WO2020203389A1 - Stretched film, laminate, cover window, and stretched film manufacturing method - Google Patents

Stretched film, laminate, cover window, and stretched film manufacturing method Download PDF

Info

Publication number
WO2020203389A1
WO2020203389A1 PCT/JP2020/012601 JP2020012601W WO2020203389A1 WO 2020203389 A1 WO2020203389 A1 WO 2020203389A1 JP 2020012601 W JP2020012601 W JP 2020012601W WO 2020203389 A1 WO2020203389 A1 WO 2020203389A1
Authority
WO
WIPO (PCT)
Prior art keywords
stretched film
film
unit
semi
acid
Prior art date
Application number
PCT/JP2020/012601
Other languages
French (fr)
Japanese (ja)
Inventor
篤 南谷
基 白神
英明 武田
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2021511465A priority Critical patent/JPWO2020203389A1/ja
Publication of WO2020203389A1 publication Critical patent/WO2020203389A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids

Definitions

  • the present invention relates to a stretched film, a laminate, a cover window, and a method for manufacturing a stretched film. More specifically, a stretched film containing a semi-aromatic polyamide having a dicarboxylic acid unit containing a naphthalene dicarboxylic acid unit and a diamine unit containing an aliphatic diamine unit, and a laminate, a cover window, and a stretched film using the stretched film. Regarding the method.
  • the display used in all electronic devices such as TVs and smartphones is equipped with a cover window to protect the display.
  • the cover window has a structure in which a base material (hereinafter referred to as a substrate material) is provided with a layer (hereinafter referred to as a hard coat layer) for imparting adhesiveness and surface properties to an adhesive. It is a body. Since the cover window is installed on the surface of a display such as a liquid crystal display or an organic EL display, it has high transparency that allows light from the internal display to pass through, and also causes scratches due to contact with an object from the outside. To prevent it, it is necessary to have a certain surface hardness. For this reason, cover windows made of glass substrates are currently applied to various displays.
  • a polyimide film is known as a candidate for the above material.
  • the polyimide film is generally difficult to melt-mold, there is a problem that it is difficult to obtain a transparent film. Therefore, a transparent film that can be easily melt-molded is desired.
  • Acrylic film is a typical material having high transparency, flexibility, and melt moldability.
  • Patent Document 1 shows that an acrylic film produced by a specific production method has a small dimensional change due to heat shrinkage and can be suitably used as an optical application film such as a polarizer protective film.
  • the hard coat layer is not cracked due to exposure to high temperature in the usage environment of the cover window, the coating process of the hard coat layer, etc. There is a problem that (called a crack) and warpage of the film occur. Further, since such a problem may be caused, a hard coat material having a high hardness cannot be applied, and there is a limit in improving the hardness of the cover window.
  • Patent Document 2 shows that a semi-aromatic polyamide resin obtained from a 2,6-naphthalenedicarboxylic acid unit and a 1,9-nonanediamine unit is excellent in mechanical properties, heat resistance, chemical resistance and the like. However, Patent Document 2 does not describe the physical properties of the film, and the behavior, physical properties, etc. when stretched are not clarified.
  • Patent Document 3 discloses a transparent polyamide film having a melting point of 270 ° C., a haze of less than 12%, and a light transmittance of at least 88%.
  • the polyamide film of Patent Document 3 is produced by using a polyamide resin in which at least two or more kinds of dicarboxylic acid units and two or more kinds of diamine units are copolymerized, the crystallinity of the film is low and the film is at high temperature. The change in the elasticity of the film is large, and both heat resistance and transparency are not achieved.
  • the present invention is to obtain a film having high transparency and flexibility, and having heat resistance capable of preventing warpage and fine cracks of the film. Make it an issue.
  • the present inventors have obtained a stretched film containing a semi-aromatic polyamide having a dicarboxylic acid unit containing a naphthalene dicarboxylic acid unit and a diamine unit containing an aliphatic diamine unit at 50 ° C. to 150 ° C. It was found that a stretched film having a linear expansion rate of ⁇ 50 ⁇ 10 -6 / ° C. or higher and 50 ⁇ 10-6 / ° C. or lower can solve the above-mentioned problems, and further studies were carried out based on the findings to complete the present invention. .. That is, the present invention is as follows. [1] A stretched film containing a semi-aromatic polyamide.
  • the semi-aromatic polyamide contains a dicarboxylic acid unit and a diamine unit, the dicarboxylic acid unit contains a naphthalenedicarboxylic acid unit, and the diamine unit contains an aliphatic diamine unit having 4 to 12 carbon atoms.
  • [3] The stretched film according to the above [1] or [2], wherein 60 mol% or more and 100 mol% or less of the naphthalene dicarboxylic acid unit is 2,6-naphthalene dicarboxylic acid.
  • [4] The stretched film according to any one of the above [1] to [3], wherein the aliphatic diamine unit having 4 to 12 carbon atoms contains an aliphatic diamine having 6 to 10 carbon atoms.
  • An unstretched film containing the semi-aromatic polyamide was prepared.
  • a method for producing a stretched film wherein the unstretched film is subjected to a stretching treatment including at least a stretching step.
  • a method for producing a stretched film containing a semi-aromatic polyamide contains a dicarboxylic acid unit and a diamine unit, the dicarboxylic acid unit contains a naphthalene dicarboxylic acid unit, and the diamine unit contains a diamine having 4 to 12 carbon atoms.
  • the stretching temperature is equal to or higher than the glass transition temperature of the semi-aromatic polyamide of ⁇ 10 ° C.
  • the stretching rate is 100 to 5,000% / min, and the stretching ratio is 2 to 16 times.
  • a method for producing a stretched film wherein the heat fixing temperature is equal to or higher than the recrystallization temperature of the unstretched film. [11] The method for producing a stretched film according to the above [9] or [10], wherein 60 mol% or more and 100 mol% or less of the naphthalene dicarboxylic acid unit is 2,6-naphthalene dicarboxylic acid.
  • the present invention it is possible to provide a stretched film having high transparency and flexibility and suppressing the occurrence of fine cracks and warpage, a laminate using the same, and a cover window. Further, it is possible to provide a method for producing a stretched film having high transparency and suppressing the occurrence of fine cracks and warpage of the film.
  • the present invention will be described in detail.
  • the preferred provisions can be arbitrarily adopted, and it can be said that a combination of preferable ones is more preferable.
  • the description of "XX to YY” means “XX or more and YY or less”.
  • the lower limit value and the upper limit value described stepwise for a preferable numerical range can be independently combined. For example, from the description of "preferably 10 to 90, more preferably 30 to 60", the "favorable lower limit value (10)" and the “more preferable upper limit value (60)” are combined to obtain “10 to 60". You can also do it.
  • -unit (where "-" indicates a monomer) means “a constituent unit derived from”, and for example, “dicarboxylic acid unit” means “derived from dicarboxylic acid”. It means “constituent unit”, and “diamine unit” means “constituent unit derived from diamine”.
  • derived with respect to each structural unit means that the monomer has undergone a structural change required for polymerization.
  • (meth) acrylic acid means both “acrylic acid” and “methacrylic acid”, and other similar terms are also used.
  • the stretched film according to the embodiment of the present invention is a stretched film containing a semi-aromatic polyamide, in which the semi-aromatic polyamide contains a dicarboxylic acid unit and a diamine unit, the dicarboxylic acid unit contains a naphthalene dicarboxylic acid unit, and the diamine unit.
  • the physical properties of the stretched film will be described later, and first, each element constituting the stretched film will be described.
  • the semi-aromatic polyamide used in the stretched film according to the embodiment of the present invention has a dicarboxylic acid unit and a diamine unit.
  • the dicarboxylic acid unit contains a naphthalene dicarboxylic acid unit
  • the diamine unit contains an aliphatic diamine unit having 4 to 12 carbon atoms.
  • the dicarboxylic acid unit contains a naphthalene dicarboxylic acid unit, and preferably 40 mol% or more and 100 mol% or less is a naphthalene dicarboxylic acid unit.
  • the dicarboxylic acid unit contains a naphthalene carboxylic acid unit, it is advantageous to exhibit various physical property improving effects such as heat resistance.
  • the content of the naphthalene carboxylic acid unit in the dicarboxylic acid unit is 40 mol% or more, it becomes easy to exhibit various physical property improving effects such as heat resistance in the polyamide film.
  • the content of the naphthalene carboxylic acid unit in the dicarboxylic acid unit is more preferably 60 mol% or more, further preferably 80 mol% or more, and further preferably 90 mol% or more. More preferably, it is particularly preferably 100 mol%.
  • naphthalenedicarboxylic acid unit examples include 1,2-naphthalenedicarboxylic acid, 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 1,6-naphthalenedicarboxylic acid, and 1 , 7-Naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid and other constituent units derived from naphthalenedicarboxylic acid. Be done.
  • 2,6-naphthalene dicarboxylic acid is preferable from the viewpoint of expression of various physical properties such as heat resistance and reactivity with diamine.
  • the content of the constituent unit derived from 2,6-naphthalenedicarboxylic acid in the naphthalene dicarboxylic acid unit is preferably 60 mol% or more, more preferably 80 mol% or more. , 90 mol% or more is more preferable, and the closer to 100 mol% (substantially 100 mol%) is preferable.
  • the dicarboxylic acid unit can include a structural unit derived from a dicarboxylic acid other than naphthalenedicarboxylic acid as long as the effect of the present invention is not impaired.
  • the other dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelli acid, suberic acid, azelaic acid, sebacic acid, undecandicarboxylic acid, dodecanedicarboxylic acid, dimethylmalonic acid, and , 2-Diethylsuccinic acid, 2,2-dimethylglutaric acid, 2-methyladipic acid, trimethyladiponic acid and other aliphatic dicarboxylic acids; 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1, Cyclic aliphatic dicarboxylic acids such as 4-cyclohexanedicarboxylic acid, cycloheptan
  • the content of the constituent unit derived from the other dicarboxylic acid in the dicarboxylic acid unit is preferably 50 mol% or less, more preferably 30 mol% or less, still more preferably 20 mol% or less. It is particularly preferably 10 mol% or less.
  • the diamine unit contains an aliphatic diamine unit having 4 to 12 carbon atoms, and preferably 40 mol% or more and 100 mol% or less is an aliphatic diamine unit having 4 to 12 carbon atoms. Since the diamine unit contains an aliphatic diamine unit having 4 to 12 carbon atoms, it is advantageous for exhibiting various physical property improving effects such as heat resistance. When the total content of the aliphatic diamine unit having 4 to 12 carbon atoms in the diamine unit is 40 mol% or more, it becomes easy to exhibit various physical property improving effects such as heat resistance in the polyamide.
  • the total content of the aliphatic diamine units having 4 to 12 carbon atoms in the diamine unit is more preferably 60 mol% or more, and more preferably 80 mol% or more. Is even more preferable, 90 mol% or more is even more preferable, and 100 mol% is particularly preferable.
  • Examples of the aliphatic diamine unit having 4 to 12 carbon atoms include 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexamethylenediamine, 1,7-heptandiamine, and 1,8-octanediamine.
  • 1,9-Nonandiamine 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine and other linear aliphatic diamines; 1-butyl-1,2- Etandiamine, 1,1-dimethyl-1,4-butanediamine, 1-ethyl-1,4-butanediamine, 1,2-dimethyl-1,4-butanediamine, 1,3-dimethyl-1,4-Butanediamine, 1,4-dimethyl-1,4-butanediamine, 2-methyl-1,3-propanediamine, 2-methyl-1,4-butanediamine, 2,3-dimethyl-1,4-butanediamine , 2-Methyl-1,5-pentanediamine, 3-methyl-1,5-pentanediamine, 2,5-dimethyl-1,6-hexanediamine, 2,4-dimethyl-1,6-hexanediamine, 3 , 3-Dimethyl-1,6-hexanediamine, 2,2-dimethyl-1,6-he
  • Only one type of these constituent units may be contained, or two or more types may be contained.
  • a structural unit derived from at least one diamine selected from the group consisting of 8-octanediamine is preferable, and 1,9-nonandiamine and 2-methyl-1,8-octanediamine are more preferably contained.
  • the diamine unit can include a structural unit derived from a diamine other than the aliphatic diamine having 4 to 12 carbon atoms as long as the effect of the present invention is not impaired.
  • the other diamines include aromatic diamines and alicyclic diamines.
  • the aromatic diamine include p-phenylenediamine, m-phenylenediamine, p-xylylenediamine, m-xylylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, 4,4. '-Diaminodiphenyl ether and the like can be mentioned.
  • Examples of the alicyclic diamine include cyclohexanediamine, methylcyclohexanediamine, isophoronediamine, norbornanedimethyldiamine, 1,3-bisaminomethylcyclohexane, 1,4-bisaminomethylcyclohexane and the like. Only one type of structural unit derived from these other diamines may be contained, or two or more types may be contained.
  • the content of the constituent units derived from the other diamines in the diamine unit is preferably 30 mol% or less, more preferably 20 mol% or less, and further preferably 10 mol% or less.
  • the molar ratio [dicarboxylic acid unit / diamine unit] of the dicarboxylic acid unit to the diamine unit in the semi-aromatic polyamide is preferably 45/55 to 55/45.
  • the molar ratio of the dicarboxylic acid unit and the diamine unit can be adjusted according to the blending ratio (molar ratio) of the raw material dicarboxylic acid and the raw material diamine.
  • the total ratio of the dicarboxylic acid unit and the diamine unit in the semi-aromatic polyamide shall be 70 mol% or more. It is preferably 80 mol% or more, more preferably 90 mol% or more, 95 mol% or more, and even 100 mol%.
  • the total ratio of the dicarboxylic acid unit and the diamine unit is in the above range, it becomes easy to obtain a polyamide having more excellent physical properties.
  • the semi-aromatic polyamide may further contain an aminocarboxylic acid unit in addition to the dicarboxylic acid unit and the diamine unit.
  • the aminocarboxylic acid unit include lactams such as caprolactam and lauryllactam; and constituent units derived from aminocarboxylic acids such as 11-aminoundecanoic acid and 12-aminododecanoic acid.
  • the content of the aminocarboxylic acid unit in the semi-aromatic polyamide is preferably 40 mol% or less, preferably 20 mol% or less, based on 100 mol% of the total of the dicarboxylic acid unit and the diamine unit constituting the semi-aromatic polyamide. Is more preferable.
  • the semi-aromatic polyamide is a structural unit derived from a trivalent or higher valent carboxylic acid such as trimellitic acid, trimesic acid, and pyromellitic acid, as long as the effect of the present invention is not impaired, and can be melt-molded. It can also be included.
  • the semi-aromatic polyamide may contain a structural unit (terminal encapsulant unit) derived from the end encapsulant.
  • the terminal encapsulant unit is preferably 1.0 mol% or more, more preferably 1.2 mol% or more, and 1.5 mol% or more with respect to 100 mol% of the diamine unit. Is more preferably 10 mol% or less, more preferably 7.5 mol% or less, still more preferably 6.5 mol% or less.
  • the content of the terminal encapsulant unit is within the above range, it becomes easy to obtain a polyamide having excellent film moldability.
  • the content of the terminal encapsulant unit can be set within the above desired range by appropriately adjusting the amount of the end encapsulant when the polymerization raw material is charged. Considering that the monomer component volatilizes during polymerization, it is desirable to finely adjust the amount of the terminal encapsulant charged so that a desired amount of the terminal encapsulant unit is introduced into the obtained polyamide.
  • a method for determining the content of the terminal encapsulant unit in the semi-aromatic polyamide for example, as shown in JP-A-7-228690, the solution viscosity is measured, and this is combined with the number average molecular weight.
  • a method of obtaining the value based on the integrated value of is mentioned, and the latter is preferable.
  • a monofunctional compound having reactivity with a terminal amino group or a terminal carboxyl group can be used. Specific examples thereof include monocarboxylic acids, acid anhydrides, monoisocyanates, monoacid halides, monoesters, monoalcohols and monoamines. From the viewpoint of reactivity and stability of the sealing terminal, a monocarboxylic acid is preferable as the terminal sealing agent for the terminal amino group, and a monoamine is preferable as the terminal sealing agent for the terminal carboxyl group. From the viewpoint of ease of handling, a monocarboxylic acid is more preferable as the terminal encapsulant.
  • the monocarboxylic acid used as the terminal encapsulant is not particularly limited as long as it has reactivity with an amino group.
  • acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, capric acid, and laurin for example, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, capric acid, and laurin.
  • Alicyclic monocarboxylic acids such as acids, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, isobutyric acid; alicyclic monocarboxylic acids such as cyclopentanecarboxylic acid and cyclohexanecarboxylic acid; benzoic acid, toluic acid, Aromatic monocarboxylic acids such as ⁇ -naphthalenecarboxylic acid, ⁇ -naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid, phenylacetic acid; any mixture thereof and the like can be mentioned.
  • the monoamine used as the terminal encapsulant is not particularly limited as long as it has reactivity with a carboxyl group.
  • methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine and stearyl are not particularly limited.
  • Adipose monoamines such as amines, dimethylamines, diethylamines, dipropylamines and dibutylamines; alicyclic monoamines such as cyclohexylamines and dicyclohexylamines; aromatic monoamines such as aniline, toluidine, diphenylamines and naphthylamines; any mixture thereof and the like.
  • the semi-aromatic polyamide preferably has an intrinsic viscosity ⁇ inh of 0.1 dl / g or more, preferably 0.4 dl / g or more, measured at a concentration of 0.2 g / dl and a temperature of 30 ° C. using concentrated sulfuric acid as a solvent. More preferably, it is more preferably 0.6 dl / g or more, particularly preferably 0.8 dl / g or more, and more preferably 3.0 dl / g or less, and 2.0 dl / g or less. It is more preferably less than or equal to 1.8 dl / g or less.
  • the intrinsic viscosity ⁇ inh of the polyamide is within the above range, it becomes easier to improve various physical properties such as moldability and heat resistance of the film.
  • the melting point (Tm) of the semi-aromatic polyamide is not particularly limited and can be, for example, 260 ° C. or higher and 270 ° C. or higher. However, since the effect of the present invention is more remarkable, the temperature is 280 ° C. or higher. It is preferable to have.
  • the upper limit of the melting point of the semi-aromatic polyamide is not particularly limited, but it is preferably 330 ° C. or lower in consideration of moldability and the like.
  • the melting point of the semi-aromatic polyamide can be determined as the peak temperature of the melting peak that appears when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimetry (DSC) device, and more specifically, it will be described later. It can be obtained by the method described in the example.
  • DSC differential scanning calorimetry
  • the glass transition temperature (Tg) of the semi-aromatic polyamide is not particularly limited and can be, for example, 100 ° C. or higher and 110 ° C. or higher. However, since the effect of the present invention is more pronounced, 125 ° C. The above is preferable.
  • the upper limit of the glass transition temperature of the semi-aromatic polyamide is not particularly limited, but it is preferably 180 ° C. or lower in consideration of moldability and the like.
  • the glass transition temperature of the semi-aromatic polyamide can be determined as the temperature of the inflection point that appears when the temperature is raised at a rate of 20 ° C./min using a differential scanning calorimetry (DSC) device, more specifically described later. It can be obtained by the method described in the examples.
  • DSC differential scanning calorimetry
  • the semi-aromatic polyamide can be produced by any method known as a method for producing a crystalline polyamide, for example, a melt polymerization method, a solid phase polymerization method, which uses a dicarboxylic acid and a diamine as raw materials. It can be produced by a method such as a melt extrusion polymerization method. Among these, the solid phase polymerization method is preferable from the viewpoint that thermal deterioration during polymerization can be suppressed more satisfactorily.
  • 2-methyl-1,8-octanediamine and 1,9-nonanediamine are used as the aliphatic diamine having 4 to 12 carbon atoms
  • these can be produced by known methods.
  • known methods include a method of distilling a crude diamine reaction solution obtained by performing a reductive amination reaction using dialdehyde as a starting material.
  • 2-methyl-1,8-octanediamine and 1,9-nonanediamine can be obtained by fractional distillation of the above-mentioned crude diamine reaction solution.
  • the semi-aromatic polyamide is, for example, first added with a diamine, a dicarboxylic acid, and if necessary, a catalyst and an end-capping agent in a batch to produce a nylon salt, and then heat-polymerized at a temperature of 200 to 250 ° C. It can be produced by solid-phase polymerization or polymerization using a melt extruder. When the final stage of polymerization is carried out by solid phase polymerization, it is preferably carried out under reduced pressure or under an inert gas flow, and when the polymerization temperature is in the range of 200 to 280 ° C., the polymerization rate is high and the productivity is excellent. Coloring and gelation can be effectively suppressed.
  • the polymerization temperature is preferably 370 ° C. or lower, and when polymerization is carried out under such conditions, semi-aromatic polyamide with almost no decomposition and little deterioration can be easily obtained.
  • Examples of the catalyst that can be used in producing the semi-aromatic polyamide include phosphoric acid, phosphorous acid, hypophosphorous acid, and salts or esters thereof.
  • Examples of the above salts or esters include phosphoric acid, phosphite or hypophosphoric acid, potassium, sodium, magnesium, vanadium, calcium, zinc, cobalt, manganese, tin, tungsten, germanium, titanium, antimony and the like.
  • the amount of the catalyst used is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and 1.0% by mass or less with respect to 100% by mass of the total mass of the raw materials. It is preferably 0.5% by mass or less, and more preferably 0.5% by mass or less.
  • the amount of the catalyst used is equal to or higher than the above lower limit, the polymerization proceeds satisfactorily. If it is not more than the above upper limit, impurities derived from the catalyst are less likely to occur, and for example, when a polyamide or a polyamide composition containing the same is made into a film, it becomes easy to prevent defects due to the impurities.
  • the semi-aromatic polyamide may be blended with other components as long as the effects of the present invention are not impaired to form a polyamide composition.
  • a stretched film containing a semi-aromatic polyamide can be obtained by performing a stretching treatment described later using a semi-aromatic polyamide or polyamide composition.
  • Other components include, for example, pigments and dyes such as carbon black, niglosin, titanium oxide; ultraviolet absorbers; light stabilizers such as hindered amines; organics such as hindered phenols, thios, phosphorus and amines.
  • Inorganic antioxidants such as a combination of copper halides such as copper iodide and copper bromide and alkali metals halides such as potassium iodide and potassium bromide; antistatic agents; fluorescent whitening agents; Brominated polymers such as brominated polystyrene, flame retardant aids such as antimony oxide; lubricants such as aliphatic amides, fatty acid esters, fatty acid metal salts, polyethylene wax, polypropylene wax, silica; polyphenylene sulfide, liquid crystal polymers, polyethylene, polystyrene, Other polymers such as polyester, aliphatic polyamide, semi-aromatic polyamide, polyphenylene oxide, polyolefin-based elastomer, styrene-based elastomer, polyester elastomer, polyamide elastomer; organic and inorganic powders or various fibrous fillers, etc.
  • Inorganic antioxidants such as a combination of copper
  • the aliphatic polyamide or semi-aromatic polyamide as other components contained in the polyamide composition has a chemical structure different from that of the semi-aromatic polyamide used in the stretched film according to the embodiment.
  • the content of the semi-aromatic polyamide in the polyamide composition is, for example, 20% by mass or more, 50% by mass or more, 70% by mass or more, 85% by mass or more, 95% by mass or more, based on the total mass of the polyamide composition. It can be 99% by mass or more.
  • the content of the above other components in the polyamide composition is not particularly limited and can be appropriately adjusted according to the type of the other components and the use of the polyamide composition. For example, with respect to the total mass of the polyamide composition. Therefore, it can be 80% by mass or less, 50% by mass or less, 30% by mass or less, 15% by mass or less, 5% by mass or less, 1% by mass or less, and the like.
  • polycaproamide nylon 6
  • polyhexamethylene adipamide nylon 66
  • polytetramethylene adipamide nylon 46
  • Polytetramethylene sebacamide (nylon 410), polypentamethylene adipamide (nylon 56), polypentamethylene sebacamide (nylon 510), polyhexamethylene sebacamide (nylon 610), polyhexamethylene dodecamide (nylon 610) Nylon 612), Polydecamethylene adipamide (Nylon 106), Polydecamethylene sebacamide (Nylon 1010), Polydecamethylene dodecamide (Nylon 1012), Polyundecaneamide (Nylon 11), Polydodecaneamide (Nylon 12) ), Polycaproamide / Polyhexamethylene adipamide copolymer (Nylon 6/66), Polytetramethylene terephthalamide (Nylon 4T), Polyhexamethylene terephthalamide (Nylon 6T), Polytetramethylene terephthalamide / Polyhexamethylene terephthalamide Amide (nylon 6T / 4T), polyhexamethylene adipamide / polyhexamethylene ter
  • Examples of the method of adding the above-mentioned various additives include a method of adding the semi-aromatic polyamide at the time of polymerization, a method of dry blending the semi-aromatic polyamide with melt kneading, and a method of adding the semi-aromatic polyamide at the time of film molding.
  • the method for producing the polyamide composition is not particularly limited, and a method capable of uniformly mixing the semi-aromatic polyamide and the above other components can be preferably adopted.
  • a method of melt-kneading using a single-screw extruder, a twin-screw extruder, a kneader, a Banbury mixer or the like is usually preferably adopted.
  • the melt-kneading conditions are not particularly limited, and examples thereof include a method of melt-kneading for about 1 to 30 minutes in a temperature range of about 10 to 50 ° C. higher than the melting point of the semi-aromatic polyamide.
  • the stretched film according to the embodiment of the present invention has a linear expansion coefficient of ⁇ 50 ⁇ 10-6 / ° C. or higher and 50 ⁇ 10-6 / ° C. or lower calculated from the amount of dimensional change in the temperature range of 50 ° C. to 150 ° C.
  • Preferably -40 ⁇ 10-6 / ° C. or higher 40 ⁇ 10-6 / ° C. or less, more preferably -30 ⁇ 10 -6 / °C least 30 ⁇ 10 -6 / °C less, more preferably -20 ⁇ 10 -6 / ° C or higher and 20 ⁇ 10-6 / ° C or lower.
  • a stretched film having such physical properties is a semi-aromatic polyamide containing a dicarboxylic acid unit containing a naphthalene dicarboxylic acid unit and a diamine unit containing a diamine having 4 to 12 carbon atoms, or a polyamide composition containing the same.
  • It can be produced by subjecting the raw fabric containing the film to a stretching treatment including a stretching step and an immobilization step.
  • a stretching treatment including a stretching step and an immobilization step.
  • the shrinkage start temperature of the stretched film when the temperature is raised at 10 ° C./min is preferably 125 ° C. or higher, more preferably 130 ° C. or higher.
  • the shrinkage start temperature can be determined using a thermomechanical analyzer, and specifically, can be determined by the method described later in the examples.
  • the haze of the stretched film is preferably 10% or less, more preferably 7.0% or less, and even more preferably 5.0% or less. If the haze of the stretched film exceeds 10%, the amount of light transmitted from the light source when the cover window is used tends to be insufficient.
  • the haze of the stretched film can be obtained in accordance with JIS K 7136 (2000), and specifically, can be obtained by the method described later in the examples.
  • the absolute value of the elastic modulus change represented by the following formula (1) is 25% or less. It is preferably 20% or less, more preferably 15% or less.
  • Modulus change (%) (E (85) -E (23)) / E (23) x 100 ... Equation (1)
  • the change in elastic modulus is within the range, the film is less likely to warp due to the heat treatment in the process of applying the hard coat layer to the film, and fine cracks are less likely to occur, so that it is easy to obtain a high-quality cover window. ..
  • the tensile elastic modulus of the stretched film can be obtained by a tensile test, and specifically, can be obtained by the method described later in the examples.
  • the value calculated by the equation (1) is negative, it means that the tensile elastic modulus at high temperature is smaller than the tensile elastic modulus at normal temperature.
  • the thickness of the stretched film is preferably 5 to 200 ⁇ m, more preferably 10 to 100 ⁇ m, and even more preferably 20 to 80 ⁇ m from the viewpoint of cost and surface hardness.
  • the stretched film according to the embodiment of the present invention is stretched in at least one of the longitudinal direction and the width direction of the raw fabric film with respect to an unstretched film containing a semi-aromatic polyamide (hereinafter referred to as "raw fabric film"). It is produced by a method of performing a stretching process including a stretching step.
  • the method for producing the raw film is not particularly limited, and a semi-aromatic polyamide or a polyamide composition containing the same may be molded by a conventionally known method.
  • a melt extrusion method is preferably mentioned.
  • the melt extrusion method is not particularly limited, and can be carried out by a melt extrusion method known in the art, and for example, a T-die method or an inflation method can be used.
  • the extrusion temperature is preferably Tm + 10 ° C. or higher and 370 ° C. or lower for the semi-aromatic polyamide. If the extrusion temperature is Tm + 10 ° C.
  • the thickness of the raw film is usually 1 to 500 ⁇ m, preferably 5 to 200 ⁇ m.
  • the raw film extruded into a film can be obtained by connecting the T-die to the tip of a known single-screw extruder or twin-screw extruder.
  • the extruder preferably has one or more open vents. By using such an extruder, decomposition products and volatile components can be sucked from the open vent portion, and the quality of the obtained composition can be improved. Also, the extruder preferably has a polymer filter to remove foreign matter. Examples of the structure of the polymer filter include a leaf disc type and a candle type. Further, the extruder preferably has a gear pump to stabilize the discharge rate of the composition. A known gear pump can be used. When the extruder has an open vent portion, a gear pump and a polymer filter, it is preferable to connect in the order of extruder-gear pump-polymer filter-die from the viewpoint of reducing foreign matter and suppressing vent-up. Further, in order to prevent deterioration of the resin composition in the extruder, it is preferable to mold the resin composition while passing nitrogen through the extruder.
  • an extruded film-like molten resin is picked up between a mirror roll or a mirror belt and pressed from the viewpoint of ensuring the surface smoothness and thickness uniformity of the raw film.
  • the mirror surface roll or the mirror surface belt is preferably made of metal.
  • the mirror surface roll is more preferably a combination of a metal rigid body roll and a metal elastic roll.
  • the linear pressure between the mirror surface rolls or the mirror surface belts is preferably 10 N / mm or more, more preferably 30 N / mm or more, from the viewpoint of surface smoothness.
  • polyamide has a high crystallization rate and crystals easily grow.
  • the surface temperature of the mirror surface roll or the mirror surface belt is preferably Tg-10 ° C. or lower and Tg-75 ° C. or higher of the semi-aromatic polyamide from the viewpoint of surface smoothness, haze, appearance and the like, and more preferably Tg-. It is 20 ° C. or lower and Tg-75 ° C. or higher.
  • the extruded film-like molten resin is brought into contact with and adheres to the mirror surface roll by an adhesion assisting device to be cooled and solidified.
  • the close contact assisting device include an electrostatic close contact device, an air knife, an air chamber, a vacuum chamber, and the like. Edge pinning and wire pinning may be used together.
  • an electrostatic contact device as the contact assist device.
  • edge pinning and wire pinning are used together as a close contact assisting device, it is preferable to arrange the edge pinning and wire pinning in this order from the upstream side. Further, the wire pinning is more preferably arranged on the downstream side including the position where the temperature of the molten resin on the mirror surface roll becomes the glass transition temperature, and on the upstream side from the position where the molten resin is peeled off from the mirror surface roll.
  • the raw film manufacturing process and the stretching process may be performed continuously or discontinuously.
  • the stretched film according to the embodiment of the present invention contains a semi-aromatic polyamide containing a dicarboxylic acid unit containing a naphthalene dicarboxylic acid unit and a diamine unit containing a diamine having 4 to 12 carbon atoms, or a polyamide composition containing the same.
  • the stretching treatment of the raw film includes a stretching step of stretching the raw film to a predetermined magnification at a predetermined temperature and a predetermined speed, and a heat fixing step of heat-fixing the stretched film at a predetermined temperature.
  • the heat resistance of the film can be improved by subjecting the raw film to a stretching treatment.
  • the stretching treatment includes a stretching step of stretching the film, and preferably further includes a preheating step performed prior to the stretching step.
  • a sequential biaxial stretching method, a simultaneous biaxial stretching method, a tubular method and the like can be used.
  • the simultaneous biaxial stretching method is most suitable because the film thickness accuracy is good and the physical properties in the film width direction are uniform.
  • the preheating step, the stretching step, and the heat fixing step in this order, and the relaxation step may be carried out after the heat fixing step.
  • the semi-aromatic polyamide containing the dicarboxylic acid unit and the diamine unit having the above-mentioned chemical structure and blending ratio, or the raw fabric film containing the polyamide composition containing the above-mentioned semi-aromatic polyamide is subjected to a stretching treatment.
  • a stretched film containing a group polyamide is obtained.
  • the temperature of the raw fabric film is preferably Tg-10 ° C. or higher for the semi-aromatic polyamide and lower than the recrystallization temperature of the raw fabric film, and Tg or higher for the semi-aromatic polyamide and the raw fabric film. It is more preferable that the temperature is below the recrystallization temperature.
  • the temperature of the raw film in the preheating step is within the relevant range, breakage is less likely to occur in the stretching step during the production of the stretched film, productivity is easily improved, and heat resistance is easily improved.
  • the recrystallization temperature of the raw film can be determined as the peak temperature of the exothermic peak that appears when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimetry (DSC) device. It can be obtained by the method described in the example.
  • DSC differential scanning calorimetry
  • the recrystallization temperature of the raw film is preferably 150 to 200 ° C, more preferably 160 to 180 ° C.
  • the preheating temperature, the heat fixing temperature, etc. do not become too high, so that deterioration due to oxidation is unlikely to occur, and a necessary difference between Tg and the recrystallization temperature. Is ensured, and it becomes easy to avoid the difficulty in stretching the raw film.
  • the recrystallization temperature of the raw film can be within the above numerical range, for example, by increasing the content of 2,6-naphthalenedicarboxylic acid as an acid component, preferably approaching 100%.
  • the temperature of the raw film (stretching temperature) is set to Tg-10 ° C. or higher of the semi-aromatic polyamide and lower than the recrystallization temperature of the raw film.
  • the stretching temperature is preferably Tg or more of the semi-aromatic polyamide and not more than the recrystallization temperature of the raw film.
  • the stretching ratio of the raw film is 2.0 to 16 times, preferably 2.0 to 10 times, and more preferably 2.5 to 6.0 times.
  • the stretch ratio means the ratio of the area of the film after stretching to the area of the film before stretching.
  • the stretching speed of the raw film is 100 to 5,000% / min, preferably 300 to 2,000% / min.
  • the stretching speed is within such a range, breakage is less likely to occur in the stretching step during the production of the stretched film, and the productivity can be easily improved.
  • the temperature of the raw fabric film is equal to or higher than the recrystallization temperature of the raw fabric film, preferably the recrystallization temperature of the raw fabric film + 40 ° C. or higher, and more preferably the recrystallization temperature of the raw fabric film + 60 ° C. That is all.
  • the temperature of the raw film in the heat fixing step is within the relevant range, the change in elastic modulus between room temperature and high temperature is small, and the heat resistance is improved.
  • the stretching temperature is semi-aromatic.
  • the glass transition temperature of the group polyamide is -10 ° C or higher and the recrystallization temperature of the raw fabric film or lower, the stretching speed is 100 to 5,000% / min, the stretching ratio is 2 to 16 times, and the heat fixing temperature is set.
  • the stretching process may have a relaxation step after the heat fixing step.
  • the relaxation rate of the film in the relaxation step is preferably 1 to 10%, more preferably 1 to 7%.
  • the stretched film is subjected to activation treatments such as corona treatment, plasma treatment, glow discharge treatment, acid treatment, flame treatment, ultraviolet irradiation treatment, electron beam irradiation treatment, and ozone treatment. May be given.
  • activation treatments such as corona treatment, plasma treatment, glow discharge treatment, acid treatment, flame treatment, ultraviolet irradiation treatment, electron beam irradiation treatment, and ozone treatment. May be given.
  • FIG. 1 is a schematic cross-sectional view of a cover window according to an embodiment of a laminated body.
  • the cover window 3 has the above-mentioned stretched film 1 and the hard coat layer 2 provided on the stretched film 1.
  • the stretched film according to the present embodiment has transparency and heat resistance, and warpage and cracks are unlikely to occur even when the laminated film is formed. Therefore, the layer to be laminated on the stretched film can be selected from many options, and for example, a hard coat layer having high hardness can be imparted. Therefore, by forming a laminate provided with a high-hardness hard coat layer, for example, a cover window having high hardness that is strong against scratches caused by external objects can be obtained, which is widely used as a protective member for displays. It is possible.
  • a hard coat layer can be applied to the stretched film for the purpose of improving the surface hardness (pencil hardness, scratch resistance).
  • the material used for the hard coat layer that can be applied to the stretched film is not particularly limited, and is an acrylic resin that is cured by irradiating with ultraviolet rays (hereinafter referred to as "UV") or electron beams (hereinafter referred to as "EB").
  • UV ultraviolet rays
  • EB electron beams
  • ionizing radiation curable resin thermosetting resin such as epoxy resin and silicone resin which are cured by applying heat
  • inorganic fine particles such as silica particles which are coated on the film surface by coating or vapor deposition of a solvent. ..
  • the ionizing radiation curable resin can be appropriately selected from, for example, urethane acrylate-based resin, polyester acrylate-based resin, and the like.
  • a preferred ionizing radiation curable resin is one consisting of a UV or EB curable polyfunctional acrylate having two or more (meth) acryloyl groups in the molecule.
  • Specific examples of UV or EB curable polyfunctional acrylates having two or more (meth) acryloyl groups in the molecule include neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and the like.
  • Polyacrylate polyacrylates such as trimethylolpropantri (meth) acrylate, ditrimethylolpropanetetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, bisphenol A Diacrylate of diglycidyl ether, diacrylate of neopentyl glycol diglycidyl ether, epoxy (meth) acrylate such as di (meth) acrylate of 1,6-hexanediol diglycidyl ether, polyhydric alcohol and polyvalent carboxylic acid and / Alternatively, urethane (meth) acrylate obtained by reacting polyester (meth) acrylate, polyhydric alcohol, polyvalent isocyanate, and hydroxyl group-containing (meth) acrylate, which can be obtained by esterifying the anhydr
  • the coating thickness of the hard coat layer is not particularly limited, but is preferably in the range of, for example, 1 to 100 ⁇ m. If the coating thickness is 1 ⁇ m or more, the required hardness can be easily obtained. Further, when the coating film thickness is 100 ⁇ m or less, good extensibility can be easily obtained in the film after the coating film.
  • the coating method of the hard coat layer is not particularly limited, but it is easy to adjust the coating thickness such as gravure coating, microgravure coating, fountain bar coating, slide die coating, slot die coating, etc. Coating is possible by the method.
  • the stretched film according to the embodiment of the present invention does not warp or generate fine cracks in the step of applying the hard coat layer.
  • a stretched film in which warpage and cracks are suppressed can be obtained by performing a stretching treatment under specific stretching conditions using a raw film containing a specific semi-aromatic polyamide. Warpage and fine cracks in the film can be discriminated by visually inspecting the film after coating, and specifically, can be discriminated by the method described later in the examples.
  • the use of the stretched film is not particularly limited, and is an electrically insulating material for motors, transformers, cables, etc .; a dielectric material for capacitors, etc.; an electronic parts packaging material for semiconductor packages, etc.; a pharmaceutical packaging material; a retort food, etc.
  • Food packaging materials display cover windows, solar cell substrates, liquid crystal plates, conductive films, protective plates for display equipment, etc .; LED mounting substrates, flexible printed substrates, flexible flat cables, and other electronic substrate materials; FPC coverlay films, Heat-resistant adhesive tapes such as heat-resistant masking tapes and industrial process tapes; heat-resistant bar code labels; heat-resistant reflectors; various release films; heat-resistant adhesive base films; photographic films; molding materials; agricultural materials; medical materials; civil engineering , Building materials; Filter films, etc .; Can be used alone as films for household and industrial materials, or as a laminated body in which other layers such as a hard coat layer are laminated. In particular, it can be suitably used for a cover window for a display from the viewpoint of heat resistance and transparency.
  • Tm melting point
  • Tg glass transition temperature of semi-aromatic polyamide used in Examples and Comparative Examples are the differential scanning calorimetry device "DSC7020" manufactured by Hitachi High-Tech Science Co., Ltd. Was measured using.
  • the melting point was measured according to ISO11357-3 (2011 2nd edition). Specifically, the sample is heated from 30 ° C. to 340 ° C. at a rate of 10 ° C./min under a nitrogen atmosphere and held at 340 ° C. for 5 minutes to completely melt the sample, and then 10 ° C./min. It was cooled to 50 ° C. at a rate and held at 50 ° C. for 5 minutes.
  • the peak temperature of the melting peak that appears when the temperature is raised to 340 ° C at a rate of 10 ° C / min again is defined as the melting point (° C), and when there are multiple melting peaks, the peak temperature of the melting peak on the highest temperature side is defined as the melting point (° C). did.
  • the glass transition temperature (° C.) was measured in accordance with ISO11357-2 (2013 2nd edition). Specifically, the sample is heated from 30 ° C. to 340 ° C. at a rate of 20 ° C./min under a nitrogen atmosphere and held at 340 ° C. for 5 minutes to completely melt the sample, and then 20 ° C./min. It was cooled to 50 ° C. at a rate and held at 50 ° C. for 5 minutes.
  • the temperature of the inflection point that appears when the temperature is raised to 200 ° C. again at a rate of 20 ° C./min was defined as the glass transition temperature (° C.).
  • the Tg of the (meth) acrylic resin composition used in the comparative example was measured by the same procedure.
  • the recrystallization temperature of the raw film was measured using a differential scanning calorimetry device "DSC7020" manufactured by Hitachi High-Tech Science Co., Ltd. Specifically, the peak temperature of the exothermic peak that appears when the sample is heated from 30 ° C. to 340 ° C. at a rate of 10 ° C./min in a nitrogen atmosphere was defined as the recrystallization temperature (° C.) of the raw film.
  • Shrinkage start temperature of stretched film and non-stretched film The stretched film obtained in Examples and Comparative Examples and the non-stretched film obtained in Comparative Example were cut into a width of 4 mm and a length of 20 mm to obtain a test piece, which was used as a thermomechanical analysis TMA (thermomechanical analysis TMA).
  • thermomechanical analysis TMA thermomechanical analysis TMA
  • the temperature was raised from 25 ° C to 180 ° C at a heating rate of 10 ° C / min under the conditions of a chuck distance of 8 mm and a load of 0.01 N, and the dimensional change of the test piece was performed. The amount was measured.
  • the temperature at which the inclination of the amount of dimensional change changed to minus was defined as the shrinkage start temperature of the stretched film.
  • UV curable hard coating agent 850-3L (manufactured by Aica Kogyo Co., Ltd.) was applied to the stretched film obtained in Examples and Comparative Examples and the non-stretched film obtained in Comparative Examples.
  • the film was applied and heated in a dryer at 80 ° C. for 1 minute for drying.
  • the film is installed on a conveyor type UV irradiation device (Eigrandage ECS-4011GX / N manufactured by Eye Graphics Co., Ltd.), and UV is emitted using a mercury lamp at a lamp output of 3 kW, a distance between lamps of 150 mm, and a conveyor speed of 4 m / min.
  • Irradiation was performed to prepare a hard coat layer having a thickness of 20 ⁇ m.
  • the treated film was taken out, and the presence or absence of warpage and the presence or absence of fine cracks in the film were visually observed. When fine cracks are generated, the film is whitened due to light scattering, so that it can be visually determined.
  • the pressure inside the autoclave was boosted to 2 MPa. Heating was continued for 5 hours while maintaining the pressure at 2 MPa, and water vapor was gradually removed to react. Next, the pressure was lowered to 1.3 MPa over 30 minutes, and the reaction was carried out for another 1 hour to obtain a prepolymer.
  • the obtained prepolymer was dried at 100 ° C. under reduced pressure for 12 hours and pulverized to a particle size of 2 mm or less. This was solid-phase polymerized at 230 ° C. and 13 Pa (0.1 mmHg) for 10 hours to obtain a semi-aromatic polyamide.
  • Sumilyzer GA-80 (manufactured by Sumitomo Chemical Co., Ltd.), which is a phenolic heat stabilizer, is dry-blended at a ratio of 0.2 parts by mass with 100 parts by mass of the above semi-aromatic polyamide, and a twin-screw extruder (Toshiba Machine Co., Ltd.) It was put into the upstream supply port of the company's "TEM-26SS”) all at once.
  • a pellet-shaped composition 1 was produced by melting and kneading at a cylinder temperature 20 to 30 ° C. higher than the melting point of the semi-aromatic polyamide, extruding, cooling and cutting.
  • the polymerization reaction was first started by a batch method.
  • the raw material liquid was supplied from the autoclave to the tank reactor at a flow rate with an average residence time of 150 minutes while maintaining the temperature at 140 ° C., and at the same time, the supply flow rate of the raw material liquid was increased.
  • the reaction was switched to a continuous flow type polymerization reaction in which the reaction solution was extracted from the tank reactor at a corresponding flow rate. After switching to the continuous distribution method, the polymerization conversion rate in the steady state was 55% by mass.
  • the reaction solution extracted from the tank reactor in a steady state was supplied to a multi-tube heat exchanger having an internal temperature of 230 ° C.
  • the heated reaction solution was introduced into a flash evaporator to remove volatile components containing unreacted monomers as a main component to obtain a molten resin.
  • the molten resin from which the volatile matter had been removed was supplied to a twin-screw extruder having an internal temperature of 260 ° C., discharged in a strand shape, and cut with a pelletizer to obtain a pellet-shaped (meth) acrylic resin (A).
  • Example 1 The raw film 1 was cut into a size of 100 mm ⁇ 100 mm, introduced into a biaxially stretched birefringence measuring device (SDR-563K manufactured by Eto Co., Ltd.), and preheated at 140 ° C. Next, the preheated raw film 1 was simultaneously biaxially stretched 4.0 times (2.0 times in the longitudinal direction and 2.0 times in the width direction) at 140 ° C. At this time, the stretching speed was 400% / min in both the longitudinal direction and the width direction. Then, the temperature was raised to 250 ° C., and the stretched film was heat-fixed for 3 minutes to obtain a stretched film having a thickness of 40 ⁇ m.
  • SDR-563K manufactured by Eto Co., Ltd.
  • Example 2 A stretched film having a thickness of 70 ⁇ m was obtained by the same method as in Example 1 except that the stretching ratio was 2.3 times (1.5 times in the longitudinal direction and 1.5 times in the width direction).
  • Example 3 A stretched film having a thickness of 40 ⁇ m was obtained by the same method as in Example 1 except that the heat was fixed at 210 ° C.
  • Example 4 The raw film 3 was cut into 100 mm ⁇ 100 mm, introduced into a biaxially stretched birefringence measuring device (SDR-563K manufactured by Eto Co., Ltd.), and preheated at 130 ° C. Next, the preheated raw film 3 was simultaneously biaxially stretched 4.0 times (2.0 times in the longitudinal direction and 2.0 times in the width direction) at 130 ° C. At this time, the stretching speed was 400% / min in both the longitudinal direction and the width direction. Then, the temperature was raised to 230 ° C., and the stretched film was heat-fixed for 2 minutes to obtain a stretched film having a thickness of 50 ⁇ m.
  • SDR-563K manufactured by Eto Co., Ltd.
  • Example 1 A stretched film having a thickness of 40 ⁇ m was obtained by the same method as in Example 1 except that heat fixing was not performed.
  • Table 2 also shows the physical property values of the compositions and raw film used in each of the examples and comparative examples. Since the composition 3 used in Comparative Example 4 was an amorphous resin, the melting point and the crystallization temperature derived from the disappearance and formation of crystals were not observed.
  • the stretched films of Examples 1 to 4 have a smaller absolute value of the coefficient of linear expansion than Comparative Example 1 which is not heat-fixed, have excellent rigidity at high temperatures, and are compared to Comparative Example 2 which is not stretched. ,
  • the absolute value of the linear expansion coefficient and the haze are small, and the absolute value of the linear expansion coefficient and the change in elastic modulus are small as compared with Comparative Example 3 in which stretching and heat fixing are not performed. That is, it can be seen that when only stretching is performed without heat fixing, the transparency is excellent, but the heat resistance is insufficient. Further, it can be seen that the heat resistance is improved but the transparency is lowered when only heat fixing is performed without stretching. Further, it can be seen that the transparency is excellent without stretching and heat fixing, but the heat resistance is insufficient.
  • both the stretching step and the heat fixing step are required in order to achieve both heat resistance and transparency.
  • the stretched films of Examples 1 to 4 have a lower stretch ratio than Comparative Example 4, but have a small change in linear expansion coefficient and elastic modulus, and are excellent in rigidity and flexibility at high temperatures. That is, it can be understood that by stretching an unstretched film containing a specific polyamide composition under specific conditions, it is possible to achieve both heat resistance, transparency, and flexibility.
  • the stretched film of the present invention is excellent in transparency, heat resistance, and flexibility, it can be suitably used as a protective material for a cover window or the like, particularly as a substrate material for a laminate such as a cover window. It is possible to provide a laminated body such as a cover window without warpage or fine cracks. Furthermore, it is possible to apply various types of hard coat layers such as a hard coat layer having higher hardness to the stretched film, and the stretch that can greatly improve the performance as a cover window or a laminate such as surface hardness. It is possible to provide a film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Polyamides (AREA)

Abstract

Provided is a stretched film having excellent heat resistance and transparency. This stretched film contains a semi-aromatic polyamide, wherein the semi-aromatic polyamide includes a dicarboxylate unit and a diamine unit, the dicarboxylate unit includes a naphthalene dicarboxylate unit, the diamine unit includes an aliphatic diamine unit having 4-12 carbon atoms, and the linear expansion coefficient of the stretched film at 50-150°C is -50×10-6/°C to 50×10-6/°C.

