WO2020203454A1 - Control device - Google Patents

Control device Download PDF

Info

Publication number
WO2020203454A1
WO2020203454A1 PCT/JP2020/012961 JP2020012961W WO2020203454A1 WO 2020203454 A1 WO2020203454 A1 WO 2020203454A1 JP 2020012961 W JP2020012961 W JP 2020012961W WO 2020203454 A1 WO2020203454 A1 WO 2020203454A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
power
storage device
soc
voltage
Prior art date
Application number
PCT/JP2020/012961
Other languages
French (fr)
Japanese (ja)
Inventor
大祐 倉知
大和 宇都宮
佐藤 嘉洋
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112020001791.5T priority Critical patent/DE112020001791T5/en
Publication of WO2020203454A1 publication Critical patent/WO2020203454A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/42Control modes by adaptive correction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to a control device for a power storage device.
  • Patent Document 1 a control device that acquires the voltage between terminals of a power storage device and sets the maximum power of the power storage device capable of inputting and outputting power from the power storage device based on the acquired voltage between terminals.
  • the maximum power is limited when the acquired voltage between terminals falls within a certain limit range. As a result, it is possible to prevent the power storage device from being overcharged or overdischarged due to the voltage excess of the power storage device, and to protect the power storage device.
  • the limit range is set to a certain range, for example, when the power storage device is in a high power storage state, even if the voltage between terminals does not belong to the limit range, power storage depends on the value of the current during charging / discharging. It is not possible to prevent the device from becoming overcharged. Further, for example, when the power storage device is in a low power storage state, even if the voltage between terminals does not belong to the limiting range, it cannot be suppressed that the power storage device is in an over-discharged state depending on the value of the current during charging / discharging.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a control device capable of protecting the power storage device regardless of the current during charging / discharging of the power storage device.
  • the first means for solving the above-mentioned problems is that when the voltage between terminals during charging / discharging of the power storage device belongs to a predetermined limiting range in the high power storage state or the low power storage state of the power storage device, the power storage device It is a control device that limits the maximum power that can be input and output from the power storage device, and is divided into a current acquisition unit that acquires the current during charging and discharging of the power storage device at a predetermined cycle and a current acquired by the current acquisition unit.
  • a range setting unit for variably setting the limit range based on the above is provided.
  • the voltage between terminals during charging / discharging fluctuates based on the current during charging / discharging of the power storage device.
  • the limit range is variably set based on the current during charging / discharging of the power storage device as well as the voltage between terminals during charging / discharging. Therefore, during charging / discharging of the power storage device, the voltage between terminals and the limiting range can be changed in conjunction with each other based on the current during charging / discharging. Thereby, it can be determined whether or not the voltage between terminals is included in the limiting range regardless of the current during charging / discharging, and the power storage device can be appropriately protected.
  • the limiting range includes the high-voltage side limiting range in the high storage state, and the range setting unit receives the current acquired by the current acquisition unit when the power storage device is charging.
  • the voltage between terminals during charging increases as the current during charging increases. According to the above configuration, the higher the current during charging, the higher the high-voltage side limit range is set in response to the fluctuation of the voltage between the terminals. As a result, it is possible to appropriately prevent the power storage device from being overcharged.
  • the third means is a control device that calculates an SOC indicating the power storage state of the power storage device, and determines whether the power storage device is in the high power storage state during charging of the power storage device based on the SOC.
  • the high power storage state determination unit and the high power storage state determination unit determine that the high power storage state is reached, the maximum power is set to a constant reference input power regardless of the SOC, and the power storage device
  • the range setting unit is provided with a high power storage control unit for charging, and the range setting unit limits the high pressure side based on the current acquired by the current acquisition unit when the maximum power is set to the reference input power. Set the range variably.
  • the maximum power is set to a constant value and charging is continued, and during this charging continuation, the power storage device is charged based on the voltage between terminals instead of the maximum power.
  • the low voltage side limit range is variably set based on the current during discharge. As a result, it is possible to appropriately prevent the power storage device from being overcharged while using up the power storage device.
  • the limiting range includes the low-voltage side limiting range in the low storage state, and the range setting unit receives the current acquired by the current acquisition unit when the power storage device is discharging. The larger the value, the lower the pressure side limit range is set.
  • the lower limit range is set to the low voltage side as the current during discharging increases in response to the fluctuation of the voltage between the terminals. As a result, it is possible to appropriately prevent the power storage device from becoming over-discharged.
  • the fifth means is a control device that calculates an SOC indicating the power storage state of the power storage device, and determines whether the power storage device is in the low power storage state during discharge of the power storage device based on the SOC.
  • the maximum power is set to a constant reference output power regardless of the SOC, and the power storage device
  • the range setting unit includes a low power storage control unit that discharges the electric power, and the range setting unit limits the low voltage side based on the current acquired by the current acquisition unit when the maximum power is set to the reference output power. Set the range variably.
  • the maximum power is set to a constant value and discharge is continued, and during this discharge continuation, the power storage device is discharged based on the voltage between terminals instead of the maximum power.
  • the low voltage side limit range is variably set based on the current during discharge. As a result, it is possible to appropriately prevent the power storage device from becoming over-discharged while using up the power storage device.
  • the sixth means includes a temperature acquisition unit that acquires the temperature of the power storage device, and the range setting unit limits the current based on the current acquired by the current acquisition unit and the temperature acquired by the temperature acquisition unit. Set the range variably.
  • the current during charging and discharging fluctuates according to the temperature of the power storage device.
  • the limit range is variably set based on the temperature of the power storage device, the power storage device can be appropriately protected according to the temperature of the power storage device.
  • the seventh means includes a deterioration calculation unit for calculating the deterioration degree of the power storage device, and the range setting unit variably sets the limitation range based on the deterioration degree calculated by the deterioration calculation unit.
  • FIG. 1 is a schematic view of the vehicle system.
  • FIG. 2 is a flowchart showing a processing procedure of the control processing of the first embodiment.
  • FIG. 3 is a flowchart showing the processing procedure of the ⁇ SOC calculation process.
  • FIG. 4 is a flowchart showing the processing procedure of the ⁇ SOC reset process.
  • FIG. 5 is a diagram showing the relationship between the input / output current and the amount of error.
  • FIG. 6 is a diagram showing the relationship between the input / output current and the reference error.
  • FIG. 7 is a diagram showing the relationship between the open circuit voltage and the correction coefficient.
  • FIG. 8 is a time chart showing the transition of ⁇ SOC during discharging of the high voltage battery.
  • FIG. 9 is a diagram showing the relationship between ⁇ SOC and the power margin.
  • FIG. 10 is a time chart showing changes in the input / output current and the closed circuit voltage CCV during the reset period.
  • FIG. 11 is a time chart showing the transition of the maximum power during discharging of the high voltage battery.
  • FIG. 12 is a diagram showing correspondence information between SOC and maximum power.
  • FIG. 13 is a diagram showing the relationship between the input / output current and the upper limit voltage and the lower limit voltage.
  • FIG. 14 is a flowchart showing a processing procedure of the control processing of the second embodiment.
  • the vehicle includes a high-voltage battery 11, an inverter 12 that converts DC power of the high-voltage battery 11 into AC power, and a motor 13 as a traveling drive source driven by AC power output from the inverter 12. It has.
  • electric power is supplied from the high-voltage battery 11 to the motor 13 via the inverter 12 in response to the accelerator operation by the driver, and the running power is given to the vehicle by the power running drive of the motor 13 accompanying the electric power supply.
  • the motor 13 is a rotary electric machine (motor generator) having a power generation function in addition to a power running function.
  • the generated power generated by the regenerative power generation is supplied to the high voltage battery 11 via the inverter 12.
  • the motor 13 functions as a generator, and the high-voltage battery 11 is charged by the generated power.
  • the high-voltage battery 11 corresponds to a "power storage device".
  • the electric power of the high voltage battery 11 is supplied to the high voltage auxiliary machine 14 in addition to the motor 13.
  • the high-voltage auxiliary machine 14 is, for example, an electric compressor of an air conditioner for air-conditioning the interior of a vehicle, and is driven by power supplied from the high-voltage battery 11.
  • the high voltage battery 11 is provided with a temperature sensor 15 that detects the battery temperature TM.
  • the high voltage battery 11 is, for example, a lithium ion storage battery, and the voltage between terminals thereof is, for example, about 200 to 300 V.
  • the low-voltage battery 17 and the low-voltage auxiliary machine 18 are connected to the high-voltage battery 11 via a DCDC converter 16 as a power converter.
  • the DCDC converter 16 performs power conversion in both directions between the high voltage system and the low voltage system.
  • the low voltage battery 17 is, for example, a lead storage battery rated at 12 V.
  • the low-voltage auxiliary machine 18 is, for example, an electric power station, a battery fan, or the like, and in addition to being able to be driven by the electric power from the high-voltage battery 11 supplied via the DCDC converter 16, the electric power is supplied from the low-voltage battery 17. Can be driven by.
  • the DCDC converter 16 steps down the high voltage of the high-voltage battery 11 to the voltage level of the low-voltage battery 17 or the power supply voltage level of the low-voltage auxiliary machine 18, so as to the low-voltage battery 17 and the low-voltage auxiliary machine 18. Supply power.
  • this system is equipped with an ECU 20 mainly composed of a microcomputer having a CPU and various memories.
  • the ECU 20 includes a voltage sensor 21 that detects the voltage between terminals of the high voltage battery 11, a current sensor 22 that detects the input / output current IB of the high voltage battery 11, and an accelerator operation amount AC of the driver.
  • the accelerator sensor 23 for detecting the vehicle speed MV, the vehicle speed sensor 24 for detecting the vehicle speed MV, and the like are connected.
  • an IG switch 25 which is a vehicle start switch, is connected to the ECU 20, and the on / off state of the IG switch 25 is monitored.
  • the ECU 20 controls charging / discharging of the high-voltage battery 11 based on the voltage between terminals of the high-voltage battery 11 and the input / output current IB and the like.
  • the ECU 20 corresponds to a “control device”.
  • the ECU 20 calculates an SOC (State Of Charge) indicating the state of charge of the high-voltage battery 11 during charging / discharging of the high-voltage battery 11, and the calculated SOC enables input / output from the high-voltage battery 11.
  • Maximum power WB is set. Further, when the voltage between the terminals of the high-voltage battery 11 falls within the predetermined limit ranges XH and XL (see FIG. 7) during charging / discharging of the high-voltage battery 11, the set maximum power WB is set. Restrict. By limiting the maximum power WB based on the voltage between the terminals of the high-voltage battery 11, it is considered that the high-voltage battery 11 can be prevented from being overcharged or overdischarged.
  • the voltage between the terminals of the high-voltage battery 11 during charging / discharging fluctuates according to the input / output current IB. Therefore, if the limiting ranges XH and XL are set to a certain range regardless of the input / output current IB, for example, when the high voltage battery 11 is in a high storage state, the voltage between terminals of the high voltage battery 11 is set within the limiting range. Even if it does not belong to XH, it cannot be suppressed that the high voltage battery 11 is in an overcharged state depending on the value of the input / output current IB.
  • the high-voltage battery 11 when the high-voltage battery 11 is in a low storage state, even if the voltage between the terminals of the high-voltage battery 11 does not belong to the limit range XL, the high-voltage battery 11 is over-discharged depending on the value of the input / output current IB. It cannot be suppressed from becoming a state.
  • the limit ranges XH and XL are variably set based on the input / output current IB in order to appropriately protect the high voltage battery 11 regardless of the input / output current IB.
  • the voltage between the terminals of the high-voltage battery 11 and the limiting ranges XH and XL are interlocked and fluctuated based on the input / output current IB. Thereby, it can be determined whether or not the voltage between the terminals of the high voltage battery 11 is included in the limiting ranges XH and XL regardless of the input / output current IB, and the power storage device can be appropriately protected.
  • FIG. 2 is a flowchart showing a processing procedure of a control process for controlling charging / discharging of the high-voltage battery 11, and this process is repeatedly executed by the ECU 20 at a predetermined cycle when the IG switch 25 is turned on. To.
  • step S10 it is determined whether the high voltage battery 11 is being charged or discharged. Immediately after the IG switch 25 is switched to the ON state, since the high-voltage battery 11 has not yet started charging / discharging, a negative determination is made in step S10.
  • the voltage sensor 21 is used to acquire the open circuit voltage OCV, which is the voltage between the terminals of the high voltage battery 11 while the high voltage battery 11 is being charged / discharged.
  • step S14 the SOC is calculated based on the open circuit voltage OCV, and the control process is terminated. Correspondence information in which the open circuit voltage OCV and SOC are associated in advance is stored in the ECU 20, and the SOC is calculated based on the open circuit voltage OCV acquired in step S12 using this correspondence information.
  • step S10 the voltage sensor 21 is used to acquire the closed circuit voltage CCV, which is the voltage between the terminals of the high voltage battery 11 during charging / discharging of the high voltage battery 11.
  • step S18 the input / output current IB is acquired by using the current sensor 22, and the battery temperature TM is acquired by using the temperature sensor 15.
  • step S18 corresponds to the "current acquisition unit and temperature acquisition unit".
  • the SOC is calculated based on the time integral value of the input / output current IB.
  • the SOC corresponding to the time integral value of the input / output current IB acquired in a predetermined cycle is compared with the initial value of SOC calculated based on the open circuit voltage OCV.
  • the SOC is calculated by adding the increase / decrease of. Assuming that the initial value of SOC calculated based on the open circuit voltage OCV is SOC (ini) and the full charge capacity of the high voltage battery 11 is CB, the SOC calculated based on the time integrated value of the input / output current IB is ( It is expressed as in equation 1).
  • FIG. 3 shows a flowchart of the ⁇ SOC calculation process.
  • the ⁇ SOC of the SOC is calculated so as to increase with the elapsed time TP (see FIG. 8) during charging / discharging of the high-voltage battery 11.
  • step S70 the initial value ⁇ SOC (ini) of ⁇ SOC is calculated.
  • the initial value ⁇ SOC (ini) is, for example, an error amount GS at the reset timing when ⁇ SOC is reset.
  • the initial value ⁇ SOC (ini) corresponds to the “initial SOC error”.
  • the SOC error amount GS is calculated according to the input / output current IB and the battery temperature TM acquired in step S18.
  • FIG. 5 is a diagram showing the relationship between the input / output current IB and the error amount GS. As shown in FIG. 5, the smaller the input / output current IB, the larger the error amount GS is calculated.
  • the error amount GS is expressed as shown in (Equation 2), where J is the negative proportional coefficient and SGZ is the error amount when the input / output current IB is zero.
  • the time increase rate ⁇ (see FIG. 8) in which ⁇ SOC increases with the elapsed time TP is determined based on the calculated error amount GS.
  • the time increase rate ⁇ is expressed as shown in (Equation 3), where TS is a predetermined cycle that is the acquisition cycle of the input / output current IB.
  • GS / TS ... (Equation 3)
  • the error amount GS from the initial stage is integrated.
  • the integrated value of the error amount GS calculated in step S72 and the initial error amount GSF calculated in step S70 are added to calculate ⁇ SOC, and the ⁇ SOC calculation process is completed.
  • ⁇ SOC is expressed as (Equation 4).
  • ⁇ SOC ⁇ SOC (ini) + ⁇ GS ⁇ dt ...
  • Equation 4 ⁇ GS ⁇ dt in (Equation 4) is a time integral value of the error amount GS, and can be expressed as ⁇ (J ⁇ IB + SGZ) ⁇ dt using (Equation 2).
  • IB ⁇ dt indicates the time integral value of the input / output current IB, that is, the fluctuation amount of SOC in a predetermined period TS.
  • step S24 When the ⁇ SOC calculation process is completed, the process returns to FIG. 2 and the ⁇ SOC reset process is performed in step S24.
  • FIG. 4 shows a flowchart of the ⁇ SOC reset process.
  • ⁇ SOC reset process when a predetermined reset condition is satisfied, ⁇ SOC is reset during charging / discharging of the high-voltage battery 11.
  • step S80 it is determined whether the ⁇ SOC calculated in step S72 is larger than the predetermined error threshold value ⁇ ST (see FIG. 8).
  • the error threshold value ⁇ ST is an accumulation error that hinders the use-up of the high-voltage battery 11, and is preset for each battery temperature TM. If a negative determination is made in step S80, the ⁇ SOC reset process is terminated without resetting the ⁇ SOC.
  • the use-up means increasing the storage capacity of the high-voltage battery 11 up to the upper limit threshold ST1 (see FIG. 12 (A)) during charging, and increasing the storage capacity of the high-voltage battery 11 up to the upper limit threshold ST2 (see FIG. 12 (B)) during discharging. It is to reduce the storage capacity of the high voltage battery 11 to.
  • step S80 determines whether ⁇ SOC is larger than the error threshold value ⁇ ST.
  • step S82 determines whether ⁇ SOC is larger than the predetermined reference error ⁇ SK (see FIG. 8).
  • the reference error ⁇ SK is a reset error that occurs when ⁇ SOC is reset during charging / discharging of the high voltage battery 11, and is preset to a value larger than zero.
  • the reference error ⁇ SK is set based on the input / output current IB and the battery temperature TM acquired in step S18.
  • FIG. 6 is a diagram showing the relationship between the input / output current IB and the reference error ⁇ SK.
  • the smaller the input / output current IB the larger the reference error ⁇ SK is set.
  • the reference error ⁇ SK also fluctuates depending on the battery temperature TM.
  • Correspondence information in which the input / output current IB, the battery temperature TM, and the reference error ⁇ SK are associated in advance is stored in the ECU 20, and the reference error ⁇ SK is set using this correspondence information.
  • step S82 If a negative determination is made in step S82, the ⁇ SOC increases due to the reset, so the ⁇ SOC reset process ends without resetting the ⁇ SOC.
  • step S84 it is determined in step S84 whether the vehicle is stopped.
  • the vehicle speed MV is substantially zero, that is, the vehicle speed MV is smaller than the predetermined speed near zero.
  • the input / output current IB is equal to or greater than the predetermined current threshold IT. Is also small. For example, when the input / output current IB acquired in step S18 is smaller than the predetermined current threshold IT for the determination period YA, it is determined that the vehicle is stopped (see FIG. 10). ).
  • the current threshold IT is a current at which the motor 13 can be driven only by supplying electric power from the high voltage battery 11.
  • the fluctuation threshold value ⁇ VT is the minimum fluctuation amount of the closed circuit voltage CCV generated by driving the motor 13.
  • step S84 If a negative determination is made in step S84, the ⁇ SOC reset process ends without resetting the ⁇ SOC.
  • step S84 determines whether ⁇ SOC has been reset during the stopped operation. If an affirmative determination is made in step S86, it is determined in step S88 whether the determination period YA has elapsed since the previous ⁇ SOC was reset. If a negative determination is made in step S88, it is determined in step S90 that the vehicle is restarting.
  • the resumption of running of the vehicle means that the vehicle speed MV becomes larger than the predetermined speed near zero after it is determined that the running of the vehicle is stopped.
  • the input / output current IB is higher than the current threshold IT. Is also to grow. For example, when the accelerator operation amount AC by the driver becomes larger than the predetermined first accelerator threshold value AT1 (see FIG. 10), it is determined that the driving of the vehicle is restarted.
  • the first accelerator threshold value AT1 and the second accelerator threshold value AT2 are defined in determining the restart of traveling of the vehicle based on the accelerator operation amount AC, of which the second accelerator threshold value AT2 is the high voltage battery 11. It is the amount of accelerator operation that produces the minimum electric power that the vehicle can travel by supplying electric power from.
  • the first accelerator threshold AT1 is set to an accelerator operation amount smaller than the second accelerator threshold AT2, and by using the first accelerator threshold AT1, it is determined that the vehicle is restarted before the vehicle actually resumes running. it can.
  • step S90 If a negative determination is made in step S90, the ⁇ SOC is not so large, so the ⁇ SOC reset process is terminated without resetting the ⁇ SOC.
  • step S86 determines whether a negative determination is made in step S86, an affirmative determination is made in step S88, or an affirmative determination is made in step S90.
  • ⁇ SOC is reset based on the closed circuit voltage CCV acquired in step S16.
  • step S92 the SOC is calculated based on the closed circuit voltage CCV acquired in step S16, and the SOC is updated.
  • step S94 ⁇ SOC is reset to the reference error ⁇ SK. That is, ⁇ SOC is reset by updating the SOC in step S92. Therefore, after resetting ⁇ SOC, ⁇ SOC is calculated so as to increase from the reference error ⁇ SK with the elapsed time TP.
  • step S96 the elapsed time TP is reset to zero, and the ⁇ SOC reset process is completed.
  • step S26 it is determined whether the high voltage battery 11 is being charged.
  • the current sensor 22 detects the input / output current IB flowing toward the high-voltage battery 11 as a positive value and the input / output current IB flowing out of the high-voltage battery 11 as a negative value, and the input / input acquired in step S18. Whether the high-voltage battery 11 is being charged can be determined based on whether the output current IB is larger than zero.
  • step S28 the SOC calculated in step S20 or step S92 and the ⁇ SOC calculated in step S72 are added and calculated as the SOC.
  • the SOC calculated in step S28 is the largest SOC in the SOC error range set based on ⁇ SOC, that is, the SOC error range having twice the width of ⁇ SOC centered on the SOC.
  • step S30 it is determined whether the SOC calculated in step S28 is smaller than the upper limit threshold value ST1. In this embodiment, the process of step S30 corresponds to the "high storage state determination unit".
  • step S32 the maximum power WB is set based on the SOC calculated in step S28. That is, the maximum power WB is set based on the added value of the SOC calculated in step S20 or S92 and the ⁇ SOC calculated in step S72.
  • Correspondence information (see FIG. 12) in which the SOC and the maximum power WB are associated in advance is stored in the ECU 20, and the maximum power WB is calculated based on the SOC calculated in step S28 using this correspondence information.
  • Correspondence information is set for the SOC in the range from the upper limit threshold value ST1 to the lower limit threshold value ST2, and is specified for each battery temperature TM.
  • step S34 the charge / discharge of the high voltage battery 11 is controlled by using the maximum power WB set in step S32, and the control process is terminated.
  • step S30 determines whether the SOC reaches the upper limit threshold value ST1 or not.
  • the maximum power WB is set to the reference input power WK1 (see FIG. 12A) in step S36.
  • step S38 charging of the high voltage battery 11 is continued using the reference input power WK1 set in step S36.
  • the processes of steps S36 and S38 correspond to the "high power storage control unit".
  • the charge control in step S38 is performed in a high storage state in which the SOC is larger than the upper limit threshold value ST1.
  • the charge stop is controlled by using the closed circuit voltage CCV.
  • the high voltage side limiting range XH (see FIG. 7A) for stopping the charging of the high voltage battery 11 is predetermined.
  • the closed circuit voltage CCV belongs to the high voltage side limiting range XH, that is, when the closed circuit voltage CCV reaches the upper limit voltage VT1 which is the lower limit of the high voltage side limiting range XH, the high voltage battery 11 is overcharged. In order to suppress this, charging of the high voltage battery 11 is stopped.
  • the closed circuit voltage CCV fluctuates depending on the input / output current IB, if the high voltage side limiting range XH is constant regardless of the input / output current IB, the high voltage battery 11 becomes overcharged depending on the input / output current IB. I can't control that.
