態に係るシールリング10ほどの高い耐久性は得られない。 Specifically, in the seal ring 10a, stress concentration is likely to occur in the region R shown by the dot pattern in FIG. 7 near the boundary between the deformed portion 12a and the flat portion 11a. Therefore, the seal ring 10a is liable to cause problems such as fatigue wear due to stress concentration, so that the durability as high as that of the seal ring 10 according to the present embodiment cannot be obtained.
 また、図7に示すように、比較例1に係るシールリング10aでは、肉厚の平坦部11aがシャフト20の溝部21におけるテーパ部22より内側まで沈み込まない。このため、シールリング10aでは、平坦部11aの一部が弾性変形によってシャフト20のテーパ部22上に張り出している。 Further, as shown in FIG. 7, in the seal ring 10a according to Comparative Example 1, the thick flat portion 11a does not sink to the inside of the tapered portion 22 in the groove portion 21 of the shaft 20. Therefore, in the seal ring 10a, a part of the flat portion 11a projects onto the tapered portion 22 of the shaft 20 due to elastic deformation.
 図8は、図7に示すシャフト20とハウジング30とが相対的に往復動している状態を示す断面図である。このとき、ハウジング30の内周面は、シャフト20のテーパ部22との間にシールリング10aの一部を挟み込んだ状態で、シールリング10aの変形部12aを右方向に引きずる。 FIG. 8 is a cross-sectional view showing a state in which the shaft 20 and the housing 30 shown in FIG. 7 are relatively reciprocating. At this time, the inner peripheral surface of the housing 30 drags the deformed portion 12a of the seal ring 10a to the right with a part of the seal ring 10a sandwiched between the inner peripheral surface of the housing 30 and the tapered portion 22 of the shaft 20.
 これにより、シールリング10aでは、ハウジング30の内周面から変形部12aに右方向の強い力が加わり、変形部12aがシャフト20のテーパ部22とハウジング30の内周面との間の空間に引き込まれる。このため、シールリング10aは、テーパ部22を超えてシャフト20とハウジング30との間の隙間に進入しやすくなる。 As a result, in the seal ring 10a, a strong force in the right direction is applied from the inner peripheral surface of the housing 30 to the deformed portion 12a, and the deformed portion 12a is placed in the space between the tapered portion 22 of the shaft 20 and the inner peripheral surface of the housing 30. Be drawn in. Therefore, the seal ring 10a easily enters the gap between the shaft 20 and the housing 30 beyond the tapered portion 22.
 シールリング10aがシャフト20とハウジング30との間に挟み込まれると、シャフト20とハウジング30との往復動に支障をきたし、油圧機器に動作不良が発生する虞がある。更に、シャフト20とハウジング30との間に挟み込まれたシールリング10aが破断すると、油圧機器への破片の混入が発生する虞がある。 If the seal ring 10a is sandwiched between the shaft 20 and the housing 30, the reciprocating movement between the shaft 20 and the housing 30 may be hindered, and the hydraulic equipment may malfunction. Further, if the seal ring 10a sandwiched between the shaft 20 and the housing 30 is broken, there is a possibility that debris may be mixed into the hydraulic equipment.
 図9は、比較例2に係るシールリング10bがシャフト20及びハウジング30に組み込まれた状態を示す断面図である。シールリング10bは、本実施形態に係るシールリング10と同様の形状を有するが、25℃における引張弾性率が90MPa未満の剛性の低い弾性体で形成されている点で本実施形態の構成とは異なる。 FIG. 9 is a cross-sectional view showing a state in which the seal ring 10b according to Comparative Example 2 is incorporated in the shaft 20 and the housing 30. The seal ring 10b has the same shape as the seal ring 10 according to the present embodiment, but is different from the configuration of the present embodiment in that it is formed of a low-rigidity elastic body having a tensile elastic modulus of less than 90 MPa at 25 ° C. different.
 シールリング10bを形成する剛性の低い弾性体では、内部応力が良好に伝達されにくい。このため、シールリング10bでは、ハウジング30の内周面から加わる押圧力によって第1変形部12bに内部応力が生じても、平坦部11がスムーズに内周側に沈み込まずに、第2変形部13bの径方向の圧縮変形量が小さく留まる。 Internal stress is difficult to be transmitted well in an elastic body with low rigidity that forms the seal ring 10b. Therefore, in the seal ring 10b, even if an internal stress is generated in the first deformed portion 12b due to the pressing force applied from the inner peripheral surface of the housing 30, the flat portion 11 does not smoothly sink to the inner peripheral side and is second deformed. The amount of compressive deformation in the radial direction of the portion 13b remains small.