Description

延伸フィルム、積層体、カバーウィンドウ、及び延伸フィルムの製造方法Method for manufacturing stretched film, laminate, cover window, and stretched film
 本発明は、延伸フィルム、積層体、カバーウィンドウ、及び延伸フィルムの製造方法に関する。より詳しくは、ナフタレンジカルボン酸単位を含むジカルボン酸単位と、脂肪族ジアミン単位を含むジアミン単位とを有する半芳香族ポリアミドを含む延伸フィルム、それを用いた積層体、カバーウィンドウ、及び延伸フィルムの製造方法に関する。 The present invention relates to a stretched film, a laminate, a cover window, and a method for manufacturing a stretched film. More specifically, a stretched film containing a semi-aromatic polyamide having a dicarboxylic acid unit containing a naphthalene dicarboxylic acid unit and a diamine unit containing an aliphatic diamine unit, and a laminate, a cover window, and a stretched film using the stretched film. Regarding the method.
 テレビやスマートフォン等のあらゆる電子機器に使用されるディスプレイには当該ディスプレイを保護するためのカバーウィンドウが備わっている。一般的には、カバーウィンドウはベースとなる材料(以降、基板材料と称する)に、粘着剤との接着性や表面性を付与するための層(以降、ハードコート層と称する)を付与した構造体となっている。カバーウィンドウは、液晶ディスプレイや有機ELディスプレイ等のディスプレイの表面に設置されるため、内部のディスプレイからの光を透過し得る高い透明性を備えることに加えて、外部からの物体の接触による傷を防ぐため、ある程度の表面硬度を有している必要がある。このため、現在は、ガラス基板からなるカバーウィンドウが様々なディスプレイに適用されている。 The display used in all electronic devices such as TVs and smartphones is equipped with a cover window to protect the display. In general, the cover window has a structure in which a base material (hereinafter referred to as a substrate material) is provided with a layer (hereinafter referred to as a hard coat layer) for imparting adhesiveness and surface properties to an adhesive. It is a body. Since the cover window is installed on the surface of a display such as a liquid crystal display or an organic EL display, it has high transparency that allows light from the internal display to pass through, and also causes scratches due to contact with an object from the outside. To prevent it, it is necessary to have a certain surface hardness. For this reason, cover windows made of glass substrates are currently applied to various displays.
 近年、フレキシブルディスプレイに代表されるような屈曲性を有するディスプレイが注目されており、カバーウィンドウにもその屈曲性に追従できる柔軟性が求められるようになっている。しかし、ガラス基板からなるカバーウィンドウではその要求に応じることが困難であるため、ガラスが有するような高い透明性を損なうことなく、かつガラスよりも柔軟な材料の開発が進められている。 In recent years, flexible displays such as flexible displays have been attracting attention, and cover windows are also required to have flexibility that can follow the flexibility. However, since it is difficult to meet the demand for a cover window made of a glass substrate, the development of a material that is more flexible than glass without impairing the high transparency of glass is being promoted.
 上記の材料の候補として、例えば、ポリイミドフィルムが知られている。しかし、ポリイミドフィルムは一般的に溶融成形が困難であることに加えて、透明フィルムが得られにくいという問題がある。したがって、溶融成形が容易な透明フィルムが望まれている。 For example, a polyimide film is known as a candidate for the above material. However, in addition to the fact that the polyimide film is generally difficult to melt-mold, there is a problem that it is difficult to obtain a transparent film. Therefore, a transparent film that can be easily melt-molded is desired.
 高い透明性と柔軟性、溶融成形性を有する代表的な材料として、アクリルフィルムが挙げられる。特許文献1には、特定の製造方法で製造したアクリルフィルムは、熱収縮による寸法変化が小さく、偏光子保護フィルム等の光学用途フィルムとして好適に使用できることが示されている。しかし、カバーウィンドウにアクリルフィルムを使用した場合、カバーウィンドウの使用環境やハードコート層の塗工工程等において、カバーウィンドウが高温に曝されること等によって、ハードコート層にひび割れ不良(以降、微細クラックと称する)やフィルムの反りが発生するという問題がある。また、そのような問題を招くおそれがあることから、高硬度のハードコート材料を適用することができず、カバーウィンドウの硬度の向上には限界がある。 Acrylic film is a typical material having high transparency, flexibility, and melt moldability. Patent Document 1 shows that an acrylic film produced by a specific production method has a small dimensional change due to heat shrinkage and can be suitably used as an optical application film such as a polarizer protective film. However, when an acrylic film is used for the cover window, the hard coat layer is not cracked due to exposure to high temperature in the usage environment of the cover window, the coating process of the hard coat layer, etc. There is a problem that (called a crack) and warpage of the film occur. Further, since such a problem may be caused, a hard coat material having a high hardness cannot be applied, and there is a limit in improving the hardness of the cover window.
 特許文献2には、2,6-ナフタレンジカルボン酸単位と1,9-ノナンジアミン単位から得られる半芳香族ポリアミド樹脂が、力学特性、耐熱性、耐薬品性等に優れることが示されている。しかし、特許文献2にはフィルム物性に関する記述はなく、延伸した際の挙動、物性等も明らかにされていない。 Patent Document 2 shows that a semi-aromatic polyamide resin obtained from a 2,6-naphthalenedicarboxylic acid unit and a 1,9-nonanediamine unit is excellent in mechanical properties, heat resistance, chemical resistance and the like. However, Patent Document 2 does not describe the physical properties of the film, and the behavior, physical properties, etc. when stretched are not clarified.
 特許文献3には、融点が270℃であり、かつ12%未満のヘーズ及び少なくとも88%の光透過率を有する透明ポリアミドフィルムが開示されている。しかし、特許文献3のポリアミドフィルムは、少なくとも2種類以上のジカルボン酸単位及び2種類以上のジアミン単位を共重合したポリアミド樹脂を使用して作製されているため、フィルムの結晶性が低く、高温での弾性率変化が大きく、耐熱性と透明性との両立がなされていない。 Patent Document 3 discloses a transparent polyamide film having a melting point of 270 ° C., a haze of less than 12%, and a light transmittance of at least 88%. However, since the polyamide film of Patent Document 3 is produced by using a polyamide resin in which at least two or more kinds of dicarboxylic acid units and two or more kinds of diamine units are copolymerized, the crystallinity of the film is low and the film is at high temperature. The change in the elasticity of the film is large, and both heat resistance and transparency are not achieved.
国際公開第2015/151466号International Publication No. 2015/151466 特開平9-12715号公報Japanese Unexamined Patent Publication No. 9-12715 国際公開第2010/081871号International Publication No. 2010/081871
 上記のような問題を鑑み、本発明は、高い透明性、及び屈曲性を有しており、かつフィルムの反りや微細クラックの発生を防ぐことが可能な、耐熱性を有するフィルムを得ることを課題とする。 In view of the above problems, the present invention is to obtain a film having high transparency and flexibility, and having heat resistance capable of preventing warpage and fine cracks of the film. Make it an issue.
 本発明者らは鋭意検討した結果、ナフタレンジカルボン酸単位を含むジカルボン酸単位と、脂肪族ジアミン単位を含むジアミン単位とを有する半芳香族ポリアミドを含む延伸フィルムであって、50℃~150℃における線膨張率が-50×10-6/℃以上50×10-6/℃以下である延伸フィルムが上記課題を解決できることを見出し、当該知見に基づいてさらに検討を重ねて本発明を完成させた。
 すなわち、本発明は下記のとおりである。
[1]半芳香族ポリアミドを含む延伸フィルムであって、
 前記半芳香族ポリアミドがジカルボン酸単位及びジアミン単位を含み、前記ジカルボン酸単位がナフタレンジカルボン酸単位を含み、前記ジアミン単位が炭素数4~12の脂肪族ジアミン単位を含み、
 50℃~150℃における線膨張係数が、-50×10-6/℃以上50×10-6/℃以下である、延伸フィルム。
[2]23℃における引張弾性率をE(23)、85℃における引張弾性率をE(85)としたときに、(E(85)-E(23))/E(23)×100で表される弾性率変化の絶対値が25%以下である、上記[1]に記載の延伸フィルム。
[3]前記ナフタレンジカルボン酸単位の60モル%以上100モル%以下が、2,6-ナフタレンジカルボン酸である、上記[1]又は[2]に記載の延伸フィルム。
[4]前記炭素数4~12の脂肪族ジアミン単位が炭素数6~10の脂肪族ジアミンを含む、上記[1]~[3]のいずれか一つに記載の延伸フィルム。
[5]前記炭素数4~12の脂肪族ジアミン単位が炭素数8~10の脂肪族ジアミンを含む、上記[1]~[4]のいずれか一つに記載の延伸フィルム。
[6]前記脂肪族ジアミン単位が1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンを含む、上記[1]~[5]のいずれか一つに記載の延伸フィルム。
[7]上記[1]~[6]のいずれか一つに記載の延伸フィルムを含む積層体。
[8]上記[1]~[6]のいずれか一つに記載の延伸フィルム又は上記[7]に記載の積層体を含む、カバーウィンドウ。
[9]上記[1]~[6]のいずれか一つに記載の延伸フィルムの製造方法であって、
 前記半芳香族ポリアミドを含む未延伸フィルムを準備し、
 前記未延伸フィルムに対して、少なくとも延伸工程を含む延伸処理を施す、延伸フィルムの製造方法。
[10]半芳香族ポリアミドを含む延伸フィルムの製造方法であって、
 前記半芳香族ポリアミドが、ジカルボン酸単位及びジアミン単位を含み、前記ジカルボン酸単位がナフタレンジカルボン酸単位を含み、前記ジアミン単位が炭素数4~12のジアミンを含み、
 延伸温度が前記半芳香族ポリアミドのガラス転移温度-10℃以上かつ未延伸フィルムの再結晶化温度以下であり、延伸速度が100~5,000%/分であり、延伸倍率が2~16倍であり、熱固定温度が未延伸フィルムの再結晶化温度以上である、延伸フィルムの製造方法。
[11]前記ナフタレンジカルボン酸単位の60モル%以上100モル%以下が2,6-ナフタレンジカルボン酸である、上記[9]又は[10]に記載の延伸フィルムの製造方法。
[12]前記炭素数4~12の脂肪族ジアミン単位が炭素数6~10の脂肪族ジアミンを含む、上記[9]~[11]のいずれか一つに記載の延伸フィルムの製造方法。
[13]前記炭素数4~12の脂肪族ジアミン単位が炭素数8~10の脂肪族ジアミンを含む、上記[9]~[12]のいずれか一つに記載の延伸フィルムの製造方法。
[14]前記脂肪族ジアミン単位が1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンを含む、上記[9]~[13]のいずれか一つに記載の延伸フィルムの製造方法。
As a result of diligent studies, the present inventors have obtained a stretched film containing a semi-aromatic polyamide having a dicarboxylic acid unit containing a naphthalene dicarboxylic acid unit and a diamine unit containing an aliphatic diamine unit at 50 ° C. to 150 ° C. It was found that a stretched film having a linear expansion rate of −50 × 10 -6 / ° C. or higher and 50 × 10-6 / ° C. or lower can solve the above-mentioned problems, and further studies were carried out based on the findings to complete the present invention. ..
That is, the present invention is as follows.
[1] A stretched film containing a semi-aromatic polyamide.
The semi-aromatic polyamide contains a dicarboxylic acid unit and a diamine unit, the dicarboxylic acid unit contains a naphthalenedicarboxylic acid unit, and the diamine unit contains an aliphatic diamine unit having 4 to 12 carbon atoms.
A stretched film having a coefficient of linear expansion from 50 ° C. to 150 ° C. of -50 × 10 -6 / ° C. or higher and 50 × 10 -6 / ° C. or lower.
[2] When the tensile elastic modulus at 23 ° C. is E (23) and the tensile elastic modulus at 85 ° C. is E (85), (E (85) -E (23)) / E (23) × 100. The stretched film according to the above [1], wherein the absolute value of the elastic modulus change represented is 25% or less.
[3] The stretched film according to the above [1] or [2], wherein 60 mol% or more and 100 mol% or less of the naphthalene dicarboxylic acid unit is 2,6-naphthalene dicarboxylic acid.
[4] The stretched film according to any one of the above [1] to [3], wherein the aliphatic diamine unit having 4 to 12 carbon atoms contains an aliphatic diamine having 6 to 10 carbon atoms.
[5] The stretched film according to any one of the above [1] to [4], wherein the aliphatic diamine unit having 4 to 12 carbon atoms contains an aliphatic diamine having 8 to 10 carbon atoms.
[6] The stretched film according to any one of the above [1] to [5], wherein the aliphatic diamine unit contains 1,9-nonanediamine and 2-methyl-1,8-octanediamine.
[7] A laminate containing the stretched film according to any one of the above [1] to [6].
[8] A cover window comprising the stretched film according to any one of the above [1] to [6] or the laminate according to the above [7].
[9] The method for producing a stretched film according to any one of the above [1] to [6].
An unstretched film containing the semi-aromatic polyamide was prepared.
A method for producing a stretched film, wherein the unstretched film is subjected to a stretching treatment including at least a stretching step.
[10] A method for producing a stretched film containing a semi-aromatic polyamide.
The semi-aromatic polyamide contains a dicarboxylic acid unit and a diamine unit, the dicarboxylic acid unit contains a naphthalene dicarboxylic acid unit, and the diamine unit contains a diamine having 4 to 12 carbon atoms.
The stretching temperature is equal to or higher than the glass transition temperature of the semi-aromatic polyamide of −10 ° C. and lower than the recrystallization temperature of the unstretched film, the stretching rate is 100 to 5,000% / min, and the stretching ratio is 2 to 16 times. A method for producing a stretched film, wherein the heat fixing temperature is equal to or higher than the recrystallization temperature of the unstretched film.
[11] The method for producing a stretched film according to the above [9] or [10], wherein 60 mol% or more and 100 mol% or less of the naphthalene dicarboxylic acid unit is 2,6-naphthalene dicarboxylic acid.
[12] The method for producing a stretched film according to any one of the above [9] to [11], wherein the aliphatic diamine unit having 4 to 12 carbon atoms contains an aliphatic diamine having 6 to 10 carbon atoms.
[13] The method for producing a stretched film according to any one of the above [9] to [12], wherein the aliphatic diamine unit having 4 to 12 carbon atoms contains an aliphatic diamine having 8 to 10 carbon atoms.
[14] The method for producing a stretched film according to any one of the above [9] to [13], wherein the aliphatic diamine unit contains 1,9-nonanediamine and 2-methyl-1,8-octanediamine.
 本発明によれば、高い透明性、及び屈曲性を有し、かつ微細クラックや反りの発生が抑制される延伸フィルム、それを用いた積層体及びカバーウィンドウを提供することができる。また、高い透明性を有し、微細クラックやフィルムの反りの発生が抑制される延伸フィルムの製造方法を提供することができる。 According to the present invention, it is possible to provide a stretched film having high transparency and flexibility and suppressing the occurrence of fine cracks and warpage, a laminate using the same, and a cover window. Further, it is possible to provide a method for producing a stretched film having high transparency and suppressing the occurrence of fine cracks and warpage of the film.
カバーウィンドウの断面模式図である。It is sectional drawing of the cover window.
 以下、本発明について詳細に説明する。
 本明細書において、好ましいとされている規定は任意に採用することができ、好ましいもの同士の組み合わせはより好ましいといえる。
 本明細書において、「XX~YY」との記載は、「XX以上YY以下」を意味する。
 本明細書において、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。
 本明細書において、「~単位」(ここで「~」は単量体を示す)とは「~に由来する構成単位」を意味し、例えば「ジカルボン酸単位」とは「ジカルボン酸に由来する構成単位」を意味し、「ジアミン単位」とは「ジアミンに由来する構成単位」を意味する。
 本明細書において、各構造単位に関して「由来する」とは、前記単量体が重合するのに必要な構造の変化を受けたことを意味する。
 本明細書において、例えば、「(メタ)アクリル酸」とは、「アクリル酸」と「メタクリル酸」の双方を示し、他の類似用語も同様である。
[延伸フィルム]
 本発明の実施形態に係る延伸フィルムは、半芳香族ポリアミドを含む延伸フィルムであって、半芳香族ポリアミドがジカルボン酸単位及びジアミン単位を含み、ジカルボン酸単位がナフタレンジカルボン酸単位を含み、ジアミン単位が炭素数4~12の脂肪族ジアミン単位を含み、50℃~150℃における線膨張係数が-50×10-6/℃以上50×10-6/℃以下である。
 延伸フィルムの物性等については後述することとし、まず、延伸フィルムを構成する各要素について説明する。
Hereinafter, the present invention will be described in detail.
In the present specification, the preferred provisions can be arbitrarily adopted, and it can be said that a combination of preferable ones is more preferable.
In the present specification, the description of "XX to YY" means "XX or more and YY or less".
In the present specification, the lower limit value and the upper limit value described stepwise for a preferable numerical range (for example, a range such as content) can be independently combined. For example, from the description of "preferably 10 to 90, more preferably 30 to 60", the "favorable lower limit value (10)" and the "more preferable upper limit value (60)" are combined to obtain "10 to 60". You can also do it.
In the present specification, "-unit" (where "-" indicates a monomer) means "a constituent unit derived from", and for example, "dicarboxylic acid unit" means "derived from dicarboxylic acid". It means "constituent unit", and "diamine unit" means "constituent unit derived from diamine".
As used herein, the term "derived" with respect to each structural unit means that the monomer has undergone a structural change required for polymerization.
In the present specification, for example, "(meth) acrylic acid" means both "acrylic acid" and "methacrylic acid", and other similar terms are also used.
[Stretched film]
The stretched film according to the embodiment of the present invention is a stretched film containing a semi-aromatic polyamide, in which the semi-aromatic polyamide contains a dicarboxylic acid unit and a diamine unit, the dicarboxylic acid unit contains a naphthalene dicarboxylic acid unit, and the diamine unit. Contains an aliphatic diamine unit having 4 to 12 carbon atoms, and has a linear expansion coefficient of −50 × 10 -6 / ° C. or higher and 50 × 10-6 / ° C. or lower at 50 ° C. to 150 ° C.
The physical properties of the stretched film will be described later, and first, each element constituting the stretched film will be described.
<半芳香族ポリアミド>
 本発明の実施形態に係る延伸フィルムに用いられる半芳香族ポリアミドは、ジカルボン酸単位及びジアミン単位を有する。そして、ジカルボン酸単位がナフタレンジカルボン酸単位を含み、また、ジアミン単位が炭素数4~12の脂肪族ジアミン単位を含む。
<Semi-aromatic polyamide>
The semi-aromatic polyamide used in the stretched film according to the embodiment of the present invention has a dicarboxylic acid unit and a diamine unit. The dicarboxylic acid unit contains a naphthalene dicarboxylic acid unit, and the diamine unit contains an aliphatic diamine unit having 4 to 12 carbon atoms.
(ジカルボン酸単位)
 ジカルボン酸単位は、ナフタレンジカルボン酸単位を含み、好ましくは40モル%以上100モル%以下がナフタレンジカルボン酸単位である。ジカルボン酸単位がナフタレンジカルボン酸単位を含むことで、耐熱性をはじめとする各種物性向上効果を発現させるのに有利となる。ジカルボン酸単位におけるナフタレンジカルボン酸単位の含有量が40モル%以上であると、ポリアミドフィルムにおける耐熱性をはじめとする各種物性向上効果を発現させやすくなる。
 耐熱性、透明性などの観点から、ジカルボン酸単位におけるナフタレンジカルボン酸単位の含有量は、60モル%以上であることがより好ましく、80モル%以上であることがさらに好ましく、90モル%以上であることがよりさらに好ましく、100モル%であることが特に好ましい。
(Dicarboxylic acid unit)
The dicarboxylic acid unit contains a naphthalene dicarboxylic acid unit, and preferably 40 mol% or more and 100 mol% or less is a naphthalene dicarboxylic acid unit. When the dicarboxylic acid unit contains a naphthalene carboxylic acid unit, it is advantageous to exhibit various physical property improving effects such as heat resistance. When the content of the naphthalene carboxylic acid unit in the dicarboxylic acid unit is 40 mol% or more, it becomes easy to exhibit various physical property improving effects such as heat resistance in the polyamide film.
From the viewpoint of heat resistance, transparency and the like, the content of the naphthalene carboxylic acid unit in the dicarboxylic acid unit is more preferably 60 mol% or more, further preferably 80 mol% or more, and further preferably 90 mol% or more. More preferably, it is particularly preferably 100 mol%.
 ナフタレンジカルボン酸単位としては、例えば、1,2-ナフタレンジカルボン酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、1,6-ナフタレンジカルボン酸、1,7-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸等のナフタレンジカルボン酸に由来する構成単位が挙げられる。これらの構成単位は1種のみ含まれていてもよいし、2種以上含まれていてもよい。上記ナフタレンジカルボン酸の中でも、耐熱性をはじめとする各種物性の発現及びジアミンとの反応性などの観点から、2,6-ナフタレンジカルボン酸が好ましい。
 上記と同様の観点から、ナフタレンジカルボン酸単位中、2,6-ナフタレンジカルボン酸に由来する構成単位の含有量は、60モル%以上であることが好ましく、80モル%以上であることがより好ましく、90モル%以上であることがさらに好ましく、100モル%に近い程(実質100モル%)好ましい。
Examples of the naphthalenedicarboxylic acid unit include 1,2-naphthalenedicarboxylic acid, 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 1,6-naphthalenedicarboxylic acid, and 1 , 7-Naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid and other constituent units derived from naphthalenedicarboxylic acid. Be done. Only one type of these constituent units may be contained, or two or more types may be contained. Among the above naphthalene dicarboxylic acids, 2,6-naphthalene dicarboxylic acid is preferable from the viewpoint of expression of various physical properties such as heat resistance and reactivity with diamine.
From the same viewpoint as above, the content of the constituent unit derived from 2,6-naphthalenedicarboxylic acid in the naphthalene dicarboxylic acid unit is preferably 60 mol% or more, more preferably 80 mol% or more. , 90 mol% or more is more preferable, and the closer to 100 mol% (substantially 100 mol%) is preferable.
 ジカルボン酸単位は、本発明の効果を損なわない範囲で、ナフタレンジカルボン酸以外の他のジカルボン酸に由来する構成単位を含むことができる。
 当該他のジカルボン酸としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸、ジメチルマロン酸、2,2-ジエチルコハク酸、2,2-ジメチルグルタル酸、2-メチルアジピン酸、トリメチルアジピン酸等の脂肪族ジカルボン酸;1,3-シクロペンタンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、シクロヘプタンジカルボン酸、シクロオクタンジカルボン酸、シクロデカンジカルボン酸等の環状脂肪族ジカルボン酸;テレフタル酸、イソフタル酸、ジフェン酸、4,4’-ビフェニルジカルボン酸、ジフェニルメタン-4,4’-ジカルボン酸、ジフェニルスルホン-4,4’-ジカルボン酸等の芳香族ジカルボン酸などが挙げられる。これらの他のジカルボン酸に由来する構成単位は1種のみ含まれていてもよいし、2種以上含まれていてもよい。
 ジカルボン酸単位における上記他のジカルボン酸に由来する構成単位の含有量は、50モル%以下であることが好ましく、30モル%以下であることがより好ましく、20モル%以下であることがさらに好ましく、10モル%以下であることが特に好ましい。
The dicarboxylic acid unit can include a structural unit derived from a dicarboxylic acid other than naphthalenedicarboxylic acid as long as the effect of the present invention is not impaired.
Examples of the other dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelli acid, suberic acid, azelaic acid, sebacic acid, undecandicarboxylic acid, dodecanedicarboxylic acid, dimethylmalonic acid, and , 2-Diethylsuccinic acid, 2,2-dimethylglutaric acid, 2-methyladipic acid, trimethyladiponic acid and other aliphatic dicarboxylic acids; 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1, Cyclic aliphatic dicarboxylic acids such as 4-cyclohexanedicarboxylic acid, cycloheptanedicarboxylic acid, cyclooctanedicarboxylic acid, cyclodecanedicarboxylic acid; terephthalic acid, isophthalic acid, diphenic acid, 4,4'-biphenyldicarboxylic acid, diphenylmethane-4, Examples thereof include aromatic dicarboxylic acids such as 4'-dicarboxylic acid and diphenylsulfon-4,4'-dicarboxylic acid. Only one type of structural unit derived from these other dicarboxylic acids may be contained, or two or more types may be contained.
The content of the constituent unit derived from the other dicarboxylic acid in the dicarboxylic acid unit is preferably 50 mol% or less, more preferably 30 mol% or less, still more preferably 20 mol% or less. It is particularly preferably 10 mol% or less.
(ジアミン単位)
 ジアミン単位は、炭素数4~12の脂肪族ジアミン単位を含んでおり、好ましくは40モル%以上100モル%以下が炭素数4~12の脂肪族ジアミン単位である。ジアミン単位が炭素数4~12の脂肪族ジアミン単位を含んでいることにより、耐熱性をはじめとする各種物性向上効果の発現に有利となる。ジアミン単位における炭素数4~12の脂肪族ジアミン単位の合計含有量が40モル%以上であると、ポリアミドにおける耐熱性をはじめとする各種物性向上効果を発現させやすくなる。
 耐熱性、透明性、屈曲性などの観点から、ジアミン単位における炭素数4~12の脂肪族ジアミン単位の合計含有量は、60モル%以上であることがより好ましく、80モル%以上であることがさらに好ましく、90モル%以上であることがよりさらに好ましく、100モル%であることが特に好ましい。
(Diamine unit)
The diamine unit contains an aliphatic diamine unit having 4 to 12 carbon atoms, and preferably 40 mol% or more and 100 mol% or less is an aliphatic diamine unit having 4 to 12 carbon atoms. Since the diamine unit contains an aliphatic diamine unit having 4 to 12 carbon atoms, it is advantageous for exhibiting various physical property improving effects such as heat resistance. When the total content of the aliphatic diamine unit having 4 to 12 carbon atoms in the diamine unit is 40 mol% or more, it becomes easy to exhibit various physical property improving effects such as heat resistance in the polyamide.
From the viewpoint of heat resistance, transparency, flexibility, etc., the total content of the aliphatic diamine units having 4 to 12 carbon atoms in the diamine unit is more preferably 60 mol% or more, and more preferably 80 mol% or more. Is even more preferable, 90 mol% or more is even more preferable, and 100 mol% is particularly preferable.