  • the closed circuit voltage CCV is expressed as shown in (Equation 5), where RB is the internal resistance of the high voltage battery 11.
  • step S40 the high voltage side limiting range XH is variably set based on the input / output current IB acquired in step S18. Specifically, the closed circuit voltage CCV and the high-voltage side limiting range XH are set to fluctuate in conjunction with each other based on the input / output current IB. As a result, it is possible to prevent the high voltage battery 11 from being overcharged regardless of the input / output current IB and the battery temperature TM.
  • step S42 it is determined whether the closed circuit voltage CCV is larger than the upper limit voltage VT1. If a negative determination is made in step S42, the control process ends. On the other hand, if an affirmative determination is made in step S42, the reference input power WK1 set in step S36 is limited in step S44, and the control process ends.
  • step S44 for example, as shown in FIG. 7A, a correction coefficient that becomes smaller as the closed circuit voltage CCV becomes larger than the upper limit voltage VT1 is set in advance, and this correction coefficient is integrated into the reference input power WK1.
  • the reference input power WK1 is limited. Therefore, the reference input power WK1 gradually decreases as the closed circuit voltage CCV rises, and charging is stopped when the reference input power WK1 becomes zero.
  • step S46 the SOC calculated in step S20 or S92 minus the ⁇ SOC calculated in step S72 is calculated as the SOC.
  • the SOC calculated in step S46 is the smallest SOC in the SOC error range set based on ⁇ SOC.
  • step S48 it is determined whether the SOC calculated in step S46 is larger than the lower limit threshold value ST2.
  • the process of step S30 corresponds to the "low storage state determination unit".
  • step S48 If an affirmative judgment is made in step S48, that is, if the SOC has not reached the lower limit threshold value ST2, the process proceeds to step S32.
  • step S32 the maximum power WB is set based on the SOC calculated in step S46.
  • step S48 if a negative determination is made in step S48, that is, when the SOC reaches the lower limit threshold value ST2, the maximum power WB is set to a constant reference output power WK2 (see FIG. 12B) in step S50.
  • step S52 the high voltage battery 11 is continuously discharged using the reference output power WK2 set in step S50.
  • the processes of steps S50 and S52 correspond to the "low storage control unit".
  • the discharge control in step S50 is performed in a low storage state where the SOC is smaller than the lower limit threshold value ST2.
  • the discharge stop is controlled by using the closed circuit voltage CCV.
  • the low voltage side limit range XL (see FIG. 7B) for stopping the discharge of the high voltage battery 11 is predetermined.
  • the closed circuit voltage CCV belongs to the low voltage side limit range XL, that is, when the closed circuit voltage CCV reaches the lower limit voltage VT2 which is the upper limit of the low voltage side limit range XL, the high voltage battery 11 is in an overdischarged state. The discharge of the high voltage battery 11 is stopped in order to suppress this.
  • step S54 the low voltage side limit range XL is variably set based on the input / output current IB acquired in step S18. Specifically, the closed circuit voltage CCV and the low voltage side limiting range XL are set to fluctuate in conjunction with each other based on the input / output current IB. As a result, it is possible to prevent the high voltage battery 11 from being over-discharged regardless of the input / output current IB and the battery temperature TM.
  • the processes of steps S40 and S54 correspond to the "range setting unit".
  • step S56 it is determined whether the closed circuit voltage CCV is smaller than the lower limit voltage VT2. If a negative determination is made in step S56, the control process ends. On the other hand, if an affirmative determination is made in step S56, the reference output power WK2 set in step S50 is limited in step S58, and the control process ends.
  • step S58 for example, as shown in FIG. 7B, a correction coefficient that becomes smaller as the closed circuit voltage CCV becomes smaller than the lower limit voltage VT2 is set in advance, and this correction coefficient is integrated into the reference input power WK1. Limit the reference output power WK2. Therefore, the reference output power WK2 gradually decreases as the closed circuit voltage CCV decreases, and the discharge is stopped when the reference output power WK2 becomes zero.
  • FIG. 8 shows an example of ⁇ SOC calculation processing.
  • FIG. 8 shows the transition of ⁇ SOC during discharging of the high voltage battery 11.
  • (A) shows the transition of SOC
  • (B) shows the transition of ⁇ SOC
  • (C) shows the transition of the reset flag FR.
  • the reset flag FR is a flag indicating the determination result in step S80 of the ⁇ SOC calculation process, and is turned on when a positive determination is made in step S80 and turned off when a negative determination is made in step S80.
  • the IG switch 25 is switched to the ON state at time t1, the motor 13 is driven by the power supply from the high voltage battery 11, and the vehicle starts running.
  • SOC is calculated based on the open circuit voltage OCV, and ⁇ SOC is reset to zero.
  • the SOC decreases due to the power supply from the high voltage battery 11 to the motor 13. While the high voltage battery 11 is being discharged, the SOC is calculated based on the time integral value of the input / output current IB.
  • the detection error GI of the current sensor 22 that detects the input / output current IB is integrated, so that the integration of the detection error GI causes ⁇ SOC.
  • ⁇ SOC is calculated so as to increase with the elapsed time TP from the time t1. Specifically, it is calculated so as to increase by the time increase rate ⁇ with respect to the elapsed time TP from the time t1.
  • This time increase rate ⁇ is a positive value and fluctuates depending on the input / output current IB and the battery temperature TM (see time t7 and time t8). Since ⁇ SOC increases with the elapsed time TP, ⁇ SOC at time t2 is smaller than ⁇ SOC at time t3, which is later than time t2.
  • FIG. 9 is a diagram showing the relationship between ⁇ SOC and the power margin ⁇ WB of the maximum power WB.
  • the power margin ⁇ WB is a setting error of the maximum power WB, and is generated by setting the maximum power WB based on the SOC including ⁇ SOC.
  • the power margin ⁇ WB increases as ⁇ SOC increases, and when the power margin ⁇ WB increases, the maximum power WB cannot be set appropriately, and it is high depending on the set maximum power WB. It is not possible to use up the storage capacity of the voltage battery 11 for ⁇ SOC, and it is not possible to prevent the high voltage battery 11 from being over-discharged.
  • ⁇ SOC increases with the elapsed time TP, there is a timing when ⁇ SOC is small, for example, at time t2.
  • the power margin ⁇ WB is set small. Therefore, by using the timing at which the ⁇ SOC is small, it is possible to achieve both the use-up of the high-voltage battery 11 and the suppression of the over-discharged state.
  • the ⁇ SOC When the ⁇ SOC is reset while the high-voltage battery 11 is discharging, the ⁇ SOC is reset to the reference error ⁇ SK.
  • the reference error ⁇ SK is set based on the input / output current IB and the battery temperature TM. Therefore, depending on the input / output current IB and the battery temperature TM, the reference error ⁇ SK can be set small, which is advantageous in using up the high voltage battery 11.
  • a reference error ⁇ SK is set at time t5 based on the input / output current IB at this time t5, and ⁇ SOC is reset to this reference error ⁇ SK.
  • the reset flag FR is switched off at time t5, and the elapsed time TP is reset to zero. Then, when the vehicle resumes running at time t6, the time counting of the elapsed time TP is restarted. Therefore, it can be said that the elapsed time TP indicates the elapsed time from the reset timing at which ⁇ SOC was reset immediately before.
  • FIG. 10 shows an example of the ⁇ SOC reset process.
  • FIG. 10 shows the transition of the input / output current IB and the closed circuit voltage CCV in the reset period YR, and specifically shows the transition of these values in the reset period YR from the time t5 to the time t6 in FIG.
  • (A) shows the transition of the vehicle speed MV
  • (B) shows the transition of the accelerator operation amount AC
  • (C) shows the transition of the input / output current IB
  • (D) shows the transition of the closed circuit.
  • the transition of the voltage CCV is shown
  • (E) shows the transition of the fluctuation amount ⁇ V of the closed circuit voltage CCV.
  • the fluctuation amount ⁇ V of the input / output current IB and the closed circuit voltage CCV due to the increase of the closed circuit voltage CCV decreases with the passage of time from the time t5, and the input / output current IB decreases below the current threshold IT at the time t21.
  • the fluctuation amount ⁇ V is lower than the fluctuation threshold ⁇ VT at time t22, which is later than time t21.
  • the input / output current IB continues to be lower than the current threshold IT and the fluctuation amount ⁇ V is lower than the fluctuation threshold ⁇ VT from the later time t22 to the determination period YA. If the low state continues, it is determined that the vehicle is stopped at the time t23 when the determination period YA elapses from the time t22.
  • ⁇ SOC is first reset at this time t23. Specifically, the SOC is calculated and updated based on the closed circuit voltage CCV that has risen until it approaches the open circuit voltage OCV, and the ⁇ SOC is reset to the reference error ⁇ SK accordingly. By resetting ⁇ SOC based on the closed circuit voltage CCV while the vehicle is stopped, the ⁇ SOC can be reset even during charging / discharging of the high-voltage battery 11.
  • the ⁇ SOC is reset for each determination period YA. For example, the ⁇ SOC is reset at the time t24 when the determination period YA elapses from the time t23.
  • the driver's accelerator operation is started at time t25 and the accelerator operation amount AC exceeds the first accelerator threshold value AT1 at time t26 thereafter, it is determined that the vehicle is restarted.
  • the accelerator operation amount AC exceeds the second accelerator threshold value AT2 at the subsequent time t6, the running of the vehicle is restarted by the power supply from the high voltage battery 11.
  • the vehicle speed MV increases, the input / output current IB increases, and the closed circuit voltage CCV decreases apart from the open circuit voltage OCV.
  • FIG. 11 shows an example of control processing.
  • FIG. 11 shows the transition of the maximum power WB during discharging of the high voltage battery 11.
  • (A) shows the transition of SOC
  • (B) shows the transition of the maximum power WB
  • (C) shows the transition of the closed circuit voltage CCV.
  • ⁇ SOC does not become larger than the error threshold value ⁇ ST, it is assumed that the ⁇ SOC reset process is not performed.
  • the SOC decreases due to the power supply from the high-voltage battery 11 to the motor 13. Along with this decrease in SOC, the closed circuit voltage CCV decreases and the set value of the maximum power WB fluctuates.
  • the maximum power WB is set based on the SOC. As a result, deterioration of the high-voltage battery 11 due to excess power of the high-voltage battery 11 can be suppressed, and the high-voltage battery 11 can be protected.
  • the maximum power WB is set by using the correspondence information between the SOC and the maximum power WB.
  • This correspondence information is preset in consideration of the power excess of the high voltage battery 11.
  • FIG. 12 is a diagram showing correspondence information between SOC and maximum power WB.
  • (A) shows correspondence information at the time of charging
  • (B) shows correspondence information at the time of discharging.
  • the correspondence information at the time of discharge is set so that the larger the SOC, the larger the maximum power WB, and the higher the battery temperature TM, the larger the maximum power WB. Set.
  • the SOC including ⁇ SOC specifically, the SOC obtained by subtracting ⁇ SOC from the SOC in order to suppress the deterioration of the high-voltage battery 11 due to the power excess of the high-voltage battery 11 (SOC- ⁇ SOC). Is calculated as SOC, and the maximum power WB is set based on this SOC.
  • SOC- ⁇ SOC the SOC obtained by subtracting ⁇ SOC from SOC
  • SOL the value obtained by subtracting ⁇ SOC from SOC
  • the SOL reaches the lower limit threshold value ST2 before the SOC due to the power supply from the high voltage battery 11 to the motor 13.
  • the SOL reaches the lower limit threshold value ST2 it is conceivable to stop the discharge of the high voltage battery 11 in order to prevent the high voltage battery 11 from being over-discharged.
  • the SOC is a value obtained by adding ⁇ SOC to the lower limit threshold value ST2.
  • the correspondence information corresponding to the SOL is shifted by ⁇ SOC to the side where the SOL increases with respect to the correspondence information corresponding to the SOC shown by the solid line. are doing. Therefore, if the discharge of the high-voltage battery 11 is stopped when the SOL reaches the lower limit threshold value ST2, the storage capacity of the high-voltage battery 11 for ⁇ SOC cannot be used up.
  • the maximum power WB is set to the reference output power WK2, and the SOC is high until the lower limit threshold value ST2 is reached.
  • the reference output power WK2 is the maximum power WB associated with the lower limit threshold value ST2 in the corresponding information, and is a constant value regardless of the SOC.
  • the reference output power WK2 is set to a power that allows the vehicle to travel by the motor 13.
  • the maximum power WB is set to the reference output power WK2, and the discharge of the high voltage battery 11 is continued. Due to this discharge, the SOC and the closed circuit voltage CCV decrease. This discharge is performed until the closed circuit voltage CCV reaches the lower limit voltage VT2, and when the closed circuit voltage CCV reaches the lower limit voltage VT2 at time t33, that is, when the closed circuit voltage CCV belongs to the low voltage side limit range XL, FIG.
  • the reference output power WK2 is limited by the correction coefficient shown in (B). As a result, at the time t34 when the SOC reaches the lower limit threshold value ST2, the maximum power WB becomes zero and the closed circuit voltage CCV becomes the lower limit voltage VL, so that the discharge is stopped.
  • the lower limit voltage VT2 is set according to the input / output current IB and the battery temperature TM.
  • FIG. 13 is a diagram showing the relationship between the input / output current IB and the upper limit voltage VT1 and the lower limit voltage VT2.
  • (A) shows the relationship between the input / output current IB at the time of charging and the upper limit voltage VT1
  • (B) shows the relationship between the input / output current IB at the time of discharging and the lower limit voltage VT2.
  • the lower limit voltage VT2 is set to the low voltage side as the input / output current IB is larger during discharge, and the lower limit voltage VT2 is set to the lower voltage side as the battery temperature TM is higher. Is set.
  • FIG. 13B also shows the relationship between the input / output current IB at the time of discharge and the closed circuit voltage CCV.
  • the closed circuit voltage CCV fluctuates to the low pressure side as the input / output current IB increases.
  • the lower limit voltage VT2 is changed in conjunction with the input / output current IB characteristic of the closed circuit voltage CCV. As a result, it is possible to determine whether the closed circuit voltage CCV has reached the lower limit voltage VT2 under a certain condition that does not depend on the input / output current IB, and it is possible to suppress the high voltage battery 11 from being over-discharged.
  • the transition of the maximum power WB during the discharge of the high voltage battery 11 is shown, but the same applies to the transition of the maximum power WB during the charging of the high voltage battery 11.
  • the SOC increases due to the power supply from the motor 13 to the high-voltage battery 11 by the regenerative power generation of the motor 13.
  • the closed circuit voltage CCV increases and the set value of the maximum power WB fluctuates.
  • the maximum power WB is set using the correspondence information between the SOC and the maximum power WB, and as shown by the solid line in FIG. 12 (A), in the correspondence information at the time of charging, the larger the SOC, the maximum.
  • the power WB is set to be large, and the higher the battery temperature TM is, the larger the maximum power WB is set.
  • SOC including ⁇ SOC specifically, SOC obtained by adding ⁇ SOC to SOC (SOC + ⁇ SOC) is used as SOC.
  • the maximum power WB is set based on this SOC.
  • SOH the sum of SOC and ⁇ SOC is referred to as SOH (see FIG. 11).
  • the SOH reaches the upper limit threshold value ST1 before the SOC by supplying power from the motor 13 to the high voltage battery 11.
  • the SOH reaches the upper limit threshold value ST1 it is conceivable to stop charging the high-voltage battery 11 in order to prevent the high-voltage battery 11 from being overcharged.
  • the SOC is a value obtained by subtracting ⁇ SOC from the upper limit threshold value ST1.
  • the correspondence information corresponding to the SOH shifts by ⁇ SOC to the side where the SOL decreases with respect to the correspondence information corresponding to the SOC shown by the solid line. are doing. Therefore, if the charging of the high-voltage battery 11 is stopped when the SOH reaches the upper limit threshold value ST1, the storage capacity of the high-voltage battery 11 for ⁇ SOC cannot be used up.
  • the maximum power WB is set to the reference input power WK1 and the SOC is high until the upper limit threshold value ST1 is reached.
  • the reference input power WK1 is the maximum power WB associated with the upper limit threshold value ST1 in the corresponding information, and is a constant value regardless of the SOC.
  • the maximum power WB is set to the reference input power WK1 and the charging of the high voltage battery 11 is continued.
  • This charging increases the SOC and the closed circuit voltage CCV.
  • This charging is performed until the closed circuit voltage CCV reaches the upper limit voltage VT1, and when the closed circuit voltage CCV reaches the upper limit voltage VT1, that is, when the closed circuit voltage CCV belongs to the high voltage side limiting range XH, FIG. 7 (A)
  • the reference input power WK1 is limited by the correction coefficient shown in. As a result, charging is stopped at the time when the SOC reaches the upper limit threshold value ST1.
  • the upper limit voltage VT1 is set according to the input / output current IB and the battery temperature TM. As shown in FIG. 13 (A), during charging, the larger the input / output current IB, the higher the upper voltage VT1 is set, and the higher the battery temperature TM, the higher the upper voltage VT1 becomes. Is set.
  • FIG. 13A also shows the relationship between the input / output current IB and the closed circuit voltage CCV during charging. At the time of charging, the closed circuit voltage CCV fluctuates toward the high voltage side as the input / output current IB increases.
  • the upper limit voltage VT1 is changed in conjunction with the input / output current IB characteristic of the closed circuit voltage CCV. As a result, it is possible to determine whether the closed circuit voltage CCV has reached the upper limit voltage VT1 under certain conditions regardless of the input / output current IB, and it is possible to prevent the high voltage battery 11 from being overcharged.
  • the cycle voltage CCV fluctuates based on the input / output current IB.
  • the limiting ranges XH and XL are variably set based on the input / output current IB as in the closed circuit voltage CCV. Therefore, during charging / discharging of the high-voltage battery 11, the closed circuit voltage CCV and the limiting ranges XH and XL can be interlocked and fluctuated based on the input / output current IB. As a result, it is possible to determine whether or not the closed circuit voltage CCV is included in the limiting ranges XH and XL regardless of the input / output current IB, and the high voltage battery 11 can be appropriately protected.
  • the closed circuit voltage CCV during charging increases as the input / output current IB increases.
  • the maximum power WB is set to a constant value and charging is continued, and during this charging continuation, the closed circuit voltage CCV is used instead of the maximum power WB. Based on this, the charging of the high voltage battery 11 is controlled.
  • the high voltage side limiting range XH is variably set based on the input / output current IB. As a result, it is possible to appropriately suppress the high-voltage battery 11 from being overcharged while trying to use up the high-voltage battery 11.
  • the closed circuit voltage CCV during discharge decreases as the input / output current IB increases.
  • the lower limit range XL on the low voltage side is set to the low voltage side as the input / output current IB increases in response to the fluctuation of the closed circuit voltage CCV. As a result, it is possible to appropriately prevent the high-voltage battery 11 from being over-discharged.
  • the maximum power WB is set to a constant value and discharge is continued, and during this discharge continuation, the closed circuit voltage CCV is used instead of the maximum power WB. Based on this, the discharge of the high voltage battery 11 is controlled.
  • the low voltage side limiting range XL is variably set based on the input / output current IB. As a result, it is possible to appropriately suppress the high-voltage battery 11 from being over-discharged while trying to use up the high-voltage battery 11.
  • the input / output current IB fluctuates according to the battery temperature TM.
  • the limit ranges XH and XL are variably set based on the battery temperature TM, the high voltage battery 11 can be appropriately protected in consideration of the fluctuation of the input / output current IB due to the battery temperature TM.
  • the second embodiment will be described with reference to FIG. 14, focusing on the differences from the first embodiment.
  • the deterioration degree DE of the high voltage battery 11 is calculated in the control process, and the high voltage side limit range XH and the low voltage side limit range XL are variably set based on the calculated deterioration degree DE.
  • the degree of deterioration DE indicates the ratio of the current full charge capacity CB to the full charge capacity CB in the initial state of the high voltage battery 11.
  • FIG. 14 shows a flowchart of the control process of this embodiment. Note that, in FIG. 14, the same processing as that shown in FIG. 2 above is given the same step number for convenience, and the description thereof will be omitted.
  • the input / output current IB is continued in step S39.
  • the degree of deterioration DE is calculated based on the time integral value of. Specifically, the time integral value of the input / output current IB acquired in a predetermined cycle is calculated, and the deterioration degree DE is calculated so that the larger the time integral value is, the larger the time integral value is.
  • the high voltage side limit range XH is variably set based on the deterioration degree DE calculated in step S39.
  • the upper limit voltage VT1 is set to be on the low voltage side as the deterioration degree DE is larger.
  • step S52 when the discharge of the high voltage battery 11 is continued using the reference output power WK2 set in step S50, the deterioration degree DE is calculated based on the time integral value of the input / output current IB in step S53. ..
  • the processes of steps S39 and S53 correspond to the “deterioration calculation unit”.
  • the low voltage side limit range XL is variably set based on the deterioration degree DE calculated in step S53.
  • the lower limit voltage VT2 is set to be on the high voltage side as the deterioration degree DE is larger.
  • the high voltage side limit range XH and the low voltage side limit range XL are variably set based on the deterioration degree DE of the high voltage battery 11.
  • the maximum value of the storage capacity of the high-voltage battery 11 fluctuates due to deterioration, and the high-voltage side limit range XH and the low-voltage side limit range XL fluctuate accordingly.
  • Deterioration of the high-voltage battery 11 is considered by calculating the deterioration degree DE during charging / discharging of the high-voltage battery 11 and variably setting the high-voltage side limit range XH and the low-voltage side limit range XL based on the deterioration degree DE.
  • the high voltage battery 11 can be appropriately protected.
  • the high-voltage battery 11 is not limited to the lithium ion storage battery lithium, and may be another secondary battery that can be charged and discharged.
  • the high voltage battery 11 may be charged / discharged by setting the maximum current that can be input / output from the high voltage battery 11 based on the SOC.
  • the SOC may be calculated based on a battery model composed of one DC resistor and an RC equivalent circuit. The same applies to the calculation of the degree of deterioration DE.
  • the charging of the high voltage battery 11 is stopped when the closed circuit voltage CCV reaches the upper limit voltage VT1 in the high storage state, but the present invention is not limited to this.
  • the maximum power WB of the high-voltage battery 11 may be limited to prevent the high-voltage battery 11 from being overcharged.
  • the discharge of the high voltage battery 11 is stopped, but the present invention is not limited to this.
  • the maximum power WB of the high-voltage battery 11 may be limited to prevent the high-voltage battery 11 from being over-discharged.
  • the ECU 20 acquires the battery temperature TM using the temperature sensor 15, but the present invention is not limited to this.
  • the ECU 20 may acquire the battery temperature TM by estimating the battery temperature TM based on the accelerator operation amount AC of the driver and the vehicle speed MV.
  • the limit ranges XH and XL when the limit ranges XH and XL are variably set based on the input / output current IB, the closed circuit voltage CCV belongs to the limit ranges XH and XL due to a temporary fluctuation of the input / output current IB due to noise or the like. May become.
  • the limit ranges XH and XL may be variably set based on a representative value such as an average value of the input / output current IB in a predetermined period so that the maximum power WB is not erroneously limited.
  • the input / output current IB fluctuates not due to noise or the like but also due to acceleration or deceleration, for example. Due to this fluctuation, the closed circuit voltage CCV may switch from a state belonging to the limiting ranges XH and XL to a state not belonging to the limiting ranges XH and XL. In this case, there is a high possibility that the input / output current IB will change to a state belonging to the limiting ranges XH and XL again. Therefore, if the input / output current IB fluctuates due to acceleration or deceleration, the maximum power WB is limited. May continue.
  • the correction coefficient may be maintained at the correction coefficient before switching to the state not belonging to the limiting ranges XH and XL, or is relatively high in consideration of the state not belonging to the limiting ranges XH and XL. It may be a fixed value such as "0.9" which is a correction coefficient.
  • the controls and techniques described in this disclosure are provided by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. It may be realized.
  • the control device and method thereof described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits.
  • the control device and method thereof described in the present disclosure may be a combination of a processor and memory programmed to perform one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured.
  • the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.