 したがって、シールリング10bでは、第1変形部12bに生じる内部応力が緩和されずに集中しやすい。具体的に、シールリング10bでは、第1変形部12bと平坦部11aとの境界部付近にある図9にドットパターンで示す領域Rに応力集中が発生しやすい。したがって、シールリング10bでは、高い耐久性が得られにくい。 Therefore, in the seal ring 10b, the internal stress generated in the first deformed portion 12b is not relaxed and tends to concentrate. Specifically, in the seal ring 10b, stress concentration is likely to occur in the region R shown by the dot pattern in FIG. 9 near the boundary between the first deformed portion 12b and the flat portion 11a. Therefore, it is difficult to obtain high durability with the seal ring 10b.
 2.4 他の構成例
 本実施形態に係るシールリング10では、外周面121ではなく、内周面131を摺動面とすることもできる。図10は、シールリング10が、平坦な外周面を有するシャフト20aと、内周面に溝部31aが形成されたハウジング30aと、に組み込まれた状態を示す断面図である。
2.4 Other Configuration Examples In the seal ring 10 according to the present embodiment, the inner peripheral surface 131 may be used as the sliding surface instead of the outer peripheral surface 121. FIG. 10 is a cross-sectional view showing a state in which the seal ring 10 is incorporated into a shaft 20a having a flat outer peripheral surface and a housing 30a having a groove portion 31a formed on the inner peripheral surface.
 図10に示す状態では、シールリング10が溝部31aに嵌め込まれたハウジング30aにシャフト20aが挿通されている。これにより、シールリング10では、内周面131がシャフト20aの外周面に接触し、外周面121aがハウジング30aの溝部31aの底面に接触している。 In the state shown in FIG. 10, the shaft 20a is inserted into the housing 30a in which the seal ring 10 is fitted in the groove 31a. As a result, in the seal ring 10, the inner peripheral surface 131 is in contact with the outer peripheral surface of the shaft 20a, and the outer peripheral surface 121a is in contact with the bottom surface of the groove portion 31a of the housing 30a.
 図10に示す構成では、シールリング10における第1変形部12と第2変形部13とが、図4に示す構成とは相互に反対の機能を果たす。これにより、図10に示す構成でも、図4に示す構成と同様に、応力集中が発生しにくく、かつ高いシール性及び高い摺動性を両立することができるシールリング10の効果が得られる。 In the configuration shown in FIG. 10, the first deformed portion 12 and the second deformed portion 13 in the seal ring 10 perform functions opposite to those shown in FIG. As a result, even in the configuration shown in FIG. 10, the effect of the seal ring 10 which is less likely to cause stress concentration and can achieve both high sealing property and high slidability can be obtained as in the configuration shown in FIG.
3.実施例及び比較例
 本実施形態に係るシールリング10の実施例及び比較例として、7種類のサンプルS1~S7を作製した。サンプルS1は、比較例1に係るシールリング10aの構成を有する。サンプルS2~S4は、比較例2に係るシールリング10bの構成を有する。サンプルS5~S7は、本実施形態に係るシールリング10の構成を有する。
3. 3. Examples and Comparative Examples Seven types of samples S1 to S7 were prepared as examples and comparative examples of the seal ring 10 according to the present embodiment. Sample S1 has the configuration of the seal ring 10a according to Comparative Example 1. Samples S2 to S4 have the structure of the seal ring 10b according to Comparative Example 2. Samples S5 to S7 have the configuration of the seal ring 10 according to the present embodiment.
 つまり、比較例1に係るサンプルS1は、内周側の第2変形部が設けられていない点で、本実施形態の構成とは異なる。比較例2に係るサンプルS2~S4は、25℃における引張弾性率が90未満の剛性の低い弾性体で形成されている点で、本実施形態の構成とは異なる。サンプルS5~S7は、本実施形態の実施例である。 That is, the sample S1 according to Comparative Example 1 is different from the configuration of the present embodiment in that the second deformed portion on the inner peripheral side is not provided. Samples S2 to S4 according to Comparative Example 2 are different from the configuration of the present embodiment in that they are formed of a low-rigidity elastic body having a tensile elastic modulus of less than 90 at 25 ° C. Samples S5 to S7 are examples of this embodiment.