 炭素数4~12の脂肪族ジアミン単位としては、例えば、1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサメチレンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミン等の直鎖状脂肪族ジアミン等に由来する構成単位;1-ブチル-1,2-エタンジアミン、1,1-ジメチル-1,4-ブタンジアミン、1-エチル-1,4-ブタンジアミン、1,2-ジメチル-1,4-ブタンジアミン、1,3-ジメチル-1,4-ブタンジアミン、1,4-ジメチル-1,4-ブタンジアミン、2-メチル-1,3-プロパンジアミン、2-メチル-1,4-ブタンジアミン、2,3-ジメチル-1,4-ブタンジアミン、2-メチル-1,5-ペンタンジアミン、3-メチル-1,5-ペンタンジアミン、2,5-ジメチル-1,6-ヘキサンジアミン、2,4-ジメチル-1,6-ヘキサンジアミン、3,3-ジメチル-1,6-ヘキサンジアミン、2,2-ジメチル-1,6-ヘキサンジアミン、2,4-ジエチル-1,6-ヘキサンジアミン、2,2,4-トリメチル-1,6-ヘキサンジアミン、2,4,4-トリメチル-1,6-ヘキサンジアミン、2-エチル-1,7-ヘプタンジアミン、2-メチル-1,8-オクタンジアミン、3-メチル-1,8-オクタンジアミン、1,3-ジメチル-1,8-オクタンジアミン、1,4-ジメチル-1,8-オクタンジアミン、2,4-ジメチル-1,8-オクタンジアミン、3,4-ジメチル-1,8-オクタンジアミン、4,5-ジメチル-1,8-オクタンジアミン、2,2-ジメチル-1,8-オクタンジアミン、3,3-ジメチル-1,8-オクタンジアミン、4,4-ジメチル-1,8-オクタンジアミン、2-メチル-1,9-ノナンジアミン、5-メチル-1,9-ノナンジアミン等の分岐状脂肪族ジアミンに由来する構成単位が挙げられる。
 これらの構成単位は1種のみ含まれていてもよいし、2種以上含まれていてもよい。上記脂肪族ジアミン単位の中でも、本発明の効果がより顕著に奏されると共に原料入手性にも優れるなどの観点から、1,9-ノナンジアミン、1,10-デカンジアミン及び2-メチル-1,8-オクタンジアミンからなる群より選ばれる少なくとも1種のジアミンに由来する構成単位が好ましく、1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンを含むことがより好ましい。
Examples of the aliphatic diamine unit having 4 to 12 carbon atoms include 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexamethylenediamine, 1,7-heptandiamine, and 1,8-octanediamine. , 1,9-Nonandiamine, 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine and other linear aliphatic diamines; 1-butyl-1,2- Etandiamine, 1,1-dimethyl-1,4-butanediamine, 1-ethyl-1,4-butanediamine, 1,2-dimethyl-1,4-butanediamine, 1,3-dimethyl-1,4- Butanediamine, 1,4-dimethyl-1,4-butanediamine, 2-methyl-1,3-propanediamine, 2-methyl-1,4-butanediamine, 2,3-dimethyl-1,4-butanediamine , 2-Methyl-1,5-pentanediamine, 3-methyl-1,5-pentanediamine, 2,5-dimethyl-1,6-hexanediamine, 2,4-dimethyl-1,6-hexanediamine, 3 , 3-Dimethyl-1,6-hexanediamine, 2,2-dimethyl-1,6-hexanediamine, 2,4-diethyl-1,6-hexanediamine, 2,2,4-trimethyl-1,6- Hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine, 2-ethyl-1,7-heptanediamine, 2-methyl-1,8-octanediamine, 3-methyl-1,8-octanediamine , 1,3-Dimethyl-1,8-octanediamine, 1,4-dimethyl-1,8-octanediamine, 2,4-dimethyl-1,8-octanediamine, 3,4-dimethyl-1,8- Octanediamine, 4,5-dimethyl-1,8-octanediamine, 2,2-dimethyl-1,8-octanediamine, 3,3-dimethyl-1,8-octanediamine, 4,4-dimethyl-1, Examples thereof include structural units derived from branched aliphatic diamines such as 8-octanediamine, 2-methyl-1,9-nonandiamine, and 5-methyl-1,9-nonandiamine.
Only one type of these constituent units may be contained, or two or more types may be contained. Among the above aliphatic diamine units, 1,9-nonanediamine, 1,10-decanediamine and 2-methyl-1,2, from the viewpoints that the effect of the present invention is more remarkable and the availability of raw materials is excellent. A structural unit derived from at least one diamine selected from the group consisting of 8-octanediamine is preferable, and 1,9-nonandiamine and 2-methyl-1,8-octanediamine are more preferably contained.
 ジアミン単位は、本発明の効果を損なわない範囲で、炭素数4~12の脂肪族ジアミン以外の他のジアミンに由来する構成単位を含むことができる。当該他のジアミンとしては、例えば、芳香族ジアミンや脂環式ジアミンなどが挙げられる。芳香族ジアミンとしては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、p-キシリレンジアミン、m-キシリレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルエーテル等が挙げられる。脂環式ジアミンとしては、例えば、シクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミン、ノルボルナンジメチルジアミン、1,3-ビスアミノメチルシクロヘキサン、1,4-ビスアミノメチルシクロヘキサン等が挙げられる。これらの他のジアミンに由来する構成単位は1種のみ含まれていてもよいし、2種以上含まれていてもよい。ジアミン単位における上記他のジアミンに由来する構成単位の含有量は、30モル%以下であることが好ましく、20モル%以下であることがより好ましく、10モル%以下であることがさらに好ましい。 The diamine unit can include a structural unit derived from a diamine other than the aliphatic diamine having 4 to 12 carbon atoms as long as the effect of the present invention is not impaired. Examples of the other diamines include aromatic diamines and alicyclic diamines. Examples of the aromatic diamine include p-phenylenediamine, m-phenylenediamine, p-xylylenediamine, m-xylylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, 4,4. '-Diaminodiphenyl ether and the like can be mentioned. Examples of the alicyclic diamine include cyclohexanediamine, methylcyclohexanediamine, isophoronediamine, norbornanedimethyldiamine, 1,3-bisaminomethylcyclohexane, 1,4-bisaminomethylcyclohexane and the like. Only one type of structural unit derived from these other diamines may be contained, or two or more types may be contained. The content of the constituent units derived from the other diamines in the diamine unit is preferably 30 mol% or less, more preferably 20 mol% or less, and further preferably 10 mol% or less.
(ジカルボン酸単位及びジアミン単位)
 半芳香族ポリアミドにおけるジカルボン酸単位とジアミン単位とのモル比[ジカルボン酸単位/ジアミン単位]は、45/55~55/45であることが好ましい。ジカルボン酸単位とジアミン単位とのモル比が上記範囲であれば、重合反応が良好に進行し、フィルムにする際の成形性に優れたポリアミドが得られやすい。
 なお、ジカルボン酸単位とジアミン単位とのモル比は、原料のジカルボン酸と原料のジアミンとの配合比(モル比)に応じて調整することができる。
(Dicarboxylic acid unit and diamine unit)
The molar ratio [dicarboxylic acid unit / diamine unit] of the dicarboxylic acid unit to the diamine unit in the semi-aromatic polyamide is preferably 45/55 to 55/45. When the molar ratio of the dicarboxylic acid unit and the diamine unit is within the above range, the polymerization reaction proceeds well, and a polyamide having excellent moldability when forming a film can be easily obtained.
The molar ratio of the dicarboxylic acid unit and the diamine unit can be adjusted according to the blending ratio (molar ratio) of the raw material dicarboxylic acid and the raw material diamine.
 半芳香族ポリアミドにおけるジカルボン酸単位及びジアミン単位の合計割合(ポリアミドを構成する全構成単位のモル数に対するジカルボン酸単位及びジアミン単位の合計モル数の占める割合)は、70モル%以上であることが好ましく、80モル%以上であることがより好ましく、90モル%以上であることがさらに好ましく、95モル%以上、さらには100モル%であってもよい。ジカルボン酸単位及びジアミン単位の合計割合が上記範囲にあることにより、所望する物性により優れたポリアミドを得やすくなる。 The total ratio of the dicarboxylic acid unit and the diamine unit in the semi-aromatic polyamide (the ratio of the total number of moles of the dicarboxylic acid unit and the diamine unit to the number of moles of all the constituent units constituting the polyamide) shall be 70 mol% or more. It is preferably 80 mol% or more, more preferably 90 mol% or more, 95 mol% or more, and even 100 mol%. When the total ratio of the dicarboxylic acid unit and the diamine unit is in the above range, it becomes easy to obtain a polyamide having more excellent physical properties.
(アミノカルボン酸単位)
 半芳香族ポリアミドは、ジカルボン酸単位及びジアミン単位の他に、アミノカルボン酸単位をさらに含んでもよい。
 アミノカルボン酸単位としては、例えば、カプロラクタム、ラウリルラクタム等のラクタム;11-アミノウンデカン酸、12-アミノドデカン酸等のアミノカルボン酸などから誘導される構成単位が挙げられる。半芳香族ポリアミドにおけるアミノカルボン酸単位の含有量は、半芳香族ポリアミドを構成するジカルボン酸単位とジアミン単位の合計100モル%に対して、40モル%以下であることが好ましく、20モル%以下であることがより好ましい。
(Amino carboxylic acid unit)
The semi-aromatic polyamide may further contain an aminocarboxylic acid unit in addition to the dicarboxylic acid unit and the diamine unit.
Examples of the aminocarboxylic acid unit include lactams such as caprolactam and lauryllactam; and constituent units derived from aminocarboxylic acids such as 11-aminoundecanoic acid and 12-aminododecanoic acid. The content of the aminocarboxylic acid unit in the semi-aromatic polyamide is preferably 40 mol% or less, preferably 20 mol% or less, based on 100 mol% of the total of the dicarboxylic acid unit and the diamine unit constituting the semi-aromatic polyamide. Is more preferable.
(多価カルボン酸単位)
 半芳香族ポリアミドは、本発明の効果を損なわない範囲で、トリメリット酸、トリメシン酸、ピロメリット酸などの3価以上の多価カルボン酸に由来する構成単位を、溶融成形が可能な範囲で含むこともできる。
(Polyvalent carboxylic acid unit)
The semi-aromatic polyamide is a structural unit derived from a trivalent or higher valent carboxylic acid such as trimellitic acid, trimesic acid, and pyromellitic acid, as long as the effect of the present invention is not impaired, and can be melt-molded. It can also be included.
(末端封止剤単位)
 半芳香族ポリアミドは、末端封止剤に由来する構成単位(末端封止剤単位)を含んでもよい。
 末端封止剤単位は、ジアミン単位100モル%に対して、1.0モル%以上であることが好ましく、1.2モル%以上であることがより好ましく、1.5モル%以上であることがさらに好ましく、また10モル%以下であることが好ましく、7.5モル%以下であることがより好ましく、6.5モル%以下であることがさらに好ましい。末端封止剤単位の含有量が上記範囲にあると、フィルム成形性に優れたポリアミドを得やすくなる。末端封止剤単位の含有量は、重合原料を仕込む際に末端封止剤の量を適宜調整することにより上記所望の範囲内とすることができる。なお、重合時に単量体成分が揮発することを考慮して、得られるポリアミドに所望量の末端封止剤単位が導入されるように末端封止剤の仕込み量を微調整することが望ましい。
 半芳香族ポリアミド中の末端封止剤単位の含有量を求める方法としては、例えば、特開平7-228690号公報に示されているように、溶液粘度を測定し、これと数平均分子量との関係式から全末端基量を算出し、ここから滴定によって求めたアミノ基量とカルボキシル基量を減じる方法や、H-NMRを用い、ジアミン単位と末端封止剤単位のそれぞれに対応するシグナルの積分値に基づいて求める方法などが挙げられ、後者が好ましい。
(Terminal sealant unit)
The semi-aromatic polyamide may contain a structural unit (terminal encapsulant unit) derived from the end encapsulant.
The terminal encapsulant unit is preferably 1.0 mol% or more, more preferably 1.2 mol% or more, and 1.5 mol% or more with respect to 100 mol% of the diamine unit. Is more preferably 10 mol% or less, more preferably 7.5 mol% or less, still more preferably 6.5 mol% or less. When the content of the terminal encapsulant unit is within the above range, it becomes easy to obtain a polyamide having excellent film moldability. The content of the terminal encapsulant unit can be set within the above desired range by appropriately adjusting the amount of the end encapsulant when the polymerization raw material is charged. Considering that the monomer component volatilizes during polymerization, it is desirable to finely adjust the amount of the terminal encapsulant charged so that a desired amount of the terminal encapsulant unit is introduced into the obtained polyamide.
As a method for determining the content of the terminal encapsulant unit in the semi-aromatic polyamide, for example, as shown in JP-A-7-228690, the solution viscosity is measured, and this is combined with the number average molecular weight. A method of calculating the total amount of terminal groups from the relational expression and reducing the amount of amino groups and carboxyl groups obtained by titration from this, or using 1 H-NMR, signals corresponding to each of the diamine unit and the terminal encapsulant unit. A method of obtaining the value based on the integrated value of is mentioned, and the latter is preferable.
 末端封止剤としては、末端アミノ基又は末端カルボキシル基との反応性を有する単官能性の化合物を用いることができる。具体的には、モノカルボン酸、酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類、モノアミン等が挙げられる。反応性及び封止末端の安定性などの観点から、末端アミノ基に対する末端封止剤としては、モノカルボン酸が好ましく、末端カルボキシル基に対する末端封止剤としては、モノアミンが好ましい。取り扱いの容易さなどの観点からは、末端封止剤としてはモノカルボン酸がより好ましい。 As the terminal encapsulant, a monofunctional compound having reactivity with a terminal amino group or a terminal carboxyl group can be used. Specific examples thereof include monocarboxylic acids, acid anhydrides, monoisocyanates, monoacid halides, monoesters, monoalcohols and monoamines. From the viewpoint of reactivity and stability of the sealing terminal, a monocarboxylic acid is preferable as the terminal sealing agent for the terminal amino group, and a monoamine is preferable as the terminal sealing agent for the terminal carboxyl group. From the viewpoint of ease of handling, a monocarboxylic acid is more preferable as the terminal encapsulant.
 末端封止剤として使用されるモノカルボン酸としては、アミノ基との反応性を有するものであれば特に制限はなく、例えば、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸、イソ酪酸等の脂肪族モノカルボン酸;シクロペンタンカルボン酸、シクロヘキサンカルボン酸等の脂環式モノカルボン酸;安息香酸、トルイル酸、α-ナフタレンカルボン酸、β-ナフタレンカルボン酸、メチルナフタレンカルボン酸、フェニル酢酸等の芳香族モノカルボン酸;これらの任意の混合物等が挙げられる。これらの中でも、反応性、封止末端の安定性、価格などの点から、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸、及び安息香酸からなる群より選ばれる少なくとも1種が好ましい。 The monocarboxylic acid used as the terminal encapsulant is not particularly limited as long as it has reactivity with an amino group. For example, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, capric acid, and laurin. Alicyclic monocarboxylic acids such as acids, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, isobutyric acid; alicyclic monocarboxylic acids such as cyclopentanecarboxylic acid and cyclohexanecarboxylic acid; benzoic acid, toluic acid, Aromatic monocarboxylic acids such as α-naphthalenecarboxylic acid, β-naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid, phenylacetic acid; any mixture thereof and the like can be mentioned. Among these, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, etc., in terms of reactivity, stability of the sealing end, price, etc. , And at least one selected from the group consisting of benzoic acid is preferred.
 末端封止剤として使用されるモノアミンとしては、カルボキシル基との反応性を有するものであれば特に制限はなく、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン等の脂肪族モノアミン;シクロヘキシルアミン、ジシクロヘキシルアミン等の脂環式モノアミン;アニリン、トルイジン、ジフェニルアミン、ナフチルアミン等の芳香族モノアミン;これらの任意の混合物等が挙げられる。これらの中でも、反応性、高沸点、封止末端の安定性及び価格などの点から、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、シクロヘキシルアミン、及びアニリンからなる群より選ばれる少なくとも1種が好ましい。 The monoamine used as the terminal encapsulant is not particularly limited as long as it has reactivity with a carboxyl group. For example, methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine and stearyl are not particularly limited. Adipose monoamines such as amines, dimethylamines, diethylamines, dipropylamines and dibutylamines; alicyclic monoamines such as cyclohexylamines and dicyclohexylamines; aromatic monoamines such as aniline, toluidine, diphenylamines and naphthylamines; any mixture thereof and the like. Can be mentioned. Among these, at least one selected from the group consisting of butylamine, hexylamine, octylamine, decylamine, stearylamine, cyclohexylamine, and aniline from the viewpoints of reactivity, high boiling point, stability of sealing end, and price. Is preferable.
 半芳香族ポリアミドは、濃硫酸を溶媒とし、濃度0.2g/dl、温度30℃で測定した固有粘度ηinhが0.1dl/g以上であることが好ましく、0.4dl/g以上であることがより好ましく、0.6dl/g以上であることがさらに好ましく、0.8dl/g以上であることが特に好ましく、また、3.0dl/g以下であることが好ましく、2.0dl/g以下であることがより好ましく、1.8dl/g以下であることがさらに好ましい。ポリアミドの固有粘度ηinhが上記の範囲内であれば、フィルムの成形性や耐熱性などの諸物性をより向上させやすくなる。固有粘度ηinhは、溶媒(濃硫酸)の流下時間t(秒)、試料溶液の流下時間t(秒)及び試料溶液における試料濃度c(g/dl)(すなわち、0.2g/dl)から、ηinh=[ln(t/t)]/cの関係式により求めることができる。 The semi-aromatic polyamide preferably has an intrinsic viscosity η inh of 0.1 dl / g or more, preferably 0.4 dl / g or more, measured at a concentration of 0.2 g / dl and a temperature of 30 ° C. using concentrated sulfuric acid as a solvent. More preferably, it is more preferably 0.6 dl / g or more, particularly preferably 0.8 dl / g or more, and more preferably 3.0 dl / g or less, and 2.0 dl / g or less. It is more preferably less than or equal to 1.8 dl / g or less. When the intrinsic viscosity η inh of the polyamide is within the above range, it becomes easier to improve various physical properties such as moldability and heat resistance of the film. The intrinsic viscosity η inh is the flow time of the solvent (concentrated sulfuric acid) t 0 (sec), the flow time of the sample solution t 1 (sec), and the sample concentration c (g / dl) in the sample solution (that is, 0.2 g / dl). ), It can be obtained by the relational expression of η inh = [ln (t 1 / t 0 )] / c.
 半芳香族ポリアミドの融点(Tm)に特に制限はなく、例えば、260℃以上、270℃以上とすることができるが、本発明の効果がより顕著に奏されることなどから、280℃以上であることが好ましい。半芳香族ポリアミドの融点の上限に特に制限はないが、成形性なども考慮すると、330℃以下であることが好ましい。半芳香族ポリアミドの融点は、示差走査熱量分析(DSC)装置を用い、10℃/分の速度で昇温した時に現れる融解ピークのピーク温度として求めることができ、より具体的には後述する実施例に記載した方法により求めることができる。 The melting point (Tm) of the semi-aromatic polyamide is not particularly limited and can be, for example, 260 ° C. or higher and 270 ° C. or higher. However, since the effect of the present invention is more remarkable, the temperature is 280 ° C. or higher. It is preferable to have. The upper limit of the melting point of the semi-aromatic polyamide is not particularly limited, but it is preferably 330 ° C. or lower in consideration of moldability and the like. The melting point of the semi-aromatic polyamide can be determined as the peak temperature of the melting peak that appears when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimetry (DSC) device, and more specifically, it will be described later. It can be obtained by the method described in the example.
 半芳香族ポリアミドのガラス転移温度(Tg)に特に制限はなく、例えば、100℃以上、110℃以上とすることができるが、本発明の効果がより顕著に奏されることなどから、125℃以上であることが好ましい。半芳香族ポリアミドのガラス転移温度の上限に特に制限はないが、成形性なども考慮すると、180℃以下であることが好ましい。半芳香族ポリアミドのガラス転移温度は、示差走査熱量分析(DSC)装置を用い、20℃/分の速度で昇温した時に現れる変曲点の温度として求めることができ、より具体的には後述する実施例に記載した方法により求めることができる。 The glass transition temperature (Tg) of the semi-aromatic polyamide is not particularly limited and can be, for example, 100 ° C. or higher and 110 ° C. or higher. However, since the effect of the present invention is more pronounced, 125 ° C. The above is preferable. The upper limit of the glass transition temperature of the semi-aromatic polyamide is not particularly limited, but it is preferably 180 ° C. or lower in consideration of moldability and the like. The glass transition temperature of the semi-aromatic polyamide can be determined as the temperature of the inflection point that appears when the temperature is raised at a rate of 20 ° C./min using a differential scanning calorimetry (DSC) device, more specifically described later. It can be obtained by the method described in the examples.
(半芳香族ポリアミドの製造方法)
 半芳香族ポリアミドは、結晶性ポリアミドを製造する方法として知られている任意の方法を用いて製造することができ、例えばジカルボン酸とジアミンとを原料とする、溶融重合法、固相重合法、溶融押出重合法等の方法により製造することができる。これらの中でも、重合中の熱劣化をより良好に抑制することができるなどの観点から、固相重合法であることが好ましい。
 炭素数4~12の脂肪族ジアミンとして、例えば2-メチル-1,8-オクタンジアミン及び1,9-ノナンジアミンをそれぞれ用いる場合、これらは公知の方法により製造することができる。公知の方法としては、例えば、ジアルデヒドを出発原料として還元アミノ化反応することにより得られたジアミン粗反応液を蒸留する方法等が挙げられる。さらに、2-メチル-1,8-オクタンジアミンと1,9-ノナンジアミンとは、上記ジアミン粗反応液を分留して得ることができる。
(Manufacturing method of semi-aromatic polyamide)
The semi-aromatic polyamide can be produced by any method known as a method for producing a crystalline polyamide, for example, a melt polymerization method, a solid phase polymerization method, which uses a dicarboxylic acid and a diamine as raw materials. It can be produced by a method such as a melt extrusion polymerization method. Among these, the solid phase polymerization method is preferable from the viewpoint that thermal deterioration during polymerization can be suppressed more satisfactorily.
When, for example, 2-methyl-1,8-octanediamine and 1,9-nonanediamine are used as the aliphatic diamine having 4 to 12 carbon atoms, these can be produced by known methods. Examples of known methods include a method of distilling a crude diamine reaction solution obtained by performing a reductive amination reaction using dialdehyde as a starting material. Further, 2-methyl-1,8-octanediamine and 1,9-nonanediamine can be obtained by fractional distillation of the above-mentioned crude diamine reaction solution.
 半芳香族ポリアミドは、例えば、最初にジアミン、ジカルボン酸、及び必要に応じて触媒や末端封止剤を一括して添加してナイロン塩を製造した後、200~250℃の温度において加熱重合してプレポリマーとし、さらに固相重合するか、あるいは溶融押出機を用いて重合することにより製造することができる。重合の最終段階を固相重合により行う場合、減圧下又は不活性ガス流動下に行うのが好ましく、重合温度が200~280℃の範囲内であれば、重合速度が大きく、生産性に優れ、着色やゲル化を有効に抑制することができる。重合の最終段階を溶融押出機により行う場合の重合温度としては、370℃以下であるのが好ましく、係る条件で重合すると、分解がほとんどなく、劣化の少ない半芳香族ポリアミドが得られやすくなる。 The semi-aromatic polyamide is, for example, first added with a diamine, a dicarboxylic acid, and if necessary, a catalyst and an end-capping agent in a batch to produce a nylon salt, and then heat-polymerized at a temperature of 200 to 250 ° C. It can be produced by solid-phase polymerization or polymerization using a melt extruder. When the final stage of polymerization is carried out by solid phase polymerization, it is preferably carried out under reduced pressure or under an inert gas flow, and when the polymerization temperature is in the range of 200 to 280 ° C., the polymerization rate is high and the productivity is excellent. Coloring and gelation can be effectively suppressed. When the final stage of polymerization is carried out by a melt extruder, the polymerization temperature is preferably 370 ° C. or lower, and when polymerization is carried out under such conditions, semi-aromatic polyamide with almost no decomposition and little deterioration can be easily obtained.
 半芳香族ポリアミドを製造する際に使用することができる触媒としては、例えば、リン酸、亜リン酸、次亜リン酸、又はこれらの塩もしくはエステル等が挙げられる。上記の塩又はエステルとしては、例えば、リン酸、亜リン酸又は次亜リン酸と、カリウム、ナトリウム、マグネシウム、バナジウム、カルシウム、亜鉛、コバルト、マンガン、錫、タングステン、ゲルマニウム、チタン、アンチモン等の金属との塩;リン酸、亜リン酸又は次亜リン酸のアンモニウム塩;リン酸、亜リン酸又は次亜リン酸のエチルエステル、イソプロピルエステル、ブチルエステル、ヘキシルエステル、イソデシルエステル、オクタデシルエステル、デシルエステル、ステアリルエステル、フェニルエステル等が挙げられる。
 上記触媒の使用量は、原料の総質量100質量%に対して、0.01質量%以上であることが好ましく、0.05質量%以上であることがより好ましく、また1.0質量%以下であることが好ましく、0.5質量%以下であることがより好ましい。触媒の使用量が上記下限以上であれば良好に重合が進行する。上記上限以下であれば触媒由来の不純物が生じにくくなり、例えばポリアミドないしそれを含有するポリアミド組成物をフィルムにした場合に上記不純物による不具合を防ぎやすくなる。
Examples of the catalyst that can be used in producing the semi-aromatic polyamide include phosphoric acid, phosphorous acid, hypophosphorous acid, and salts or esters thereof. Examples of the above salts or esters include phosphoric acid, phosphite or hypophosphoric acid, potassium, sodium, magnesium, vanadium, calcium, zinc, cobalt, manganese, tin, tungsten, germanium, titanium, antimony and the like. Salt with metal; ammonium salt of phosphoric acid, phosphite or hypophosphoric acid; ethyl ester of phosphoric acid, phosphite or hypophosphoric acid, isopropyl ester, butyl ester, hexyl ester, isodecyl ester, octadecyl ester , Decyl ester, stearyl ester, phenyl ester and the like.
The amount of the catalyst used is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and 1.0% by mass or less with respect to 100% by mass of the total mass of the raw materials. It is preferably 0.5% by mass or less, and more preferably 0.5% by mass or less. When the amount of the catalyst used is equal to or higher than the above lower limit, the polymerization proceeds satisfactorily. If it is not more than the above upper limit, impurities derived from the catalyst are less likely to occur, and for example, when a polyamide or a polyamide composition containing the same is made into a film, it becomes easy to prevent defects due to the impurities.
(ポリアミド組成物)
 半芳香族ポリアミドには、最終的に得られるフィルムの諸物性をより向上させるために、本発明の効果を損なわない範囲内で、その他の成分を配合してポリアミド組成物としても良い。半芳香族ポリアミド又はポリアミド組成物用いて、後述する延伸処理を行うことにより、半芳香族ポリアミドを含む延伸フィルムを得ることができる。
 その他の成分としては、例えば、カーボンブラック、ニグロシン、酸化チタン等の顔料や染料;紫外線吸収剤;ヒンダードアミン系等の光安定化剤;ヒンダードフェノール系、チオ系、リン系、アミン系等の有機系酸化防止剤;ヨウ化銅や臭化銅等のハロゲン化銅とヨウ化カリウムや臭化カリウム等のハロゲン化アルカリ金属の組み合わせ等の無機系酸化防止剤;帯電防止剤;蛍光増白剤;臭素化ポリスチレン等の臭素化ポリマー、酸化アンチモン等の難燃助剤;脂肪族アミド、脂肪酸エステル、脂肪酸金属塩、ポリエチレンワックス、ポリプロピレンワックス、シリカ等の滑剤;ポリフェニレンスルフィド、液晶ポリマー、ポリエチレン、ポリスチレン、ポリエステル、脂肪族ポリアミド、半芳香族ポリアミド、ポリフェニレンオキサイド、ポリオレフィン系エラストマー、スチレン系エラストマー、ポリエステルエラストマー、ポリアミドエラストマー等の他のポリマー;有機系及び無機系の粉末あるいは繊維状の各種充填剤などが挙げられる。これらは1種のみ含まれていてもよいし、2種以上含まれていてもよい。ポリアミド組成物に含まれるその他の成分としての脂肪族ポリアミドや半芳香族ポリアミドは、実施形態に係る延伸フィルムに用いられる半芳香族ポリアミドとは異なる化学構造を有する。