Abstract

This control device (20), which limits the maximum power (WB) at which power can be inputted and outputted from a power storage device when an inter-terminal voltage (CCV) during charging and discharging of a power storage device (11) belongs to a prescribed limit range (XH, XL) in a high power storage state or a low power storage state of the power storage device, comprises: a current acquisition unit (S18) that acquires a current (IB) during charging and discharging of the power storage device at prescribed periods; and range setting units (S40, 54) that variably set the limit range on the basis of the current acquired by the current acquisition unit.

Description

制御装置Control device 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年4月3日に出願された日本出願番号2019-071553号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2019-071553 filed on April 3, 2019, and the contents of the description are incorporated herein by reference.
 本開示は、蓄電装置の制御装置に関する。 The present disclosure relates to a control device for a power storage device.
 従来から、蓄電装置の端子間電圧を取得し、取得された端子間電圧に基づいて、蓄電装置からの電力の入出力が可能な蓄電装置の最大電力を設定する制御装置が知られている(例えば、特許文献1)。この制御装置では、取得された端子間電圧が一定の制限範囲に属するようになった場合に、最大電力を制限する。これにより、蓄電装置の電圧超過により蓄電装置が過充電状態または過放電状態となることを抑制し、蓄電装置を保護できるという。 Conventionally, there has been known a control device that acquires the voltage between terminals of a power storage device and sets the maximum power of the power storage device capable of inputting and outputting power from the power storage device based on the acquired voltage between terminals ( For example, Patent Document 1). In this control device, the maximum power is limited when the acquired voltage between terminals falls within a certain limit range. As a result, it is possible to prevent the power storage device from being overcharged or overdischarged due to the voltage excess of the power storage device, and to protect the power storage device.
特開2000-30748号公報Japanese Unexamined Patent Publication No. 2000-30748
 しかし、充放電中に取得される端子間電圧は、蓄電装置の充放電中の電流に応じて変動する。そのため、制限範囲が一定の範囲に設定されていると、例えば蓄電装置が高蓄電状態にある場合に、端子間電圧が制限範囲に属しない場合でも、充放電中の電流の値によっては、蓄電装置が過充電状態となることを抑制できない。また、例えば蓄電装置が低蓄電状態にある場合に、端子間電圧が制限範囲に属しない場合でも、充放電中の電流の値によっては、蓄電装置が過放電状態となることを抑制できない。 However, the voltage between terminals acquired during charging / discharging fluctuates according to the current during charging / discharging of the power storage device. Therefore, if the limit range is set to a certain range, for example, when the power storage device is in a high power storage state, even if the voltage between terminals does not belong to the limit range, power storage depends on the value of the current during charging / discharging. It is not possible to prevent the device from becoming overcharged. Further, for example, when the power storage device is in a low power storage state, even if the voltage between terminals does not belong to the limiting range, it cannot be suppressed that the power storage device is in an over-discharged state depending on the value of the current during charging / discharging.
 本開示は、上記事情に鑑みてなされたものであり、その目的は、蓄電装置の充放電中の電流によらず、蓄電装置を保護できる制御装置を提供することにある。 The present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a control device capable of protecting the power storage device regardless of the current during charging / discharging of the power storage device.
 上記課題を解決するための第1の手段は、蓄電装置の充放電中の端子間電圧が、前記蓄電装置の高蓄電状態、又は低蓄電状態における所定の制限範囲に属する場合に、前記蓄電装置からの電力の入出力が可能な最大電力を制限する制御装置であって、前記蓄電装置の充放電中の電流を所定周期で取得する電流取得部と、前記電流取得部により取得された電流に基づいて前記制限範囲を可変に設定する範囲設定部と、を備える。 The first means for solving the above-mentioned problems is that when the voltage between terminals during charging / discharging of the power storage device belongs to a predetermined limiting range in the high power storage state or the low power storage state of the power storage device, the power storage device It is a control device that limits the maximum power that can be input and output from the power storage device, and is divided into a current acquisition unit that acquires the current during charging and discharging of the power storage device at a predetermined cycle and a current acquired by the current acquisition unit. A range setting unit for variably setting the limit range based on the above is provided.
 充放電中の端子間電圧は、蓄電装置の充放電中の電流に基づいて変動する。上記構成によれば、充放電中の端子間電圧と同様に、蓄電装置の充放電中の電流に基づいて、制限範囲を可変に設定する。そのため、蓄電装置の充放電中において、端子間電圧と制限範囲とを、充放電中の電流に基づいて連動して変動させることができる。これにより、充放電中の電流によらず、端子間電圧が制限範囲に含まれるか否かを判定でき、蓄電装置を適切に保護できる。 The voltage between terminals during charging / discharging fluctuates based on the current during charging / discharging of the power storage device. According to the above configuration, the limit range is variably set based on the current during charging / discharging of the power storage device as well as the voltage between terminals during charging / discharging. Therefore, during charging / discharging of the power storage device, the voltage between terminals and the limiting range can be changed in conjunction with each other based on the current during charging / discharging. Thereby, it can be determined whether or not the voltage between terminals is included in the limiting range regardless of the current during charging / discharging, and the power storage device can be appropriately protected.
 第2の手段では、前記制限範囲は、前記高蓄電状態における高圧側制限範囲を含み、前記範囲設定部は、前記蓄電装置が充電中である場合に、前記電流取得部により取得された電流が大きいほど、前記高圧側制限範囲を高圧側に設定する。 In the second means, the limiting range includes the high-voltage side limiting range in the high storage state, and the range setting unit receives the current acquired by the current acquisition unit when the power storage device is charging. The larger the value, the higher the pressure side limit range is set.
 充電中の端子間電圧は、充電中の電流が大きいほど大きくなる。上記構成によれば、この端子間電圧の変動に対応させて、充電中の電流が大きいほど高圧側制限範囲を高圧側に設定する。これにより、蓄電装置が過充電状態となることを適切に抑制できる。 The voltage between terminals during charging increases as the current during charging increases. According to the above configuration, the higher the current during charging, the higher the high-voltage side limit range is set in response to the fluctuation of the voltage between the terminals. As a result, it is possible to appropriately prevent the power storage device from being overcharged.
 第3の手段では、前記蓄電装置の蓄電状態を示すSOCを算出する制御装置であって、前記SOCに基づいて、前記蓄電装置の充電中に前記蓄電装置が前記高蓄電状態となったかを判定する高蓄電状態判定部と、前記高蓄電状態判定部により前記高蓄電状態となったと判定された場合に、前記最大電力を、前記SOCに関わらず一定の基準入力電力に設定して前記蓄電装置の充電を行う高蓄電制御部と、を備え、前記範囲設定部は、前記最大電力が前記基準入力電力に設定された場合に、前記電流取得部により取得された電流に基づいて前記高圧側制限範囲を可変に設定する。 The third means is a control device that calculates an SOC indicating the power storage state of the power storage device, and determines whether the power storage device is in the high power storage state during charging of the power storage device based on the SOC. When the high power storage state determination unit and the high power storage state determination unit determine that the high power storage state is reached, the maximum power is set to a constant reference input power regardless of the SOC, and the power storage device The range setting unit is provided with a high power storage control unit for charging, and the range setting unit limits the high pressure side based on the current acquired by the current acquisition unit when the maximum power is set to the reference input power. Set the range variably.
 上記構成によれば、蓄電装置が高蓄電状態となった後に最大電力を一定に設定して充電を継続し、この充電継続中に最大電力に代わって端子間電圧に基づいて蓄電装置の充電を制御する。この場合において、放電中の電流に基づいて低圧側制限範囲を可変に設定する。これにより、蓄電装置の使い切りを図りつつも、蓄電装置が過充電状態となることを適切に抑制できる。 According to the above configuration, after the power storage device is in a high storage state, the maximum power is set to a constant value and charging is continued, and during this charging continuation, the power storage device is charged based on the voltage between terminals instead of the maximum power. Control. In this case, the low voltage side limit range is variably set based on the current during discharge. As a result, it is possible to appropriately prevent the power storage device from being overcharged while using up the power storage device.
 第4の手段では、前記制限範囲は、前記低蓄電状態における低圧側制限範囲を含み、前記範囲設定部は、前記蓄電装置が放電中である場合に、前記電流取得部により取得された電流が大きいほど、前記低圧側制限範囲を低圧側に設定する。 In the fourth means, the limiting range includes the low-voltage side limiting range in the low storage state, and the range setting unit receives the current acquired by the current acquisition unit when the power storage device is discharging. The larger the value, the lower the pressure side limit range is set.
 放電中の端子間電圧は、放電中の電流が大きいほど小さくなる。上記構成によれば、この端子間電圧の変動に対応させて、放電中の電流が大きいほど低圧側制限範囲を低圧側に設定する。これにより、蓄電装置が過放電状態となることを適切に抑制できる。 The voltage between terminals during discharge decreases as the current during discharge increases. According to the above configuration, the lower limit range is set to the low voltage side as the current during discharging increases in response to the fluctuation of the voltage between the terminals. As a result, it is possible to appropriately prevent the power storage device from becoming over-discharged.
 第5の手段では、前記蓄電装置の蓄電状態を示すSOCを算出する制御装置であって、前記SOCに基づいて、前記蓄電装置の放電中に前記蓄電装置が前記低蓄電状態となったかを判定する低蓄電状態判定部と、前記低蓄電状態判定部により前記低蓄電状態となったと判定された場合に、前記最大電力を、前記SOCに関わらず一定の基準出力電力に設定して前記蓄電装置の放電を行う低蓄電制御部と、を備え、前記範囲設定部は、前記最大電力が前記基準出力電力に設定された場合に、前記電流取得部により取得された電流に基づいて前記低圧側制限範囲を可変に設定する。 The fifth means is a control device that calculates an SOC indicating the power storage state of the power storage device, and determines whether the power storage device is in the low power storage state during discharge of the power storage device based on the SOC. When the low power storage state determination unit and the low power storage state determination unit determine that the low power storage state has been reached, the maximum power is set to a constant reference output power regardless of the SOC, and the power storage device The range setting unit includes a low power storage control unit that discharges the electric power, and the range setting unit limits the low voltage side based on the current acquired by the current acquisition unit when the maximum power is set to the reference output power. Set the range variably.
 上記構成によれば、蓄電装置が低蓄電状態となった後に最大電力を一定に設定して放電を継続し、この放電継続中に最大電力に代わって端子間電圧に基づいて蓄電装置の放電を制御する。この場合において、放電中の電流に基づいて低圧側制限範囲を可変に設定する。これにより、蓄電装置の使い切りを図りつつも、蓄電装置が過放電状態となることを適切に抑制できる。 According to the above configuration, after the power storage device is in a low storage state, the maximum power is set to a constant value and discharge is continued, and during this discharge continuation, the power storage device is discharged based on the voltage between terminals instead of the maximum power. Control. In this case, the low voltage side limit range is variably set based on the current during discharge. As a result, it is possible to appropriately prevent the power storage device from becoming over-discharged while using up the power storage device.
 第6の手段では、前記蓄電装置の温度を取得する温度取得部を備え、前記範囲設定部は、前記電流取得部により取得された電流及び前記温度取得部により取得された温度に基づいて前記制限範囲を可変に設定する。 The sixth means includes a temperature acquisition unit that acquires the temperature of the power storage device, and the range setting unit limits the current based on the current acquired by the current acquisition unit and the temperature acquired by the temperature acquisition unit. Set the range variably.
 充放電中の電流は、蓄電装置の温度に応じて変動する。上記構成によれば、蓄電装置の温度に基づいて制限範囲を可変に設定するため、蓄電装置の温度に応じて蓄電装置を適切に保護できる。 The current during charging and discharging fluctuates according to the temperature of the power storage device. According to the above configuration, since the limit range is variably set based on the temperature of the power storage device, the power storage device can be appropriately protected according to the temperature of the power storage device.
 第7の手段では、前記蓄電装置の劣化度を算出する劣化算出部を備え、前記範囲設定部は、前記劣化算出部により算出された劣化度に基づいて前記制限範囲を可変に設定する。 The seventh means includes a deterioration calculation unit for calculating the deterioration degree of the power storage device, and the range setting unit variably sets the limitation range based on the deterioration degree calculated by the deterioration calculation unit.
 蓄電装置の制限範囲は、蓄電装置の劣化度に応じて変動する。上記構成によれば、蓄電装置の劣化度に基づいて制限範囲を可変に設定するため、蓄電装置の劣化度に応じて蓄電装置を適切に保護できる。 The limit range of the power storage device varies depending on the degree of deterioration of the power storage device. According to the above configuration, since the limit range is variably set based on the degree of deterioration of the power storage device, the power storage device can be appropriately protected according to the degree of deterioration of the power storage device.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、車両システムの概略図であり、 図2は、第1実施形態の制御処理の処理手順を示すフローチャートであり、 図3は、ΔSOC算出処理の処理手順を示すフローチャートであり、 図4は、ΔSOCリセット処理の処理手順を示すフローチャートであり、 図5は、入出力電流と誤差量との関係を示す図であり、 図6は、入出力電流と基準誤差との関係を示す図であり、 図7は、開路電圧と補正係数との関係を示す図であり、 図8は、高電圧バッテリの放電中におけるΔSOCの推移を示すタイムチャートであり、 図9は、ΔSOCと電力マージンとの関係を示す図であり、 図10は、リセット期間における入出力電流及び閉路電圧CCVの推移を示すタイムチャートであり、 図11は、高電圧バッテリの放電中における最大電力の推移を示すタイムチャートであり、 図12は、SOCと最大電力との対応情報を示す図であり、 図13は、入出力電流と上限電圧及び下限電圧との関係を示す図であり、 図14は、第2実施形態の制御処理の処理手順を示すフローチャートである。
The above objectives and other objectives, features and advantages of the present disclosure will be clarified by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a schematic view of the vehicle system. FIG. 2 is a flowchart showing a processing procedure of the control processing of the first embodiment. FIG. 3 is a flowchart showing the processing procedure of the ΔSOC calculation process. FIG. 4 is a flowchart showing the processing procedure of the ΔSOC reset process. FIG. 5 is a diagram showing the relationship between the input / output current and the amount of error. FIG. 6 is a diagram showing the relationship between the input / output current and the reference error. FIG. 7 is a diagram showing the relationship between the open circuit voltage and the correction coefficient. FIG. 8 is a time chart showing the transition of ΔSOC during discharging of the high voltage battery. FIG. 9 is a diagram showing the relationship between ΔSOC and the power margin. FIG. 10 is a time chart showing changes in the input / output current and the closed circuit voltage CCV during the reset period. FIG. 11 is a time chart showing the transition of the maximum power during discharging of the high voltage battery. FIG. 12 is a diagram showing correspondence information between SOC and maximum power. FIG. 13 is a diagram showing the relationship between the input / output current and the upper limit voltage and the lower limit voltage. FIG. 14 is a flowchart showing a processing procedure of the control processing of the second embodiment.
 (第1実施形態)
 以下、実施形態を図面に基づいて説明する。本実施形態は、走行動力源としてモータ13を有する電気自動車に適用されるものとしており、先ずは図1により車両システムの概要を説明する。
(First Embodiment)
Hereinafter, embodiments will be described with reference to the drawings. This embodiment is applied to an electric vehicle having a motor 13 as a traveling power source, and first, an outline of a vehicle system will be described with reference to FIG.
 図1において、車両は、高電圧バッテリ11と、高電圧バッテリ11の直流電力を交流電力に変換するインバータ12と、インバータ12から出力される交流電力により駆動される走行駆動源としてのモータ13とを備えている。車両の走行時には、運転者によるアクセル操作に応じて、高電圧バッテリ11からインバータ12を介してモータ13に電力が供給され、その電力供給に伴うモータ13の力行駆動により車両に走行動力が付与される。モータ13は、力行機能に加えて発電機能を有する回転電機(モータジェネレータ)であり、例えば車両の減速時には、回生発電により生じる発電電力がインバータ12を介して高電圧バッテリ11に供給される。この場合、モータ13は、発電機として機能し、その発電電力により高電圧バッテリ11が充電される。なお、本実施形態において、高電圧バッテリ11は「蓄電装置」に相当する。 In FIG. 1, the vehicle includes a high-voltage battery 11, an inverter 12 that converts DC power of the high-voltage battery 11 into AC power, and a motor 13 as a traveling drive source driven by AC power output from the inverter 12. It has. When the vehicle is running, electric power is supplied from the high-voltage battery 11 to the motor 13 via the inverter 12 in response to the accelerator operation by the driver, and the running power is given to the vehicle by the power running drive of the motor 13 accompanying the electric power supply. To. The motor 13 is a rotary electric machine (motor generator) having a power generation function in addition to a power running function. For example, when the vehicle is decelerated, the generated power generated by the regenerative power generation is supplied to the high voltage battery 11 via the inverter 12. In this case, the motor 13 functions as a generator, and the high-voltage battery 11 is charged by the generated power. In this embodiment, the high-voltage battery 11 corresponds to a "power storage device".
 高電圧バッテリ11の電力は、モータ13以外に高電圧補機14にも供給される。高電圧補機14は、例えば車室内の空調を行う空調装置の電動コンプレッサであり、高電圧バッテリ11からの供給電力により駆動される。高電圧バッテリ11には、バッテリ温度TMを検出する温度センサ15が設けられている。なお、高電圧バッテリ11は、例えばリチウムイオン蓄電池であり、その端子間電圧は例えば200~300V程度である。 The electric power of the high voltage battery 11 is supplied to the high voltage auxiliary machine 14 in addition to the motor 13. The high-voltage auxiliary machine 14 is, for example, an electric compressor of an air conditioner for air-conditioning the interior of a vehicle, and is driven by power supplied from the high-voltage battery 11. The high voltage battery 11 is provided with a temperature sensor 15 that detects the battery temperature TM. The high voltage battery 11 is, for example, a lithium ion storage battery, and the voltage between terminals thereof is, for example, about 200 to 300 V.
 高電圧バッテリ11には、電力変換器としてのDCDCコンバータ16を介して低電圧バッテリ17と低電圧補機18とが接続されている。DCDCコンバータ16は、高電圧系統と低電圧系統との間において双方向に電力変換を実施する。低電圧バッテリ17は、例えば定格12Vの鉛蓄電池である。低電圧補機18は、例えば電動パワステやバッテリファン等であり、DCDCコンバータ16を介して供給される高電圧バッテリ11からの電力により駆動可能であることに加え、低電圧バッテリ17からの電力供給により駆動可能となっている。DCDCコンバータ16は、高電圧バッテリ11の高電圧を、低電圧バッテリ17の電圧レベル又は低電圧補機18の電源電圧レベルまで降圧して、これら低電圧バッテリ17や低電圧補機18に対して電力を供給する。 The low-voltage battery 17 and the low-voltage auxiliary machine 18 are connected to the high-voltage battery 11 via a DCDC converter 16 as a power converter. The DCDC converter 16 performs power conversion in both directions between the high voltage system and the low voltage system. The low voltage battery 17 is, for example, a lead storage battery rated at 12 V. The low-voltage auxiliary machine 18 is, for example, an electric power station, a battery fan, or the like, and in addition to being able to be driven by the electric power from the high-voltage battery 11 supplied via the DCDC converter 16, the electric power is supplied from the low-voltage battery 17. Can be driven by. The DCDC converter 16 steps down the high voltage of the high-voltage battery 11 to the voltage level of the low-voltage battery 17 or the power supply voltage level of the low-voltage auxiliary machine 18, so as to the low-voltage battery 17 and the low-voltage auxiliary machine 18. Supply power.
 また、本システムは、CPUや各種メモリを有するマイクロコンピュータを主体とするECU20を備えている。ECU20には、上述した温度センサ15以外に、高電圧バッテリ11の端子間電圧を検出する電圧センサ21、高電圧バッテリ11の入出力電流IBを検出する電流センサ22、運転者のアクセル操作量ACを検出するアクセルセンサ23、及び車速MVを検出する車速センサ24等が接続されている。また、ECU20には、車両の起動スイッチであるIGスイッチ25が接続されており、このIGスイッチ25のオン/オフ状態を監視する。ECU20は、高電圧バッテリ11の端子間電圧や入出力電流IB等に基づいて、高電圧バッテリ11の充放電を制御する。なお、本実施形態において、ECU20は「制御装置」に相当する。 In addition, this system is equipped with an ECU 20 mainly composed of a microcomputer having a CPU and various memories. In addition to the temperature sensor 15 described above, the ECU 20 includes a voltage sensor 21 that detects the voltage between terminals of the high voltage battery 11, a current sensor 22 that detects the input / output current IB of the high voltage battery 11, and an accelerator operation amount AC of the driver. The accelerator sensor 23 for detecting the vehicle speed MV, the vehicle speed sensor 24 for detecting the vehicle speed MV, and the like are connected. Further, an IG switch 25, which is a vehicle start switch, is connected to the ECU 20, and the on / off state of the IG switch 25 is monitored. The ECU 20 controls charging / discharging of the high-voltage battery 11 based on the voltage between terminals of the high-voltage battery 11 and the input / output current IB and the like. In this embodiment, the ECU 20 corresponds to a “control device”.
 この場合、ECU20は、高電圧バッテリ11の充放電中に、高電圧バッテリ11の蓄電状態を示すSOC(State Of Charge)を算出し、算出されたSOCにより高電圧バッテリ11からの入出力が可能な最大電力WBを設定する。また、高電圧バッテリ11の充放電中に、高電圧バッテリ11の端子間電圧が所定の制限範囲XH,XL(図7参照)に属するようになった場合に、この設定された最大電力WBを制限する。高電圧バッテリ11の端子間電圧に基づいて最大電力WBが制限されることで、高電圧バッテリ11が過充電状態又は過放電状態となることを抑制できると考えられる。 In this case, the ECU 20 calculates an SOC (State Of Charge) indicating the state of charge of the high-voltage battery 11 during charging / discharging of the high-voltage battery 11, and the calculated SOC enables input / output from the high-voltage battery 11. Maximum power WB is set. Further, when the voltage between the terminals of the high-voltage battery 11 falls within the predetermined limit ranges XH and XL (see FIG. 7) during charging / discharging of the high-voltage battery 11, the set maximum power WB is set. Restrict. By limiting the maximum power WB based on the voltage between the terminals of the high-voltage battery 11, it is considered that the high-voltage battery 11 can be prevented from being overcharged or overdischarged.
 しかし、充放電中における高電圧バッテリ11の端子間電圧は、入出力電流IBに応じて変動する。そのため、制限範囲XH,XLが入出力電流IBによらず一定の範囲に設定されていると、例えば高電圧バッテリ11が高蓄電状態にある場合に、高電圧バッテリ11の端子間電圧が制限範囲XHに属しない場合でも、入出力電流IBの値によっては、高電圧バッテリ11が過充電状態となることを抑制できない。また、例えば高電圧バッテリ11が低蓄電状態にある場合に、高電圧バッテリ11の端子間電圧が制限範囲XLに属しない場合でも、入出力電流IBの値によっては、高電圧バッテリ11が過放電状態となることを抑制できない。 However, the voltage between the terminals of the high-voltage battery 11 during charging / discharging fluctuates according to the input / output current IB. Therefore, if the limiting ranges XH and XL are set to a certain range regardless of the input / output current IB, for example, when the high voltage battery 11 is in a high storage state, the voltage between terminals of the high voltage battery 11 is set within the limiting range. Even if it does not belong to XH, it cannot be suppressed that the high voltage battery 11 is in an overcharged state depending on the value of the input / output current IB. Further, for example, when the high-voltage battery 11 is in a low storage state, even if the voltage between the terminals of the high-voltage battery 11 does not belong to the limit range XL, the high-voltage battery 11 is over-discharged depending on the value of the input / output current IB. It cannot be suppressed from becoming a state.
 本実施形態では、入出力電流IBによらず高電圧バッテリ11を適切に保護すべく、入出力電流IBに基づいて、制限範囲XH,XLを可変に設定する。具体的には、高電圧バッテリ11の充放電中において、高電圧バッテリ11の端子間電圧と制限範囲XH,XLとを、入出力電流IBに基づいて連動して変動させる。これにより、入出力電流IBによらず、高電圧バッテリ11の端子間電圧が制限範囲XH,XLに含まれるか否かを判定でき、蓄電装置を適切に保護できる。 In this embodiment, the limit ranges XH and XL are variably set based on the input / output current IB in order to appropriately protect the high voltage battery 11 regardless of the input / output current IB. Specifically, during charging / discharging of the high-voltage battery 11, the voltage between the terminals of the high-voltage battery 11 and the limiting ranges XH and XL are interlocked and fluctuated based on the input / output current IB. Thereby, it can be determined whether or not the voltage between the terminals of the high voltage battery 11 is included in the limiting ranges XH and XL regardless of the input / output current IB, and the power storage device can be appropriately protected.
 図2は、高電圧バッテリ11の充放電を制御する制御処理の処理手順を示すフローチャートであり、本処理は、IGスイッチ25がオン状態とされている場合に、ECU20により所定周期で繰り返し実施される。 FIG. 2 is a flowchart showing a processing procedure of a control process for controlling charging / discharging of the high-voltage battery 11, and this process is repeatedly executed by the ECU 20 at a predetermined cycle when the IG switch 25 is turned on. To.