 変形部が外周側及び内周側の両方に設けられた各サンプルS2~S7ではいずれも、第1傾斜面の第1角度θaと第2傾斜面の第2角度θbとが等しく、外周面の第1曲率半径Raと内周面の第2曲率半径Rbとが等しい。表2は、サンプルS1~S7における角度θa,θb及び曲率半径Ra,Rbを示している。 In each of the samples S2 to S7 in which the deformed portion is provided on both the outer peripheral side and the inner peripheral side, the first angle θa of the first inclined surface and the second angle θb of the second inclined surface are equal, and the outer peripheral surface The first radius of curvature Ra and the second radius of curvature Rb of the inner peripheral surface are equal. Table 2 shows the angles θa and θb and the radii of curvature Ra and Rb in the samples S1 to S7.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 サンプルS1~S7について疲労試験を実施した。各サンプルの疲労試験には、図11に示す疲労試験機50を用いた。疲労試験機50には、各サンプルが嵌め込まれる溝部が形成されたシャフト51と、シャフト51を挿入可能に構成されたハウジング52と、が含まれる。 Fatigue tests were performed on samples S1 to S7. The fatigue tester 50 shown in FIG. 11 was used for the fatigue test of each sample. The fatigue tester 50 includes a shaft 51 in which a groove into which each sample is fitted is formed, and a housing 52 in which the shaft 51 can be inserted.
 各サンプルにおける径方向の寸法D(図2参照)に対する径方向の圧縮変形量の割合である締め率(%)は、シャフト51の溝部の底面とハウジング52の内周面との距離Lを用いて、100×(D-L)/Dとして算出可能である。各サンプルの疲労試験ではいずれも、締め率が11%程度となるように調整した。 The tightening ratio (%), which is the ratio of the amount of compression deformation in the radial direction to the radial dimension D (see FIG. 2) in each sample, uses the distance L between the bottom surface of the groove portion of the shaft 51 and the inner peripheral surface of the housing 52. Therefore, it can be calculated as 100 × (DL) / D. In the fatigue test of each sample, the tightening rate was adjusted to about 11%.
 そして、溝部にサンプルが嵌め込まれたシャフト51をハウジング52に対して往復動させる疲労試験を行った。具体的に、各サンプルの疲労試験におけるハウジング52に対するシャフト51の往復動の条件としては、周波数15Hzで振幅0.5mmの微振動でサイクル数を420万回として実施した。 Then, a fatigue test was conducted in which the shaft 51 in which the sample was fitted in the groove was reciprocated with respect to the housing 52. Specifically, as a condition for the reciprocating motion of the shaft 51 with respect to the housing 52 in the fatigue test of each sample, the cycle number was 4.2 million times with a slight vibration having an amplitude of 0.5 mm at a frequency of 15 Hz.
 各サンプルにおいて、疲労試験後の径方向の寸法Dから疲労摩耗量及び締め率を算出した。各サンプルの疲労摩耗量は、径方向の寸法Dの疲労試験前後における変化量として算出される。なお、疲労試験後の寸法Dが距離Lよりも小さいサンプルの締め率はマイナスの値として算出される。表2に、各サンプルの疲労摩耗量及び締め率を示す。 For each sample, the fatigue wear amount and tightening rate were calculated from the radial dimension D after the fatigue test. The amount of fatigue wear of each sample is calculated as the amount of change in the radial dimension D before and after the fatigue test. The tightening rate of a sample whose dimension D after the fatigue test is smaller than the distance L is calculated as a negative value. Table 2 shows the fatigue wear amount and tightening rate of each sample.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例に係るサンプルS5~S7ではいずれも、疲労摩耗量が小さく、かつ試験後にもシール性が維持されていることが確認された。この一方で、比較例に係るサンプルS1~S4ではいずれも、疲労摩耗量が大きかった。特に、サンプルS1,S2では、試験後の締め率がマイナスとなり、シール性が完全に失われていることが確認された。 It was confirmed that in each of the samples S5 to S7 according to the examples, the amount of fatigue wear was small and the sealing property was maintained even after the test. On the other hand, in each of the samples S1 to S4 according to the comparative example, the amount of fatigue wear was large. In particular, in Samples S1 and S2, it was confirmed that the tightening rate after the test was negative and the sealing property was completely lost.