 ポリアミド組成物における半芳香族ポリアミドの含有量は、ポリアミド組成物全体の質量に対して、例えば、20質量%以上、50質量%以上、70質量%以上、85質量%以上、95質量%以上、99質量%以上などとすることができる。
 ポリアミド組成物における上記その他の成分の含有量に特に制限はなく、当該他の成分の種類やポリアミド組成物の用途などに応じて適宜調整することができ、例えば、ポリアミド組成物全体の質量に対して、80質量%以下、50質量%以下、30質量%以下、15質量%以下、5質量%以下、1質量%以下などとすることができる。
(Polyamide composition)
In order to further improve various physical properties of the film finally obtained, the semi-aromatic polyamide may be blended with other components as long as the effects of the present invention are not impaired to form a polyamide composition. A stretched film containing a semi-aromatic polyamide can be obtained by performing a stretching treatment described later using a semi-aromatic polyamide or polyamide composition.
Other components include, for example, pigments and dyes such as carbon black, niglosin, titanium oxide; ultraviolet absorbers; light stabilizers such as hindered amines; organics such as hindered phenols, thios, phosphorus and amines. Antioxidants; Inorganic antioxidants such as a combination of copper halides such as copper iodide and copper bromide and alkali metals halides such as potassium iodide and potassium bromide; antistatic agents; fluorescent whitening agents; Brominated polymers such as brominated polystyrene, flame retardant aids such as antimony oxide; lubricants such as aliphatic amides, fatty acid esters, fatty acid metal salts, polyethylene wax, polypropylene wax, silica; polyphenylene sulfide, liquid crystal polymers, polyethylene, polystyrene, Other polymers such as polyester, aliphatic polyamide, semi-aromatic polyamide, polyphenylene oxide, polyolefin-based elastomer, styrene-based elastomer, polyester elastomer, polyamide elastomer; organic and inorganic powders or various fibrous fillers, etc. Be done. These may contain only one kind, or may contain two or more kinds. The aliphatic polyamide or semi-aromatic polyamide as other components contained in the polyamide composition has a chemical structure different from that of the semi-aromatic polyamide used in the stretched film according to the embodiment.
The content of the semi-aromatic polyamide in the polyamide composition is, for example, 20% by mass or more, 50% by mass or more, 70% by mass or more, 85% by mass or more, 95% by mass or more, based on the total mass of the polyamide composition. It can be 99% by mass or more.
The content of the above other components in the polyamide composition is not particularly limited and can be appropriately adjusted according to the type of the other components and the use of the polyamide composition. For example, with respect to the total mass of the polyamide composition. Therefore, it can be 80% by mass or less, 50% by mass or less, 30% by mass or less, 15% by mass or less, 5% by mass or less, 1% by mass or less, and the like.
 その他の成分として配合される脂肪族ポリアミド及び半芳香族ポリアミドとしては、例えば、ポリカプロアミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリテトラメチレンアジパミド(ナイロン46)、ポリテトラメチレンセバカミド(ナイロン410)、ポリペンタメチレンアジパミド(ナイロン56)、ポリペンタメチレンセバカミド(ナイロン510)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリデカメチレンアジパミド(ナイロン106)、ポリデカメチレンセバカミド(ナイロン1010)、ポリデカメチレンドデカミド(ナイロン1012)、ポリウンデカンアミド(ナイロン11)、ポリドデカンアミド(ナイロン12)、ポリカプロアミド/ポリヘキサメチレンアジパミドコポリマー(ナイロン6/66)、ポリテトラメチレンテレフタルアミド(ナイロン4T)、ポリヘキサメチレンテレフタルアミド(ナイロン6T)、ポリテトラメチレンテレフタルアミド/ポリヘキサメチレンテレフタルアミド(ナイロン6T/4T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミド/ポリテトラメチレンテレフタルアミド/ポリテトラメチレンアジパミド(ナイロン66/6T/4T/46)、ポリヘキサメチレンテレフタルアミド/ポリカプロアミドコポリマー(ナイロン6T/6)、ポリヘキサメチレンテレフタルアミド/ポリウンデカンアミドコポリマー(ナイロン6T/11)、ポリヘキサメチレンテレフタルアミド/ポリドデカンアミドコポリマー(ナイロン6T/12)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミドコポリマー(ナイロン66/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン66/6I)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミド/ポリカプロアミドコポリマー(ナイロン66/6I/6)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン66/6T/6I)、ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン6T/6I)、ポリヘキサメチレンテレフタルアミド/ポリ(2-メチルペンタメチレン)テレフタルアミドコポリマー(ナイロン6T/M5T)、ポリノナメチレンテレフタルアミド(ナイロン9T)、ポリ(2-メチルオクタメチレン)テレフタルアミド(ナイロンM8T)、ポリノナメチレンテレフタルアミド/ポリ(2-メチルオクタメチレン)テレフタルアミドコポリマー(ナイロン9T/M8T)、ポリデカメチレンテレフタルアミド(ナイロン10T)、ポリウンデカメチレンテレフタルアミド(ナイロン11T)、ポリドデカメチレンテレフタルアミド(ナイロン12T)、ポリペンタメチレンテレフタルアミド/ポリデカメチレンテレフタルアミドコポリマー(ナイロン5T/10T)、ポリデカメチレンテレフタルアミド/ポリヘキサメチレンドデカンアミドコポリマー(ナイロン10T/612)、ポリデカメチレンテレフタルアミド/ポリヘキサメチレンテレフタルアミド(ナイロン10T/6T)、ポリデカメチレンテレフタルアミド/ポリヘキサメチレンアジパミドコポリマー(ナイロン10T/66)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミド/ポリデカメチレンテレフタルアミド/ポリデカメチレンメチレンアジパミド(ナイロン66/6T/10T/106)、ポリデカメチレンテレフタルアミド/ポリウンデカンアミドコポリマー(ナイロン10T/11)、ポリヘキサメチレンシクロヘキサンカルボアミド(ナイロン6C)、ポリヘキサメチレンシクロヘキサンカルボアミド/ポリ(2-メチルペンタメチレン)シクロヘキサンカルボアミドコポリマー(ナイロン6C/M5C)、ポリノナメチレンシクロヘキサンカルボアミド(ナイロン9C)、ポリ(2-メチルオクタメチレン)シクロヘキサンカルボアミド(ナイロンM8C)、ポリノナメチレンシクロヘキサンカルボアミド/ポリ(2-メチルオクタメチレン)シクロヘキサンカルボアミドコポリマー(ナイロン9C/M8C)及びこれらの共重合体等が挙げられる。 Examples of the aliphatic polyamide and semi-aromatic polyamide blended as other components include polycaproamide (nylon 6), polyhexamethylene adipamide (nylon 66), polytetramethylene adipamide (nylon 46), and the like. Polytetramethylene sebacamide (nylon 410), polypentamethylene adipamide (nylon 56), polypentamethylene sebacamide (nylon 510), polyhexamethylene sebacamide (nylon 610), polyhexamethylene dodecamide (nylon 610) Nylon 612), Polydecamethylene adipamide (Nylon 106), Polydecamethylene sebacamide (Nylon 1010), Polydecamethylene dodecamide (Nylon 1012), Polyundecaneamide (Nylon 11), Polydodecaneamide (Nylon 12) ), Polycaproamide / Polyhexamethylene adipamide copolymer (Nylon 6/66), Polytetramethylene terephthalamide (Nylon 4T), Polyhexamethylene terephthalamide (Nylon 6T), Polytetramethylene terephthalamide / Polyhexamethylene terephthalamide Amide (nylon 6T / 4T), polyhexamethylene adipamide / polyhexamethylene terephthalamide / polytetramethylene terephthalamide / polytetramethylene adipamide (nylon 66 / 6T / 4T / 46), polyhexamethylene terephthalamide / Polycaproamide copolymer (nylon 6T / 6), polyhexamethylene terephthalamide / polyundecaneamide copolymer (nylon 6T / 11), polyhexamethylene terephthalamide / polydodecaneamide copolymer (nylon 6T / 12), polyhexamethylene adipa Mid / polyhexamethylene terephthalamide copolymer (nylon 66 / 6T), polyhexamethylene adipamide / polyhexamethylene isophthalamide copolymer (nylon 66 / 6I), polyhexamethylene adipamide / polyhexamethylene isophthalamide / polycapro Amide copolymer (nylon 66 / 6I / 6), polyhexamethylene adipamide / polyhexamethylene terephthalamide / polyhexamethylene isophthalamide copolymer (nylon 66 / 6T / 6I), polyhexamethylene terephthalamide / polyhexamethylene isophthalamide Copolymer (Nylon 6T / 6I), Polyhexamethylene terephthalamide / Poly (2-methylpentamethylene) Tele Phthalamide copolymer (nylon 6T / M5T), polynonamethylene terephthalamide (nylon 9T), poly (2-methyloctamethylene) terephthalamide (nylon M8T), polynonamethylene terephthalamide / poly (2-methyloctamethylene) terephthal Amide copolymer (nylon 9T / M8T), polydecamethylene terephthalamide (nylon 10T), polyundecamethylene terephthalamide (nylon 11T), polydodecamethylene terephthalamide (nylon 12T), polypentamethylene terephthalamide / polydecamethylene terephthalamide Amide copolymer (nylon 5T / 10T), polydecamethylene terephthalamide / polyhexamethylene dodecaneamide copolymer (nylon 10T / 612), polydecamethylene terephthalamide / polyhexamethylene terephthalamide (nylon 10T / 6T), polydecamethylene terephthalamide Amide / polyhexamethylene adipamide copolymer (nylon 10T / 66), polyhexamethylene adipamide / polyhexamethylene terephthalamide / polydecamethylene terephthalamide / polydecamethylene methylene adipamide (nylon 66 / 6T / 10T / 106), Polydecamethylene terephthalamide / polyundecaneamide copolymer (nylon 10T / 11), polyhexamethylenecyclohexanecarbamide (nylon 6C), polyhexamethylenecyclohexanecarbamide / poly (2-methylpentamethylene) cyclohexanecarbamide copolymer (Nylon 6C / M5C), Polynonamethylene Cyclohexane Carboamide (Nylon 9C), Poly (2-Methyl Octamethylene) Cyclohexane Carbamide (Nylon M8C), Polynonamethylene Cyclohexane Carbamide / Poly (2-Methyl Octamethylene) Cyclohexane Examples thereof include carboamide copolymers (nylon 9C / M8C) and copolymers thereof.
 上記の各種添加剤の添加方法としては、例えば半芳香族ポリアミドの重合時に添加する方法、半芳香族ポリアミドにドライブレンドし溶融混錬する方法、フィルムの成形時に添加する方法等が挙げられる。 Examples of the method of adding the above-mentioned various additives include a method of adding the semi-aromatic polyamide at the time of polymerization, a method of dry blending the semi-aromatic polyamide with melt kneading, and a method of adding the semi-aromatic polyamide at the time of film molding.
(ポリアミド組成物の製造方法)
 ポリアミド組成物の製造方法に特に制限はなく、半芳香族ポリアミド及び上記他の成分を均一に混合することのできる方法を好ましく採用することができる。混合は、通常、単軸押出機、二軸押出機、ニーダー、バンバリーミキサーなどを使用して溶融混練する方法が好ましく採用される。溶融混練条件は特に限定されないが、例えば、半芳香族ポリアミドの融点よりも10~50℃程度高い温度範囲で、約1~30分間溶融混練する方法が挙げられる。
(Method for producing polyamide composition)
The method for producing the polyamide composition is not particularly limited, and a method capable of uniformly mixing the semi-aromatic polyamide and the above other components can be preferably adopted. For mixing, a method of melt-kneading using a single-screw extruder, a twin-screw extruder, a kneader, a Banbury mixer or the like is usually preferably adopted. The melt-kneading conditions are not particularly limited, and examples thereof include a method of melt-kneading for about 1 to 30 minutes in a temperature range of about 10 to 50 ° C. higher than the melting point of the semi-aromatic polyamide.
<延伸フィルムの物性等>
 本発明の実施形態に係る延伸フィルムは、50℃~150℃の温度範囲における寸法変化量から算出した線膨張係数が-50×10-6/℃以上50×10-6/℃以下である。好ましくは-40×10-6/℃以上40×10-6/℃以下、より好ましくは-30×10-6/℃以上30×10-6/℃以下、更に好ましくは-20×10-6/℃以上20×10-6/℃以下である。延伸フィルムの線膨張係数が係る範囲にあると、フィルムにハードコート層を塗工する工程の熱処理によってフィルムの反りが発生せず、また微細クラックが発生しないため、高品質のカバーウィンドウを得ることができる。線膨張係数は、熱機械分析装置を用いて求めることができ、具体的には実施例において後述する方法により求めることができる。
 このような物性を持つ延伸フィルムは、ナフタレンジカルボン酸単位を含むジカルボン酸単位と、炭素数4~12のジアミンを含むジアミン単位とを含む半芳香族ポリアミド、又は、これを含むポリアミド組成物、を含む原反フィルムに対して、延伸工程と固定化工程とを含む延伸処理を施すことにより作製することができる。特に、後述する特定条件の延伸工程と特定条件の固定化工程とを有する延伸処理を上記原反フィルムに施すことが、上記物性を有する延伸フィルムを得るのに有利である。
<Physical properties of stretched film>
The stretched film according to the embodiment of the present invention has a linear expansion coefficient of −50 × 10-6 / ° C. or higher and 50 × 10-6 / ° C. or lower calculated from the amount of dimensional change in the temperature range of 50 ° C. to 150 ° C. Preferably -40 × 10-6 / ° C. or higher 40 × 10-6 / ° C. or less, more preferably -30 × 10 -6 / ℃ least 30 × 10 -6 / ℃ less, more preferably -20 × 10 -6 / ° C or higher and 20 × 10-6 / ° C or lower. When the coefficient of linear expansion of the stretched film is within the relevant range, the film does not warp and fine cracks do not occur due to the heat treatment in the process of applying the hard coat layer to the film, so that a high quality cover window can be obtained. Can be done. The coefficient of linear expansion can be obtained using a thermomechanical analyzer, and specifically, can be obtained by the method described later in the examples.
A stretched film having such physical properties is a semi-aromatic polyamide containing a dicarboxylic acid unit containing a naphthalene dicarboxylic acid unit and a diamine unit containing a diamine having 4 to 12 carbon atoms, or a polyamide composition containing the same. It can be produced by subjecting the raw fabric containing the film to a stretching treatment including a stretching step and an immobilization step. In particular, it is advantageous to perform a stretching treatment having a stretching step under specific conditions and a fixing step under specific conditions, which will be described later, on the raw film to obtain a stretched film having the above physical properties.
 延伸フィルムは、10℃/minで昇温した際の収縮開始温度が125℃以上であることが好ましく、130℃以上であることがより好ましい。延伸フィルムの収縮開始温度が係る範囲にあると、フィルムにハードコート層を塗工する工程の熱処理によってフィルムの反りが発生せず、また微細クラックが発生しないため、高品質のカバーウィンドウが得られる。収縮開始温度は、熱機械分析装置を用いて求めることができ、具体的には実施例において後述する方法により求めることができる。 The shrinkage start temperature of the stretched film when the temperature is raised at 10 ° C./min is preferably 125 ° C. or higher, more preferably 130 ° C. or higher. When the shrinkage start temperature of the stretched film is within such a range, the film does not warp and fine cracks do not occur due to the heat treatment in the process of applying the hard coat layer to the film, so that a high quality cover window can be obtained. .. The shrinkage start temperature can be determined using a thermomechanical analyzer, and specifically, can be determined by the method described later in the examples.
 延伸フィルムのヘーズは、10%以下であることが好ましく、7.0%以下であることがより好ましく、5.0%以下であることがさらに好ましい。延伸フィルムのヘーズが10%を超えるとカバーウィンドウとした際の光源からの光の透過量が不足しやすくなる。延伸フィルムのヘーズはJIS K 7136(2000)に準拠して求めることができ、具体的には実施例において後述する方法により求めることができる。 The haze of the stretched film is preferably 10% or less, more preferably 7.0% or less, and even more preferably 5.0% or less. If the haze of the stretched film exceeds 10%, the amount of light transmitted from the light source when the cover window is used tends to be insufficient. The haze of the stretched film can be obtained in accordance with JIS K 7136 (2000), and specifically, can be obtained by the method described later in the examples.
 延伸フィルムの、23℃における引張弾性率E(23)及び85℃における引張弾性率E(85)を用いて下記式(1)で表される弾性率変化の絶対値は、25%以下であることが好ましく、20%以下であることがより好ましく、15%以下であることがさらに好ましい。
 弾性率変化(%)=(E(85)-E(23))/E(23)×100…式(1)
 弾性率変化が係る範囲にあると、フィルムにハードコート層を塗工する工程の熱処理によってフィルムの反りが発生しにくくなり、また微細クラックが発生しにくくなるため、高品質のカバーウィンドウを得やすい。延伸フィルムの引張弾性率は、引張試験により求めることができ、具体的には実施例において後述する方法により求めることができる。
 なお、式(1)で算出される値がマイナスの場合、高温での引張弾性率が常温での引張弾性率よりも小さいことを意味している。
Using the tensile elastic modulus E (23) at 23 ° C. and the tensile elastic modulus E (85) at 85 ° C. of the stretched film, the absolute value of the elastic modulus change represented by the following formula (1) is 25% or less. It is preferably 20% or less, more preferably 15% or less.
Modulus change (%) = (E (85) -E (23)) / E (23) x 100 ... Equation (1)
When the change in elastic modulus is within the range, the film is less likely to warp due to the heat treatment in the process of applying the hard coat layer to the film, and fine cracks are less likely to occur, so that it is easy to obtain a high-quality cover window. .. The tensile elastic modulus of the stretched film can be obtained by a tensile test, and specifically, can be obtained by the method described later in the examples.
When the value calculated by the equation (1) is negative, it means that the tensile elastic modulus at high temperature is smaller than the tensile elastic modulus at normal temperature.
 延伸フィルムの厚さは、コストや表面硬度の観点から、5~200μmであることが好ましく、10~100μmであることがより好ましく、20~80μmであることがさらに好ましい。 The thickness of the stretched film is preferably 5 to 200 μm, more preferably 10 to 100 μm, and even more preferably 20 to 80 μm from the viewpoint of cost and surface hardness.
[延伸フィルムの製造方法]
 本発明の実施形態に係る延伸フィルムは、半芳香族ポリアミドを含む未延伸フィルム(以降、「原反フィルム」と称する)に対して、原反フィルムの長手方向及び幅方向のうち少なくとも一方に延伸する延伸工程を含む延伸処理を施す方法によって製造される。
[Manufacturing method of stretched film]
The stretched film according to the embodiment of the present invention is stretched in at least one of the longitudinal direction and the width direction of the raw fabric film with respect to an unstretched film containing a semi-aromatic polyamide (hereinafter referred to as "raw fabric film"). It is produced by a method of performing a stretching process including a stretching step.
(原反フィルムの製造方法)
 原反フィルムの製造方法に特に制限はなく、半芳香族ポリアミド又はこれを含むポリアミド組成物を従来公知の方法により成形すればよい。成形方法としては、例えば、溶融押出法が好ましく挙げられる。溶融押出法は特に制限されず、当該技術分野において知られている溶融押出法によって行うことができ、例えば、Tダイ法やインフレーション法などを用いることができる。このとき、押出温度は半芳香族ポリアミドのTm+10℃以上370℃以下であることが好ましい。押出温度がTm+10℃以上であれば粘度が上昇して押出しできなくなることを回避しやすくなり、370℃以下であれば、半芳香族ポリアミドが分解しにくくなる。原反フィルムの厚みは、通常1~500μmであり、好ましくは5~200μmである。
(Manufacturing method of raw film)
The method for producing the raw film is not particularly limited, and a semi-aromatic polyamide or a polyamide composition containing the same may be molded by a conventionally known method. As the molding method, for example, a melt extrusion method is preferably mentioned. The melt extrusion method is not particularly limited, and can be carried out by a melt extrusion method known in the art, and for example, a T-die method or an inflation method can be used. At this time, the extrusion temperature is preferably Tm + 10 ° C. or higher and 370 ° C. or lower for the semi-aromatic polyamide. If the extrusion temperature is Tm + 10 ° C. or higher, it becomes easy to avoid an increase in viscosity and the extrusion cannot be performed, and if the extrusion temperature is 370 ° C. or lower, the semi-aromatic polyamide is difficult to decompose. The thickness of the raw film is usually 1 to 500 μm, preferably 5 to 200 μm.
 Tダイ法によって原反フィルムを成形する場合、公知の単軸押出機または二軸押出機の先端部にTダイを接続し、フィルム状に押出された原反フィルムを得ることができる。 When the raw film is molded by the T-die method, the raw film extruded into a film can be obtained by connecting the T-die to the tip of a known single-screw extruder or twin-screw extruder.
 押出機は、1個以上の開放ベント部を有することが好ましい。このような押出機を用いることで、開放ベント部から分解物や揮発成分を吸引することができ、得られた組成物の品質を向上できる。また、押出機は、異物を除去するためにポリマーフィルターを有することが好ましい。ポリマーフィルターの構造としては、例えばリーフディスク型やキャンドル型等が挙げられる。さらに、押出機は、組成物の吐出量を安定化させるためにギアポンプを有することが好ましい。ギアポンプとしては公知のものを使用することができる。押出機が開放ベント部、ギアポンプ及びポリマーフィルターを有する場合、異物を低減し、且つベントアップを抑制する観点から、押出機-ギアポンプ-ポリマーフィルター-ダイの順番で接続することが好ましい。また、押出機における樹脂組成物の劣化を防ぐため、押出機内に窒素を通じながら成形することが好ましい。 The extruder preferably has one or more open vents. By using such an extruder, decomposition products and volatile components can be sucked from the open vent portion, and the quality of the obtained composition can be improved. Also, the extruder preferably has a polymer filter to remove foreign matter. Examples of the structure of the polymer filter include a leaf disc type and a candle type. Further, the extruder preferably has a gear pump to stabilize the discharge rate of the composition. A known gear pump can be used. When the extruder has an open vent portion, a gear pump and a polymer filter, it is preferable to connect in the order of extruder-gear pump-polymer filter-die from the viewpoint of reducing foreign matter and suppressing vent-up. Further, in order to prevent deterioration of the resin composition in the extruder, it is preferable to mold the resin composition while passing nitrogen through the extruder.
 原反フィルムを製造する一実施形態として、原反フィルムの表面平滑性及び厚さ均一性を確保する観点から、押し出されたフィルム状溶融樹脂を、鏡面ロールまたは鏡面ベルトの間に引き取り、挟圧することが好ましい。鏡面ロールまたは鏡面ベルトは、いずれも金属製であることが好ましい。鏡面ロールは金属剛体ロール及び金属弾性ロールの組合せであることがより好ましい。鏡面ロールまたは鏡面ベルト間の線圧は、表面平滑性の観点から、好ましくは10N/mm以上であり、より好ましく30N/mm以上である。通常、ポリアミドは結晶化速度が速く結晶が成長しやすいので、結晶成長を抑制して延伸を容易にする観点から、半芳香族ポリアミドのTg以下に急冷するのが良い。一方で、フィルムに皺ができてフィルムの外観が悪くなったり、延伸性が低下したりすることを防ぐ観点から、冷却速度が過度に大きくならないようにするのがよい。つまり、ある一定の範囲内に冷却温度を制御することが好ましい。そのため、鏡面ロールまたは鏡面ベルトの表面温度は、表面平滑性、ヘーズ、外観などの観点から、好ましくは半芳香族ポリアミドのTg-10℃以下かつTg-75℃以上であり、より好ましくはTg-20℃以下かつTg-75℃以上である。 As an embodiment for producing a raw film, an extruded film-like molten resin is picked up between a mirror roll or a mirror belt and pressed from the viewpoint of ensuring the surface smoothness and thickness uniformity of the raw film. Is preferable. The mirror surface roll or the mirror surface belt is preferably made of metal. The mirror surface roll is more preferably a combination of a metal rigid body roll and a metal elastic roll. The linear pressure between the mirror surface rolls or the mirror surface belts is preferably 10 N / mm or more, more preferably 30 N / mm or more, from the viewpoint of surface smoothness. Usually, polyamide has a high crystallization rate and crystals easily grow. Therefore, from the viewpoint of suppressing crystal growth and facilitating stretching, it is preferable to quench the polyamide to Tg or less of the semi-aromatic polyamide. On the other hand, from the viewpoint of preventing the film from being wrinkled and deteriorating the appearance of the film and the stretchability, it is preferable to prevent the cooling rate from becoming excessively high. That is, it is preferable to control the cooling temperature within a certain range. Therefore, the surface temperature of the mirror surface roll or the mirror surface belt is preferably Tg-10 ° C. or lower and Tg-75 ° C. or higher of the semi-aromatic polyamide from the viewpoint of surface smoothness, haze, appearance and the like, and more preferably Tg-. It is 20 ° C. or lower and Tg-75 ° C. or higher.
 また、原反フィルムを製造する他の実施形態として、挟圧しない方法が挙げられる。具体的には、押し出されたフィルム状溶融樹脂を、該フィルムの表面平滑性及び厚さ均一性の観点から、密着補助装置により鏡面ロールに接触かつ密着させ、冷却、固化させることが好ましい。密着補助装置としては、例えば静電密着装置、エアナイフ、エアチャンバー、バキュームチャンバーなどが挙げられる。エッジピニングとワイヤーピニングを併用してもよい。これらのうち、製造安定性の観点から、密着補助装置として静電密着装置を用いることが好ましい。 Further, as another embodiment for producing the raw film, there is a method of not pinching. Specifically, from the viewpoint of surface smoothness and thickness uniformity of the film, it is preferable that the extruded film-like molten resin is brought into contact with and adheres to the mirror surface roll by an adhesion assisting device to be cooled and solidified. Examples of the close contact assisting device include an electrostatic close contact device, an air knife, an air chamber, a vacuum chamber, and the like. Edge pinning and wire pinning may be used together. Of these, from the viewpoint of manufacturing stability, it is preferable to use an electrostatic contact device as the contact assist device.
 密着補助装置としてエッジピニングとワイヤーピニングを併用する場合、エッジピニングとワイヤーピニングを、上流側からこの順で配置することが好ましい。また、ワイヤーピニングは、鏡面ロール上の溶融樹脂の温度がガラス転移温度となる位置を含めこれより下流側であって、鏡面ロールから剥離する位置より上流側に配置することがより好ましい。 When edge pinning and wire pinning are used together as a close contact assisting device, it is preferable to arrange the edge pinning and wire pinning in this order from the upstream side. Further, the wire pinning is more preferably arranged on the downstream side including the position where the temperature of the molten resin on the mirror surface roll becomes the glass transition temperature, and on the upstream side from the position where the molten resin is peeled off from the mirror surface roll.