 制御処理を開始すると、まずステップS10において、高電圧バッテリ11が充放電中であるかを判定する。IGスイッチ25がオン状態に切り替えられた直後であれば、高電圧バッテリ11がまだ充放電を開始していないため、ステップS10で否定判定される。この場合、ステップS12において、電圧センサ21を用いて高電圧バッテリ11の充放電停止中における高電圧バッテリ11の端子間電圧である開路電圧OCVを取得する。続くステップS14において、開路電圧OCVに基づいてSOCを算出し、制御処理を終了する。ECU20には、開路電圧OCVとSOCとが予め対応付けられた対応情報が記憶されており、この対応情報を用いて、ステップS12で取得された開路電圧OCVに基づいてSOCを算出する。 When the control process is started, first, in step S10, it is determined whether the high voltage battery 11 is being charged or discharged. Immediately after the IG switch 25 is switched to the ON state, since the high-voltage battery 11 has not yet started charging / discharging, a negative determination is made in step S10. In this case, in step S12, the voltage sensor 21 is used to acquire the open circuit voltage OCV, which is the voltage between the terminals of the high voltage battery 11 while the high voltage battery 11 is being charged / discharged. In the following step S14, the SOC is calculated based on the open circuit voltage OCV, and the control process is terminated. Correspondence information in which the open circuit voltage OCV and SOC are associated in advance is stored in the ECU 20, and the SOC is calculated based on the open circuit voltage OCV acquired in step S12 using this correspondence information.
 一方、IGスイッチ25がオン状態に切り替えられてから所定期間が経過していれば、高電圧バッテリ11が充放電を開始しているため、ステップS10で肯定判定される。この場合、ステップS16において、電圧センサ21を用いて高電圧バッテリ11の充放電中における高電圧バッテリ11の端子間電圧である閉路電圧CCVを取得する。続くステップS18において、電流センサ22を用いて入出力電流IBを取得するとともに、温度センサ15を用いてバッテリ温度TMを取得する。つまり、高電圧バッテリ11の充放電中において、高電圧バッテリ11の充放電中の入出力電流IBは所定周期で取得される。なお、本実施形態において、ステップS18の処理が「電流取得部、温度取得部」に相当する。 On the other hand, if a predetermined period has elapsed since the IG switch 25 was switched to the ON state, the high-voltage battery 11 has started charging / discharging, and a positive determination is made in step S10. In this case, in step S16, the voltage sensor 21 is used to acquire the closed circuit voltage CCV, which is the voltage between the terminals of the high voltage battery 11 during charging / discharging of the high voltage battery 11. In the following step S18, the input / output current IB is acquired by using the current sensor 22, and the battery temperature TM is acquired by using the temperature sensor 15. That is, during charging / discharging of the high-voltage battery 11, the input / output current IB during charging / discharging of the high-voltage battery 11 is acquired at a predetermined cycle. In this embodiment, the process of step S18 corresponds to the "current acquisition unit and temperature acquisition unit".
 続くステップS20において、入出力電流IBの時間積分値に基づいてSOCを算出する。入出力電流IBの時間積分値に基づくSOCの算出では、開路電圧OCVに基づいて算出されたSOCの初期値に対して、所定周期で取得された入出力電流IBの時間積分値に応じたSOCの増減分を加算することでSOCを算出する。開路電圧OCVに基づいて算出されるSOCの初期値をSOC(ini)とし、高電圧バッテリ11の満充電容量をCBとすると、入出力電流IBの時間積分値に基づいて算出されるSOCは(式1)のように表される。 In the following step S20, the SOC is calculated based on the time integral value of the input / output current IB. In the calculation of SOC based on the time integral value of the input / output current IB, the SOC corresponding to the time integral value of the input / output current IB acquired in a predetermined cycle is compared with the initial value of SOC calculated based on the open circuit voltage OCV. The SOC is calculated by adding the increase / decrease of. Assuming that the initial value of SOC calculated based on the open circuit voltage OCV is SOC (ini) and the full charge capacity of the high voltage battery 11 is CB, the SOC calculated based on the time integrated value of the input / output current IB is ( It is expressed as in equation 1).
 SOC=SOC(ini)+ΣIB・dt/CB・・・(式1)
 続くステップS22において、ΔSOC算出処理を実施する。
SOC = SOC (ini) + ΣIB · dt / CB ... (Equation 1)
In the following step S22, the ΔSOC calculation process is performed.
 図3に、ΔSOC算出処理のフローチャートを示す。ΔSOC算出処理では、高電圧バッテリ11の充放電中における経過時間TP(図8参照)とともに増加するように、SOCのΔSOCを算出する。 FIG. 3 shows a flowchart of the ΔSOC calculation process. In the ΔSOC calculation process, the ΔSOC of the SOC is calculated so as to increase with the elapsed time TP (see FIG. 8) during charging / discharging of the high-voltage battery 11.
 ΔSOC算出処理を開始すると、まずステップS70において、ΔSOCの初期値ΔSOC(ini)を算出する。初期値ΔSOC(ini)は、例えばΔSOCがリセットされたリセットタイミングにおける誤差量GSである。なお、本実施形態において、初期値ΔSOC(ini)が「初期SOC誤差」に相当する。 When the ΔSOC calculation process is started, first, in step S70, the initial value ΔSOC (ini) of ΔSOC is calculated. The initial value ΔSOC (ini) is, for example, an error amount GS at the reset timing when ΔSOC is reset. In this embodiment, the initial value ΔSOC (ini) corresponds to the “initial SOC error”.
 続くステップS71において、ステップS18で取得された入出力電流IB及びバッテリ温度TMに応じてSOCの誤差量GSを算出する。図5は、入出力電流IBと誤差量GSとの関係を示す図である。図5に示すように、入出力電流IBが小さいほど、誤差量GSは大きくなるように算出される。誤差量GSは、負の比例係数をJとし、入出力電流IBがゼロである場合の誤差量をSGZとすると、(式2)のように表される。 In the following step S71, the SOC error amount GS is calculated according to the input / output current IB and the battery temperature TM acquired in step S18. FIG. 5 is a diagram showing the relationship between the input / output current IB and the error amount GS. As shown in FIG. 5, the smaller the input / output current IB, the larger the error amount GS is calculated. The error amount GS is expressed as shown in (Equation 2), where J is the negative proportional coefficient and SGZ is the error amount when the input / output current IB is zero.
 GS=J×IB+SGZ・・・(式2)
 また、入出力電流IBは、バッテリ温度TMにより変動するため、誤差量GSもバッテリ温度TMにより変動する。ECU20には、入出力電流IB、バッテリ温度TM及び誤差量GSが予め対応付けられた対応情報が記憶されており、この対応情報を用いて誤差量GSを算出する。
GS = J × IB + SGZ ... (Equation 2)
Further, since the input / output current IB fluctuates depending on the battery temperature TM, the error amount GS also fluctuates depending on the battery temperature TM. Correspondence information in which the input / output current IB, the battery temperature TM, and the error amount GS are associated in advance is stored in the ECU 20, and the error amount GS is calculated using this correspondence information.
 なお、算出された誤差量GSに基づいて、ΔSOCが経過時間TPとともに増加する時間増加率θ(図8参照)が決定される。時間増加率θは、入出力電流IBの取得周期である所定周期をTSとすると、(式3)のように表される。 The time increase rate θ (see FIG. 8) in which ΔSOC increases with the elapsed time TP is determined based on the calculated error amount GS. The time increase rate θ is expressed as shown in (Equation 3), where TS is a predetermined cycle that is the acquisition cycle of the input / output current IB.
 θ=GS/TS・・・(式3)
 続くステップS72において、初期からの誤差量GSを積算する。続くステップS74において、ステップS72で算出した誤差量GSの積算値とステップS70で算出した初期誤差量GSFとを加算してΔSOCを算出し、ΔSOC算出処理を終了する。初期値ΔSOC(ini)を用いて、ΔSOCは(式4)のように表される。
θ = GS / TS ... (Equation 3)
In the following step S72, the error amount GS from the initial stage is integrated. In the following step S74, the integrated value of the error amount GS calculated in step S72 and the initial error amount GSF calculated in step S70 are added to calculate ΔSOC, and the ΔSOC calculation process is completed. Using the initial value ΔSOC (ini), ΔSOC is expressed as (Equation 4).
 ΔSOC=ΔSOC(ini)+ΣGS・dt・・・(式4)
 なお、(式4)におけるΣGS・dtは、誤差量GSの時間積分値であり、(式2)を用いてΣ(J×IB+SGZ)・dtと表すことができる。このうち、IB・dtは、入出力電流IBの時間積分値、すなわち所定周期TSにおけるSOCの変動量を示す。
ΔSOC = ΔSOC (ini) + ΣGS · dt ... (Equation 4)
Note that ΣGS · dt in (Equation 4) is a time integral value of the error amount GS, and can be expressed as Σ (J × IB + SGZ) · dt using (Equation 2). Of these, IB · dt indicates the time integral value of the input / output current IB, that is, the fluctuation amount of SOC in a predetermined period TS.
 ΔSOC算出処理を終了すると、図2に戻り、ステップS24において、ΔSOCリセット処理を実施する。 When the ΔSOC calculation process is completed, the process returns to FIG. 2 and the ΔSOC reset process is performed in step S24.
 図4に、ΔSOCリセット処理のフローチャートを示す。ΔSOCリセット処理では、所定のリセット条件が成立した場合に、高電圧バッテリ11の充放電中にΔSOCをリセットする。 FIG. 4 shows a flowchart of the ΔSOC reset process. In the ΔSOC reset process, when a predetermined reset condition is satisfied, ΔSOC is reset during charging / discharging of the high-voltage battery 11.
 ΔSOCリセット処理を開始すると、まずステップS80において、ステップS72で算出されたΔSOCが所定の誤差閾値ΔST(図8参照)よりも大きいかを判定する。ここで、誤差閾値ΔSTは、高電圧バッテリ11の使い切りに支障が生じる蓄積誤差であり、バッテリ温度TM毎に予め設定されている。ステップS80で否定判定すると、ΔSOCをリセットすることなくΔSOCリセット処理を終了する。ここで、使い切りとは、充電時には、上限閾値ST1(図12(A)参照)まで高電圧バッテリ11の蓄電容量を増加させることであり、放電時には、下限閾値ST2(図12(B)参照)まで高電圧バッテリ11の蓄電容量を減少させることである。 When the ΔSOC reset process is started, first, in step S80, it is determined whether the ΔSOC calculated in step S72 is larger than the predetermined error threshold value ΔST (see FIG. 8). Here, the error threshold value ΔST is an accumulation error that hinders the use-up of the high-voltage battery 11, and is preset for each battery temperature TM. If a negative determination is made in step S80, the ΔSOC reset process is terminated without resetting the ΔSOC. Here, the use-up means increasing the storage capacity of the high-voltage battery 11 up to the upper limit threshold ST1 (see FIG. 12 (A)) during charging, and increasing the storage capacity of the high-voltage battery 11 up to the upper limit threshold ST2 (see FIG. 12 (B)) during discharging. It is to reduce the storage capacity of the high voltage battery 11 to.
 一方、ステップS80で肯定判定すると、つまり、ΔSOCが誤差閾値ΔSTよりも大きい場合に、ステップS82において、ΔSOCが所定の基準誤差ΔSK(図8参照)よりも大きいかを判定する。ここで、基準誤差ΔSKは、高電圧バッテリ11の充放電中にΔSOCをリセットする際に生じるリセット誤差であり、ゼロよりも大きい値に予め設定されている。基準誤差ΔSKは、ステップS18で取得された入出力電流IB及びバッテリ温度TMに基づいて設定される。 On the other hand, if an affirmative determination is made in step S80, that is, when ΔSOC is larger than the error threshold value ΔST, it is determined in step S82 whether ΔSOC is larger than the predetermined reference error ΔSK (see FIG. 8). Here, the reference error ΔSK is a reset error that occurs when ΔSOC is reset during charging / discharging of the high voltage battery 11, and is preset to a value larger than zero. The reference error ΔSK is set based on the input / output current IB and the battery temperature TM acquired in step S18.
 図6は、入出力電流IBと基準誤差ΔSKとの関係を示す図である。図6に示すように、入出力電流IBが小さいほど、基準誤差ΔSKは大きく設定される。また、入出力電流IBは、バッテリ温度TMにより変動するため、基準誤差ΔSKもバッテリ温度TMにより変動する。ECU20には、入出力電流IB、バッテリ温度TM及び基準誤差ΔSKが予め対応付けられた対応情報が記憶されており、この対応情報を用いて基準誤差ΔSKを設定する。 FIG. 6 is a diagram showing the relationship between the input / output current IB and the reference error ΔSK. As shown in FIG. 6, the smaller the input / output current IB, the larger the reference error ΔSK is set. Further, since the input / output current IB fluctuates depending on the battery temperature TM, the reference error ΔSK also fluctuates depending on the battery temperature TM. Correspondence information in which the input / output current IB, the battery temperature TM, and the reference error ΔSK are associated in advance is stored in the ECU 20, and the reference error ΔSK is set using this correspondence information.
 ステップS82で否定判定すると、リセットによりΔSOCが大きくなるため、ΔSOCをリセットすることなくΔSOCリセット処理を終了する。 If a negative determination is made in step S82, the ΔSOC increases due to the reset, so the ΔSOC reset process ends without resetting the ΔSOC.
 一方、ステップS82で肯定判定すると、ステップS84において、車両が走行停止中であるかを判定する。ここで、車両の走行停止中とは、車速MVが略ゼロの状態、つまり車速MVがゼロ付近の所定速度よりも小さい状態であり、具体的には入出力電流IBが所定の電流閾値ITよりも小さい状態である。例えばステップS18で取得された入出力電流IBが、所定の電流閾値ITよりも小さい状態が判定期間YAに亘って継続している場合に、車両が走行停止中であると判定する(図10参照)。また例えばステップS16で取得された閉路電圧CCVの変動量ΔVが、所定の変動閾値ΔVTよりも小さい状態が判定期間YAに亘って継続している場合に、車両が走行停止中であると判定する(図10参照)。ここで、電流閾値ITは、高電圧バッテリ11からの電力供給のみによりモータ13が駆動可能な電流である。また、変動閾値ΔVTは、モータ13の駆動により生じる閉路電圧CCVの最小変動量である。 On the other hand, if an affirmative determination is made in step S82, it is determined in step S84 whether the vehicle is stopped. Here, when the vehicle is stopped, the vehicle speed MV is substantially zero, that is, the vehicle speed MV is smaller than the predetermined speed near zero. Specifically, the input / output current IB is equal to or greater than the predetermined current threshold IT. Is also small. For example, when the input / output current IB acquired in step S18 is smaller than the predetermined current threshold IT for the determination period YA, it is determined that the vehicle is stopped (see FIG. 10). ). Further, for example, when the fluctuation amount ΔV of the closed circuit voltage CCV acquired in step S16 is smaller than the predetermined fluctuation threshold value ΔVT for the determination period YA, it is determined that the vehicle is stopped. (See FIG. 10). Here, the current threshold IT is a current at which the motor 13 can be driven only by supplying electric power from the high voltage battery 11. Further, the fluctuation threshold value ΔVT is the minimum fluctuation amount of the closed circuit voltage CCV generated by driving the motor 13.
 ステップS84で否定判定すると、ΔSOCをリセットすることなくΔSOCリセット処理を終了する。 If a negative determination is made in step S84, the ΔSOC reset process ends without resetting the ΔSOC.
 一方、ステップS84で肯定判定すると、つまり走行停止中であると判定された場合に、ステップS86において、この走行停止中にΔSOCがリセットされたかを判定する。ステップS86で肯定判定すると、ステップS88において、前回ΔSOCがリセットされてから判定期間YAが経過したかを判定する。ステップS88で否定判定すると、ステップS90において、車両の走行再開を判定する。ここで、車両の走行再開とは、車両の走行停止中と判定された後に、車速MVがゼロ付近の所定速度よりも大きくなることであり、具体的には入出力電流IBが電流閾値ITよりも大きくなることである。例えば運転者によるアクセル操作量ACが、所定の第1アクセル閾値AT1(図10参照)よりも大きくなった場合に、車両の走行が再開されると判定する。 On the other hand, if an affirmative determination is made in step S84, that is, if it is determined that the vehicle is stopped, it is determined in step S86 whether ΔSOC has been reset during the stopped operation. If an affirmative determination is made in step S86, it is determined in step S88 whether the determination period YA has elapsed since the previous ΔSOC was reset. If a negative determination is made in step S88, it is determined in step S90 that the vehicle is restarting. Here, the resumption of running of the vehicle means that the vehicle speed MV becomes larger than the predetermined speed near zero after it is determined that the running of the vehicle is stopped. Specifically, the input / output current IB is higher than the current threshold IT. Is also to grow. For example, when the accelerator operation amount AC by the driver becomes larger than the predetermined first accelerator threshold value AT1 (see FIG. 10), it is determined that the driving of the vehicle is restarted.
 本実施形態では、アクセル操作量ACにより車両の走行再開を判定する上で、第1アクセル閾値AT1と第2アクセル閾値AT2とが定められており、そのうち第2アクセル閾値AT2が、高電圧バッテリ11からの電力供給により車両が走行可能な最小電力を生じさせるアクセル操作量である。第1アクセル閾値AT1は、第2アクセル閾値AT2よりも小さいアクセル操作量に設定されており、第1アクセル閾値AT1を用いることで、車両が実際に走行を再開する前に車両の走行再開を判定できる。 In the present embodiment, the first accelerator threshold value AT1 and the second accelerator threshold value AT2 are defined in determining the restart of traveling of the vehicle based on the accelerator operation amount AC, of which the second accelerator threshold value AT2 is the high voltage battery 11. It is the amount of accelerator operation that produces the minimum electric power that the vehicle can travel by supplying electric power from. The first accelerator threshold AT1 is set to an accelerator operation amount smaller than the second accelerator threshold AT2, and by using the first accelerator threshold AT1, it is determined that the vehicle is restarted before the vehicle actually resumes running. it can.
 ステップS90で否定判定すると、ΔSOCがあまり大きくなっていないため、ΔSOCをリセットすることなくΔSOCリセット処理を終了する。 If a negative determination is made in step S90, the ΔSOC is not so large, so the ΔSOC reset process is terminated without resetting the ΔSOC.
 一方、ステップS86で否定判定、又は、ステップS88で肯定判定、又は、ステップS90で肯定判定すると、ステップS16で取得された閉路電圧CCVに基づいてΔSOCをリセットする。具体的には、ステップS92において、ステップS16で取得された閉路電圧CCVに基づいてSOCを算出し、SOCを更新する。続くステップS94において、ΔSOCを基準誤差ΔSKにリセットする。つまり、ステップS92でSOCを更新することでΔSOCをリセットする。そのため、ΔSOCのリセット後、ΔSOCは、経過時間TPとともに基準誤差ΔSKから増加するように算出される。続くステップS96において、経過時間TPをゼロにリセットし、ΔSOCリセット処理を終了する。 On the other hand, if a negative determination is made in step S86, an affirmative determination is made in step S88, or an affirmative determination is made in step S90, ΔSOC is reset based on the closed circuit voltage CCV acquired in step S16. Specifically, in step S92, the SOC is calculated based on the closed circuit voltage CCV acquired in step S16, and the SOC is updated. In the following step S94, ΔSOC is reset to the reference error ΔSK. That is, ΔSOC is reset by updating the SOC in step S92. Therefore, after resetting ΔSOC, ΔSOC is calculated so as to increase from the reference error ΔSK with the elapsed time TP. In the following step S96, the elapsed time TP is reset to zero, and the ΔSOC reset process is completed.
 ΔSOCリセット処理終了すると、図2に戻り、ステップS26において、高電圧バッテリ11が充電中であるかを判定する。例えば電流センサ22は、高電圧バッテリ11に向かって流れる入出力電流IBを正の値、高電圧バッテリ11から流れ出る入出力電流IBを負の値として検出しており、ステップS18で取得された入出力電流IBがゼロよりも大きいかにより、高電圧バッテリ11が充電中であるかを判定できる。 When the ΔSOC reset process is completed, the process returns to FIG. 2, and in step S26, it is determined whether the high voltage battery 11 is being charged. For example, the current sensor 22 detects the input / output current IB flowing toward the high-voltage battery 11 as a positive value and the input / output current IB flowing out of the high-voltage battery 11 as a negative value, and the input / input acquired in step S18. Whether the high-voltage battery 11 is being charged can be determined based on whether the output current IB is larger than zero.
 ステップS26で肯定判定すると、ステップS28において、ステップS20又はステップS92で算出されたSOCと、ステップS72で算出されたΔSOCとを加算したものをSOCとして算出する。ステップS28において算出されたSOCは、ΔSOCに基づいて設定されるSOCの誤差範囲、つまり、SOCを中心として2倍のΔSOCの幅を有するSOCの誤差範囲のうち、最も大きいSOCである。続くステップS30において、ステップS28で算出されたSOCが上限閾値ST1よりも小さいかを判定する。なお、本実施形態において、ステップS30の処理が「高蓄電状態判定部」に相当する。 If an affirmative determination is made in step S26, in step S28, the SOC calculated in step S20 or step S92 and the ΔSOC calculated in step S72 are added and calculated as the SOC. The SOC calculated in step S28 is the largest SOC in the SOC error range set based on ΔSOC, that is, the SOC error range having twice the width of ΔSOC centered on the SOC. In the following step S30, it is determined whether the SOC calculated in step S28 is smaller than the upper limit threshold value ST1. In this embodiment, the process of step S30 corresponds to the "high storage state determination unit".
 ステップS30で肯定判定すると、つまり、SOCが上限閾値ST1に到達していない場合、ステップS32において、ステップS28で算出されたSOCに基づいて最大電力WBを設定する。つまり、ステップS20又はステップS92で算出されたSOCと、ステップS72で算出されたΔSOCとの加算値に基づいて最大電力WBを設定する。ECU20には、SOCと最大電力WBとが予め対応付けられた対応情報(図12参照)が記憶されており、この対応情報を用いて、ステップS28で算出されたSOCに基づいて最大電力WBを設定する。対応情報は、上限閾値ST1から下限閾値ST2までの範囲のSOCに対して設定されており、バッテリ温度TM毎に規定されている。続くステップS34において、ステップS32で設定された最大電力WBを用いて高電圧バッテリ11の充放電を制御し、制御処理を終了する。 If an affirmative judgment is made in step S30, that is, if the SOC has not reached the upper limit threshold value ST1, in step S32, the maximum power WB is set based on the SOC calculated in step S28. That is, the maximum power WB is set based on the added value of the SOC calculated in step S20 or S92 and the ΔSOC calculated in step S72. Correspondence information (see FIG. 12) in which the SOC and the maximum power WB are associated in advance is stored in the ECU 20, and the maximum power WB is calculated based on the SOC calculated in step S28 using this correspondence information. Set. Correspondence information is set for the SOC in the range from the upper limit threshold value ST1 to the lower limit threshold value ST2, and is specified for each battery temperature TM. In the following step S34, the charge / discharge of the high voltage battery 11 is controlled by using the maximum power WB set in step S32, and the control process is terminated.
 一方、ステップS30で否定判定すると、つまり、SOCが上限閾値ST1に到達した場合、ステップS36において、最大電力WBを基準入力電力WK1(図12(A)参照)に設定する。続くステップS38において、ステップS36で設定された基準入力電力WK1を用いて高電圧バッテリ11の充電を継続する。なお、本実施形態において、ステップS36,S38の処理が「高蓄電制御部」に相当する。 On the other hand, if a negative determination is made in step S30, that is, when the SOC reaches the upper limit threshold value ST1, the maximum power WB is set to the reference input power WK1 (see FIG. 12A) in step S36. In the following step S38, charging of the high voltage battery 11 is continued using the reference input power WK1 set in step S36. In this embodiment, the processes of steps S36 and S38 correspond to the "high power storage control unit".
 ステップS38の充電制御は、SOCが上限閾値ST1よりも大きい高蓄電状態において実施される。この充電制御では、閉路電圧CCVを用いて充電停止を制御する。本実施形態では、閉路電圧CCVを用いて充電停止を制御する上で、高電圧バッテリ11の充電を停止するための高圧側制限範囲XH(図7(A)参照)が予め定められている。閉路電圧CCVが高圧側制限範囲XHに属するようになった場合、つまり、閉路電圧CCVが高圧側制限範囲XHの下限である上限電圧VT1に到達した場合、高電圧バッテリ11が過充電状態となることを抑制するために高電圧バッテリ11の充電が停止される。 The charge control in step S38 is performed in a high storage state in which the SOC is larger than the upper limit threshold value ST1. In this charge control, the charge stop is controlled by using the closed circuit voltage CCV. In the present embodiment, in controlling the charging stop using the closed circuit voltage CCV, the high voltage side limiting range XH (see FIG. 7A) for stopping the charging of the high voltage battery 11 is predetermined. When the closed circuit voltage CCV belongs to the high voltage side limiting range XH, that is, when the closed circuit voltage CCV reaches the upper limit voltage VT1 which is the lower limit of the high voltage side limiting range XH, the high voltage battery 11 is overcharged. In order to suppress this, charging of the high voltage battery 11 is stopped.
 しかし、閉路電圧CCVは、入出力電流IBにより変動するため、高圧側制限範囲XHが入出力電流IBによらず一定であると、入出力電流IBによっては高電圧バッテリ11が過充電状態となることを抑制できない。閉路電圧CCVは、高電圧バッテリ11の内部抵抗をRBとすると、(式5)のように表される。 However, since the closed circuit voltage CCV fluctuates depending on the input / output current IB, if the high voltage side limiting range XH is constant regardless of the input / output current IB, the high voltage battery 11 becomes overcharged depending on the input / output current IB. I can't control that. The closed circuit voltage CCV is expressed as shown in (Equation 5), where RB is the internal resistance of the high voltage battery 11.
 CCV=OCV+IB×RB・・・(式5)
 そこで、本実施形態では、ステップS40において、ステップS18で取得された入出力電流IBに基づいて高圧側制限範囲XHを可変に設定する。具体的には、入出力電流IBに基づいて閉路電圧CCVと高圧側制限範囲XHとが連動して変動するように設定される。これにより、入出力電流IB及びバッテリ温度TMによらず高電圧バッテリ11が過充電状態となることを抑制できる。
CCV = OCV + IB x RB ... (Equation 5)
Therefore, in the present embodiment, in step S40, the high voltage side limiting range XH is variably set based on the input / output current IB acquired in step S18. Specifically, the closed circuit voltage CCV and the high-voltage side limiting range XH are set to fluctuate in conjunction with each other based on the input / output current IB. As a result, it is possible to prevent the high voltage battery 11 from being overcharged regardless of the input / output current IB and the battery temperature TM.
 続くステップS42において、閉路電圧CCVが上限電圧VT1よりも大きいかを判定する。ステップS42で否定判定すると、制御処理を終了する。一方、ステップS42で肯定判定すると、ステップS44において、ステップS36で設定された基準入力電力WK1を制限し、制御処理を終了する。ステップS44では、例えば図7(A)に示すように、閉路電圧CCVが上限電圧VT1よりも大きくなるほど小さくなる補正係数が予め設定されており、この補正係数を基準入力電力WK1に積算することで基準入力電力WK1を制限する。そのため、閉路電圧CCVの上昇に伴い基準入力電力WK1は徐々に減少し、基準入力電力WK1がゼロとなることで充電が停止される。 In the following step S42, it is determined whether the closed circuit voltage CCV is larger than the upper limit voltage VT1. If a negative determination is made in step S42, the control process ends. On the other hand, if an affirmative determination is made in step S42, the reference input power WK1 set in step S36 is limited in step S44, and the control process ends. In step S44, for example, as shown in FIG. 7A, a correction coefficient that becomes smaller as the closed circuit voltage CCV becomes larger than the upper limit voltage VT1 is set in advance, and this correction coefficient is integrated into the reference input power WK1. The reference input power WK1 is limited. Therefore, the reference input power WK1 gradually decreases as the closed circuit voltage CCV rises, and charging is stopped when the reference input power WK1 becomes zero.