4.その他の実施形態
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
4. Other Embodiments Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made without departing from the gist of the present invention. Is.
 例えば、シールリング10では、第1変形部12における第1傾斜面122の第1角度θaと、第2変形部13における第2傾斜面132の第2角度θbと、が相互に異なっていてもよい。この場合にも、変形部12,13の傾斜面122,132の角度θa,θbがいずれも、30°以上40°以下であることが好ましい。 For example, in the seal ring 10, even if the first angle θa of the first inclined surface 122 in the first deformed portion 12 and the second angle θb of the second inclined surface 132 in the second deformed portion 13 are different from each other. Good. Also in this case, it is preferable that the angles θa and θb of the inclined surfaces 122 and 132 of the deformed portions 12 and 13 are all 30 ° or more and 40 ° or less.
 また、シールリング10では、変形部12,13の傾斜面122,132の角度θa,θbが、一定でなくてもよく、例えば、連続的に変化していてもよい。つまり、変形部12,13の傾斜面122,132の断面形状は、直線状でなくてもよく、例えば、凸状や凹状の曲線状であってもよい。 Further, in the seal ring 10, the angles θa and θb of the inclined surfaces 122 and 132 of the deformed portions 12 and 13 may not be constant, for example, may be continuously changed. That is, the cross-sectional shape of the inclined surfaces 122 and 132 of the deformed portions 12 and 13 does not have to be linear, and may be, for example, a convex or concave curved shape.
 更に、シールリング10では、第1変形部12における外周面121の曲率半径Raと、第2変形部13における内周面131の曲率半径Rbと、が相互に異なっていてもよい。また、外周面121及び内周面131の断面は、円弧状でなくてもよく、例えば、曲率半径Ra,Rbが連続的に変化する曲線状であってもよい。 Further, in the seal ring 10, the radius of curvature Ra of the outer peripheral surface 121 of the first deformed portion 12 and the radius of curvature Rb of the inner peripheral surface 131 of the second deformed portion 13 may be different from each other. Further, the cross sections of the outer peripheral surface 121 and the inner peripheral surface 131 do not have to be arcuate, and may be curved, for example, in which the radii of curvature Ra and Rb change continuously.
 加えて、シールリング10の形状は、厳密に平面Fについて対称でなくてもよい。例えば、シールリング10では、外周面121及び内周面131が一対の側面111の一方の側にずれていてもよい。この場合、第1傾斜面122の角度θaが相互に異なり、第2傾斜面132の角度θaが相互に異なっていてもよい。 In addition, the shape of the seal ring 10 does not have to be strictly symmetrical with respect to the plane F. For example, in the seal ring 10, the outer peripheral surface 121 and the inner peripheral surface 131 may be displaced to one side of the pair of side surfaces 111. In this case, the angles θa of the first inclined surface 122 may be different from each other, and the angles θa of the second inclined surface 132 may be different from each other.
 また、シールリング10は、オイルのシールのみならず、オイル以外の液体やガスのシールに用いる場合にも、上記と同様の効果を得ることができる。したがって、シールリング10は、油圧機器以外にも、例えば、水の圧力を利用した水圧機器や、空気の圧力を利用した空圧機器にも利用可能である。 Further, the seal ring 10 can obtain the same effect as described above when used not only for sealing oil but also for sealing liquids and gases other than oil. Therefore, the seal ring 10 can be used not only for hydraulic equipment but also for, for example, hydraulic equipment using water pressure and pneumatic equipment using air pressure.
10…シールリング
11…平坦部
111…側面
12…第1変形部
121…外周面
122…第1傾斜面
13…第2変形部
131…内周面
132…第2傾斜面
20…シャフト
21…溝部
30…ハウジング
10 ... Seal ring 11 ... Flat portion 111 ... Side surface 12 ... First deformed portion 121 ... Outer peripheral surface 122 ... First inclined surface 13 ... Second deformed portion 131 ... Inner peripheral surface 132 ... Second inclined surface 20 ... Shaft 21 ... Groove portion 30 ... Housing