 原反フィルムの製造工程と延伸工程とは、連続的に実施しても良いし、非連続的に実施しても良い。 The raw film manufacturing process and the stretching process may be performed continuously or discontinuously.
(原反フィルムの延伸処理)
 本発明の実施形態に係る延伸フィルムは、ナフタレンジカルボン酸単位を含むジカルボン酸単位及び炭素数4~12のジアミンを含むジアミン単位を含む半芳香族ポリアミド、又は、これを含むポリアミド組成物を含む原反フィルムを延伸処理することによって製造される。
 原反フィルムの延伸処理は、所定温度及び所定速度で原反フィルムを所定倍率に延伸する延伸工程と、延伸されたフィルムを所定温度で熱固定処理する熱固定工程とを含む。原反フィルムに対して延伸処理を施すことによって、フィルムの耐熱性を向上させることができる。
 延伸処理は、フィルムを延伸する延伸工程を含み、好ましくは、延伸工程に先立って行われる予熱工程をさらに含む。延伸工程においては、例えば、逐次二軸延伸法、同時二軸延伸法、チューブラー法等を用いることができる。中でも、フィルム厚み精度が良く、フィルム幅方向の物性が均一であることから、同時二軸延伸法が最適である。原反フィルムの延伸処理は、予熱工程、延伸工程、熱固定工程をこの順番で実行することが好ましく、熱固定工程後に弛緩工程を実施しても良い。なお、上述した化学構造と配合比率からなるジカルボン酸単位及びジアミン単位を含む半芳香族ポリアミド、又は、これを含むポリアミド組成物を含む原反フィルムに対して延伸処理を施すことにより、上記半芳香族ポリアミドを含む延伸フィルムが得られる。
(Stretching treatment of raw film)
The stretched film according to the embodiment of the present invention contains a semi-aromatic polyamide containing a dicarboxylic acid unit containing a naphthalene dicarboxylic acid unit and a diamine unit containing a diamine having 4 to 12 carbon atoms, or a polyamide composition containing the same. Manufactured by stretching an anti-film.
The stretching treatment of the raw film includes a stretching step of stretching the raw film to a predetermined magnification at a predetermined temperature and a predetermined speed, and a heat fixing step of heat-fixing the stretched film at a predetermined temperature. The heat resistance of the film can be improved by subjecting the raw film to a stretching treatment.
The stretching treatment includes a stretching step of stretching the film, and preferably further includes a preheating step performed prior to the stretching step. In the stretching step, for example, a sequential biaxial stretching method, a simultaneous biaxial stretching method, a tubular method and the like can be used. Above all, the simultaneous biaxial stretching method is most suitable because the film thickness accuracy is good and the physical properties in the film width direction are uniform. In the stretching treatment of the raw film, it is preferable to carry out the preheating step, the stretching step, and the heat fixing step in this order, and the relaxation step may be carried out after the heat fixing step. The semi-aromatic polyamide containing the dicarboxylic acid unit and the diamine unit having the above-mentioned chemical structure and blending ratio, or the raw fabric film containing the polyamide composition containing the above-mentioned semi-aromatic polyamide is subjected to a stretching treatment. A stretched film containing a group polyamide is obtained.
(予熱工程)
 予熱工程においては、原反フィルムの温度を、半芳香族ポリアミドのTg-10℃以上かつ原反フィルムの再結晶化温度以下とすることが好ましく、半芳香族ポリアミドのTg以上かつ原反フィルムの再結晶化温度以下とすることがより好ましい。予熱工程における原反フィルムの温度が係る範囲にあることで、延伸フィルム製造時の延伸工程において破断が生じにくくなり、生産性を向上させやすく、かつ耐熱性を向上させやすくなる。原反フィルムの再結晶化温度は、示差走査熱量分析(DSC)装置を用い、10℃/分の速度で昇温した時に現れる発熱ピークのピーク温度として求めることができ、より具体的には実施例に記載した方法により求めることができる。
(Preheating process)
In the preheating step, the temperature of the raw fabric film is preferably Tg-10 ° C. or higher for the semi-aromatic polyamide and lower than the recrystallization temperature of the raw fabric film, and Tg or higher for the semi-aromatic polyamide and the raw fabric film. It is more preferable that the temperature is below the recrystallization temperature. When the temperature of the raw film in the preheating step is within the relevant range, breakage is less likely to occur in the stretching step during the production of the stretched film, productivity is easily improved, and heat resistance is easily improved. The recrystallization temperature of the raw film can be determined as the peak temperature of the exothermic peak that appears when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimetry (DSC) device. It can be obtained by the method described in the example.
 原反フィルムの再結晶温度は、好ましくは150~200℃、より好ましくは160~180℃である。原反フィルムの再結晶温度が上記範囲であれば、予熱温度や熱固定温度等が高くなりすぎないので、酸化による劣化が生じにくく、また、Tgと再結晶化温度との間に必要な差異が確保され、原反フィルムの延伸が難しくなることを回避しやすくなる。
 原反フィルムの再結晶温度は、例えば、酸成分として2,6-ナフタレンジカルボン酸の含有量を高くし、好ましくは100%に近づけることにより、上記数値範囲にすることができる。
The recrystallization temperature of the raw film is preferably 150 to 200 ° C, more preferably 160 to 180 ° C. When the recrystallization temperature of the raw film is within the above range, the preheating temperature, the heat fixing temperature, etc. do not become too high, so that deterioration due to oxidation is unlikely to occur, and a necessary difference between Tg and the recrystallization temperature. Is ensured, and it becomes easy to avoid the difficulty in stretching the raw film.
The recrystallization temperature of the raw film can be within the above numerical range, for example, by increasing the content of 2,6-naphthalenedicarboxylic acid as an acid component, preferably approaching 100%.
(延伸工程)
 延伸工程においては、原反フィルムの温度(延伸温度)を、半芳香族ポリアミドのTg-10℃以上かつ原反フィルムの再結晶化温度以下とする。延伸温度は、好ましくは半芳香族ポリアミドのTg以上かつ原反フィルムの再結晶化温度以下である。延伸工程における原反フィルムの温度が係る範囲にあることで、係る延伸工程において破断が生じにくくなり、生産性を向上させやすく、かつ耐熱性を向上させやすくなる。
(Stretching process)
In the stretching step, the temperature of the raw film (stretching temperature) is set to Tg-10 ° C. or higher of the semi-aromatic polyamide and lower than the recrystallization temperature of the raw film. The stretching temperature is preferably Tg or more of the semi-aromatic polyamide and not more than the recrystallization temperature of the raw film. When the temperature of the raw film in the stretching step is within such a range, breakage is less likely to occur in the stretching step, productivity is easily improved, and heat resistance is easily improved.
 延伸工程において、原反フィルムの延伸倍率は2.0~16倍であり、好ましくは2.0~10倍、より好ましくは2.5~6.0倍である。延伸倍率が2.0倍以上であることで、ヘーズの悪化を抑制することができる。また、延伸倍率が16倍以下、特に10倍以下、さらには6.0倍以下であることで、延伸フィルム製造時の延伸工程において破断が生じにくくなり、生産性が向上する。なお、延伸倍率とは、延伸前のフィルムの面積に対する延伸後のフィルムの面積の比を意味する。 In the stretching step, the stretching ratio of the raw film is 2.0 to 16 times, preferably 2.0 to 10 times, and more preferably 2.5 to 6.0 times. When the draw ratio is 2.0 times or more, deterioration of haze can be suppressed. Further, when the draw ratio is 16 times or less, particularly 10 times or less, and further 6.0 times or less, breakage is less likely to occur in the stretching step during the production of the stretched film, and the productivity is improved. The stretch ratio means the ratio of the area of the film after stretching to the area of the film before stretching.
 延伸工程において、原反フィルムの延伸速度は100~5,000%/分であり、好ましくは300~2,000%/分である。延伸速度が係る範囲にあることで、延伸フィルム製造時の延伸工程において破断が生じにくくなり、生産性を向上させやすくなる。 In the stretching step, the stretching speed of the raw film is 100 to 5,000% / min, preferably 300 to 2,000% / min. When the stretching speed is within such a range, breakage is less likely to occur in the stretching step during the production of the stretched film, and the productivity can be easily improved.
 熱固定工程において、原反フィルムの温度は原反フィルムの再結晶化温度以上であり、好ましくは原反フィルムの再結晶化温度+40℃以上、より好ましくは原反フィルムの再結晶化温度+60℃以上である。熱固定工程における原反フィルムの温度が係る範囲にあることで、室温と高温での弾性率変化が小さくなり、耐熱性が向上する。 In the heat fixing step, the temperature of the raw fabric film is equal to or higher than the recrystallization temperature of the raw fabric film, preferably the recrystallization temperature of the raw fabric film + 40 ° C. or higher, and more preferably the recrystallization temperature of the raw fabric film + 60 ° C. That is all. When the temperature of the raw film in the heat fixing step is within the relevant range, the change in elastic modulus between room temperature and high temperature is small, and the heat resistance is improved.
 ナフタレンジカルボン酸単位を含むジカルボン酸単位及び炭素数4~12のジアミンを含むジアミン単位を含む半芳香族ポリアミド、又は、これを含むポリアミド組成物を含む原反フィルムを用いて、延伸温度を半芳香族ポリアミドのガラス転移温度-10℃以上かつ原反フィルムの再結晶化温度以下とし、延伸速度を100~5,000%/分とし、延伸倍率を2~16倍とし、さらに、熱固定温度を原反フィルムの再結晶化温度以上として延伸処理を行うことにより、上述した物性を持つ延伸フィルムを得ることができる。 Using a semi-aromatic polyamide containing a dicarboxylic acid unit containing a naphthalenedicarboxylic acid unit and a diamine unit containing a diamine having 4 to 12 carbon atoms, or a raw fabric film containing a polyamide composition containing the same, the stretching temperature is semi-aromatic. The glass transition temperature of the group polyamide is -10 ° C or higher and the recrystallization temperature of the raw fabric film or lower, the stretching speed is 100 to 5,000% / min, the stretching ratio is 2 to 16 times, and the heat fixing temperature is set. By performing the stretching treatment at a temperature equal to or higher than the recrystallization temperature of the raw film, a stretched film having the above-mentioned physical properties can be obtained.
 延伸処理は熱固定工程の後に弛緩工程を有していても良い。弛緩工程における、フィルムの弛緩率は、好ましくは1~10%、より好ましくは1~7%である。弛緩処理を行うことで、延伸フィルムに十分な強度を付与させやすくなる。 The stretching process may have a relaxation step after the heat fixing step. The relaxation rate of the film in the relaxation step is preferably 1 to 10%, more preferably 1 to 7%. By performing the relaxation treatment, it becomes easy to impart sufficient strength to the stretched film.
 延伸フィルムには、フィルム表面の接着性を良好にするために、コロナ処理、プラズマ処理、グロー放電処理、酸処理、火炎処理、紫外線照射処理、電子線照射処理、オゾン処理などの活性化処理を施してもよい。 In order to improve the adhesiveness of the film surface, the stretched film is subjected to activation treatments such as corona treatment, plasma treatment, glow discharge treatment, acid treatment, flame treatment, ultraviolet irradiation treatment, electron beam irradiation treatment, and ozone treatment. May be given.
[積層体及びカバーウィンドウ]
 延伸フィルムに、例えばハードコート層などの他の層を設けることにより、積層体とすることができる。
 図1は、積層体の一実施形態であるカバーウィンドウの断面模式図である。図1に示すように、カバーウィンドウ3は、上述した延伸フィルム1と、延伸フィルム1上に設けられたハードコート層2とを有する。
 上述したように、本実施形態に係る延伸フィルムは、透明性と耐熱性を備えており、積層体にする場合でも、反りやクラックの発生が発生しにくい。したがって、延伸フィルムに積層する層を多くの選択肢から選ぶことができ、例えば、高硬度のハードコート層を付与することができる。したがって、高硬度のハードコート層を設けた積層体とすることによって、例えば、外部からの物体による傷に対して強い高い硬度を備えるカバーウィンドウとすることができ、ディスプレイの保護部材として広く活用することが可能である。
[Laminate and cover window]
A laminated body can be formed by providing the stretched film with another layer such as a hard coat layer.
FIG. 1 is a schematic cross-sectional view of a cover window according to an embodiment of a laminated body. As shown in FIG. 1, the cover window 3 has the above-mentioned stretched film 1 and the hard coat layer 2 provided on the stretched film 1.
As described above, the stretched film according to the present embodiment has transparency and heat resistance, and warpage and cracks are unlikely to occur even when the laminated film is formed. Therefore, the layer to be laminated on the stretched film can be selected from many options, and for example, a hard coat layer having high hardness can be imparted. Therefore, by forming a laminate provided with a high-hardness hard coat layer, for example, a cover window having high hardness that is strong against scratches caused by external objects can be obtained, which is widely used as a protective member for displays. It is possible.
(ハードコート層)
 延伸フィルムには、表面の硬度(鉛筆硬度、耐擦傷性)を向上させる目的でハードコート層を付与することができる。
(Hard coat layer)
A hard coat layer can be applied to the stretched film for the purpose of improving the surface hardness (pencil hardness, scratch resistance).
 延伸フィルムに付与できるハードコート層に用いる材料としては特に制限はなく、紫外線(以降、「UV」と称する)や電子線(以降、「EB」と称する)を照射することによって硬化するアクリル系樹脂等の電離放射線硬化性樹脂;熱を与えることによって硬化するエポキシ樹脂、シリコーン系樹脂等の熱硬化性樹脂;溶剤の塗布、蒸着等によってフィルム表面に塗工するシリカ粒子等の無機微粒子が挙げられる。その中でも、表面硬度を高度に向上させることができる光硬化性樹脂を用いることが好ましい。 The material used for the hard coat layer that can be applied to the stretched film is not particularly limited, and is an acrylic resin that is cured by irradiating with ultraviolet rays (hereinafter referred to as "UV") or electron beams (hereinafter referred to as "EB"). Such as ionizing radiation curable resin; thermosetting resin such as epoxy resin and silicone resin which are cured by applying heat; inorganic fine particles such as silica particles which are coated on the film surface by coating or vapor deposition of a solvent. .. Among them, it is preferable to use a photocurable resin capable of highly improving the surface hardness.
 電離放射線硬化型樹脂は、例えば、ウレタンアクリレート系樹脂、ポリエステルアクリレート系樹脂等の中から適宜選択することができる。電離放射線硬化型樹脂として好ましいものは、分子内に2個以上の(メタ)アクリロイル基を有するUVまたはEBにて硬化可能な多官能アクリレートからなるものである。分子内に2個以上の(メタ)アクリロイル基を有するUVまたはEB硬化可能な多官能アクリレートの具体例としては、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等のポリオールポリアクリレート、ビスフェノールAジグリシジルエーテルのジアクリレート、ネオペンチルグリコールジグリシジルエーテルのジアクリレート、1,6-ヘキサンジオールジグリシジルエーテルのジ(メタ)アクリレートなどのエポキシ(メタ)アクリレート、多価アルコールと多価カルボン酸及び/またはその無水物とアクリル酸とをエステル化することによって得ることができるポリエステル(メタ)アクリレート、多価アルコール、多価イソシアネート及び水酸基含有(メタ)アクリレートを反応させることによって得られるウレタン(メタ)アクリレート、ポリシロキサンポリ(メタ)アクリレート等が挙げられる。なお、多官能アクリレートは3種以上混合して用いてもよい。 The ionizing radiation curable resin can be appropriately selected from, for example, urethane acrylate-based resin, polyester acrylate-based resin, and the like. A preferred ionizing radiation curable resin is one consisting of a UV or EB curable polyfunctional acrylate having two or more (meth) acryloyl groups in the molecule. Specific examples of UV or EB curable polyfunctional acrylates having two or more (meth) acryloyl groups in the molecule include neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and the like. Polyacrylate polyacrylates such as trimethylolpropantri (meth) acrylate, ditrimethylolpropanetetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, bisphenol A Diacrylate of diglycidyl ether, diacrylate of neopentyl glycol diglycidyl ether, epoxy (meth) acrylate such as di (meth) acrylate of 1,6-hexanediol diglycidyl ether, polyhydric alcohol and polyvalent carboxylic acid and / Alternatively, urethane (meth) acrylate obtained by reacting polyester (meth) acrylate, polyhydric alcohol, polyvalent isocyanate, and hydroxyl group-containing (meth) acrylate, which can be obtained by esterifying the anhydride and acrylic acid. , Polysiloxane Poly (meth) acrylate and the like. In addition, you may use a mixture of 3 or more kinds of polyfunctional acrylates.
 ハードコート層の塗膜厚さは、特に制約されるわけではないが、例えば1~100μmの範囲であることが好ましい。塗膜厚さが1μm以上であれば必要な硬度が得られやすくなる。また、塗膜厚さが100μm以下であれば塗膜後のフィルムにおいて良好な伸長性が得られやすくなる。 The coating thickness of the hard coat layer is not particularly limited, but is preferably in the range of, for example, 1 to 100 μm. If the coating thickness is 1 μm or more, the required hardness can be easily obtained. Further, when the coating film thickness is 100 μm or less, good extensibility can be easily obtained in the film after the coating film.
 ハードコート層の塗工方法については、特に制限はないが、グラビア塗工、マイクログラビア塗工、ファウンテンバー塗工、スライドダイ塗工、スロットダイ塗工など、塗膜厚さの調整が容易な方式で塗工が可能である。 The coating method of the hard coat layer is not particularly limited, but it is easy to adjust the coating thickness such as gravure coating, microgravure coating, fountain bar coating, slide die coating, slot die coating, etc. Coating is possible by the method.
 本発明の実施形態に係る延伸フィルムは、ハードコート層を塗工する工程において、フィルムの反りや微細クラックが発生しないことが望ましい。上述したように、特定の半芳香族ポリアミドを含む原反フィルムを用いて、特定の延伸条件で延伸処理を行うことにより、反りやクラックが抑制された延伸フィルムを得ることができる。フィルムの反りや微細クラックは、塗工後のフィルムを目視で検査することにより判別することができ、具体的には実施例において後述する方法により判別することができる。 It is desirable that the stretched film according to the embodiment of the present invention does not warp or generate fine cracks in the step of applying the hard coat layer. As described above, a stretched film in which warpage and cracks are suppressed can be obtained by performing a stretching treatment under specific stretching conditions using a raw film containing a specific semi-aromatic polyamide. Warpage and fine cracks in the film can be discriminated by visually inspecting the film after coating, and specifically, can be discriminated by the method described later in the examples.
[用途]
 延伸フィルムの用途としては特に制限はなく、モーター、トランス、ケーブル等のための電気絶縁材料;コンデンサ用途等の誘電体材料;半導体パッケージ用等の電子部品包装材料;医薬品包装材料;レトルト食品等の食品包装材料;ディスプレイ用カバーウィンドウ、太陽電池基板、液晶板、導電性フィルム、表示機器等の保護板;LED実装基板、フレキシブルプリント基板、フレキシブルフラットケーブル等の電子基板材料;FPC用カバーレイフィルム、耐熱マスキング用テープ、工業用工程テープ等の耐熱粘着テープ;耐熱バーコードラベル;耐熱リフレクタ―;各種離型フィルム;耐熱粘着ベースフィルム;写真フィルム;成形用材料;農業用材料;医療用材料;土木、建築用材料;濾過膜等;家庭用、産業資材用のフィルム等として、単独で、又は、ハードコート層などの他の層を積層した積層体として使用することができる。特に耐熱性、透明性の観点からディスプレイ用カバーウィンドウに好適に使用することができる。
[Use]
The use of the stretched film is not particularly limited, and is an electrically insulating material for motors, transformers, cables, etc .; a dielectric material for capacitors, etc.; an electronic parts packaging material for semiconductor packages, etc.; a pharmaceutical packaging material; a retort food, etc. Food packaging materials; display cover windows, solar cell substrates, liquid crystal plates, conductive films, protective plates for display equipment, etc .; LED mounting substrates, flexible printed substrates, flexible flat cables, and other electronic substrate materials; FPC coverlay films, Heat-resistant adhesive tapes such as heat-resistant masking tapes and industrial process tapes; heat-resistant bar code labels; heat-resistant reflectors; various release films; heat-resistant adhesive base films; photographic films; molding materials; agricultural materials; medical materials; civil engineering , Building materials; Filter films, etc .; Can be used alone as films for household and industrial materials, or as a laminated body in which other layers such as a hard coat layer are laminated. In particular, it can be suitably used for a cover window for a display from the viewpoint of heat resistance and transparency.
 以下、本発明を実施例及び比較例により具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
 実施例及び比較例で用いる材料の物性の測定、実施例及び比較例におけるフィルムの各物性の測定及び各評価は、以下に示す方法に従って行った。 The physical properties of the materials used in the examples and comparative examples were measured, and the physical properties of the films in the examples and comparative examples were measured and evaluated according to the methods shown below.
・半芳香族ポリアミドの融点及びガラス転移温度
 実施例及び比較例で用いる半芳香族ポリアミドの融点(Tm)及びガラス転移温度(Tg)は、株式会社日立ハイテクサイエンス製の示差走査熱量分析装置「DSC7020」を使用して測定した。
 融点は、ISO11357-3(2011年第2版)に準拠して測定を行った。具体的には、窒素雰囲気下で、30℃から340℃へ10℃/分の速度で試料を加熱し、340℃で5分間保持して試料を完全に融解させた後、10℃/分の速度で50℃まで冷却し50℃で5分間保持した。再び10℃/分の速度で340℃まで昇温した時に現れる融解ピークのピーク温度を融点(℃)とし、融解ピークが複数ある場合は最も高温側の融解ピークのピーク温度を融点(℃)とした。
 ガラス転移温度(℃)は、ISO11357-2(2013年第2版)に準拠して測定を行った。具体的には、窒素雰囲気下で、30℃から340℃へ20℃/分の速度で試料を加熱し、340℃で5分間保持して試料を完全に融解させた後、20℃/分の速度で50℃まで冷却し50℃で5分間保持した。再び20℃/分の速度で200℃まで昇温した時に現れる変曲点の温度をガラス転移温度(℃)とした。
 比較例で用いる(メタ)アクリル系樹脂組成物についても同様の手順で、Tgを測定した。
Melting point and glass transition temperature of semi-aromatic polyamide The melting point (Tm) and glass transition temperature (Tg) of semi-aromatic polyamide used in Examples and Comparative Examples are the differential scanning calorimetry device "DSC7020" manufactured by Hitachi High-Tech Science Co., Ltd. Was measured using.
The melting point was measured according to ISO11357-3 (2011 2nd edition). Specifically, the sample is heated from 30 ° C. to 340 ° C. at a rate of 10 ° C./min under a nitrogen atmosphere and held at 340 ° C. for 5 minutes to completely melt the sample, and then 10 ° C./min. It was cooled to 50 ° C. at a rate and held at 50 ° C. for 5 minutes. The peak temperature of the melting peak that appears when the temperature is raised to 340 ° C at a rate of 10 ° C / min again is defined as the melting point (° C), and when there are multiple melting peaks, the peak temperature of the melting peak on the highest temperature side is defined as the melting point (° C). did.
The glass transition temperature (° C.) was measured in accordance with ISO11357-2 (2013 2nd edition). Specifically, the sample is heated from 30 ° C. to 340 ° C. at a rate of 20 ° C./min under a nitrogen atmosphere and held at 340 ° C. for 5 minutes to completely melt the sample, and then 20 ° C./min. It was cooled to 50 ° C. at a rate and held at 50 ° C. for 5 minutes. The temperature of the inflection point that appears when the temperature is raised to 200 ° C. again at a rate of 20 ° C./min was defined as the glass transition temperature (° C.).
The Tg of the (meth) acrylic resin composition used in the comparative example was measured by the same procedure.
・原反フィルムの再結晶化温度
 原反フィルムの再結晶化温度は、株式会社日立ハイテクサイエンス製の示差走査熱量分析装置「DSC7020」を使用して測定した。具体的には、窒素雰囲気下で、30℃から340℃へ10℃/分の速度で試料を加熱した時に現れる発熱ピークのピーク温度を原反フィルムの再結晶化温度(℃)とした。
-Recrystallization temperature of the raw film The recrystallization temperature of the raw film was measured using a differential scanning calorimetry device "DSC7020" manufactured by Hitachi High-Tech Science Co., Ltd. Specifically, the peak temperature of the exothermic peak that appears when the sample is heated from 30 ° C. to 340 ° C. at a rate of 10 ° C./min in a nitrogen atmosphere was defined as the recrystallization temperature (° C.) of the raw film.
・延伸フィルム及び無延伸フィルムの線膨張係数
 実施例及び比較例で得た延伸フィルム、並びに比較例で得た無延伸フィルムを幅4mm×長さ20mmに切り出して試験片とし、熱機械分析TMA(TAインスツルメント社製「Q400EM」)を用いて、チャック間距離8mm、荷重0.01Nの条件で、25℃から180℃まで昇温速度10℃/minで昇温させ、試験片の寸法変化量を測定した。50~150℃の温度範囲における寸法変化量の傾きから各フィルムの線熱膨張係数を算出した。
Linear expansion coefficient of stretched film and non-stretched film The stretched film obtained in Examples and Comparative Examples and the non-stretched film obtained in Comparative Example were cut into a width of 4 mm and a length of 20 mm to obtain a test piece, and thermomechanical analysis TMA ( Using "Q400EM" manufactured by TA Instruments), the temperature was raised from 25 ° C to 180 ° C at a heating rate of 10 ° C / min under the conditions of a chuck distance of 8 mm and a load of 0.01 N, and the dimensional change of the test piece was performed. The amount was measured. The coefficient of linear thermal expansion of each film was calculated from the slope of the amount of dimensional change in the temperature range of 50 to 150 ° C.