 一方、ステップS26で否定判定すると、ステップS46において、ステップS20又はステップS92で算出されたSOCから、ステップS72で算出されたΔSOCを減算したものをSOCとして算出する。ステップS46において算出されたSOCは、ΔSOCに基づいて設定されるSOCの誤差範囲のうち、最も小さいSOCである。続くステップS48において、ステップS46で算出されたSOCが下限閾値ST2よりも大きいかを判定する。なお、本実施形態において、ステップS30の処理が「低蓄電状態判定部」に相当する。 On the other hand, if a negative determination is made in step S26, in step S46, the SOC calculated in step S20 or S92 minus the ΔSOC calculated in step S72 is calculated as the SOC. The SOC calculated in step S46 is the smallest SOC in the SOC error range set based on ΔSOC. In the following step S48, it is determined whether the SOC calculated in step S46 is larger than the lower limit threshold value ST2. In this embodiment, the process of step S30 corresponds to the "low storage state determination unit".
 ステップS48で肯定判定すると、つまり、SOCが下限閾値ST2に到達していない場合、ステップS32に進む。この場合、ステップS32では、ステップS46で算出されたSOCに基づいて最大電力WBが設定される。一方、ステップS48で否定判定すると、つまり、SOCが下限閾値ST2に到達した場合、ステップS50において、最大電力WBを一定の基準出力電力WK2(図12(B)参照)に設定する。続くステップS52において、ステップS50で設定された基準出力電力WK2を用いて高電圧バッテリ11の放電を継続する。なお、本実施形態において、ステップS50,S52の処理が「低蓄電制御部」に相当する。 If an affirmative judgment is made in step S48, that is, if the SOC has not reached the lower limit threshold value ST2, the process proceeds to step S32. In this case, in step S32, the maximum power WB is set based on the SOC calculated in step S46. On the other hand, if a negative determination is made in step S48, that is, when the SOC reaches the lower limit threshold value ST2, the maximum power WB is set to a constant reference output power WK2 (see FIG. 12B) in step S50. In the subsequent step S52, the high voltage battery 11 is continuously discharged using the reference output power WK2 set in step S50. In this embodiment, the processes of steps S50 and S52 correspond to the "low storage control unit".
 ステップS50の放電制御は、SOCが下限閾値ST2よりも小さい低蓄電状態において実施される。この放電制御では、閉路電圧CCVを用いて放電停止を制御する。本実施形態では、閉路電圧CCVを用いて放電停止を制御する上で、高電圧バッテリ11の放電を停止するための低圧側制限範囲XL(図7(B)参照)が予め定められている。閉路電圧CCVが低圧側制限範囲XLに属するようになった場合、つまり、閉路電圧CCVが低圧側制限範囲XLの上限である下限電圧VT2に到達した場合、高電圧バッテリ11が過放電状態となることを抑制するために高電圧バッテリ11の放電が停止される。 The discharge control in step S50 is performed in a low storage state where the SOC is smaller than the lower limit threshold value ST2. In this discharge control, the discharge stop is controlled by using the closed circuit voltage CCV. In the present embodiment, in controlling the discharge stop using the closed circuit voltage CCV, the low voltage side limit range XL (see FIG. 7B) for stopping the discharge of the high voltage battery 11 is predetermined. When the closed circuit voltage CCV belongs to the low voltage side limit range XL, that is, when the closed circuit voltage CCV reaches the lower limit voltage VT2 which is the upper limit of the low voltage side limit range XL, the high voltage battery 11 is in an overdischarged state. The discharge of the high voltage battery 11 is stopped in order to suppress this.
 本実施形態では、ステップS54において、ステップS18で取得された入出力電流IBに基づいて低圧側制限範囲XLを可変に設定する。具体的には、入出力電流IBに基づいて閉路電圧CCVと低圧側制限範囲XLとが連動して変動するように設定される。これにより、入出力電流IB及びバッテリ温度TMによらず高電圧バッテリ11が過放電状態となることを抑制できる。なお、本実施形態において、ステップS40,S54の処理が「範囲設定部」に相当する。 In the present embodiment, in step S54, the low voltage side limit range XL is variably set based on the input / output current IB acquired in step S18. Specifically, the closed circuit voltage CCV and the low voltage side limiting range XL are set to fluctuate in conjunction with each other based on the input / output current IB. As a result, it is possible to prevent the high voltage battery 11 from being over-discharged regardless of the input / output current IB and the battery temperature TM. In this embodiment, the processes of steps S40 and S54 correspond to the "range setting unit".
 続くステップS56において、閉路電圧CCVが下限電圧VT2よりも小さいかを判定する。ステップS56で否定判定すると、制御処理を終了する。一方、ステップS56で肯定判定すると、ステップS58において、ステップS50で設定された基準出力電力WK2を制限し、制御処理を終了する。ステップS58では、例えば図7(B)に示すように、閉路電圧CCVが下限電圧VT2よりも小さくなるほど小さくなる補正係数が予め設定されており、この補正係数を基準入力電力WK1に積算することで基準出力電力WK2を制限する。そのため、閉路電圧CCVの低下に伴い基準出力電力WK2は徐々に減少し、基準出力電力WK2がゼロとなることで放電が停止される。 In the following step S56, it is determined whether the closed circuit voltage CCV is smaller than the lower limit voltage VT2. If a negative determination is made in step S56, the control process ends. On the other hand, if an affirmative determination is made in step S56, the reference output power WK2 set in step S50 is limited in step S58, and the control process ends. In step S58, for example, as shown in FIG. 7B, a correction coefficient that becomes smaller as the closed circuit voltage CCV becomes smaller than the lower limit voltage VT2 is set in advance, and this correction coefficient is integrated into the reference input power WK1. Limit the reference output power WK2. Therefore, the reference output power WK2 gradually decreases as the closed circuit voltage CCV decreases, and the discharge is stopped when the reference output power WK2 becomes zero.
 続いて、図8に、ΔSOC算出処理の一例を示す。図8は、高電圧バッテリ11の放電中におけるΔSOCの推移を示す。図8において、(A)は、SOCの推移を示し、(B)は、ΔSOCの推移を示し、(C)は、リセットフラグFRの推移を示す。ここで、リセットフラグFRは、ΔSOC算出処理のステップS80における判定結果を示すフラグであり、ステップS80で肯定判定されるとオンとなり、ステップS80で否定判定されるとオフとなる。 Subsequently, FIG. 8 shows an example of ΔSOC calculation processing. FIG. 8 shows the transition of ΔSOC during discharging of the high voltage battery 11. In FIG. 8, (A) shows the transition of SOC, (B) shows the transition of ΔSOC, and (C) shows the transition of the reset flag FR. Here, the reset flag FR is a flag indicating the determination result in step S80 of the ΔSOC calculation process, and is turned on when a positive determination is made in step S80 and turned off when a negative determination is made in step S80.
 図8に示すように、時刻t1にIGスイッチ25がオン状態に切り替えられ、高電圧バッテリ11からの電力供給によりモータ13が駆動し、車両の走行が開始される。この時刻t1に、開路電圧OCVに基づいてSOCが算出され、ΔSOCはゼロにリセットされる。 As shown in FIG. 8, the IG switch 25 is switched to the ON state at time t1, the motor 13 is driven by the power supply from the high voltage battery 11, and the vehicle starts running. At this time t1, SOC is calculated based on the open circuit voltage OCV, and ΔSOC is reset to zero.
 車両の走行が開始されると、高電圧バッテリ11からモータ13への電力供給により、SOCが減少する。高電圧バッテリ11の放電中において、SOCは入出力電流IBの時間積分値に基づいて算出される。入出力電流IBの時間積分値を算出する際に、入出力電流IBを検出する電流センサ22の検出誤差GIが積算されるため、この検出誤差GIの積算によりΔSOCが生じる。 When the vehicle starts running, the SOC decreases due to the power supply from the high voltage battery 11 to the motor 13. While the high voltage battery 11 is being discharged, the SOC is calculated based on the time integral value of the input / output current IB. When calculating the time integration value of the input / output current IB, the detection error GI of the current sensor 22 that detects the input / output current IB is integrated, so that the integration of the detection error GI causes ΔSOC.
 本実施形態では、ΔSOCは、時刻t1からの経過時間TPとともに増加するように算出される。具体的には、時刻t1からの経過時間TPに対して時間増加率θで増加するように算出される。この時間増加率θは正の値であり、入出力電流IB及びバッテリ温度TMにより変動する(時刻t7、時刻t8参照)。ΔSOCは経過時間TPとともに増加するため、時刻t2におけるΔSOCは、時刻t2よりも遅い時刻t3におけるΔSOCよりも小さくなる。 In this embodiment, ΔSOC is calculated so as to increase with the elapsed time TP from the time t1. Specifically, it is calculated so as to increase by the time increase rate θ with respect to the elapsed time TP from the time t1. This time increase rate θ is a positive value and fluctuates depending on the input / output current IB and the battery temperature TM (see time t7 and time t8). Since ΔSOC increases with the elapsed time TP, ΔSOC at time t2 is smaller than ΔSOC at time t3, which is later than time t2.
 図9は、ΔSOCと最大電力WBの電力マージンΔWBとの関係を示す図である。ここで、電力マージンΔWBは、最大電力WBの設定誤差であり、ΔSOCを含んだSOCに基づいて最大電力WBを設定することで生じる。図9に示すように、電力マージンΔWBは、ΔSOCが大きいほど大きくなり、この電力マージンΔWBが大きくなると、最大電力WBを適切に設定することができず、設定される最大電力WBによっては、高電圧バッテリ11のΔSOC分の蓄電容量を使い切ることができず、高電圧バッテリ11が過放電状態となることを抑制することができない。 FIG. 9 is a diagram showing the relationship between ΔSOC and the power margin ΔWB of the maximum power WB. Here, the power margin ΔWB is a setting error of the maximum power WB, and is generated by setting the maximum power WB based on the SOC including ΔSOC. As shown in FIG. 9, the power margin ΔWB increases as ΔSOC increases, and when the power margin ΔWB increases, the maximum power WB cannot be set appropriately, and it is high depending on the set maximum power WB. It is not possible to use up the storage capacity of the voltage battery 11 for ΔSOC, and it is not possible to prevent the high voltage battery 11 from being over-discharged.
 本実施形態では、ΔSOCが経過時間TPとともに増加するため、例えば時刻t2のように、ΔSOCが小さいタイミングが存在する。ΔSOCが小さいタイミングでは、電力マージンΔWBが小さく設定される。そのため、このΔSOCが小さいタイミングを用いることで、高電圧バッテリ11の使い切りと過放電状態の抑制とを両立できる。 In the present embodiment, since ΔSOC increases with the elapsed time TP, there is a timing when ΔSOC is small, for example, at time t2. When ΔSOC is small, the power margin ΔWB is set small. Therefore, by using the timing at which the ΔSOC is small, it is possible to achieve both the use-up of the high-voltage battery 11 and the suppression of the over-discharged state.
 その後の時刻t4にΔSOCが誤差閾値ΔSTに到達すると、リセットフラグFRがオンに切り替えられる。リセットフラグFRがオンに切り替えられた状態で、時刻t5に車両の走行が停止されると、車両が走行停止中となる時刻t5から時刻t6までのリセット期間YRにおいて、ΔSOCがリセットされる。これにより、ΔSOCが過度に増加することを抑制でき、例えばΔSOCの増加に伴う電力マージンΔWBの増加により、高電圧バッテリ11の使い切りに支障が生じることを抑制できる。 When ΔSOC reaches the error threshold ΔST at the subsequent time t4, the reset flag FR is switched on. When the vehicle is stopped at time t5 with the reset flag FR turned on, ΔSOC is reset during the reset period YR from the time t5 to the time t6 when the vehicle is stopped. As a result, it is possible to suppress an excessive increase in ΔSOC, and for example, it is possible to suppress an increase in the power margin ΔWB accompanying an increase in ΔSOC, which hinders the use of the high-voltage battery 11.
 高電圧バッテリ11の放電中におけるΔSOCのリセットでは、ΔSOCは基準誤差ΔSKにリセットされる。基準誤差ΔSKは入出力電流IB及びバッテリ温度TMに基づいて設定される。そのため、入出力電流IB及びバッテリ温度TMによっては、基準誤差ΔSKを小さく設定することができ、高電圧バッテリ11の使い切りにおいて有利である。 When the ΔSOC is reset while the high-voltage battery 11 is discharging, the ΔSOC is reset to the reference error ΔSK. The reference error ΔSK is set based on the input / output current IB and the battery temperature TM. Therefore, depending on the input / output current IB and the battery temperature TM, the reference error ΔSK can be set small, which is advantageous in using up the high voltage battery 11.
 時刻t5から時刻t6までのリセット期間YRでは、時刻t5に、この時刻t5における入出力電流IBに基づいて基準誤差ΔSKが設定され、この基準誤差ΔSKにΔSOCがリセットされる。ΔSOCのリセットに伴って、時刻t5にリセットフラグFRがオフに切り替えられるとともに、経過時間TPがゼロにリセットされる。そして、時刻t6に車両の走行を再開すると、経過時間TPの計時を再開する。そのため、経過時間TPは、直前にΔSOCがリセットされたリセットタイミングからの経過時間を示している、ということができる。 In the reset period YR from time t5 to time t6, a reference error ΔSK is set at time t5 based on the input / output current IB at this time t5, and ΔSOC is reset to this reference error ΔSK. With the reset of ΔSOC, the reset flag FR is switched off at time t5, and the elapsed time TP is reset to zero. Then, when the vehicle resumes running at time t6, the time counting of the elapsed time TP is restarted. Therefore, it can be said that the elapsed time TP indicates the elapsed time from the reset timing at which ΔSOC was reset immediately before.
 これ以降、上記と同様の制御が繰り返される。具体的には、時刻t9にΔSOCが誤差閾値ΔSTに到達すると、リセットフラグFRがオンに切り替えられる。リセットフラグFRがオンに切り替えられた状態で、時刻t10に車両の走行が停止されると、車両が走行停止中となる時刻t10から時刻t11までのリセット期間YRにおいて、ΔSOCがリセットされる。 After that, the same control as above is repeated. Specifically, when ΔSOC reaches the error threshold ΔST at time t9, the reset flag FR is switched on. When the vehicle is stopped at time t10 with the reset flag FR turned on, ΔSOC is reset during the reset period YR from the time t10 to the time t11 when the vehicle is stopped.
 続いて、図10に、ΔSOCリセット処理の一例を示す。図10は、リセット期間YRにおける入出力電流IB及び閉路電圧CCVの推移を示し、具体的には、図8の時刻t5から時刻t6までのリセット期間YRにおけるこれらの値の推移を示す。図10において、(A)は、車速MVの推移を示し、(B)は、アクセル操作量ACの推移を示し、(C)は、入出力電流IBの推移を示し、(D)は、閉路電圧CCVの推移を示し、(E)は、閉路電圧CCVの変動量ΔVの推移を示す。 Subsequently, FIG. 10 shows an example of the ΔSOC reset process. FIG. 10 shows the transition of the input / output current IB and the closed circuit voltage CCV in the reset period YR, and specifically shows the transition of these values in the reset period YR from the time t5 to the time t6 in FIG. In FIG. 10, (A) shows the transition of the vehicle speed MV, (B) shows the transition of the accelerator operation amount AC, (C) shows the transition of the input / output current IB, and (D) shows the transition of the closed circuit. The transition of the voltage CCV is shown, and (E) shows the transition of the fluctuation amount ΔV of the closed circuit voltage CCV.
 図10に示すように、運転者によるアクセル操作量ACがゼロとされることで、時刻t5に車速MVがゼロとなると、高電圧バッテリ11からモータ13への電力供給が減少し、入出力電流IBが減少する。これに伴って、閉路電圧CCVが緩やかに開路電圧OCVに漸近するように上昇する。 As shown in FIG. 10, when the accelerator operation amount AC by the driver is set to zero and the vehicle speed MV becomes zero at time t5, the power supply from the high voltage battery 11 to the motor 13 decreases, and the input / output current decreases. IB decreases. Along with this, the closed circuit voltage CCV gradually rises so as to gradually approach the open circuit voltage OCV.
 入出力電流IB、及び閉路電圧CCVの上昇に伴う閉路電圧CCVの変動量ΔVは、時刻t5からの時間の経過とともに減少し、入出力電流IBは、時刻t21に電流閾値ITよりも低下し、変動量ΔVは、時刻t21よりも遅い時刻t22に変動閾値ΔVTよりも低下する。時刻t21と時刻t22とのうち、遅い時刻である時刻t22から判定期間YAに亘って、入出力電流IBが電流閾値ITよりも低い状態が継続しており、且つ変動量ΔVが変動閾値ΔVTよりも低い状態が継続している場合、時刻t22から判定期間YAが経過した時刻t23に、車両が走行停止中と判定される。 The fluctuation amount ΔV of the input / output current IB and the closed circuit voltage CCV due to the increase of the closed circuit voltage CCV decreases with the passage of time from the time t5, and the input / output current IB decreases below the current threshold IT at the time t21. The fluctuation amount ΔV is lower than the fluctuation threshold ΔVT at time t22, which is later than time t21. Of the time t21 and the time t22, the input / output current IB continues to be lower than the current threshold IT and the fluctuation amount ΔV is lower than the fluctuation threshold ΔVT from the later time t22 to the determination period YA. If the low state continues, it is determined that the vehicle is stopped at the time t23 when the determination period YA elapses from the time t22.
 時刻t23に車両が走行停止中と判定されると、まず、この時刻t23にΔSOCがリセットされる。具体的には、SOCが、開路電圧OCVに漸近するまで上昇した閉路電圧CCVに基づいて算出されて更新され、これに伴ってΔSOCが基準誤差ΔSKにリセットされる。車両の走行停止中に閉路電圧CCVに基づいてΔSOCをリセットすることで、高電圧バッテリ11の充放電中でもΔSOCをリセットできる。 When it is determined that the vehicle is stopped at time t23, ΔSOC is first reset at this time t23. Specifically, the SOC is calculated and updated based on the closed circuit voltage CCV that has risen until it approaches the open circuit voltage OCV, and the ΔSOC is reset to the reference error ΔSK accordingly. By resetting ΔSOC based on the closed circuit voltage CCV while the vehicle is stopped, the ΔSOC can be reset even during charging / discharging of the high-voltage battery 11.
 車両の走行停止中では、その後の車両の走行再開に備えるため、高電圧バッテリ11からモータ13への電力供給が継続されている。そのため、車両の走行停止中であっても、入出力電流IBが流れており、ΔSOCが増加する。したがって、車両の走行停止中では、ΔSOCは判定期間YA毎にリセットされており、例えば時刻t23から判定期間YAが経過した時刻t24に、ΔSOCがリセットされる。 While the vehicle is stopped, the electric power supply from the high voltage battery 11 to the motor 13 is continued in order to prepare for the subsequent resumption of the vehicle running. Therefore, the input / output current IB is flowing even when the vehicle is stopped, and ΔSOC increases. Therefore, while the vehicle is stopped, the ΔSOC is reset for each determination period YA. For example, the ΔSOC is reset at the time t24 when the determination period YA elapses from the time t23.
 また、車両の走行停止中では、前回ΔSOCがリセットされてから判定期間YAよりも短い期間YBしか経過しておらず、判定期間YAが経過していない場合でも、車両の走行が再開されると判定された場合には、実際に車両の走行が再開される前にΔSOCがリセットされる。 Further, while the vehicle is stopped, only YB, which is shorter than the determination period YA, has elapsed since the previous ΔSOC was reset, and even if the determination period YA has not elapsed, the vehicle is restarted. If determined, ΔSOC is reset before the vehicle is actually restarted.
 具体的には、時刻t25に運転者のアクセル操作が開始され、その後の時刻t26にアクセル操作量ACが第1アクセル閾値AT1を超えると、車両の走行が再開されると判定される。その後の時刻t6にアクセル操作量ACが第2アクセル閾値AT2を超えると、高電圧バッテリ11からの電力供給により車両の走行が再開される。これにより、車速MVが増加し、入出力電流IBが増加するとともに、閉路電圧CCVが開路電圧OCVから離間して低下する。第1アクセル閾値AT1を用いて車両の走行再開を判定することで、実際に車両の走行が再開されてΔSOCが増加を開始する前に、車両の走行停止中におけるΔSOCの増加分をリセットできる。これにより、車両の走行再開後にΔSOCが過度に増加することを抑制できる。 Specifically, when the driver's accelerator operation is started at time t25 and the accelerator operation amount AC exceeds the first accelerator threshold value AT1 at time t26 thereafter, it is determined that the vehicle is restarted. When the accelerator operation amount AC exceeds the second accelerator threshold value AT2 at the subsequent time t6, the running of the vehicle is restarted by the power supply from the high voltage battery 11. As a result, the vehicle speed MV increases, the input / output current IB increases, and the closed circuit voltage CCV decreases apart from the open circuit voltage OCV. By determining the resumption of running of the vehicle using the first accelerator threshold value AT1, it is possible to reset the increase in ΔSOC while the running of the vehicle is stopped before the running of the vehicle is actually restarted and the ΔSOC starts to increase. As a result, it is possible to prevent the ΔSOC from being excessively increased after the vehicle is restarted.
 続いて、図11に、制御処理の一例を示す。図11は、高電圧バッテリ11の放電中における最大電力WBの推移を示す。図11において、(A)は、SOCの推移を示し、(B)は、最大電力WBの推移を示し、(C)は、閉路電圧CCVの推移を示す。なお、図11に示す範囲では、ΔSOCが誤差閾値ΔSTよりも大きくならないため、ΔSOCリセット処理が実施されないものとする。 Subsequently, FIG. 11 shows an example of control processing. FIG. 11 shows the transition of the maximum power WB during discharging of the high voltage battery 11. In FIG. 11, (A) shows the transition of SOC, (B) shows the transition of the maximum power WB, and (C) shows the transition of the closed circuit voltage CCV. In the range shown in FIG. 11, since ΔSOC does not become larger than the error threshold value ΔST, it is assumed that the ΔSOC reset process is not performed.
 図11に示すように、高電圧バッテリ11の放電中において、SOCは、高電圧バッテリ11からのモータ13への電力供給により低下する。このSOCの低下に伴って、閉路電圧CCVが低下するとともに、最大電力WBの設定値が変動する。最大電力WBは、SOCに基づいて設定される。これにより、高電圧バッテリ11の電力超過による高電圧バッテリ11の劣化を抑制でき、高電圧バッテリ11を保護できる。 As shown in FIG. 11, while the high-voltage battery 11 is being discharged, the SOC decreases due to the power supply from the high-voltage battery 11 to the motor 13. Along with this decrease in SOC, the closed circuit voltage CCV decreases and the set value of the maximum power WB fluctuates. The maximum power WB is set based on the SOC. As a result, deterioration of the high-voltage battery 11 due to excess power of the high-voltage battery 11 can be suppressed, and the high-voltage battery 11 can be protected.
 具体的には、最大電力WBは、SOCと最大電力WBとの対応情報を用いて設定される。この対応情報は、高電圧バッテリ11の電力超過を考慮して予め設定されている。図12は、SOCと最大電力WBとの対応情報を示す図である。図12において、(A)は、充電時における対応情報を示し、(B)は、放電時における対応情報を示す。図12(B)に実線で示すように、放電時における対応情報では、SOCが大きいほど、最大電力WBは大きくなるように設定され、バッテリ温度TMが高いほど、最大電力WBが大きくなるように設定される。 Specifically, the maximum power WB is set by using the correspondence information between the SOC and the maximum power WB. This correspondence information is preset in consideration of the power excess of the high voltage battery 11. FIG. 12 is a diagram showing correspondence information between SOC and maximum power WB. In FIG. 12, (A) shows correspondence information at the time of charging, and (B) shows correspondence information at the time of discharging. As shown by the solid line in FIG. 12B, the correspondence information at the time of discharge is set so that the larger the SOC, the larger the maximum power WB, and the higher the battery temperature TM, the larger the maximum power WB. Set.
 高電圧バッテリ11の放電中では、高電圧バッテリ11の電力超過による高電圧バッテリ11の劣化を抑制するために、ΔSOCを含むSOC、具体的にはSOCからΔSOCを減算したもの(SOC-ΔSOC)をSOCとして算出し、このSOCに基づいて最大電力WBを設定する。以下、SOCからΔSOCを減算したものをSOLという。図11に示すように、SOLは、高電圧バッテリ11からのモータ13への電力供給により、SOCよりも先に下限閾値ST2に到達する。SOLが下限閾値ST2に到達した場合、高電圧バッテリ11が過放電状態となることを抑制することために、高電圧バッテリ11の放電を停止することが考えられる。 During the discharge of the high-voltage battery 11, the SOC including ΔSOC, specifically, the SOC obtained by subtracting ΔSOC from the SOC in order to suppress the deterioration of the high-voltage battery 11 due to the power excess of the high-voltage battery 11 (SOC-ΔSOC). Is calculated as SOC, and the maximum power WB is set based on this SOC. Hereinafter, the value obtained by subtracting ΔSOC from SOC is referred to as SOL. As shown in FIG. 11, the SOL reaches the lower limit threshold value ST2 before the SOC due to the power supply from the high voltage battery 11 to the motor 13. When the SOL reaches the lower limit threshold value ST2, it is conceivable to stop the discharge of the high voltage battery 11 in order to prevent the high voltage battery 11 from being over-discharged.
 しかし、SOLが下限閾値ST2に到達した場合、SOCは下限閾値ST2にΔSOCを加えた値となっている。対応情報を用いて説明すると、図12(B)に破線で示すように、SOLに対応する対応情報は、実線で示すSOCに対応する対応情報に対して、SOLが増加する側にΔSOCだけシフトしている。そのため、SOLが下限閾値ST2に到達した場合に、高電圧バッテリ11の放電を停止すると、高電圧バッテリ11のΔSOC分の蓄電容量を使い切ることができない。 However, when the SOL reaches the lower limit threshold value ST2, the SOC is a value obtained by adding ΔSOC to the lower limit threshold value ST2. Explaining using the correspondence information, as shown by the broken line in FIG. 12B, the correspondence information corresponding to the SOL is shifted by ΔSOC to the side where the SOL increases with respect to the correspondence information corresponding to the SOC shown by the solid line. are doing. Therefore, if the discharge of the high-voltage battery 11 is stopped when the SOL reaches the lower limit threshold value ST2, the storage capacity of the high-voltage battery 11 for ΔSOC cannot be used up.
 本実施形態では、図12(B)に破線で示すように、SOLが下限閾値ST2に到達した場合、最大電力WBを基準出力電力WK2に設定して、SOCが下限閾値ST2に到達するまで高電圧バッテリ11の放電を継続する。そのため、SOLに基づいて最大電力WBを設定した場合でも、ΔSOC分の蓄電容量を使い切ることができる。ここで、基準出力電力WK2は、対応情報において、下限閾値ST2に対応付けられている最大電力WBであり、SOCに関わらず一定の値である。基準出力電力WK2が対応情報に基づいて設定されることで、最大電力WBを基準出力電力WK2に設定した放電継続中においても、高電圧バッテリ11の電力超過による高電圧バッテリ11の劣化を抑制できる。なお、基準出力電力WK2は、モータ13により車両を走行させることが可能な電力に設定されている。 In the present embodiment, as shown by the broken line in FIG. 12B, when the SOL reaches the lower limit threshold value ST2, the maximum power WB is set to the reference output power WK2, and the SOC is high until the lower limit threshold value ST2 is reached. Continue discharging the voltage battery 11. Therefore, even when the maximum power WB is set based on the SOL, the storage capacity for ΔSOC can be used up. Here, the reference output power WK2 is the maximum power WB associated with the lower limit threshold value ST2 in the corresponding information, and is a constant value regardless of the SOC. By setting the reference output power WK2 based on the corresponding information, it is possible to suppress the deterioration of the high voltage battery 11 due to the power excess of the high voltage battery 11 even during the continuous discharge in which the maximum power WB is set to the reference output power WK2. .. The reference output power WK2 is set to a power that allows the vehicle to travel by the motor 13.
 具体的には、図11に示すように、時刻t32にSOLが下限閾値ST2に到達すると、最大電力WBが基準出力電力WK2に設定され、高電圧バッテリ11の放電が継続される。この放電により、SOC及び閉路電圧CCVが低下する。この放電は、閉路電圧CCVが下限電圧VT2に到達するまで行われ、時刻t33に閉路電圧CCVが下限電圧VT2に到達すると、つまり閉路電圧CCVが低圧側制限範囲XLに属するようになると、図7(B)に示す補正係数により基準出力電力WK2が制限される。その結果、SOCが下限閾値ST2に到達する時刻t34に、最大電力WBがゼロとなり、閉路電圧CCVが使用下限電圧VLとなることで放電が停止される。 Specifically, as shown in FIG. 11, when the SOL reaches the lower limit threshold value ST2 at time t32, the maximum power WB is set to the reference output power WK2, and the discharge of the high voltage battery 11 is continued. Due to this discharge, the SOC and the closed circuit voltage CCV decrease. This discharge is performed until the closed circuit voltage CCV reaches the lower limit voltage VT2, and when the closed circuit voltage CCV reaches the lower limit voltage VT2 at time t33, that is, when the closed circuit voltage CCV belongs to the low voltage side limit range XL, FIG. The reference output power WK2 is limited by the correction coefficient shown in (B). As a result, at the time t34 when the SOC reaches the lower limit threshold value ST2, the maximum power WB becomes zero and the closed circuit voltage CCV becomes the lower limit voltage VL, so that the discharge is stopped.