Claims (5)

  1.  25℃における引張弾性率が90MPa以上の弾性体で形成され、
     径方向に沿って延びる一対の側面を有する平坦部と、
     前記一対の側面の前記径方向の外側の端部から前記外側に向けて相互に近接するように延びる一対の第1傾斜面と、前記一対の第1傾斜面の前記外側の端部を相互に接続し、前記外側に突出する外周面と、を有する第1変形部と、
     前記一対の側面の前記径方向の内側の端部から前記内側に向けて相互に近接するように延びる一対の第2傾斜面と、前記一対の第2傾斜面の前記内側の端部を相互に接続し、前記内側に突出する内周面と、を有する第2変形部と、
     を具備するシールリング。
    It is made of an elastic body having a tensile elastic modulus of 90 MPa or more at 25 ° C.
    A flat portion with a pair of side surfaces extending along the radial direction,
    A pair of first inclined surfaces extending from the radial outer ends of the pair of side surfaces toward the outside and the outer ends of the pair of first inclined surfaces are mutually connected. A first deformed portion having a connection and an outer peripheral surface projecting to the outside,
    A pair of second inclined surfaces extending from the inner end portions of the pair of side surfaces in the radial direction toward the inner side and the inner end portions of the pair of second inclined surfaces are mutually connected. A second deformed portion having an inner peripheral surface that is connected and projects inward.
    A seal ring equipped with.
  2.  請求項1に記載のシールリングであって、
     前記平坦部、前記第1変形部、及び前記第2変形部の前記径方向の合計寸法をDとし、前記平坦部の前記径方向の寸法をd11とし、前記第1変形部の前記径方向の寸法をd12とし、前記第2変形部の前記径方向の寸法をd13とすると、
     0.2×D≦d11≦0.56×D
     0.22×D≦d12≦0.4×D
     0.22×D≦d13≦0.4×D
     の関係を満足する
     シールリング。
    The seal ring according to claim 1.
    The total radial dimension of the flat portion, the first deformed portion, and the second deformed portion is D, the radial dimension of the flat portion is d11, and the radial dimension of the first deformed portion is Assuming that the dimension is d12 and the radial dimension of the second deformed portion is d13,
    0.2 × D ≦ d11 ≦ 0.56 × D
    0.22 × D ≦ d12 ≦ 0.4 × D
    0.22 × D ≦ d13 ≦ 0.4 × D
    Seal ring that satisfies the relationship.
  3.  請求項1又は2に記載のシールリングであって、
     前記一対の第1傾斜面と前記一対の側面との成す第1角度が30°以上40°以下であり、
     前記一対の第2傾斜面と前記一対の側面との成す第2角度が30°以上40°以下である
     シールリング。
    The seal ring according to claim 1 or 2.
    The first angle formed by the pair of first inclined surfaces and the pair of side surfaces is 30 ° or more and 40 ° or less.
    A seal ring in which the second angle formed by the pair of second inclined surfaces and the pair of side surfaces is 30 ° or more and 40 ° or less.
  4.  請求項1から3のいずれか1項に記載のシールリングであって、
     前記外周面の第1曲率半径が0.64mm以上1.37mm以下であり、
     前記内周面の第2曲率半径が0.64mm以上1.37mm以下である
     シールリング。
    The seal ring according to any one of claims 1 to 3.
    The first radius of curvature of the outer peripheral surface is 0.64 mm or more and 1.37 mm or less.
    A seal ring having a second radius of curvature of the inner peripheral surface of 0.64 mm or more and 1.37 mm or less.
  5.  請求項1から4のいずれか1項に記載のシールリングであって、
     前記弾性体の25℃におけるショアA硬度が80以上である
     シールリング。
    The seal ring according to any one of claims 1 to 4.
    A seal ring having a shore A hardness of 80 or more at 25 ° C. of the elastic body.
PCT/JP2020/013015 2019-04-01 2020-03-24 Sealing ring WO2020203468A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080023560.2A CN113614424A (en) 2019-04-01 2020-03-24 Sealing ring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019070113A JP7048536B2 (en) 2019-04-01 2019-04-01 Seal ring
JP2019-070113 2019-04-01