・延伸フィルム及び無延伸フィルムの収縮開始温度
 実施例及び比較例で得た延伸フィルム、並びに比較例で得た無延伸フィルムを幅4mm×長さ20mmに切り出して試験片とし、熱機械分析TMA(TAインスツルメント社製「Q400EM」)を用いて、チャック間距離8mm、荷重0.01Nの条件で、25℃から180℃まで昇温速度10℃/minで昇温させ、試験片の寸法変化量を測定した。寸法変化量の傾きがマイナスに変化した際の温度を延伸フィルムの収縮開始温度とした。
Shrinkage start temperature of stretched film and non-stretched film The stretched film obtained in Examples and Comparative Examples and the non-stretched film obtained in Comparative Example were cut into a width of 4 mm and a length of 20 mm to obtain a test piece, which was used as a thermomechanical analysis TMA (thermomechanical analysis TMA). Using "Q400EM" manufactured by TA Instruments), the temperature was raised from 25 ° C to 180 ° C at a heating rate of 10 ° C / min under the conditions of a chuck distance of 8 mm and a load of 0.01 N, and the dimensional change of the test piece was performed. The amount was measured. The temperature at which the inclination of the amount of dimensional change changed to minus was defined as the shrinkage start temperature of the stretched film.
・延伸フィルム及び無延伸フィルムのヘーズ
 実施例及び比較例で得た延伸フィルム、並びに比較例で得た無延伸フィルムを50mm×50mmに切り出して試験片とし、ヘーズメーター(日本電色工業社製、SH7000)を用いて、JIS K 7136(2000)に準拠してヘーズを測定した。
・ Haze of stretched film and non-stretched film The stretched film obtained in Examples and Comparative Examples and the non-stretched film obtained in Comparative Example were cut into 50 mm × 50 mm pieces and used as test pieces, and a haze meter (manufactured by Nippon Denshoku Kogyo Co., Ltd. The haze was measured using SH7000) according to JIS K 7136 (2000).
・延伸フィルム及び無延伸フィルムの引張弾性率及び弾性率変化
 実施例及び比較例で得た延伸フィルム、並びに比較例で得た無延伸フィルムをダンベル3号形(JIS K 6251(2010))に打ち抜き、チャック間距離30mm、引張速度100mm/minの条件で、オートグラフ(株式会社島津製作所製)を使用して、23℃における引張弾性率E(23)及び85℃における引張弾性率E(85)(GPa)を測定した。そして、下記式(1)により、23℃と85℃との間における弾性率変化を算出した。
 弾性率変化(%)=(E(85)-E(23))/E(23)×100…式(1)
-Changes in tensile elastic modulus and elastic modulus of stretched film and non-stretched film The stretched film obtained in Examples and Comparative Examples and the non-stretched film obtained in Comparative Example are punched into a dumbbell No. 3 type (JIS K 6251 (2010)). , Tensile elastic modulus E (23) at 23 ° C. and Tensile elastic modulus E (85) at 85 ° C. using Autograph (manufactured by Shimadzu Corporation) under the conditions of chuck distance of 30 mm and tensile speed of 100 mm / min. (GPa) was measured. Then, the change in elastic modulus between 23 ° C. and 85 ° C. was calculated by the following formula (1).
Modulus change (%) = (E (85) -E (23)) / E (23) x 100 ... Equation (1)
・延伸フィルム及び無延伸フィルムの反り及び微細クラック
 実施例及び比較例で得た延伸フィルム、並びに比較例で得た無延伸フィルムに紫外線硬化性ハードコート剤 850-3L(アイカ工業株式会社製)を塗布し、80℃の乾燥機で1分間加熱して乾燥処理を行った。該フィルムをコンベア式UV照射装置(アイグラフィックス株式会社製アイグランデージECS-4011GX/N)に設置し、ランプ出力3kW、ランプ間距離150mm、コンベアスピード4m/minで水銀ランプを使用してUVを照射し、厚さ20μmのハードコート層を作製した。処理後のフィルムを取出し、フィルムの反りの有無、微細クラックの有無を目視で観察した。微細クラックが発生している場合、光の散乱によってフィルムが白化するため、目視で判断することが出来る。
Warpage and fine cracks in stretched film and non-stretched film UV curable hard coating agent 850-3L (manufactured by Aica Kogyo Co., Ltd.) was applied to the stretched film obtained in Examples and Comparative Examples and the non-stretched film obtained in Comparative Examples. The film was applied and heated in a dryer at 80 ° C. for 1 minute for drying. The film is installed on a conveyor type UV irradiation device (Eigrandage ECS-4011GX / N manufactured by Eye Graphics Co., Ltd.), and UV is emitted using a mercury lamp at a lamp output of 3 kW, a distance between lamps of 150 mm, and a conveyor speed of 4 m / min. Irradiation was performed to prepare a hard coat layer having a thickness of 20 μm. The treated film was taken out, and the presence or absence of warpage and the presence or absence of fine cracks in the film were visually observed. When fine cracks are generated, the film is whitened due to light scattering, so that it can be visually determined.
・延伸フィルム及び無延伸フィルムの屈曲性
 実施例及び比較例で得た延伸フィルム、並びに比較例で得た無延伸フィルムを15mm×122mmに切り出して試験片とし、MIT屈曲試験機(株式会社東洋精機製作所製、耐折疲労試験機D-2)を用いて、JIS P 8115(2001)に準拠して荷重250g、屈曲半径0.38mm、屈曲角度135°、屈曲速度175rpmで屈曲性を測定した。屈曲回数が1000回以上であれば合格(○)、1000回未満であれば不合格(×)として評価した。
Flexibility of stretched film and non-stretched film The stretched film obtained in Examples and Comparative Examples and the non-stretched film obtained in Comparative Example were cut into 15 mm × 122 mm pieces and used as test pieces, and used as a test piece by a MIT bending tester (Toyo Seiki Co., Ltd. Flexibility was measured using a folding fatigue tester D-2) manufactured by Mfg. Co., Ltd. at a load of 250 g, a bending radius of 0.38 mm, a bending angle of 135 °, and a bending speed of 175 rpm according to JIS P 8115 (2001). If the number of bendings was 1000 or more, it was evaluated as acceptable (◯), and if it was less than 1000, it was evaluated as rejected (x).
《組成物》
(1)組成物1の製造
 2,6-ナフタレンジカルボン酸9203.2g(42.6モル)、1,9-ノナンジアミンと2-メチル-1,8-オクタンジアミンの混合物[前者/後者=50/50(モル比)]6840.1g(43.2モル)、安息香酸105.0g(1.7モル)、次亜リン酸ナトリウム一水和物16.1g(原料の総質量に対して0.1質量%)及び蒸留水7.3リットルを内容積40リットルのオートクレーブに入れ、窒素置換した。100℃で30分間撹拌し、2時間かけてオートクレーブ内部の温度を220℃に昇温した。この時、オートクレーブ内部の圧力は2MPaまで昇圧した。そのまま5時間、圧力を2MPaに保ちながら加熱を続け、水蒸気を徐々に抜いて反応させた。次に、30分かけて圧力を1.3MPaまで下げ、さらに1時間反応させて、プレポリマーを得た。得られたプレポリマーを、100℃、減圧下で12時間乾燥し、2mm以下の粒径まで粉砕した。これを230℃、13Pa(0.1mmHg)にて10時間固相重合し半芳香族ポリアミドを得た。
 上記半芳香族ポリアミド100質量部に対してフェノール系熱安定剤であるスミライザーGA-80(住友化学株式会社製)を0.2質量部の割合でドライブレンドし、二軸押出機(東芝機械株式会社製「TEM-26SS」)の上流部供給口に一括投入した。半芳香族ポリアミドの融点よりも20~30℃高いシリンダー温度で溶融混練して押出し、冷却及び切断してペレット状の組成物1を製造した。
"Composition"
(1) Preparation of Composition 1 2,6-naphthalenedicarboxylic acid 9203.2 g (42.6 mol), a mixture of 1,9-nonandiamine and 2-methyl-1,8-octanediamine [former / latter = 50 / 50 (molar ratio)] 6840.1 g (43.2 mol), 105.0 g (1.7 mol) of benzoic acid, 16.1 g of sodium hypophosphate monohydrate (0. 1% by mass) and 7.3 liters of distilled water were placed in an autoclave having an internal volume of 40 liters and replaced with nitrogen. The mixture was stirred at 100 ° C. for 30 minutes, and the temperature inside the autoclave was raised to 220 ° C. over 2 hours. At this time, the pressure inside the autoclave was boosted to 2 MPa. Heating was continued for 5 hours while maintaining the pressure at 2 MPa, and water vapor was gradually removed to react. Next, the pressure was lowered to 1.3 MPa over 30 minutes, and the reaction was carried out for another 1 hour to obtain a prepolymer. The obtained prepolymer was dried at 100 ° C. under reduced pressure for 12 hours and pulverized to a particle size of 2 mm or less. This was solid-phase polymerized at 230 ° C. and 13 Pa (0.1 mmHg) for 10 hours to obtain a semi-aromatic polyamide.
Sumilyzer GA-80 (manufactured by Sumitomo Chemical Co., Ltd.), which is a phenolic heat stabilizer, is dry-blended at a ratio of 0.2 parts by mass with 100 parts by mass of the above semi-aromatic polyamide, and a twin-screw extruder (Toshiba Machine Co., Ltd.) It was put into the upstream supply port of the company's "TEM-26SS") all at once. A pellet-shaped composition 1 was produced by melting and kneading at a cylinder temperature 20 to 30 ° C. higher than the melting point of the semi-aromatic polyamide, extruding, cooling and cutting.
(2)組成物2の製造
 1,9-ノナンジアミンと2-メチル-1,8-オクタンジアミンの混合比が[前者/後者=85/15(モル比)]であること以外は組成物1と同様にして組成物2を製造した。
(2) Preparation of Composition 2 With composition 1 except that the mixing ratio of 1,9-nonanediamine and 2-methyl-1,8-octanediamine is [former / latter = 85/15 (molar ratio)]. Composition 2 was produced in the same manner.
(3)組成物3の製造
 撹拌機及び採取管が取り付けられたオートクレーブ内を窒素で置換した。これに、蒸留精製されたメチルメタクリレート(MMA)100質量部、2,2’-アゾビス(2-メチルプロピオニトリル)(水素引抜能:1%、1時間半減期温度:83℃)0.0052質量部、及びn-オクチルメルカプタン0.225質量部を入れ、撹拌して原料液を得た。この原料液中に窒素を送り込み、原料液中の溶存酸素を除去した。
 配管を介してオートクレーブに接続された槽型反応器に容量の2/3まで原料液を入れた。温度を140℃に維持した状態で、まずバッチ方式で重合反応を開始させた。重合転化率が55質量%になったところで、温度140℃に維持した状態で、平均滞留時間150分となる流量で原料液をオートクレーブから槽型反応器に供給し、同時に原料液の供給流量に相当する流量で槽型反応器から反応液を抜き出す連続流通方式の重合反応に切り替えた。連続流通方式に切り替えた後、定常状態における重合転化率は55質量%であった。
 定常状態になった槽型反応器から抜き出される反応液を、平均滞留時間2分間となる流量で内温230℃の多管式熱交換器に供給して加温した。次いで加温された反応液をフラッシュ蒸発器に導入し、未反応単量体を主成分とする揮発分を除去して、溶融樹脂を得た。揮発分が除去された溶融樹脂を内温260℃の二軸押出機に供給してストランド状に吐出し、ペレタイザーでカットして、ペレット状の(メタ)アクリル系樹脂(A)を得た。
(3) Production of Composition 3 The inside of the autoclave to which the stirrer and the sampling tube were attached was replaced with nitrogen. To this, 100 parts by mass of distilled and purified methyl methacrylate (MMA), 2,2'-azobis (2-methylpropionitrile) (hydrogen extraction capacity: 1%, 1 hour half-life temperature: 83 ° C.) 0.0052 0.225 parts by mass and 0.225 parts by mass of n-octyl mercaptan were added and stirred to obtain a raw material solution. Nitrogen was sent into this raw material liquid to remove dissolved oxygen in the raw material liquid.
The raw material solution was filled up to 2/3 of the capacity in a tank reactor connected to the autoclave via a pipe. While the temperature was maintained at 140 ° C., the polymerization reaction was first started by a batch method. When the polymerization conversion rate reached 55% by mass, the raw material liquid was supplied from the autoclave to the tank reactor at a flow rate with an average residence time of 150 minutes while maintaining the temperature at 140 ° C., and at the same time, the supply flow rate of the raw material liquid was increased. The reaction was switched to a continuous flow type polymerization reaction in which the reaction solution was extracted from the tank reactor at a corresponding flow rate. After switching to the continuous distribution method, the polymerization conversion rate in the steady state was 55% by mass.
The reaction solution extracted from the tank reactor in a steady state was supplied to a multi-tube heat exchanger having an internal temperature of 230 ° C. at a flow rate having an average residence time of 2 minutes for heating. Next, the heated reaction solution was introduced into a flash evaporator to remove volatile components containing unreacted monomers as a main component to obtain a molten resin. The molten resin from which the volatile matter had been removed was supplied to a twin-screw extruder having an internal temperature of 260 ° C., discharged in a strand shape, and cut with a pelletizer to obtain a pellet-shaped (meth) acrylic resin (A).
 撹拌機及び採取管が取り付けられたオートクレーブ内を窒素で置換した。これに、室温下にて、トルエン2.9質量部、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン0.0045質量部、濃度0.45Mのイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムのトルエン溶液0.097質量部、及び濃度1.3Mのsec-ブチルリチウムの溶液(溶媒:シクロヘキサン95質量%、n-ヘキサン5質量%)0.011質量部を仕込んだ。これらの原料に対して、撹拌しながら、20℃にて、蒸留精製されたMMA100質量部を30分かけて滴下した。滴下終了後、20℃で90分間撹拌したところ、溶液の色が黄色から無色に変化した。この時点におけるMMAの重合転化率は100%であった。得られた溶液にトルエン2.7質量部を加えて希釈した。次いで、希釈液をメタノール180質量部に注ぎ入れ、沈澱物を得た。得られた沈殿物を80℃、140Paにて24時間乾燥して、(メタ)アクリル系樹脂(B)を得た。 The inside of the autoclave equipped with the stirrer and the sampling tube was replaced with nitrogen. To this, at room temperature, 2.9 parts by mass of toluene, 0.0045 parts by mass of 1,1,4,7,10,10-hexamethyltriethylenetetramine, and 0.45 M concentration of isobutylbis (2,6-). Di-t-butyl-4-methylphenoxy) 0.097 parts by mass of a toluene solution of aluminum and a solution of sec-butyllithium at a concentration of 1.3 M (solvent: 95% by mass of cyclohexane, 5% by mass of n-hexane) 0. 011 parts by mass was charged. With stirring, 100 parts by mass of distilled and purified MMA was added dropwise to these raw materials at 20 ° C. over 30 minutes. After completion of the dropping, the mixture was stirred at 20 ° C. for 90 minutes, and the color of the solution changed from yellow to colorless. The polymerization conversion rate of MMA at this time was 100%. 2.7 parts by mass of toluene was added to the obtained solution for dilution. Then, the diluted solution was poured into 180 parts by mass of methanol to obtain a precipitate. The obtained precipitate was dried at 80 ° C. and 140 Pa for 24 hours to obtain a (meth) acrylic resin (B).
 (メタ)アクリル系樹脂(A)80質量部、(メタ)アクリル系樹脂(B)20質量部、紫外線吸収剤(ADEKA社製、LA-F70)1質量部、及び高分子加工助剤(三菱ケミカル社製、メタブレンP550A)2質量部をヘンシェルミキサーで混合し、260℃に設定したスクリュー径15mmのベント付き二軸押出機(テクノベル社製、KZW15-45MG)を用いて混練押出して、ガラス転移温度Tgが122℃であるメタクリル系樹脂の組成物3のペレットを得た。 80 parts by mass of (meth) acrylic resin (A), 20 parts by mass of (meth) acrylic resin (B), 1 part by mass of ultraviolet absorber (ADEKA, LA-F70), and polymer processing aid (Mitsubishi) 2 parts by mass of Metabrene P550A manufactured by Chemical Co., Ltd.) is mixed with a Henshell mixer and kneaded and extruded using a twin-screw extruder with a vent (KZW15-45MG manufactured by Technobel Co., Ltd.) set at 260 ° C. with a screw diameter of 15 mm to transfer the glass. Pellets of composition 3 of a methacrylic resin having a temperature Tg of 122 ° C. were obtained.
《原反フィルムの作製》
 株式会社テクノベル製の小型二軸押出機(φ15mm、L/D=45)及びTダイ(幅150mm、リップ幅0.4mm)を使用し、上記組成物1を用いて、組成物1の融点よりも20~30℃高いシリンダー温度及びダイ温度で溶融押出し、厚さ160μm±20μmの原反フィルム1を作製した。また、組成物1を用いて厚さ40μm±10μmの原反フィルム2を作製した。また、組成物2を用いて、同様の手順で200μm±20μmの原反フィルム3を作製した。また、組成物3を用いて、同様の手順で厚さ225μm±20μmの原反フィルム4を作製した。表1に各原反フィルムの材質と厚さを示す。
<< Production of original film >>
Using a small twin-screw extruder (φ15 mm, L / D = 45) and a T-die (width 150 mm, lip width 0.4 mm) manufactured by Technobel Co., Ltd., using the above composition 1 from the melting point of the composition 1. The raw film 1 having a thickness of 160 μm ± 20 μm was produced by melt extrusion at a cylinder temperature and a die temperature higher than 20 to 30 ° C. Further, the raw film 2 having a thickness of 40 μm ± 10 μm was prepared using the composition 1. Further, using the composition 2, a raw film 3 having a size of 200 μm ± 20 μm was prepared in the same procedure. Further, using the composition 3, a raw film 4 having a thickness of 225 μm ± 20 μm was prepared by the same procedure. Table 1 shows the material and thickness of each raw film.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例1]
 原反フィルム1を100mm×100mmに切り出した後、二軸延伸複屈折測定装置(ヱトー株式会社製、SDR-563K)に導入し、140℃で予熱した。次いで予熱後の原反フィルム1に、140℃で4.0倍(長手方向2.0倍かつ幅方向2.0倍)の同時二軸延伸を行った。このとき、延伸速度は長手方向及び幅方向ともに400%/分とした。その後、250℃まで昇温し、延伸されたフィルムの熱固定を3分間行い、厚さ40μmの延伸フィルムを得た。
[Example 1]
The raw film 1 was cut into a size of 100 mm × 100 mm, introduced into a biaxially stretched birefringence measuring device (SDR-563K manufactured by Eto Co., Ltd.), and preheated at 140 ° C. Next, the preheated raw film 1 was simultaneously biaxially stretched 4.0 times (2.0 times in the longitudinal direction and 2.0 times in the width direction) at 140 ° C. At this time, the stretching speed was 400% / min in both the longitudinal direction and the width direction. Then, the temperature was raised to 250 ° C., and the stretched film was heat-fixed for 3 minutes to obtain a stretched film having a thickness of 40 μm.
[実施例2]
 延伸倍率を2.3倍(長手方向1.5倍かつ幅方向1.5倍)としたこと以外は実施例1と同様の手法で、厚さ70μmの延伸フィルムを得た。
[Example 2]
A stretched film having a thickness of 70 μm was obtained by the same method as in Example 1 except that the stretching ratio was 2.3 times (1.5 times in the longitudinal direction and 1.5 times in the width direction).
[実施例3]
 熱固定を210℃で行ったこと以外は実施例1と同様の手法で、厚さ40μmの延伸フィルムを得た。
[Example 3]
A stretched film having a thickness of 40 μm was obtained by the same method as in Example 1 except that the heat was fixed at 210 ° C.
[実施例4]
 原反フィルム3を100mm×100mmに切り出した後、二軸延伸複屈折測定装置(ヱトー株式会社製、SDR-563K)に導入し、130℃で予熱した。次いで予熱後の原反フィルム3に、130℃で4.0倍(長手方向2.0倍かつ幅方向2.0倍)の同時二軸延伸を行った。このとき、延伸速度は長手方向及び幅方向ともに400%/分とした。その後、230℃まで昇温し、延伸されたフィルムの熱固定を2分間行い、厚さ50μmの延伸フィルムを得た。
[Example 4]
The raw film 3 was cut into 100 mm × 100 mm, introduced into a biaxially stretched birefringence measuring device (SDR-563K manufactured by Eto Co., Ltd.), and preheated at 130 ° C. Next, the preheated raw film 3 was simultaneously biaxially stretched 4.0 times (2.0 times in the longitudinal direction and 2.0 times in the width direction) at 130 ° C. At this time, the stretching speed was 400% / min in both the longitudinal direction and the width direction. Then, the temperature was raised to 230 ° C., and the stretched film was heat-fixed for 2 minutes to obtain a stretched film having a thickness of 50 μm.
[比較例1]
 熱固定を行わないこと以外は実施例1と同様の手法で、厚さ40μmの延伸フィルムを得た。
[Comparative Example 1]
A stretched film having a thickness of 40 μm was obtained by the same method as in Example 1 except that heat fixing was not performed.
[比較例2]
 原反フィルム2を100mm×100mmに切り出した後、二軸延伸複屈折測定装置(ヱトー株式会社製、SDR-563K)に導入し延伸を実施せず、該原反フィルムを250℃で3分間熱固定を行い、厚さ40μmの無延伸フィルムを得た。延伸していないため収縮開始温度は見られなかった。
[Comparative Example 2]
After cutting the raw film 2 into 100 mm × 100 mm, it was introduced into a biaxially stretched birefringence measuring device (SDR-563K manufactured by Eto Co., Ltd.), and the raw film was heated at 250 ° C. for 3 minutes without stretching. The film was fixed to obtain a non-stretched film having a thickness of 40 μm. No shrinkage start temperature was observed because it was not stretched.
[比較例3]
 原反フィルム2をそのまま物性の測定及び評価に用いた。延伸していないため収縮開始温度は見られなかった。
[Comparative Example 3]
The raw film 2 was used as it was for the measurement and evaluation of physical properties. No shrinkage start temperature was observed because it was not stretched.
[比較例4]
 原反フィルム4を100mm×100mmに切り出した後、二軸延伸複屈折測定装置(ヱトー株式会社製、SDR-563K)に導入し、145℃で予熱した。次いで予熱された原反フィルムを145℃で5.6倍(長手方向2.37倍かつ幅方向2.37倍)の同時二軸延伸を行った。このとき、延伸速度は長手方向及び幅方向ともに400%/分とした。その後、110℃まで降温し、延伸されたフィルムの熱固定を1分間行い、厚さ40μmの延伸フィルムを得た。
[Comparative Example 4]
The raw film 4 was cut into 100 mm × 100 mm, introduced into a biaxially stretched birefringence measuring device (SDR-563K manufactured by Eto Co., Ltd.), and preheated at 145 ° C. Next, the preheated raw film was simultaneously biaxially stretched at 145 ° C. by 5.6 times (2.37 times in the longitudinal direction and 2.37 times in the width direction). At this time, the stretching speed was 400% / min in both the longitudinal direction and the width direction. Then, the temperature was lowered to 110 ° C., and the stretched film was heat-fixed for 1 minute to obtain a stretched film having a thickness of 40 μm.
 上記実施例及び比較例において得られた延伸フィルムを用い、前述の各種物性の測定と各評価を行った。結果を表2に示す。また、各実施例及び比較例で用いた組成物及び原反フィルムの物性値も表2に併せて示す。
 なお、比較例4で用いた組成物3は、非晶性の樹脂であるため、結晶の消失及び生成に由来する、融点及び結晶化温度は観察されなかった。
Using the stretched films obtained in the above Examples and Comparative Examples, the above-mentioned various physical properties were measured and each evaluation was performed. The results are shown in Table 2. Table 2 also shows the physical property values of the compositions and raw film used in each of the examples and comparative examples.
Since the composition 3 used in Comparative Example 4 was an amorphous resin, the melting point and the crystallization temperature derived from the disappearance and formation of crystals were not observed.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~4の延伸フィルムは、熱固定をしていない比較例1に比べ、線膨張係数の絶対値が小さく、高温での剛性に優れ、また、延伸をしていない比較例2に比べ、線膨張係数の絶対値及びヘーズが小さく、さらに、延伸及び熱固定をしていない比較例3に比べ、線膨張係数の絶対値及び弾性率変化が小さい。すなわち、熱固定をせず、延伸のみを行うと、透明性に優れるが、耐熱性が不足することが分かる。また、延伸をせず、熱固定のみ行うと耐熱性は向上するが、透明性が低下することが分かる。さらに、延伸及び熱固定をしなければ透明性に優れるが、耐熱性が不足することが分かる。したがって、耐熱性と透明性を両立するためには、延伸工程及び熱固定工程の両工程が必要であることが理解できる。
 さらに、実施例1~4の延伸フィルムは、比較例4に比べ、延伸倍率は低いものの、線膨張係数及び弾性率変化が小さく、高温での剛性、及び屈曲性に優れている。すなわち、特定のポリアミド組成物を含む未延伸のフィルムを特定条件で延伸処理することによって、耐熱性と透明性、屈曲性の両立が可能であることが理解できる。
The stretched films of Examples 1 to 4 have a smaller absolute value of the coefficient of linear expansion than Comparative Example 1 which is not heat-fixed, have excellent rigidity at high temperatures, and are compared to Comparative Example 2 which is not stretched. , The absolute value of the linear expansion coefficient and the haze are small, and the absolute value of the linear expansion coefficient and the change in elastic modulus are small as compared with Comparative Example 3 in which stretching and heat fixing are not performed. That is, it can be seen that when only stretching is performed without heat fixing, the transparency is excellent, but the heat resistance is insufficient. Further, it can be seen that the heat resistance is improved but the transparency is lowered when only heat fixing is performed without stretching. Further, it can be seen that the transparency is excellent without stretching and heat fixing, but the heat resistance is insufficient. Therefore, it can be understood that both the stretching step and the heat fixing step are required in order to achieve both heat resistance and transparency.
Further, the stretched films of Examples 1 to 4 have a lower stretch ratio than Comparative Example 4, but have a small change in linear expansion coefficient and elastic modulus, and are excellent in rigidity and flexibility at high temperatures. That is, it can be understood that by stretching an unstretched film containing a specific polyamide composition under specific conditions, it is possible to achieve both heat resistance, transparency, and flexibility.
 本発明の延伸フィルムは、透明性、耐熱性、及び屈曲性に優れるため、カバーウィンドウ等の保護材として、特に、カバーウィンドウ等の積層体における基板材料として好適に使用することができ、フィルムの反りや微細クラックのないカバーウィンドウ等の積層体を提供することができる。さらに、より高硬度なハードコート層等の、多様な種類のハードコート層を延伸フィルムに付与することが可能であり、表面硬度などのカバーウィンドウや積層体としての性能を大幅に向上させ得る延伸フィルムを提供することが可能である。 Since the stretched film of the present invention is excellent in transparency, heat resistance, and flexibility, it can be suitably used as a protective material for a cover window or the like, particularly as a substrate material for a laminate such as a cover window. It is possible to provide a laminated body such as a cover window without warpage or fine cracks. Furthermore, it is possible to apply various types of hard coat layers such as a hard coat layer having higher hardness to the stretched film, and the stretch that can greatly improve the performance as a cover window or a laminate such as surface hardness. It is possible to provide a film.
1:フィルム
2:ハードコート層
3:カバーウィンドウ(積層体)
1: Film 2: Hard coat layer 3: Cover window (laminated body)