 本実施形態では、下限電圧VT2は、入出力電流IB及びバッテリ温度TMに応じて設定される。図13は、入出力電流IBと上限電圧VT1及び下限電圧VT2との関係を示す図である。図13において、(A)は、充電時における入出力電流IBと上限電圧VT1との関係を示し、(B)は、放電時における入出力電流IBと下限電圧VT2との関係を示す。図13(B)に示すように、放電時において、入出力電流IBが大きいほど、下限電圧VT2は低圧側となるように設定され、バッテリ温度TMが高いほど、下限電圧VT2は低圧側となるように設定される。 In the present embodiment, the lower limit voltage VT2 is set according to the input / output current IB and the battery temperature TM. FIG. 13 is a diagram showing the relationship between the input / output current IB and the upper limit voltage VT1 and the lower limit voltage VT2. In FIG. 13, (A) shows the relationship between the input / output current IB at the time of charging and the upper limit voltage VT1, and (B) shows the relationship between the input / output current IB at the time of discharging and the lower limit voltage VT2. As shown in FIG. 13B, the lower limit voltage VT2 is set to the low voltage side as the input / output current IB is larger during discharge, and the lower limit voltage VT2 is set to the lower voltage side as the battery temperature TM is higher. Is set.
 図13(B)に、放電時における入出力電流IBと閉路電圧CCVとの関係を併せて示す。放電時において、閉路電圧CCVは、入出力電流IBが大きいほど低圧側に変動する。本実施形態では、閉路電圧CCVの入出力電流IB特性に連動させて下限電圧VT2を変動させる。これにより、入出力電流IBによらない一定の条件下で閉路電圧CCVが下限電圧VT2に到達したかを判定でき、高電圧バッテリ11が過放電状態となることを抑制できる。 FIG. 13B also shows the relationship between the input / output current IB at the time of discharge and the closed circuit voltage CCV. At the time of discharge, the closed circuit voltage CCV fluctuates to the low pressure side as the input / output current IB increases. In the present embodiment, the lower limit voltage VT2 is changed in conjunction with the input / output current IB characteristic of the closed circuit voltage CCV. As a result, it is possible to determine whether the closed circuit voltage CCV has reached the lower limit voltage VT2 under a certain condition that does not depend on the input / output current IB, and it is possible to suppress the high voltage battery 11 from being over-discharged.
 なお、上記では、高電圧バッテリ11の放電中における最大電力WBの推移を示したが、高電圧バッテリ11の充電中における最大電力WBの推移についても同様である。具体的には、高電圧バッテリ11の充電中において、SOCは、モータ13の回生発電によるモータ13から高電圧バッテリ11への電力供給により増加する。このSOCの増加に伴って、閉路電圧CCVが増加するとともに、最大電力WBの設定値が変動する。具体的には、最大電力WBは、SOCと最大電力WBとの対応情報を用いて設定され、図12(A)に実線で示すように、充電時における対応情報では、SOCが大きいほど、最大電力WBは大きくなるように設定され、バッテリ温度TMが高いほど、最大電力WBが大きくなるように設定される。 In the above, the transition of the maximum power WB during the discharge of the high voltage battery 11 is shown, but the same applies to the transition of the maximum power WB during the charging of the high voltage battery 11. Specifically, during charging of the high-voltage battery 11, the SOC increases due to the power supply from the motor 13 to the high-voltage battery 11 by the regenerative power generation of the motor 13. As the SOC increases, the closed circuit voltage CCV increases and the set value of the maximum power WB fluctuates. Specifically, the maximum power WB is set using the correspondence information between the SOC and the maximum power WB, and as shown by the solid line in FIG. 12 (A), in the correspondence information at the time of charging, the larger the SOC, the maximum. The power WB is set to be large, and the higher the battery temperature TM is, the larger the maximum power WB is set.
 高電圧バッテリ11の充電中では、高電圧バッテリ11の電力超過による高電圧バッテリ11の劣化を抑制するために、ΔSOCを含むSOC、具体的にはSOCにΔSOCを加算したもの(SOC+ΔSOC)をSOCとして算出し、このSOCに基づいて最大電力WBを設定する。以下、SOCにΔSOCを加算したものをSOH(図11参照)という。SOHは、モータ13から高電圧バッテリ11への電力供給により、SOCよりも先に上限閾値ST1に到達する。SOHが上限閾値ST1に到達した場合、高電圧バッテリ11が過充電状態となることを抑制することために、高電圧バッテリ11の充電を停止することが考えられる。 During charging of the high-voltage battery 11, in order to suppress deterioration of the high-voltage battery 11 due to excess power of the high-voltage battery 11, SOC including ΔSOC, specifically, SOC obtained by adding ΔSOC to SOC (SOC + ΔSOC) is used as SOC. The maximum power WB is set based on this SOC. Hereinafter, the sum of SOC and ΔSOC is referred to as SOH (see FIG. 11). The SOH reaches the upper limit threshold value ST1 before the SOC by supplying power from the motor 13 to the high voltage battery 11. When the SOH reaches the upper limit threshold value ST1, it is conceivable to stop charging the high-voltage battery 11 in order to prevent the high-voltage battery 11 from being overcharged.
 しかし、SOHが上限閾値ST1に到達した場合、SOCは上限閾値ST1からΔSOCを引いた値となっている。対応情報を用いて説明すると、図12(A)に破線で示すように、SOHに対応する対応情報は、実線で示すSOCに対応する対応情報に対して、SOLが減少する側にΔSOCだけシフトしている。そのため、SOHが上限閾値ST1に到達した場合に、高電圧バッテリ11の充電を停止すると、高電圧バッテリ11のΔSOC分の蓄電容量を使い切ることができない。 However, when the SOH reaches the upper limit threshold value ST1, the SOC is a value obtained by subtracting ΔSOC from the upper limit threshold value ST1. Explaining using the correspondence information, as shown by the broken line in FIG. 12A, the correspondence information corresponding to the SOH shifts by ΔSOC to the side where the SOL decreases with respect to the correspondence information corresponding to the SOC shown by the solid line. are doing. Therefore, if the charging of the high-voltage battery 11 is stopped when the SOH reaches the upper limit threshold value ST1, the storage capacity of the high-voltage battery 11 for ΔSOC cannot be used up.
 本実施形態では、図12(A)に破線で示すように、SOHが上限閾値ST1に到達した場合、最大電力WBを基準入力電力WK1に設定して、SOCが上限閾値ST1に到達するまで高電圧バッテリ11の充電を継続する。そのため、SOHに基づいて最大電力WBを設定した場合でも、ΔSOC分の蓄電容量を使い切ることができる。ここで、基準入力電力WK1は、対応情報において、上限閾値ST1に対応付けられている最大電力WBであり、SOCに関わらず一定の値である。基準入力電力WK1が対応情報に基づいて設定されることで、最大電力WBを基準入力電力WK1に設定した放電継続中においても、高電圧バッテリ11の電力超過による高電圧バッテリ11の劣化を抑制できる。 In the present embodiment, as shown by the broken line in FIG. 12A, when the SOH reaches the upper limit threshold value ST1, the maximum power WB is set to the reference input power WK1 and the SOC is high until the upper limit threshold value ST1 is reached. Continue charging the voltage battery 11. Therefore, even when the maximum power WB is set based on the SOH, the storage capacity for ΔSOC can be used up. Here, the reference input power WK1 is the maximum power WB associated with the upper limit threshold value ST1 in the corresponding information, and is a constant value regardless of the SOC. By setting the reference input power WK1 based on the corresponding information, it is possible to suppress the deterioration of the high voltage battery 11 due to the power excess of the high voltage battery 11 even during the continuous discharge in which the maximum power WB is set to the reference input power WK1. ..
 具体的には、SOHが上限閾値ST1に到達すると、最大電力WBが基準入力電力WK1に設定され、高電圧バッテリ11の充電が継続される。この充電により、SOC及び閉路電圧CCVが増加する。この充電は、閉路電圧CCVが上限電圧VT1に到達するまで行われ、閉路電圧CCVが上限電圧VT1に到達すると、つまり閉路電圧CCVが高圧側制限範囲XHに属するようになると、図7(A)に示す補正係数により基準入力電力WK1が制限される。その結果、SOCが上限閾値ST1に到達する時刻に充電が停止される。 Specifically, when the SOH reaches the upper limit threshold value ST1, the maximum power WB is set to the reference input power WK1 and the charging of the high voltage battery 11 is continued. This charging increases the SOC and the closed circuit voltage CCV. This charging is performed until the closed circuit voltage CCV reaches the upper limit voltage VT1, and when the closed circuit voltage CCV reaches the upper limit voltage VT1, that is, when the closed circuit voltage CCV belongs to the high voltage side limiting range XH, FIG. 7 (A) The reference input power WK1 is limited by the correction coefficient shown in. As a result, charging is stopped at the time when the SOC reaches the upper limit threshold value ST1.
 本実施形態では、上限電圧VT1は、入出力電流IB及びバッテリ温度TMに応じて設定される。図13(A)に示すように、充電時において、入出力電流IBが大きいほど、上限電圧VT1は高圧側となるように設定され、バッテリ温度TMが高いほど、上限電圧VT1は高圧側となるように設定される。図13(A)に、充電時における入出力電流IBと閉路電圧CCVとの関係を併せて示す。充電時において、閉路電圧CCVは、入出力電流IBが大きいほど高圧側に変動する。本実施形態では、閉路電圧CCVの入出力電流IB特性に連動させて上限電圧VT1を変動させる。これにより、入出力電流IBによらない一定の条件下で、閉路電圧CCVが上限電圧VT1に到達したかを判定でき、高電圧バッテリ11が過充電状態となることを抑制できる。 In the present embodiment, the upper limit voltage VT1 is set according to the input / output current IB and the battery temperature TM. As shown in FIG. 13 (A), during charging, the larger the input / output current IB, the higher the upper voltage VT1 is set, and the higher the battery temperature TM, the higher the upper voltage VT1 becomes. Is set. FIG. 13A also shows the relationship between the input / output current IB and the closed circuit voltage CCV during charging. At the time of charging, the closed circuit voltage CCV fluctuates toward the high voltage side as the input / output current IB increases. In the present embodiment, the upper limit voltage VT1 is changed in conjunction with the input / output current IB characteristic of the closed circuit voltage CCV. As a result, it is possible to determine whether the closed circuit voltage CCV has reached the upper limit voltage VT1 under certain conditions regardless of the input / output current IB, and it is possible to prevent the high voltage battery 11 from being overcharged.
 以上説明した本実施形態によれば、以下の効果を奏する。 According to the present embodiment described above, the following effects are obtained.
 ・閉路電圧CCVは、入出力電流IBに基づいて変動する。本実施形態では、閉路電圧CCVと同様に、入出力電流IBの電流に基づいて、制限範囲XH,XLを可変に設定する。そのため、高電圧バッテリ11の充放電中において、閉路電圧CCVと制限範囲XH,XLとを、入出力電流IBに基づいて連動して変動させることができる。これにより、入出力電流IBによらず、閉路電圧CCVが制限範囲XH,XLに含まれるか否かを判定でき、高電圧バッテリ11を適切に保護できる。 ・ The cycle voltage CCV fluctuates based on the input / output current IB. In the present embodiment, the limiting ranges XH and XL are variably set based on the input / output current IB as in the closed circuit voltage CCV. Therefore, during charging / discharging of the high-voltage battery 11, the closed circuit voltage CCV and the limiting ranges XH and XL can be interlocked and fluctuated based on the input / output current IB. As a result, it is possible to determine whether or not the closed circuit voltage CCV is included in the limiting ranges XH and XL regardless of the input / output current IB, and the high voltage battery 11 can be appropriately protected.
 ・充電中の閉路電圧CCVは、入出力電流IBが大きいほど大きくなる。本実施形態では、この閉路電圧CCVの変動に対応させて、入出力電流IBが大きいほど高圧側制限範囲XHを高圧側に設定する。これにより、高電圧バッテリ11が過充電状態となることを適切に抑制できる。 ・ The closed circuit voltage CCV during charging increases as the input / output current IB increases. In the present embodiment, the higher the input / output current IB is, the higher the high voltage side limiting range XH is set on the high voltage side in correspondence with the fluctuation of the closed circuit voltage CCV. As a result, it is possible to appropriately prevent the high-voltage battery 11 from being overcharged.
 ・特に、本実施形態では、高電圧バッテリ11が高蓄電状態となった後に最大電力WBを一定に設定して充電を継続し、この充電継続中に、最大電力WBに代わって閉路電圧CCVに基づいて高電圧バッテリ11の充電を制御する。この場合において、入出力電流IBに基づいて高圧側制限範囲XHを可変に設定する。これにより、高電圧バッテリ11の使い切りを図りつつも、高電圧バッテリ11が過充電状態となることを適切に抑制できる。 -In particular, in the present embodiment, after the high-voltage battery 11 is in a high storage state, the maximum power WB is set to a constant value and charging is continued, and during this charging continuation, the closed circuit voltage CCV is used instead of the maximum power WB. Based on this, the charging of the high voltage battery 11 is controlled. In this case, the high voltage side limiting range XH is variably set based on the input / output current IB. As a result, it is possible to appropriately suppress the high-voltage battery 11 from being overcharged while trying to use up the high-voltage battery 11.
 ・一方、放電中の閉路電圧CCVは、入出力電流IBが大きいほど小さくなる。本実施形態では、この閉路電圧CCVの変動に対応させて、入出力電流IBが大きいほど低圧側制限範囲XLを低圧側に設定する。これにより、高電圧バッテリ11が過放電状態となることを適切に抑制できる。 ・ On the other hand, the closed circuit voltage CCV during discharge decreases as the input / output current IB increases. In the present embodiment, the lower limit range XL on the low voltage side is set to the low voltage side as the input / output current IB increases in response to the fluctuation of the closed circuit voltage CCV. As a result, it is possible to appropriately prevent the high-voltage battery 11 from being over-discharged.
 ・特に、本実施形態では、高電圧バッテリ11が低蓄電状態となった後に最大電力WBを一定に設定して放電を継続し、この放電継続中に、最大電力WBに代わって閉路電圧CCVに基づいて高電圧バッテリ11の放電を制御する。この場合において、入出力電流IBに基づいて低圧側制限範囲XLを可変に設定する。これにより、高電圧バッテリ11の使い切りを図りつつも、高電圧バッテリ11が過放電状態となることを適切に抑制できる。 -In particular, in the present embodiment, after the high-voltage battery 11 is in a low storage state, the maximum power WB is set to a constant value and discharge is continued, and during this discharge continuation, the closed circuit voltage CCV is used instead of the maximum power WB. Based on this, the discharge of the high voltage battery 11 is controlled. In this case, the low voltage side limiting range XL is variably set based on the input / output current IB. As a result, it is possible to appropriately suppress the high-voltage battery 11 from being over-discharged while trying to use up the high-voltage battery 11.
 ・入出力電流IBは、バッテリ温度TMに応じて変動する。本実施形態では、バッテリ温度TMに基づいて制限範囲XH,XLを可変に設定するため、このバッテリ温度TMによる入出力電流IBの変動を考慮して、高電圧バッテリ11を適切に保護できる。 ・ The input / output current IB fluctuates according to the battery temperature TM. In the present embodiment, since the limit ranges XH and XL are variably set based on the battery temperature TM, the high voltage battery 11 can be appropriately protected in consideration of the fluctuation of the input / output current IB due to the battery temperature TM.
 (第2実施形態)
 以下、第2実施形態について、第1実施形態との相違点を中心に図14を参照しつつ説明する。本実施形態では、制御処理において高電圧バッテリ11の劣化度DEを算出し、算出された劣化度DEに基づいて高圧側制限範囲XH及び低圧側制限範囲XLを可変に設定する点で第1実施形態と異なる。ここで、劣化度DEは、高電圧バッテリ11の初期状態における満充電容量CBに対する現在の満充電容量CBの割合を示す。
(Second Embodiment)
Hereinafter, the second embodiment will be described with reference to FIG. 14, focusing on the differences from the first embodiment. In the first embodiment, the deterioration degree DE of the high voltage battery 11 is calculated in the control process, and the high voltage side limit range XH and the low voltage side limit range XL are variably set based on the calculated deterioration degree DE. Different from the form. Here, the degree of deterioration DE indicates the ratio of the current full charge capacity CB to the full charge capacity CB in the initial state of the high voltage battery 11.
 図14に、本実施形態の制御処理のフローチャートを示す。なお、図14において、先の図2に示した処理と同一の処理については、便宜上、同一のステップ番号を付して説明を省略する。 FIG. 14 shows a flowchart of the control process of this embodiment. Note that, in FIG. 14, the same processing as that shown in FIG. 2 above is given the same step number for convenience, and the description thereof will be omitted.
 図14に示すように、本実施形態の制御処理では、ステップS38で、ステップS36で設定された基準入力電力WK1を用いて高電圧バッテリ11の充電を継続すると、ステップS39において、入出力電流IBの時間積分値に基づいて劣化度DEを算出する。具体的には、所定周期で取得された入出力電流IBの時間積分値を算出し、この時間積分値が大きいほど大きくなるように劣化度DEを算出する。 As shown in FIG. 14, in the control process of the present embodiment, when charging of the high voltage battery 11 is continued using the reference input power WK1 set in step S36 in step S38, the input / output current IB is continued in step S39. The degree of deterioration DE is calculated based on the time integral value of. Specifically, the time integral value of the input / output current IB acquired in a predetermined cycle is calculated, and the deterioration degree DE is calculated so that the larger the time integral value is, the larger the time integral value is.
 続くステップS40において、ステップS39で算出された劣化度DEに基づいて、高圧側制限範囲XHを可変に設定する。高電圧バッテリ11の充電中では、劣化度DEが大きいほど、上限電圧VT1は低圧側となるように設定される。 In the following step S40, the high voltage side limit range XH is variably set based on the deterioration degree DE calculated in step S39. During charging of the high voltage battery 11, the upper limit voltage VT1 is set to be on the low voltage side as the deterioration degree DE is larger.
 また、ステップS52で、ステップS50で設定された基準出力電力WK2を用いて高電圧バッテリ11の放電を継続すると、ステップS53において、入出力電流IBの時間積分値に基づいて劣化度DEを算出する。なお、本実施形態において、ステップS39,S53の処理が「劣化算出部」に相当する。 Further, in step S52, when the discharge of the high voltage battery 11 is continued using the reference output power WK2 set in step S50, the deterioration degree DE is calculated based on the time integral value of the input / output current IB in step S53. .. In this embodiment, the processes of steps S39 and S53 correspond to the “deterioration calculation unit”.
 続くステップS54において、ステップS53で算出された劣化度DEに基づいて、低圧側制限範囲XLを可変に設定する。高電圧バッテリ11の放電中では、劣化度DEが大きいほど、下限電圧VT2は高圧側となるように設定される。 In the following step S54, the low voltage side limit range XL is variably set based on the deterioration degree DE calculated in step S53. During discharging of the high voltage battery 11, the lower limit voltage VT2 is set to be on the high voltage side as the deterioration degree DE is larger.
 ・以上説明した本実施形態では、高電圧バッテリ11の劣化度DEに基づいて高圧側制限範囲XH及び低圧側制限範囲XLが可変に設定される。高電圧バッテリ11は、劣化により蓄電容量の最大値が変動し、これに伴って高圧側制限範囲XH及び低圧側制限範囲XLが変動する。高電圧バッテリ11の充放電中に劣化度DEを算出し、その劣化度DEに基づいて高圧側制限範囲XH及び低圧側制限範囲XLを可変に設定することで、高電圧バッテリ11の劣化を考慮して高電圧バッテリ11を適切に保護できる。 In the present embodiment described above, the high voltage side limit range XH and the low voltage side limit range XL are variably set based on the deterioration degree DE of the high voltage battery 11. The maximum value of the storage capacity of the high-voltage battery 11 fluctuates due to deterioration, and the high-voltage side limit range XH and the low-voltage side limit range XL fluctuate accordingly. Deterioration of the high-voltage battery 11 is considered by calculating the deterioration degree DE during charging / discharging of the high-voltage battery 11 and variably setting the high-voltage side limit range XH and the low-voltage side limit range XL based on the deterioration degree DE. The high voltage battery 11 can be appropriately protected.
 (その他の実施形態)
 なお、上記各実施形態は、以下のように変更して実施してもよい。
(Other embodiments)
In addition, each of the above-described embodiments may be modified as follows.
 ・高電圧バッテリ11は、リチウムイオン蓄電池リチウムに限られず、充放電可能な他の二次電池であってもよい。 -The high-voltage battery 11 is not limited to the lithium ion storage battery lithium, and may be another secondary battery that can be charged and discharged.
 ・上記実施形態では、SOCが上限閾値ST1又は下限閾値ST2に到達していない場合に、SOCに基づいて最大電力WBを設定する例を示したが、これに限られない。例えば、上記場合に、SOCに基づいて高電圧バッテリ11からの入出力が可能な最大電流を設定して、高電圧バッテリ11の充放電を行ってもよい。 -In the above embodiment, an example in which the maximum power WB is set based on the SOC when the SOC has not reached the upper limit threshold value ST1 or the lower limit threshold value ST2 is shown, but the present invention is not limited to this. For example, in the above case, the high voltage battery 11 may be charged / discharged by setting the maximum current that can be input / output from the high voltage battery 11 based on the SOC.
 ・上記実施形態では、高電圧バッテリ11の充放電中に入出力電流IBの時間積分値に基づいてSOCを算出する例を示したが、これに限られない。例えば、1つの直流抵抗とRC等価回路とで構成された電池モデルに基づいてSOCを算出してもよい。劣化度DEの算出についても同様である。 -In the above embodiment, an example of calculating the SOC based on the time integral value of the input / output current IB during charging / discharging of the high voltage battery 11 is shown, but the present invention is not limited to this. For example, the SOC may be calculated based on a battery model composed of one DC resistor and an RC equivalent circuit. The same applies to the calculation of the degree of deterioration DE.
 ・上記実施形態では、高蓄電状態において、閉路電圧CCVが上限電圧VT1に到達した場合に、高電圧バッテリ11の充電が停止される例を示したが、これに限られない。例えば、上記場合に、高電圧バッテリ11の最大電力WBを制限することにより、高電圧バッテリ11が過充電状態となることを抑制してもよい。 -In the above embodiment, the charging of the high voltage battery 11 is stopped when the closed circuit voltage CCV reaches the upper limit voltage VT1 in the high storage state, but the present invention is not limited to this. For example, in the above case, the maximum power WB of the high-voltage battery 11 may be limited to prevent the high-voltage battery 11 from being overcharged.
 また、低蓄電状態において、閉路電圧CCVが下限電圧VT2に到達した場合に、高電圧バッテリ11の放電が停止される例を示したが、これに限られない。例えば、上記場合に、高電圧バッテリ11の最大電力WBを制限することにより、高電圧バッテリ11が過放電状態となることを抑制してもよい。 Further, in the low storage state, when the closed circuit voltage CCV reaches the lower limit voltage VT2, the discharge of the high voltage battery 11 is stopped, but the present invention is not limited to this. For example, in the above case, the maximum power WB of the high-voltage battery 11 may be limited to prevent the high-voltage battery 11 from being over-discharged.
 ・上記実施形態では、ECU20が、温度センサ15を用いてバッテリ温度TMを取得する例を示したが、これに限られない。例えば、ECU20が、運転者のアクセル操作量ACや車速MVに基づいて、バッテリ温度TMを推定することでバッテリ温度TMを取得してもよい。 -In the above embodiment, an example is shown in which the ECU 20 acquires the battery temperature TM using the temperature sensor 15, but the present invention is not limited to this. For example, the ECU 20 may acquire the battery temperature TM by estimating the battery temperature TM based on the accelerator operation amount AC of the driver and the vehicle speed MV.
 ・上記実施形態では、入出力電流IBに基づいて制限範囲XH,XLを可変に設定する場合、ノイズ等による入出力電流IBの一時的な変動により閉路電圧CCVが制限範囲XH,XLに属するようになることがある。この場合に、最大電力WBが誤って制限されないように、所定期間における入出力電流IBの平均値等の代表値に基づいて制限範囲XH,XLを可変に設定してもよい。 -In the above embodiment, when the limit ranges XH and XL are variably set based on the input / output current IB, the closed circuit voltage CCV belongs to the limit ranges XH and XL due to a temporary fluctuation of the input / output current IB due to noise or the like. May become. In this case, the limit ranges XH and XL may be variably set based on a representative value such as an average value of the input / output current IB in a predetermined period so that the maximum power WB is not erroneously limited.
 また、ノイズ等ではなく、例えば加速や減速等によっても入出力電流IBが変動する。この変動により、閉路電圧CCVが制限範囲XH,XLに属する状態から、制限範囲XH,XLに属しない状態に切り替わることがある。この場合、入出力電流IBの変動により再び制限範囲XH,XLに属する状態に切り替わる可能性が高いことから、加速や減速等によっても入出力電流IBが変動した場合には、最大電力WBの制限を継続してもよい。 In addition, the input / output current IB fluctuates not due to noise or the like but also due to acceleration or deceleration, for example. Due to this fluctuation, the closed circuit voltage CCV may switch from a state belonging to the limiting ranges XH and XL to a state not belonging to the limiting ranges XH and XL. In this case, there is a high possibility that the input / output current IB will change to a state belonging to the limiting ranges XH and XL again. Therefore, if the input / output current IB fluctuates due to acceleration or deceleration, the maximum power WB is limited. May continue.
 この場合、補正係数を、制限範囲XH,XLに属しない状態に切り替わる前の補正係数に維持してもよければ、制限範囲XH,XLに属しない状態であることを考慮して、比較的高い補正係数である「0.9」などの固定値としてもよい。 In this case, the correction coefficient may be maintained at the correction coefficient before switching to the state not belonging to the limiting ranges XH and XL, or is relatively high in consideration of the state not belonging to the limiting ranges XH and XL. It may be a fixed value such as "0.9" which is a correction coefficient.
 ・本開示に記載の制御装置及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御装置及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御装置及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。 • The controls and techniques described in this disclosure are provided by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. It may be realized. Alternatively, the control device and method thereof described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits. Alternatively, the control device and method thereof described in the present disclosure may be a combination of a processor and memory programmed to perform one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured. Further, the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although this disclosure has been described in accordance with the examples, it is understood that the disclosure is not limited to the examples and structures. The present disclosure also includes various modifications and modifications within an equal range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are also within the scope of the present disclosure.