Publications (1)

Publication Number Publication Date
WO2020203468A1 true WO2020203468A1 (en) 2020-10-08

Family

ID=72667792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013015 WO2020203468A1 (en) 2019-04-01 2020-03-24 Sealing ring

Country Status (3)

Country Link
JP (1) JP7048536B2 (en)
CN (1) CN113614424A (en)
WO (1) WO2020203468A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552256U (en) * 1991-12-20 1993-07-13 三菱自動車工業株式会社 Intake manifold seal member
JPH11126648A (en) * 1997-10-21 1999-05-11 Yazaki Corp Packing holding structure
WO2004007937A1 (en) * 2002-07-12 2004-01-22 Uchiyama Manufacturing Corp. Gasket

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052112A (en) * 1976-05-14 1977-10-04 Disogrin Industries, Inc. Piston seal
KR200426468Y1 (en) * 2006-05-10 2006-09-18 동아공업 주식회사 Gasket for prevent collapse

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552256U (en) * 1991-12-20 1993-07-13 三菱自動車工業株式会社 Intake manifold seal member
JPH11126648A (en) * 1997-10-21 1999-05-11 Yazaki Corp Packing holding structure
WO2004007937A1 (en) * 2002-07-12 2004-01-22 Uchiyama Manufacturing Corp. Gasket

Also Published As

Publication number Publication date
JP7048536B2 (en) 2022-04-05
CN113614424A (en) 2021-11-05
JP2020169658A (en) 2020-10-15

Similar Documents

Publication Publication Date Title
JP5654607B2 (en) System, method and apparatus for a spring activated dynamic sealing assembly
US6565096B2 (en) Lip type seal
JP2011506866A (en) High pressure dynamic and static equipment seal assemblies
WO2011061834A1 (en) Power transmitting belt
WO2020203468A1 (en) Sealing ring
EP2719724A1 (en) Resin composition and seal member
JP6616754B2 (en) Pulley structure
WO2017195558A1 (en) Dust seal
WO2016047369A1 (en) Sealing structure
EP3220020A1 (en) Seal device
JP2010151217A (en) Torsional damper
JP2007255682A (en) Bearing seal and bearing
US6158327A (en) Extended wear pump diaphragm
JP4877489B2 (en) Rotation fluctuation absorbing damper
JP2016014475A (en) Seal ring
JP6817539B2 (en) Tortional damper
JP2016125625A (en) Dust cover
WO2009101831A1 (en) Boot for constant velocity universal joint
JP5642756B2 (en) Seal member
JPH09222169A (en) Hydraulic seal
KR102226803B1 (en) Oil seal
JP2012037008A (en) Oscillating part sealing body
EP3985287A1 (en) Sealing device
JPWO2018207316A1 (en) Seal structure
JP2021148157A (en) Sealing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20781968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20781968

Country of ref document: EP

Kind code of ref document: A1