Claims (14)

  1.  半芳香族ポリアミドを含む延伸フィルムであって、
     前記半芳香族ポリアミドがジカルボン酸単位及びジアミン単位を含み、前記ジカルボン酸単位がナフタレンジカルボン酸単位を含み、前記ジアミン単位が炭素数4~12の脂肪族ジアミン単位を含み、
     50℃~150℃における線膨張係数が、-50×10-6/℃以上50×10-6/℃以下である、延伸フィルム。
    A stretched film containing a semi-aromatic polyamide.
    The semi-aromatic polyamide contains a dicarboxylic acid unit and a diamine unit, the dicarboxylic acid unit contains a naphthalenedicarboxylic acid unit, and the diamine unit contains an aliphatic diamine unit having 4 to 12 carbon atoms.
    A stretched film having a coefficient of linear expansion from 50 ° C. to 150 ° C. of -50 × 10 -6 / ° C. or higher and 50 × 10 -6 / ° C. or lower.
  2.  23℃における引張弾性率をE(23)、85℃における引張弾性率をE(85)としたときに、(E(85)-E(23))/E(23)×100で表される弾性率変化の絶対値が25%以下である、請求項1に記載の延伸フィルム。 When the tensile elastic modulus at 23 ° C. is E (23) and the tensile elastic modulus at 85 ° C. is E (85), it is represented by (E (85) -E (23)) / E (23) × 100. The stretched film according to claim 1, wherein the absolute value of the change in elastic modulus is 25% or less.
  3.  前記ナフタレンジカルボン酸単位の60モル%以上100モル%以下が、2,6-ナフタレンジカルボン酸である、請求項1又は2に記載の延伸フィルム。 The stretched film according to claim 1 or 2, wherein 60 mol% or more and 100 mol% or less of the naphthalene dicarboxylic acid unit is 2,6-naphthalene dicarboxylic acid.
  4.  前記炭素数4~12の脂肪族ジアミン単位が炭素数6~10の脂肪族ジアミンを含む、請求項1~3のいずれか1項に記載の延伸フィルム。 The stretched film according to any one of claims 1 to 3, wherein the aliphatic diamine unit having 4 to 12 carbon atoms contains an aliphatic diamine having 6 to 10 carbon atoms.
  5.  前記炭素数4~12の脂肪族ジアミン単位が炭素数8~10の脂肪族ジアミンを含む、請求項1~4のいずれか1項に記載の延伸フィルム。 The stretched film according to any one of claims 1 to 4, wherein the aliphatic diamine unit having 4 to 12 carbon atoms contains an aliphatic diamine having 8 to 10 carbon atoms.
  6.  前記脂肪族ジアミン単位が1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンを含む、請求項1~5のいずれか1項に記載の延伸フィルム。 The stretched film according to any one of claims 1 to 5, wherein the aliphatic diamine unit contains 1,9-nonanediamine and 2-methyl-1,8-octanediamine.
  7.  請求項1~6のいずれか1項に記載の延伸フィルムを含む積層体。 A laminate containing the stretched film according to any one of claims 1 to 6.
  8.  請求項1~6のいずれか1項に記載の延伸フィルム又は請求項7に記載の積層体を含む、カバーウィンドウ。 A cover window comprising the stretched film according to any one of claims 1 to 6 or the laminate according to claim 7.
  9.  請求項1~6のいずれか1項に記載の延伸フィルムの製造方法であって、
     前記半芳香族ポリアミドを含む未延伸フィルムを準備し、
     前記未延伸フィルムに対して、少なくとも延伸工程を含む延伸処理を施す、延伸フィルムの製造方法。
    The method for producing a stretched film according to any one of claims 1 to 6.
    An unstretched film containing the semi-aromatic polyamide was prepared.
    A method for producing a stretched film, wherein the unstretched film is subjected to a stretching treatment including at least a stretching step.
  10.  半芳香族ポリアミドを含む延伸フィルムの製造方法であって、
     前記半芳香族ポリアミドが、ジカルボン酸単位及びジアミン単位を含み、前記ジカルボン酸単位がナフタレンジカルボン酸単位を含み、前記ジアミン単位が炭素数4~12のジアミンを含み、
     延伸温度が前記半芳香族ポリアミドのガラス転移温度-10℃以上かつ未延伸フィルムの再結晶化温度以下であり、延伸速度が100~5,000%/分であり、延伸倍率が2~16倍であり、熱固定温度が未延伸フィルムの再結晶化温度以上である、延伸フィルムの製造方法。
    A method for producing a stretched film containing a semi-aromatic polyamide.
    The semi-aromatic polyamide contains a dicarboxylic acid unit and a diamine unit, the dicarboxylic acid unit contains a naphthalene dicarboxylic acid unit, and the diamine unit contains a diamine having 4 to 12 carbon atoms.
    The stretching temperature is equal to or higher than the glass transition temperature of the semi-aromatic polyamide of −10 ° C. and lower than the recrystallization temperature of the unstretched film, the stretching rate is 100 to 5,000% / min, and the stretching ratio is 2 to 16 times. A method for producing a stretched film, wherein the heat fixing temperature is equal to or higher than the recrystallization temperature of the unstretched film.
  11.  前記ナフタレンジカルボン酸単位の60モル%以上100モル%以下が2,6-ナフタレンジカルボン酸である、請求項9又は10に記載の延伸フィルムの製造方法。 The method for producing a stretched film according to claim 9 or 10, wherein 60 mol% or more and 100 mol% or less of the naphthalene dicarboxylic acid unit is 2,6-naphthalene dicarboxylic acid.
  12.  前記炭素数4~12の脂肪族ジアミン単位が炭素数6~10の脂肪族ジアミンを含む、請求項9~11のいずれか1項に記載の延伸フィルムの製造方法。 The method for producing a stretched film according to any one of claims 9 to 11, wherein the aliphatic diamine unit having 4 to 12 carbon atoms contains an aliphatic diamine having 6 to 10 carbon atoms.
  13.  前記炭素数4~12の脂肪族ジアミン単位が炭素数8~10の脂肪族ジアミンを含む、請求項9~12のいずれか1項に記載の延伸フィルムの製造方法。 The method for producing a stretched film according to any one of claims 9 to 12, wherein the aliphatic diamine unit having 4 to 12 carbon atoms contains an aliphatic diamine having 8 to 10 carbon atoms.
  14.  前記脂肪族ジアミン単位が1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンを含む、請求項9~13のいずれか1項に記載の延伸フィルムの製造方法。