Claims (7)

  1.  蓄電装置(11)の充放電中の端子間電圧(CCV)が、前記蓄電装置の高蓄電状態、又は低蓄電状態における所定の制限範囲(XH,XL)に属する場合に、前記蓄電装置からの電力の入出力が可能な最大電力(WB)を制限する制御装置(20)であって、
     前記蓄電装置の充放電中の電流(IB)を所定周期で取得する電流取得部(S18)と、
     前記電流取得部により取得された電流に基づいて前記制限範囲を可変に設定する範囲設定部(S40,54)と、を備える制御装置。
    When the voltage between terminals (CCV) during charging / discharging of the power storage device (11) belongs to a predetermined limit range (XH, XL) in the high power storage state or the low power storage state of the power storage device, the power storage device is used. A control device (20) that limits the maximum power (WB) that can be input and output.
    A current acquisition unit (S18) that acquires the current (IB) during charging / discharging of the power storage device at a predetermined cycle, and
    A control device including a range setting unit (S40, 54) that variably sets the limit range based on the current acquired by the current acquisition unit.
  2.  前記制限範囲は、前記高蓄電状態における高圧側制限範囲(XH)を含み、
     前記範囲設定部は、前記蓄電装置が充電中である場合に、前記電流取得部により取得された電流が大きいほど、前記高圧側制限範囲を高圧側に設定する請求項1に記載の制御装置。
    The limited range includes the high voltage side limited range (XH) in the high storage state.
    The control device according to claim 1, wherein the range setting unit sets the high-voltage side limiting range to the high-voltage side as the current acquired by the current acquisition unit increases when the power storage device is being charged.
  3.  前記蓄電装置の蓄電状態を示すSOCを算出する制御装置であって、
     前記SOCに基づいて、前記蓄電装置の充電中に前記蓄電装置が前記高蓄電状態となったかを判定する高蓄電状態判定部(S30)と、
     前記高蓄電状態判定部により前記高蓄電状態となったと判定された場合に、前記最大電力を、前記SOCに関わらず一定の基準入力電力に設定して前記蓄電装置の充電を行う高蓄電制御部(S36,38)と、を備え、
     前記範囲設定部は、前記最大電力が前記基準入力電力に設定された場合に、前記電流取得部により取得された電流に基づいて前記高圧側制限範囲を可変に設定する請求項2に記載の制御装置。
    A control device that calculates an SOC indicating the storage state of the power storage device.
    Based on the SOC, a high power storage state determination unit (S30) for determining whether the power storage device is in the high power storage state while charging the power storage device, and
    When the high power storage state determination unit determines that the high power storage state has been reached, the high power storage control unit charges the power storage device by setting the maximum power to a constant reference input power regardless of the SOC. (S36, 38) and
    The control according to claim 2, wherein the range setting unit variably sets the high-voltage side limit range based on the current acquired by the current acquisition unit when the maximum power is set to the reference input power. apparatus.
  4.  前記制限範囲は、前記低蓄電状態における低圧側制限範囲(XL)を含み、
     前記範囲設定部は、前記蓄電装置が放電中である場合に、前記電流取得部により取得された電流が大きいほど、前記低圧側制限範囲を低圧側に設定する請求項1から請求項3までのいずれか一項に記載の制御装置。
    The limited range includes the low voltage side limited range (XL) in the low storage state.
    According to claims 1 to 3, the range setting unit sets the low voltage side limiting range to the low voltage side as the current acquired by the current acquisition unit increases when the power storage device is discharging. The control device according to any one item.
  5.  前記蓄電装置の蓄電状態を示すSOCを算出する制御装置であって、
     前記SOCに基づいて、前記蓄電装置の放電中に前記蓄電装置が前記低蓄電状態となったかを判定する低蓄電状態判定部(S48)と、
     前記低蓄電状態判定部により前記低蓄電状態となったと判定された場合に、前記最大電力を、前記SOCに関わらず一定の基準出力電力に設定して前記蓄電装置の放電を行う低蓄電制御部(S50,52)と、を備え、
     前記範囲設定部は、前記最大電力が前記基準出力電力に設定された場合に、前記電流取得部により取得された電流に基づいて前記低圧側制限範囲を可変に設定する請求項4に記載の制御装置。
    A control device that calculates an SOC indicating the storage state of the power storage device.
    Based on the SOC, a low storage state determination unit (S48) for determining whether the power storage device has reached the low storage state during discharge of the power storage device, and
    When the low storage state determination unit determines that the low storage state has been reached, the low storage control unit discharges the power storage device by setting the maximum power to a constant reference output power regardless of the SOC. (S50, 52) and
    The control according to claim 4, wherein the range setting unit variably sets the low-voltage side limit range based on the current acquired by the current acquisition unit when the maximum power is set to the reference output power. apparatus.
  6.  前記蓄電装置の温度(TM)を取得する温度取得部(S18)を備え、
     前記範囲設定部は、前記電流取得部により取得された電流及び前記温度取得部により取得された温度に基づいて前記制限範囲を可変に設定する請求項1から請求項5までのいずれか一項に記載の制御装置。
    A temperature acquisition unit (S18) for acquiring the temperature (TM) of the power storage device is provided.
    The range setting unit is any one of claims 1 to 5, which variably sets the limit range based on the current acquired by the current acquisition unit and the temperature acquired by the temperature acquisition unit. The control device described.
  7.  前記蓄電装置の劣化度(DE)を算出する劣化算出部を備え、
     前記範囲設定部は、前記劣化算出部により算出された劣化度に基づいて前記制限範囲を可変に設定する請求項1から請求項6までのいずれか一項に記載の制御装置。
    A deterioration calculation unit for calculating the deterioration degree (DE) of the power storage device is provided.
    The control device according to any one of claims 1 to 6, wherein the range setting unit variably sets the limit range based on the degree of deterioration calculated by the deterioration calculation unit.
PCT/JP2020/012961 2019-04-03 2020-03-24 Control device WO2020203454A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112020001791.5T DE112020001791T5 (en) 2019-04-03 2020-03-24 Control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019071553A JP7111044B2 (en) 2019-04-03 2019-04-03 Control device
JP2019-071553 2019-04-03

Publications (1)

Publication Number Publication Date
WO2020203454A1 true WO2020203454A1 (en) 2020-10-08

Family

ID=72668152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012961 WO2020203454A1 (en) 2019-04-03 2020-03-24 Control device

Country Status (3)

Country Link
JP (1) JP7111044B2 (en)
DE (1) DE112020001791T5 (en)
WO (1) WO2020203454A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117356010A (en) * 2021-07-27 2024-01-05 日本汽车能源株式会社 Battery control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165211A (en) * 2005-12-16 2007-06-28 Hitachi Vehicle Energy Ltd Secondary battery management device
JP2015119558A (en) * 2013-12-18 2015-06-25 トヨタ自動車株式会社 Power storage system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030748A (en) 1998-07-14 2000-01-28 Nissan Motor Co Ltd Input - output power arithmetic unit of battery
JP4961830B2 (en) * 2006-05-15 2012-06-27 トヨタ自動車株式会社 Charge / discharge control device, charge / discharge control method for electric storage device, and electric vehicle
JP2018014820A (en) * 2016-07-20 2018-01-25 三菱自動車工業株式会社 External power supply device of electric vehicle
JP7077572B2 (en) 2017-10-10 2022-05-31 大日本印刷株式会社 Image output device, image output method, and image output system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165211A (en) * 2005-12-16 2007-06-28 Hitachi Vehicle Energy Ltd Secondary battery management device
JP2015119558A (en) * 2013-12-18 2015-06-25 トヨタ自動車株式会社 Power storage system

Also Published As

Publication number Publication date
JP2020171143A (en) 2020-10-15
DE112020001791T5 (en) 2021-12-30
JP7111044B2 (en) 2022-08-02

Similar Documents

Publication Publication Date Title
JP6244477B2 (en) Charge control device and charge control method
JP2019030189A (en) Electric power system
JP6969396B2 (en) Electric vehicle
WO2020203454A1 (en) Control device
WO2020203455A1 (en) Control device
WO2020203453A1 (en) Control device
JP2004003460A (en) Controlling equipment and control method of vehicle
JP2010273523A (en) Charge control device
US9007034B2 (en) Electric power generation control system for vehicle
US20230173924A1 (en) Storage battery control apparatus
WO2020203457A1 (en) Control device
WO2020203456A1 (en) Control device
JP2004111101A (en) Control device for on-vehicle storage battery
JP2014011826A (en) Battery state of charge controller for vehicle
JP7310645B2 (en) Control device
JP6610410B2 (en) Automobile
JP2007318913A (en) State-of-charge controller of battery
JP2006049198A (en) Capacity adjusting device of battery pack
JP5954188B2 (en) Secondary battery management device
JP4049044B2 (en) Voltage generator for vehicle generator
JP7318564B2 (en) Control device
JP7271343B2 (en) Estimation device, battery system and estimation method
JP2000348780A (en) Battery charge state detection device
JP4821231B2 (en) Battery pack capacity adjustment device
JP2022022714A (en) Storage battery control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782816

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20782816

Country of ref document: EP

Kind code of ref document: A1