     
    The method for producing a stretched film according to any one of claims 9 to 13, wherein the aliphatic diamine unit contains 1,9-nonanediamine and 2-methyl-1,8-octanediamine.

PCT/JP2020/012601 2019-03-29 2020-03-23 Stretched film, laminate, cover window, and stretched film manufacturing method WO2020203389A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021511465A JPWO2020203389A1 (en) 2019-03-29 2020-03-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019067440 2019-03-29
JP2019-067440 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203389A1 true WO2020203389A1 (en) 2020-10-08

Family

ID=72668816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012601 WO2020203389A1 (en) 2019-03-29 2020-03-23 Stretched film, laminate, cover window, and stretched film manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2020203389A1 (en)
WO (1) WO2020203389A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115884864A (en) * 2021-03-31 2023-03-31 尤尼吉可株式会社 Semi-aromatic polyamide film and laminate obtained therefrom

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067172A1 (en) * 2010-11-17 2012-05-24 ユニチカ株式会社 Semi-aromatic polyamide film, and process for production thereof
JP2012515244A (en) * 2009-01-16 2012-07-05 ディーエスエム アイピー アセッツ ビー.ブイ. Polyamide film for flexible printed circuit boards
JP2013189495A (en) * 2012-03-12 2013-09-26 Kurabo Ind Ltd Plastic film and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012515244A (en) * 2009-01-16 2012-07-05 ディーエスエム アイピー アセッツ ビー.ブイ. Polyamide film for flexible printed circuit boards
WO2012067172A1 (en) * 2010-11-17 2012-05-24 ユニチカ株式会社 Semi-aromatic polyamide film, and process for production thereof
JP2013189495A (en) * 2012-03-12 2013-09-26 Kurabo Ind Ltd Plastic film and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115884864A (en) * 2021-03-31 2023-03-31 尤尼吉可株式会社 Semi-aromatic polyamide film and laminate obtained therefrom
US20230312847A1 (en) * 2021-03-31 2023-10-05 Unitika Ltd. Semiaromatic polyamide film and laminate obtained therefrom
CN115884864B (en) * 2021-03-31 2024-04-09 尤尼吉可株式会社 Semi-aromatic polyamide film and laminate obtained therefrom
US11965072B2 (en) * 2021-03-31 2024-04-23 Unitika Ltd. Semiaromatic polyamide film and laminate obtained therefrom

Also Published As

Publication number Publication date
JPWO2020203389A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
JP5881614B2 (en) Semi-aromatic polyamide film and method for producing the same
JP7398288B2 (en) Composition for extrusion molding, its film, and method for producing the film
CN113825621B (en) Semi-aromatic polyamide film and method for producing same
JP6889966B1 (en) Flexible polyamide film
KR101867495B1 (en) Semi-aromatic polyamide film
JP6358837B2 (en) Semi-aromatic polyamide film
JP2017039847A (en) Semiaromatic polyamide film
JPWO2019031428A1 (en) Semi-aromatic polyamide film and method for producing the same
WO2020203389A1 (en) Stretched film, laminate, cover window, and stretched film manufacturing method
JP2016121349A (en) Semi-aromatic polyamide film
JP2019099626A (en) Thermoplastic film and laminate
JP2009234131A (en) Production process of biaxially stretched polyamide resin film
JP7051181B1 (en) Polyamide, a molded product and film made of the polyamide, and a method for producing the polyamide.
JP6474201B2 (en) Polyamide film
WO2012147849A1 (en) Copolymer polyamide film
JP7252602B2 (en) semi-aromatic polyamide film
CN115884864B (en) Semi-aromatic polyamide film and laminate obtained therefrom
RU2786076C1 (en) Semi-aromatic polyamide film and method for obtaining the film
TW202337977A (en) Thermoplastic resin film
WO2023068121A1 (en) Polyamide film laminate
JP2024009620A (en) stretched polyamide film
TW202346417A (en) Polyamide film and production method thereof
JP2019044027A (en) Polyamide 9T sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783850

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511465

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20783850

Country of ref document: EP

Kind code of ref document: A1